KR102525782B1 - Perfluorosulfonic acid ionomer coating composition for fuel cell membrane production and method for manufacturing the same - Google Patents

Perfluorosulfonic acid ionomer coating composition for fuel cell membrane production and method for manufacturing the same Download PDF

Info

Publication number
KR102525782B1
KR102525782B1 KR1020220013449A KR20220013449A KR102525782B1 KR 102525782 B1 KR102525782 B1 KR 102525782B1 KR 1020220013449 A KR1020220013449 A KR 1020220013449A KR 20220013449 A KR20220013449 A KR 20220013449A KR 102525782 B1 KR102525782 B1 KR 102525782B1
Authority
KR
South Korea
Prior art keywords
coating composition
perfluorosulfonic acid
acid ionomer
fuel cell
methyl
Prior art date
Application number
KR1020220013449A
Other languages
Korean (ko)
Inventor
최재원
임석희
김용현
Original Assignee
주식회사 정석케미칼
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 정석케미칼 filed Critical 주식회사 정석케미칼
Priority to PCT/KR2022/019152 priority Critical patent/WO2023128326A1/en
Application granted granted Critical
Publication of KR102525782B1 publication Critical patent/KR102525782B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1032Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having sulfur, e.g. sulfonated-polyethersulfones [S-PES]
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2218Synthetic macromolecular compounds
    • C08J5/2231Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions involving unsaturated carbon-to-carbon bonds
    • C08J5/2243Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions involving unsaturated carbon-to-carbon bonds obtained by introduction of active groups capable of ion-exchange into compounds of the type C08J5/2231
    • C08J5/225Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions involving unsaturated carbon-to-carbon bonds obtained by introduction of active groups capable of ion-exchange into compounds of the type C08J5/2231 containing fluorine
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/22Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers modified by chemical after-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • H01M8/1081Polymeric electrolyte materials characterised by the manufacturing processes starting from solutions, dispersions or slurries exclusively of polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

The present invention relates to a perfluorosulfonic acid ionomer coating composition for manufacturing a fuel cell separator and a method for manufacturing the same. The present invention includes a perfluorosulfonic acid ionomer and a fluorine-containing silane compound in a dispersion in which water and alcohol are mixed, so that dispersibility of the perfluorosulfonic acid ionomer coating composition of the present invention can be improved, and the durability of a porous support membrane impregnated with the coating composition can be improved to prevent battery performance from deteriorating even after several operations of a fuel cell.

Description

연료전지 분리막 제조용 과불화술폰산 이오노머 코팅 조성물 및 이의 제조방법{Perfluorosulfonic acid ionomer coating composition for fuel cell membrane production and method for manufacturing the same}Perfluorosulfonic acid ionomer coating composition for manufacturing fuel cell separator and method for manufacturing the same {Perfluorosulfonic acid ionomer coating composition for fuel cell membrane production and method for manufacturing the same}

본 발명은 연료전지 분리막 제조용 과불화술폰산 이오노머 코팅 조성물 및 이의 제조방법에 관한 것이다.The present invention relates to a perfluorosulfonic acid ionomer coating composition for manufacturing a fuel cell separator and a method for preparing the same.

고분자전해질 연료전지(Polymer electrolyte membrane fuel cells: PEMFCs)는 수소이온(프로톤, H+)만을 선택적으로 투과하는 고분자 전해질막(Polymer electrolyte membrane: PEM)을 기반으로, 수소 기체의 전기화학적 촉매반응(electro-catalytic reaction)을 이용하여 고효율 에너지를 발생시키는 무공해 에너지전환시스템이다.Polymer electrolyte membrane fuel cells (PEMFCs) are based on a polymer electrolyte membrane (PEM) that selectively transmits only hydrogen ions (protons, H + ). It is a pollution-free energy conversion system that generates high-efficiency energy using -catalytic reaction.

이러한 고분자전해질 연료전지의 고분자 전해질막이나 촉매바인더(catalyst binder)의 대표적 소재로는 듀폰사의 나피온(Nafion)과 같은 과불소계 술폰화 이오노머(Perfluorinated sulfonic acid ionomers, PFSA)를 들 수 있다.Representative materials for polymer electrolyte membranes or catalyst binders of polymer electrolyte fuel cells include perfluorinated sulfonic acid ionomers (PFSA) such as DuPont's Nafion.

과불소계 술폰화 이오노머(PFSA)는 높은 수소이온 전도성과 우수한 화학적 안정성을 갖는다고 알려져 있으나, 건조상태에서 운전될 경우 물의 자발적 증발로 인해 수소이온전도성이 빠르게 저하되는 문제점과 가혹조건에서의 화학적/전기화학적 분해가 발생하는 치명적 약점을 보인다. 이러한 문제를 해결코자 도입된 개념이 화학적 내구성이 우수한 다공성 지지체에 과불소계/부분불소계/탄화수소계 수소이온전도성 이오노머가 함침된 강화복합막(pore-filling membrane; PFM)이다.Perfluorine-based sulfonated ionomer (PFSA) is known to have high hydrogen ion conductivity and excellent chemical stability, but when operated in a dry state, the hydrogen ion conductivity rapidly deteriorates due to spontaneous evaporation of water and chemical/electrical problems under harsh conditions. Shows fatal weakness where chemical decomposition occurs. To solve this problem, a concept introduced is a porous support having excellent chemical durability, which is impregnated with a perfluorine/partial fluorine/hydrocarbon based hydrogen ion conductive ionomer (pore-filling membrane; PFM).

효과적인 PFM 제조를 위해 이오노머는 용매에 완전 용해되거나 분산상태로 제조되어야 한다. 이때 막성형(film formation)을 위한 용매제거 시 환경문제, 성형의 용이성, 용매의 완전제거를 달성하기 위해서는 유기용매 대신 물과 알코올 공용매 사용이 바람직하다. 이렇게 고분자 전해질막, 촉매바인더, PFM 제조에 사용되는 과불소술폰산계 이오노머는 에멀젼 중합으로 제조되어 물과 이소프로필 알코올 공용매 상의 에멀젼 상태로 사용된다.For effective PFM production, the ionomer must be completely dissolved or dispersed in a solvent. At this time, in order to achieve environmental problems, ease of molding, and complete removal of the solvent when removing the solvent for film formation, it is preferable to use water and alcohol co-solvent instead of the organic solvent. Thus, the perfluorosulfonic acid-based ionomer used in the manufacture of polymer electrolyte membranes, catalyst binders, and PFM is prepared by emulsion polymerization and used in an emulsion state of water and isopropyl alcohol co-solvent.

과불화술폰산계 이오노머의 에멀전 중합의 예시로는, US 2005/0096442, US 7,071,271에서와 같이 수성 에멀젼 중합을 통해 불소 모노머로부터 과불소계 술폰화 이오노머(PFSA) 에멀젼을 만드는 방법이 개시되어 있다. 이 방법은 물과 알코올 공용매 조건에서 상대적으로 안정된 친수화도를 갖는 과불소술폰산계 이오노머(PFSA) 수성 에멀젼을 만드는데 효과적이다. 하지만 에멀젼 중합 고유의 합성적 특징으로 인해 고 분자량을 얻는데 한계를 가지며, 막 전극 접합체(MEA)에 도입하여 연료전지를 가동할 때 전해질 막의 낮은 내구성으로 인해, 연료전지의 가동 성능이 저하되는 문제점이 있었다.As examples of emulsion polymerization of perfluorosulfonic acid-based ionomers, methods for preparing perfluorinated sulfonated ionomer (PFSA) emulsions from fluorine monomers through aqueous emulsion polymerization are disclosed in US 2005/0096442 and US 7,071,271. This method is effective in preparing an aqueous emulsion of perfluorosulfonic acid-based ionomer (PFSA) having a relatively stable hydrophilicity under water and alcohol co-solvent conditions. However, due to the inherent synthetic characteristics of emulsion polymerization, there is a limit to obtaining high molecular weight, and when the fuel cell is operated by introducing it into a membrane electrode assembly (MEA), the operation performance of the fuel cell is lowered due to the low durability of the electrolyte membrane. there was.

이에, 본 발명자들은 상기와 같은 문제점을 해결하기 위하여 새로운 과불화술폰산 이오노머 코팅 조성물을 찾던 중, 우수한 이온 전도도를 갖고 고분자 전해질 막의 기계적 내구성을 현저히 향상시키는 코팅 조성물을 발명함으로써 본 발명을 완성하였다. Accordingly, the inventors of the present invention completed the present invention by inventing a coating composition having excellent ionic conductivity and significantly improving the mechanical durability of a polymer electrolyte membrane while searching for a new perfluorosulfonic acid ionomer coating composition to solve the above problems.

미국등록특허 제7,071,271호(2005.05.05. 공고)US Patent No. 7,071,271 (Announced on May 5, 2005)

본 발명의 목적은 다공성 지지체 코팅에 적합한 특정 입도 범위를 도출하여, 우수한 이온 전도도를 가짐과 동시에 고분자 전해질 막의 기계적 내구성을 현저히 향상시키는 연료전지 분리막 제조용 과불화술폰산 이오노머 코팅 조성물을 제공하는 것이다.An object of the present invention is to provide a perfluorosulfonic acid ionomer coating composition for preparing a fuel cell separator having excellent ionic conductivity and significantly improving mechanical durability of a polymer electrolyte membrane by deriving a specific particle size range suitable for coating a porous support.

상기 목적을 달성하기 위하여,In order to achieve the above purpose,

본 발명은 물과 알코올을 2:8 내지 5:5의 중량비로 배합한 분산매, 과불화술폰산 이오노머 및 불소 함유 실란 화합물을 포함하는 연료전지 분리막 제조용 과불화술폰산 이오노머 코팅 조성물을 제공한다.The present invention provides a perfluorosulfonic acid ionomer coating composition for preparing a fuel cell separator comprising a dispersion medium in which water and alcohol are mixed in a weight ratio of 2:8 to 5:5, a perfluorosulfonic acid ionomer, and a fluorine-containing silane compound.

본 발명은 물과 알코올을 배합한 분산매에 과불화술폰산 이오노머 및 불소 함유 실란 화합물을 포함시킴으로써, 본 발명의 과불화술폰산 이오노머 코팅 조성물의 분산성을 향상시킬 수 있고, 상기 코팅 조성물에 함침된 다공성 지지체 막의 내구성이 향상되어 수차례 연료전지 가동 후에도 전지 성능이 저하되는 것을 억제할 수 있다.The present invention can improve the dispersibility of the perfluorosulfonic acid ionomer coating composition of the present invention by including a perfluorosulfonic acid ionomer and a fluorine-containing silane compound in a dispersion medium containing water and alcohol, and a porous support impregnated in the coating composition The durability of the membrane is improved, and it is possible to suppress cell performance deterioration even after operating the fuel cell several times.

도 1은 본 발명의 연료전지 분리막 제조용 과불화술폰산 이오노머 코팅 조성물을 제조하기 위해 사용되는 고압 반응기를 나타낸 단면도이다.1 is a cross-sectional view showing a high-pressure reactor used to prepare a perfluorosulfonic acid ionomer coating composition for manufacturing a fuel cell separator of the present invention.

이하, 본 발명에 따른 연료전지 분리막 제조용 과불화술폰산 이오노머 코팅 조성물 및 이의 제조방법에 대하여 상세히 설명한다.Hereinafter, a perfluorosulfonic acid ionomer coating composition for manufacturing a fuel cell separator and a manufacturing method thereof according to the present invention will be described in detail.

본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.The terms or words used in this specification and claims should not be construed as being limited to ordinary or dictionary meanings, and the inventors may appropriately define the concept of terms in order to explain their invention in the best way. It should be interpreted as a meaning and concept consistent with the technical idea of the present invention based on the principle that there is.

본 발명은 물과 알코올을 배합한 분산매, 과불화술폰산 이오노머 및 불소 함유 실란 화합물을 포함하는 연료전지 분리막 제조용 과불화술폰산 이오노머 코팅 조성물을 제공한다.The present invention provides a perfluorosulfonic acid ionomer coating composition for preparing a fuel cell separator comprising a dispersion medium in which water and alcohol are mixed, a perfluorosulfonic acid ionomer, and a fluorine-containing silane compound.

상기 분산매에 배합되는 물과 알코올의 중량비는 약 2:8 내지 5:5이 바람직하다. 상기 비율을 벗어나게 되면 입자의 크기 분포가 너무 넓어지는 문제점이 발생할 수 있고, 분산이 이루어지지 않을 수 있다.The weight ratio of water and alcohol blended in the dispersion medium is preferably about 2:8 to 5:5. If the ratio is out of the range, the size distribution of the particles may be too wide, and dispersion may not be achieved.

상기 알코올은 탄소수가 1 내지 10인 주쇄에 1개 이상의 하이드록실기를 포함하는 알코올일 수 있다. 좀 더 바람직하게는 탄소수가 1 내지 7개의 주쇄에 1 개 이상의 하이드록실기가 결합되어 있는 알코올을 이용할 수 있으나, 본 발명이 이에 한정되는 것은 아니다. 알코올의 종류에 따라 상기 물과 알코올의 혼합 비율이 달라질 수 있다.The alcohol may be an alcohol containing at least one hydroxyl group in a main chain having 1 to 10 carbon atoms. More preferably, an alcohol in which one or more hydroxyl groups are bonded to a main chain having 1 to 7 carbon atoms may be used, but the present invention is not limited thereto. The mixing ratio of the water and alcohol may vary depending on the type of alcohol.

바람직하게는, 상기 알코올은 메탄올, 에탄올, 1-프로판올, 이소프로필알코올, 부탄올, 이소부탄올, 2-부탄올, tert-부탄올, n-펜탄올, 이소펜틸 알코올, 2-메틸-1-부탄올, 네오펜틸 알코올, 디에틸 케비놀, 메틸 프로필 케비놀, 메틸 이소프로필 케비놀, 디메틸 에틸 케비놀, 1-헥산올, 2-헥산올, 3-헥산올, 2-메틸-1-펜탄올, 3-메틸-1-펜탄올, 4-메틸-1-펜탄올, 2-메틸-2-펜탄올, 3-메틸-2-펜탄올, 4-메틸-2-펜탄올, 2-메틸-3-펜탄올, 3-메틸-3-펜탄올, 2,2-디메틸-1-부탄올, 2,3-디메틸-1-부탄올, 2,3-디메틸-2-부탄올, 3,3-디메틸-1-부탄올, 2-에틸-1-부탄올, 1-헵탄올, 2-헵탄올, 3-헵탄올 및 4-헵탄올 및 이들의 혼합물로 이루어진 군으로부터 선택되는 1종 이상일 수 있다.Preferably, the alcohol is methanol, ethanol, 1-propanol, isopropyl alcohol, butanol, isobutanol, 2-butanol, tert-butanol, n-pentanol, isopentyl alcohol, 2-methyl-1-butanol, neo Pentyl alcohol, diethyl ketinol, methyl propyl ketinol, methyl isopropyl ketinol, dimethyl ethyl ketinol, 1-hexanol, 2-hexanol, 3-hexanol, 2-methyl-1-pentanol, 3- Methyl-1-pentanol, 4-methyl-1-pentanol, 2-methyl-2-pentanol, 3-methyl-2-pentanol, 4-methyl-2-pentanol, 2-methyl-3-pentane ol, 3-methyl-3-pentanol, 2,2-dimethyl-1-butanol, 2,3-dimethyl-1-butanol, 2,3-dimethyl-2-butanol, 3,3-dimethyl-1-butanol , 2-ethyl-1-butanol, 1-heptanol, 2-heptanol, 3-heptanol, 4-heptanol, and mixtures thereof.

상기 과불화술폰산 이오노머는 고분자의 곁사슬에 공유결합으로 부착되어 있는 고정 이온(주로 음이온)을 갖는 이온전도성 고분자 중 하나를 의미하며, 상기 과불화술폰산 이오노머는 술폰산 또는 술폰산염을 포함하는 작용기를 포함한다. 상기 술폰산염은 술폰산리튬염, 술폰산나트륨염, 술폰산칼륨염, 술폰산마그네슘염, 술폰산칼슘염, 술폰산암모늄염, 및 술폰산알킬암모늄염으로 이루어진 군에서 선택되는 어느 하나일 수 있다. The perfluorosulfonic acid ionomer refers to one of ion conductive polymers having a fixed ion (mainly anion) covalently attached to the side chain of the polymer, and the perfluorosulfonic acid ionomer includes a functional group containing sulfonic acid or a sulfonic acid salt. . The sulfonate may be any one selected from the group consisting of lithium sulfonate salt, sodium sulfonate salt, potassium sulfonate salt, magnesium sulfonate salt, calcium sulfonate salt, ammonium sulfonate salt, and alkylammonium sulfonate salt.

바람직하게, 상기 과불화술폰산 이오노머의 Equivalent Weight(EW)는 1000 내지 1100g/eq이고, Acid capacity는 1.0 내지 2.0meq/g일 수 있다. 상기 조건 범위를 벗어날 경우, 다공성 지지체를 코팅하기 위한 평균 입도 범위를 벗어나거나, 분산 안정성이 감소할 수 있다.Preferably, the equivalent weight (EW) of the perfluorosulfonic acid ionomer may be 1000 to 1100 g/eq, and acid capacity may be 1.0 to 2.0 meq/g. If it is out of the above condition range, the average particle size range for coating the porous support may be out of range, or dispersion stability may be reduced.

상기 코팅 조성물에 포함되는 과불화술폰산 이오노머는 상기 분산매 100 중량부에 대하여 5 내지 20 중량부인 것이 바람직하다. 상기 과불화술폰산 이오노머가 5 중량부 미만일 시에는 이온 전도도가 크게 감소하여 분리막 제조에 부적합할 수 있고, 20 중량부를 초과할 경우에는 코팅 조성물의 분산성이 떨어져 다공성 지지체에 대한 접착력이 감소할 수 있다.The amount of perfluorosulfonic acid ionomer included in the coating composition is preferably 5 to 20 parts by weight based on 100 parts by weight of the dispersion medium. When the amount of the perfluorosulfonic acid ionomer is less than 5 parts by weight, the ionic conductivity is greatly reduced, which may be unsuitable for manufacturing a separator, and when the amount exceeds 20 parts by weight, the coating composition has poor dispersibility, resulting in reduced adhesion to the porous support. .

상기 이오노머 코팅 조성물 중 이오노머의 평균 입도는 950 nm 내지 985 nm인 것이 바람직하다. 상기 이오노머의 평균 입도의 수치 범위를 벗어나는 경우, 이온 전도도가 감소하여 고분자 전해질 막 제조에 부적합할 수 있거나, 고분자 전해질 막의 기계적 강도가 극히 낮아져 실용성이 떨어질 수 있다.The average particle size of the ionomer in the ionomer coating composition is preferably 950 nm to 985 nm. If the average particle size of the ionomer is out of the numerical range, ionic conductivity may be reduced, which may be unsuitable for manufacturing a polymer electrolyte membrane, or mechanical strength of the polymer electrolyte membrane may be extremely low, resulting in poor practicality.

상기 불소 함유 실란 화합물은 2-트라이에톡시실릴에틸펜타데카플루오르데실설파이드, 2-트라이메톡시실릴에틸펜타데카플루오르데실설파이드 및 이들의 혼합물로 이루어지는 군으로부터 선택되는 어느 하나일 수 있다. 상기 불소 함유 실란 화합물은 상기 분산매 100 중량부에 대하여 1 내지 3 중량부인 것이 바람직하다. 상기 불소 함유 실란 화합물이 1 중량부 미만일 시에는 고분자 전해질 막의 내구성 강화 효과가 거의 이루어지지 않고, 3 중량부를 초과할 경우에는 오히려 전해질 막의 이온 전도도가 감소하여 연료전지의 성능이 저하될 수 있다.The fluorine-containing silane compound may be any one selected from the group consisting of 2-triethoxysilylethylpentadecafluordecylsulfide, 2-trimethoxysilylethylpentadecafluordecylsulfide, and mixtures thereof. The fluorine-containing silane compound is preferably 1 to 3 parts by weight based on 100 parts by weight of the dispersion medium. When the amount of the fluorine-containing silane compound is less than 1 part by weight, the durability enhancement effect of the polymer electrolyte membrane is hardly achieved, and when it exceeds 3 parts by weight, the ionic conductivity of the electrolyte membrane is reduced and the performance of the fuel cell may be deteriorated.

본 발명의 구체적인 실시예로, 과불화술폰산 이오노머 코팅 조성물에 불소 함유 실란 화합물을 1 내지 3 중량부를 첨가함으로써, 상기 코팅 조성물을 이용하여 제조된 고분자 전해질 막의 내구성이 현저히 강화될 수 있다.In a specific embodiment of the present invention, by adding 1 to 3 parts by weight of a fluorine-containing silane compound to a perfluorosulfonic acid ionomer coating composition, durability of a polymer electrolyte membrane prepared using the coating composition can be remarkably enhanced.

또한, 상기 연료전지 분리막 제조용 과불화술폰산 이오노머 코팅 조성물은,In addition, the perfluorosulfonic acid ionomer coating composition for preparing the fuel cell separator,

a) 물과 알코올을 2:8 내지 5:5의 중량비로 배합한 분산매를 준비하는 단계;a) preparing a dispersion medium in which water and alcohol are blended in a weight ratio of 2:8 to 5:5;

b) 상기 단계 a)에서 준비된 분산매에 과불화술폰산 이오노머 및 불소 함유 실란 화합물을 첨가하여 혼합물을 제조하는 단계; 및b) preparing a mixture by adding a perfluorosulfonic acid ionomer and a fluorine-containing silane compound to the dispersion medium prepared in step a); and

c) 상기 혼합물을 반응기에 투입 후 반응시켜 과불화술폰산 이오노머 코팅 조성물을 제조하는 단계;를 포함하는 방법으로 제조될 수 있다.c) preparing a perfluorosulfonic acid ionomer coating composition by introducing the mixture into a reactor and then reacting.

이하, 본 발명의 연료전지 분리막 제조용 과불화술폰산 이오노머 코팅 조성물의 제조방법을 단계별로 상세히 설명한다.Hereinafter, the manufacturing method of the perfluorosulfonic acid ionomer coating composition for manufacturing a fuel cell separator of the present invention will be described in detail step by step.

본 발명의 제조방법에 있어서, 단계 a)는 물과 알코올을 2:8 내지 5:5의 중량비로 배합한 분산매를 준비하는 단계이다.In the manufacturing method of the present invention, step a) is a step of preparing a dispersion medium in which water and alcohol are mixed in a weight ratio of 2:8 to 5:5.

상기 분산매에 대해서는 상술한 바, 이에 대한 설명은 생략한다.Since the dispersion medium has been described above, a description thereof will be omitted.

본 발명의 제조방법에 있어서, 단계 b)는 상기 단계 a)에서 준비된 분산매에 과불화술폰산 이오노머 및 불소 함유 실란 화합물을 첨가하여 혼합물을 제조하는 단계이다. In the production method of the present invention, step b) is a step of preparing a mixture by adding a perfluorosulfonic acid ionomer and a fluorine-containing silane compound to the dispersion medium prepared in step a).

상기 과불화술폰산 이오노머 및 불소 함유 실란 화합물에 대해서는 상술한 바, 이에 대한 설명은 생략한다.Since the perfluorosulfonic acid ionomer and the fluorine-containing silane compound have been described above, a description thereof will be omitted.

본 발명의 제조방법에 있어서, 단계 c)는 상기 혼합물을 반응기에 투입 후 반응시켜 과불화술폰산 이오노머 코팅 조성물을 제조하는 단계이다.In the production method of the present invention, step c) is a step of preparing a perfluorosulfonic acid ionomer coating composition by introducing the mixture into a reactor and then reacting.

반응기 내 온도는 100 내지 160℃인 것이 바람직하다. 상기 온도가 100℃ 미만일 시에는 이오노머의 입자 크기 분포가 너무 넓게 되거나 또는 전혀 분산되지 않을 수 있다. 반면, 온도가 160℃를 초과하게 되면 높은 온도의 분산액에 의해 이오노머의 반응기가 손상되거나 이오노머의 화학적 구조의 분해가 진행되거 심각한 품질저하를 야기할 수 있다. 또한, 반응기 내 압력은 5 내지 20 바(bar)인 것이 바람직하다. The temperature in the reactor is preferably 100 to 160°C. When the temperature is below 100° C., the particle size distribution of the ionomer may be too broad or not dispersed at all. On the other hand, when the temperature exceeds 160 ° C., the ionomer reactor may be damaged by the high-temperature dispersion, the chemical structure of the ionomer may be decomposed, or serious quality degradation may occur. Also, the pressure in the reactor is preferably 5 to 20 bar.

본 발명에 있어서 반응 시간은 6 내지 9시간 내에 완료되는 것이 바람직하다. 반응 시간이 6시간 미만인 경우 이오노머의 입자 크기 분포가 넓어지는 문제점이 있고, 반응 시간이 9시간을 초과할 시에는 오히려 이오노머의 평균 입도가 과도하게 낮아지는 문제점이 있고, 경제성이 낮은 문제점이 있다.In the present invention, the reaction time is preferably completed within 6 to 9 hours. When the reaction time is less than 6 hours, there is a problem that the particle size distribution of the ionomer is widened, and when the reaction time exceeds 9 hours, there is a problem that the average particle size of the ionomer is excessively lowered, and economical efficiency is low.

이하, 본 발명을 제조예 및 실시예에 의해서 상세히 설명한다.Hereinafter, the present invention will be described in detail with reference to preparation examples and examples.

단, 하기 제조예 및 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기 제조예 및 실시예에 의해서 한정되는 것은 아니다.However, the following Preparation Examples and Examples are only to illustrate the present invention, and the content of the present invention is not limited by the following Preparation Examples and Examples.

<제조예 1> 과불화술폰산 이오노머 코팅 조성물 제조<Preparation Example 1> Preparation of perfluorosulfonic acid ionomer coating composition

2L 고압 반응기 안에 이소프로필 알코올과 물이 80:20의 질량비로 혼합된 분산매 100 중량부에 PFSA계 이오노머(EW: 1000g/eq, Acid Capacity: 1.0meq/g, 및 밀도: 1.0g/ml) 5 중량부 및 2-트라이에톡시실릴에틸펜타데카플루오르데실설파이드(제1 실란) 1 중량부를 첨가하였다. 그 다음, 반응기 내 온도 120℃, 압력 5 바(bar) 조건 하에서 6시간 동안 반응시킴으로써 과불화술폰산 이오노머 코팅 조성물(분산액)을 제조하였다. PFSA-based ionomer (EW: 1000g/eq, Acid Capacity: 1.0meq/g, and Density: 1.0g/ml) 5 parts by weight and 1 part by weight of 2-triethoxysilylethylpentadecafluorodecylsulfide (first silane) were added. Then, a perfluorosulfonic acid ionomer coating composition (dispersion) was prepared by reacting for 6 hours under conditions of a temperature of 120° C. and a pressure of 5 bar in the reactor.

상기 이오노머 코팅 조성물 중 이오노머의 평균 입도는 말베른(Malvern) 사의 나노입도분석장비(Zetasizer Nano ZSP)를 사용하여 측정하였으며, 그 결과는 하기 표 1에 기재하였다.The average particle size of the ionomer in the ionomer coating composition was measured using Malvern's nano particle size analyzer (Zetasizer Nano ZSP), and the results are shown in Table 1 below.

<제조예 2 내지 9> <Preparation Examples 2 to 9>

상기 반응기 내 온도 및 시간 조건을 하기 표 1에 기재된 바와 같이 변경한 것 외 모든 공정을 제조예 1과 동일하게 진행하였다.All processes were performed in the same manner as in Preparation Example 1 except that the temperature and time conditions in the reactor were changed as shown in Table 1 below.

온도(℃)Temperature (℃) 시간(h)time (h) 입도(nm)Particle size (nm) 제조예 1Preparation Example 1 120120 66 961961 제조예 2Preparation Example 2 180180 66 924924 제조예 3Preparation Example 3 160160 66 955955 제조예 4Production Example 4 100100 66 983983 제조예 5Preparation Example 5 8080 66 12841284 제조예 6Preparation Example 6 6060 66 15631563 제조예 7Preparation Example 7 120120 99 954954 제조예 8Preparation Example 8 120120 1212 942942 제조예 9Preparation Example 9 120120 2424 944944

그 결과, 상기 표 1에 기재된 바와 같이 반응 온도가 100℃ 미만일 경우 상기 이오노머 코팅 조성물 내 이오노머의 평균 입도가 과도하게 높아지는 한편, 반응 온도가 160℃를 초과할 경우 상기 이오노머의 평균 입도가 현저히 낮아지는 것을 확인하였다. 또한, 반응 시간이 길어질수록 상기 이오노머 코팅 조성물 내 이오노머의 평균 입도가 낮아지는 것을 확인하였다. 이에, 제조예 1, 3, 4 및 7에서 제조된 이오노머 코팅 조성물이 다공성 지지체를 코팅하기에 적합한 평균 입도를 갖는 것을 확인함으로써 최적의 반응 온도 및 시간(반응기 내 100 내지 160℃의 온도 범위에서 6 내지 9시간 동안 반응)을 도출하였다.As a result, as shown in Table 1, when the reaction temperature is less than 100 ° C, the average particle size of the ionomer in the ionomer coating composition is excessively high, while when the reaction temperature exceeds 160 ° C, the average particle size of the ionomer is significantly lowered. confirmed that In addition, it was confirmed that the average particle size of the ionomer in the ionomer coating composition decreased as the reaction time increased. Therefore, by confirming that the ionomer coating compositions prepared in Preparation Examples 1, 3, 4 and 7 have an average particle size suitable for coating a porous support, the optimal reaction temperature and time (6 Reaction for 9 hours) was derived.

<제조예 10 내지 18, 비교예 1 내지 6> <Preparation Examples 10 to 18, Comparative Examples 1 to 6>

과불화술폰산 이오노머 코팅 조성물의 각 성분의 함량(중량부)을 하기 표 1에 기재된 바와 같이 혼합한 것 외 모든 공정을 제조예 1과 동일하게 진행하였다.All processes were performed in the same manner as in Preparation Example 1 except that the content (parts by weight) of each component of the perfluorosulfonic acid ionomer coating composition was mixed as shown in Table 1 below.

  분산매(중량부)Dispersion medium (parts by weight) PFSA(중량부)PFSA (parts by weight) 불소 함유 실란 화합물Fluorine-Containing Silane Compounds 입도(nm)Particle size (nm) (중량부)(parts by weight) IPAIPA 아세톤acetone H2OH 2 O 제1 PFSA1st PFSA 제2 PFSA2nd PFSA 제1 실란primary silane 제2 실란Second silane 제조예 1Preparation Example 1 8080 -- 2020 55 -- 1One -- 961961 제조예 10Preparation Example 10 8080 -- 2020 2020 -- 1One -- 983983 제조예 11Preparation Example 11 8080 -- 2020 3030 -- 1One -- 10561056 제조예 12Preparation Example 12 4040 -- 6060 55 -- 1One -- 12261226 제조예 13Preparation Example 13 -- 8080 2020 55 -- 1One -- 13211321 제조예 14Preparation Example 14 -- 8080 2020 2020 -- 1One -- 13571357 제조예 15Preparation Example 15 -- 8080 2020 3030 -- 1One -- 13861386 제조예 16Preparation Example 16 -- 4040 6060 55 -- 1One -- 14941494 비교예 1Comparative Example 1 8080 -- 2020 55 -- -- -- 972972 비교예 2Comparative Example 2 8080 -- 2020 55 -- 0.10.1 -- 964964 비교예 3Comparative Example 3 8080 -- 2020 55 -- 55 -- 10131013 비교예 4Comparative Example 4 8080 -- 2020 55 -- -- 1One 998998 비교예 5Comparative Example 5 8080 -- 2020 -- 55 1One -- 869869 비교예 6Comparative Example 6 8080 -- 2020 -- 2020 1One -- 893893

(상기 표 2에서 제1 PFSA는 EW가 1000g/eq인 PFSA, 제2 PFSA는 EW가 800g/eq인 PFSA이고, 제1 실란은 2-트라이에톡시실릴에틸펜타데카플루오르데실설파이드, 제2 실란은 테트라플루오로실란이다.)(In Table 2, the first PFSA is a PFSA having an EW of 1000 g/eq, the second PFSA is a PFSA having an EW of 800 g/eq, and the first silane is 2-triethoxysilylethylpentadecafluordecylsulfide, the second silane is tetrafluorosilane.)

그 결과, 본 발명에 따라 제조된 이오노머 코팅 조성물의 경우, 다공성 지지체을 코팅하기에 적합한 수준의 평균 입도를 가지는 것으로 확인되었다.As a result, it was confirmed that the ionomer coating composition prepared according to the present invention had an average particle size suitable for coating a porous support.

다만, 제조예 12의 경우 분산매 중 물의 함량이 높아, 상기 이오노머 코팅 조성물 중 이오노머의 입도가 과도하게 높아져 분산에 용이하지 않은 것으로 확인되었다.However, in the case of Preparation Example 12, it was confirmed that the water content in the dispersion medium was high, and the particle size of the ionomer in the ionomer coating composition was excessively increased, making it difficult to disperse.

또한, 분산매 중 유기용매의 종류로 아세톤을 선택한 경우, 상기 이오노머 코팅 조성물 중 이오노머의 평균 입도가 상대적으로 높게 나타났다.In addition, when acetone was selected as the type of organic solvent in the dispersion medium, the average particle size of the ionomer in the ionomer coating composition was relatively high.

<실시예 1> 분산 안정성 평가<Example 1> Evaluation of dispersion stability

본 발명에 의해 제조된 이오노머 코팅 조성물의 분산 안정성을 확인하기 위해, Haake RheoStress 1 (Thermo Scientific Inc, USA) 장비를 이용하여 상기 제조예 1, 10 내지 16, 비교예 1 내지 6에서 제조된 이오노머 코팅 조성물 속에 스핀니들을 넣고 회전을 시켜, 전단 속도(shear rate)와 전단응력(shear stress)의 측정을 하고, 얻어진 전단속도와 전단응력을 이용하여 분산 안정성(전단응력/(전단속도-전단응력))을 계산하였다.In order to confirm the dispersion stability of the ionomer coating composition prepared by the present invention, the ionomer coatings prepared in Preparation Examples 1, 10 to 16, and Comparative Examples 1 to 6 were prepared using Haake RheoStress 1 (Thermo Scientific Inc, USA) equipment. Put the spin needle in the composition and rotate it, measure the shear rate and shear stress, and use the obtained shear rate and shear stress to determine the dispersion stability (shear stress / (shear rate - shear stress) ) was calculated.

  분산 안정성dispersion stability 제조예 1Preparation Example 1 1.1461.146 제조예 10Preparation Example 10 1.1321.132 제조예 11Preparation Example 11 1.0141.014 제조예 12Preparation Example 12 1.0461.046 제조예 13Preparation Example 13 1.0151.015 제조예 14Preparation Example 14 1.0221.022 제조예 15Preparation Example 15 1.0171.017 제조예 16Preparation Example 16 1.0121.012 비교예 1Comparative Example 1 1.111.11 비교예 2Comparative Example 2 1.0961.096 비교예 3Comparative Example 3 1.0641.064 비교예 4Comparative Example 4 1.0891.089 비교예 5Comparative Example 5 1.0731.073 비교예 6Comparative Example 6 1.0671.067

그 결과, 상기 표 3에 기재된 바와 같이 본 발명에 따라 제조된 이오노머 코팅 조성물의 경우, 다공성 지지체을 코팅하기에 적합한 수준의 분산 안정성을 가지는 것으로 확인되었다. As a result, in the case of the ionomer coating composition prepared according to the present invention, as described in Table 3, it was confirmed that it had a level of dispersion stability suitable for coating a porous support.

다만, 제조예 11 및 15의 경우, 상기 이오노머 코팅 조성물 중 PFSA 이오노머의 함량이 과량 포함되어 분산이 제대로 이루어지지 않음으로써 오히려 분산 안정성이 상대적으로 낮은 것으로 나타났고, 제조예 12 및 16의 경우 분산매 중 알코올의 함량이 낮아 분산 안정성이 상대적으로 낮게 측정되었다.However, in the case of Preparation Examples 11 and 15, the content of the PFSA ionomer in the ionomer coating composition was excessively included and the dispersion was not properly performed, so the dispersion stability was relatively low, and in the case of Preparation Examples 12 and 16, the dispersion medium The dispersion stability was measured to be relatively low due to the low alcohol content.

<실시예 2> 고분자 전해질 막의 내구성 평가<Example 2> Durability evaluation of polymer electrolyte membrane

본 발명에 의해 제조된 이오노머 코팅 조성물을 이용한 고분자 전해질 막의 내구성을 평가하기 위해, 상기 막의 기계적 강도를 측정하였다. 구체적으로, 평균 두께 0.16㎛의 평균 공경 75%의 다공도를 갖는 PTFE 다공성 지지체를 상기 제조예 1, 10, 13 및 14, 비교예 1, 2 및 4의 이오노머 코팅 조성물에 함침하였고, 80℃ 온도 조건에서 1시간 동안 건조한 후, 180℃ 온도 조건에서 10분간 어닐링 공정을 수행함으로써 고분자 전해질 막을 제조하였다. To evaluate the durability of the polymer electrolyte membrane using the ionomer coating composition prepared according to the present invention, the mechanical strength of the membrane was measured. Specifically, a PTFE porous support having an average thickness of 0.16 μm, an average pore size, and a porosity of 75% was impregnated with the ionomer coating compositions of Preparation Examples 1, 10, 13, and 14 and Comparative Examples 1, 2, and 4, and maintained at 80° C. After drying for 1 hour, a polymer electrolyte membrane was prepared by performing an annealing process at 180° C. for 10 minutes.

상기 제조된 고분자 전해질 막을 1cm × 4cm 크기로 자른 후 30℃의 초순수에서 24시간 동안 수화 처리하여 팽창시켰다. 고분자 전해질 막의 팽창 전후 횡방향, 종방향 및 면방향 변화를 디지털 마이크로미터를 사용하여 측정하였고, 횡방향 및 종방향 변화값을 이용하여 면적 변화율(%)을, 면방향 변화값을 이용하여 두께 변화율(%)을 계산하였다.After cutting the prepared polymer electrolyte membrane into a size of 1 cm × 4 cm, it was hydrated in ultrapure water at 30 ° C. for 24 hours and expanded. Changes in the transverse, longitudinal, and plane directions of the polymer electrolyte membrane before and after expansion were measured using a digital micrometer. (%) was calculated.

  면적 변화율(%)Area change rate (%) 두께 변화율(%)Thickness change rate (%) 제조예 1Preparation Example 1 33 66 제조예 10Preparation Example 10 00 44 제조예 13Preparation Example 13 99 1414 제조예 14Preparation Example 14 77 1111 비교예 1Comparative Example 1 1515 2626 비교예 2Comparative Example 2 1212 1919 비교예 4Comparative Example 4 1010 2626

그 결과, 상기 표 4에 기재된 바와 같이 본 발명에 따라 제조된 이오노머 코팅 조성물을 이용하여 고분자 전해질 막을 제조한 경우, 면적 및 두께 변화율이 현저하게 감소하여 막의 내구성이 크게 향상되는 것을 확인하였다. As a result, as shown in Table 4, when the polymer electrolyte membrane was prepared using the ionomer coating composition prepared according to the present invention, it was confirmed that the area and thickness change rates were significantly reduced and the durability of the membrane was greatly improved.

한편, 비교예 1 및 2의 경우 이오노머 코팅 조성물 중 제1 실란이 포함되지 않거나 극히 적게 포함되어 있어 상대적으로 막의 내구성이 낮게 측정되었고, 본 발명과 상이한 실란을 포함한 비교예 4의 경우, 마찬가지로 막의 내구성이 약한 것으로 나타났다. On the other hand, in the case of Comparative Examples 1 and 2, the durability of the membrane was measured relatively low because the first silane was not included or included in a very small amount in the ionomer coating composition, and in the case of Comparative Example 4 including a silane different from the present invention, the durability of the membrane was similarly appeared to be weak.

이는, 연료전지 가동 시 본 발명의 불소 함유 실란 화합물을 포함한 코팅 조성물에 함침된 전해질 막을 이용할 경우, 전해질 막의 우수한 기계적 내구성으로 인해 연료전지의 시동 성능을 오랜 기간 유지할 수 있음을 의미한다.This means that when the electrolyte membrane impregnated with the coating composition containing the fluorine-containing silane compound of the present invention is used during operation of the fuel cell, the starting performance of the fuel cell can be maintained for a long period of time due to the excellent mechanical durability of the electrolyte membrane.

<실시예 3> 이온 전도도 평가<Example 3> Evaluation of ionic conductivity

상기 제조예 1 및 10, 비교예 1 및 3의 이오노머 코팅 조성물을 이용하여 상기 실시예 2에 개시된 방법과 동일하게 고분자 전해질 막을 제조한 후, 상기 막의 면방향(in-plane) 이온 전도도는 온도 및 습도가 조절되는 4전극 셀을 이용하여 교류임피던스법을 이용하여 저항(R)을 측정하였다. 이온 전도도는 상대 습도(RH) 100% 조건에서 온도 조건을 25, 40, 60 및 80℃로 가변하여 측정하였다.After preparing a polymer electrolyte membrane in the same manner as described in Example 2 using the ionomer coating compositions of Preparation Examples 1 and 10 and Comparative Examples 1 and 3, the in-plane ionic conductivity of the membrane was measured at temperature and Resistance (R) was measured using the alternating current impedance method using a four-electrode cell in which humidity is controlled. The ionic conductivity was measured by varying the temperature condition to 25, 40, 60 and 80 °C under the condition of 100% relative humidity (RH).

온도에 따른 면방향(in-plane) 이온 전도도(S/cm)In-plane ionic conductivity (S/cm) as a function of temperature 25℃25℃ 40℃40℃ 60℃60℃ 80℃80℃ 제조예 1Preparation Example 1 0.0920.092 0.1110.111 0.1400.140 0.1680.168 제조예 10Preparation Example 10 0.0960.096 0.1150.115 0.1460.146 0.1760.176 비교예 1Comparative Example 1 0.0990.099 0.1210.121 0.1440.144 0.1790.179 비교예 3Comparative Example 3 0.0820.082 0.1020.102 0.1270.127 0.1460.146

그 결과, 상기 표 5에 기재된 바와 같이 본 발명에 따라 제조된 이오노머 코팅 조성물을 이용하여 고분자 전해질 막을 제조한 경우, 각 온도 조건에서 기존의 고분자 전해질 막(비교예 1)과 유사한 수준의 이온 전도도를 갖는 것으로 확인되었다. As a result, as shown in Table 5, when the polymer electrolyte membrane was prepared using the ionomer coating composition prepared according to the present invention, the ion conductivity was similar to that of the conventional polymer electrolyte membrane (Comparative Example 1) at each temperature condition. confirmed to have

다만, 이오노머 코팅 조성물 중 제1 실란이 과하게 포함된 비교예 3과 같은 경우에는 오히려 막의 이온 전도도가 감소하는 것으로 나타났다.However, in the case of Comparative Example 3 in which the first silane was excessively included in the ionomer coating composition, the ionic conductivity of the membrane was rather decreased.

이는, 본 발명에 따라 제조된 이오노머 코팅 조성물로 함침시킨 고분자 전해질 막은 우수한 이온 전도도가 유지됨과 동시에 기존 고분자 전해질 막 대비 현저히 개선된 내구성을 가짐을 의미한다.This means that the polymer electrolyte membrane impregnated with the ionomer coating composition prepared according to the present invention maintains excellent ionic conductivity and has significantly improved durability compared to conventional polymer electrolyte membranes.

이상과 같이 특정된 사항들과 한정된 제조예 및 실시예를 통해 본 발명이 설명되었으나, 이는 본 발명의 전반적인 이해를 돕기 위해서 제공된 것일 뿐, 본 발명은 상기의 제조예 및 실시예에 한정되는 것은 아니며, 본 발명이 속하는 분야에서 통상의 지식을 가진 자라면 이러한 기재로부터 다양한 수정 및 변형이 가능하다.Although the present invention has been described through specific details and limited manufacturing examples and examples as described above, this is only provided to help the overall understanding of the present invention, and the present invention is not limited to the above manufacturing examples and examples. , Those skilled in the art in the field to which the present invention belongs can make various modifications and variations from these descriptions.

따라서, 본 발명의 사상은 설명된 제조예 및 실시예에 국한되어 정해져서는 아니되며, 후술하는 특허청구범위뿐 아니라 이 특허청구범위와 균등하거나 등가적 변형이 있는 모든 것들은 본 발명 사상의 범주에 속한다고 할 것이다.Therefore, the spirit of the present invention should not be limited to the described manufacturing examples and examples, and not only the claims to be described later, but also all equivalent or equivalent modifications to these claims fall within the scope of the spirit of the present invention. will do it

Claims (8)

물과 알코올을 2:8 내지 5:5의 중량비로 배합한 분산매, 과불화술폰산 이오노머 및 불소 함유 실란 화합물을 포함하며,
상기 분산매 100 중량부에 대하여 과불화술폰산 이오노머 5 내지 20 중량부 및 불소 함유 실란 화합물 1 내지 3 중량부를 포함하는 것을 특징으로 하는 연료전지 분리막 제조용 과불화술폰산 이오노머 코팅 조성물.
It includes a dispersion medium in which water and alcohol are blended in a weight ratio of 2:8 to 5:5, a perfluorosulfonic acid ionomer, and a fluorine-containing silane compound,
A perfluorosulfonic acid ionomer coating composition for producing a fuel cell separator, characterized in that it comprises 5 to 20 parts by weight of a perfluorosulfonic acid ionomer and 1 to 3 parts by weight of a fluorine-containing silane compound based on 100 parts by weight of the dispersion medium.
삭제delete 제1항에 있어서,
상기 알코올은 메탄올, 에탄올, 1-프로판올, 이소프로필알코올, 부탄올, 이소부탄올, 2-부탄올, tert-부탄올, n-펜탄올, 이소펜틸 알코올, 2-메틸-1-부탄올, 네오펜틸 알코올, 디에틸 케비놀, 메틸 프로필 케비놀, 메틸 이소프로필 케비놀, 디메틸 에틸 케비놀, 1-헥산올, 2-헥산올, 3-헥산올, 2-메틸-1-펜탄올, 3-메틸-1-펜탄올, 4-메틸-1-펜탄올, 2-메틸-2-펜탄올, 3-메틸-2-펜탄올, 4-메틸-2-펜탄올, 2-메틸-3-펜탄올, 3-메틸-3-펜탄올, 2,2-디메틸-1-부탄올, 2,3-디메틸-1-부탄올, 2,3-디메틸-2-부탄올, 3,3-디메틸-1-부탄올, 2-에틸-1-부탄올, 1-헵탄올, 2-헵탄올, 3-헵탄올 및 4-헵탄올 및 이들의 혼합물로 이루어진 군으로부터 선택되는 어느 하나의 알코올인 것을 특징으로 하는, 연료전지 분리막 제조용 과불화술폰산 이오노머 코팅 조성물.
According to claim 1,
The alcohol is methanol, ethanol, 1-propanol, isopropyl alcohol, butanol, isobutanol, 2-butanol, tert-butanol, n-pentanol, isopentyl alcohol, 2-methyl-1-butanol, neopentyl alcohol, di Ethyl Kebinol, Methyl Propyl Kebinol, Methyl Isopropyl Kebinol, Dimethyl Ethyl Kebinol, 1-Hexanol, 2-Hexanol, 3-Hexanol, 2-Methyl-1-Pentanol, 3-Methyl-1- Pentanol, 4-methyl-1-pentanol, 2-methyl-2-pentanol, 3-methyl-2-pentanol, 4-methyl-2-pentanol, 2-methyl-3-pentanol, 3- Methyl-3-pentanol, 2,2-dimethyl-1-butanol, 2,3-dimethyl-1-butanol, 2,3-dimethyl-2-butanol, 3,3-dimethyl-1-butanol, 2-ethyl -1-butanol, 1-heptanol, 2-heptanol, 3-heptanol and 4-heptanol, and any one alcohol selected from the group consisting of mixtures thereof, characterized in that perfluorinated fuel cell separator manufacturing A sulfonic acid ionomer coating composition.
제1항에 있어서,
상기 이오노머 코팅 조성물 중 이오노머의 평균 입도는 950 nm 내지 985 nm인 것을 특징으로 하는, 연료전지 분리막 제조용 과불화술폰산 이오노머 코팅 조성물.
According to claim 1,
A perfluorosulfonic acid ionomer coating composition for preparing a fuel cell separator, characterized in that the average particle size of the ionomer in the ionomer coating composition is 950 nm to 985 nm.
제1항에 있어서,
상기 연료전지 분리막 제조용 과불화술폰산 이오노머 코팅 조성물은,
a) 물과 알코올을 2:8 내지 5:5의 중량비로 배합한 분산매를 준비하는 단계;
b) 상기 단계 a)에서 준비된 분산매에 과불화술폰산 이오노머 및 불소 함유 실란 화합물을 첨가하여 혼합물을 제조하는 단계; 및
c) 상기 혼합물을 반응기에 투입 후 반응시켜 과불화술폰산 이오노머 코팅 조성물을 제조하는 단계;를 포함하는 방법으로 제조되는 것을 특징으로 하는, 연료전지 분리막 제조용 과불화술폰산 이오노머 코팅 조성물.
According to claim 1,
The perfluorosulfonic acid ionomer coating composition for preparing the fuel cell separator,
a) preparing a dispersion medium in which water and alcohol are blended in a weight ratio of 2:8 to 5:5;
b) preparing a mixture by adding a perfluorosulfonic acid ionomer and a fluorine-containing silane compound to the dispersion medium prepared in step a); and
c) preparing a perfluorosulfonic acid ionomer coating composition by introducing the mixture into a reactor and then reacting to prepare a perfluorosulfonic acid ionomer coating composition for preparing a fuel cell separator.
제5항에 있어서,
상기 단계 c)의 반응기 내 온도는 100 내지 160℃인 것을 특징으로 하는, 연료전지 분리막 제조용 과불화술폰산 이오노머 코팅 조성물.
According to claim 5,
The perfluorosulfonic acid ionomer coating composition for preparing a fuel cell separator, characterized in that the temperature in the reactor of step c) is 100 to 160 ° C.
제5항에 있어서,
상기 단계 c)의 반응기 내 압력은 5 내지 20 바(bar)인 것을 특징으로 하는, 연료전지 분리막 제조용 과불화술폰산 이오노머 코팅 조성물.
According to claim 5,
The pressure in the reactor in step c) is 5 to 20 bar (bar), characterized in that, the perfluorosulfonic acid ionomer coating composition for producing a fuel cell separator.
제5항에 있어서,
상기 단계 c)의 반응 시간은 6 내지 9시간인 것을 특징으로 하는, 연료전지 분리막 제조용 과불화술폰산 이오노머 코팅 조성물.
According to claim 5,
The reaction time of step c) is 6 to 9 hours, characterized in that, the perfluorosulfonic acid ionomer coating composition for preparing a fuel cell separator.
KR1020220013449A 2021-12-30 2022-01-28 Perfluorosulfonic acid ionomer coating composition for fuel cell membrane production and method for manufacturing the same KR102525782B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2022/019152 WO2023128326A1 (en) 2021-12-30 2022-11-30 Perfluorosulfonic acid ionomer coating composition for manufacturing fuel cell separator, and method for preparing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20210192980 2021-12-30
KR1020210192980 2021-12-30

Publications (1)

Publication Number Publication Date
KR102525782B1 true KR102525782B1 (en) 2023-04-26

Family

ID=86099371

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020220013449A KR102525782B1 (en) 2021-12-30 2022-01-28 Perfluorosulfonic acid ionomer coating composition for fuel cell membrane production and method for manufacturing the same

Country Status (2)

Country Link
KR (1) KR102525782B1 (en)
WO (1) WO2023128326A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030096385A (en) * 2001-05-14 2003-12-24 이 아이 듀폰 디 네모아 앤드 캄파니 Fluorosulfonic Acid Organic Polymers
US7071271B2 (en) 2003-10-30 2006-07-04 3M Innovative Properties Company Aqueous emulsion polymerization of functionalized fluoromonomers

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3931975B2 (en) * 2002-09-05 2007-06-20 信越化学工業株式会社 Proton conducting membrane and fuel cell
KR101142235B1 (en) * 2010-01-28 2012-05-24 금오공과대학교 산학협력단 High molecular nano complexe membrane for DMFC, Membrane electrode assembly containg that, and Direct methanol fuel cell
KR102193759B1 (en) * 2018-09-28 2020-12-21 전남대학교산학협력단 Organic/Inorganic Composite Membrane and the same as the Methods
KR102341369B1 (en) * 2019-05-07 2021-12-21 전남대학교산학협력단 Organic- Inorganic composite solution, procedure for producing the same, organic-inorganic hybrid composite membrane and the application using the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030096385A (en) * 2001-05-14 2003-12-24 이 아이 듀폰 디 네모아 앤드 캄파니 Fluorosulfonic Acid Organic Polymers
US7071271B2 (en) 2003-10-30 2006-07-04 3M Innovative Properties Company Aqueous emulsion polymerization of functionalized fluoromonomers

Also Published As

Publication number Publication date
WO2023128326A1 (en) 2023-07-06

Similar Documents

Publication Publication Date Title
KR101022689B1 (en) Ion conducting composite membrane materials containing an optionally modified zirconium phosphate dispersed in a polymeric matrix, method for preparation of the membrane material and its use
JP4728208B2 (en) POLYMER ELECTROLYTE MEMBRANE FOR FUEL CELL AND FUEL CELL SYSTEM INCLUDING THE SAME
Yang Composite membrane of sulfonated poly (ether ether ketone) and sulfated poly (vinyl alcohol) for use in direct methanol fuel cells
CN111704731B (en) Method for producing ionomer nanoparticle dispersion liquid
KR102284854B1 (en) Carbazole-based anion exchange material, preparation method and use thereof
EP3239189A1 (en) Electrolyte material, liquid composition, and membrane-electrode assembly for solid polymer fuel cell
KR20060135205A (en) Polymer membrane for fuel cell, method of preparing same and fuel cell system comprising same
KR101764068B1 (en) Method of preparing polymer electrolyte membrane using perfluorinated ionomer nanodispersion and polymer electrolyte membrane prepared by the same method
DE102008043936A1 (en) Reinforced composite membrane for polymer electrolyte fuel cell
US7074510B2 (en) Composite ion-exchange membrane, fabrication method of the same, and membrane-electrode assembly, and polymer electrolyte fuel cell having the same
KR101762307B1 (en) Preparation Method of Ionomernano particles Dispersion
JP2009021236A (en) Membrane-electrode assembly, membrane-electrode-gas diffusion layer assembly having the same, and solid polymer fuel cell
KR102525782B1 (en) Perfluorosulfonic acid ionomer coating composition for fuel cell membrane production and method for manufacturing the same
KR100508639B1 (en) Non-aqueous polymer electrolyte membrane and fuel cell using the same
JP2007084739A (en) Ionic group-bearing polymer, polyelectrolyte material, polyelectrolyte component, membrane electrode assembly, and polyelectrolyte-type fuel cell
US20210135264A1 (en) Membrane-electrode assembly with improved durability and proton conductivity and method for manufacturing the same
KR101047415B1 (en) Electrode Binder Solution Composition for Polymer Electrolyte Fuel Cell
KR101834911B1 (en) Preparation Method of Hydrocarbon and/or Partially Fluorinated Hydrocarbon Ionomer Nano particles Dispersion
KR102608992B1 (en) Anion conducting polymer having rigid main-chain with functional side-chain and preparation method thereof
KR102590382B1 (en) Electrode composition comprising nanodispersed ionomer as binder, membrane electrode assembly and fuel cell manufactured by using the composition
US20220367893A1 (en) Durable membrane-electrode assembly with high ionic conductivity and method of manufacturing same
JP6942322B2 (en) Proton conductive polymer-synthetic resin composite, proton conductive electrolyte membrane containing this composite, method for synthesizing proton conductive polymer-synthetic resin composite, solid polymer electrolyte fuel cell and solid polymer electrolyte water Electrolytic system
JP2009252480A (en) Ion-conducting polymer electrolyte membrane and its manufacturing method
KR20190071965A (en) Electrode composition for fuel cell comprising anion conducting hydrocarbonaceous binder, membrane/electrode assembly comprising said composition and preparation method thereof
Smirnova et al. High Temperature PEMFCs Using Modified Teflon-Nafion Membranes with Different Chemical Structure

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant