KR102536162B1 - Method for manufacturing shroud block of gas turbine using 3D printing - Google Patents

Method for manufacturing shroud block of gas turbine using 3D printing Download PDF

Info

Publication number
KR102536162B1
KR102536162B1 KR1020220155358A KR20220155358A KR102536162B1 KR 102536162 B1 KR102536162 B1 KR 102536162B1 KR 1020220155358 A KR1020220155358 A KR 1020220155358A KR 20220155358 A KR20220155358 A KR 20220155358A KR 102536162 B1 KR102536162 B1 KR 102536162B1
Authority
KR
South Korea
Prior art keywords
manufactured
printing
flow path
path section
manufacturing
Prior art date
Application number
KR1020220155358A
Other languages
Korean (ko)
Inventor
정택호
강현기
변삼섭
이종엽
손재화
신경승
양기주
하병기
Original Assignee
터보파워텍(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 터보파워텍(주) filed Critical 터보파워텍(주)
Priority to KR1020220155358A priority Critical patent/KR102536162B1/en
Application granted granted Critical
Publication of KR102536162B1 publication Critical patent/KR102536162B1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/24Casings; Casing parts, e.g. diaphragms, casing fastenings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/02Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers
    • B22F7/04Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers with one or more layers not made from powder, e.g. made from solid metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • B22F7/08Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools with one or more parts not made from powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/32Application in turbines in gas turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/20Manufacture essentially without removing material
    • F05D2230/21Manufacture essentially without removing material by casting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/20Manufacture essentially without removing material
    • F05D2230/23Manufacture essentially without removing material by permanently joining parts together
    • F05D2230/232Manufacture essentially without removing material by permanently joining parts together by welding
    • F05D2230/237Brazing

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Composite Materials (AREA)
  • General Engineering & Computer Science (AREA)
  • Powder Metallurgy (AREA)
  • Laser Beam Processing (AREA)

Abstract

The present invention relates to a method for manufacturing a shroud block of a gas turbine and, more specifically, to a method for manufacturing a shroud block of a gas turbine in which a portion having a simplified shape of the shroud block is manufactured by casting, and a portion having a complex shape of the shroud block is manufactured by three-dimensional printing. As described above, since a portion having a simplified shape of the shroud block is manufactured by casting and a portion having a complex shape of the shroud block is manufactured by three-dimensional printing, the method for manufacturing the shroud block of the gas turbine by 3D printing can reduce material and processing costs to enhance productivity, and can manufactured shroud blocks in various shapes according to the usage environment since the shroud block is manufactured by three-dimensional printing.

Description

3D프린팅에 의한 가스터빈 슈라우드 블록 제조방법{Method for manufacturing shroud block of gas turbine using 3D printing}Method for manufacturing shroud block of gas turbine using 3D printing {Method for manufacturing shroud block of gas turbine using 3D printing}

본 발명은 가스터빈 슈라우드 블록 제조방법에 관한 것으로, 더욱 상세하게는 3D프린팅에 의한 가스터빈 슈라우드 블록 제조방법에 관한 것이다.The present invention relates to a method for manufacturing a gas turbine shroud block, and more particularly, to a method for manufacturing a gas turbine shroud block by 3D printing.

가스터빈은 고온·고압의 연소가스로 터빈을 가동시키는 회전형 열기관이다. 기본적인 요소로서는 압축기, 연소기, 터빈으로 이루어져 있다.(NAVER 사전)A gas turbine is a rotary heat engine that operates a turbine with high-temperature and high-pressure combustion gas. As a basic element, it consists of a compressor, a combustor, and a turbine. (NAVER Dictionary)

도 1은 일반적인 가스터빈의 구성을 나타낸 사시도이며, 도 2는 일반적인 가스터빈 구성중 터빈의 단면 개요도이다.1 is a perspective view showing the configuration of a general gas turbine, and FIG. 2 is a schematic cross-sectional view of a typical gas turbine configuration.

도 1 내지 도 2에 도시된 바와 같이 가스터빈(1)은 크게 압축기(10)와 연소기(20)와 터빈(30)으로 구성되는 것으로, 압축기(10)는 공기를 도입하는 공기 도입구가 구비되고, 압축기 케이싱 내에 다수개의 압축기 베인과, 압축기 블레이드가 교대로 배치되어 있다.As shown in FIGS. 1 and 2, the gas turbine 1 is largely composed of a compressor 10, a combustor 20, and a turbine 30, and the compressor 10 is provided with an air inlet for introducing air In the compressor casing, a plurality of compressor vanes and compressor blades are alternately arranged.

그리고 연소기(20)는 상기 압축기에서 압축된 압축 공기에 대하여 연료를 공급하고 버너로 점화함으로써 고온고압의 연소가스가 생성되며, 터빈(30)은 터빈 케이싱 내에 복수의 터빈 베인과, 터빈 블레이드가 교대로 배치되고. 압축기(10)와 연소기(20)와 터빈(30) 및 배기실의 중심부를 관통하도록 로터가 배치되어 있는 구성을 지닌다.And the combustor 20 supplies fuel to the compressed air compressed by the compressor and ignites it with a burner to generate high-temperature, high-pressure combustion gas, and the turbine 30 has a plurality of turbine vanes and turbine blades alternately in the turbine casing. being placed with The compressor 10, the combustor 20, the turbine 30, and the rotor are arranged to pass through the center of the exhaust chamber.

더욱 상세하게는 터빈(30)은 연소기에서 나온 고온·고압의 가스의 열에너지를 기계적인 에너지로 변환시켜 주는 부분으로서, 샤프트(Shaft)에 붙어 회전하는 버킷(Bucket), 케이싱(Casing)에 붙어 정지하고 있는 노즐(Nozzle)(200)과 슈라우드 블록(Shroud Block)(100), 다이아프레임 세그먼트(Diaphragm Segment)(400) 등으로 구성된다.More specifically, the turbine 30 is a part that converts the thermal energy of the high-temperature and high-pressure gas from the combustor into mechanical energy, and is attached to a bucket that rotates attached to a shaft and a casing to stop. It is composed of a nozzle 200, a shroud block 100, and a diaphragm segment 400.

특히, 상기 열거한 구성품 중 슈라우드 블록(Shroud Block)(100)은 노즐(200)과 인접한 부분의 부품으로서 1000∼1600℃의 고온에 노출되기 때문에 IN738LC 등 고온피로 물성이 우수한 초내열합금으로 제작되어 케이싱에 레고처럼 끼워서 장착하며, 케이싱의 내부에 슈라우드 블록(100)을 고정시키는 핀을 박아 고정하는 것으로, 버킷팁 사이에서 고온가스의 통로인 동시에 가스누설을 방지하는 역할을 한다. In particular, among the components listed above, the shroud block 100 is a part adjacent to the nozzle 200 and is exposed to high temperatures of 1000 to 1600 ° C. It is fitted and mounted in the casing like Lego, and a pin for fixing the shroud block 100 is driven into the casing to fix it, and serves to prevent gas leakage at the same time as a passage of hot gas between bucket tips.

상기와 같은 종래의 슈라우드 블록은 일반적으로 주조에 의해 블록형태로 제작한 후, 가공툴로 깍아만드는 과정에서 소재의 낭비가 심하여 생산원가가 높아지는 단점이 있었으며, 또한 제작기간이 매우 길어진다는 등의 생산성이 좋지 못하다는 단점이 있었다.The conventional shroud block as described above generally has the disadvantage of high production cost due to excessive waste of material in the process of being cut with a processing tool after being produced in the form of a block by casting, and productivity such that the production period is very long The downside was that it wasn't good.

대한민국 등록특허공보 제10-0633907호(터빈용 슈라우드 세그먼트 및 터빈용 슈라우드, 등록일자 2006년 10월 04일)Republic of Korea Patent Registration No. 10-0633907 (shroud segment for turbine and shroud for turbine, registration date October 04, 2006) 대한민국 등록특허공보 제10-2343928호(압축기 베인 슈라우드 조립체 및 이를 포함하는 가스 터빈, 등록일자 2021년 12월 22일)Republic of Korea Patent Registration No. 10-2343928 (compressor vane shroud assembly and gas turbine including the same, registration date December 22, 2021) 대한민국 등록특허공보 제10-1737716호(가스 터빈 및 외측 슈라우드, 등록일자 2017년 05월 12일)Republic of Korea Patent Registration No. 10-1737716 (gas turbine and outer shroud, registration date May 12, 2017) 대한민국 공개특허공보 제1997-0707365호(냉각된 슈라우드를 갖는 가스 터빈 블레이드, 공개일자 1997년 12월 01일)Republic of Korea Patent Publication No. 1997-0707365 (gas turbine blade with cooled shroud, published on December 01, 1997) 대한민국 등록특허공보 제10-0674288호(터빈용 내부 슈라우드 조립체, 터빈 슈라우드 조립체용 세그먼트 및 냉각 공기 퍼지방법, 등록일자 2007년 01월 18일)Republic of Korea Patent Registration No. 10-0674288 (internal shroud assembly for turbine, segment for turbine shroud assembly, and method for purging cooling air, registration date: January 18, 2007)

본 발명은 상술한 문제점을 해결하기 위하여 안출된 것으로, 슈라우드 블록의 단순화된 형상으로 이루어진 부분은 주조로 제조하고, 복잡한 형상으로 이루어진 부분은 3D프린팅으로 제조함으로써 소재와 가공비를 절감하여 생산성을 향상시킬 수 있는 3D프린팅에 의한 가스터빈 슈라우드 블록 제조방법을 제공하고자 하는 데 그 목적이 있다.The present invention has been made to solve the above-described problems, and the parts made of a simplified shape of the shroud block are manufactured by casting, and the parts made of complex shapes are manufactured by 3D printing, thereby reducing material and processing costs to improve productivity. The purpose is to provide a gas turbine shroud block manufacturing method by 3D printing that can be used.

본 발명 3D프린팅에 의한 가스터빈 슈라우드 블록 제조방법은 가스터빈의 슈라우드 블록 제조방법에 있어서, 상기 슈라우드 블록은 슈라우드 블록의 단순화된 형상으로 이루어진 부분은 주조로 제조하고, 복잡한 형상으로 이루어진 부분은 3D프린팅으로 제조하는 것이 특징이다.The gas turbine shroud block manufacturing method by 3D printing of the present invention is a method for manufacturing a shroud block of a gas turbine, wherein the shroud block is manufactured by casting the simplified shape of the shroud block and 3D printing the complicated shape part It is characterized by the production of

상술한 바와 같이 본 발명 3D프린팅에 의한 가스터빈 슈라우드 블록 제조방법은 슈라우드 블록의 단순화된 형상으로 이루어진 부분은 주조로 제조하고, 복잡한 형상으로 이루어진 부분은 3D프린팅으로 제조함으로써 소재와 가공비를 절감하여 생산성을 향상시킬 수 있으며, 또한 슈라우드 블록을 3D프린팅으로 제작하기에 사용환경에 따라 슈라우드 블록의 형상을 다양하게 제작할 수 있다는 등의 현저한 효과가 있다.As described above, in the gas turbine shroud block manufacturing method by 3D printing of the present invention, parts made of a simplified shape of the shroud block are manufactured by casting, and parts made of complex shapes are manufactured by 3D printing, thereby reducing material and processing costs to increase productivity In addition, since the shroud block is manufactured by 3D printing, there is a remarkable effect such that the shape of the shroud block can be manufactured in various ways according to the usage environment.

도 1은 일반적인 가스터빈의 구성을 나타낸 사시도.
도 2는 일반적인 가스터빈 구성중 터빈의 단면 개요도.
도 3은 가스터빈의 구성중 슈라우드 블록 사시도.
도 4는 가스터빈의 구성중 슈라우드 블록의 또 다른 측면에서의 사시도.
도 5는 본 발명 3D프린팅에 의한 가스터빈 슈라우드 블록 제조방법 중 유동경로섹션에 래비린스 투스가 형성되어 있는 경우의 제조공정도.
1 is a perspective view showing the configuration of a general gas turbine;
Figure 2 is a cross-sectional schematic view of a turbine of a typical gas turbine configuration.
3 is a perspective view of a shroud block during construction of a gas turbine;
4 is a perspective view from another side of a shroud block during construction of a gas turbine;
5 is a manufacturing process diagram in the case where a labyrinth tooth is formed in the flow path section of the gas turbine shroud block manufacturing method by 3D printing of the present invention.

본 발명 3D프린팅에 의한 가스터빈 슈라우드 블록 제조방법은 가스터빈의 슈라우드 블록 제조방법에 있어서, 상기 슈라우드 블록(100)은 슈라우드 블록(100)의 단순화된 형상으로 이루어진 부분은 주조로 제조하고, 복잡한 형상으로 이루어진 부분은 3D프린팅으로 제조하는 것이 특징이다.In the method for manufacturing a gas turbine shroud block by 3D printing of the present invention, in the method for manufacturing a shroud block of a gas turbine, the shroud block 100 is manufactured by casting the simplified shape of the shroud block 100, and the complex shape The part made of is characterized by being manufactured by 3D printing.

상기 슈라우드 블록(100)은 판재형상의 유동경로 섹션(101)의 좌우측 양단에 돌출형성되는 전방레일(102) 및 후방레일(103)이 형성됨으로써 전체적인 형상이 U자 형상이 되며, 상기 전방레일(102)과 후방레일(103)의 상단에는 각각 최전방측 삽입부(104)와 최후방측 삽입부(105)가 연장형성되어 있되, 상기 최전방측 삽입부(104)와 최후방측 삽입부(105)에는 각각 서로 마주보는 방향으로 최전방측 플랜지(106)와 최후방측 플랜지(107)가 돌출형성되며, 상기 최후방측 삽입부(105)와 근접한 하부측 후방레일(103)의 내측에는 케이싱후크가 수납되는 공간인 케이싱후크홈(108)이 후방레일(103)의 길이를 따라 길게 형성되고, 상기 후방레일(103)의 외측 하부에는 플랜지를 수납하기 위한 공간인 플랜지홈(109)이 후방레일(103)의 길이를 따라 길게 형성되어 있는 것으로, 상기 유동경로 섹션(101)은 주조로 제조되고, 나머지 부분은 3D프린팅으로 제조되는 것이 특징이다.The shroud block 100 has a front rail 102 and a rear rail 103 protruding from both left and right ends of the plate-shaped flow path section 101, so that the overall shape is U-shaped, and the front rail ( 102) and the upper end of the rear rail 103, the frontmost insertion part 104 and the rearmost insertion part 105 are formed to extend, respectively, and the frontmost insertion part 104 and the rearmost insertion part 105 have The frontmost flange 106 and the rearmost flange 107 protrude in directions facing each other, respectively, and the inside of the lower rear rail 103 close to the rearmost insertion portion 105 is a space in which a casing hook is accommodated. An in-casing hook groove 108 is formed long along the length of the rear rail 103, and a flange groove 109, which is a space for accommodating a flange, is formed on the outer lower portion of the rear rail 103. It is formed along the length, and the flow path section 101 is manufactured by casting, and the remaining part is characterized by being manufactured by 3D printing.

그리고 상기 유동경로섹션(101)의 상면에 전방레일(102)과 후방레일(103)이 포함된 나머지 부분은 3D프린팅으로 적층하여 제조하거나, 주조로 제조되는 유동경로섹션(101)과 3D프린팅으로 제조되는 전방레일(102)과 후방레일(103)이 포함된 나머지 부분을 각각 별도로 제조하여 브레이징에 의해 접합하는 방법 중 택일하여 슈라우드 블록(100)을 제조할 수 있는 것이 특징이다.And the remaining parts including the front rail 102 and the rear rail 103 on the upper surface of the flow path section 101 are manufactured by 3D printing, or the flow path section 101 manufactured by casting and 3D printing. It is characterized in that the shroud block 100 can be manufactured by selecting one of the methods of manufacturing the remaining parts including the front rail 102 and the rear rail 103 to be manufactured separately and joining them by brazing.

또한, 상기 유동경로섹션(101)의 상면에 전방레일(102)과 후방레일(103)이 포함된 나머지 부분은 3D프린팅으로 적층하여 제조하거나, 주조로 제조되는 유동경로섹션(101)과 3D프린팅으로 제조되는 전방레일(102)과 후방레일(103)이 포함된 나머지 부분을 각각 별도로 제조하여 브레이징에 의해 접합하는 방법 중 택일하여 슈라우드 블록(100)을 제조시 초음파 진동을 가할 수 있는 것이 특징이다.In addition, the remaining parts including the front rail 102 and the rear rail 103 on the upper surface of the flow path section 101 are manufactured by 3D printing, or the flow path section 101 manufactured by casting and 3D printing It is characterized in that ultrasonic vibration can be applied when manufacturing the shroud block 100 by selecting one of the methods in which the remaining parts including the front rail 102 and the rear rail 103 are separately manufactured and joined by brazing. .

또한, 상기 유동경로섹션(101)의 상면에 전방레일(102)과 후방레일(103)이 포함된 나머지 부분은 3D프린팅으로 적층하여 제조하거나, 주조로 제조되는 유동경로섹션(101)과 3D프린팅으로 제조되는 전방레일(102)과 후방레일(103)이 포함된 나머지 부분을 각각 별도로 제조하여 브레이징에 의해 접합하는 방법 중 택일하여 슈라우드 블록(100)을 제조시 적층분말에 원적외선을 가할 수 있는 것이 특징이다.In addition, the remaining parts including the front rail 102 and the rear rail 103 on the upper surface of the flow path section 101 are manufactured by 3D printing, or the flow path section 101 manufactured by casting and 3D printing It is possible to apply far-infrared rays to the laminated powder when manufacturing the shroud block 100 by selecting one of the methods of manufacturing the remaining parts including the front rail 102 and the rear rail 103 separately and joining them by brazing. characteristic.

또한, 상기 슈라우드 블록(100)은 유동경로섹션(101)에 래비린스 투스가 형성되어 있는 경우 유동경로섹션(101)을 제작하는 1단계 공정; 상기 유동경로섹션(101)의 상면에 3D프린팅에 의한 전방레일(102)과 후방레일(103)을 제작하는 2단계 공정; 상기 2단계 공정에서 제작된 전방레일(102)과 후방레일(103)을 유동경로섹션(101)에 브레이징에 의해 접합하는 3단계 공정; 상기 유동경로섹션(101)에 래비린스 투스를 제작하는 4단계 공정;을 포함하여 제조되는 것이 특징이다.In addition, the shroud block 100 includes a one-step process of manufacturing the flow path section 101 when a labyrinth tooth is formed on the flow path section 101; A two-step process of manufacturing a front rail 102 and a rear rail 103 by 3D printing on the upper surface of the flow path section 101; a 3-step process of joining the front rail 102 and the rear rail 103 manufactured in the 2-step process to the flow path section 101 by brazing; It is characterized in that it is manufactured including; a 4-step process of manufacturing a labyrinth tooth in the flow path section 101.

또한, 상기 2단계 공정에는 최전방측 삽입부(104), 최후방측 삽입부(105), 최전방측 플랜지(106), 최후방측 플랜지(107), 및 케이싱후크홈(108), 플랜지홈(109)을 형성하는 공정이 포함되는 것이 특징이다.In addition, in the two-step process, the frontmost insertion part 104, the rearmost insertion part 105, the frontmost flange 106, the rearmost flange 107, the casing hook groove 108, and the flange groove 109 It is characterized in that the process of forming a is included.

이하, 본 발명 3D프린팅에 의한 가스터빈 슈라우드 블록 제조방법을 첨부한 도면에 의해 상세히 설명하면 다음과 같다.Hereinafter, a gas turbine shroud block manufacturing method by 3D printing of the present invention will be described in detail with reference to the accompanying drawings.

도 3은 가스터빈의 구성중 슈라우드 블록 사시도, 도 4는 가스터빈의 구성중 슈라우드 블록의 또 다른 측면에서의 사시도이다.3 is a perspective view of a shroud block during construction of a gas turbine, and FIG. 4 is a perspective view from another side of the shroud block during construction of a gas turbine.

도 3 내지 도 4에 도시된 바와 같이 슈라우드 블록(100)은 일반적으로 하부에 형성되는 판재형상의 유동경로 섹션(101)의 좌우측 양단에 돌출형성되는 전방레일(102) 및 후방레일(103)이 형성됨으로써 전체적인 형상이 U자 형상이 되며, 상기 전방레일(102)과 후방레일(103)의 상단에는 각각 최전방측 삽입부(104)와 최후방측 삽입부(105)가 연장형성된다.As shown in FIGS. 3 and 4, the shroud block 100 has a front rail 102 and a rear rail 103 protruding from both left and right ends of the plate-shaped flow path section 101 formed at the bottom. As a result, the overall shape becomes a U-shape, and the frontmost insertion part 104 and the rearmost insertion part 105 are formed to extend from the upper ends of the front rail 102 and the rear rail 103, respectively.

상기 최전방측 삽입부(104)와 최후방측 삽입부(105)에는 각각 서로 마주보는 방향으로 최전방측 플랜지(106)와 최후방측 플랜지(107)가 돌출형성된다.A frontmost flange 106 and a rearmost flange 107 protrude from the frontmost insertion portion 104 and the rearmost insertion portion 105 in directions facing each other, respectively.

그리고 상기 최후방측 삽입부(105)와 근접한 하부측 후방레일(103)의 내측에는 케이싱후크가 수납되는 공간인 케이싱후크홈(108)이 후방레일(103)의 길이를 따라 길게 형성되고, 상기 후방레일(103)의 외측 하부에는 플랜지를 수납하기 위한 공간인 플랜지홈(109)이 후방레일(103)의 길이를 따라 길게 형성되어 있다.In addition, a casing hook groove 108, which is a space in which a casing hook is accommodated, is formed long along the length of the rear rail 103 on the inside of the lower side rear rail 103 close to the rearmost insertion portion 105, and the rear A flange groove 109, which is a space for accommodating a flange, is formed long along the length of the rear rail 103 at the outer lower portion of the rail 103.

상술한 슈라우드 블록(100)의 구성에 대해서는 본 발명의 선행기술문헌에 상세히 기술되어 있으며, 이를 참조하도록 한다.The configuration of the above-described shroud block 100 is described in detail in the prior art literature of the present invention, and reference is made to this.

더욱 바람직하게는 본 발명에서 상기 슈라우드 블록(100)은 슈라우드 블록(100)의 단순화된 형상으로 이루어진 부분은 주조로 제조하고, 복잡한 형상으로 이루어진 부분은 3D프린팅으로 제조하도록 하는 것이다.More preferably, in the present invention, the shroud block 100 is manufactured so that the simplified shape of the shroud block 100 is manufactured by casting, and the complicated shape of the shroud block 100 is manufactured by 3D printing.

특히, 유동경로섹션(101)의 상면에 전방레일(102)과 후방레일(103)이 포함된 나머지 부분은 3D프린팅으로 적층하여 제조하거나, 주조로 제조되는 유동경로섹션(101)과 레이저 클래딩에 의한 3D프린팅으로 제조되는 전방레일(102)과 후방레일(103)이 포함된 나머지 부분을 각각 별도로 제조하여 브레이징에 의해 접합하는 방법 중 택일할 수 있다.In particular, the remaining parts including the front rail 102 and the rear rail 103 on the upper surface of the flow path section 101 are manufactured by laminating with 3D printing, or the flow path section 101 manufactured by casting and laser cladding The remaining parts including the front rail 102 and the rear rail 103 manufactured by 3D printing may be separately manufactured and joined by brazing.

또한, 3D프린팅에 의한 적층 또는 브레이징에 의한 접합시 초음파 진동을 가할 수도 있다.In addition, ultrasonic vibration may be applied during lamination by 3D printing or bonding by brazing.

초음파 진동은 2KHz∼100MHz 사이로 하도록 한다.Ultrasonic vibration should be between 2KHz and 100MHz.

그리고 원적외선 파장은 10∼1000㎛ 사이에서 진행하여 모재인 유동경로섹션(101)의 온도를 25∼900℃ 내로 유지하면서 3D프린팅을 통한 적층을 수행하는 것이 특징이다.In addition, the far-infrared wavelength progresses between 10 and 1000 μm, and lamination through 3D printing is performed while maintaining the temperature of the base material, the flow path section 101, within 25 to 900 ° C.

더욱 상세하게는, 최적의 초음파를 적층부에 전달하기 위해서 적층부로부터 0.5∼2000mm 이내 떨어진 곳에 진동자(도면 미도시)를 부착하여 모재인 유동경로섹션(101)에 진동을 주면서 3D프린팅을 통한 적층을 수행한다. More specifically, in order to transmit optimal ultrasonic waves to the laminated part, a vibrator (not shown) is attached to a place within 0.5 to 2000mm away from the laminated part, and the flow path section 101, which is the base material, is vibrated while stacking through 3D printing. Do it.

즉, 진동자는 용접되는 지점으로부터는 0.5∼2000mm 이내 떨어진 유동경로섹션(101)의 표면에 접촉시키도록 한다.That is, the vibrator is brought into contact with the surface of the flow path section 101 within 0.5 to 2000 mm away from the welding point.

상술한 바와 같이 초음파 진동과 동시에 3D프린팅을 통해 적층할 경우 장점은 적층부에 기공율을 0.01% 이하로 감소시킴과 동시에 결정립의 크기를 기존 레이저 클래딩 보다 50% 이하로 작게 하기 때문에 기계적 특성(경도, 강도, 마모, 피로)이 증가하는 장점이 있다.As described above, the advantage of laminating through ultrasonic vibration and simultaneous 3D printing is that it reduces the porosity of the laminated part to 0.01% or less and at the same time reduces the size of crystal grains to 50% or less compared to conventional laser cladding, so the mechanical properties (hardness, strength, wear and fatigue) .

용융 온도가 높은 인코넬 초내열 소재의 경우 응고속도를 조절하기 위해 원적외선 히터 파장은 10∼1000마이크론(㎛)을 사용하여 모재의 온도를 25∼900℃ 내로 유지하면서 3D프린팅을 통한 적층을 수행하도록 한다.In the case of Inconel super heat-resistant material with high melting temperature, to control the solidification rate, use a far-infrared heater wavelength of 10 to 1000 microns (㎛) to perform lamination through 3D printing while maintaining the temperature of the base material within 25 to 900 ° C. .

슈라이드 블록(100)의 제조시 사용되는 3D프린팅 방법은 레이저 클래딩을 통한 적층하는 방법과 WAAM(Wire Arc Additive Manufacturing)공법을 통한 적층방법 중 택일하도록 한다.The 3D printing method used in manufacturing the shroud block 100 is to choose between a laminating method through laser cladding and a laminating method through a WAAM (Wire Arc Additive Manufacturing) method.

WAAM(Wire Arc Additive Manufacturing)공법은 와이어 형태의 재료를 아크 열원을 이용해 용접하고 적층가공하는 공법이다.The WAAM (Wire Arc Additive Manufacturing) method is a method of welding and additively manufacturing wire-type materials using an arc heat source.

또한, 주조로 제조되는 유동경로섹션(101)과 레이저 클래딩에 의한 3D프린팅으로 제조되는 전방레일(102)과 후방레일(103)이 포함된 나머지 부분을 각각 별도로 제조하여 브레이징에 의해 접합시 서로 접촉되는 단부면 중 어느 하나에는 돌출된 삽입돌기(도면 미도시)를 형성하고, 삽입돌기에 대응하는 타측의 단부면에는 삽입돌기가 삽입될 수 있는 삽입홈을 형성하여 레고블록처럼 조립후 브레이징으로 접합하게 되면 더욱 견고한 결합관계를 유지할 수 있을 것이다.In addition, the remaining parts including the flow path section 101 manufactured by casting and the front rail 102 and rear rail 103 manufactured by 3D printing by laser cladding are separately manufactured and contacted when joined by brazing. A protruding insertion protrusion (not shown) is formed on one of the end surfaces, and an insertion groove into which the insertion protrusion can be inserted is formed on the other end surface corresponding to the insertion protrusion, and then assembled and joined like a Lego block by brazing. If you do, you will be able to maintain a stronger bonding relationship.

한편, 슈라우드 블록(100)과 블레이드 사이의 간극에 있는 유동경로섹션(101)은 고온고압의 부하를 받고 있기 때문에 유체의 누설을 줄이기 위해 래비린스 실 형상이 형성될 수도 있으며, 에너지 효율 향상을 위해서 열차폐코팅을 하는 경우도 있다On the other hand, since the flow path section 101 in the gap between the shroud block 100 and the blade is under the load of high temperature and high pressure, a labyrinth seal shape may be formed to reduce fluid leakage, and to improve energy efficiency. In some cases, thermal barrier coating is used.

이때, 판상의 유동경로섹션(101)에 래비린스 투스를 레이저 클래딩으로 적층 하거나 3D프린팅으로 제작된 투스부를 브레이징으로 접합할 수 있다.At this time, a labyrinth tooth may be laminated on the plate-shaped flow path section 101 by laser cladding or a tooth portion manufactured by 3D printing may be joined by brazing.

상기 래비린스 실링에 대한 기술은 본 출원인 2014년 04월 08일자로 출원하여 제10-1442739호(등록일자 2014년 09월 15일)로 등록된 대한민국 등록특허공보를 참조하도록 한다.The technology for the labyrinth sealing is referred to the Republic of Korea Registered Patent Publication, filed on April 8, 2014 and registered as No. 10-1442739 (registration date September 15, 2014) by the present applicant.

판상의 유동경로섹션(101)에 래비린스 투스가 형성되어 있는 경우의 슈라우드 블록(100)의 제조방법에 대해서는 다음과 같다.The manufacturing method of the shroud block 100 in the case where the labyrinth tooth is formed in the plate-shaped flow path section 101 is as follows.

도 5는 본 발명 3D프린팅에 의한 가스터빈 슈라우드 블록 제조방법 중 유동경로섹션에 래비린스 투스가 형성되어 있는 경우의 제조공정도이다.5 is a manufacturing process diagram in the case where a labyrinth tooth is formed in the flow path section in the gas turbine shroud block manufacturing method by 3D printing of the present invention.

도 5에 도시된 바와 같이 판상의 유동경로섹션(101)에 래비린스 투스가 형성되어 있는 경우 유동경로섹션(101)을 제작하는 1단계 공정; 상기 유동경로섹션(101)의 상면에 3D프린팅에 의한 전방레일(102)과 후방레일(103)을 제작하는 2단계 공정; 상기 2단계 공정에서 제작된 전방레일(102)과 후방레일(103)을 유동경로섹션(101)에 브레이징에 의해 접합하는 3단계 공정; 상기 유동경로섹션(101)에 래비린스 투스를 제작하는 4단계 공정;을 포함하여 제조되는 것을 특징으로 한다.As shown in FIG. 5, a one-step process of manufacturing the flow path section 101 when a labyrinth tooth is formed on the plate-shaped flow path section 101; A two-step process of manufacturing a front rail 102 and a rear rail 103 by 3D printing on the upper surface of the flow path section 101; a 3-step process of joining the front rail 102 and the rear rail 103 manufactured in the 2-step process to the flow path section 101 by brazing; It is characterized in that it is manufactured including; a 4-step process of manufacturing a labyrinth tooth in the flow path section 101.

판상의 유동경로섹션(101)에 래비린스 투스를 제조할 때에는 WAAM(Wire Arc Additive Manufacturing)공법보다는 레이저 클래딩에 의해 적층하도록 하는 것이 바람직할 것이다.When manufacturing the labyrinth tooth on the plate-shaped flow path section 101, it would be preferable to laminate it by laser cladding rather than WAAM (Wire Arc Additive Manufacturing) method.

물론, 3D프린팅시 앞서 설명한 초음파 진동과 원적외선을 가열하도록 한다.Of course, during 3D printing, the ultrasonic vibration and far-infrared rays described above are heated.

또한, 상기 2단계 공정에는 최전방측 삽입부(104), 최후방측 삽입부(105), 최전방측 플랜지(106), 최후방측 플랜지(107), 및 케이싱후크홈(108), 플랜지홈(109)을 형성하는 공정이 포함되도록 한다.In addition, in the two-step process, the frontmost insertion part 104, the rearmost insertion part 105, the frontmost flange 106, the rearmost flange 107, the casing hook groove 108, and the flange groove 109 To include the process of forming.

상술한 바와 같이 본 발명 3D프린팅에 의한 가스터빈 슈라우드 블록 제조방법은 슈라우드 블록의 단순화된 형상으로 이루어진 부분은 주조로 제조하고, 복잡한 형상으로 이루어진 부분은 3D프린팅으로 제조함으로써 소재와 가공비를 절감하여 생산성을 향상시킬 수 있으며, 또한 슈라우드 블록을 3D프린팅으로 제작하기에 사용환경에 따라 슈라우드 블록의 형상을 다양하게 제작할 수 있다는 등의 현저한 효과가 있다.As described above, in the gas turbine shroud block manufacturing method by 3D printing of the present invention, parts made of a simplified shape of the shroud block are manufactured by casting, and parts made of complex shapes are manufactured by 3D printing, thereby reducing material and processing costs to increase productivity In addition, since the shroud block is manufactured by 3D printing, there is a remarkable effect such that the shape of the shroud block can be manufactured in various ways according to the usage environment.

1. 가스 터빈
10. 압축기 20. 연소기 30. 터빈
100. 슈라우드 블록
101. 유동경로 섹션 102. 전방레일 103. 후방레일
104. 최전방측 삽입부 105. 최후방측 삽입부 106. 최전방측 플랜지
107. 최후방측 플랜지 108. 케이싱후크홈 109. 플랜지홈
200. 노즐
300. 블레이드
400. 다이아프레임 세그먼트
1. Gas Turbine
10. Compressor 20. Combustor 30. Turbine
100. Shroud Block
101. Flow path section 102. Front rail 103. Rear rail
104. Foremost insertion part 105. Rearmost insertion part 106. Foremost flange
107. Rearmost flange 108. Casing hook groove 109. Flange groove
200. Nozzle
300. Blade
400. Diaframe segment

Claims (7)

가스터빈의 슈라우드 블록 제조방법에 있어서,
상기 슈라우드 블록(100)은 판재형상의 유동경로 섹션(101)의 좌우측 양단에 돌출형성되는 전방레일(102) 및 후방레일(103)이 형성됨으로써 전체적인 형상이 U자 형상이 되며, 상기 전방레일(102)과 후방레일(103)의 상단에는 각각 최전방측 삽입부(104)와 최후방측 삽입부(105)가 연장형성되어 있되, 상기 최전방측 삽입부(104)와 최후방측 삽입부(105)에는 각각 서로 마주보는 방향으로 최전방측 플랜지(106)와 최후방측 플랜지(107)가 돌출형성되며, 상기 최후방측 삽입부(105)와 근접한 하부측 후방레일(103)의 내측에는 케이싱후크가 수납되는 공간인 케이싱후크홈(108)이 후방레일(103)의 길이를 따라 길게 형성되고, 상기 후방레일(103)의 외측 하부에는 플랜지를 수납하기 위한 공간인 플랜지홈(109)이 후방레일(103)의 길이를 따라 길게 형성되어 있어
상기 유동경로 섹션(101)과 같이 단순화된 형상은 주조로 제조되고, 나머지 부분은 3D프린팅으로 제조하는 것으로,
상기 유동경로섹션(101)의 상면에 전방레일(102)과 후방레일(103)이 포함된 나머지 부분은 3D프린팅으로 적층하여 제조하거나, 주조로 제조되는 유동경로섹션(101)과 3D프린팅으로 제조되는 전방레일(102)과 후방레일(103)이 포함된 나머지 부분을 각각 별도로 제조하여 브레이징에 의해 접합하는 방법 중 택일하여 슈라우드 블록(100)을 제조하며,
상기 유동경로섹션(101)의 상면에 전방레일(102)과 후방레일(103)이 포함된 나머지 부분은 3D프린팅으로 적층하여 제조하거나, 주조로 제조되는 유동경로섹션(101)과 3D프린팅으로 제조되는 전방레일(102)과 후방레일(103)이 포함된 나머지 부분을 각각 별도로 제조하여 브레이징에 의해 접합하는 방법 중 택일하여 슈라우드 블록(100)을 제조시 2KHz∼100MHz의 초음파 진동을 가할 수 있으며,
상기 유동경로섹션(101)의 상면에 전방레일(102)과 후방레일(103)이 포함된 나머지 부분은 3D프린팅으로 적층하여 제조하거나, 주조로 제조되는 유동경로섹션(101)과 3D프린팅으로 제조되는 전방레일(102)과 후방레일(103)이 포함된 나머지 부분을 각각 별도로 제조하여 브레이징에 의해 접합하는 방법 중 택일하여 슈라우드 블록(100)을 제조시 적층분말에 원적외선을 가하되, 원적외선 파장은 10∼1000㎛ 사이에서 진행하여 모재인 유동경로섹션(101)의 온도를 25∼900℃ 내로 유지하면서 3D프린팅을 통한 적층을 수행하도록 하며,
주조로 제조되는 유동경로섹션(101)과 레이저 클래딩에 의한 3D프린팅으로 제조되는 전방레일(102)과 후방레일(103)이 포함된 나머지 부분을 각각 별도로 제조하여 브레이징에 의해 접합시 서로 접촉되는 단부면 중 어느 하나에는 돌출된 삽입돌기를 형성하고, 삽입돌기에 대응하는 타측의 단부면에는 삽입돌기가 삽입될 수 있는 삽입홈을 형성하여 레고블록처럼 조립후 브레이징으로 접합하게 되면 더욱 견고한 결합관계를 유지할 수 있도록 한 것이 특징인 3D프린팅에 의한 가스터빈 슈라우드 블록 제조방법.

In the method for manufacturing a shroud block of a gas turbine,
The shroud block 100 has a front rail 102 and a rear rail 103 protruding from both left and right ends of the plate-shaped flow path section 101, so that the overall shape is U-shaped, and the front rail ( 102) and the upper end of the rear rail 103, the frontmost insertion part 104 and the rearmost insertion part 105 are formed to extend, respectively, and the frontmost insertion part 104 and the rearmost insertion part 105 have The frontmost flange 106 and the rearmost flange 107 protrude in directions facing each other, respectively, and the inside of the lower rear rail 103 close to the rearmost insertion portion 105 is a space in which a casing hook is accommodated. An in-casing hook groove 108 is formed long along the length of the rear rail 103, and a flange groove 109, which is a space for accommodating a flange, is formed on the outer lower portion of the rear rail 103. It is formed along the length
The simplified shape, such as the flow path section 101, is manufactured by casting, and the remaining parts are manufactured by 3D printing,
The remaining parts including the front rail 102 and the rear rail 103 on the upper surface of the flow path section 101 are manufactured by 3D printing, or the flow path section 101 manufactured by casting and 3D printing The shroud block 100 is manufactured by one of the methods of separately manufacturing the remaining parts including the front rail 102 and the rear rail 103 to be joined by brazing,
The remaining parts including the front rail 102 and the rear rail 103 on the upper surface of the flow path section 101 are manufactured by 3D printing, or the flow path section 101 manufactured by casting and 3D printing When manufacturing the shroud block 100, the remaining parts including the front rail 102 and the rear rail 103 are separately manufactured and joined by brazing. Ultrasonic vibration of 2KHz to 100MHz can be applied,
The remaining parts including the front rail 102 and the rear rail 103 on the upper surface of the flow path section 101 are manufactured by 3D printing, or the flow path section 101 manufactured by casting and 3D printing The remaining parts including the front rail 102 and the rear rail 103 are separately manufactured and joined by brazing. When manufacturing the shroud block 100, far-infrared rays are applied to the laminated powder, but the far-infrared wavelength is It proceeds between 10 and 1000 μm to perform lamination through 3D printing while maintaining the temperature of the flow path section 101, which is the base material, within 25 to 900 ° C.
The remaining parts, including the flow path section 101 manufactured by casting and the front rail 102 and the rear rail 103 manufactured by 3D printing by laser cladding, are separately manufactured and contacted when joined by brazing. A protruding insertion protrusion is formed on one of the side surfaces, and an insertion groove into which the insertion protrusion can be inserted is formed on the other end surface corresponding to the insertion protrusion. A method of manufacturing a gas turbine shroud block by 3D printing, which is characterized by being able to be maintained.

삭제delete 삭제delete 삭제delete 삭제delete 제1항에 있어서,
상기 슈라우드 블록(100)은 유동경로섹션(101)에 래비린스 투스가 형성되어 있는 경우 유동경로섹션(101)을 제작하는 1단계 공정;
상기 유동경로섹션(101)의 상면에 3D프린팅에 의한 전방레일(102)과 후방레일(103)을 제작하는 2단계 공정;
상기 2단계 공정에서 제작된 전방레일(102)과 후방레일(103)을 유동경로섹션(101)에 브레이징에 의해 접합하는 3단계 공정;
상기 유동경로섹션(101)에 래비린스 투스를 제작하는 4단계 공정;
을 포함하여 제조되는 것이 특징인 3D프린팅에 의한 가스터빈 슈라우드 블록 제조방법.
According to claim 1,
The shroud block 100 includes a one-step process of manufacturing the flow path section 101 when a labyrinth tooth is formed on the flow path section 101;
A two-step process of manufacturing a front rail 102 and a rear rail 103 by 3D printing on the upper surface of the flow path section 101;
a 3-step process of joining the front rail 102 and the rear rail 103 manufactured in the 2-step process to the flow path section 101 by brazing;
a four-step process of manufacturing a labyrinth tooth in the flow path section 101;
A gas turbine shroud block manufacturing method by 3D printing, characterized in that it is manufactured by including.
제6항에 있어서,
상기 2단계 공정에는 최전방측 삽입부(104), 최후방측 삽입부(105), 최전방측 플랜지(106), 최후방측 플랜지(107), 및 케이싱후크홈(108), 플랜지홈(109)을 형성하는 공정이 포함되는 것이 특징인 3D프린팅에 의한 가스터빈 슈라우드 블록 제조방법.
According to claim 6,
In the two-step process, the frontmost insertion part 104, the rearmost insertion part 105, the frontmost flange 106, the rearmost flange 107, the casing hook groove 108, and the flange groove 109 are formed. A method of manufacturing a gas turbine shroud block by 3D printing, characterized in that it includes a process of doing.
KR1020220155358A 2022-11-18 2022-11-18 Method for manufacturing shroud block of gas turbine using 3D printing KR102536162B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020220155358A KR102536162B1 (en) 2022-11-18 2022-11-18 Method for manufacturing shroud block of gas turbine using 3D printing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020220155358A KR102536162B1 (en) 2022-11-18 2022-11-18 Method for manufacturing shroud block of gas turbine using 3D printing

Publications (1)

Publication Number Publication Date
KR102536162B1 true KR102536162B1 (en) 2023-05-26

Family

ID=86536800

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020220155358A KR102536162B1 (en) 2022-11-18 2022-11-18 Method for manufacturing shroud block of gas turbine using 3D printing

Country Status (1)

Country Link
KR (1) KR102536162B1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR970707365A (en) 1994-10-26 1997-12-01 드폴 루이스 에이 Gas turbine blades with cooled shroud (GAS TURBINE BLADE HAVING A COOLED SHROUD)
KR19990088291A (en) * 1998-05-19 1999-12-27 제이 엘. 차스킨, 버나드 스나이더, 아더엠. 킹 Low strain shroud for a turbine
JP2004060660A (en) * 2002-07-30 2004-02-26 General Electric Co <Ge> End surface gap seal for seal segment fixed to end of bucket of steam turbine and its reconstructing method
KR100674288B1 (en) 2001-10-26 2007-01-24 제너럴 일렉트릭 캄파니 Turbine shroud cooling hole diffusers and related method
KR101737716B1 (en) 2011-03-30 2017-05-18 미츠비시 쥬고교 가부시키가이샤 Gas turbine and the outer shroud
KR20190116316A (en) * 2017-02-20 2019-10-14 제너럴 일렉트릭 캄파니 Turbine Components and Manufacturing Methods
KR20200140090A (en) * 2019-06-05 2020-12-15 동아대학교 산학협력단 Laser Welding Apparatus And Method for Welding Using the Same
KR102343928B1 (en) 2020-09-14 2021-12-24 두산중공업 주식회사 Compressor vane shroud assembly and gas turbine comprising it

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR970707365A (en) 1994-10-26 1997-12-01 드폴 루이스 에이 Gas turbine blades with cooled shroud (GAS TURBINE BLADE HAVING A COOLED SHROUD)
KR19990088291A (en) * 1998-05-19 1999-12-27 제이 엘. 차스킨, 버나드 스나이더, 아더엠. 킹 Low strain shroud for a turbine
KR100633907B1 (en) 1998-05-19 2006-10-13 제너럴 일렉트릭 캄파니 Low strain shroud for a turbine
KR100674288B1 (en) 2001-10-26 2007-01-24 제너럴 일렉트릭 캄파니 Turbine shroud cooling hole diffusers and related method
JP2004060660A (en) * 2002-07-30 2004-02-26 General Electric Co <Ge> End surface gap seal for seal segment fixed to end of bucket of steam turbine and its reconstructing method
KR101737716B1 (en) 2011-03-30 2017-05-18 미츠비시 쥬고교 가부시키가이샤 Gas turbine and the outer shroud
KR20190116316A (en) * 2017-02-20 2019-10-14 제너럴 일렉트릭 캄파니 Turbine Components and Manufacturing Methods
KR20200140090A (en) * 2019-06-05 2020-12-15 동아대학교 산학협력단 Laser Welding Apparatus And Method for Welding Using the Same
KR102343928B1 (en) 2020-09-14 2021-12-24 두산중공업 주식회사 Compressor vane shroud assembly and gas turbine comprising it

Similar Documents

Publication Publication Date Title
US8661827B2 (en) Plates having cooling channels, and method for welding the plates and increasing a dimension of the cooling channels adjacent the welded section
CA2922568C (en) A gas turbine laminate seal assembly comprising first and second honeycomb layer and a perforated intermediate seal plate in-between
JP6283232B2 (en) Method for forming a microchannel cooling component
US6113349A (en) Turbine assembly containing an inner shroud
US8613451B2 (en) Cloth seal for turbo-machinery
EP2172620B1 (en) Stator blade ring for an axial compressor
JP5804872B2 (en) Combustor transition piece, gas turbine equipped with the same, and transition piece manufacturing method
US9822659B2 (en) Gas turbine with honeycomb seal
US20120034101A1 (en) Turbine blade squealer tip
EP1803901A2 (en) Apparatur and method for assemblying a gas turbine stator
US5678898A (en) Method for making a brush seal
CN102102542B (en) Turbine blade
EP2497906B1 (en) Method for manufacturing a hot gas path component.
BRPI0416514B1 (en) High Temperature Layering System for Heat Dissipation and Process for Manufacturing
WO2016121163A1 (en) Turbine blade, turbine, and method for manufacturing turbine blade
CN103143796A (en) Honeycomb seal for abradable angel wing
KR102536162B1 (en) Method for manufacturing shroud block of gas turbine using 3D printing
US6565312B1 (en) Fluid-cooled turbine blades
JP2014074408A (en) Spline seal with cooling pathways
US20160348535A1 (en) Impingement cooled spline seal
KR102517073B1 (en) Method of manufacturing labyrinth sealing device using vibration and 3D printing
KR102530268B1 (en) Method of fabricating rotor heat shield segment in gas turbine by 3D printing additive manufacturing
KR101065035B1 (en) How to make sealing seal for transition pieces
JPH11114662A (en) Joining method for casting material and manufacture of turbine blade
KR102120116B1 (en) Turbine blade of gas turbine having cast tip

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant