KR102532523B1 - Manufacturing method of multi-layered glass with anti-reflection and insulating air layer - Google Patents

Manufacturing method of multi-layered glass with anti-reflection and insulating air layer Download PDF

Info

Publication number
KR102532523B1
KR102532523B1 KR1020200150626A KR20200150626A KR102532523B1 KR 102532523 B1 KR102532523 B1 KR 102532523B1 KR 1020200150626 A KR1020200150626 A KR 1020200150626A KR 20200150626 A KR20200150626 A KR 20200150626A KR 102532523 B1 KR102532523 B1 KR 102532523B1
Authority
KR
South Korea
Prior art keywords
coating
glass
double
reflection
glazed
Prior art date
Application number
KR1020200150626A
Other languages
Korean (ko)
Other versions
KR20220065108A (en
Inventor
김광일
박현
Original Assignee
주식회사 이음기술
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 이음기술 filed Critical 주식회사 이음기술
Priority to KR1020200150626A priority Critical patent/KR102532523B1/en
Publication of KR20220065108A publication Critical patent/KR20220065108A/en
Application granted granted Critical
Publication of KR102532523B1 publication Critical patent/KR102532523B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/006Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character
    • C03C17/007Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character containing a dispersed phase, e.g. particles, fibres or flakes, in a continuous phase
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/001General methods for coating; Devices therefor
    • C03C17/002General methods for coating; Devices therefor for flat glass, e.g. float glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C21/00Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface
    • C03C21/001Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions
    • C03C21/002Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions to perform ion-exchange between alkali ions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C23/00Other surface treatment of glass not in the form of fibres or filaments
    • C03C23/0005Other surface treatment of glass not in the form of fibres or filaments by irradiation
    • C03C23/006Other surface treatment of glass not in the form of fibres or filaments by irradiation by plasma or corona discharge
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C23/00Other surface treatment of glass not in the form of fibres or filaments
    • C03C23/0075Cleaning of glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C23/00Other surface treatment of glass not in the form of fibres or filaments
    • C03C23/008Other surface treatment of glass not in the form of fibres or filaments comprising a lixiviation step
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C27/00Joining pieces of glass to pieces of other inorganic material; Joining glass to glass other than by fusing
    • C03C27/06Joining glass to glass by processes other than fusing
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B3/00Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
    • E06B3/66Units comprising two or more parallel glass or like panes permanently secured together
    • E06B3/67Units comprising two or more parallel glass or like panes permanently secured together characterised by additional arrangements or devices for heat or sound insulation or for controlled passage of light
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/40Coatings comprising at least one inhomogeneous layer
    • C03C2217/43Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase
    • C03C2217/46Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase
    • C03C2217/465Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase having a specific shape
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/40Coatings comprising at least one inhomogeneous layer
    • C03C2217/43Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase
    • C03C2217/46Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase
    • C03C2217/47Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase consisting of a specific material
    • C03C2217/475Inorganic materials
    • C03C2217/478Silica
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/70Properties of coatings
    • C03C2217/73Anti-reflective coatings with specific characteristics
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/30Aspects of methods for coating glass not covered above
    • C03C2218/32After-treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Civil Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Structural Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Composite Materials (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

본 발명은 반사 방지 및 단열 공기층을 구비한 복층 유리의 제조방법에 관한 것으로, 본 발명의 복층유리 제조방법은 반사방지막 코팅 공정이 상온 및 대기압에서 진행되기 때문에 고가의 진공장비가 필요하지 않으며, 단 1회의 단층 코팅으로 반사방지 코팅막이 형성되므로 생산 시간 및 생산 비용이 단축될 수 있다.The present invention relates to a method for manufacturing double-glazed glass having an anti-reflection and insulating air layer. The method for manufacturing double-glazed glass of the present invention does not require expensive vacuum equipment because the anti-reflection film coating process is performed at room temperature and atmospheric pressure. Since an antireflection coating film is formed by single-layer coating, production time and production cost can be reduced.

Description

반사 방지 및 단열 공기층을 구비한 복층 유리의 제조방법 {Manufacturing method of multi-layered glass with anti-reflection and insulating air layer}Manufacturing method of multi-layered glass with anti-reflection and insulating air layer {Manufacturing method of multi-layered glass with anti-reflection and insulating air layer}

본 발명은 반사 방지 및 단열 공기층을 구비한 복층 유리의 제조방법에 관한 것이다.The present invention relates to a method for manufacturing a double-glazed glass having an anti-reflective and insulating air layer.

유리는 채광 및 시야 확보를 위해 다양한 건물에서 널리 사용되고 있다. 아파트와 같은 공동주택뿐 아니라, 백화점 및 대형 쇼핑몰과 같이 상품을 진열하여 판매하는 상업 시설에서는 제품의 홍보와 판매를 위해 보다 넓고 투명한 유리가 설치되고 있다. 그러나, 이러한 유리창은 다양한 단열재가 포함된 벽면에 비해 단열 효과가 높지 않다는 문제가 있다. 특히 건물 외부의 유리창을 통한 열손실율은 40%에 달할 정도로 높아, 이를 해결하기 위해 유리판이 이중 구조로 설치된 복층유리의 수요가 증가하고 있다.Glass is widely used in various buildings for light and visibility. In addition to multi-unit dwellings such as apartments, commercial facilities displaying and selling products such as department stores and large shopping malls are installing wider and more transparent glass to promote and sell products. However, such glass windows have a problem in that the thermal insulation effect is not high compared to walls containing various insulators. In particular, the heat loss rate through the glass window outside the building is high enough to reach 40%, and to solve this problem, the demand for double-glazed glass in which glass plates are installed in a double structure is increasing.

이러한 복층유리는 건물 내 창을 통한 열손실율의 감소에는 효과적이지만 2장의 유리 구조에 따른 4개의 표면에서 각각 다중반사가 일어나게 된다. 이 경우 실내에 진열되어 있는 제품의 형태가 명확하게 보이지 않고, 주변에 지저분한 잔상이 발생되게 되며, 결과적으로 유리창 외부에 위치한 고객들에게 판매 제품의 색상, 형태 등의 시각 정보 전달이 정확히 이루어지지 않는다는 어려움이 있다. 이에, 대다수의 상업시설에서는 유리창에 잔상이나 빛 반사가 일어나지 않도록 단층유리를 사용하고 있어, 과도한 열손실에 따른 난방비 및 건물 유지비의 상승으로 이어지고 있는 실정 이거나 다중반사에 의한 정확한 시각 정보 전달 저하를 감소하며 복층유리를 사용하고 있다.This double-glazed glass is effective in reducing heat loss through windows in a building, but multiple reflections occur on each of the four surfaces according to the structure of two sheets of glass. In this case, the shape of the products displayed indoors is not clearly visible, and messy afterimages are generated around the area. there is Accordingly, most commercial facilities use single-layer glass to prevent afterimages or light reflection on glass windows, which leads to an increase in heating and building maintenance costs due to excessive heat loss, or to reduce the deterioration of accurate visual information transmission due to multiple reflections. I am using double glazing.

이러한 배경하에서 본 발명자는 상기와 같은 문제점을 해결하기 위해 예의 노력하여 본 발명을 완성하였다.Under this background, the present inventors have made an earnest effort to solve the above problems and have completed the present invention.

한국공개특허공보 제10-2020-0071291호Korean Patent Publication No. 10-2020-0071291 한국공개특허공보 제10-2013-0045497호Korean Patent Publication No. 10-2013-0045497

본 발명의 하나의 목적은, 세륨산화물 및 린스용제 로 유리를 세정하는 유리 세정 단계; 상기 유리 세정 단계 후, 세정된 유리를 Ar/O2, N2/O2 기체 조건에 의한 상압 플라즈마 방식 또는 강염기성 용액을 통해 표면 처리하는 표면 처리 단계; 상기 표면 처리 단계 후, 표면 처리된 유리의 일 측면을 중공실리카 고형분을 포함하는 용액으로 코팅하는 코팅 단계; 및 상기 코팅 단계 후, 코팅된 2개의 유리를 코팅층이 형성된 측면이 마주보도록 중첩하는 중첩 단계를 포함하는, 반사 방지 및 단열 기능이 향상된 복층 유리의 제조방법을 제공하는 것이다.One object of the present invention is a glass cleaning step of cleaning the glass with cerium oxide and a rinse solvent; After the glass cleaning step, a surface treatment step of surface treating the cleaned glass through an atmospheric plasma method under Ar/O 2 , N 2 /O 2 gas conditions or a strong basic solution; After the surface treatment step, a coating step of coating one side of the surface-treated glass with a solution containing hollow silica solids; And after the coating step, to provide a method for manufacturing double-glazed glass with improved anti-reflection and heat insulation functions, comprising an overlapping step of overlapping the two coated glasses such that the sides on which the coating layers are formed face each other.

상기 목적을 달성하기 위한 본 발명의 하나의 양태는 세륨산화물 및 린스용제로 유리를 세정하는 유리 세정 단계; 상기 유리 세정 단계 후, 세정된 유리를 Ar/O2, N2/O2 기체 조건에 의한 상압 플라즈마 방식 또는 강염기성 용액을 통해 표면 처리하는 표면 처리 단계; 상기 표면 처리 단계 후, 표면 처리된 유리의 일 측면을 중공실리카 고형분을 포함하는 용액으로 코팅하는 코팅 단계; 및 상기 코팅 단계 후, 코팅된 2개의 유리를 코팅층이 형성된 측면이 마주보도록 중첩하는 중첩 단계를 포함하는, 반사 방지 및 단열 기능이 향상된 복층 유리의 제조방법을 제공한다.One aspect of the present invention for achieving the above object is a glass cleaning step of cleaning the glass with cerium oxide and a rinse solvent; After the glass cleaning step, a surface treatment step of surface treating the cleaned glass through an atmospheric plasma method under Ar/O 2 , N 2 /O 2 gas conditions or a strong basic solution; After the surface treatment step, a coating step of coating one side of the surface-treated glass with a solution containing hollow silica solids; and an overlapping step of overlapping the two coated glasses such that the sides on which the coating layers are formed face each other after the coating step.

본 발명에 따르면 서로 마주보는 복층유리 내부 표면에 반사방지 코팅을 하므로 가시광선 투과율이 4.77% 향상된 복층유리를 제조할 수 있다.According to the present invention, since the antireflection coating is applied to the inner surface of the double-glazed glass facing each other, double-glazed glass with improved visible light transmittance by 4.77% can be manufactured.

또한, 반사방지막을 형성함에 있어 모든 공정이 대기압에서 진행되므로 종래의 진공 다층 박막코팅, 모스아이구조 가공 등의 진공 방식 비해 낮은 비용과 높은 생산성의 반사방지막이 적용된 복층유리를 제조할 수 있다.In addition, since all processes in forming the anti-reflection film are performed at atmospheric pressure, it is possible to manufacture double-glazed glass with an anti-reflection film with low cost and high productivity compared to conventional vacuum methods such as vacuum multi-layer thin film coating and moth-eye structure processing.

뿐만 아니라 단 1회의 단층 코팅으로 반사방지기능 및 단열공기층을 갖는 코팅막이 형성되므로 생산시간 및 생산비용이 단축될 수 있다.In addition, since a coating film having an antireflection function and an insulating air layer is formed with only one single-layer coating, production time and production cost can be reduced.

도 1 내지 3은 유리 세정 공정을 나타낸 도이다.
도 4 내지 6은 반사방지막 코팅 전 유리 표면 처리 공정을 나타낸 것이다.
도 7 및 8은 반사방지 용액의 코팅 공정을 나타낸 것이다.
도 9는 코팅막의 열경화 과정을 나타낸 것이다.
도 10은 코팅막의 단면 및 표면 SEM을 나타낸 것이다.
도 11 내지 13은 코팅막이 형성된 복층유리의 광특성 및 단열 특성을 나타낸 것이다.
1 to 3 are diagrams showing a glass cleaning process.
4 to 6 show a glass surface treatment process before coating the antireflection film.
7 and 8 show the coating process of the anti-reflection solution.
9 shows the thermal curing process of the coating film.
10 shows cross-section and surface SEM of the coating film.
11 to 13 show optical properties and heat insulation properties of double-glazed glass on which a coating film is formed.

이를 구체적으로 설명하면 다음과 같다. 한편, 본 발명에서 개시된 각각의 설명 및 실시형태는 각각의 다른 설명 및 실시 형태에도 적용될 수 있다. 즉, 본 발명에서 개시된 다양한 요소들의 모든 조합이 본 발명의 범주에 속한다. 또한, 하기 기술된 구체적인 서술에 의하여 본 발명의 범주가 제한된다고 볼 수 없다.A detailed description of this is as follows. Meanwhile, each description and embodiment disclosed in the present invention may also be applied to each other description and embodiment. That is, all combinations of the various elements disclosed herein fall within the scope of the present invention. In addition, it cannot be seen that the scope of the present invention is limited by the specific descriptions described below.

종래 기술에서는 복층유리의 반사방지를 위해 스퍼터링 (Sputter), CVD(Chemical Vapor Deposition)방식 등을 이용하여 3층 이상의 다층막을 형성하게 되는데, 이러한 다층 반사방지막을 구성하기 위해서는 5.0x10-4Pa 이하의 고진공 조건이 필요하고 3층 이상의 다층막 수와 동일하게 반복 성막 공정이 필요하다. 즉, 고굴절 및 저굴절 재료의 반복 코팅이 수반되어, 결과적으로 생산 비용 및 생산 시간이 증가되는 문제가 있다.In the prior art, in order to prevent reflection of double-glazed glass, a multilayer film of three or more layers is formed using sputtering, a chemical vapor deposition (CVD) method, and the like. High vacuum conditions are required, and the same number of multilayer films as three or more layers requires repeated film formation processes. That is, there is a problem in that repetitive coating of high refractive index and low refractive index materials is involved, resulting in increased production cost and production time.

이러한 종래 기술의 문제를 앞서 해결하기 위해, 본 발명은 세륨산화물 및 린스용제로 유리를 세정하는 유리 세정 단계; 상기 유리 세정 단계 후, 세정된 유리를 Ar/O2, N2/O2 기체 조건에 의한 상압 플라즈마 방식 또는 강염기성 용액을 통해 표면 처리하는 표면 처리 단계; 상기 표면 처리 단계 후, 표면 처리된 유리의 일 측면을 중공실리카 고형분을 포함하는 용액으로 코팅하는 코팅 단계; 및 상기 코팅 단계 후, 코팅된 2개의 유리를 코팅층이 형성된 측면이 마주보도록 중첩하는 중첩 단계를 포함하는, 반사 방지 및 단열 기능이 향상된 복층 유리의 제조방법을 제공한다. In order to solve the problems of the prior art, the present invention is a glass cleaning step of cleaning the glass with cerium oxide and a rinse solvent; After the glass cleaning step, a surface treatment step of surface treating the cleaned glass through an atmospheric plasma method or a strong basic solution under Ar/O 2 , N 2 /O 2 gas conditions; After the surface treatment step, a coating step of coating one side of the surface-treated glass with a solution containing hollow silica solids; and an overlapping step of overlapping the two coated glasses such that the sides on which the coating layers are formed face each other after the coating step.

본 발명은 또한 상기 제조방법으로 제조된 복층 유리를 제공한다.The present invention also provides a double-glazed glass manufactured by the above manufacturing method.

본 발명에 있어서, 상기 표면 처리 단계는 Ar:O2의 비율이 14:6 내지 16:4의 조건에 의한 상압 플라즈마 방식 또는 KOH 0.1 내지 1몰% 수용액을 통해 표면 처리하는 것일 수 있다.In the present invention, the surface treatment step may be surface treatment using an atmospheric plasma method under conditions of an Ar:O 2 ratio of 14:6 to 16:4 or an aqueous solution of 0.1 to 1 mol% KOH.

본 발명에 있어서, 상기 코팅 단계는 표면 처리된 유리의 일 측면을 중공실리카 고형분을 3 내지 30% 농도로 포함하는 용액으로 코팅하는 것일 수 있다. 구체적으로, 상기 코팅 단계에서 코팅되는 용액은 분산제 및 점증제를 추가로 포함할 수 있고, 보다 구체적으로 상기 분산제 및 점증제는 각각 PVP(Polyvinylpyrrolidone) 및 에틸렌글리콜(Ethylen Glycol)일 수 있으며, 각각 3 내지 30% 농도로 포함된 것일 수 있다. In the present invention, the coating step may be to coat one side of the surface-treated glass with a solution containing hollow silica solids at a concentration of 3 to 30%. Specifically, the solution to be coated in the coating step may further include a dispersing agent and a thickening agent, and more specifically, the dispersing agent and the thickening agent may be PVP (Polyvinylpyrrolidone) and ethylene glycol (Ethylen Glycol), respectively, each of 3 It may be included in a concentration of 30% to 30%.

본 발명에 있어서, 상기 코팅 단계는 ?코팅 방식 중 딥코팅, 플로우코팅, 롤코팅 또는 슬롯 다이 코팅 방식으로 이루어지는 것일 수 있다.In the present invention, the coating step may be performed by dip coating, flow coating, roll coating or slot die coating among coating methods.

본 발명에 있어서, 상기 코팅 단계가 슬롯 다이 코팅으로 이루어지는 경우, 접액토출량 400 내지 600 μl, 접액후 대기시간 2.5 내지 3.5초, 코팅 갭 0.1 내지 0.3mm, 및 코팅 속도 15 내지 25mm/초의 조건으로 이루어지는 것일 수 있다.In the present invention, when the coating step is performed by slot die coating, the liquid discharge amount is 400 to 600 μl, the waiting time after liquid contact is 2.5 to 3.5 seconds, the coating gap is 0.1 to 0.3 mm, and the coating speed is 15 to 25 mm / sec. it could be

본 발명에 있어서, 상기 코팅 단계가 딥코팅으로 이루어지는 경우, 유리 배출 시간 55 내지 65mm/초, 건조 온도 75 내지 85℃의 조건으로 이루어지는 것일 수 있다.In the present invention, when the coating step is performed by dip coating, it may be performed under conditions of a glass discharge time of 55 to 65 mm/sec and a drying temperature of 75 to 85 °C.

본 발명에 있어서, 상기 코팅 단계를 통해 유리의 일 측면에 형성된 반사방지막의 굴절율은 1.20 내지 1.30, 또는 1.25인 것일 수 있다. 이는 유리의 굴절률 1.5의 상쇄간섭을 유발할 수 있는 굴절율로서, 반사를 효과적으로 방지하는 특성을 나타낸다.In the present invention, the refractive index of the antireflection film formed on one side of the glass through the coating step may be 1.20 to 1.30, or 1.25. This is a refractive index capable of causing destructive interference of the refractive index of 1.5 of glass, and exhibits a characteristic of effectively preventing reflection.

본 발명에 있어서, 상기 세정 단계는, 물에 10 내지 30% 분산된 입자크기 0.1 내지 20 μm의 CeO2(세륨산화물) 용액과 린스용제로 세정하는 것일 수 있고, 구체적으로 20% 분산된 입자크기 5 내지 15μm의 세륨산화물 용액과 린스용제로 하는 것일 수 있다.In the present invention, the cleaning step may be cleaning with a CeO 2 (cerium oxide) solution having a particle size of 0.1 to 20 μm dispersed in water at a concentration of 10 to 30% and a rinsing solvent, specifically, a particle size dispersed at 20% It may be a cerium oxide solution of 5 to 15 μm and a rinsing solvent.

본 발명에 있어서, 상기 코팅 단계에서 유리의 일측면에 코팅되는 반사방지 용액은 중공실리카 고형분이 3~30%, 10~20% 또는 15%로 포함된 용액일 수 있다.In the present invention, the antireflection solution coated on one side of the glass in the coating step may be a solution containing 3 to 30%, 10 to 20% or 15% of hollow silica solids.

본 발명에 있어서, 상기 복층 유리의 제조방법은 코팅 단계 이후 열경화 단계를 포함할 수 있다. 상기 열경화 단계는 600~750℃로 가열된 Inline Conveyor 방식의 강화로를 사용하는 것일 수 있다. 이러한 열경화 단계가 추가될 경우, 반사방지막의 경화시간을 단축시킬 뿐만 아니라 복층유리 제조시 불가피하게 진행하여야 열강화로 진행 공정에서 반사방지막 경화까지 진행하게 되므로 별도의 열경화 공정을 추가로 투자, 증설할 필요가 없어 비용절감이 가능하다.In the present invention, the manufacturing method of the double-glazed glass may include a thermal curing step after the coating step. The thermal curing step may be to use an inline conveyor-type strengthening furnace heated to 600 to 750 ° C. When such a thermal curing step is added, it not only shortens the curing time of the anti-reflection film, but also inevitably proceeds in the manufacture of double-glazed glass, so that the heat-strengthening process proceeds to the anti-reflection film curing, so a separate thermal curing process is additionally invested, It is possible to reduce costs as there is no need for expansion.

본 발명에 있어서, 상기 중첩 단계는 반사방지막이 서로 마주보도록 2개의 유리판을 겹치는 단계로서, 상부와 하부에 지지수단을 적용하며, 반사 방지막 사이의 공간이 3 내지 20mm 또는 6 내지 12mm로 형성되도록 중첩하는 것일 수 있다.In the present invention, the overlapping step is a step of overlapping two glass plates so that the anti-reflection films face each other, applying support means to the upper and lower portions, and overlapping the space between the anti-reflection films to form 3 to 20 mm or 6 to 12 mm. it may be

이하 본 발명을 실시예를 통하여 보다 상세하게 설명한다. 그러나 이들 실시예는 본 발명을 예시적으로 설명하기 위한 것으로 본 발명의 범위가 이들 실시예에 한정되는 것은 아니다. Hereinafter, the present invention will be described in more detail through examples. However, these examples are intended to illustrate the present invention by way of example, and the scope of the present invention is not limited to these examples.

제조예 1: 반사방지 유리 제조Preparation Example 1: Preparation of anti-reflection glass

먼저, 반사방지막 형성 단계에서 이물질에 의한 불량 발생을 방지하기 위해 유리 세정(Glass Cleaning)을 실시하였다. 구체적으로, 물에 20% 분산된 입자크기 0.1 내지 20 μm의 CeO2(세륨산화물) 용액과 린스용제로 세정하였다. 연마패드는 스폰지 또는 브러쉬 형태의 연마패드를 사용하였고, 다중의 평면회전 방식으로 회전속도는 500~1800 rpm으로 하였다. (도 1 내지 3)First, in the antireflection film forming step, glass cleaning was performed to prevent defects caused by foreign substances. Specifically, it was washed with a CeO 2 (cerium oxide) solution having a particle size of 0.1 to 20 μm dispersed in 20% water and a rinsing solvent. A polishing pad in the form of a sponge or brush was used, and the rotational speed was 500 to 1800 rpm in a multi-plane rotation method. (Figures 1 to 3)

다음으로 반사방지막이 균일하게 형성될 수 있도록, 코팅 전 표면처리를 진행하였다. 구체적으로, Ar/O2, N2/O2 Gas를 함께 사용하는 상압 Plasma 방식을 사용하였으며, 다른 제조예에서는 KOH 강염기성 용액을 이용해 표면처리를 진행하였다. 상압 프라즈마의 공정에서는 Ar(아르곤가스) : O2(산소)의 비율이 15:5 lpm으로 설정된 조건에서 실시하였다. (도 4 내지 6)Next, surface treatment was performed before coating so that the antireflection film could be uniformly formed. Specifically, an atmospheric pressure plasma method using Ar/O 2 and N 2 /O 2 Gas was used, and in another manufacturing example, surface treatment was performed using a KOH strong basic solution. In the atmospheric plasma process, the ratio of Ar (argon gas): O 2 (oxygen) was set to 15:5 lpm. (FIGS. 4 to 6)

다음으로, 유리판의 일측면에 반사방지 용액을 코팅하였다. 유리판에 코팅되는 반사방지 용액은 점증제, 분산제, 및 중공실리카 고형분 15%가 포함된 용액으로 사용하였다.Next, an antireflection solution was coated on one side of the glass plate. The antireflection solution coated on the glass plate was used as a solution containing a thickener, a dispersant, and 15% hollow silica solids.

반사방지 용액의 코팅은 ?코팅 방식을 사용하였으며, 다른 제조예에서는 딥코팅, 롤코팅, 슬롯 다이 코팅 방식을 각각 사용하였다. 코팅조건은 유리의 이동속도를 10mm/s~100mm/s로 고형분량에 따라 달리하여 코팅을 진행하였다. (도 7 및 8) 슬롯 다이 코팅으로 진행하는 경우, 광투과율 향상이 최적화 되는 조건으로서, 접액토출량 500 μl, 접액후 대기시간 3초, 코팅 갭 0.2mm, 코팅 속도 20mm/초로 진행하였다. 딥코팅 방법의 경우, 유리 배출 시간 60mm/초, 건조 온도 80℃로 진행하였다.The coating of the antireflection solution was performed using a coating method, and in other manufacturing examples, a dip coating method, a roll coating method, and a slot die coating method were used, respectively. Coating conditions were carried out by changing the moving speed of the glass from 10 mm / s to 100 mm / s according to the amount of solids. (FIG. 7 and 8) In the case of slot die coating, as conditions for optimizing the light transmittance improvement, the liquid discharge amount was 500 μl, the waiting time after liquid contact was 3 seconds, the coating gap was 0.2 mm, and the coating speed was 20 mm/sec. In the case of the dip coating method, the glass discharge time was 60 mm/sec and the drying temperature was 80°C.

다음으로, 강화유리제조공정의 일부로서 열강 화로를 거치면서 자연스럽게 코팅막의 열경화가 진행되도록 하였다. 이 경우 코팅막이 내구성을 유지하면서도 효율적으로 열경화가 이루어질 수 있도록, 600~750℃로 가열된 Inline Conveyor 방식의 강화로를 사용하였다 (도 9). 이후 유리를 재단한 후 반사 방지막이 코팅된 면이 서로 마주보도록 중첩시켰으며, 상부와 하부에 지지수단을 적용하여 반사 방지막 사이의 공간이 10mm로 확보되도록 복층 유리를 제조하였다.Next, as part of the tempered glass manufacturing process, the thermal curing of the coating film was allowed to proceed naturally while passing through a thermal tempering furnace. In this case, an inline conveyor type strengthening furnace heated to 600 ~ 750 ° C was used so that the coating film could be efficiently thermally cured while maintaining durability (FIG. 9). Thereafter, the glass was cut and overlapped so that the surfaces coated with the anti-reflection film faced each other, and support means were applied to the top and bottom to manufacture double-glazed glass so that a space between the anti-reflection film was 10 mm.

제조예 2: 반사방지 유리 비교예 제조Preparation Example 2: Preparation of Comparative Example of Anti-Reflective Glass

상기 제조예 1의 방법과 동일한 방법으로 제조하되, 반사방지 용액을 중공실리카 고형분이 35%로 포함된 용액을 사용하여 복층 유리를 제조하였다.It was prepared in the same manner as in Preparation Example 1, but the double-glazed glass was prepared using a solution containing 35% hollow silica solids as the antireflection solution.

제조예 3: 반사방지 유리 비교예 제조Preparation Example 3: Preparation of Comparative Example of Anti-reflection Glass

상기 제조예 1의 방법과 동일한 방법으로 제조하되, 슬롯 다이 코팅으로 반사방지 용액을 코팅하는 과정에서 접액토출량 500 μl, 접액후 대기시간 3초, 코팅 갭 0.2mm, 코팅 속도 40mm/초로 진행하여 복층 유리를 제조하였다.It is prepared in the same manner as in Preparation Example 1, but in the process of coating the antireflection solution by slot die coating, the liquid discharge amount is 500 μl, the waiting time after liquid contact is 3 seconds, the coating gap is 0.2 mm, and the coating speed is 40 mm / second. glass was made.

제조예 4: 반사방지 유리 비교예 제조Preparation Example 4: Preparation of Comparative Example of Anti-reflection Glass

상기 제조예 1의 방법과 동일한 방법으로 제조하되, 반사 방지막이 코팅된 면이 서로 마주보도록 중첩시킨 후 반사 방지막 사이의 공간이 30mm로 확보되도록 복층 유리를 제조하였다.It was manufactured in the same manner as in Preparation Example 1, but the anti-reflection film-coated surfaces were overlapped so that the anti-reflection film faces each other, and then the double-glazed glass was manufactured such that a space between the anti-reflection film was secured at 30 mm.

실험예 1: 복층 유리의 광특성 및 단열효과 측정Experimental Example 1: Measurement of optical properties and insulation effect of double glazing

먼저, 상기 제조예에서 제조된 유리의 표면에 반사방지막이 고르게 코팅되었는지 여부를 확인하기 위해, 전자현미경으로 반사 방지막 형성 이미지를 촬영하였다. 그 결과, 도 10과 같이 단면 및 표면 모두에서 유리판의 일 측면에 코팅 조성물이 균일하게 코팅되어 있으며, 약 450nm의 두께로 형성되었음을 확인하였다. First, in order to check whether the anti-reflection film was evenly coated on the surface of the glass prepared in the above preparation example, an anti-reflection film formation image was taken with an electron microscope. As a result, as shown in FIG. 10, it was confirmed that the coating composition was uniformly coated on one side of the glass plate in both the cross section and the surface, and was formed to a thickness of about 450 nm.

추가적으로, 유리판 측면에 형성된 반사방지막의 굴절률을 Intins사의 굴절률 측정기(UNECS-1500m)를 사용하여 측정한 결과 반사방지 단층막이 1.25의 굴절률을 가짐을 확인하였고, 이는 유리의 1.5 굴절률에 대해 상쇄 간섭을 유발할 수 있는 굴절률임을 알 수 있다.Additionally, as a result of measuring the refractive index of the antireflection film formed on the side of the glass plate using Intins' refractive index meter (UNECS-1500m), it was confirmed that the antireflection monolayer film had a refractive index of 1.25, which would cause destructive interference with respect to the refractive index of 1.5 of the glass. It can be seen that the refractive index can be

다음으로, 상기 제조예에서 제조된 복층 유리의 광특성(투과율) 측정을 위해, Thermo Scientific 사의 Evolution 300 UV-Vis Spectrophotometer를 사용하여 광투과율을 측정하였다.Next, in order to measure the optical properties (transmittance) of the double-glazed glass prepared in the above Preparation Example, the light transmittance was measured using an Evolution 300 UV-Vis Spectrophotometer from Thermo Scientific.

그 결과 표 1, 도 11 및 도 12와 같이, 반사 방지막 용액을 이용해 코팅되지 않은 복층 유리에 비해, 반사방지막이 코팅된 복층 유리 제품에서 투과율이 향상되었음을 확인하였다. 구체적으로 빛의 파장을 고려할 때 평균적으로는 4.7%의 향상치를 보였고, 사람이 인식하는 가시광선 파장에서는 5.5%까지 투과율이 향상하였음을 확인하였다. 이는 반사방지막이 코팅된 복층유리에서는 빛이 반사되지 않고 그대로 투과하는 정도가 현저히 높은 것으로, 이러한 복층유리를 통해 상업시설 유리창에서의 고질적인 빛반사 문제점이 더욱 개선될 수 있음을 알 수 있다.As a result, as shown in Table 1 and FIGS. 11 and 12, it was confirmed that the transmittance was improved in the double-glazed glass product coated with the anti-reflection film compared to the double-glazed glass not coated with the anti-reflection film solution. Specifically, when considering the wavelength of light, it showed an average improvement of 4.7%, and it was confirmed that the transmittance improved up to 5.5% in the visible light wavelength recognized by humans. This is because the double-glazed glass coated with the antireflection film has a remarkably high degree of transmission of light as it is without being reflected, and it can be seen that the chronic light reflection problem in the glass windows of commercial facilities can be further improved through such double-glazed glass.

200903 기존의
복층 10mm 간격 bare
2009 03 conventional
Double layer 10mm gap bare
200903 반사방지 코팅된 복층 간격10mm AR200903 Anti-reflection coating double-layer spacing 10mm AR 투과율 향상치Transmittance improvement value
투과율 평균(300nm~800nm)Transmittance average (300nm to 800nm) 84.66203576 %84.66203576% 89.43806895 %89.43806895% 4.776033187 %
4.776033187%
투과율 550nm(가시광 중심파장)Transmittance 550 nm (central wavelength of visible light) 85.314974 %85.314974% 90.824711 %90.824711% 5.509737 %5.509737%

다음으로, 반사방지막이 코팅된 복층 유리의 단열 기능을 확인하고자 하였다. 반사방지막이 코팅되지 않은 기존의 복층유리와, 제조예 1의 복층유리 각각의 열전도도를 Sweden Hotdisk사의 열전도도측정기를 이용하여 측정하였다. 그 결과, 하기 표 2와 같이 순수유리의 열전도도에 비해, 제조예 1의 복층유리의 열전도도가 현저하게 감소되어 단열 성능이 향상됨을 확인하였다. 이 경우 단열성능을 더 높이기 위해 제조예 2와 같이 코팅층의 두께와 코팅 용액의 농도를 높일 수 있으나, 그에 따라 광투과도가 낮아져 빛반사가 심해질 수 있으므로, 적절한 투과율을 갖도록 적절한 두께로 코팅될 필요가 있음을 알 수 있다. 또한 제조예 3 및 4의 결과를 고려할 때, 적절한 코팅 조건과, 반사 방지막 사이의 거리 또한 복층유리의 기능 확보에 필요함을 알 수 있다.Next, the heat insulating function of the double-glazed glass coated with the antireflection film was examined. The thermal conductivity of each of the existing double-glazed glass and the double-glazed glass of Preparation Example 1 not coated with the antireflection film was measured using a thermal conductivity meter from Sweden Hotdisk. As a result, as shown in Table 2 below, it was confirmed that the thermal conductivity of the double-glazed glass of Preparation Example 1 was significantly reduced compared to the thermal conductivity of the pure glass, thereby improving the thermal insulation performance. In this case, the thickness of the coating layer and the concentration of the coating solution may be increased as in Preparation Example 2 in order to further increase the insulation performance, but the light transmittance may be lowered accordingly and the light reflection may become severe. it can be seen that there is In addition, considering the results of Preparation Examples 3 and 4, it can be seen that appropriate coating conditions and the distance between the antireflection films are also necessary to secure the function of the double-glazed glass.

순수 유리pure glass 제조예 1Preparation Example 1 제조예 2Preparation Example 2 제조예 3Preparation Example 3 제조예 4Production Example 4 열전도도thermal conductivity 895mW/m·K895mW/m K 181mW/m·K181mW/m K 175W/m·K175W/m K 346W/m·K346W/m K 287W/m·K287W/m K

이상의 설명으로부터, 본 발명이 속하는 기술분야의 당업자는 본 발명이 그 기술적 사상이나 필수적 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 이와 관련하여, 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적인 것이 아닌 것으로 이해해야만 한다. 본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허 청구범위의 의미 및 범위 그리고 그 등가 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.From the above description, those skilled in the art to which the present invention pertains will be able to understand that the present invention may be embodied in other specific forms without changing its technical spirit or essential features. In this regard, it should be understood that the embodiments described above are illustrative in all respects and not limiting. The scope of the present invention should be construed as including all changes or modifications derived from the meaning and scope of the claims to be described later and equivalent concepts rather than the detailed description above are included in the scope of the present invention.

Claims (6)

세륨산화물 및 린스용제로 유리를 세정하는 유리 세정 단계;
상기 유리 세정 단계 후, 세정된 유리를 Ar:O2의 부피비율이 14:6 내지 16:4인 기체 조건에 의한 상압 플라즈마 방식 또는 강염기성 용액을 통해 표면 처리하는 표면 처리 단계;
상기 표면 처리 단계 후, 표면 처리된 유리의 일 측면을 중공실리카 고형분을 35중량%로 포함하는 용액으로 코팅하는 코팅 단계; 및
상기 코팅 단계 후, 코팅된 2개의 유리를 코팅층 사이의 간격이 6 내지 12mm로 형성되며 코팅층이 형성된 측면이 마주보도록 중첩하는 중첩 단계를 포함하는, 상기 코팅층이 1.25의 굴절률을 가지며 상기 코팅 단계가 이루어지지 않은 복층 유리에 비해 빛 투과율이 향상되어 빛 반사가 방지되고, 및 상기 코팅 단계가 이루어지지 않은 복층 유리에 비해 열전도도가 감소되어 단열 기능이 향상된 복층 유리의 제조방법으로서,
상기 코팅 단계는 Ÿ‡코팅 방식 중 딥코팅, 플로우코팅, 롤코팅 또는 슬롯 다이 코팅 방식으로 이루어지는 것이고,
상기 코팅 단계가 슬롯 다이 코팅으로 이루어지는 경우, 접액토출량 400 내지 600 μl, 접액후 대기시간 2.5 내지 3.5초, 코팅 갭 0.1 내지 0.3mm, 및 코팅 속도 15 내지 25mm/초의 조건으로 이루어지는 것이고,
상기 코팅 단계가 딥코팅으로 이루어지는 경우, 유리 배출 시간 55 내지 65mm/초, 건조 온도 75 내지 85℃의 조건으로 이루어지는 것이고, 복층 유리의 제조방법.
A glass cleaning step of cleaning the glass with cerium oxide and a rinse solvent;
After the glass cleaning step, a surface treatment step of surface treating the cleaned glass through an atmospheric plasma method or a strong basic solution under a gas condition in which the volume ratio of Ar:O 2 is 14:6 to 16:4;
After the surface treatment step, a coating step of coating one side of the surface-treated glass with a solution containing 35% by weight of hollow silica solids; and
After the coating step, the coating layer has a refractive index of 1.25 and the coating step comprises an overlapping step of overlapping the two coated glasses so that the side surfaces on which the coating layers are formed face each other with a distance between the coating layers of 6 to 12 mm. A method for manufacturing double-glazed glass in which light transmittance is improved compared to double-glazed glass that is not coated to prevent light reflection, and thermal conductivity is reduced compared to double-glazed glass without the coating step, thereby improving heat insulation function,
The coating step is made of dip coating, flow coating, roll coating or slot die coating among coating methods,
When the coating step is performed by slot die coating, the contact liquid discharge amount is 400 to 600 μl, the waiting time after contact is 2.5 to 3.5 seconds, the coating gap is 0.1 to 0.3 mm, and the coating speed is 15 to 25 mm / sec.
When the coating step is performed by dip coating, it is made under conditions of a glass discharge time of 55 to 65 mm/sec and a drying temperature of 75 to 85 ° C.
삭제delete 삭제delete 삭제delete 삭제delete 제1항에 있어서, 상기 코팅 단계 이후 열경화 단계로서, 600~750℃로 가열된 Inline Conveyor 방식의 강화로를 이용해 코팅막의 열경화를 진행하는 단계를 포함하는, 복층 유리의 제조방법.
The method of claim 1, comprising the step of thermally curing the coating film using an inline conveyor-type strengthening furnace heated to 600 to 750 ° C as a thermal curing step after the coating step.
KR1020200150626A 2020-11-12 2020-11-12 Manufacturing method of multi-layered glass with anti-reflection and insulating air layer KR102532523B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020200150626A KR102532523B1 (en) 2020-11-12 2020-11-12 Manufacturing method of multi-layered glass with anti-reflection and insulating air layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200150626A KR102532523B1 (en) 2020-11-12 2020-11-12 Manufacturing method of multi-layered glass with anti-reflection and insulating air layer

Publications (2)

Publication Number Publication Date
KR20220065108A KR20220065108A (en) 2022-05-20
KR102532523B1 true KR102532523B1 (en) 2023-05-15

Family

ID=81798682

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200150626A KR102532523B1 (en) 2020-11-12 2020-11-12 Manufacturing method of multi-layered glass with anti-reflection and insulating air layer

Country Status (1)

Country Link
KR (1) KR102532523B1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020055736A (en) * 2018-10-03 2020-04-09 セントラル硝子株式会社 Adiabatic three-layered multiple glass for window glass

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101330462B1 (en) 2011-10-26 2013-11-15 (주)엘지하우시스 Pair glass having wide band width noise reduction effect
WO2014175124A1 (en) * 2013-04-24 2014-10-30 旭硝子株式会社 Substrate having antireflective layer
KR102171184B1 (en) 2018-12-11 2020-10-28 (주)합동하이텍그라스 Method for manufacturing curved multi-layer glass

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020055736A (en) * 2018-10-03 2020-04-09 セントラル硝子株式会社 Adiabatic three-layered multiple glass for window glass

Also Published As

Publication number Publication date
KR20220065108A (en) 2022-05-20

Similar Documents

Publication Publication Date Title
JP5722346B2 (en) High quality radiation control coating, radiation control glass and manufacturing method
EP3085673B1 (en) Glass with anti-reflection film and method for manufacturing same
US7169441B2 (en) Method for making a UV-reflecting interference layer system
US6190776B1 (en) Heat treatable coated glass
ES2588735T3 (en) Multiple insulating glazing comprising two stacks of low emissivity
US10526244B2 (en) Insulated glazing unit
US8932723B2 (en) Low emissivity glass comprising dielectric layer and method for producing the same
KR101873103B1 (en) Functional building material including low-emissivity coat for windows
JP7149962B2 (en) coated substrate
KR101926960B1 (en) Low Reflection Coating Glass
EP2918765B1 (en) Super-insulating multi-layer glass
CN105481267A (en) High-penetrability single-sliver low-emissivity coated glass for subsequent processing and production technology thereof
WO2016163199A1 (en) Glass sheet and method for manufacturing same
KR102532523B1 (en) Manufacturing method of multi-layered glass with anti-reflection and insulating air layer
CN105347696A (en) Temperable low-emissivity coated glass with good light transmission and preparation method thereof
WO2019157799A1 (en) Method for preparing low-radiation coated glass
KR20120028224A (en) Double window system for cut-off infrared rays
KR20170032530A (en) Functional building material including low-emissivity coat for windows
KR101972364B1 (en) Low-emissivity coat and functional building material including low-emissivity coat for windows
CN205011642U (en) Low radiation coated glass of two silver and because this coated glass's laminated glass goods
JP2014124815A (en) Low-radiation film
CN213506594U (en) Low-radiation curtain wall glass
RU2611101C2 (en) Low-emissivity coated glass
CN105439467A (en) High-transmittance, double-silver and low-emissivity coated glass facilitating subsequent processing and production process of high-transmittance, double-silver and low-emissivity coated glass
JP2006143525A (en) Multiple glass

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant