KR102545193B1 - Composition for preventing or treating neurodegenerative disease comprising chalcone derivatives - Google Patents

Composition for preventing or treating neurodegenerative disease comprising chalcone derivatives Download PDF

Info

Publication number
KR102545193B1
KR102545193B1 KR1020200073475A KR20200073475A KR102545193B1 KR 102545193 B1 KR102545193 B1 KR 102545193B1 KR 1020200073475 A KR1020200073475 A KR 1020200073475A KR 20200073475 A KR20200073475 A KR 20200073475A KR 102545193 B1 KR102545193 B1 KR 102545193B1
Authority
KR
South Korea
Prior art keywords
mao
compound
disease
ache
cranial nerve
Prior art date
Application number
KR1020200073475A
Other languages
Korean (ko)
Other versions
KR20210155941A (en
Inventor
김훈
오종민
남상집
홍아름
이재필
백승철
Original Assignee
순천대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 순천대학교 산학협력단 filed Critical 순천대학교 산학협력단
Priority to KR1020200073475A priority Critical patent/KR102545193B1/en
Publication of KR20210155941A publication Critical patent/KR20210155941A/en
Application granted granted Critical
Publication of KR102545193B1 publication Critical patent/KR102545193B1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/13Amines
    • A61K31/135Amines having aromatic rings, e.g. ketamine, nortriptyline
    • A61K31/137Arylalkylamines, e.g. amphetamine, epinephrine, salbutamol, ephedrine or methadone
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/12Ketones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2200/00Function of food ingredients
    • A23V2200/30Foods, ingredients or supplements having a functional effect on health
    • A23V2200/322Foods, ingredients or supplements having a functional effect on health having an effect on the health of the nervous system or on mental function
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2250/00Food ingredients
    • A23V2250/30Other Organic compounds

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Neurosurgery (AREA)
  • Neurology (AREA)
  • Epidemiology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biomedical Technology (AREA)
  • Psychiatry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Hospice & Palliative Care (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Mycology (AREA)
  • Nutrition Science (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Emergency Medicine (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)

Abstract

본 발명은 MAO-B 저해제 및 AChE 억제제로서 유용한 칼콘 유도체 화합물, 이의 약학적으로 허용 가능한 염, 이의 수화물 또는 이의 입체 이성질체로부터 선택된 화합물, 및 상기 화합물을 유효성분으로 포함하는 퇴행성 뇌신경 질환의 예방, 경감 또는 치료용 약학 조성물에 관한 것으로서, 상기 본 발명에 따른 칼콘 유도체 화합물은 MAO-B 및 AChE를 저해하는 효과가 우수하므로, 퇴행성 뇌신경 질환의 예방, 경감 또는 치료에 유용하게 사용될 수 있다.The present invention provides a chalcone derivative compound useful as an MAO-B inhibitor and an AChE inhibitor, a compound selected from a pharmaceutically acceptable salt thereof, a hydrate thereof or a stereoisomer thereof, and a compound containing the compound as an active ingredient to prevent or alleviate degenerative cranial nerve disease. Or, as it relates to a pharmaceutical composition for treatment, the chalcone derivative compound according to the present invention has an excellent inhibitory effect on MAO-B and AChE, so it can be usefully used for preventing, alleviating or treating degenerative cranial nerve diseases.

Description

칼콘 유도체 화합물을 포함하는 퇴행성 뇌신경 질환의 예방 또는 치료용 조성물{Composition for preventing or treating neurodegenerative disease comprising chalcone derivatives}Composition for preventing or treating neurodegenerative disease comprising chalcone derivatives

본 발명은 MAO-B 저해제 및 AChE 억제제로서 유용한 칼콘 유도체 화합물, 이의 약학적으로 허용 가능한 염, 이의 수화물 또는 이의 입체 이성질체로부터 선택된 화합물, 및 상기 화합물을 유효성분으로 포함하는 퇴행성 뇌신경 질환의 예방, 경감 또는 치료용 약학 또는 식품 조성물에 관한 것이다.The present invention provides a chalcone derivative compound useful as an MAO-B inhibitor and an AChE inhibitor, a compound selected from a pharmaceutically acceptable salt thereof, a hydrate thereof or a stereoisomer thereof, and a compound containing the compound as an active ingredient to prevent or alleviate degenerative cranial nerve disease. or to therapeutic pharmaceutical or food compositions.

삭제delete

모노아민산화효소 (MAO, EC 1.4.3.4)는 약리학적으로 중요한 모노아민 신경전달물질의 산화적 탈아미노화를 촉매하며 모든 조직의 미토콘드리아 외막에 있는 2 개의 MAO 이소폼 (MAO-A 및 MAO-B)으로 존재한다[1]. MAO-A 및 MAO-B는 기질 특이성이 다르기 때문에 MAO-A는 우울증과 불안을 치료하는데 주로 표적화되는 반면, MAO-B는 알츠하이머 질환(AD)과 파킨슨병(PD)을 치료하는데 표적화된다 [2]. 또한, MAO는 알츠하이머 질환(AD)에서 아밀로이드 플라크 형성과 결정적으로 관련되며 MAO-B는 γ-세크레타제와 함께 알츠하이머 질환자의 뇌에서 높은 수준으로 발현된다 [3].Monoamine oxidase (MAO, EC 1.4.3.4) catalyzes the oxidative deamination of the pharmacologically important monoamine neurotransmitter and contains two MAO isoforms (MAO-A and MAO-A) in the mitochondrial outer membrane of all tissues. B) exists [1]. Because MAO-A and MAO-B have different substrate specificities, MAO-A is primarily targeted to treat depression and anxiety, while MAO-B is targeted to treat Alzheimer's disease (AD) and Parkinson's disease (PD) [2 ]. In addition, MAO is critically associated with amyloid plaque formation in Alzheimer's disease (AD) and MAO-B is expressed at high levels in the brains of Alzheimer's disease patients together with γ-secretase [3].

한편, 아세틸콜린에스테라제 (AChE, EC 3.1.1.7)는 아세틸콜린 (ACh)의 분해를 촉매하고; 일반적으로 AD에서 결핍된 것으로 알려진 대뇌 피질의 시냅스에서 발견되는 신경전달물질이다[4]. 따라서, AChE 억제제는 시냅스 ACh의 수준을 증가시키고 뇌의 콜린성 전달을 향상시킨다 [5]. 최근에 MAO-B 및 AChE를 표적으로 하는 다중 표적화 치료 전략이 고안되었으며 [6] MAO 및 AChE 억제제는 모노아민과 콜린에스테르의 수준을 증가시켜 인지 기능을 개선하고 AD의 증상을 완화할 수 있는 것으로 보고되었다 [7]. 뿐만 아니라 선택적 MAO-B 억제제는 다양한 스캐폴드에서 연구되고 있다 [8].On the other hand, acetylcholinesterase (AChE, EC 3.1.1.7) catalyzes the degradation of acetylcholine (ACh); It is a neurotransmitter found in synapses in the cerebral cortex that is commonly known to be deficient in AD [4]. Thus, AChE inhibitors increase the level of synaptic ACh and enhance cholinergic transmission in the brain [5]. Recently, multiple targeting treatment strategies targeting MAO-B and AChE have been devised [6] and MAO and AChE inhibitors have been shown to improve cognitive function and alleviate symptoms of AD by increasing the levels of monoamines and choline esters. reported [7]. In addition, selective MAO-B inhibitors are being studied in various scaffolds [8].

잔토안게롤(Xanthoangelol)과 4-히드록시데리신(4-hydroxyderricin)은 명일엽(Angelica keiskei K.)에 존재하는 프렌일화 칼콘(prenylated chalcones)이며, 최근 모노아민산화효소(monoamine oxidase) 활성을 억제하고 4-히드록시데리신(4-hydroxyderricin)이 MAO-B를 선택적으로 억제한다는 것이 입증되었다 [9]. 이러한 발견은 칼콘이 우울증 및 AD와 같은 MAO와 관련된 상태의 치료 가능성이 있음을 시사한다.Xanthoangelol and 4-hydroxyderricin are prenylated chalcones present in Angelica keiskei K., and have recently inhibited monoamine oxidase activity. and it has been demonstrated that 4-hydroxyderricin selectively inhibits MAO-B [9]. These findings suggest that chalcones have potential in the treatment of conditions associated with MAO, such as depression and AD.

이에 본 발명자들은 알츠하이머병 등의 퇴행성 뇌신경 질환을 치료하는데 있어, 종래 단일 표적 약물 분자를 사용한 치료 전략의 단점을 극복하고, 장기적인 사용에도 그 효과를 유지시킬 수 있는 다중표적 약물 분자를 개발하고자 연구를 지속하던 중, 칼콘 유도체 화합물이 MAO-B에 대해 선택적이고 가역적이며 경쟁적인 저해 활성을 가질 뿐 아니라 AChE에 대해서도 저해 활성을 가진다는 사실을 발견하고 본 발명을 완성하게 되었다.Accordingly, the inventors of the present invention, in treating degenerative cranial nerve diseases such as Alzheimer's disease, studied to overcome the disadvantages of conventional treatment strategies using single-target drug molecules and to develop multi-target drug molecules that can maintain their effects even during long-term use. During the study, it was discovered that the chalcone derivative compound not only has a selective, reversible and competitive inhibitory activity against MAO-B, but also an inhibitory activity against AChE, and the present invention was completed.

한편, 본 명세서에서 인용된 논문은 다음과 같다.Meanwhile, the papers cited in this specification are as follows.

[1] R.R. Ramsay, Monoamine oxidases: the biochemistry of the proteins as targets in medicinal chemistry and drug discovery, Curr. Top. Med. Chem. 12 (2012) 2189-2209.[1] R.R. Ramsay, Monoamine oxidases: the biochemistry of the proteins as targets in medicinal chemistry and drug discovery, Curr. Top. Med. Chem. 12 (2012) 2189-2209.

[2] M.B. Youdim, D. Edmondson, K.F. Tipton, The therapeutic potential of monoamine oxidase inhibitors, Nat. Rev. Neurosci. 7 (2006) 295-309.[2] M.B. Youdim, D. Edmondson, K.F. Tipton, The therapeutic potential of monoamine oxidase inhibitors, Nat. Rev. Neurosci. 7 (2006) 295-309.

[3] S. Schedin-Weiss, M Inoue, L. Hromadkova, Y. Teranishi, N.G. Yamamoto, B. Wiehager, N. Bogdanovic, B. Winblad, A. Sandebring-Matton, S. Frykman, L.O. Tjernberg, Monoamine oxidase B is elevated in Alzheimer disease neurons, is associated with γ-secretase and regulates neuronal amyloid

Figure 112020062178729-pat00001
-peptide levels, Alzheimers Res. Ther. 9 (2017) 57.[3] S. Schedin-Weiss, M Inoue, L. Hromadkova, Y. Teranishi, N. G. Yamamoto, B. Wiehager, N. Bogdanovic, B. Winblad, A. Sandebring-Matton, S. Frykman, L. O. Tjernberg, Monoamine oxidase B is elevated in Alzheimer disease neurons, is associated with γ-secretase and regulates neuronal amyloid
Figure 112020062178729-pat00001
-peptide levels, Alzheimers Res. Ther. 9 (2017) 57.

[4] L.M. Bierer, V. Haroutunian, S. Gabriel, P.J. Knott, L.S. Carlin, D.P. Purohit, D.P. Perl, J. Schmeidler, P. Kanof, K.L. Davis, Neurochemical correlates of dementia severity in Alzheimer's disease: relative importance of the cholinergic deficits, J. Neurochem. 64 (1995) 749-760.[4] L.M. Bierer, V. Haroutunian, S. Gabriel, P.J. Knott, L.S. Carlin, D.P. Purohit, D.P. Perl, J. Schmeidler, P. Kanof, K.L. Davis, Neurochemical correlates of dementia severity in Alzheimer's disease: relative importance of the cholinergic deficits, J. Neurochem. 64 (1995) 749-760.

[5] P. Anand, B. Singh, A review on cholinesterase inhibitors for Alzheimer's disease, Arch. Pharm. Res. 36 (2013) 375-399.[5] P. Anand, B. Singh, A review on cholinesterase inhibitors for Alzheimer's disease, Arch. Pharm. Res. 36 (2013) 375-399.

[6] M.M. Ibrahim, M.T. Gabr, Multitarget therapeutic strategies for Alzheimer's disease, Neural Regen. Res. 14 (2019) 437-440. [6] M.M. Ibrahim, M.T. Gabr, Multitarget therapeutic strategies for Alzheimer's disease, Neural Regen. Res. 14 (2019) 437-440.

[7] R.R. Ramsay, K.F. Tipton, Assessment of enzyme inhibition: a review with examples from the development of monoamine oxidase and cholinesterase inhibitory drugs, Molecules 22 (2017) pii: E1192.[7] R.R. Ramsay, K.F. Tipton, Assessment of enzyme inhibition: a review with examples from the development of monoamine oxidase and cholinesterase inhibitory drugs, Molecules 22 (2017) pii: E1192.

[8] S. Carradori, M. D'Ascenzio, P. Chimenti, D. Secci, A. Bolasco, Selective MAO-B inhibitors: a lesson from natural products. Mol. Divers. 18 (2014) 219-243.[8] S. Carradori, M. D'Ascenzio, P. Chimenti, D. Secci, A. Bolasco, Selective MAO-B inhibitors: a lesson from natural products. Mol. Divers. 18 (2014) 219-243.

[9] J.H. Kim, Y.K. Son, G.H. Kim, K.H. Hwang, Xanthoangelol and 4-hydroxyderricin are the major active principles of the inhibitory activities against monoamine oxidases on Angelica keiskei K., Biomol. Ther. 21 (2013) 234-240.[9] J.H. Kim, Y.K. Son, G.H. Kim, K.H. Hwang, Xanthoangelol and 4-hydroxyderricin are the major active principles of the inhibitory activities against monoamine oxidases on Angelica keiskei K., Biomol. Ther. 21 (2013) 234-240.

[10] S.C. Baek, M.H. Park, H.W. Ryu, J.P. Lee, M.G. Kang, D. Park, C.M. Park, S.R. Oh, H. Kim, Rhamnocitrin isolated from Prunus padus var. seoulensis: a potent and selective reversible inhibitor of human monoamine oxidase A, Bioorg. Chem. 28 (2018) 317-325.[10] S.C. Baek, M.H. Park, H.W. Ryu, J.P. Lee, M.G. Kang, D. Park, C.M. Park, S.R. Oh, H. Kim, Rhamnocitrin isolated from Prunus padus var. seoulensis: a potent and selective reversible inhibitor of human monoamine oxidase A, Bioorg. Chem. 28 (2018) 317-325.

[11] S.C. Baek, H.W. Lee, H.W. Ryu, M.G. Kang, D. Park, S.H. Kim, M.L. Cho, S.R. Oh, H. Kim, Selective inhibition of monoamine oxidase A by hispidol, Bioorg. Med. Chem. Lett. 28 (2018) 584-588. [11] S.C. Baek, H.W. Lee, H.W. Ryu, M.G. Kang, D. Park, S.H. Kim, M.L. Cho, S.R. Oh, H. Kim, Selective inhibition of monoamine oxidase A by hispidol, Bioorg. Med. Chem. Lett. 28 (2018) 584-588.

[12] S.C. Baek, B. Choi, S.J. Nam, H. Kim, Inhibition of monoamine oxidase A and B by demethoxycurcumin and bisdemethoxycurcumin, J. Appl. Biol. Chem. 61 (2018) 187-190[12] S.C. Baek, B. Choi, S.J. Nam, H. Kim, Inhibition of monoamine oxidase A and B by demethoxycurcumin and bisdemethoxycurcumin, J. Appl. Biol. Chem. 61 (2018) 187-190

[13] S.C. Baek, H.W. Ryu, M.G. Kang, H. Lee, D. Park, M.L. Cho, S.R. Oh, H. Kim, Selective inhibition of monoamine oxidase A by chelerythrine, an isoquinoline alkaloid, Bioorg. Med. Chem. Lett. 28 (2018) 2403-2407.[13] S.C. Baek, H.W. Ryu, M.G. Kang, H. Lee, D. Park, M.L. Cho, S.R. Oh, H. Kim, Selective inhibition of monoamine oxidase A by chelerythrine, an isoquinoline alkaloid, Bioorg. Med. Chem. Lett. 28 (2018) 2403-2407.

[14] G.L. Ellman, K.D. Courtney, V. Andres Jr, R.M. Feather-Stone, A new and rapid colorimetric determination of acetylcholinesterase activity, Biochem. Pharmacol. 7 (1961) 88-95.[14] G.L. Ellman, K.D. Courtney, V. Andres Jr, R.M. Feather-Stone, A new and rapid colorimetric determination of acetylcholinesterase activity, Biochem. Pharmacol. 7 (1961) 88-95.

[15] H.W. Lee, H.W. Ryu, M.G. Kang, D. Park, S.R. Oh, H. Kim, Potent selective monoamine oxidase B inhibition by maackiain, a pterocarpan from the roots of Sophora flavescens, Bioorg. Med. Chem. Lett. 26 (2016) 4714-4719.[15] H.W. Lee, H.W. Ryu, M.G. Kang, D. Park, S.R. Oh, H. Kim, Potent selective monoamine oxidase B inhibition by maackiain, a pterocarpan from the roots of Sophora flavescens, Bioorg. Med. Chem. Lett. 26 (2016) 4714-4719.

[16] J.P. Lee, M.G. Kang, J.Y. Lee, J.M. Oh, S.C. Baek, H.H. Leem, D. Park, M.L. Cho, H. Kim. Potent inhibition of acetylcholinesterase by sargachromanol I from Sargassum siliquastrum and by selected natural compounds. 2019 (Under review).[16] J.P. Lee, M.G. Kang, J.Y. Lee, J.M. Oh, S.C. Baek, H.H. Leem, D. Park, M.L. Cho, H. Kim. Potent inhibition of acetylcholinesterase by sargachromanol I from Sargassum siliquastrum and by selected natural compounds. 2019 (Under review).

[17] O. Trott, A.J. Olson, AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading, J. Comput. Chem. 31 (2010) 455-461.[17] O. Trott, A.J. Olson, AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading, J. Comput. Chem. 31 (2010) 455-461.

[18] E.F. Pettersen, T.D. Goddard, C.C. Huang, G.S. Couch, D.M. Greenblatt, E.C.Meng, T.E. Ferrin, UCSF Chimera-a visualization system for exploratory research and analysis, J. Comput. Chem. 25 (2004) 1605-1612.[18] E.F. Pettersen, T.D. Goddard, C.C. Huang, G.S. Couch, D.M. Greenblatt, E.C. Meng, T.E. Ferrin, UCSF Chimera-a visualization system for exploratory research and analysis, J. Comput. Chem. 25 (2004) 1605-1612.

[19] J.E. Mills, P.M. Dean, Three-dimensional hydrogen-bond geometry and probability information from a crystal survey, J. Comput. Aided Mol. Des. 10 (1996) 607-622.[19] J.E. Mills, P.M. Dean, Three-dimensional hydrogen-bond geometry and probability information from a crystal survey, J. Comput. Aided Mol. Des. 10 (1996) 607-622.

[20] L.C. Fu, X.A. Huang, Z.Y. Lai, Y.J. Hu, H.J. Liu, X.L. Cai, A new 3-benzylchroman derivative from Sappan Lignum (Caesalpinia sappan), Molecules 13 (2008) 1923-1930.[20] L.C. Fu, X.A. Huang, Z.Y. Lai, Y.J. Hu, H.J. Liu, X.L. Cai, A new 3-benzylchroman derivative from Sappan Lignum (Caesalpinia sappan), Molecules 13 (2008) 1923-1930.

[21] M. Namikoshi, H. Nakata, M. Juno, T. Ozawa, T. Saitoh, Homoisoflavonoids and related compounds. III. Phenolic constituents of Caesalpinia japonica Sieb. et Zucc., Chem. Pharm. Bull. 35 (1987) 3568-3575.[21] M. Namikoshi, H. Nakata, M. Juno, T. Ozawa, T. Saitoh, Homoisoflavonoids and related compounds. III. Phenolic constituents of Caesalpinia japonica Sieb. et Zucc., Chem. Pharm. Bull. 35 (1987) 3568-3575.

[22] M. Junko, T. Fujimoto, C. Takino, M. Saitoh, Y. Hano, T. Fukai, T. Nomura, Components of Broussonetia papyrifera (L.) Vent. I. Structures of two new isoprenylated flavonols and two chalcone derivatives, Chem. Pharm. Bull. 33 (1985) 3250-3256.[22] M. Junko, T. Fujimoto, C. Takino, M. Saitoh, Y. Hano, T. Fukai, T. Nomura, Components of Broussonetia papyrifera (L.) Vent. I. Structures of two new isoprenylated flavonols and two chalcone derivatives, Chem. Pharm. Bull. 33 (1985) 3250-3256.

[23] S.J. Kim, J.J. Lee, H.H. Yoon, J.G. Jun, Synthesis of biologically active natural component 4-hydroxyderricin through water-accelerated [3,3]-sigmatropic rearrangement, Bull. Korean Chem. Soc. 34 (2013) 2815-2818.[23] S.J. Kim, J.J. Lee, H.H. Yoon, J.G. Jun, Synthesis of biologically active natural component 4-hydroxyderricin through water-accelerated [3,3]-sigmatropic rearrangement, Bull. Korean Chem. Soc. 34 (2013) 2815-2818.

[24] D.W. Kim, M.J. Curtis-Long, H.J. Yuk, Y. Wang, Y.H. Song, S.H. Jeong, K.H. Park, Quantitative analysis of phenolic metabolites from different parts of Angelica keiskei by HPLC-ESI MS/MS and their xanthine oxidase inhibition. Food Chem. 153, (2014) 20-27.[24] D.W. Kim, M.J. Curtis-Long, H.J. Yuk, Y. Wang, Y.H. Song, S.H. Jeong, K.H. Park, Quantitative analysis of phenolic metabolites from different parts of Angelica keiskei by HPLC-ESI MS/MS and their xanthine oxidase inhibition. Food Chem. 153, (2014) 20-27.

[25] J. Yan, L.R. Sun, Z.Y. Zhou, Y.C. Chen, W.M. Zhang, H.F. Dai, J.W. Tan, Homoisoflavonoids from the medicinal plant Portulaca oleracea, Phytochemistry 80 (2012) 37-41.[25] J. Yan, L.R. Sun, Z.Y. Zhou, Y.C. Chen, W.M. Zhang, H.F. Dai, J.W. Tan, Homoisoflavonoids from the medicinal plant Portulaca oleracea, Phytochemistry 80 (2012) 37-41.

[26] A. Rani, A. Anand, K. Kumar, V. Kumar, Recent developments in biological aspects of chalcones: the odyssey continues. Expert Opin. Drug Discov. 14 (2019) 249-288.[26] A. Rani, A. Anand, K. Kumar, V. Kumar, Recent developments in biological aspects of chalcones: the odyssey continues. Expert Opin. Drug Discov. 14 (2019) 249-288.

[27] H. Haraguchi, Y. Tanaka, A. Kabbash, T. Fujioka, T. Ishizu, A. Yagi, Monoamine oxidase inhibitors from Gentiana lutea. Phytochemistry. 65 (2004) 2255-2260.[27] H. Haraguchi, Y. Tanaka, A. Kabbash, T. Fujioka, T. Ishizu, A. Yagi, Monoamine oxidase inhibitors from Gentiana lutea. Phytochemistry. 65 (2004) 2255-2260.

[28] X. Pan, L.D. Kong, Y. Zhang, C.H. Cheng, R.X. Tan, In vitro inhibition of rat monoamine oxidase by liquiritigenin and isoliquiritigenin isolated from Sinofranchetia chinensis. Acta Pharmacol. Sin. 21 (2000) 949-953.[28] X. Pan, L.D. Kong, Y. Zhang, C.H. Cheng, R.X. Tan, In vitro inhibition of rat monoamine oxidase by liquiritigenin and isoliquiritigenin isolated from Sinofranchetia chinensis. Acta Pharmacol. Sin. 21 (2000) 949-953.

[29] N.D. Chaurasiya, F. Le

Figure 112020062178729-pat00002
n, Y. Ding, I. G
Figure 112020062178729-pat00003
mez-Betancur, D. Benjumea, L.A. Walker, S.J. Cutler, B.L. Tekwani, Interactions of desmethoxyyangonin, a secondary metabolite from Renealmia alpinia, with human monoamine oxidase-A and oxidase-B, Evid. Based Complement. Alternat. Med. (2017) 4018724.[29] N.D. Chaurasiya, F. Le.
Figure 112020062178729-pat00002
n, Y. Ding, I. G.
Figure 112020062178729-pat00003
mez-Betancur, D. Benjumea, LA Walker, SJ Cutler, BL Tekwani, Interactions of desmethoxyyangonin, a secondary metabolite from Renealmia alpinia, with human monoamine oxidase-A and oxidase-B, Evid. Based Complement. Alternat. Med. (2017) 4018724.

[30] M.N. Gomes, E.N. Muratov, M. Pereira, J.C. Peixoto, L.P. Rosseto, P.V.L. Cravo, C.H. Andrade, B.J. Neves, Chalcone derivatives: promising starting points for drug design. Molecules. 22 (2017) pii: E1210.[30] M.N. Gomes, E.N. Muratov, M. Pereira, J.C. Peixoto, L.P. Rosseto, P.V.L. Cravo, C.H. Andrade, B.J. Neves, Chalcone derivatives: promising starting points for drug design. Molecules. 22 (2017) pii: E1210.

[31] F. Chimenti, R. Fioravanti, A. Bolasco, P. Chimenti, D. Secci, F. Rossi, M. Yanez, F. Orallo, F. Ortuso, S. Alcaro, Chalcones: a valid scaffold for monoamine oxidases inhibitors, J. Med. Chem. 52 (2009) 2818-2824.[31] F. Chimenti, R. Fioravanti, A. Bolasco, P. Chimenti, D. Secci, F. Rossi, M. Yanez, F. Orallo, F. Ortuso, S. Alcaro, Chalcones: a valid scaffold for monoamine oxidases inhibitors, J. Med. Chem. 52 (2009) 2818-2824.

[32] J.W. Choi, B.K. Jang, N.C. Cho, J.H. Park, S.K. Yeon, E.J. Ju, Y.S. Lee, G. Han, A.N. Pae, D.J. Kim, K.D. Park, Synthesis of a series of unsaturated ketone derivatives as selective and reversible monoamine oxidase inhibitors, Bioorg. Med. Chem. 23 (2015) 6486-6496.[32] J.W. Choi, B.K. Jang, N.C. Cho, J.H. Park, S.K. Yeon, E.J. Ju, Y.S. Lee, G. Han, A.N. Pae, D.J. Kim, K.D. Park, Synthesis of a series of unsaturated ketone derivatives as selective and reversible monoamine oxidase inhibitors, Bioorg. Med. Chem. 23 (2015) 6486-6496.

[33] B. Mathew, G.E. Mathew, G. Uηar, I. Baysal, J. Suresh, J.K. Vilapurathu, A. Prakasan, J.K. Suresh, A. Thomas, Development of fluorinated methoxylated chalcones as selective monoamine oxidase-B inhibitors: synthesis, biochemistry and molecular docking studies, Bioorg. Chem. 61 (2015) 22-29.[33] B. Mathew, G.E. Mathew, G. Uηar, I. Baysal, J. Suresh, J.K. Vilapurathu, A. Prakasan, J.K. Suresh, A. Thomas, Development of fluorinated methoxylated chalcones as selective monoamine oxidase-B inhibitors: synthesis, biochemistry and molecular docking studies, Bioorg. Chem. 61 (2015) 22-29.

[34] B. Mathew, S.C. Baek, D.G. Thomas Parambi, J.P. Lee, G.E. Mathew, S. Jayanthi, D. Vinod, C. Rapheal, V. Devikrishna, S.S. Kondarath, M.S. Uddin, H. Kim, Potent and highly selective dual-targeting monoamine oxidase-B inhibitors: fluorinated chalcones of morpholine versus imidazole. Arch. Pharm. (Weinheim). 352 (2019) e1800309.[34] B. Mathew, S.C. Baek, D.G. Thomas Parambi, J.P. Lee, G.E. Mathew, S. Jayanthi, D. Vinod, C. Rapheal, V. Devikrishna, S.S. Kondarath, M.S. Uddin, H. Kim, Potent and highly selective dual-targeting monoamine oxidase-B inhibitors: fluorinated chalcones of morpholine versus imidazole. Arch. Pharm. (Weinheim). 352 (2019) e1800309.

[35] C. Minders, J.P. Petzer, A. Petzer, A.C. Lourens, Monoamine oxidase inhibitory activities of heterocyclic chalcones, Bioorg. Med. Chem. Lett. 25 (2015) 5270-5276.[35] C. Minders, J.P. Petzer, A. Petzer, A.C. Lourens, Monoamine oxidase inhibitory activities of heterocyclic chalcones, Bioorg. Med. Chem. Lett. 25 (2015) 5270-5276.

[36] B. Mathew, A. Haridas, G. Uηar, I. Baysal, A.A. Adeniyi, M.E. Soliman, M. Joy, G.E. Mathew, B. Lakshmanan, V. Jayaprakash, Exploration of chlorinated thienyl chalcones: a new class of monoamine oxidase-B inhibitors, Int. J. Biol. Macromol. 91 (2016) 680-695.[36] B. Mathew, A. Haridas, G. Uηar, I. Baysal, A.A. Adeniyi, M.E. Soliman, M. Joy, G.E. Mathew, B. Lakshmanan, V. Jayaprakash, Exploration of chlorinated thienyl chalcones: a new class of monoamine oxidase-B inhibitors, Int. J. Biol. Macromol. 91 (2016) 680-695.

[37] J. Suresh, S.C. Baek, S.P. Ramakrishnan, H. Kim, B. Mathew, Discovery of potent and reversible MAO-B inhibitors as furanochalcones, Int. J. Biol. Macromol. 108 (2018) 660-664.[37] J. Suresh, S.C. Baek, S.P. Ramakrishnan, H. Kim, B. Mathew, Discovery of potent and reversible MAO-B inhibitors as furanochalcones, Int. J. Biol. Macromol. 108 (2018) 660-664.

[38] I. Engelbrecht, J.P. Petzer, A. Petzer, Nitrocatechol derivatives of chalcone as inhibitors of monoamine oxidase and catechol-O-methyltransferase, Cent. Nerv. Syst. Agents Med. Chem. 18 (2018) 115-127.[38] I. Engelbrecht, J.P. Petzer, A. Petzer, Nitrocatechol derivatives of chalcone as inhibitors of monoamine oxidase and catechol-O-methyltransferase, Cent. Nerv. Syst. Agents Med. Chem. 18 (2018) 115-127.

[39] B. Mathew, G.E. Mathew, G. Ucar, M. Joy, E.K. Nafna, K.K. Lohidakshan, J. Suresh, Monoamine oxidase inhibitory activity of methoxy-substituted chalcones, Int. J. Biol. Macromol. 104 (Pt A) (2017) 1321-1329.[39] B. Mathew, G.E. Mathew, G. Ucar, M. Joy, E.K. Nafna, K.K. Lohidakshan, J. Suresh, Monoamine oxidase inhibitory activity of methoxy-substituted chalcones, Int. J. Biol. Macromol. 104 (Pt A) (2017) 1321-1329.

[40] R. Sasidharan, S.C. Baek, M. Sreedharannair Leelabaiamma, H. Kim, B. Mathew, Imidazole bearing chalcones as a new class of monoamine oxidase inhibitors, Biomed. Pharmacother. 106 (2018) 8-13.[40] R. Sasidharan, S.C. Baek, M. Sreedharannair Leelabaiamma, H. Kim, B. Mathew, Imidazole bearing chalcones as a new class of monoamine oxidase inhibitors, Biomed. Pharmacother. 106 (2018) 8-13.

[41] R. Shalaby, J.P. Petzer, A. Petzer, U.M. Ashraf, E. Atari, F. Alasmari, S. Kumarasamy, Y. Sari, A. Khalil, SAR and molecular mechanism studies of monoamine oxidase inhibition by selected chalcone analogs, J. Enzyme Inhib. Med. Chem. 34 (2019) 863-876.[41] R. Shalaby, J.P. Petzer, A. Petzer, U.M. Ashraf, E. Atari, F. Alasmari, S. Kumarasamy, Y. Sari, A. Khalil, SAR and molecular mechanism studies of monoamine oxidase inhibition by selected chalcone analogs, J. Enzyme Inhib. Med. Chem. 34 (2019) 863-876.

[42] B. Evranos-Aksoz, L. Baysal, S. Yabanoglu-Ciftηi, T. Djikic, K. Yelekηi, G. Uηar, R. Ertan, Synthesis and screening of human monoamine oxidase-A inhibitor effect of new 2-pyrazoline and hydrazone derivatives. Arch. Pharm. (Weinheim). 348 (2015) 743-756.[42] B. Evranos-Aksoz, L. Baysal, S. Yabanoglu-Ciftηi, T. Djikic, K. Yelekηi, G. Uηar, R. Ertan, Synthesis and screening of human monoamine oxidase-A inhibitor effect of new 2- pyrazoline and hydrazone derivatives. Arch. Pharm. (Weinheim). 348 (2015) 743-756.

[43] H. Kim, S.O. Sablin, R.R. Ramsay. Inhibition of monoamine oxidase A by beta-carboline derivatives. Arch. Biochem. Biophys. 337 (1997) 137-142. [43] H. Kim, S.O. Sablin, R.R. Ramsay. Inhibition of monoamine oxidase A by beta-carboline derivatives. Arch. Biochem. Biophys. 337 (1997) 137-142.

[44] M. Repic, M. Purg, R. Vianello, J. Mavri. Examining electrostatic preorganization in monoamine oxidases A and B by structural comparison and pKa calculations. J. Phys. Chem. B. 118 (2014) 4326-4332.[44] M. Repic, M. Purg, R. Vianello, J. Mavri. Examining electrostatic preorganization in monoamine oxidases A and B by structural comparison and pKa calculations. J. Phys. Chem. B. 118 (2014) 4326-4332.

[45] R.R. Ramsay, M. Majekova, M. Medina, M. Valoti. Key Targets for Multi-Target Ligands Designed to Combat Neurodegeneration. Front. Neurosci. 10 (2016) 375. [45] R.R. Ramsay, M. Majekova, M. Medina, M. Valoti. Key Targets for Multi-Target Ligands Designed to Combat Neurodegeneration. Front. Neurosci. 10 (2016) 375.

[46] G. Esteban, J. Allan, A. Samadi, A. Mattevi, M. Unzeta, J. Marco-Contelles, C. Binda, R.R. Ramsay. Kinetic and structural analysis of the irreversible inhibition of human monoamine oxidases by ASS234, a multi-target compound designed for use in Alzheimer's disease. Biochim. Biophys. Acta. 1844 (2014) 1104-1110.[46] G. Esteban, J. Allan, A. Samadi, A. Mattevi, M. Unzeta, J. Marco-Contelles, C. Binda, R.R. Ramsay. Kinetic and structural analysis of the irreversible inhibition of human monoamine oxidases by ASS234, a multi-target compound designed for use in Alzheimer's disease. Biochim. Biophys. Acta. 1844 (2014) 1104-1110.

[47] H. Gaweska, P.F. Fitzpatrick. Structures and Mechanism of the Monoamine Oxidase Family. Biomol. Concepts. 2 (2011) 365-377.[47] H. Gaweska, P.F. Fitzpatrick. Structures and Mechanism of the Monoamine Oxidase Family. Biomol. Concepts. 2 (2011) 365-377.

본 발명의 하나의 목적은 MAO-B(monoamine oxidase-B)에 대해 선택적이며 가역적인 저해 활성을 가질 뿐 아니라 AChE(acetylcholinesterase)에 대해서도 저해 활성을 가지는 칼콘 유도체 화합물, 이의 약학적으로 허용 가능한 염, 이의 수화물 및 이의 입체 이성질체로부터 선택된 화합물을 유효성분으로 포함하는 퇴행성 뇌신경 질환의 예방 또는 치료용 약학 조성물을 제공하기 위한 것이다.One object of the present invention is to provide a chalcone derivative compound having a selective and reversible inhibitory activity against monoamine oxidase-B (MAO-B) as well as an inhibitory activity against acetylcholinesterase (AChE), a pharmaceutically acceptable salt thereof, It is to provide a pharmaceutical composition for preventing or treating degenerative cranial nerve disease comprising a compound selected from hydrates thereof and stereoisomers thereof as an active ingredient.

본 발명의 다른 하나의 목적은 MAO-B(monoamine oxidase-B)에 대해 선택적이며 가역적인 저해 활성을 가질 뿐 아니라 AChE(acetylcholinesterase)에 대해서도 저해 활성을 가지는 칼콘 유도체 화합물, 이의 약학적으로 허용 가능한 염, 이의 수화물 및 이의 입체 이성질체로부터 선택된 화합물을 유효성분으로 포함하는 퇴행성 뇌신경 질환의 예방 또는 개선용 식품 조성물을 제공하기 위한 것이다.Another object of the present invention is to provide a chalcone derivative compound having a selective and reversible inhibitory activity against MAO-B (monoamine oxidase-B) as well as an inhibitory activity against AChE (acetylcholinesterase), and a pharmaceutically acceptable salt thereof , It is to provide a food composition for preventing or improving degenerative cranial nerve disease comprising a compound selected from hydrates and stereoisomers thereof as an active ingredient.

하나의 양태로서, 본 발명은 활성성분으로서 칼콘 유도체 화합물, 이의 약학적으로 허용 가능한 염, 이의 수화물 및 이의 입체 이성질체로부터 선택된 화합물을 포함하는 퇴행성 뇌신경 질환의 예방 또는 치료용 약학 조성물을 제공한다.In one aspect, the present invention provides a pharmaceutical composition for preventing or treating degenerative cranial nerve disease, comprising a chalcone derivative compound, a pharmaceutically acceptable salt thereof, a hydrate thereof, and a compound selected from stereoisomers thereof as an active ingredient.

본 발명에 있어서, 상기 칼콘 유도체 화합물은 2,4'-디클로로-4-디메틸아미노칼콘(2,4'-dichloro-4-dimethylaminochalcone), 4-디메틸아미노칼콘(4-dimethylaminochalcone), 4-클로로칼콘(4-chlorochalcone), 4-니트로칼콘(4-nitrochalcone), 및 4'-클로로-4-디메틸아미노칼콘(4'-chloro-4-dimethylaminochalcone)로 이루어진 군으로부터 1 이상 선택되는 화합물을 말한다.In the present invention, the chalcone derivative compound is 2,4'-dichloro-4-dimethylaminochalcone, 4-dimethylaminochalcone, 4-chlorochalcone (4-chlorochalcone), 4-nitrochalcone (4-nitrochalcone), and 4'-chloro-4-dimethylaminochalcone (4'-chloro-4-dimethylaminochalcone) refers to a compound selected from at least one selected from the group consisting of.

상기 2,4'-디클로로-4-디메틸아미노칼콘(2,4'-dichloro-4-dimethylaminochalcone)은 하기 화학식 1과 같은 구조를 가지며, 본 명세서에서 화합물 1로 표현된다.The 2,4'-dichloro-4-dimethylaminochalcone (2,4'-dichloro-4-dimethylaminochalcone) has a structure shown in Formula 1 below and is represented as Compound 1 herein.

[화학식 1][Formula 1]

Figure 112020062178729-pat00004
Figure 112020062178729-pat00004

상기 4-디메틸아미노칼콘(4-dimethylaminochalcone)은 하기 화학식 2와 같은 구조를 가지며, 본 명세서에서 화합물 2로 표현된다.The 4-dimethylaminochalcone (4-dimethylaminochalcone) has a structure shown in Formula 2 below, and is represented as Compound 2 herein.

[화학식 2][Formula 2]

Figure 112020062178729-pat00005
Figure 112020062178729-pat00005

상기 4-클로로칼콘(4-chlorochalcone)은 하기 화학식 3과 같은 구조를 가지며, 본 명세서에서 화합물 3으로 표현된다.The 4-chlorochalcone (4-chlorochalcone) has a structure shown in Formula 3 below, and is represented as Compound 3 herein.

[화학식 3][Formula 3]

Figure 112020062178729-pat00006
Figure 112020062178729-pat00006

상기 4-니트로칼콘(4-nitrochalcone)은 하기 화학식 4와 같은 구조를 가지며, 본 명세서에서 화합물 4로 표현된다.The 4-nitrochalcone (4-nitrochalcone) has a structure shown in Formula 4 below, and is represented as Compound 4 herein.

[화학식 4][Formula 4]

Figure 112020062178729-pat00007
Figure 112020062178729-pat00007

상기 4'-클로로-4-디메틸아미노칼콘(4'-chloro-4-dimethylaminochalcone)은 하기 화학식 5와 같은 구조를 가지며, 본 명세서에서 화합물 5로 표현된다.The 4'-chloro-4-dimethylaminochalcone (4'-chloro-4-dimethylaminochalcone) has a structure shown in Formula 5 below, and is represented as Compound 5 herein.

[화합물 5][Compound 5]

Figure 112023032982317-pat00031
Figure 112023032982317-pat00031

본 발명에 따른 상기 칼콘 유도체 화합물은 무기산 또는 유기산으로부터 유도된 약학적으로 허용 가능한 염의 형태로 사용될 수 있으며, 바람직한 염으로는 염산, 브롬화수소산, 황산, 인산, 질산, 아세트산, 글리콜산, 락트산, 피루브산, 말론산, 석신산, 글루타르산, 푸마르산, 말산, 만델산, 타타르산, 시트르산, 아스코빈산, 팔미트산, 말레인산, 하이드록시말레인산, 벤조산, 하이드록시벤조산, 페닐아세트산, 신남산, 살리실산, 메탄설폰산, 벤젠설폰산 및 톨루엔설폰산으로 구성된 군에서 선택되는 하나 이상일 수 있다.The chalcone derivative compound according to the present invention may be used in the form of a pharmaceutically acceptable salt derived from an inorganic or organic acid, and preferred salts include hydrochloric acid, hydrobromic acid, sulfuric acid, phosphoric acid, nitric acid, acetic acid, glycolic acid, lactic acid, and pyruvic acid. , malonic acid, succinic acid, glutaric acid, fumaric acid, malic acid, mandelic acid, tartaric acid, citric acid, ascorbic acid, palmitic acid, maleic acid, hydroxymaleic acid, benzoic acid, hydroxybenzoic acid, phenylacetic acid, cinnamic acid, salicylic acid, It may be one or more selected from the group consisting of methanesulfonic acid, benzenesulfonic acid and toluenesulfonic acid.

본 발명에 따른 상기 칼콘 유도체 화합물 또는 이의 약학적으로 허용 가능한 염은 수화물 및 용매화물을 포함할 수 있다. 상기 수화물은 상기 화학식 1 내지 5의 화합물이 물 분자와 결합하여 형성된 것을 의미할 수 있다.The chalcone derivative compound or a pharmaceutically acceptable salt thereof according to the present invention may include hydrates and solvates. The hydrate may mean formed by combining the compounds of Chemical Formulas 1 to 5 with water molecules.

본 발명에서 용어 "입체 이성질체(stereoisomer)"는 분자식 및 구성원자의 연결 방법도 같으나 원자 사이의 공간적 배치가 다른 화합물을 말한다. 상기 입체 이성질체는 부분입체 이성질체(diastereomer) 또는 거울상 이성질체(enantiomer) 일 수 있다. 거울상 이성질체는 왼손과 오른손의 관계처럼 그 거울상과 겹쳐지지 않는 이성질체를 말하고, 광학 이성질체(optical isomer)라고도 한다. 거울상 이성질체는 키랄 중심 탄소에 4개 이상의 치환기가 서로 다른 경우 R(Rectus: 시계방향) 및 S(sinister: 반시계 방향)로 구분한다. 부분입체 이성질체는 거울상 관계가 아닌 입체 이성질체를 말하고, 원자의 공간 배열이 달라 생기 시스(cis)-트랜스(trans) 이성질체로 나뉠 수 있다.In the present invention, the term "stereoisomer" refers to a compound having the same molecular formula and method of connecting elements, but different spatial arrangements between atoms. The stereoisomers may be diastereomers or enantiomers. Enantiomers refer to isomers that do not overlap with their mirror images, such as the relationship between left and right hands, and are also called optical isomers. Enantiomers are classified as R (Rectus: clockwise) and S (sinister: counterclockwise) when four or more substituents on the chiral central carbon differ from each other. Diastereomers are stereoisomers that are not enantiomers, and can be divided into cis-trans isomers that arise from differences in the arrangement of atoms in space.

본 발명에서 사용된 용어, "퇴행성 뇌신경 질환"이란 중추신경계의 신경세포에 퇴행성 변화가 나타나면서 여러 가지 증상을 유발하는 질환을 의미하며, 인지 기능, 학습 또는 기억력이 손상되거나, 신경염증 반응을 동반하는 뇌신경 질환을 포함한다. 본 발명에 따른 대표적인 퇴행성 뇌신경 질환에는 치매(dementia), 알츠하이머병(Alzheimer's disease), 파킨슨병(Parkinson's disease), 헌팅톤병(Huntington's disease), 루게릭병(amyotrophic lateral sclerosis, ALS), 크로이츠펠트 야콥병(Creutzfeldt-Jakob disease, CJD), 뇌졸중(Stroke), 다발성 경화증(Multiple sclerosis), 학습 장애, 기억력 손상 등이 있다.As used herein, the term "degenerative cranial nerve disease" refers to a disease in which degenerative changes appear in nerve cells of the central nervous system and cause various symptoms, and cognitive function, learning or memory are impaired, or accompanied by a neuroinflammatory reaction. including cranial nerve disease. Representative degenerative cranial nerve diseases according to the present invention include dementia, Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis (ALS), Creutzfeldt-Jakob disease -Jakob disease (CJD), stroke, multiple sclerosis, learning disabilities, memory impairment, etc.

상기 퇴행성 뇌신경 질환은 뇌 조직 중에 베타아밀로이드(β-amyloid; Aβ)가 포함된 아밀로이드 플라크(plaque) 및 신경섬유 엉킴의 형성과 함께 신경전달물질인 아세틸콜린(acetylcholine)의 양이 감소됨으로써 기억력 및 인지기능의 감퇴증상이 나타나는 것으로 보고되고 있다. 이에 따라, 아세틸콜린에스테라제(AChE)와 같은 아세틸콜린 분해제에 대한 저해를 유도하여 알츠하이머병 등의 퇴행성 뇌신경 질환을 치료하고자 하는 연구가 시도되고 있다.The degenerative cranial nerve disease causes memory and cognition by reducing the amount of acetylcholine, a neurotransmitter, along with the formation of amyloid plaques and nerve fiber tangles containing beta-amyloid (Aβ) in brain tissue. Functional decline has been reported. Accordingly, studies to treat degenerative cranial nerve diseases such as Alzheimer's disease by inducing inhibition of acetylcholine degraders such as acetylcholinesterase (AChE) have been attempted.

또한, 퇴행성 뇌신경 질환은 도파민, 세로토닌, 아드레날린, 노르아드레날린 등 신경전달물질과 비생체성분성 아민 등을 산화적 탈아민화 반응을 시키는 효소인 'MAO-B' 활성의 증가로 인한 과산화수소에 의한 산화성 스트레스(oxidative stress)에 의해 유발되고, MAO-B 저해제는 산소 라디칼 형성을 감소시키고 뇌 안에 유용한 모노아민의 양을 증가시킬 수 있다. 뇌신경 질환 및 뇌 손상에서 MAO-B는 반응성 성상교세포 내에서 푸트레신 대사 과정을 촉진하여 과량의 GABA가 생산되도록 한다. 따라서 MAO-B 저해제는 성상교세포에 의한 GABA 생성 억제제로 작용하여 신경 신호 전달과 뇌 기능을 회복시키는 효과를 갖는다.In addition, degenerative cranial nerve diseases are caused by oxidative stress caused by hydrogen peroxide due to the increase in the activity of 'MAO-B', an enzyme that oxidatively deaminates neurotransmitters such as dopamine, serotonin, adrenaline, and noradrenaline, and non-biocomponent amines. induced by oxidative stress, MAO-B inhibitors can reduce the formation of oxygen radicals and increase the amount of available monoamines in the brain. In cranial nerve disease and brain injury, MAO-B promotes putrescine metabolism in reactive astrocytes, leading to excessive production of GABA. Therefore, MAO-B inhibitors act as inhibitors of GABA production by astrocytes and have the effect of restoring nerve signal transmission and brain function.

본 발명에 따른 약학 조성물은 MAO-B(monoamine oxidase-B) 및 AChE(acetylcholinesterase)를 저해하는 활성이 우수하다. 따라서, 본 발명의 약학 조성물은 MAO-B 및 AChE를 저해하는 활성이 우수하므로, 퇴행성 뇌신경 질환의 치료, 예방 및 경감을 목적으로 사용될 수 있다.The pharmaceutical composition according to the present invention has excellent activity in inhibiting monoamine oxidase-B (MAO-B) and acetylcholinesterase (AChE). Therefore, since the pharmaceutical composition of the present invention has excellent MAO-B and AChE inhibitory activity, it can be used for the purpose of treatment, prevention, and alleviation of degenerative cranial nerve diseases.

본 발명에 있어서, 상기 MAO-B의 저해는 MAO-B 활성의 저해 또는 MAO-B의 생합성의 저해일 수 있다. MAO-B 활성의 저해는 가역적 저해일 수 있으며, MAO-A보다 MAO-B에 대해 수배 이상, 예를 들어 10배 이상의 선택성을 갖는 것일 수 있다. 바람직하게는, 상기 화학식 1 내지 5로 표시되는 칼콘 유도체 화합물, 이의 약학적으로 허용 가능한 염, 이의 수화물, 또는 이의 입체 이성질체가 MAO-B 활성을 가역적, 선택적 및 경쟁적으로 저해할 수 있다.In the present invention, the inhibition of MAO-B may be inhibition of MAO-B activity or inhibition of MAO-B biosynthesis. The inhibition of MAO-B activity may be a reversible inhibition, and may have a selectivity of several times or more, for example, 10 times or more, for MAO-B than for MAO-A. Preferably, the chalcone derivative compound represented by Chemical Formulas 1 to 5, a pharmaceutically acceptable salt thereof, a hydrate thereof, or a stereoisomer thereof can inhibit MAO-B activity reversibly, selectively and competitively.

하나의 구체적 실시에서, 천연 또는 합성 칼콘 유도체 화합물 12종의 MAO-B 및 AChE에 대한 저해 활성을 평가해 본 결과, 본 발명에 따른 화학식 1 내지 5의 칼콘 유도체 화합물이 MAO-A에 대한 현저한 저해 활성은 나타내지 않으면서 MAO-B에 대해서는 선택적으로 우수한 저해 효능을 보일 뿐 아니라 AChE에 대해서도 우수한 저해 효능을 보임을 확인하였다. 특히, 본 발명에 따른 화학식 1 내지 5의 칼콘 유도체 화합물, 바람직하게는 화학식 2의 칼콘 유도체 화합물은 알츠하이머 질환 등의 퇴행성 뇌신경 질환의 치료 가능성이 있는 MAO-B/AChE 이중 표적화 억제제로 유용함을 확인하였다.In one specific embodiment, as a result of evaluating the inhibitory activity of 12 natural or synthetic chalcone derivative compounds against MAO-B and AChE, the chalcone derivative compounds of formulas 1 to 5 according to the present invention showed significant inhibition against MAO-A. It was confirmed that, while showing no activity, it showed excellent inhibitory efficacy selectively against MAO-B as well as excellent inhibitory efficacy against AChE. In particular, it was confirmed that the chalcone derivative compounds of Chemical Formulas 1 to 5, preferably the chalcone derivative compounds of Chemical Formula 2 according to the present invention are useful as MAO-B/AChE dual targeting inhibitors capable of treating degenerative cranial nerve diseases such as Alzheimer's disease. .

이와 같이, 본 발명에 따른 화학식 1 내지 5의 칼콘 유도체 화합물은 선택적인 MAO-B의 활성 억제제로서 MAO-B 효소에 대한 높은 억제 활성을 갖고 있을 뿐 아니라 AChE에 대해서도 높은 억제 활성을 갖고 있어, 퇴행성 뇌신경 질환의 치료용 조성물로 사용할 수 있음을 입증하였다.As described above, the chalcone derivative compounds of Chemical Formulas 1 to 5 according to the present invention are selective MAO-B activity inhibitors and have high inhibitory activity against the MAO-B enzyme as well as high inhibitory activity against AChE, thereby preventing degenerative It was proved that it can be used as a composition for treating cranial nerve diseases.

상기 약학 조성물은 상기 화학식 1 내지 5로 표시되는 칼콘 유도체 화합물 중 1종 이상의 화합물, 이의 약학적으로 허용 가능한 염, 이의 수화물 및 이의 입체 이성질체로부터 선택된 화합물을 전체 조성물의 중량을 기준으로 0.001 내지 50 중량%, 바람직하게는 0.001 내지 20 중량%, 보다 바람직하게는 0.001 내지 10 중량%의 함량으로 포함될 수 있다.The pharmaceutical composition contains 0.001 to 50% by weight of at least one compound selected from among chalcone derivative compounds represented by Formulas 1 to 5, pharmaceutically acceptable salts thereof, hydrates thereof, and stereoisomers thereof, based on the weight of the total composition. %, preferably 0.001 to 20% by weight, more preferably 0.001 to 10% by weight.

상기 약학 조성물은 이에 제한되지 않으나 마우스, 토끼, 랫트, 기니피그, 또는 햄스터와 같은 실험 동물 또는 인간을 포함한 영장류 등에 적용될 수 있으며, 바람직하게는 인간을 포함한 영장류, 더욱 바람직하게는 인간에 적용될 수 있다.The pharmaceutical composition may be applied to lab animals such as, but not limited to, mice, rabbits, rats, guinea pigs, or hamsters, or primates including humans, preferably to primates including humans, and more preferably to humans.

본 명세서에서, '치료'는 증상의 경감 또는 개선, 질환의 범위 감소, 질환 진행의 지연 또는 완화, 질환 상태의 개선, 경감 또는 안정화, 부분적 또는 완전한 회복, 생존의 연장 기타 다른 이로운 치료 결과 등을 모두 포함하는 의미로 사용될 수 있다.As used herein, 'treatment' refers to alleviation or improvement of symptoms, reduction of extent of disease, delay or alleviation of disease progression, improvement of disease state, alleviation or stabilization, partial or complete recovery, prolongation of survival, and other beneficial treatment results. It can be used in an all-inclusive sense.

본 발명의 약학 조성물의 사용양태 및 사용방법에 따라 유효성분인 상기 화학식 1 내지 5의 칼콘 유도체 화합물, 이의 약학적으로 허용 가능한 염, 이의 수화물, 및 이의 입체 이성질체로부터 선택된 화합물의 함량은 당업자의 선택에 따라 적절히 조절하여 사용될 수 있다.Depending on the usage mode and method of the pharmaceutical composition of the present invention, the content of the active ingredient, the chalcone derivative compound represented by Formulas 1 to 5, a pharmaceutically acceptable salt thereof, a hydrate thereof, and a stereoisomer thereof, may be determined by a person skilled in the art. It can be used by adjusting it appropriately according to.

상기 화학식 1 내지 5의 칼콘 유도체 화합물, 이의 약학적으로 허용 가능한 염, 이의 수화물 및 이의 입체 이성질체로부터 선택된 화합물은 상기 약학 조성물 내에 단독으로 포함될 수 있으며, 또는 그 외 약리학적으로 허용 가능한 담체, 부형제, 희석제 또는 부성분과 함께 포함될 수도 있다.A compound selected from the chalcone derivative compounds of Formulas 1 to 5, pharmaceutically acceptable salts thereof, hydrates thereof, and stereoisomers thereof may be included alone in the pharmaceutical composition, or other pharmacologically acceptable carriers, excipients, It may also be included with diluents or auxiliary ingredients.

상기 약학적으로 허용되는 담체, 부형제 또는 희석제의 예로는, 락토즈, 덱스트로즈, 수크로즈, 솔비톨, 만니톨, 자일리톨, 에리스리톨, 말티톨, 전분, 아카시아 고무, 알지네이트, 젤라틴, 칼슘 포스페이트, 칼슘 실리케이트, 셀룰로즈, 메틸 셀룰로즈, 미정질 셀룰로즈, 폴리비닐 피롤리돈, 물, 메틸하이드록시벤조에이트, 프로필하이드록시벤조에이트, 탈크, 마그네슘 스테아레이트 및 광물유, 프로필하이드록시벤조에이트, 탈크, 마그네슘 스테아레이트 및 광물유, 덱스트린, 칼슘카보네이트, 프로필렌글리콜, 리퀴드 파라핀 및 생리식염수로 이루어진 군에서 선택된 1종 이상을 들 수 있으나, 이에 한정되는 것은 아니며 통상의 담체, 부형제 또는 희석제 모두 사용 가능하다. 또한, 상기 약학 조성물은 통상의 충진제, 증량제, 결합제, 붕해제, 항응집제, 윤활제, 습윤제, pH 조절제, 영양제, 비타민, 전해질, 알긴산 및 그의 염, 펙트산 및 그의 염, 보호성 콜로라이드, 글리세린, 향료, 유화제 또는 방부제 등을 추가로 포함할 수 있다.Examples of the pharmaceutically acceptable carrier, excipient or diluent include lactose, dextrose, sucrose, sorbitol, mannitol, xylitol, erythritol, maltitol, starch, gum acacia, alginate, gelatin, calcium phosphate, calcium silicate, Cellulose, methyl cellulose, microcrystalline cellulose, polyvinyl pyrrolidone, water, methylhydroxybenzoate, propylhydroxybenzoate, talc, magnesium stearate and mineral oil, propylhydroxybenzoate, talc, magnesium stearate and mineral oil , dextrin, calcium carbonate, propylene glycol, liquid paraffin, and at least one selected from the group consisting of physiological saline, but is not limited thereto, and all conventional carriers, excipients, or diluents may be used. In addition, the pharmaceutical composition may include conventional fillers, extenders, binders, disintegrants, anti-coagulants, lubricants, wetting agents, pH adjusters, nutrients, vitamins, electrolytes, alginic acid and its salts, pectic acid and its salts, protective chloride, glycerin , A flavoring agent, an emulsifier or a preservative may be further included.

본 발명에 따른 상기 화학식 1 내지 5의 칼콘 유도체 화합물, 이의 약학적으로 허용 가능한 염, 이의 수화물 및 이의 입체 이성질체로부터 선택된 화합물은, 퇴행성 뇌신경 질환을 치료하기 위한 다른 MAO-B 억제제 또는 AChE 억제제와 함께 병용 투여함으로써 MAO-B 선택적 억제제 및 AChE 억제제의 치료 효과를 강화시킬 수 있다.The compounds selected from the chalcone derivative compounds of Chemical Formulas 1 to 5, pharmaceutically acceptable salts thereof, hydrates thereof and stereoisomers thereof according to the present invention, together with other MAO-B inhibitors or AChE inhibitors for treating degenerative cranial nerve diseases The therapeutic effect of an MAO-B selective inhibitor and an AChE inhibitor can be enhanced by co-administration.

구체적으로, 상기 약학 조성물은 상기 유효성분 이외에도 퇴행성 뇌신경 질환의 치료 또는 예방에 유효한 것으로 공지된 1종 이상의 다른 MAO-B 억제제 또는 AChE 억제제를 더욱 포함하여 동시 또는 이시에 적용되는 병용 요법으로 사용할 수 있다. 상기 병용 요법에 적용될 수 있는 다른 MAO-B 억제제는 예를 들어, 셀레길린(selegiline), 라사길린(rasagiline), 사피나마이드(safinamide), 라자베마이드(lazabemide), 파르길린(pargyline)으로 이루어진 군으로부터 선택되는 1종 이상의 화합물을 포함할 수 있으나, 이에 한정되지는 않는다. 또한, 다른 AChE 억제제는 예를 들어, 타크린(tacrine), 도네페질(donepezil), 갈란타민(galantamine), 리바스티그민(rivastigmine)으로 이루어진 군으로부터 선택되는 1종 이상의 화합물을 포함할 수 있으나, 이에 한정되지는 않는다.Specifically, the pharmaceutical composition further includes one or more other MAO-B inhibitors or AChE inhibitors known to be effective for the treatment or prevention of degenerative cranial nerve diseases in addition to the active ingredient, and can be used as a combination therapy applied simultaneously or at different times. . Other MAO-B inhibitors that can be applied in the combination therapy include, for example, the group consisting of selegiline, rasagiline, safinamide, lazabemide, and pargyline. It may include one or more compounds selected from, but is not limited thereto. In addition, other AChE inhibitors may include, for example, at least one compound selected from the group consisting of tacrine, donepezil, galantamine, and rivastigmine. It is not limited to this.

상기 약학 조성물의 투여방법은 경구 또는 비경구 모두 가능하며, 일 예로는 경구, 경피, 피하, 정맥, 근육 또는 뇌혈관내(intracerebroventricular) 주사를 포함한 여러 경로를 통해 투여될 수 있다. 또한, 상기 조성물의 제형은 사용 방법에 따라 달라질 수 있으며, 포유동물에 투여된 후 활성 성분의 신속, 지속 또는 지연된 방출을 제공할 수 있도록 본 발명이 속하는 기술분야에 잘 알려진 방법을 사용하여 제형화될 수 있다. 일반적으로는, 경구 투여를 위한 고형제제에는 정제(TABLETS), 알약, 연질 또는 경질 캅셀제(CAPSULES), 환제(PILLS), 산제(POWDERS) 및 과립제(GRANULES) 등이 포함되고, 이러한 제제는 하나 이상의 부형제 예를 들면, 전분, 칼슘카보네이트(calcium carbonate), 수크로스(sucrose) 또는 락토오스(lactose), 젤라틴 등을 섞어 조제될 수 있다. 또한, 단순한 부형제 이외에 마그네슘 스테아레이트, 탈크 같은 윤활제들도 사용될 수 있다. 경구를 위한 액상 제제로는 현탁제(SUSPENSIONS), 내용액제, 유제(EMULSIONS) 및 시럽제(SYRUPS) 등이 해당되는데, 흔히 사용되는 단순희석제인 물, 리퀴드 파라핀 이외에 여러 가지 부형제 예를 들면, 습윤제, 감미제, 방향제, 보존제 등이 포함될 수 있다. 비경구투여를 위한 형태는 크림(CREAM), 로션제(LOTIONS), 연고제(ONITMENTS), 경고제(PLASTERS), 액제(LIQUIDS AND SOLUTIONS), 에어로솔제(AEROSOLS), 유동엑스제(FRUIDEXTRACTS), 엘릭서(ELIXIR), 침제(INFUSIONS), 향낭(SACHET), 패취제(PATCH) 또는 주사제(INJECTIONS) 등의 형태일 수 있으며, 주사용 제형이 될 경우 바람직하게는 등장성 수용액 또는 현탁액의 형태가 될 수 있다.The method of administering the pharmaceutical composition can be either oral or parenteral, and for example, it can be administered through various routes including oral, transdermal, subcutaneous, intravenous, intramuscular or intracerebroventricular injection. In addition, the formulation of the composition may vary depending on the method of use, and is formulated using a method well known in the art to which the present invention pertains so as to provide rapid, sustained or delayed release of the active ingredient after administration to a mammal. It can be. In general, solid preparations for oral administration include tablets (TABLETS), pills, soft or hard capsules (CAPSULES), pills (PILLS), powders (POWDERS) and granules (GRANULES), etc., and these preparations include one or more Excipients, for example, may be prepared by mixing starch, calcium carbonate, sucrose or lactose, gelatin, and the like. In addition to simple excipients, lubricants such as magnesium stearate and talc may also be used. Liquid preparations for oral use include suspensions, solutions for oral use, emulsions, and syrups. In addition to water and liquid paraffin, which are commonly used simple diluents, various excipients such as wetting agents, Sweetening agents, flavoring agents, preservatives, and the like may be included. Forms for parenteral administration include creams, lotions, ONITMENTS, PLASTERS, LIQUIDS AND SOLUTIONS, aerosols, FRUIDEXTRACTS, and elixirs. It may be in the form of (ELIXIR), INFUSIONS, SACHET, PATCH, or INJECTIONS, and may be in the form of an isotonic aqueous solution or suspension preferably in the case of an injectable formulation. .

상기 약학 조성물은 멸균제, 방부제, 안정화제, 수화제 또는 유화 촉진제, 삼투압 조절을 위한 염 및/또는 완충제 등의 보조제와, 기타 치료학적으로 유용한 물질을 더 함유할 수 있으며, 통상적인 혼합, 과립화 또는 코팅방법에 따라 제제화할 수 있으며, 이외에도 당해 기술 분야의 공지된 적절한 방법을 사용하여 제형화할 수 있다.The pharmaceutical composition may further contain adjuvants such as sterilizers, preservatives, stabilizers, hydration agents or emulsion accelerators, salts and/or buffers for osmotic pressure control, and other therapeutically useful substances, and conventional mixing and granulation Alternatively, it may be formulated according to a coating method, and in addition, it may be formulated using an appropriate method known in the art.

또한, 상기 약학 조성물의 투여량은 투여방법, 복용자의 연령, 성별, 환자의 중증도, 상태, 체내에서 활성 성분의 흡수도, 불활성율 및 병용되는 약물을 고려하여 결정할 수 있으며, 1회 또는 수회로 나누어 투여할 수 있다. In addition, the dosage of the pharmaceutical composition can be determined in consideration of the administration method, the age and sex of the user, the severity of the patient, the condition, the absorption of the active ingredient in the body, the inactivity rate, and the drugs used in combination, once or several times. It can be administered in divided doses.

다른 하나의 양태로서, 본 발명은 상기 화학식 1 내지 5로 표시되는 화합물 중 1종 이상의 칼콘 유도체 화합물, 이의 약학적으로 허용 가능한 염, 이의 수화물 및 이의 입체 이성질체로부터 선택된 화합물을 치료학적 유효량으로 투여하는 단계를 포함하는, 퇴행성 뇌신경 질환의 예방 또는 치료 방법을 제공한다.In another aspect, the present invention is directed to administering a therapeutically effective amount of a compound selected from at least one chalcone derivative compound among the compounds represented by Formulas 1 to 5, pharmaceutically acceptable salts thereof, hydrates thereof, and stereoisomers thereof. It provides a method for preventing or treating degenerative cranial nerve disease, comprising the step.

바람직하게는 상기 치료방법은 상기 투여 단계 이전에 상기 퇴행성 뇌신경 질환의 예방 또는 치료를 필요로 하는 환자를 확인하는 단계를 추가로 포함할 수 있다. Preferably, the treatment method may further include identifying a patient in need of prevention or treatment of the degenerative cranial nerve disease prior to the administration step.

본 발명의 "치료학적 유효량"은 퇴행성 뇌신경 질환의 예방 또는 치료에 효과적인, 포유류에 대한 유효 성분의 양을 의미하며, 상기 치료학적 유효량은 질환의 종류, 질환의 중증도, 조성물에 함유된 유효 성분 및 다른 성분의 종류 및 함량, 제형의 종류 및 환자의 연령, 체중, 일반 건강 상태, 성별 및 식이, 투여 시간, 투여 경로 및 조성물의 혈중 청소율, 치료 기간, 동시 사용되는 약물을 비롯한 다양한 인자에 따라 조절될 수 있다.The "therapeutically effective amount" of the present invention means an amount of an active ingredient effective for preventing or treating a degenerative cranial nerve disease, for mammals, and the therapeutically effective amount is the type of disease, the severity of the disease, the active ingredient contained in the composition, and Adjusted according to various factors including the type and content of other components, type of dosage form and patient's age, weight, general health condition, gender and diet, administration time, route of administration and blood clearance of the composition, duration of treatment, drugs used concurrently It can be.

본 발명에 따른 상기 화학식 1 내지 5로 표시되는 화합물 중 1종 이상의 칼콘 유도체 화합물, 이의 약학적으로 허용 가능한 염, 이의 수화물 및 이의 입체 이성질체로부터 선택된 화합물은 AChE를 저해할 뿐 아니라 MAO-B를 가역적으로, 선택적으로 그리고 경쟁적으로 저해함으로써 알츠하이머병 등의 퇴행성 뇌신경 질환을 효율적이고 부작용이 적게 예방 또는 치료할 수 있다.According to the present invention, a compound selected from at least one chalcone derivative compound, a pharmaceutically acceptable salt thereof, a hydrate thereof, and a stereoisomer thereof among the compounds represented by Formulas 1 to 5 not only inhibits AChE but also reversibly inhibits MAO-B. As a result, by inhibiting selectively and competitively, degenerative cranial nerve diseases such as Alzheimer's disease can be prevented or treated efficiently and with few side effects.

또 다른 하나의 양태로서, 본 발명은 상기 화학식 1 내지 5로 표시되는 화합물 중 1종 이상의 칼콘 유도체 화합물, 이의 약학적으로 허용 가능한 염, 이의 수화물 및 이의 입체 이성질체로부터 선택된 화합물을 을 포함하는 퇴행성 뇌신경 질환의 예방 또는 개선용 식품 조성물을 제공한다. In another aspect, the present invention relates to a degenerative cranial nerve comprising a compound selected from at least one chalcone derivative compound among the compounds represented by Chemical Formulas 1 to 5, pharmaceutically acceptable salts thereof, hydrates thereof, and stereoisomers thereof. It provides a food composition for preventing or improving diseases.

본 발명의 식품 조성물은 통상적인 의미의 식품을 모두 포함할 수 있으며, 기능성 식품, 건강기능식품 등 당업계에 알려진 용어와 혼용 가능하다.The food composition of the present invention may include all food in a conventional sense, and may be used interchangeably with terms known in the art, such as functional food and health functional food.

상기 건강기능식품은 식품의 생체 조절 기능을 강조한 식품으로 물리적, 생화학적, 생물공학적인 방법을 이용하여 특정 목적에 작용 및 발현하도록 부가가치를 부여한 식품이다. 이러한 건강기능식품의 성분은 생체 방어와 신체 리듬의 조절, 질환의 방지 및 회복에 관계하는 신체 조절 기능을 생체에 대하여 충분히 발휘하도록 설계하여 가공하게 되며, 식품으로 허용 가능한 식품 보조 첨가제, 감미료 또는 기능성 원료를 함유할 수 있다.The health functional food is a food that emphasizes the bioregulatory function of food, and is a food that has added value to act and express for a specific purpose using physical, biochemical, and bioengineering methods. The ingredients of these health functional foods are designed and processed to sufficiently exert the body's control functions related to body defense and regulation of body rhythm, prevention and recovery of diseases, and are food additives, sweeteners, or functional foods acceptable as food. may contain raw materials.

본 발명의 화학식 1 내지 5의 칼콘 유도체 화합물, 이의 약학적으로 허용 가능한 염, 이의 수화물 및 이의 입체 이성질체로부터 선택된 화합물을 건강기능식품(또는 건강기능 음료 첨가물)으로 사용할 경우, 상기 화합물을 그대로 첨가하거나 다른 식품 또는 식품 성분과 함께 사용하고, 통상적인 방법에 따라 적절하게 사용할 수 있다. 상기 화합물의 혼합량은 그의 사용 목적(예방, 건강 또는 개선, 치료적 처치)에 따라 적합하게 결정될 수 있다.When a compound selected from the chalcone derivative compounds of Chemical Formulas 1 to 5, pharmaceutically acceptable salts thereof, hydrates thereof, and stereoisomers thereof is used as a health functional food (or health functional beverage additive), the compound is added as it is or It can be used together with other foods or food ingredients, and can be used appropriately according to conventional methods. The mixing amount of the compound may be appropriately determined depending on the purpose of its use (prevention, health or improvement, therapeutic treatment).

상기 건강기능식품은 여러 가지 영양제, 비타민, 광물(전해질), 합성 풍미제 및 천연 풍미제 등의 풍미제, 착색제 및 증진제 (치즈, 초콜릿 등), 펙트산 및 그의 염, 유기산, 보호성 콜로이드 점증제, pH 조절제, 안정화제, 보존제, 글리세린, 알코올, 탄산음료에 사용되는 탄산화제 등을 함유할 수 있다. 또한, 본 발명의 건강기능식품은 과일 및 야채 음료의 제조를 위한 과육을 함유할 수 있다. 이러한 성분은 단독으로 또는 조합으로 사용될 수 있으며, 이러한 첨가제의 비율은 조성물 전체 중량당 0.001 내지 50 중량부의 범위에서 선택되는 것이 일반적이다.The health functional food is various nutrients, vitamins, minerals (electrolytes), flavors such as synthetic flavors and natural flavors, colorants and enhancers (cheese, chocolate, etc.), pectic acid and its salts, organic acids, protective colloidal thickeners agents, pH adjusting agents, stabilizers, preservatives, glycerin, alcohol, carbonating agents used in carbonated beverages, and the like. In addition, the health functional food of the present invention may contain fruit flesh for preparing fruit and vegetable beverages. These components may be used alone or in combination, and the proportion of these additives is generally selected from the range of 0.001 to 50 parts by weight per total weight of the composition.

상기 건강기능식품의 종류에는 특별한 제한은 없다. 상기 화합물을 첨가할 수 있는 식품은 소세지, 육류, 빵, 초콜릿류, 스넥류, 캔디류, 과자류, 라면, 피자, 기타 면류, 껌류, 아이스크림류를 포함한 낙농제품, 각종 스프, 음료수, 차, 드링크제, 알코올 음료 및 비타민 복합제 등이 있다. 음료수로 제형화할 경우에 신규한 유산균 이외에 첨가되는 액체 성분으로는 이에 한정되지는 않으나, 통상의 음료와 같이 여러 가지 향미제 또는 천연 탄수화물 등을 추가 성분으로서 함유할 수 있다. 상술한 천연 탄수화물은 모노사카라이드(예, 포도당, 과당 등), 디사카라이드(예, 말토오스, 수크로오스 등) 및 폴리사카라이드(예, 덱스트린, 시클로덱스트린 등과 같은 통상적인 당), 및 자일리톨, 소르비톨, 에리스리톨 등의 당 알코올일 수 있다.There is no particular limitation on the type of health functional food. Foods to which the compound may be added include sausages, meats, breads, chocolates, snacks, candies, confectionery, ramen, pizza, other noodles, gums, dairy products including ice creams, various soups, beverages, tea, drinks, alcohol Beverages and vitamin complexes. When formulated into a beverage, the liquid component added in addition to the novel lactic acid bacteria is not limited thereto, but may contain various flavoring agents or natural carbohydrates as additional components, as in conventional beverages. The aforementioned natural carbohydrates include monosaccharides (eg, glucose, fructose, etc.), disaccharides (eg, maltose, sucrose, etc.) and polysaccharides (eg, common sugars such as dextrins, cyclodextrins, etc.), and xylitol, sorbitol. , sugar alcohols such as erythritol.

상기 식품 조성물은 상기 화학식 1 내지 5로 표시되는 칼콘 유도체 화합물 중 1종 이상의 화합물, 이의 약학적으로 허용 가능한 염, 이의 수화물 및 이의 입체 이성질체로부터 선택된 화합물을 전체 조성물의 중량을 기준으로 0.001 내지 50 중량%, 바람직하게는 0.001 내지 20 중량%, 보다 바람직하게는 0.001 내지 10 중량%의 함량으로 포함될 수 있다.The food composition contains 0.001 to 50% by weight of at least one compound selected from among the chalcone derivative compounds represented by Formulas 1 to 5, pharmaceutically acceptable salts thereof, hydrates thereof, and stereoisomers thereof, based on the weight of the total composition. %, preferably 0.001 to 20% by weight, more preferably 0.001 to 10% by weight.

본 발명에 따른 화학식 1 내지 5로 표시되는 칼콘 유도체 화합물은, 뇌에서의 도파민 물질대사에 중요한 역할을 할 뿐만 아니라 뇌신경세포 손상을 억제시킨다고 알려져 있는 MAO-B를 저해하는 효과가 우수할 뿐 아니라 신경전달물질인 아세틸콜린(acetylcholine) 분해를 저해하는 효과, 즉 AChE의 활성 저해 효과 또한 우수하므로, 퇴행성 뇌신경 질환의 치료, 예방 및 경감을 목적으로 유용하게 사용될 수 있다.The chalcone derivative compounds represented by Chemical Formulas 1 to 5 according to the present invention not only play an important role in dopamine metabolism in the brain, but also have excellent inhibitory effects on MAO-B, which is known to inhibit brain nerve cell damage, and Since the effect of inhibiting the degradation of acetylcholine, a transmitter, that is, the activity of AChE is also excellent, it can be usefully used for the purpose of treatment, prevention, and alleviation of degenerative cranial nerve diseases.

도 1은 본 발명의 일 실시예에 따른 화합물 2에 의한 MAO-B의 투석 후 회복 정도를 나타낸 그림이다. 라자베마이드 및 파르길린을 각각 기준 가역적 및 비가역적 MAO-B 억제제로서 사용하였다. 사용된 억제제의 농도는 화합물 2는 0.060 μM; 라자베마이드는 0.065 μM; 및 파길린은 0.20 μM이다. 결과는 중복 실험의 평균이다.
도 2는 본 발명의 일 실시예에 따른 화합물 2에 의한 MAO-B 억제의 라인위버-버크 플롯(A) 및 화합물 2에 대한 라인위버-버크 플롯의 기울기의 2차 플롯(B)을 나타낸 그림이다. 기질 농도는 0.03 내지 0.6 mM의 범위였다. 3개의 억제제 농도, 즉 ~ 0.5, 1.0 및 2.0 배 IC50 값에서 실험을 수행하였다. 초기 속도는 분당 흡광도의 증가로 나타내었다.
도 3 및 4는 본 발명의 일 실시예에 따른 MAO-A에 대한 화합물 1 내지 12의 도킹 시뮬레이션 결과를 나타낸 그림이다. 여기서, A는 화합물 1(2,4'-dichloro-4-dimethylaminochalcone); B는 화합물 2(4-dimethylaminochalcone); C는 화합물 3(4-chlorochalcone); D는 화합물 4(4-nitrochalcone); E는 화합물 5(4'-chloro-4-dimethylaminochalcone); F는 화합물 6(4-carboxymethylchalcone); G는 화합물 7(sappanchalcone); H는 화합물 8(3-deoxysappanchalcone); I는 화합물 9(broussochalcone A); J는 화합물 10(4-hydroxyderricin); K는 화합물 11(xanthoangelol); 및 L은 화합물 12(2,2'-dihydroxy-4',6'-dimethoxychalcone)이다.
도 5 및 6은 본 발명의 일 실시예에 따른 MAO-B에 대한 화합물 1 내지 12의 도킹 시뮬레이션 결과를 나타낸 그림이다. 여기서, A는 화합물 1(2,4'-dichloro-4-dimethylaminochalcone); B는 화합물 2(4-dimethylaminochalcone); C는 화합물 3(4-chlorochalcone); D는 화합물 4(4-nitrochalcone); E는 화합물 5(4'-chloro-4-dimethylaminochalcone); F는 화합물 6(4-carboxymethylchalcone); G는 화합물 7(sappanchalcone); H는 화합물 8(3-deoxysappanchalcone); I는 화합물 9(broussochalcone A); J는 화합물 10(4-hydroxyderricin); K는 화합물 11(xanthoangelol); 및 L은 화합물 12(2,2'-dihydroxy-4',6'-dimethoxychalcone)이다.
도 7 및 8은 본 발명의 일 실시예에 따른 AchE에 대한 화합물 1 내지 12의 도킹 시뮬레이션 결과를 나타낸 그림이다. 여기서, A는 화합물 1(2,4'-dichloro-4-dimethylaminochalcone); B는 화합물 2(4-dimethylaminochalcone); C는 화합물 3(4-chlorochalcone); D는 화합물 4(4-nitrochalcone); E는 화합물 5(4'-chloro-4-dimethylaminochalcone); F는 화합물 6(4-carboxymethylchalcone); G는 화합물 7(sappanchalcone); H는 화합물 8(3-deoxysappanchalcone); I는 화합물 9(broussochalcone A); J는 화합물 10(4-hydroxyderricin); K는 화합물 11(xanthoangelol); 및 L은 화합물 12(2,2'-dihydroxy-4',6'-dimethoxychalcone)이다.
1 is a diagram showing the degree of recovery after dialysis of MAO-B by compound 2 according to an embodiment of the present invention. Razabemide and pargyline were used as reference reversible and irreversible MAO-B inhibitors, respectively. The concentrations of inhibitors used were 0.060 μM for compound 2; Razabemide at 0.065 μM; and pargylin is 0.20 μM. Results are the average of duplicate experiments.
2 is a diagram showing a Lineweaver-Burk plot of MAO-B inhibition by compound 2 according to an embodiment of the present invention (A) and a second-order plot of the slope of the Lineweaver-Burk plot for compound 2 (B) am. Substrate concentrations ranged from 0.03 to 0.6 mM. Experiments were performed at three inhibitor concentrations, ˜0.5, 1.0 and 2.0 fold IC 50 values. The initial rate was expressed as an increase in absorbance per minute.
3 and 4 are drawings showing docking simulation results of compounds 1 to 12 for MAO-A according to an embodiment of the present invention. Here, A is compound 1 (2,4'-dichloro-4-dimethylaminochalcone); B is compound 2 (4-dimethylaminochalcone); C is compound 3 (4-chlorochalcone); D is compound 4 (4-nitrochalcone); E is compound 5 (4'-chloro-4-dimethylaminochalcone); F is compound 6 (4-carboxymethylchalcone); G is compound 7 (sappanchalcone); H is compound 8 (3-deoxysappanchalcone); I is compound 9 (broussochalcone A); J is compound 10 (4-hydroxyderricin); K is compound 11 (xanthoangelol); and L is compound 12 (2,2'-dihydroxy-4',6'-dimethoxychalcone).
5 and 6 are drawings showing docking simulation results of compounds 1 to 12 for MAO-B according to an embodiment of the present invention. Here, A is compound 1 (2,4'-dichloro-4-dimethylaminochalcone); B is compound 2 (4-dimethylaminochalcone); C is compound 3 (4-chlorochalcone); D is compound 4 (4-nitrochalcone); E is compound 5 (4'-chloro-4-dimethylaminochalcone); F is compound 6 (4-carboxymethylchalcone); G is compound 7 (sappanchalcone); H is compound 8 (3-deoxysappanchalcone); I is compound 9 (broussochalcone A); J is compound 10 (4-hydroxyderricin); K is compound 11 (xanthoangelol); and L is compound 12 (2,2'-dihydroxy-4',6'-dimethoxychalcone).
7 and 8 are drawings showing docking simulation results of compounds 1 to 12 for AchE according to an embodiment of the present invention. Here, A is compound 1 (2,4'-dichloro-4-dimethylaminochalcone); B is compound 2 (4-dimethylaminochalcone); C is compound 3 (4-chlorochalcone); D is compound 4 (4-nitrochalcone); E is compound 5 (4'-chloro-4-dimethylaminochalcone); F is compound 6 (4-carboxymethylchalcone); G is compound 7 (sappanchalcone); H is compound 8 (3-deoxysappanchalcone); I is compound 9 (broussochalcone A); J is compound 10 (4-hydroxyderricin); K is compound 11 (xanthoangelol); and L is compound 12 (2,2'-dihydroxy-4',6'-dimethoxychalcone).

이하, 본 발명의 이해를 돕기 위하여 실시예 등을 들어 상세하게 설명하기로 한다. 그러나, 본 발명에 따른 실시예들은 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 하기 실시예들에 한정되는 것으로 해석되어서는 안 된다. 본 발명의 실시예들은 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해 제공되는 것이다.Hereinafter, examples and the like will be described in detail to aid understanding of the present invention. However, the embodiments according to the present invention can be modified in many different forms, and the scope of the present invention should not be construed as being limited to the following examples. Embodiments of the present invention are provided to more completely explain the present invention to those skilled in the art.

1. 실험 재료 및 방법1. Experimental Materials and Methods

1-1. 실험 준비1-1. Experiment preparation

약용식물인 소목(Caesalpinia sappan L.), 꾸지나무(Broussonetia papyrifera L.), 명일엽(Angelica keiskei) 및 쇠비름(Portulaca oleracea L.)은 2010 년부터 2015 년 사이에 대한민국의 약초 시장에서 구입했다. 유기 용매, 즉 메탄올 (MeOH), n-헥산 (Hx), 에틸아세테이트 (EtOAc), 디클로로메탄 (CH2Cl2), 클로로포름 (CHCl3) 및 부탄올 (BuOH)은 덕산화학(주)에서 구입했다. 실리카 겔 60 (Merck 70-230 메쉬, ASTM, 독일), ODS-A (12 nm, S-150 m, YMC, 일본 도쿄) 및 Sephadex LH-20 겔 (GE Healthcare, Sweden)을 사용하여 컬럼 크로마토그래피를 수행하였다. NMR 스펙트럼은 1H에 대한 500 MHz 및 13C에 대한 125 MHz에서 JEOL ECX-500 분광계 (JEOL Ltd, Japan)로 기록하였다.The medicinal plants Caesalpinia sappan L., Broussonetia papyrifera L., Angelica keiskei , and purslane ( Portulaca oleracea L.) were purchased from the Korean herbal market between 2010 and 2015. Organic solvents, namely methanol (MeOH), n-hexane (Hx), ethyl acetate (EtOAc), dichloromethane (CH 2 Cl 2 ), chloroform (CHCl 3 ) and butanol (BuOH) were purchased from Duksan Chemical Co., Ltd. . Column chromatography using silica gel 60 (Merck 70-230 mesh, ASTM, Germany), ODS-A (12 nm, S-150 m, YMC, Tokyo, Japan) and Sephadex LH-20 gel (GE Healthcare, Sweden) was performed. NMR spectra were recorded on a JEOL ECX-500 spectrometer (JEOL Ltd, Japan) at 500 MHz for 1 H and 125 MHz for 13 C.

1-2. 활성 화합물의 추출 및 분리1-2. Extraction and isolation of active compounds

소목(Caesalpinia sappan L.)의 건조된 심재(15.0 kg)를 MeOH로 추출하고, 추출물(1.5 kg)을 H2O와 EtOAc로 분배하였다. EtOAc 가용성 분획(960.0 g)을 CHCl3/MeOH 구배(50: 1 내지 0: 1)를 사용하여 실리카겔 컬럼 크로마토그래피에 의해 14 분획 (CSE 1 내지 14)으로 분리 하였다. 분획 CSE 5를 45% MeOH를 용리액으로 10 ml/min의 유속에서 Watchers 120 ODS-AP 컬럼을 사용하는 분취용 HPLC (Spot II, France Armen, France)에 의해 정제하여 2개의 분획을 수득하였다 (CSE 5-1 ~ CSE 5-2). 분획 CSE 5-2에 Sephadex LH-20 컬럼 크로마토그래피 (MeOH: H2O = 1: 1)를 실시하여 사판칼콘(sappanchalcone) (7, 52.0 mg)을 얻었다. 분획 CSE 9에 MeOH/H2O 구배(30: 1 내지 1: 0)를 사용하여 ODS-A 컬럼 크로마토그래피를 수행하여 7 개의 분획을 수득하였다 (CSE 9-1 ~ CSE 9-7). 분획 CSE 9-1에 70 % MeOH를 용리액으로 5 ml/min의 유속에서 YMC 패킹된 ODS-A 컬럼을 사용하는 분취용 HPLC에 의해 정제하여 3-데옥시사판칼콘(3-deoxysappanchalcone) (8, 51.0 mg)을 수득하였다.Dried heartwood (15.0 kg) of Caesalpinia sappan L. was extracted with MeOH, and the extract (1.5 kg) was partitioned between H 2 O and EtOAc. The EtOAc soluble fraction (960.0 g) was separated into 14 fractions (CSE 1 to 14) by silica gel column chromatography using a CHCl 3 /MeOH gradient (50:1 to 0:1). Fraction CSE 5 was purified by preparative HPLC (Spot II, Armen, France) using a Watchers 120 ODS-AP column at a flow rate of 10 ml/min with 45% MeOH as eluent to give two fractions (CSE 5-1 ~ CSE 5-2). Fraction CSE 5-2 was subjected to Sephadex LH-20 column chromatography (MeOH: H 2 O = 1: 1) to obtain sappanchalcone (7, 52.0 mg). Fraction CSE 9 was subjected to ODS-A column chromatography using a MeOH/H 2 O gradient (30: 1 to 1: 0) to obtain 7 fractions (CSE 9-1 to CSE 9-7). Fraction CSE 9-1 was purified by preparative HPLC using a YMC packed ODS-A column with 70% MeOH as eluent at a flow rate of 5 ml/min to obtain 3-deoxysappanchalcone (8, 51.0 mg) was obtained.

꾸지나무(Broussonetia papyrifera L.)의 건조된 뿌리(5.0 kg)를 60

Figure 112020062178729-pat00009
에서 5시간 동안 MeOH로 추출하고, 그 획득한 추출물(230.0 g)을 2,000 ml의 H2O 및 동일한 부피의 EtOAc로 분배하였다. EtOAc 가용성 분획(85.0 g)을 Hx/EtOAc 구배 (100: 0 내지 80: 20)를 사용하여 실리카겔 컬럼 크로마토그래피에 의해 9개의 분획(BPE 1-9)으로 분리하였다. 분획 BPE 4를 100 % MeOH을 용리액으로 사용하는 세파덱스 LH-20 컬럼 크로마토그래피로 분리하여 브로우소칼콘 A (broussochalcone A) (9, 100.0 mg)를 수득하였다.Dried roots (5.0 kg) of Broussonetia papyrifera L.
Figure 112020062178729-pat00009
was extracted with MeOH for 5 h, and the obtained extract (230.0 g) was partitioned between 2,000 ml of H 2 O and an equal volume of EtOAc. The EtOAc soluble fraction (85.0 g) was separated into 9 fractions (BPE 1-9) by silica gel column chromatography using a Hx/EtOAc gradient (100:0 to 80:20). Fraction BPE 4 was separated by Sephadex LH-20 column chromatography using 100% MeOH as an eluent to obtain broussochalcone A (9, 100.0 mg).

명일엽(Angelica keiskei)의 건조된 잎(20 kg)을 MeOH로 24 시간 동안 실온에서 추출하였다. MeOH 추출물 (2.1 kg)을 5,000 ml의 H2O 및 동일한 부피의 Hx로 분배하였다. Hx 가용성 분획(160 g)에 CH2Cl2/MeOH 구배(99.9: 0.1 내지 80: 20)를 사용하여 실리카겔 컬럼 크로마토그래피하여 13개의 분획물(AKH 1-13)을 수득하였다. 분획 AKH 9 (3.65g)를 ODS-A 컬럼 크로마토그래피 (MeOH: H2O = 10: 1)하여 4-히드록시데리신(4-hydroxyderricin) (10, 300 mg)을 수득하였고, 분획 AKH 12 (8.68 g)를 Hx/EtOAc 구배 (98: 2 내지 50: 50)를 사용한 실리카 겔 컬럼 크로마토그래피하여 잔토안게롤(xanthoangelol) (11,1,500 mg)을 수득하였다. Angelica keiskei dried leaves (20 kg) were extracted with MeOH for 24 hours at room temperature. The MeOH extract (2.1 kg) was partitioned with 5,000 ml of H 2 O and an equal volume of Hx. The Hx soluble fraction (160 g) was subjected to silica gel column chromatography using a CH 2 Cl 2 /MeOH gradient (99.9: 0.1 to 80: 20) to give 13 fractions (AKH 1-13). Fraction AKH 9 (3.65 g) was subjected to ODS-A column chromatography (MeOH: H 2 O = 10: 1) to obtain 4-hydroxyderricin (10, 300 mg), and fraction AKH 12 (8.68 g) was subjected to silica gel column chromatography using a Hx/EtOAc gradient (98:2 to 50:50) to give xanthoangelol (11,1,500 mg).

건조된 쇠비름(Portulaca oleracea L.) (9.67 kg)을 실온에서 24 시간 동안 CH2Cl2로 추출하고, 그 획득한 추출물(1.2 kg)을 3,000 ml의 85% 수성 MeOH과 동일한 부피의 Hx로 분배하였다. 85% MeOH 가용성 분획(120.45g)에 MeOH/H2O 구배 (1: 1 내지 1: 0)를 사용하여 ODS-A 겔 컬럼 크로마토그래피를 수행하여 7개의 분획물(POM 1-7)을 수득하였다. POM 7 (12.06 g)에 n- 헥산/EtOAc 구배 (1: 0 내지 0: 1)를 사용하여 실리카겔 컬럼 크로마토그래피하여 18개의 분획물(POM 7-1 ~ POM 7-18)을 얻었다. POM 7-2 (3.93 g)를 YMC 패킹 ODS-A 컬럼을 사용하여 분취용 HPLC에 적용하고 75 % MeOH로 용리하여 2,2'-디히드록시-4',6'-디메톡시칼콘(2,2'-dihydroxy-4',6'-dimethoxychalcone) (12, 100 mg)을 수득하였다.Dried purslane ( Portulaca oleracea L.) (9.67 kg) was extracted with CH 2 Cl 2 at room temperature for 24 h, and the obtained extract (1.2 kg) was partitioned with 3,000 ml of 85% aqueous MeOH and an equal volume of Hx. did The 85% MeOH soluble fraction (120.45 g) was subjected to ODS-A gel column chromatography using a MeOH/H 2 O gradient (1: 1 to 1: 0) to give 7 fractions (POM 1-7). . POM 7 (12.06 g) was subjected to silica gel column chromatography using an n-hexane/EtOAc gradient (1: 0 to 0: 1) to obtain 18 fractions (POM 7-1 to POM 7-18). POM 7-2 (3.93 g) was subjected to preparative HPLC using a YMC packed ODS-A column and eluted with 75% MeOH to form 2,2'-dihydroxy-4',6'-dimethoxychalcone (2 ,2'-dihydroxy-4',6'-dimethoxychalcone) (12, 100 mg) was obtained.

1-3. 화합물 및 효소1-3. compounds and enzymes

재조합 인간 MAO-A 및 MAO-B, 키누라민(kynuramine), 벤질아민(benzylamine), 톨록사톤(toloxatone), 라자베마이드(lazabemide), 아세틸콜린에스테라제(acetylcholinesterase) (AChE, 전기뱀장어(Electrophorus electricus)의 유래 VI-S 유형), 5,5'-디티오비스(5,5'-dithiobis) (2-니트로벤조산(2-nitrobenzoic acid)) (DTNB), 아세틸티오콜린 요오다이드(acetylthiocholine iodide, ACTI) 및 타크린(tacrine)은 Sigma-Aldrich (미국 미주리 주 세인트루이스)에서 구입하였다 [10]. 기준(reference) 불가역적 억제제인 클로르기린(clorgyline)과 파르길린(pargyline)은 BioAssay Systems (Hayward, CA, USA) [11]로부터 구입하였다. 6개의 합성 칼콘 유도체는 Sigma-Aldrich로부터 구입하였다. 사용된 다른 모든 화학 물질은 시약 등급이었다.Recombinant human MAO-A and MAO-B, kynuramine, benzylamine, toloxatone, lazabemide, acetylcholinesterase (AChE, Electrophorus electricus), 5,5'-dithiobis (2-nitrobenzoic acid) (DTNB), acetylthiocholine iodide , ACTI) and tacrine were purchased from Sigma-Aldrich (St. Louis, MO, USA) [10]. Reference irreversible inhibitors, clorgyline and pargyline, were purchased from BioAssay Systems (Hayward, CA, USA) [11]. Six synthetic chalcone derivatives were purchased from Sigma-Aldrich. All other chemicals used were of reagent grade.

1-4. 효소 분석1-4. enzyme assay

MAO-A 및 -B 활성은 종전 문헌 [12, 13]에 기술된 바와 같이 연속 분광광도법을 사용하여 측정되었다. MAO-A에 대한 키누라민 및 MAO-B에 대한 벤질아민의 Km 값은 각각 0.040 및 0.13 mM이었다. 본 실험에서 키누라민 (0.06 mM) 및 벤질아민 (0.3 mM)의 농도는 각각 1.5 Х Km 값 및 2.3 Х Km 값이었다. 엘만(Ellman et al.)에 의해 개발된 방법 [14]을 약간 변형하여 [10, 15] AChE 활성을 분석하였다. 0.5 ml 반응 혼합물 중 0.5 mM DTNB 및 0.5 mM ACTI의 존재하에 ~ 0.2 U/mL의 AChE를 사용하여 412 nm에서 10 분 동안 반응을 연속적으로 모니터링 하였다. DTNB 및 ATCI를 첨가하기 전에 15분 동안 억제제로 효소를 예비 배양한 후 억제 활성을 측정하였다. 반응율은 분(min)당 흡광도의 변화로 표시하였다.MAO-A and -B activities were measured using continuous spectrophotometry as previously described [12, 13]. The K m values of kinuramine for MAO-A and benzylamine for MAO-B were 0.040 and 0.13 mM, respectively. In this experiment, the concentrations of kinuramine (0.06 mM) and benzylamine (0.3 mM) were 1.5 Х K m and 2.3 Х K m values, respectively. AChE activity was assayed [10, 15] with minor modifications to the method developed by Ellman et al. [14]. The reaction was continuously monitored at 412 nm for 10 min using ~0.2 U/mL of AChE in the presence of 0.5 mM DTNB and 0.5 mM ACTI in 0.5 ml reaction mixture. The inhibitory activity was measured after pre-incubating the enzyme with the inhibitor for 15 minutes before adding DTNB and ATCI. Response rate was expressed as change in absorbance per minute (min).

1-5. 억제 활성 및 효소 동역학1-5. Inhibitory activity and enzyme kinetics

칼콘에 의한 MAO-A, MAO-B 및 AChE의 억제는 초기에 10 μM의 칼콘 농도에서 분석되었다. 칼콘 및 기준 가역적 억제제 (MAO-A, MAO-B 및 AChE에 대한 톨록사톤, 라자베마이드 및 타크린)의 IC50 값을 측정하였다. 종래 문헌 [16]에 기술된 바와 같이, 가장 강력한 MAO-B 억제제 (화합물 2)의 시간-의존성, 동역학 파라미터, 억제 유형 및 Ki 값을 조사하였다. 화합물 2에 의한 MAO-B 억제의 동역학은 5 가지 상이한 기질 농도 (0.03, 0.06, 0.15, 0.3 또는 0.6mM) 및 ~ 0.5 Х, 1.0 Х 및 2.0 Х 그들의 IC50 값의 농도에서 각 억제제의 존재 또는 부존재에서 조사되었다 [10]. 억제 패턴과 Ki 값은 라인위버-버크 플롯(Lineweaver-Burk plot)과 그 플롯 기울기의 2차 플롯을 사용하여 결정되었다.Inhibition of MAO-A, MAO-B and AChE by chalcone was initially assayed at a chalcone concentration of 10 μM. The IC 50 values of chalcone and reference reversible inhibitors (toloxatone, razabemide and tacrine against MAO-A, MAO-B and AChE) were determined. As described in the prior literature [16], the time-dependence, kinetic parameters, inhibition type and Ki value of the most potent MAO-B inhibitor (Compound 2) were investigated. The kinetics of MAO-B inhibition by compound 2 were analyzed in the presence or absence of each inhibitor at concentrations of five different substrate concentrations (0.03, 0.06, 0.15, 0.3 or 0.6 mM) and their IC 50 values of ~0.5 Х, 1.0 Х and 2.0 Х was investigated in the absence [10]. Inhibition patterns and Ki values were determined using a Lineweaver-Burk plot and a quadratic plot of the slope of the plot.

1-6. 억제제 가역성 분석1-6. Inhibitor reversibility assay

화합물 2에 의한 MAO-B 억제의 가역성은 문헌 [11]에 기술된 바와 같이 ~ 2 Х IC50 값의 농도, 즉 화합물 2의 경우 0.060 μM, 라자베마이드의 경우 0.065 μM 및 파르길린의 경우 0.20 μM에서 투석에 의해 조사되었다. 칼콘 또는 기준 억제제를 MAO-B와 함께 30 분 동안 예비배양한 후, 투석하지 않은 시료와 투석한 시료에 대한 잔류 활성을 측정하였다. 이어서, 투석하지 않은 활성(AU) 및 투석한 활성(AD)에 대한 상대값을 계산하고 억제제 없는 각각의 대조군과 비교하였다. 가역성은 억제제의 AU 및 AD 값을 기준 억제제의 값과 비교하여 결정하였다.The reversibility of MAO-B inhibition by compound 2 was demonstrated at concentrations of ~2 Х IC 50 values, namely 0.060 μM for compound 2, 0.065 μM for razabemide and 0.20 μM for pargyline, as described in [11]. were investigated by dialysis at μM. After pre-incubation of the chalcone or reference inhibitor with MAO-B for 30 minutes, residual activity was measured for non-dialysis and dialyzed samples. Relative values for activity without dialysis (AU) and activity with dialysis (AD) were then calculated and compared to respective controls without inhibitor. Reversibility was determined by comparing the AU and AD values of the inhibitor to those of the reference inhibitor.

1-7. MAO-A, MAO-B 및 AchE에 대한 6 개의 합성 칼콘의 도킹 시뮬레이션1-7. Docking simulations of six synthetic chalcones to MAO-A, MAO-B and AchE

MAO 효소 또는 AchE에 대한 6 개 칼콘의 도킹을 시뮬레이션하기 위해 자동 도킹 기능이 있는 Autodock Vina [17]를 사용했다. MAO-A, MAO-B 및 AChE의 도킹 부위를 정의하기 위해, MAO-A/7-메톡시-1-메틸-9H-베타-카르볼린 복합체(MAO-A/7-methoxy-1-methyl-9H-beta-carboline complex) (PDB ID: 2Z5X), MAO-B/피오글리타존 복합체(MAO-B/pioglitazone complex) (PDB ID: 4A79) 및 AChE/3-[(1S)-1-(디메틸아미노)에틸]페놀 (SAF) 복합체 (PDB ID: 1GQS)로부터 이미 정의되어 알려진 일련의 활성 부위를 사용하였다. 도킹 시뮬레이션을 준비하기 위해, 우리는 문헌 [13, 15]에 기술된 세 단계를 수행했다. 1) ChemOffice 프로그램을 이용한 에너지 최소화 (http://www.cambridgesoft.com); 2) 키메라를 이용한 도킹 시뮬레이션 [18]; 3) 키메라 프로그램을 사용하여 가능한 수소 결합 상호 작용 확인 [19].Autodock Vina [17] with automatic docking was used to simulate the docking of six chalcones to the MAO enzyme or AchE. To define the docking sites for MAO-A, MAO-B and AChE, the MAO-A/7-methoxy-1-methyl-9H-beta-carboline complex (MAO-A/7-methoxy-1-methyl- 9H-beta-carboline complex) (PDB ID: 2Z5X), MAO-B/pioglitazone complex (PDB ID: 4A79) and AChE/3-[(1S)-1-(dimethylamino) A series of known active sites previously defined from the ethyl]phenol (SAF) complex (PDB ID: 1GQS) was used. To prepare the docking simulation, we performed three steps described in literature [13, 15]. 1) Energy minimization using ChemOffice program (http://www.cambridgesoft.com); 2) docking simulation using Chimera [18]; 3) Checking possible hydrogen bond interactions using the Chimera program [19].

2. 결과2. Results

2-1. 화합물의 분리 및 동정2-1. Isolation and identification of compounds

NMR 데이터를 문헌 값과 비교하여 6 개의 천연 칼콘 유도체를 단리하고 동정하였다; 사판칼콘(화합물 7) [20,21], 3-데옥시사판칼콘 (화합물 8) [20,21], 브로우소칼콘 A (화합물 9) [22], 4-히드록시데리신 (화합물 10) [23], 잔토안게롤 (화합물 11) [24], 및 2,2'-디히드록시-4',6'-디메톡시칼콘 (화합물 12) [25]. MAO 효소를 억제하는 공지된 능력을 고려하여 6 개의 합성 칼콘 유도체를 선택하였다. 12 개의 칼콘의 구조는 하기 표 1에 자세히 나타내었다.Six natural chalcone derivatives were isolated and identified by comparing NMR data with literature values; Saphanchalcone (Compound 7) [20,21], 3-Deoxysaphanchalcone (Compound 8) [20,21], Brousochalcon A (Compound 9) [22], 4-Hydroxydericine (Compound 10) [23], xanthoangerol (compound 11) [24], and 2,2'-dihydroxy-4',6'-dimethoxychalcone (compound 12) [25]. Six synthetic chalcone derivatives were selected in view of their known ability to inhibit MAO enzymes. The structures of the 12 chalcones are detailed in Table 1 below.

Figure 112023032982317-pat00010
Figure 112023032982317-pat00010
Figure 112023032982317-pat00011
Figure 112023032982317-pat00011
화합물 1 (2,4'-디클로로-4-디메틸아미노칼콘(2,4'-dichloro-4-dimethylaminochalcone))Compound 1 (2,4'-dichloro-4-dimethylaminochalcone) 화합물 2 (4-디메틸아미노칼콘(4-dimethylaminochalcone))Compound 2 (4-dimethylaminochalcone)
Figure 112023032982317-pat00012
Figure 112023032982317-pat00012
Figure 112023032982317-pat00013
Figure 112023032982317-pat00013
화합물 3 (4-클로로칼콘(4-chlorochalcone))Compound 3 (4-chlorochalcone) 화합물 4 (4-니트로칼콘(4-nitrochalcone))Compound 4 (4-nitrochalcone)
Figure 112023032982317-pat00032
Figure 112023032982317-pat00032
Figure 112023032982317-pat00015
Figure 112023032982317-pat00015
화합물 5 (4'-클로로-4-디메틸아미노칼콘(4'-chloro-4-dimethylaminochalcone))Compound 5 (4'-chloro-4-dimethylaminochalcone) 화합물 6 (4-카르복시메틸칼콘(4-carboxymethylchalcone))Compound 6 (4-carboxymethylchalcone)
Figure 112023032982317-pat00016
Figure 112023032982317-pat00016
Figure 112023032982317-pat00017
Figure 112023032982317-pat00017
화합물 7 (사판칼콘(sappanchalcone))Compound 7 (sappanchalcone) 화합물 8 (3-데옥시사판칼콘(3-deoxysappanchalcone))Compound 8 (3-deoxysappanchalcone)
Figure 112023032982317-pat00018
Figure 112023032982317-pat00018
Figure 112023032982317-pat00019
Figure 112023032982317-pat00019
화합물 9 (브로우소칼콘 A (broussochalcone A))Compound 9 (broussochalcone A) 화합물 10 (4-히드록시데리신(4-hydroxyderricin))Compound 10 (4-hydroxyderricin)
Figure 112023032982317-pat00020
Figure 112023032982317-pat00020
Figure 112023032982317-pat00021
Figure 112023032982317-pat00021
화합물 11 (잔토안게롤(xanthoangelol))Compound 11 (xanthoangelol) 화합물 12 (2,2'-디히드록시-4',6'-디메톡시칼콘(2,2'-dihydroxy-4',6'-dimethoxychalcone))Compound 12 (2,2'-dihydroxy-4',6'-dimethoxychalcone)

2-2. 억제제 활성의 분석2-2. Assay of inhibitor activity

12개의 칼콘의 MAO-A, MAO-B 및 AChE 억제 활성을 10μM의 농도에서 시험하였다. 10μM에서 12개 화합물 중 대부분은 화합물 6과 11을 제외하고는 50 % 이상으로 MAO-B를 억제했으며(표 1), 합성 칼콘 (화합물 1-5)의 대부분은 MAO-B를 천연 칼콘 (화합물 7-12)보다 MAO-B를 더 억제하였다. 화합물 2는 IC50 값이 0.029 μM으로 MAO-B를 가장 강력하게 억제하였으며, 그 다음으로 화합물 5, 4, 1, 및 3이 각각 0.061, 0.066, 0.075 및 0.082 μM의 IC50 값으로 MAO-B를 억제하였다 (표 1). 화합물 6은 다른 합성 칼콘보다 훨씬 약한 억제제 (IC50 = 10.6 μM)였다. 6 개의 천연 칼콘의 경우, 화합물 8은 MAO-B (IC50 = 0.38 μM)를 가장 강력하게 억제하였고, 프리닐화된 칼콘 10은 MAO-B (IC50 = 1.39 μM)를 효과적으로 억제했지만, 다른 2개의 프리닐화된 칼콘 (9 및 11)은 상대적으로 비효율적이었다 (IC50 값이 각각 7.02 및 13.2 μM임).The MAO-A, MAO-B and AChE inhibitory activities of 12 chalcones were tested at a concentration of 10 μM. At 10 μM, most of the 12 compounds inhibited MAO-B by more than 50%, except for compounds 6 and 11 (Table 1), and most of the synthetic chalcones (compounds 1–5) inhibited MAO-B from natural chalcones (compounds 7-12) inhibited MAO-B more. Compound 2 most potently inhibited MAO-B with an IC 50 value of 0.029 μM, followed by compounds 5, 4, 1, and 3 with IC 50 values of 0.061, 0.066, 0.075, and 0.082 μM, respectively. was inhibited (Table 1). Compound 6 was a much weaker inhibitor (IC 50 = 10.6 μM) than other synthetic chalcones. For the six native chalcones, compound 8 most strongly inhibited MAO-B (IC 50 = 0.38 μM), and prenylated chalcone 10 effectively inhibited MAO-B (IC 50 = 1.39 μM), while the other 2 The two prenylated chalcones (9 and 11) were relatively inefficient (IC 50 values of 7.02 and 13.2 μM, respectively).

본 실험에 의한 칼콘 유도체의 구조를 비교한 결과로부터 C-4의 작용기가 MAO-B 활성에 영향을 미친다는 것을 알 수 있었다. 화합물 1에서 디메틸아미노기의 존재는 MAO-B 억제를 증가시키는 반면, 동일한 위치 (화합물 6)에서 카르복시메틸기의 도입은 MAO-B 억제를 현저하게 감소시켰다. 또한, C-2 및 C-4'에서 치환기의 존재는 MAO-B 억제를 감소시켰고, 이러한 위치에서 수소의 염소 치환은 MAO-B 억제를 감소시켰다. 이러한 예로, 화합물 1 및 5는 화합물 2보다 더 약한 억제제인 것으로부터 알 수 있었다.From the results of comparing the structures of the chalcone derivatives in this experiment, it was found that the functional group of C-4 affects the activity of MAO-B. The presence of a dimethylamino group in compound 1 increased MAO-B inhibition, whereas introduction of a carboxymethyl group at the same position (compound 6) significantly reduced MAO-B inhibition. In addition, the presence of substituents at C-2 and C-4' reduced MAO-B inhibition, and chlorine substitution of hydrogen at these positions reduced MAO-B inhibition. In this example, it can be seen that compounds 1 and 5 are weaker inhibitors than compound 2.

칼콘 유도체는 또한 MAO-A를 효과적으로 억제하지만, MAO-A에 대한 이들의 억제 효과는 MAO-B에 대한 것보다 약했다 (표 1). 화합물 1, 2, 9 및 12는 IC50 값이 각각 0.18, 3.28, 0.72 및 0.39 μM으로 MAO-A를 효과적으로 억제하였으나, 나머지 8 개는 IC50 값이 10 μM 이상이었다. MAO-A 대 MAO-B에 대한 화합물 5, 4, 3 및 2의 선택도 지수 (Selectivity Index; SI) 값은 201.6, 137.9, 121.3 및 113.1 인 반면, 화합물 1의 값(2.4)은 실질적으로 낮았다 (표 2).Chalcone derivatives also effectively inhibited MAO-A, but their inhibitory effect on MAO-A was weaker than that on MAO-B (Table 1). Compounds 1, 2, 9, and 12 effectively inhibited MAO-A with IC 50 values of 0.18, 3.28, 0.72, and 0.39 μM, respectively, while the remaining 8 had IC 50 values greater than 10 μM. The selectivity index (SI) values of compounds 5, 4, 3 and 2 for MAO-A versus MAO-B were 201.6, 137.9, 121.3 and 113.1, whereas the value for compound 1 (2.4) was substantially lower. (Table 2).

Figure 112020062178729-pat00022
Figure 112020062178729-pat00022

C-2에서의 치환은 MAO-A 억제에 중요한 것으로 고려되었다. C-2 수소가 염소로 치환된 화합물 1은 화합물 5보다 MAO-A를 훨씬 더 억제하였다. 또한, 화합물 5에서 C-4'에서 염소 원자의 치환은 화합물 2와 비교하여 억제 활성이 감소되었다. C-5'에 위치된 이소프레닐기는 화합물 9가 화합물 10 및 11보다 MAO-A를 훨씬 더 억제함에 따라 중요한 것으로 나타났다. 그러나 화합물 8과 비교하여 화합물 7이 더 약한 억제 활성을 나타내기 때문에 C-3 위치의 수산기는 MAO-A의 억제 활성을 감소시켰다.The substitution at C-2 was considered important for MAO-A inhibition. Compound 1, in which C-2 hydrogen was substituted with chlorine, inhibited MAO-A much more than Compound 5. In addition, substitution of the chlorine atom at C-4' in compound 5 reduced the inhibitory activity compared to compound 2. The isoprenyl group located at C-5' appeared to be important as compound 9 inhibited MAO-A much more than compounds 10 and 11. However, compared to compound 8, since compound 7 showed weaker inhibitory activity, the hydroxyl group at the C-3 position reduced the inhibitory activity of MAO-A.

본 발명자들은 또한 AD의 치료 타겟인 AChE를 억제하는 12종의 칼콘 능력을 조사하였다. 화합물 4는 IC50 값이 1.25 μM으로 AChE를 효과적으로 억제하였고, 그 다음으로 화합물 11, 1, 3, 9, 5 및 2 (IC50 값이 각각 1.97, 2.46, 2.79, 5,63, 6.02 및 6.07 μM)가 AChE를 억제하였다. 다른 6 개는 약한 억제 활성을 나타내었다 (IC50 값 > 10 μM). 따라서, 화합물 2는 MAO-B 및 AChE의 선택적 억제제인 것을 알 수 있었다.We also investigated the ability of 12 chalcones to inhibit AChE, a therapeutic target for AD. Compound 4 effectively inhibited AChE with an IC 50 value of 1.25 μM, followed by compounds 11, 1, 3, 9, 5 and 2 (IC 50 values of 1.97, 2.46, 2.79, 5,63, 6.02 and 6.07, respectively). μM) inhibited AChE. The other 6 showed weak inhibitory activity (IC 50 values > 10 μM). Accordingly, it was found that Compound 2 is a selective inhibitor of MAO-B and AChE.

2-3. MAO-B 억제의 가역성 분석2-3. Reversibility assay of MAO-B inhibition

MAO-B 활성은 화합물 2와 함께 최대 30 분 동안 예비배양될 때 감소되지 않았으며, 둘 사이의 상호 작용은 순간적(instantaneous)임을 보여주었다.MAO-B activity was not reduced when preincubated with compound 2 for up to 30 min, indicating that the interaction between the two was instantaneous.

화합물 2에 의한 MAO-B 억제의 가역성은 투석에 의해 조사되었다. 화합물 2에 의한 MAO-B의 억제는 30.5% (AU) 내지 92.5% (AD)로 회복되는 것으로 조사되었으며, 이는 라자베마이드 (가역적 억제제; 28.3 내지 86.0 %)에 대해 조사된 것과 유사하지만 (도 1), 어떠한 회복도 파르길린 (비가역적 억제제; 29.9 내지 28.6 %)에서 관찰되지 않았다. 이러한 결과는 화합물 2가 가역적으로 MAO-B를 억제함을 의미한다.The reversibility of MAO-B inhibition by compound 2 was investigated by dialysis. Inhibition of MAO-B by compound 2 was found to recover from 30.5% (AU) to 92.5% (AD), similar to that investigated for razabemide (reversible inhibitor; 28.3 to 86.0%), but also 1), no recovery was observed with pargyline (irreversible inhibitor; 29.9 to 28.6%). These results indicate that compound 2 reversibly inhibits MAO-B.

2-4. 억제 패턴의 분석2-4. Analysis of inhibition patterns

화합물 2에 의한 MAO-B 억제 모드는 라인위버-버크 플롯(Lineweaver-Burk plot)을 사용하여 조사하였다. 화합물 2에 의한 MAO-B 억제 플롯은 선형이었고 y 축과 교차했다 (도 2(A)). 억제제 농도에 대한 라인위버-버크 플롯(Lineweaver-Burk plot)의 기울기의 2차 플롯은 MAO-B 억제에 대한 화합물 2의 Ki 값은 0.0066 ± 0.0006 μM임을 나타내었다 (그림 2(B)). 이러한 결과는 화합물 2가 MAO-B의 경쟁적 억제제로서 작용함을 의미한다.The mode of MAO-B inhibition by compound 2 was investigated using a Lineweaver-Burk plot. The MAO-B inhibition plot by compound 2 was linear and crossed the y axis (Fig. 2(A)). A quadratic plot of the slope of the Lineweaver-Burk plot against the inhibitor concentration indicated that the Ki value of compound 2 for MAO-B inhibition was 0.0066 ± 0.0006 μM (Fig. 2(B)). These results indicate that compound 2 acts as a competitive inhibitor of MAO-B.

2-5. 분자 도킹 시뮬레이션2-5. Molecular docking simulation

도킹 시뮬레이션은 6 개의 합성 칼콘이 MAO-A (PDB : 2Z5X)와 복합체화 된 7-메톡시-1-메틸-9H-베타-카볼린의 결합 부위, MAO-B와 복합체화 된 피오글리타존 (PDB : 4A79)의 결합 부위, AChE (PDB : 1GQS)와 복합체화된 3-[(1S)-1-(디메틸아미노)에틸]페놀의 결합 부위에 적절하게 위치되었음을 보여 주었다. MAO-B에 대한 모든 칼콘의 결합 친화도는 AutoDock Vina에 의해 결정된 바와 같이 MAO-A 또는 AChE보다 더 컸다 (표 3). 칼콘의 IC50 값과 연관지어(표 2), MAO-A에 대한 화합물 1 및 AChE에 대한 화합물 11의 결합 에너지가 가장 크지만, MAO-B에 대한 화합물 2 및 AChE에 대한 화합물 4의 결합 에너지는 각각 두 번째였다. 또한, 도킹 시뮬레이션은 Cys172 잔기와 수소 결합에 의해 화합물 1 내지 5가 MAO-B에 결합하고 화합물 6은 Cys172와 수소 결합을 형성하지 않음을 보여주었다 (도 5). 그러나, 도킹 시뮬레이션은 AChE의 Phe288과 수소 결합을 형성하는 것으로 예측된 화합물 6을 제외하고 칼콘과 MAO-A 또는 AChE 사이의 수소 결합 형성을 예측하지 않았다 (도 3 내지 8). MAO-A, MAO-B 또는 AChE로 시험된 칼콘의 실험적 결합 에너지를 계산하기 위한 파라미터는 하기 표 4에 나타내었다. 이들 결과는 MAO-B에 대한 칼콘의 선택성을 설명한다.Docking simulations showed that six synthetic chalcones were found in the binding site of 7-methoxy-1-methyl-9H-beta-carbolin complexed with MAO-A (PDB: 2Z5X), pioglitazone complexed with MAO-B (PDB: 4A79) and 3-[(1S)-1-(dimethylamino)ethyl]phenol complexed with AChE (PDB: 1GQS). The binding affinities of all chalcones to MAO-B were greater than either MAO-A or AChE as determined by AutoDock Vina (Table 3). Correlating with the IC 50 values of chalcones (Table 2), the binding energies of compound 1 to MAO-A and compound 11 to AChE are the highest, whereas the binding energies of compound 2 to MAO-B and compound 4 to AChE are were the second respectively. In addition, docking simulations showed that compounds 1 to 5 bound to MAO-B by hydrogen bonding with the Cys172 residue, and compound 6 did not form a hydrogen bond with Cys172 (FIG. 5). However, docking simulations did not predict hydrogen bond formation between chalcone and MAO-A or AChE except for compound 6, which was predicted to form a hydrogen bond with Phe288 of AChE (FIGS. 3 to 8). Parameters for calculating the experimental binding energies of chalcones tested with MAO-A, MAO-B or AChE are shown in Table 4 below. These results explain the selectivity of chalcones for MAO-B.

결과로서, MAO-B와 12 개의 칼콘의 결합 패턴이 유사하였고, MAO-B에 대한 이들의 결합 친화도는 일반적으로 MAO-A 또는 AChE에 대한 것보다 더 크다는 것을 보여주었다. 도킹 시뮬레이션으로부터 얻은 결합 점수는 IC50 값과 완벽하게 연관되지 않았지만, 화합물 1 내지 5는 > 9.0 kcal/mol의 결합 에너지를 가졌으며, 이는 MAO-B를 효과적으로 억제할 수 있음을 의미하였다. 또한, 6 개의 합성 칼콘 중 5개(화합물 1 내지 5)가 Cys172에서 MAO-B와 수소 결합을 형성하는 것으로 밝혀졌다. 이 수소 결합은 C-4에 위치한 디메틸아미노기에 의해 형성될 수 있고, 화합물 6의 C-4 카르복시메틸은 입체 인자 및 분석 pH 7.4에서 카르복실기의 가능한 전하로 인해 MAO-B에 대한 결합을 방해할 수 있음을 제시하였다.As a result, it was shown that the binding patterns of MAO-B and 12 chalcones were similar, and their binding affinity to MAO-B was generally greater than that to MAO-A or AChE. Although the binding scores obtained from docking simulations did not correlate perfectly with the IC 50 values, compounds 1 to 5 had binding energies of >9.0 kcal/mol, indicating that they could effectively inhibit MAO-B. In addition, it was found that 5 out of 6 synthetic chalcones (Compounds 1 to 5) form a hydrogen bond with MAO-B at Cys172. This hydrogen bond can be formed by the dimethylamino group located at C-4, and the C-4 carboxymethyl of compound 6 can interfere with binding to MAO-B due to the steric factor and the possible charge of the carboxyl group at analytical pH 7.4. It was suggested that

MAO-A (kcal/mol)MAO-A (kcal/mol) MAO-B (kcal/mol)MAO-B (kcal/mol) AChE (kcal/mol)AChE (kcal/mol) DockingDocking ExpExp DockingDocking ExpExp DockingDocking ExpExp 1One -8.80-8.80 -9.74-9.74 -9.50-9.50 -10.43-10.43 -8.10-8.10 -8.67-8.67 22 -8.30-8.30 -8.02-8.02 -9.60-9.60 -10.99-10.99 -7.80-7.80 -8.13-8.13 33 -7.50-7.50 -7.37-7.37 -9.40-9.40 -10.37-10.37 -8.10-8.10 -8.59-8.59 44 -8.00-8.00 -7.42-7.42 -9.50-9.50 -10.50-10.50 -8.20-8.20 -9.07-9.07 55 -7.30-7.30 -7.24-7.24 -9.90-9.90 -10.52-10.52 -7.60-7.60 -8.14-8.14 66 -7.30-7.30 -6.54-6.54 -8.10-8.10 -6.71-6.71 -7.10-7.10 -7.16-7.16 77 -7.20-7.20 -6.54-6.54 -8.80-8.80 -8.89-8.89 -7.10-7.10 -7.29-7.29 88 -7.40-7.40 -7.36-7.36 -8.90-8.90 -9.47-9.47 -7.70-7.70 -7.01-7.01 99 -8.70-8.70 -8.92-8.92 -8.90-8.90 -7.74-7.74 -7.70-7.70 -8.18-8.18 1010 -7.10-7.10 -6.54-6.54 -9.00-9.00 -8.70-8.70 -7.70-7.70 -7.53-7.53 1111 -5.40-5.40 -6.54-6.54 -8.20-8.20 -7.36-7.36 -8.40-8.40 -8.80-8.80 1212 -7.60-7.60 -9.29-9.29 -9.00-9.00 -8.30-8.30 -7.40-7.40 -7.01-7.01

Docking: docking analysis; Exp, experimental analysisDocking: docking analysis; Exp, experimental analysis

실험 및 도킹 분석에 의한 MAO-A에 대한 화합물 1 내지 12의 결합 에너지Binding energies of compounds 1 to 12 to MAO-A by experiment and docking analysis 화합물compound MAO-AMAO-A [E] (μM)[E] (μM) [S] (μM)[S] (μM) Km (μM)Km (μM) IC50 (μM)IC 50 (μM) Ki (μM)Ki (μM) Temp (K)Temp (K) R
(kcal·K-1·mol-1)
R
(kcal K -1 mol -1 )
Exp EExp E Docking EDocking E
1One 0.1250.125 6060 4040 0.180.18 0.0720.072 298.15298.15 1.987E-031.987E-03 -9.74-9.74 -8.80-8.80 22 0.1250.125 6060 4040 3.283.28 1.3121.312 298.15298.15 1.987E-031.987E-03 -8.02-8.02 -8.30-8.30 33 0.1250.125 6060 4040 9.959.95 3.9803.980 298.15298.15 1.987E-031.987E-03 -7.37-7.37 -7.50-7.50 44 0.1250.125 6060 4040 9.109.10 3.6403.640 298.15298.15 1.987E-031.987E-03 -7.42-7.42 -8.00-8.00 55 0.1250.125 6060 4040 12.3012.30 4.9204.920 298.15298.15 1.987E-031.987E-03 -7.24-7.24 -7.30-7.30 66 0.1250.125 6060 4040 >40.00>40.00 16.00016.000 298.15298.15 1.987E-031.987E-03 -6.54-6.54 -7.30-7.30 77 0.1250.125 6060 4040 >40.00>40.00 16.00016.000 298.15298.15 1.987E-031.987E-03 -6.54-6.54 -7.20-7.20 88 0.1250.125 6060 4040 10.1010.10 4.0404.040 298.15298.15 1.987E-031.987E-03 -7.36-7.36 -7.40-7.40 99 0.1250.125 6060 4040 0.720.72 0.2880.288 298.15298.15 1.987E-031.987E-03 -8.92-8.92 -8.70-8.70 1010 0.1250.125 6060 4040 >40.00>40.00 16.00016.000 298.15298.15 1.987E-031.987E-03 -6.54-6.54 -7.10-7.10 1111 0.1250.125 6060 4040 >40.00>40.00 16.00016.000 298.15298.15 1.987E-031.987E-03 -6.54-6.54 -5.40-5.40 1212 0.1250.125 6060 4040 0.390.39 0.1560.156 298.15298.15 1.987E-031.987E-03 -9.29-9.29 -7.60-7.60

*MAO-A의 분자량은 120kDa의 이량체 형태로 사용되었음.*Molecular weight of MAO-A was used in dimer form of 120 kDa.

실험 및 도킹 분석에 의한 MAO-B에 대한 화합물 1 내지 12의 결합 에너지Binding energies of compounds 1 to 12 to MAO-B by experiment and docking analysis 화합물compound MAO-BMAO-B [E] (μM)[E] (μM) [S] (μM)[S] (μM) Km (μM)Km (μM) IC50 (μM)IC 50 (μM) Ki (μM)Ki (μM) Temp (K)Temp (K) R (kcal·K-1·mol-1)R (kcal K -1 mol -1 ) Exp EExp E Docking EDocking E 1One 0.1740.174 300300 130130 0.0750.075 0.02270.0227 298.15298.15 1.987E-031.987E-03 -10.43-10.43 -9.50-9.50 22 0.1740.174 300300 130130 0.0290.029 0.00880.0088 298.15298.15 1.987E-031.987E-03 -10.99-10.99 -9.60-9.60 33 0.1740.174 300300 130130 0.0820.082 0.02480.0248 298.15298.15 1.987E-031.987E-03 -10.37-10.37 -9.40-9.40 44 0.1740.174 300300 130130 0.0660.066 0.02000.0200 298.15298.15 1.987E-031.987E-03 -10.50-10.50 -9.50-9.50 55 0.1740.174 300300 130130 0.0640.064 0.01930.0193 298.15298.15 1.987E-031.987E-03 -10.52-10.52 -9.90-9.90 66 0.1740.174 300300 130130 40.00040.000 12.093012.0930 298.15298.15 1.987E-031.987E-03 -6.71-6.71 -8.10-8.10 77 0.1740.174 300300 130130 1.0101.010 0.30530.3053 298.15298.15 1.987E-031.987E-03 -8.89-8.89 -8.80-8.80 88 0.1740.174 300300 130130 0.3800.380 0.11490.1149 298.15298.15 1.987E-031.987E-03 -9.47-9.47 -8.90-8.90 99 0.1740.174 300300 130130 7.0207.020 2.12232.1223 298.15298.15 1.987E-031.987E-03 -7.74-7.74 -8.90-8.90 1010 0.1740.174 300300 130130 1.3901.390 0.42020.4202 298.15298.15 1.987E-031.987E-03 -8.70-8.70 -9.00-9.00 1111 0.1740.174 300300 130130 13.20013.200 3.99073.9907 298.15298.15 1.987E-031.987E-03 -7.36-7.36 -8.20-8.20 1212 0.1740.174 300300 130130 2.7102.710 0.81930.8193 298.15298.15 1.987E-031.987E-03 -8.30-8.30 -9.00-9.00

*MAO-B의 분자량은 115kDa의 이량체 형태로 사용되었음.*The molecular weight of MAO-B was used in dimer form of 115 kDa.

실험 및 도킹 분석에 의한 AChE에 대한 화합물 1 내지 12의 결합 에너지Binding energies of compounds 1 to 12 to AChE by experimental and docking analysis 화합물compound AChEAChE [E] (μM)[E] (μM) [S] (μM)[S] (μM) Km (μM)Km (μM) IC50 (μM)IC 50 (μM) Ki (μM)Ki (μM) Temp (K)Temp (K) R
(kcal·K-1·mol-1)
R
(kcal K -1 mol -1 )
Exp EExp E Docking EDocking E
1One 0.00350.0035 500500 110110 2.462.46 0.44360.4436 298.15298.15 1.987E-031.987E-03 -8.67-8.67 -8.10-8.10 22 0.00350.0035 500500 110110 6.076.07 1.09461.0946 298.15298.15 1.987E-031.987E-03 -8.13-8.13 -7.80-7.80 33 0.00350.0035 500500 110110 2.792.79 0.50310.5031 298.15298.15 1.987E-031.987E-03 -8.59-8.59 -8.10-8.10 44 0.00350.0035 500500 110110 1.251.25 0.22540.2254 298.15298.15 1.987E-031.987E-03 -9.07-9.07 -8.20-8.20 55 0.00350.0035 500500 110110 6.026.02 1.08561.0856 298.15298.15 1.987E-031.987E-03 -8.14-8.14 -7.60-7.60 66 0.00350.0035 500500 110110 31.3031.30 5.64435.6443 298.15298.15 1.987E-031.987E-03 -7.16-7.16 -7.10-7.10 77 0.00350.0035 500500 110110 25.0125.01 4.51004.5100 298.15298.15 1.987E-031.987E-03 -7.29-7.29 -7.10-7.10 88 0.00350.0035 500500 110110 40.0040.00 7.21317.2131 298.15298.15 1.987E-031.987E-03 -7.01-7.01 -7.70-7.70 99 0.00350.0035 500500 110110 5.635.63 1.01521.0152 298.15298.15 1.987E-031.987E-03 -8.18-8.18 -7.70-7.70 1010 0.00350.0035 500500 110110 16.8616.86 3.04033.0403 298.15298.15 1.987E-031.987E-03 -7.53-7.53 -7.70-7.70 1111 0.00350.0035 500500 110110 1.971.97 0.35520.3552 298.15298.15 1.987E-031.987E-03 -8.80-8.80 -8.40-8.40 1212 0.00350.0035 500500 110110 40.0040.00 7.21317.2131 298.15298.15 1.987E-031.987E-03 -7.01-7.01 -7.40-7.40

*AChE의 분자량은 공급업체 설명서에 기재된 바와 같이 280kDa의 사량체 형태로 사용되었음.*The molecular weight of AChE was used as a tetramer of 280 kDa as described in the supplier's specifications.

3. 시사점3. Implications

칼콘은 항암, 항염증 및 항균 활성을 포함하는 광범위한 효능의 생물학적 활성을 가진 열린사슬형 플라보노이드이다 [26]. 그러나, 천연 칼콘에 의한 MAO-A 또는 MAO-B의 억제 효과를 조사한 연구는 비교적 적다. 이전 연구에서, 황용담(Gentiana lutea) 유래 3-3''연결된(linked)-(2'-히드록시-4-O-이소프레닐칼콘)-(2'''-히드록시-4''-O-이소프레닐디히드로칼콘) 및 이의 가수분해 산물은 MAO-B에 대해 각각 48.7 및 6.2 μM의 IC50값을 나타내며, MAO-A보다 MAO-B를 더욱 강력하게 억제하였다 [27]. 다른 연구에서, 명일엽(Angelica keiskei K.)에서 발견된 2 개의 프리닐화 칼콘 중 4-히드록시데리신(4-hydroxyderricin)이 MAO-B (IC50은 3.43 μM임)를 강력하고 선택적으로 억제했지만 MAO-A (IC50은 3,520 μM임)는 그러하지 않은 반면, 잔토안게롤(xanthoangelol)은 MAO-A 및 MAO-B를 각각 43.4 및 43.9 μM의 IC50 값으로 억제하였다 [9]. 또한, 관과등(Sinofranchetia chinensis)의 이소리퀴리티게닌(isoliquiritigenin)은 MAO-A와 MAO-B를 각각 13.9와 47.2 μM의 IC50 값으로 억제하였다 [28]. 이 실험은 쥐 미토콘드리아 MAO 효소를 사용하여 수행되었다. 그러나 레네알미아 알피니아(Renealmia Alpinia) 유래 피노스트로빈 칼콘(pinostrobin chalcone)은 IC50 값이 각각 6.3 및 10.0 μM으로 재조합 인간 MAO-A 및 MAO-B를 중간 정도 억제하는 것으로 보고되었다 [29].Chalcones are open-chain flavonoids with a wide range of biological activities including anticancer, anti-inflammatory and antibacterial activity [26]. However, relatively few studies have investigated the inhibitory effect of MAO-A or MAO-B by natural chalcones. In a previous study, 3-3''linked-(2'-hydroxy-4-O-isoprenylchalcone)-(2'''-hydroxy-4'' from Gentiana lutea ) -O-isoprenyldihydrochalcone) and its hydrolysis products showed IC 50 values of 48.7 and 6.2 μM for MAO-B, respectively, and inhibited MAO-B more strongly than MAO-A [27]. In another study, 4-hydroxyderricin, among the two prenylated chalcones found in Angelica keiskei K., potently and selectively inhibited MAO-B (IC 50 was 3.43 μM), but Xanthoangelol inhibited MAO-A and MAO-B with IC 50 values of 43.4 and 43.9 μM, respectively, whereas MAO-A (IC 50 of 3,520 μM) did not [9]. In addition, isoliquiritigenin from Sinofranchetia chinensis inhibited MAO-A and MAO-B with IC 50 values of 13.9 and 47.2 μM, respectively [28]. This experiment was performed using the rat mitochondrial MAO enzyme. However, pinostrobin chalcone from Renealmia Alpinia was reported to moderately inhibit recombinant human MAO-A and MAO-B with IC 50 values of 6.3 and 10.0 μM, respectively [29]. .

칼콘 유도체는 약물 디자인의 출발점으로 관심이 있으며 [30] MAO 억제제의 스캐폴드를 나타내는 것으로 제안되었다 [31]. 다양한 유형의 칼콘 MAO 억제제가 디자인되고 합성되었다. 예를 들어, 선택적이고 가역적인 MAO-B 억제제로 작용하는 일련의 불포화 칼콘 유도체가 합성되었다 [32]. MAO-B의 선택적 억제는 불소화 메톡시화 칼콘(fluorinated methoxylated chalcones) 및 모르폴린(morpholine)과 이미다졸(imidazole) 모이어티(moiety)를 함유하는 불소화 칼콘(fluorinated chalcones)을 사용하여 비교되었다 [33,34]. 또한, 헤테로시클릭 푸라노칼콘 유도체(heterocyclic furanochalcone analogues) [35], 염소화 티에닐 칼콘(chlorinated thienyl chalcones) [36], 푸라노칼콘(furanochalcones) [37] 및 니트로카테콜 칼콘(nitrocatechol chalcones) [38]은 MAO-B 억제 효과에 대해 조사되었다.Chalcone derivatives are of interest as starting points for drug design [30] and have been proposed to represent scaffolds for MAO inhibitors [31]. Various types of chalcone MAO inhibitors have been designed and synthesized. For example, a series of unsaturated chalcone derivatives have been synthesized that act as selective and reversible MAO-B inhibitors [32]. Selective inhibition of MAO-B was compared using fluorinated methoxylated chalcones and fluorinated chalcones containing morpholine and imidazole moieties [33, 34]. In addition, heterocyclic furanochalcone analogues [35], chlorinated thienyl chalcones [36], furanochalcones [37] and nitrocatechol chalcones [ 38] was investigated for its MAO-B inhibitory effect.

최근에, 4'-메톡시-4-디메틸아미노칼콘 [즉, (2E)-3-[4-(디메틸아미노)페닐]-1-(4-메톡시페닐) 프로프-2-엔-1-온]은 MAO-B를 강력하게 억제하는 것으로 보고되었고 (IC50 = 0.29 μM) [39], 4'-이미다졸-4-디메틸아미노칼콘 [즉, (2E)-3-[4-(디메틸아미노)페닐]-1-[4- (1H-이미다졸-1-일)페닐] 프로프-2-엔-1-온]은 MAO-B를 효과적이고 비선택적으로 억제하는 것으로 보고되었다 (IC50 = 6.2 μM) [40]. 본 실험을 진행하는 중, 4개의 4-디메틸아미노칼콘 유도체, 즉 3'-트리플루오로메틸-, 4'-브로모- 및 4'-클로로-4-디메틸아미노칼콘 유도체가 0.150 내지 0.539 μM의 IC50 값으로 MAO-B를 선택적으로 억제한다는 연구가 보고되었다 [41]. 그러나, 4-디메틸아미노칼콘 (화합물 2) 및 2,4'-디클로로-4-디메틸아미노칼콘 (화합물 1)에 의한 MAO-A 및 MAO-B의 억제는 이전에 보고된 바 없다. 본 연구에서, 화합물 2 (IC50 = 0.029 μM)는 라자베마이드 (0.046 μM; 기준 가역적 MAO-B 억제제) 보다 MAO-B를 더 강력하게 억제하였고, 화합물 1 (0.18 μM)은 톨록사톤보다 MAO-A를 더 강력하게 억제하였다 (0.93 μM; 기준 가역적 MAO-A 억제제). 화합물 10은 이전에 보고된 바와 같이 MAO-B를 선택적으로 억제하였고 (SI> 28.8), 화합물 11은 MAO-A보다 MAO-B를 더 억제하였는데 (SI> 3.03), 이는 이전 결과와 모순된다 [23].Recently, 4'-methoxy-4-dimethylaminochalcone [i.e., (2E)-3-[4-(dimethylamino)phenyl]-1-(4-methoxyphenyl) prop-2-en-1 -one] has been reported to strongly inhibit MAO-B (IC 50 = 0.29 μM) [39], 4′-imidazole-4-dimethylaminochalcone [i.e., (2E)-3-[4-( Dimethylamino)phenyl]-1-[4-(1H-imidazol-1-yl)phenyl]prop-2-en-1-one] has been reported to effectively and nonselectively inhibit MAO-B ( IC 50 = 6.2 μM) [40]. During this experiment, four 4-dimethylaminochalcone derivatives, namely 3'-trifluoromethyl-, 4'-bromo- and 4'-chloro-4-dimethylaminochalcone derivatives, were tested at concentrations of 0.150 to 0.539 μM. A study that selectively inhibits MAO-B with an IC 50 value has been reported [41]. However, inhibition of MAO-A and MAO-B by 4-dimethylaminochalcone (Compound 2) and 2,4'-dichloro-4-dimethylaminochalcone (Compound 1) has not been previously reported. In this study, compound 2 (IC 50 = 0.029 μM) inhibited MAO-B more potently than razabemide (0.046 μM; the reference reversible MAO-B inhibitor), and compound 1 (0.18 μM) inhibited MAO more than toloxatone. -A more potently (0.93 μM; the reference reversible MAO-A inhibitor). Compound 10 selectively inhibited MAO-B as previously reported (SI > 28.8), and compound 11 inhibited MAO-B more than MAO-A (SI > 3.03), contradicting previous results [ 23].

본 실험의 칼콘은 MAO-B를 선택적으로 억제하였다. 즉, 화합물 2는 화합물 3 및 4보다 MAO-B를 더욱 강력하게 억제하였으며, 이는 4'-클로로 또는 4'-니트로보다 더 강력한 MAO-B 억제제인 4-디메틸아미노칼콘의 4'-메톡시 유도체에 대하여 발견된 점을 연상시킨다 [39]. 또한, 화합물 2는 칼콘들 사이에서 일반적인 MAO-B의 가역적이고 경쟁적인 억제제인 것으로 밝혀졌다 [27, 37, 39, 41]. 그러나, 이소리퀴리티지닌(isoliquiritigenin)과 같은 일부 천연 칼콘 [28] 및 합성된 칼콘 [42] 은 MAO-A에 대해 선택적인 것으로 보고되었다. 본 실험에서, 화합물 12 (천연 칼콘; 2,2'-디히드록시-4',6'-디메톡시칼콘)는 MAO-A에 대해 선택적이지만, 그 효능은 MAO-A에 대한 가장 강력한 천연 플라보노이드 억제제 중의 하나인 람노시트린 (IC50 = 0.051 μM)의 것보다 낮았다 [9]. 내인성 β-카르보린(β-carbolines)에서, 7-메톡시 하만(7-methoxy harman) (즉, 하민(harmine))은 MAO-A 억제 활성에서 하만보다 더 강력하였다 [43].The chalcone in this experiment selectively inhibited MAO-B. That is, compound 2 inhibited MAO-B more strongly than compounds 3 and 4, which is a 4'-methoxy derivative of 4-dimethylaminochalcone, a more potent MAO-B inhibitor than 4'-chloro or 4'-nitro. It is reminiscent of what was found about [39]. Compound 2 was also found to be a reversible and competitive inhibitor of MAO-B common among chalcones [27, 37, 39, 41]. However, some natural chalcones such as isoliquiritigenin [28] and synthetic chalcones [42] have been reported to be selective for MAO-A. In this experiment, compound 12 (natural chalcone; 2,2'-dihydroxy-4',6'-dimethoxychalcone) was selective for MAO-A, but its potency was the most potent natural flavonoid against MAO-A. It was lower than that of one of the inhibitors, rhamnocitrin (IC 50 = 0.051 μM) [9]. Of the endogenous β-carbolines, 7-methoxy harman (i.e., harmine) was more potent than Harman in MAO-A inhibitory activity [43].

MAO-A 또는 MAO-B에 대한 선택성은 매우 어려운 문제인데, 이는 두 가지 이소폼이 70 % 이상의 서열 동일성 및 기능을 가지고 있기 때문이며, MAO-A의 Tyr 197과 MAO-B의 해당 Tyr188 사이에서 계산된 pKa 값 (최대 1.23 단위)이 크지만 실질적인 차이는 없는 동일한 메커니즘을 사용하여, 두 활성 부위의 정전기 전위 패턴이 매우 유사하다는 것을 시사하기 때문이다 [44]. 이소폼의 기질 및 억제제 특이성은 MAO-B 공동(cavity)의 Ile199 및 Tyr326에 의해 정의된 좁은 부분(narrow part) ("게이트(gate)")에 의해 주로 영향을 받지만, 일반적으로 MAO-A는 더 큰 화합물을 수용할 수 있다 [45].Selectivity for either MAO-A or MAO-B is a very difficult problem, since the two isoforms have >70% sequence identity and function, calculated between Tyr 197 of MAO-A and the corresponding Tyr188 of MAO-B. This is because the calculated pKa value (up to 1.23 units) is large, but using the same mechanism with no substantial difference, suggesting that the electrostatic potential patterns of the two active sites are very similar [44]. The substrate and inhibitor specificity of an isoform is primarily influenced by the narrow part ("gate") defined by Ile199 and Tyr326 of the MAO-B cavity, but in general MAO-A It can accommodate larger compounds [45].

MAO-B 및 AChE의 이중 억제는 AD와 관련하여 조사되었다. 본 연구에서, 5 개의 합성 칼콘 (화합물 1 내지 5)은 1.25 내지 6.07 μM의 IC50 값으로 AChE를 효과적으로 억제하였고, 이들 5 개의 화합물은 IC50 값이 > 24.5 μM인 플루오르화 칼콘보다 AChE를 보다 효과적으로 억제하였다 [34]. 이러한 5 개의 칼콘은 MAO-B 및 AChE에 대한 이중 기능 억제제 후보로 고려될 것으로 우리는 제안한다.Dual inhibition of MAO-B and AChE has been investigated in the context of AD. In this study, five synthetic chalcones (compounds 1 to 5) effectively inhibited AChE with IC 50 values ranging from 1.25 to 6.07 μM, and these 5 compounds exhibited better AChE than fluorinated chalcones with IC 50 values >24.5 μM. effectively suppressed [34]. We propose that these five chalcones be considered candidates for dual function inhibitors to MAO-B and AChE.

비양성자화된 중성 기질을 선호하기 위해 MAO의 소수성 활성 부위가 제안되었다 [47]. MAO-A 및 MAO-B에 대한 화합물 2의 IC50 값이 화합물 4의 IC50 값보다 낮았으며, 화합물 2의 3차 아민이 낮은 pH에서만 양성자화 될 수 있는 특성에 기초하여, 아미노기는 중성 상태일 것이다.A hydrophobic active site in MAOs has been proposed to favor unprotonated neutral substrates [47]. The IC 50 values of compound 2 for MAO-A and MAO-B were lower than those of compound 4, and based on the property that the tertiary amine of compound 2 can only be protonated at low pH, the amino group might be in a neutral state. will be.

도킹 분석과 관련하여, 다른 결과들은 칼콘의 카르보닐 산소와 MAO-B의 Cys172 사이에 수소 결합 상호 작용이 관찰되었으며 [41]. 메틸기, 메톡시기 또는 디메틸아민기를 포함한 C-4의 다양한 R 기는 MAO-B에 대한 선택적 억제를 증가시켰다고 보고되었다 [32, 39]. AChE를 이용한 화합물 6의 도킹 시뮬레이션은 Phe288에서 수소 결합 상호 작용을 예측했지만, 이 상호 작용의 결합 에너지는 다른 11 개의 화합물의 결합 에너지보다 적었다. AutoDock Vina 도킹 점수는 수소 결합, 정전기 결합, 반데르발스 힘 및 용해 효과를 고려하여 계산되었으므로 화합물 6이 수소 결합에 의해 상호 작용하였을 것이며 다른 기여도는 낮을 것으로 생각된다.Regarding the docking assay, other results have observed a hydrogen bond interaction between the carbonyl oxygen of the chalcone and Cys172 of MAO-B [41]. Various R groups on C-4, including methyl, methoxy or dimethylamine, have been reported to increase the selective inhibition of MAO-B [32, 39]. Docking simulations of compound 6 with AChE predicted a hydrogen bonding interaction at Phe288, but the binding energy of this interaction was less than that of the other 11 compounds. Since the AutoDock Vina docking score was calculated considering hydrogen bonding, electrostatic bonding, van der Waals forces, and dissolution effects, it is thought that compound 6 must have interacted by hydrogen bonding and other contributions are low.

4. 결론4. Conclusion

시험된 12개의 칼콘 유도체 중 4-디메틸아미노칼콘 (화합물 2)은 IC50 값이 0.029으로 인간 MAO-B를 가장 강력하게 억제하였고, 다음으로 4'-클로로-4-디메틸아미노칼콘 (화합물 5) 및 2,4'-디클로로-4-디메틸아미노칼콘 (화합물 1) (IC50 값이 각각 0.061 및 0.075 μM 임) 이었다. 그러나, 4-카르복시메틸칼콘 (화합물 6)은 MAO-B (IC50 = 10.6 μM)를 효과적으로 억제하지 못했다. 화합물 2는 MAO-B (SI = 113.1)에 대해 높은 선택도를 나타내었고, 화합물 12 (2,2'-디히드록시-4',6'-디메톡시칼콘)는 MAO-A (IC50 = 0.39 μM)를 강력하고 선택적으로 억제하였다. 흥미롭게도, 화합물 2는 MAO-B를 가역적으로 경쟁적으로 억제하였고 (Ki 값 = 0.0066 μM), AChE를 효과적으로 억제하였다 (IC50 = 6.07 μM). 합성 칼콘 화합물 1 내지 5의 MAO-B에 대한 결합 친화도는 MAO-A 또는 AChE에 대한 결합 친화도보다 높았으며, 이는 Cys172 잔기에서 MAO-B와 수소 결합을 형성하지만 MAO-A 또는 AChE와 수소 결합을 형성하지 않음을 암시한다. 우리의 발견은 화합물 2 등이 알츠하이머 질환 등의 퇴행성 뇌신경 질환의 치료 가능성이 있는 MAO-B/AChE 이중 표적화 억제제로 간주될 수 있음을 의미한다.Among the 12 chalcone derivatives tested, 4-dimethylaminochalcone (Compound 2) inhibited human MAO-B most strongly with an IC 50 value of 0.029, followed by 4'-chloro-4-dimethylaminochalcone (Compound 5). and 2,4′-dichloro-4-dimethylaminochalcone (Compound 1) with IC 50 values of 0.061 and 0.075 μM, respectively. However, 4-carboxymethylchalcone (Compound 6) did not effectively inhibit MAO-B (IC 50 = 10.6 μM). Compound 2 showed high selectivity for MAO-B (SI = 113.1), and compound 12 (2,2'-dihydroxy-4',6'-dimethoxychalcone) showed high selectivity for MAO-A (IC50 = 0.39 μM) was strongly and selectively inhibited. Interestingly, compound 2 reversibly and competitively inhibited MAO-B (Ki value = 0.0066 μM) and effectively inhibited AChE (IC50 = 6.07 μM). The binding affinity of the synthetic chalcone compounds 1 to 5 to MAO-B was higher than that to MAO-A or AChE, which formed a hydrogen bond with MAO-B at the Cys172 residue but with MAO-A or AChE. implying that no bond is formed. Our findings imply that Compound 2 and the like can be considered as MAO-B/AChE dual targeting inhibitors with potential for treatment of degenerative cranial nerve diseases such as Alzheimer's disease.

Claims (6)

2,4'-디클로로-4-디메틸아미노칼콘(2,4'-dichloro-4-dimethylaminochalcone), 이의 약학적으로 허용 가능한 염, 이의 수화물 및 이의 입체 이성질체로 이루어진 군으로부터 선택된 화합물을 유효성분으로 포함하는 퇴행성 뇌신경 질환의 예방 또는 치료용 약학 조성물.
Contains a compound selected from the group consisting of 2,4'-dichloro-4-dimethylaminochalcone, a pharmaceutically acceptable salt thereof, a hydrate thereof, and a stereoisomer thereof as an active ingredient A pharmaceutical composition for the prevention or treatment of degenerative cranial nerve diseases.
제1항에 있어서, 상기 화합물은 MAO-B(monoamine oxidase-B) 및 AChE(acetylcholinesterase)를 저해하는 것인, 퇴행성 뇌신경 질환의 예방 또는 치료용 약학 조성물.
According to claim 1, wherein the compound is to inhibit MAO-B (monoamine oxidase-B) and AChE (acetylcholinesterase), a pharmaceutical composition for the prevention or treatment of degenerative brain disease.
제1항에 있어서, 상기 퇴행성 뇌신경 질환은 치매, 알츠하이머병, 파킨슨병, 헌팅톤병, 루게릭병, 크로이츠펠트 야콥병, 뇌졸중, 다발성 경화증, 학습 장애, 및 기억력 손상으로 이루어진 군으로부터 선택된 하나 이상의 질환인 것인, 퇴행성 뇌신경 질환의 예방 또는 치료용 약학 조성물.
The method of claim 1, wherein the degenerative cranial nerve disease is at least one disease selected from the group consisting of dementia, Alzheimer's disease, Parkinson's disease, Huntington's disease, Lou Gehrig's disease, Creutzfeldt-Jakob disease, stroke, multiple sclerosis, learning disabilities, and memory impairment. Phosphorus, a pharmaceutical composition for the prevention or treatment of degenerative cranial nerve diseases.
2,4'-디클로로-4-디메틸아미노칼콘(2,4'-dichloro-4-dimethylaminochalcone), 이의 약학적으로 허용 가능한 염, 이의 수화물 및 이의 입체 이성질체로 이루어진 군으로부터 선택된 화합물을 유효성분으로 포함하는 퇴행성 뇌신경 질환의 예방 또는 개선용 식품 조성물.
Contains a compound selected from the group consisting of 2,4'-dichloro-4-dimethylaminochalcone, a pharmaceutically acceptable salt thereof, a hydrate thereof, and a stereoisomer thereof as an active ingredient A food composition for the prevention or improvement of degenerative cranial nerve diseases.
제4항에 있어서, 상기 화합물은 MAO-B(monoamine oxidase-B) 및 AChE(acetylcholinesterase)를 저해하는 것인, 퇴행성 뇌신경 질환의 예방 또는 개선용 식품 조성물.
According to claim 4, wherein the compound is to inhibit MAO-B (monoamine oxidase-B) and AChE (acetylcholinesterase), a food composition for preventing or improving degenerative cranial nerve disease.
제4항에 있어서, 상기 퇴행성 뇌신경 질환은 치매, 알츠하이머병, 파킨슨병, 헌팅톤병, 루게릭병, 크로이츠펠트 야콥병, 뇌졸중, 다발성 경화증, 학습 장애, 및 기억력 손상으로 이루어진 군으로부터 선택된 하나 이상의 질환인 것인, 퇴행성 뇌신경 질환의 예방 또는 개선용 식품 조성물.The method of claim 4, wherein the degenerative cranial nerve disease is at least one disease selected from the group consisting of dementia, Alzheimer's disease, Parkinson's disease, Huntington's disease, Lou Gehrig's disease, Creutzfeldt-Jakob disease, stroke, multiple sclerosis, learning disabilities, and memory impairment. Phosphorus, a food composition for preventing or improving degenerative cranial nerve diseases.
KR1020200073475A 2020-06-17 2020-06-17 Composition for preventing or treating neurodegenerative disease comprising chalcone derivatives KR102545193B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020200073475A KR102545193B1 (en) 2020-06-17 2020-06-17 Composition for preventing or treating neurodegenerative disease comprising chalcone derivatives

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200073475A KR102545193B1 (en) 2020-06-17 2020-06-17 Composition for preventing or treating neurodegenerative disease comprising chalcone derivatives

Publications (2)

Publication Number Publication Date
KR20210155941A KR20210155941A (en) 2021-12-24
KR102545193B1 true KR102545193B1 (en) 2023-06-19

Family

ID=79176403

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200073475A KR102545193B1 (en) 2020-06-17 2020-06-17 Composition for preventing or treating neurodegenerative disease comprising chalcone derivatives

Country Status (1)

Country Link
KR (1) KR102545193B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230069692A (en) 2021-11-12 2023-05-19 주식회사 엘지에너지솔루션 Battery moule and battery pack including the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY, VOLUME 80, PAGES 228~242, 2014.06.10*

Also Published As

Publication number Publication date
KR20210155941A (en) 2021-12-24

Similar Documents

Publication Publication Date Title
Zhang et al. Multi-target design strategies for the improved treatment of Alzheimer's disease
Sharma Cholinesterase inhibitors as Alzheimer's therapeutics
Ferreira et al. Huperzine A from Huperzia serrata: a review of its sources, chemistry, pharmacology and toxicology
US11331363B2 (en) Phytocomplexes exhibiting multiple, synergistic antioxidant activities useful in foods, dietary supplements, cosmetics and pharmaceutical preparations
Bastianetto et al. Polyphenols as potential inhibitors of amyloid aggregation and toxicity: possible significance to Alzheimer's disease
Oh et al. Potent and selective inhibition of human monoamine oxidase-B by 4-dimethylaminochalcone and selected chalcone derivatives
EP3301090B1 (en) Derivatives of 2-amino-2-(1-dodecyl-1h-1,2,3-triazol-4-yl)propane-1,3-diol useful in the treatment of neurodegenerative diseases or depressions
US8604087B2 (en) Composition for treating or preventing amyloid-related diseases comprising 4-O-methylhonokiol
JP2022070891A (en) Plant extract with anti-diabetic and other useful activity
US10213438B2 (en) Alkaloid compounds for treating depression, substance addictions, and indications associated with chronic inflammation
KR102545193B1 (en) Composition for preventing or treating neurodegenerative disease comprising chalcone derivatives
Gong et al. Xyloketal B: A marine compound with medicinal potential
Yabuki et al. The T-type calcium channel enhancer SAK3 inhibits neuronal death following transient brain ischemia via nicotinic acetylcholine receptor stimulation
KR20180138555A (en) Composition for preventing or treating neurodegenerative diseases comprising pterosin compounds or derivative thereof
EP2821068B1 (en) Pharmaceutical composition for preventing or treating hepatic fibrosis and cirrhosis containing ramalin
KR20210136464A (en) Composition for preventing or treating neurodegenerative disease comprising ethyl acetohydroxamate incorporated chalcones as an active ingredient
EP3639817B1 (en) Compositions containing pterosin compound and derivatives thereof active ingredients for prevention or treatment of degenerative brain diseases
KR102269242B1 (en) Composition for preventing or treating depressive disorder comprising umbelliferone derivatives
Patil et al. Multi-Target-Directed Ligand Approach in Anti-Alzheimer’s Drug Discovery
KR102499940B1 (en) Composition for preventing or treating neurodegenerative disease comprising compounds derived from natural plants
KR20100060949A (en) Composition for protecting nerve cells
KR101208290B1 (en) Pharmaceutical composition for treating or preventing neurodegenerative disease comprising cordycepin
KR101508560B1 (en) A pharmaceutical composition for the improvement of memory and cognition ability, and prevention or treatment of Alzheimer's disease comprising the Glucoceramide derivatives
KR102267548B1 (en) Composition for preventing or treating of depression and anxiety comprising Osthenol
KR20240085238A (en) Composition for preventing or treating neurodegenerative disease comprising Maackia amurensis extracts

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant