KR102546049B1 - Method for manufacturing solid electrolyte for secondary battery by molded articles - Google Patents

Method for manufacturing solid electrolyte for secondary battery by molded articles Download PDF

Info

Publication number
KR102546049B1
KR102546049B1 KR1020210042699A KR20210042699A KR102546049B1 KR 102546049 B1 KR102546049 B1 KR 102546049B1 KR 1020210042699 A KR1020210042699 A KR 1020210042699A KR 20210042699 A KR20210042699 A KR 20210042699A KR 102546049 B1 KR102546049 B1 KR 102546049B1
Authority
KR
South Korea
Prior art keywords
solid electrolyte
powder raw
secondary battery
molding
synthesis
Prior art date
Application number
KR1020210042699A
Other languages
Korean (ko)
Other versions
KR20220136713A (en
Inventor
강성호
김인섭
이진욱
유리
Original Assignee
주식회사 신한세라믹
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 신한세라믹 filed Critical 주식회사 신한세라믹
Priority to KR1020210042699A priority Critical patent/KR102546049B1/en
Publication of KR20220136713A publication Critical patent/KR20220136713A/en
Application granted granted Critical
Publication of KR102546049B1 publication Critical patent/KR102546049B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/45Phosphates containing plural metal, or metal and ammonium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G25/00Compounds of zirconium
    • C01G25/006Compounds containing, besides zirconium, two or more other elements, with the exception of oxygen or hydrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/08Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/0071Oxides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Conductive Materials (AREA)

Abstract

본 발명은 성형물에 의한 이차전지용 고체전해질 제조방법에 관한 것으로서 보다 상세하게는 이차전지용 고체전해질로 사용되는 합성분말원료의 합성시 일정한 모양과 크기를 갖는 성형물을 형성시킨 후 상기 성형물을 2단 이상 적층하여 합성하면 파우더의 형태보다 충분한 반응이 일어나 합성효율이 증대되도록 한 성형물에 의한 이차전지용 고체전해질 제조방법에 관한 것인바, 본 발명은 이차전지용 고체전해질 제조방법에 있어서, 합성분말원료를 일정한 비율로 혼합하여 준비하는 준비공정과; 상기 준비공정에 의하여 준비된 합성분말원료를 혼합하고 볼밀을 이용하여 일정한 크기로 미분쇄하는 분쇄공정과; 상기 분쇄공정의 수행에 의하여 수획된 합성분말원료를 드라이오븐을 이용하여 수분을 제거하는 건조공정과; 상기 건조공정시 합성분말원료가 뭉쳐지는 현상이 발생됨으로 이를 풀어주기 위한 풀림공정과; 상기 풀림공정에 의해 풀어진 합성분말원료를 이정한 모양과 크기를 갖도록 금형을 이용하여 성형(成形, moulding)시키는 성형물 형성공정과; 상기 성형물 형성공정에 의해 만들어진 성형물을 2단 이상으로 합성로 내부에 적층시키는 적층공정과; 상기 적층된 성형물을 고온의 열을 이용하여 합성(반응)시키는 합성공정 순에 의해 제조하는 것에 그 특징이 있다.The present invention relates to a method for manufacturing a solid electrolyte for a secondary battery using a molded product, and more particularly, when synthesizing a synthetic powder raw material used as a solid electrolyte for a secondary battery, a molded product having a certain shape and size is formed and then the molded product is laminated in two or more stages. The present invention relates to a method for producing a solid electrolyte for a secondary battery using a molded product in which a sufficient reaction occurs than in the form of a powder to increase the synthesis efficiency. Preparation process for preparing by mixing; A pulverization step of mixing the synthetic powder raw materials prepared by the preparation step and finely pulverizing them to a certain size using a ball mill; a drying step of removing moisture from the synthesized powder raw material harvested by performing the grinding step using a dry oven; An annealing step for releasing the phenomenon in which the synthetic powder raw materials are agglomerated during the drying step; A molding forming step of molding the synthetic powder raw material released by the annealing step using a mold to have a predetermined shape and size; a lamination step of laminating the moldings made by the molding forming step inside a synthesis furnace in two or more stages; It is characterized in that it is manufactured in the order of a synthesis process in which the laminated moldings are synthesized (reacted) using high-temperature heat.

Description

성형물에 의한 이차전지용 고체전해질 제조방법{Method for manufacturing solid electrolyte for secondary battery by molded articles}Method for manufacturing solid electrolyte for secondary battery by molded article {Method for manufacturing solid electrolyte for secondary battery by molded articles}

본 발명은 성형물에 의한 이차전지용 고체전해질 제조방법에 관한 것으로서 보다 상세하게는 이차전지용 고체전해질로 사용되는 합성분말원료의 합성시 일정한 모양과 크기를 갖는 성형물을 형성시킨 후 상기 성형물을 2단 이상 적층하여 합성하면 파우더의 형태보다 충분한 반응이 일어나 합성효율이 증대되도록 한 성형물에 의한 이차전지용 고체전해질 제조방법에 관한 것이다.The present invention relates to a method for manufacturing a solid electrolyte for a secondary battery using a molded product, and more particularly, when synthesizing a synthetic powder raw material used as a solid electrolyte for a secondary battery, a molded product having a certain shape and size is formed and then the molded product is laminated in two or more stages. It relates to a method for producing a solid electrolyte for a secondary battery by a molded article in which a sufficient reaction occurs than in the form of a powder when synthesized to increase the synthesis efficiency.

리튬이차전지는 큰 전기 화학 용량, 높은 작동 전위 및 우수한 충방전 사이클 특성을 갖기 때문에 휴대정보 단말기, 휴대 전자 기기, 가정용 소형 전력 저장 장치, 모터사이클, 전기 자동차, 하이브리드 전기 자동차 등의 용도로 수요가 증가하고 있다. 이와 같은 용도의 확산에 따라 리튬이차전지의 안전성 향상 및 고성능화가 요구되고 있다.Because lithium secondary batteries have large electrochemical capacity, high operating potential, and excellent charge/discharge cycle characteristics, they are in demand for applications such as portable information terminals, portable electronic devices, small power storage devices for home use, motorcycles, electric vehicles, and hybrid electric vehicles. It is increasing. In accordance with the spread of such uses, there is a demand for improved safety and higher performance of lithium secondary batteries.

종래의 리튬이차전지는 액체전해질을 사용함에 따라 공기 중의 물에 노출될 경우 쉽게 발화되어 안정성 문제가 항상 제기되어 왔다. 이러한 안정성 문제는 전기 자동차가 가시화되면서 더욱 이슈화되고 있다.As conventional lithium secondary batteries use liquid electrolytes, they are easily ignited when exposed to water in the air, so stability problems have always been raised. This stability problem is becoming more of an issue as electric vehicles become visible.

이에 따라, 최근 안전성 향상을 목적으로 불연 재료인 무기 재료로 이루어진 고체전해질을 이용한 전고체 이차전지(All-Solid-State Secondary Battery)의 연구가 활발하게 이루어지고 있다. 전고체 이차전지는 안전성, 고에너지 밀도, 고출력, 장수명, 제조공정의 단순화, 전지의 대형화/콤팩트화 및 저가화 등의 관점에서 차세대 이차전지로 주목되고 있다.Accordingly, research on an all-solid-state secondary battery using a solid electrolyte made of an inorganic material, which is a non-combustible material, has recently been actively conducted for the purpose of improving safety. All-solid-state secondary batteries are attracting attention as next-generation secondary batteries from the viewpoints of safety, high energy density, high power, long lifespan, simplification of manufacturing processes, large/compact batteries, and low cost.

전고체 이차전지는 양극/고체전해질층/음극으로 구성되는데, 이 중 고체전해질층의 고체전해질에는 높은 이온전도도 및 낮은 전자전도도가 요구된다. 또한, 전극층인 양극 및 음극 층의 구성 요소에도 고체전해질이 포함되는데, 전극층에서 사용되는 고체전해질에는 이온전도도와 전자전도도가 모두 높은 혼합전도성 재료가 유리하다.An all-solid-state secondary battery is composed of an anode/solid electrolyte layer/cathode, and among them, the solid electrolyte of the solid electrolyte layer requires high ionic conductivity and low electronic conductivity. In addition, components of the anode and cathode layers, which are electrode layers, also include solid electrolytes, and a mixed conductive material having high ion conductivity and high electronic conductivity is advantageous for the solid electrolyte used in the electrode layer.

전고체 이차전지의 고체전해질 층의 요구 조건을 만족하는 고체전해질에는 황화물계, 산화물계 등이 있다. 이중 황화물계 고체전해질은 양극 활물질 또는 음극 활물질과의 계면 반응에 의해 저항 성분이 생성되고, 흡습성이 강하며, 유독 가스인 황화수소(H2S) 가스가 발생된다는 문제점이 있다.Solid electrolytes that satisfy the requirements of a solid electrolyte layer of an all-solid-state secondary battery include sulfide-based and oxide-based solid electrolytes. Among them, the sulfide-based solid electrolyte has problems in that a resistance component is generated by an interfacial reaction with the positive electrode active material or the negative electrode active material, has strong hygroscopicity, and generates hydrogen sulfide (H2S) gas, which is a toxic gas.

일본 등록특허공보 제4,779,988호에는 양극/고체전해질층/음극의 적층구조를 가지며, 황화물계 고체전해질층으로 이루어진 전고체 리튬 이차전지가 개시되어 있다.Japanese Patent Registration No. 4,779,988 discloses an all-solid-state lithium secondary battery having a stacked structure of positive electrode/solid electrolyte layer/negative electrode and composed of a sulfide-based solid electrolyte layer.

이러한 산화물계 고체전해질에는 LLTO(Li3xLa2/(3-x)TiO3)계, LLZO(Li7La3Zr2O12)계 등이 널리 알려져 있으며, 그 중 LLTO계에 비해 비교적 입계 저항이 높지만 전위창 특성이 우수한 것으로 알려진 LLZO가 유망한 재료로 주목 받고 있다.LLTO (Li3xLa2/(3-x)TiO3) and LLZO (Li7La3Zr2O12) are widely known as oxide-based solid electrolytes. It is attracting attention as a promising material.

상기 LLZO는 큐빅(cubic) 및 테트라고날(Tetragonal) 구조를 가지고 있으며, 테트라고날 구조일 때 보다 큐빅 구조일 때 이온전도도가 높다. 이온전도성이 높은 큐빅 구조의 LLZO 고체전해질을 제조하기 위해서는 1,200℃ 이상의 높은 온도에서 소결이 이루어져야 하므로, 높은 이온전도도를 지닌 큐빅 구조의 제조가 까다로울 뿐만 아니라, 고온의 소결공정으로 인해 고체전해질 내 리튬의 휘발이 일어나는 문제점이 있었다. 따라서, 결정구조에 따라 이온전도도 차이가 있으므로, 소결 특성 등을 조절하여 높은 이온전도성을 갖는 LLZO 고체전해질을 제조하는 기술의 개발이 필요하다.The LLZO has a cubic (cubic) and tetragonal (Tetragonal) structure, and the ionic conductivity is higher when the cubic structure than when the tetragonal structure. In order to manufacture the LLZO solid electrolyte with a cubic structure with high ion conductivity, sintering must be performed at a high temperature of 1,200 ° C or more. There was a problem with volatilization. Therefore, since there is a difference in ion conductivity depending on the crystal structure, it is necessary to develop a technique for producing a LLZO solid electrolyte having high ion conductivity by adjusting the sintering characteristics and the like.

상기한 종래 이차전지용 고체전해질 제조방법은 첨부도면 도 1에 도시된 바와 같이 합성분말원료 LiCO3, La2O3, ZrO2 등의 분말을 일정한 비율로 혼합하여 준비하는 준비공정(S10)을 수행하고 상기 준비공정(S10)에 의하여 준비된 합성분말원료를 혼합하여 볼밀을 이용하여 일정한 크기로 미분쇄하는 분쇄공정(S20)을 수행한다.As shown in FIG. 1 of the accompanying drawings, the conventional method for manufacturing a solid electrolyte for a secondary battery as described above performs a preparation step (S10) of mixing and preparing powders such as synthetic powder raw materials LiCO 3 , La 2 O 3 , ZrO 2 and the like at a constant ratio. And mixing the synthetic powder raw material prepared by the preparation step (S10) and performing a pulverization step (S20) of finely pulverizing to a certain size using a ball mill.

한편 상기 분쇄공정(S20)의 수행에 의하여 수획된 합성분말원료를 드라이오븐을 이용하여 수분을 제거하는 건조공정(S30)을 수행하고 합성로(Al2O3 도가니)에 장입하여 고온의 열로 가열(S40)하여 합성(반응)시켜 Li7La2Zr2O12의 분자식을 가지는 LLZO 즉, 이차전지용 고체전해질 조성물을 제조하였다.On the other hand, a drying step (S30) of removing moisture from the synthesized powder raw material harvested by the grinding step (S20) is performed using a dry oven, and then charged into a synthesis furnace (Al 2 O 3 crucible) and heated with high temperature heat. (S40) and synthesized (reacted) to prepare LLZO having a molecular formula of Li 7 La 2 Zr 2 O 12 , that is, a solid electrolyte composition for a secondary battery.

상기와 같이 종래에는 합성분말원료를 분말 상태로 Al2O3 도가니에 장입하여 900 ℃에서 5시간 동안 반응을 진행하여 합성분말원료가 Li7La2Zr2O12의 분자식을 가지도록 합성(반응)을 진행하였으나 리튬이 기화되면서 첨부도면 도 2a에 도시된 바와 같이 La2Zr2O7 상이 확인되었듯 이 경우 전체 중량에서 약 5~7wt%의 분말 손실량을 보였으며, 또한 첨부도면 도 2b에서와 같이 합성분말원료이 합성되지 않고 뭉쳐지는 현상이 발생되며 상기한 종래 문제점들 때문에 합성시간을 과다하게 사용하고 이로인하여 생산성이 떨어지는 문제점이 있었다.As described above, the conventionally synthesized powder raw material is charged in an Al 2 O 3 crucible in a powder state and reacted at 900 ° C. for 5 hours to synthesize the synthesized powder raw material to have a molecular formula of Li 7 La 2 Zr 2 O 12 (reaction ), but as lithium was vaporized, as shown in FIG. 2a of the accompanying drawing, the La 2 Zr 2 O 7 phase was confirmed. As such, a phenomenon in which the synthesized powder raw materials are not synthesized and agglomerated occurs, and due to the above-mentioned conventional problems, excessive use of synthesis time has resulted in a decrease in productivity.

대한민국 특허등록 제1460113호Republic of Korea Patent Registration No. 1460113 대한민국 특허등록 제1804211호Republic of Korea Patent Registration No. 1804211

이러한 종래 문제점을 감안하여 안출한 본 발명은 이차전지용 고체전해질로 사용되는 합성분말원료의 합성시 일정한 모양과 크기를 갖는 성형물을 형성시킨 후 상기 성형물을 2단 이상 적층하여 합성하면 파우더의 형태보다 충분한 반응이 일어나 합성효율이 증대되도록 하고 생산기간을 극감시키며 전도성 등이 향상되도록 한 성형물에 의한 이차전지용 고체전해질 제조방법을 제공하는데 있다.In view of these conventional problems, the present invention, when synthesizing a synthetic powder raw material used as a solid electrolyte for a secondary battery, forms a molded product having a certain shape and size and then laminates the molded product in two or more stages to synthesize a more sufficient form than the powder form. It is an object of the present invention to provide a method for manufacturing a solid electrolyte for a secondary battery by a molded article in which a reaction occurs to increase synthesis efficiency, drastically reduce a production period, and improve conductivity.

상기한 본 발명의 목적은 이차전지용 고체전해질 제조방법에 있어서, 합성분말원료를 일정한 비율로 혼합하여 준비하는 준비공정과; 상기 준비공정에 의하여 준비된 합성분말원료를 혼합하고 볼밀을 이용하여 일정한 크기로 미분쇄하는 분쇄공정과; 상기 분쇄공정의 수행에 의하여 수획된 합성분말원료를 드라이오븐을 이용하여 수분을 제거하는 건조공정과; 상기 건조공정시 합성분말원료가 뭉쳐지는 현상이 발생됨으로 이를 풀어주기 위한 풀림공정과; 상기 풀림공정에 의해 풀어진 합성분말원료를 이정한 모양과 크기를 갖도록 금형을 이용하여 성형(成形, moulding)시키는 성형물 형성공정과; 상기 성형물 형성공정에 의해 만들어진 성형물을 2단 이상으로 합성로 내부에 적층시키는 적층공정과; 상기 적층된 성형물을 고온의 열을 이용하여 합성(반응)시키는 합성공정 순에 의해 제조하는 것을 특징으로 하는 성형물에 의한 이차전지용 고체전해질 제조방법에 의하여 달성된다.The above object of the present invention is a method for manufacturing a solid electrolyte for a secondary battery, comprising: a preparation step of preparing by mixing synthetic powder raw materials in a constant ratio; A pulverization step of mixing the synthetic powder raw materials prepared by the preparation step and finely pulverizing them to a certain size using a ball mill; a drying step of removing moisture from the synthesized powder raw material harvested by performing the grinding step using a dry oven; An annealing step for releasing the phenomenon in which the synthetic powder raw materials are agglomerated during the drying step; A molding forming step of molding the synthetic powder raw material released by the annealing step using a mold to have a predetermined shape and size; a lamination step of laminating the moldings made by the molding forming step inside a synthesis furnace in two or more stages; It is achieved by a method for manufacturing a solid electrolyte for a secondary battery by a molding, characterized in that the laminated molding is produced by a synthesis process in which the laminated molding is synthesized (reacted) using high-temperature heat.

상기 고체전해질은 LLZO 또는 LATP인 것을 특징으로 하는 성형물에 의한 이차전지용 고체전해질 제조방법에 의하여 달성된다.The solid electrolyte is achieved by a method for producing a solid electrolyte for a secondary battery by molding, characterized in that LLZO or LATP.

상기 성형물은 판형, 직육면체형 중 어느 하나 인 것을 특징으로 하는 성형물에 의한 이차전지용 고체전해질 제조방법에 의하여 달성된다.The molded article is achieved by a method for manufacturing a solid electrolyte for a secondary battery by a molded article, characterized in that any one of a plate shape and a rectangular parallelepiped shape.

상기 적층공정은 성형물을 겹쳐지게 적층하거나 지그제그로 적층하는 것을 특징으로 하는 성형물에 의한 이차전지용 고체전해질 제조방법에 의하여 달성된다.The lamination process is achieved by a method for manufacturing a solid electrolyte for a secondary battery using a molded product, characterized in that the molded product is stacked in an overlapping manner or stacked in a zigzag manner.

이와 같은 본 발명은 이차전지용 고체전해질로 사용되는 합성분말원료의 합성시 일정한 모양과 크기를 갖는 성형물을 형성시킨 후 상기 성형물을 2단 이상 적층하여 합성하면 파우더의 형태보다 충분한 반응이 일어나 합성효율이 증대되도록 하고 생산기간을 극감시키며 전도성 등이 향상되는 효과가 있는 유용한 발명이다.In the present invention, when synthesizing a synthetic powder raw material used as a solid electrolyte for a secondary battery, forming a molded product having a certain shape and size, and then stacking the molded product in two or more stages to synthesize, a sufficient reaction occurs than in the form of a powder, resulting in higher synthesis efficiency. It is a useful invention that has the effect of increasing the production period, reducing the production period, and improving the conductivity.

도 1은 종래의 이차전지용 고체전해질 제조방법을 보여주는 제조공정도.
도 2a는 종래 이차전지용 고체전해질 제조방법에 의하여 제조한 고체전해질의 성분을 나타내는 그래프.
도 2b는 종래 이차전지용 고체전해질 제조방법에 의하여 제조한 고체전해질의 구조를 보여주는 전자현미경 확대 사진.
도 3은 본 발명의 기술이 적용된 성형물에 의한 이차전지용 고체전해질 제조방법을 보여주는 제조공정도.
도 4a는 본 발명의 기술이 적용된 성형물에 의한 이차전지용 고체전해질 제조방법에 의하여 제조한 고체전해질의 성분을 나타내는 그래프.
도 4b는 본 발명의 기술이 적용된 성형물에 의한 이차전지용 고체전해질 제조방법에 의하여 제조한 고체전해질의 구조를 보여주는 전자현미경 확대 사진.
도 5a 및 도 5b는 종래 분말 사용때와 본 발명의 기술이 적용된 판형의 디스크 형태로 성형한 성형물을 압력을 각각 다르게 가압했을 때 합성에 미치는 영향을 나타내는 그래프와 SEM사진.
1 is a manufacturing process diagram showing a conventional method for manufacturing a solid electrolyte for a secondary battery.
2a is a graph showing components of a solid electrolyte prepared by a conventional method for preparing a solid electrolyte for a secondary battery.
2B is an enlarged electron microscope photograph showing the structure of a solid electrolyte prepared by a conventional method for manufacturing a solid electrolyte for a secondary battery.
3 is a manufacturing process diagram showing a method of manufacturing a solid electrolyte for a secondary battery by a molding to which the technology of the present invention is applied.
4a is a graph showing components of a solid electrolyte prepared by a method for manufacturing a solid electrolyte for a secondary battery using a molded article to which the technology of the present invention is applied.
4B is an enlarged electron microscope photograph showing the structure of a solid electrolyte prepared by a method for manufacturing a solid electrolyte for a secondary battery using a molding to which the technology of the present invention is applied.
Figures 5a and 5b are graphs and SEM pictures showing the effect on the synthesis when the conventional powder is used and when the pressure is applied differently to the molding molded in the form of a plate-shaped disk to which the technology of the present invention is applied.

이하에서는, 본 실시예에 대하여 첨부되는 도면을 참조하여 상세하게 살펴보도록 한다. 다만, 본 실시예가 개시하는 사항으로부터 본 실시예가 갖는 발명의 사상의 범위가 정해질 수 있을 것이며, 본 실시예가 갖는 발명의 사상은 제안되는 실시예에 대하여 구성요소의 추가, 삭제, 변경 등의 실시변형을 포함한다고 할 것이다. Hereinafter, this embodiment will be described in detail with reference to the accompanying drawings. However, the scope of the inventive idea of this embodiment can be determined from the matters disclosed in this embodiment, and the inventive idea of this embodiment is the implementation of addition, deletion, change, etc. of components with respect to the proposed embodiment. will include transformation.

첨부도면 도 3은 본 발명의 기술이 적용된 성형물에 의한 이차전지용 고체전해질 제조방법을 보여주는 제조공정도로써 이에 따른 본 발명은 먼저 합성분말원료를 일정한 비율로 혼합하여 준비하는 준비공정(S100)을 수행한다. Figure 3 is a manufacturing process diagram showing a method of manufacturing a solid electrolyte for a secondary battery by a molding to which the technology of the present invention is applied, and according to this, the present invention first performs a preparation step (S100) of mixing and preparing synthetic powder raw materials in a constant ratio .

여기서 상기 합성분말원료라 함은 LLZO를 제조하기 위한 Li2CO3, La2O3, ZrO2가 혼합되어 이루어진 혼합분말이고 또한 LATP를 제조하기 위한 LiNO3, Al(H2PO4), NH4H2PO4, Ti[OCH(CH3)2]4 으로 이루어진 혼합분말 중 어느 하나를 의미한다.Here, the synthetic powder raw material refers to a mixed powder made by mixing Li 2 CO 3 , La 2 O 3 , and ZrO 2 for producing LLZO, and LiNO 3 , Al(H 2 PO 4 ), NH for producing LATP. 4 H 2 PO 4 and Ti[OCH(CH 3 ) 2 ] 4 means any one of mixed powders.

본 발명에서는 고체전해질 중 높은 전압에서 안정하며, 상온에서 최대 10-4~10-3S/cm의 이온 전도도 값을 가지고, 대기 중에서 반응 하지 않아 합성이 용이한 산화물계 전해질인 LLZO를 일예로 하여 설명하기로 한다. In the present invention, as an example, LLZO, an oxide-based electrolyte that is stable at high voltage among solid electrolytes, has an ionic conductivity value of up to 10 -4 ~ 10 -3 S / cm at room temperature, and does not react in the air and is easy to synthesize. Let's explain.

상기 준비공정(S100)에 의하여 준비된 합성분말원료를 혼합하고 볼밀을 이용하여 일정한 크기로 미분쇄하는 분쇄공정(S200)을 수행한다.A pulverization step (S200) of mixing the synthetic powder raw material prepared in the preparation step (S100) and finely pulverizing it to a certain size using a ball mill is performed.

상기 분쇄공정(S200)은 LLZO의 합성을 위해 출발원료인 Li2CO3, La2O3, ZrO2 분말을 각각 일정한 크기가 되도록 볼밀 작업을 한 후 상기 1차 분쇄가 완료된 Li2CO3, La2O3, ZrO2 분말을 혼합하여 2차 분쇄를 한다. In the crushing step (S200), after ball milling the starting raw materials Li 2 CO 3 , La 2 O 3 , and ZrO 2 powders to have a certain size for the synthesis of LLZO, the first pulverized Li 2 CO 3 , The La 2 O 3 and ZrO 2 powders are mixed and the second grinding is performed.

상기 1 차분쇄에 있어서 Li2CO3 가 수계에 반응하기 때문에 용매제로 Et-OH를 사용하였으며, Φ5㎛ 크기의 ZrO2 ball로 선정하여 25rpm에서 진행하며, 이때 원료 : 볼 : 용매제의 비율은 1.0 : 0.8 : 2.0로 혼합하여 일정시간 동안 분쇄한다.Since Li 2 CO 3 reacts with water in the primary chain, Et-OH was used as a solvent, and a ZrO 2 ball with a size of Φ5 μm was selected and proceeded at 25 rpm. At this time, the ratio of raw material: ball: solvent is Mix at 1.0 : 0.8 : 2.0 and pulverize for a certain period of time.

상기 2차 분쇄는 지르코니아 볼을 사용하여 원료 : 혼합 볼 : 용매제(무수에탄올)의 부피비가 1.0 : 1.0 : 1.5가 되도록 하여 25rpm의 속도로 12 내지 48시간동안 볼밀링 하였다. The secondary grinding was ball milled at a speed of 25 rpm for 12 to 48 hours using a zirconia ball so that the volume ratio of raw material: mixing ball: solvent (anhydrous ethanol) was 1.0: 1.0: 1.5.

상기 2차 분쇄에 대하여 좀더 구체적으로 설명하면 Li2CO3, La2O3 및 ZrO2 분말을 Li : La : Zr source가 7.7 : 3 : 2 몰비가 되도록 계량하였으며, 사용된 혼합 볼은 Φ1 및 Φ5 크기의 zirconia ball로 4 : 6 으로 혼합하여 원료 : 혼합볼 : 용매제의 비를 1.0 : 1.0 : 1.5의 부피비로 장입하여 24시간 및 48시간동안 밀링을 진행하였다. In more detail about the secondary grinding, the Li 2 CO 3 , La 2 O 3 and ZrO 2 powders were weighed so that the Li: La: Zr source had a molar ratio of 7.7: 3: 2, and the mixing balls used were Φ1 and The mixture was mixed at a ratio of 4:6 with a Φ5 zirconia ball, and the raw material: mixing ball: solvent was charged at a volume ratio of 1.0: 1.0: 1.5, and milling was performed for 24 hours and 48 hours.

하기의 표1은 분쇄공정으로 제조된 출발원료 혼합분말의 입도분포와 미세구조를 보여준다. 볼밀시간이 48시간 일 때 2차분쇄에 의해 제조한 혼합분말과 비교했을 때 유사한 0.71 um 크기의 평균입도을 갖는 LLZO분말합성용 출발원료 혼합분말을 제조할 수 있다. Table 1 below shows the particle size distribution and microstructure of the mixed powder of starting materials prepared by the grinding process. When the ball mill time is 48 hours, a mixed powder of starting materials for synthesizing LLZO powder having an average particle size of 0.71 um similar to that of the mixed powder prepared by secondary grinding can be prepared.

상기 2차분쇄에 있어서, 시간별 사이즈는 표1과 같다.In the secondary grinding, the size by time is shown in Table 1.

Milling timeMilling time La2O3 La 2 O 3 Li2CO3 Li 2 CO 3 ZrO2 ZrO 2 0 hr0 hours 53.68㎛53.68㎛ 145.69㎛145.69㎛

1.54㎛


1.54㎛
12 hr12 hours 4.86㎛4.86㎛ 5.60㎛5.60㎛ 24 hr24 hours 3.49㎛3.49㎛ 4.22㎛4.22㎛ 36 hr36 hours 2.88㎛2.88㎛ 3.62㎛3.62㎛ 48 hr48 hours 2.67㎛2.67㎛ 3.29㎛3.29㎛

상기 본 발명에서는 2차 분쇄를 실시하는 것으로 설명하고 있으나 한번의 분쇄공정으로 실시할 수도 있다. 이때 LLZO 고체절해질 제조에 사용되는 합성분말원료는 기존과 동일하게 Li2CO3, La2O3, ZrO2를 사용하며 수계에 반응하기 때문에 용매제로 Et-OH를 Al2O3로 사용하였다. 원스텝 분쇄공정으로 원료:용매:혼합 볼을 1:1.5:10의 질량비로 혼합하여 24시간만 볼밀한다.In the present invention, it is described that the secondary grinding is performed, but it may be performed as a single grinding process. At this time, the synthetic powder raw materials used in the production of LLZO solid electrolyte are Li 2 CO 3 , La 2 O 3 , ZrO 2 as before, and Et-OH was used as Al 2 O 3 as a solvent because it reacts with water. As a one-step grinding process, raw material: solvent: mixing balls are mixed at a mass ratio of 1: 1.5: 10 and ball milled for only 24 hours.

상기 볼밀때 평균입도(D50)을 0.7~0.8μm을 충족시켰야 하며 Φ1mm와 Φ5mm 지르코니아 볼의 비율은 6:4를 유지하였으며, 분쇄시간이 24시간을 경과할수록 분쇄효율이 감소하는 것을 감안하여, 24시간 이내로 설정하였야 한다. During the ball mill, the average particle size (D 50 ) had to be 0.7 to 0.8 μm, and the ratio of Φ1mm and Φ5mm zirconia balls was maintained at 6:4, considering that the grinding efficiency decreases as the grinding time elapses for 24 hours , should have been set within 24 hours.

한편 상기 분쇄공정(S200)의 수행에 의하여 수획된 합성분말원료를 드라이오븐을 이용하여 수분을 제거하는 건조공정(S300)과 상기 건조공정(S300)시 합성분말원료가 뭉쳐지는 현상이 발생됨으로 이를 풀어주기 위한 풀림공정(S400)을 수행한다. On the other hand, the drying process (S300) of removing moisture from the synthetic powder raw material harvested by the performance of the grinding process (S200) using a dry oven and the phenomenon that the synthetic powder raw material is agglomerated during the drying process (S300). An annealing process (S400) for releasing is performed.

상기 건조공정(S300)은 분쇄가 완료된 분말들을 drying oven 을 이용해 90℃에서 6시간 건조하였으며, 상기 풀림공정(S400)은 건조공정(S300)을 실시하면 합성분말원료들이 서로 뭉쳐지게 되는데 이를 깨뜨려 건조한 분말 형태를 유지시키기 위함이다. In the drying step (S300), the pulverized powders were dried at 90 ° C. for 6 hours using a drying oven, and in the annealing step (S400), when the drying step (S300) is performed, the synthetic powder raw materials are agglomerated, which is broken and dried This is to maintain the powder form.

상기 풀림공정(S400)에 의해 풀어진 합성분말원료를 이정한 모양과 크기를 갖도록 금형을 이용하여 성형(成形, moulding)시키는 성형물 형성공정(S500)을 실시한다. A molded product forming step (S500) is performed in which the synthetic powder raw material released in the annealing step (S400) is molded using a mold to have a predetermined shape and size.

상기 성형물 형성공정(S500)은 프레스 또는 CIP장비를 이용하여 일정한 형상, 두께로 형성시키며 형태는 일예로 판형(디스크), 또는 직원면체로 형성시킨다.The molding forming process (S500) is formed into a certain shape and thickness using a press or CIP equipment, and the shape is formed into a plate shape (disk) or tetrahedron, for example.

상기 프레스를 이용하여 판형의 디스크 형태로 성형한 성형물을 압력에 대하여 합성에 미치는 영향을 첨부도면 도 5a 내지 도 5b에 도시된 바와 같이 미반응한 원료물질의 결정상을 확인할 수 있었다. As shown in FIGS. 5A to 5B, the effect of pressure on the synthesis of a molded article molded into a plate-shaped disk using the press was confirmed in the crystal phase of the unreacted raw material.

상기 성형물 형성공정(S500)에 의해 만들어진 성형물을 2단 이상으로 합성로 내부에 적층시키는 적층공정(S600)과 상기 적층된 성형물을 고온의 열을 이용하여 합성(반응)시키는 합성공정(S700) 순에 의해 제조한다. A lamination process (S600) of stacking the moldings made in the molding formation process (S500) in two or more stages inside the synthesis furnace and a synthesis process (S700) of synthesizing (reacting) the laminated moldings using high-temperature heat, in order. manufactured by

상기 합성공정(S700)의 방법은 상기 2단 이상 적층된 성형물을 Al2O3 도가니(합성로)에 장입하여, Al2O3 도가니(합성로)에서 900~1200℃에서 2시간~10시간 동안 판형(Disc) 형태로 합성을 진행하며, 상기 적층공정(S600)은 성형물을 겹쳐지게 적층하거나 지그제그로 적층할 수 있다.In the method of the synthesis process (S700), the molded product stacked in two or more stages is charged into an Al 2 O 3 crucible (synthesis furnace), and the Al 2 O 3 crucible (synthesis furnace) is heated at 900 to 1200 ° C for 2 to 10 hours. Synthesis is performed in the form of a disc during the process, and in the lamination process (S600), moldings may be overlapped or stacked in a zigzag manner.

상기와 같이 본 발명은 성형물을 적층하여 합성분말원료들을 합성시키면 첨부도면 도 2a와 도 4a에 도시된 바와 같이 본 발명의 기술이 적용되어 판형(Disc) 형태로 성형물을 형성시켜 합성을 진행한 LLZO 분말에서는 Li7La3Zr2O12상을 확인 하였으나, 분말 형태로 합성을 진행한 LLZO 분말에서는 La2Zr2O7 상이 확인되었다.As described above, when the present invention synthesizes the synthetic powder raw materials by stacking the moldings, the technology of the present invention is applied as shown in the accompanying drawings 2a and 4a to form a molding in the form of a disc to synthesize LLZO In the powder, the Li 7 La 3 Zr 2 O 12 phase was confirmed, but in the LLZO powder synthesized in powder form, the La 2 Zr 2 O 7 phase was confirmed.

본 발명은 성형물 형성공정(S500)에 의해 만들어진 성형물들간 즉, 분자간의 거리가 가까운 disc의 경우 powder의 형태보다 LLZO 합성에 유리하며, 합성 온도와 시간이 증가할수록 LLZO 상이 증가하는 것을 확인할 수 있었다. 따라서 파우더를 사용하는 종래 제조방법에서는 La2Zr2O72가 형성되면서 약 16 %의 질량 손실이 발생하나, 본 발명에서는 Li7La3Zr2O12가 합성됨을 확인할 수 있었다.In the present invention, in the case of a disc having a short distance between moldings made by the molding forming process (S500), that is, between molecules, it is more advantageous for LLZO synthesis than in the form of powder, and as the synthesis temperature and time increase, the LLZO phase increases. It was confirmed. Therefore, in the conventional manufacturing method using the powder, about 16% of mass loss occurred while La 2 Zr 2 O 72 was formed, but in the present invention, it was confirmed that Li 7 La 3 Zr 2 O 12 was synthesized.

상기와 같은 본 발명에 의하여 제조된 LLZO 분말의 이온전도도를 아래와 같이 실험하였다.The ionic conductivity of the LLZO powder prepared according to the present invention as described above was tested as follows.

<실험방법><Experiment method>

[비교예1][Comparative Example 1]

Al2O3 도가니에 LLZO 분말 0.6g을 사용 1200℃ 온도로 2시간 가열하고 이온전도도를 측정함.Using 0.6 g of LLZO powder in an Al 2 O 3 crucible, heated at 1200 ° C for 2 hours and measuring ionic conductivity.

[비교예2][Comparative Example 2]

Al2O3 도가니에 LLZO 분말 0.6g을 사용 대한 1200℃ 온도로 10시간 가열하고 이온전도도를 측정함.In an Al 2 O 3 crucible, 0.6 g of LLZO powder was heated at 1200 ° C for 10 hours and the ionic conductivity was measured.

[비교예3][Comparative Example 3]

Al2O3 도가니에 LLZO 분말 0.6g에 대한 1250℃ 온도로 10시간 가열하고 이온전도도를 측정함.In an Al 2 O 3 crucible, 0.6 g of LLZO powder was heated at 1250 ° C for 10 hours and the ionic conductivity was measured.

[실시예1][Example 1]

Al2O3 도가니에 LLZO 분말 0.6g을 566kgf/㎠의 압력으로 가압하여 지름 15mm를 갖는 원판을 성형하여 1200℃ 온도로 2시간 가열하여 이온전도도를 측정함.Ion conductivity was measured by pressing 0.6 g of LLZO powder in an Al 2 O 3 crucible at a pressure of 566 kgf/cm 2 to form a disc having a diameter of 15 mm and heating it at 1200 ° C for 2 hours.

[실시예2][Example 2]

Al2O3 도가니에 LLZO 분말 0.6g을 566kgf/㎠의 압력으로 가압하여 지름 15mm를 갖는 원판을 성형하여 1200℃ 온도로 10시간 가열하여 이온전도도를 측정함.Ion conductivity was measured by pressing 0.6 g of LLZO powder in an Al 2 O 3 crucible at a pressure of 566 kgf/cm 2 to form a disk having a diameter of 15 mm and heating it at 1200 ° C for 10 hours.

[실시예3][Example 3]

Al2O3 도가니에 LLZO 분말 0.6g을 566kgf/㎠의 압력으로 가압하여 지름 15mm를 갖는 원판을 성형하여 1250℃ 온도로 10시간 가열하여 이온전도도를 측정함.Ion conductivity was measured by pressing 0.6 g of LLZO powder in an Al 2 O 3 crucible at a pressure of 566 kgf/cm 2 to form a disc having a diameter of 15 mm and heating it at 1250 ° C for 10 hours.

구 분 division 합성효율(%)Synthesis efficiency (%) 이온전도도ionic conductivity 1200℃ 온도로 2시간 가열Heating for 2 hours at 1200℃ 비교예1Comparative Example 1 78.278.2 5.47×10-6 5.47×10 -6 실시예1Example 1 79.379.3 3.12×10-5 3.12×10 -5 1200℃ 온도로 10시간 가열Heating for 10 hours at 1200℃ 비교예2Comparative Example 2 79.679.6 1.87×10-5 1.87×10 -5 실시예2Example 2 80.880.8 5.23×10-5 5.23×10 -5 1250℃ 온도로 10시간 가열Heating for 10 hours at 1250℃ 비교예3Comparative Example 3 81.481.4 2.84×10-4 2.84×10 -4 실시예3Example 3 84.184.1 2.34×10-4 2.34×10 -4

이온전도도 측정 방법 : 0.5g LLZO 분말과 1wt% PVB를 에탄올을 혼합하여 두께 1.0mm, 지름이 10mm 플레이트를 성형하고 이온전도도 측정기를 이용하여 임피던스 측정법으로 측정함.Ion conductivity measurement method: 0.5g LLZO powder and 1wt% PVB were mixed with ethanol to form a plate with a thickness of 1.0mm and a diameter of 10mm, and measured by impedance measurement using an ion conductivity meter.

한편 상기 성형물을 형성시킬 때 압력이 합성에 따른 형상이 첨부도면 도 5a 및 5b와 같이 나타남을 알 수 있었다. On the other hand, when forming the molding, it was found that the shape according to the synthesis of the pressure appeared as shown in FIGS. 5a and 5b in the accompanying drawings.

이와 같은 본 발명은 이차전지용 고체전해질로 사용되는 합성분말원료의 합성시 일정한 모양과 크기를 갖는 성형물을 형성시킨 후 상기 성형물을 2단 이상 적층하여 합성하면 파우더의 형태보다 충분한 반응이 일어나 합성효율이 증대되도록 하고 생산기간을 극감시키며 전도성 등이 향상되는 효과가 있는 유용한 발명이다.In the present invention, when synthesizing a synthetic powder raw material used as a solid electrolyte for a secondary battery, forming a molded product having a certain shape and size, and then stacking the molded product in two or more stages to synthesize, a sufficient reaction occurs than in the form of a powder, resulting in higher synthesis efficiency. It is a useful invention that has the effect of increasing the production period, reducing the production period, and improving the conductivity.

S100 : 준비공정 S200 : 분쇄공정
S300 : 건조공정 S400 : 풀림공정
S500 : 형성공정 S600 : 적층공정
S700 : 합성공정
S100: Preparation process S200: Grinding process
S300: Drying process S400: Annealing process
S500: Formation process S600: Lamination process
S700: synthesis process

Claims (4)

이차전지용 고체전해질 제조방법에 있어서,
합성분말원료를 일정한 비율로 혼합하여 준비하는 준비공정과;
상기 준비공정에 의하여 준비된 합성분말원료를 혼합하고 볼밀을 이용하여 일정한 크기로 미분쇄하는 분쇄공정과;
상기 분쇄공정의 수행에 의하여 수획된 합성분말원료를 드라이오븐을 이용하여 수분을 제거하는 건조공정과;
상기 건조공정시 합성분말원료가 뭉쳐지는 현상이 발생됨으로 이를 풀어주기 위한 풀림공정과;
상기 풀림공정에 의해 풀어진 합성분말원료를 이정한 모양과 크기를 갖도록 금형을 이용하여 성형(成形, moulding)시키는 성형물 형성공정과;
상기 성형물 형성공정에 의해 만들어진 성형물을 2단 이상으로 합성로 내부에 적층시키는 적층공정과;
상기 적층된 성형물을 고온의 열을 이용하여 합성(반응)시키는 합성공정 순에 의해 제조하는 것이며,
상기 합성공정의 방법은 상기 2단 이상 적층된 성형물을 Al2O3 도가니(합성로)에 장입하여 900~1200℃에서 2시간~10시간 동안 합성을 판형(Disc) 형태로 진행한 LLZO 분말에서는 Li7La3Zr2O12상을 확인하였으며 합성 온도와 시간이 증가할수록 LLZO 상이 증가하는 것을 특징으로 하는 성형물에 의한 이차전지용 고체전해질 제조방법.
In the method for manufacturing a solid electrolyte for a secondary battery,
A preparation step of preparing by mixing synthetic powder raw materials in a constant ratio;
A pulverization step of mixing the synthetic powder raw materials prepared by the preparation step and finely pulverizing them to a certain size using a ball mill;
a drying step of removing moisture from the synthesized powder raw material harvested by performing the grinding step using a dry oven;
An annealing step for releasing the phenomenon in which the synthetic powder raw materials are agglomerated during the drying step;
A molding forming step of molding the synthetic powder raw material released by the annealing step using a mold to have a predetermined shape and size;
a lamination step of laminating the molded article produced by the molded article forming step inside a synthesis furnace in two or more stages;
It is produced by a synthesis process in which the laminated molding is synthesized (reacted) using high-temperature heat,
In the method of the synthesis process, the LLZO powder in which the two or more stacked moldings were charged into an Al 2 O 3 crucible (synthesis furnace) and synthesized in a disc form at 900 to 1200 ° C for 2 to 10 hours The Li 7 La 3 Zr 2 O 12 phase was confirmed, and the method for manufacturing a solid electrolyte for a secondary battery by molding, characterized in that the LLZO phase increased as the synthesis temperature and time increased.
삭제delete 삭제delete 제 1 항에 있어서,
상기 적층공정은 성형물을 겹쳐지게 적층하거나 지그제그로 적층하는 것을 특징으로 하는 성형물에 의한 이차전지용 고체전해질 제조방법.


According to claim 1,
The lamination process is a method for manufacturing a solid electrolyte for a secondary battery by a molding, characterized in that the molding is stacked overlapping or stacked in a zigzag manner.


KR1020210042699A 2021-04-01 2021-04-01 Method for manufacturing solid electrolyte for secondary battery by molded articles KR102546049B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020210042699A KR102546049B1 (en) 2021-04-01 2021-04-01 Method for manufacturing solid electrolyte for secondary battery by molded articles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020210042699A KR102546049B1 (en) 2021-04-01 2021-04-01 Method for manufacturing solid electrolyte for secondary battery by molded articles

Publications (2)

Publication Number Publication Date
KR20220136713A KR20220136713A (en) 2022-10-11
KR102546049B1 true KR102546049B1 (en) 2023-06-22

Family

ID=83598884

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210042699A KR102546049B1 (en) 2021-04-01 2021-04-01 Method for manufacturing solid electrolyte for secondary battery by molded articles

Country Status (1)

Country Link
KR (1) KR102546049B1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105140559A (en) 2015-07-30 2015-12-09 中国科学院西安光学精密机械研究所 Na<+> superionic conductor (NASICON) type lithium-ion solid electrolyte collaboratively doping with F<->, B<3+> and Y<3+> ions and preparation method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101460113B1 (en) 2013-04-23 2014-11-14 전남대학교산학협력단 Solid electrolyte and method of preparing the same for lithium secondary battery, and lithium secondary battery comprising the solid electrolyte
KR101822851B1 (en) 2015-02-16 2018-01-29 한양대학교 에리카산학협력단 Anode active material powder for lithium secondary battery and manufacturing method of the same
KR101876059B1 (en) * 2016-09-21 2018-07-06 현대자동차주식회사 Manufacturing method of duplex solid electrolyte membrane, duplex solid electrolyte membrane thereof and manufacturing method all solid state cell thereof
KR102224126B1 (en) * 2018-04-05 2021-03-08 주식회사 세븐킹에너지 Synthesis Process of Ceramic Solid Electrolyte for Lithium Secondary Batteries

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105140559A (en) 2015-07-30 2015-12-09 中国科学院西安光学精密机械研究所 Na<+> superionic conductor (NASICON) type lithium-ion solid electrolyte collaboratively doping with F<->, B<3+> and Y<3+> ions and preparation method thereof

Also Published As

Publication number Publication date
KR20220136713A (en) 2022-10-11

Similar Documents

Publication Publication Date Title
JP5701741B2 (en) Sulfide-based solid electrolyte
KR101752866B1 (en) Method for manufacturing llzo solid electrolyte by polymer hydrid process and method for manufacturing secondary battery comprising the same
JP2015204215A (en) Lithium ion-conducting solid electrolyte, manufacturing method thereof, and all-solid battery
CN110127598A (en) The reactivity sintering of ceramic lithium ion solid electrolyte
US20150372347A1 (en) Lithium ion conductive substance, lithium ion conductive solid electrolyte using the lithium ion conductive substance, protective layer for an electrode of a lithium ion battery, and method for manufacturing the lithium ion conductive substance
US20150249265A1 (en) All solid-state battery and method for producing same
KR102048701B1 (en) Manufacturing method of lithium lanthanum zirconium oxide-lithium boron oxide composite
US20150228966A1 (en) Positive electrode material, secondary battery, and methods respectively for producing positive electrode material and secondary battery
US20150249264A1 (en) Positive electrode material, all solid-state battery, and methods respectively for producing positive electrode material and all-solid state battery
KR20220028114A (en) Lithium Ion Conductive Oxide
KR20220032583A (en) Lithium Ion Conductive Oxide
Jiang et al. Solid‐State Li Ion Batteries with Oxide Solid Electrolytes: Progress and Perspective
CN112573574A (en) Method for preparing garnet type solid electrolyte by regulating and controlling content of lithium vacancy
JPWO2011111555A1 (en) All-solid secondary battery and manufacturing method thereof
KR20180041474A (en) A method of manufacturing solide eflectolyte thin using tape casting
KR101537067B1 (en) Solid electrolyte for all solid state rechargeable lithium battery, method for preparing the same, and all solid state rechargeable lithium battery including the same
KR102546049B1 (en) Method for manufacturing solid electrolyte for secondary battery by molded articles
WO2012161055A1 (en) Production method for material employed in energy device and/or electrical storage device, and material employed in energy device and/or electrical storage device
KR101902359B1 (en) Lithium-Ion Conducting Composite Solid Electrolyte For Lithium Battery, Method Of Manufacturing The Same, And Lithium Battery Comprising The Same
WO2014073466A1 (en) Positive electrode material, all-solid-state battery, and method for producing positive electrode material and all-solid-state battery
JP7172245B2 (en) Solid electrolyte sheet, manufacturing method thereof, and all-solid secondary battery
JP7365947B2 (en) Method for manufacturing garnet-type solid electrolyte sintered body for all-solid-state lithium-ion battery and method for manufacturing all-solid-state lithium-ion battery
WO2013161982A1 (en) Solid-state battery, and method for producing same
JP2011195385A (en) Lithium silicon nitride and method for producing the same
KR101627848B1 (en) Solid electrolyte for all solid state rechargeable lithium battery, method for preparing the same, and all solid state rechargeable lithium battery including the same

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right