KR102523345B1 - Dehydrogenation catalysts with carriers having treated pores - Google Patents

Dehydrogenation catalysts with carriers having treated pores Download PDF

Info

Publication number
KR102523345B1
KR102523345B1 KR1020200168063A KR20200168063A KR102523345B1 KR 102523345 B1 KR102523345 B1 KR 102523345B1 KR 1020200168063 A KR1020200168063 A KR 1020200168063A KR 20200168063 A KR20200168063 A KR 20200168063A KR 102523345 B1 KR102523345 B1 KR 102523345B1
Authority
KR
South Korea
Prior art keywords
catalyst
platinum
carrier
alumina
dehydrogenation
Prior art date
Application number
KR1020200168063A
Other languages
Korean (ko)
Other versions
KR20220078856A (en
Inventor
최현아
김호동
강동군
서정민
유영산
Original Assignee
희성촉매 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 희성촉매 주식회사 filed Critical 희성촉매 주식회사
Priority to KR1020200168063A priority Critical patent/KR102523345B1/en
Priority to ES202390035A priority patent/ES2957010A2/en
Priority to PCT/KR2021/016938 priority patent/WO2022119191A1/en
Priority to CN202180081472.2A priority patent/CN116547073A/en
Publication of KR20220078856A publication Critical patent/KR20220078856A/en
Application granted granted Critical
Publication of KR102523345B1 publication Critical patent/KR102523345B1/en

Links

Images

Classifications

    • B01J35/397
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/002Catalysts characterised by their physical properties
    • B01J35/0073Distribution of the active metal ingredient
    • B01J35/008Distribution of the active metal ingredient egg-shell like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/62Platinum group metals with gallium, indium, thallium, germanium, tin or lead
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/62Platinum group metals with gallium, indium, thallium, germanium, tin or lead
    • B01J23/622Platinum group metals with gallium, indium, thallium, germanium, tin or lead with germanium, tin or lead
    • B01J23/626Platinum group metals with gallium, indium, thallium, germanium, tin or lead with germanium, tin or lead with tin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/02Solids
    • B01J35/08Spheres
    • B01J35/51
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/32Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with formation of free hydrogen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/32Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with formation of free hydrogen
    • C07C5/321Catalytic processes
    • C07C5/324Catalytic processes with metals
    • C07C5/325Catalytic processes with metals of the platinum group
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

본 발명은 탈수소화 촉매에 관한 것으로, 프로판, 부탄 등과 같이 C3~C5 범위의 경질탄화수소의 탈수소화 촉매반응에 사용되는 주석 및 칼륨 성분을 포함하는 구형의 백금계 촉매로서, 촉매 담체는 열처리로 조절된 기공크기 및 표면적을 가지고 촉매 표면에서 일정 깊이까지만 백금 및 주석 합금 성분이 에그-쉘 형태로 존재하는 탈수소화 촉매에 관한 것이다. 본 발명에 의한 촉매에서, 촉매 담체는 감마 알루미나 및 세타 알루미나의 혼합물로서 0.5~0.65cc/g의 기공부피를 가지며, 촉매의 백금 분산도는 30~50%이고, 백금 평균 입자 크기는 3nm~5nm이다.The present invention relates to a dehydrogenation catalyst, which is a spherical platinum-based catalyst containing tin and potassium components used for catalyzing the dehydrogenation of light hydrocarbons in the range of C3 to C5, such as propane and butane, wherein the catalyst carrier is controlled by heat treatment. It relates to a dehydrogenation catalyst in which platinum and tin alloy components exist in an egg-shell form only up to a certain depth from the catalyst surface and have a pore size and surface area. In the catalyst according to the present invention, the catalyst carrier is a mixture of gamma alumina and theta alumina and has a pore volume of 0.5 to 0.65 cc/g, the platinum dispersion of the catalyst is 30 to 50%, and the platinum average particle size is 3 nm to 5 nm. am.

Description

담체 기공이 조절된 탈수소화 촉매{Dehydrogenation catalysts with carriers having treated pores}Dehydrogenation catalysts with carriers having treated pores}

본 발명은 탈수소화 촉매 및 이의 제조 방법에 관한 것으로, 더욱 상세하게는 프로판, 부탄 등과 같이 C3~C5 범위의 경질탄화수소의 탈수소화 촉매반응에 사용되는 주석 및 칼륨 성분을 포함하는 구형의 백금계 촉매로서, 촉매 담체는 열처리로 조절된 기공크기 및 표면적을 가지고 촉매 표면에서 일정 깊이까지만 백금 및 주석 합금 성분이 에그-쉘 형태로 존재하는 탈수소화 촉매에 관한 것이다. 본 발명에 의한 촉매에서, 촉매 담체는 감마 알루미나 및 세타 알루미나의 혼합물로서 0.5~0.65cc/g의 기공부피를 가지며, 촉매의 백금 분산도는 30~50%이고, 백금 평균 입자 크기는 3nm~5nm이다.The present invention relates to a dehydrogenation catalyst and a method for preparing the same, and more particularly, to a spherical platinum-based catalyst containing tin and potassium components used for catalytic dehydrogenation of light hydrocarbons in the range of C3 to C5, such as propane and butane. As, the catalyst support has a pore size and surface area controlled by heat treatment, and relates to a dehydrogenation catalyst in which platinum and tin alloy components exist in an egg-shell form only up to a certain depth from the surface of the catalyst. In the catalyst according to the present invention, the catalyst carrier is a mixture of gamma alumina and theta alumina and has a pore volume of 0.5 to 0.65 cc/g, the platinum dispersion of the catalyst is 30 to 50%, and the platinum average particle size is 3 nm to 5 nm. am.

경질올레핀은 플라스틱, 합성고무, 의약, 화학제품의 원료 등 다양한 상업적인 용도로 이용되고 있는 물질이고, 다음의 경질탄화수소의 탈수소 반응으로 제조될 수 있다. Light olefins are materials used for various commercial purposes, such as raw materials for plastics, synthetic rubber, medicines, and chemicals, and can be produced by the following dehydrogenation reaction of light hydrocarbons.

파라핀 (CnH2n +2) ⇔ 올레핀 (CnH2n) + 수소 (H2)Paraffin (C n H 2n +2 ) ⇔ Olefin (C n H 2n ) + Hydrogen (H 2 )

경질탄화수소 탈수소 반응을 촉진하는 촉매는 알루미나, 제올라이트, 실리카, 스피넬타입의 금속알루미네이트 등 미세기공이 있는 주로 구형의 성형 담체가 사용되고 이들 물질은 코크 저항성이나 생성물 선택도에는 효과가 양호하나, 반응이 진행될수록 촉매에 누적되는 코크의 양이 점차 증가되면 미세세공이 코크에 의해 막히고 세공 내부에 존재하는 활성금속들이 결국 반응에 참여하지 못하고 비활성화되므로, 크래킹 등의 부반응 및 코크 침적을 감소시킬 수 있는 담체 구조가 요구된다. 따라서 촉매 내부는 미세세공을 줄이면서도 거대세공을 유지하여야 하고, 이러한 관점에서 촉매 담체로는 열처리만으로도 기공크기의 조절이 비교적 용이한 알루미나 담체가 주로 적용된다. 그러나 감마 알루미나는 기공크기가 작아 코크 침적에 취약하며, 담체 산점으로 인해 부반응이 진행되고, 알파 알루미나의 경우에는 금속의 분산도를 저해하여 금속들의 응집 현상을 유발하기 때문에 선택도는 좋을 수 있으나 전체 전환율이 낮아지는 단점이 있다.Catalysts that promote the dehydrogenation reaction of light hydrocarbons are mainly spherical molded carriers with fine pores, such as alumina, zeolite, silica, and spinel-type metal aluminate, and these materials have good effects on coke resistance and product selectivity, but the reaction is As the process progresses, when the amount of coke accumulated in the catalyst gradually increases, the micropores are blocked by coke, and the active metals present inside the pores are deactivated without participating in the reaction. Rescue is required. Therefore, the inside of the catalyst needs to maintain macropores while reducing micropores, and from this point of view, an alumina carrier, which is relatively easy to control the pore size only by heat treatment, is mainly applied as the catalyst carrier. However, gamma alumina is vulnerable to coke deposition due to its small pore size, side reactions proceed due to carrier acid sites, and alpha alumina inhibits the dispersion of metals and causes aggregation of metals, so selectivity may be good, but overall The downside is that the conversion rate is low.

본 발명자들은, 탈수소화 촉매 담체를 연구한 결과, 알파 알루미나 및 세타 알루미나의 혼합물 담체는 고온 열처리를 통해 산점이 제거되어 부반응을 억제할 수 있으며, 금속과의 결합력이 좋아서 금속간의 응집이 최소화되어 전환율과 선택도에 유리하다는 것을 알았다.As a result of studying the dehydrogenation catalyst carrier, the present inventors have found that the carrier of a mixture of alpha alumina and theta alumina can suppress side reactions by removing acid sites through high-temperature heat treatment, and has good bonding strength with metals, minimizing aggregation between metals, resulting in conversion rate. and found that it is advantageous for selectivity.

본 발명의 목적은 경질탄화수소의 탈수소화 반응에 사용되는 촉매에서 필연적으로 발생하는 백금 소결 (sintering) 현상을 억제하여 내구성이 강화된 촉매를 제공하는 것이다. 상기 목적은 다공성 알루미나 담체를 열처리하여 적절한 기공크기와 표면적을 가지는 감마 알루미나 및 세타 알루미나의 혼합물로 구성하고 촉매 표면에서 일정 깊이까지만 백금 및 주석 합금 성분이 에그-쉘 형태로 존재하는 탈수소화 촉매에 의해 달성된다. 비제한적으로 바람직하게는, 본 발명에 의한 촉매의 담체는 0.5~0.65cc/g의 기공부피를 가지며, 촉매의 백금 분산도는 30~50%이고, 백금 평균 입자 크기는 3nm~5nm일 수 있다.An object of the present invention is to provide a catalyst with enhanced durability by suppressing the platinum sintering phenomenon that inevitably occurs in catalysts used for dehydrogenation of light hydrocarbons. The above object is to heat-treat a porous alumina support to form a mixture of gamma alumina and theta alumina having an appropriate pore size and surface area, and to obtain a dehydrogenation catalyst in which platinum and tin alloy components exist in an egg-shell form only up to a certain depth from the catalyst surface. is achieved Preferably, but not limited to, the carrier of the catalyst according to the present invention has a pore volume of 0.5 ~ 0.65 cc / g, the platinum dispersion of the catalyst is 30 ~ 50%, and the average particle size of platinum may be 3 nm ~ 5 nm. .

본 발명에 의한 탈수소화 촉매는 기공크기 및 표면적이 조절된 담체에 백금-주석 합금이 에그-쉘 형태로 분포되고, 활성금속의 분산도가 극대화되어 탈수소화 공정에서 장시간 운전에도 전환율과 선택도가 높게 유지될 수 있다.In the dehydrogenation catalyst according to the present invention, the platinum-tin alloy is distributed in an egg-shell form on a carrier with controlled pore size and surface area, and the dispersion of the active metal is maximized, resulting in high conversion rate and selectivity even during long-term operation in the dehydrogenation process. can be kept high.

도1 은 시간 경과에 따른 전환율 및 선택도 변화를 도시한 것이다.Figure 1 shows the change in conversion rate and selectivity over time.

본 발명에 의한 활성금속 에그-쉘 형태의 촉매는 다공성 알루미나 담체로서 특히 알파 알루미나 및 세타 알루미나의 혼합물이 담체로 적용되고 백금, 주석, 칼륨이 담체에 함침되되, 백금-주석 합금이 담체 표면에서부터 일정 깊이까지 에그-쉘 구조로 분포하고, 칼륨은 담체 내부 전체에 균일하게 분포된다.The active metal egg-shell catalyst according to the present invention is a porous alumina carrier, in particular, a mixture of alpha alumina and theta alumina is applied as a carrier, and platinum, tin, and potassium are impregnated into the carrier, and the platinum-tin alloy is uniform from the surface of the carrier. It is distributed in an egg-shell structure to the depth, and potassium is evenly distributed throughout the inside of the carrier.

본원에서 촉매는 구형 촉매를 의미하며, 이는 구형 담체에 활성성분 및/또는 보조금속 성분들이 담지된 것이다. 활성성분 및/또는 활성성분과 보조금속인 주석성분이 에그-쉘 형태로 존재하는 것은 촉매 표면으로부터 촉매 중심을 향하여 일정두께로 존재하는 형태이고, 촉매 표면으로부터 직접 두께를 형성한다는 점에서 촉매 표면에 이들 성분이 존재하지 않는 고리형태와 구분된다. 본원에서 활성성분은 백금을 중심으로 설명되고, 보조금속으로 주석 및 칼륨 성분이 예시되지만, 이에 국한되지 않고 당업자가 이해하는 동일 목적 및 기능의 금속 성분들도 본 발명에서 용이하게 적용될 수 있음은 물론이다. 본원에서 구현되는 촉매의 담체는 바람직하게는 0.5~0.65cc/g의 기공부피를 가질 수 있고, 촉매에서 백금의 분산도는 30~50%이며, 백금-주석 합금의 평균 입자 크기는 3nm~5nm일 수 있으나, 이들 수치 범위 내에 있는 대표적인 수치를 가지는 예시만이 실시예로서 기재된다.The catalyst herein refers to a spherical catalyst, which is a spherical carrier in which active ingredients and/or subsidized ingredients are supported. The presence of the active component and/or the tin component subsidized with the active component in the form of an egg-shell is a form in which they exist in a certain thickness from the catalyst surface toward the center of the catalyst, and form a thickness directly from the catalyst surface, so that they are present on the catalyst surface. It is distinguished from the cyclic form in which the component does not exist. In the present application, the active ingredient is mainly described with platinum, and tin and potassium components are exemplified in subsidy, but it is not limited thereto, and metal components having the same purpose and function understood by those skilled in the art can be easily applied in the present invention, of course. am. The carrier of the catalyst embodied herein may preferably have a pore volume of 0.5 to 0.65 cc/g, the dispersion of platinum in the catalyst is 30 to 50%, and the average particle size of the platinum-tin alloy is 3 nm to 5 nm. However, only examples having representative values within these numerical ranges are described as examples.

본 발명에 의한 특이한 구조를 가지는 에그-쉘 형태의 백금 촉매는 개략적으로 다음 단계들을 통해 제조될 수 있다.The platinum catalyst in the form of an egg-shell having a unique structure according to the present invention can be roughly prepared through the following steps.

1) 백금-주석 혼합 용액 제조: 백금과 주석의 복합용액은 주석의 높은 환원성 때문에 공기 중에서 쉽게 백금의 침전을 유발한다. 따라서 복합용액 제조에 있어 용매의 선정이 중요하며, 이에 본 발명자들은 주석을 환원시키지 않는 용매를 사용하여 전구체 용액이 시간이 지나도 안정화 상태를 유지하도록 제조하였다. 먼저 백금과 주석의 전구체를 혼합하는 과정에서 유기용매에 첨가하여 백금-주석 복합체가 깨지지 않도록 하였으며, 염산을 투입하여 산 분위기의 용액을 제조하였다. 상기 목적의 유기용매는 메탄올, 에탄올, 부탄올, 아세톤, 에틸아세테이트, 아세노니트릴, 에틸렌글리콜, 트리-에틸렌 글리콜, 글리콜 에테르, 글리세롤, 소르비톨, 자일리톨, 디알킬 에테르, 테트라히드로푸란 중에 하나 또는 두 용매에서 선택될 수 있고, 순차적 또는 혼합용액으로 사용할 수 있다. 1) Preparation of a platinum-tin mixed solution: A composite solution of platinum and tin easily causes precipitation of platinum in the air due to the high reducibility of tin. Therefore, the selection of a solvent is important in preparing a composite solution, and therefore, the present inventors prepared a precursor solution to maintain a stable state over time by using a solvent that does not reduce tin. First, in the process of mixing the platinum and tin precursors, they were added to the organic solvent to prevent breakage of the platinum-tin complex, and hydrochloric acid was added to prepare a solution in an acid atmosphere. The organic solvent for the above purpose is one or two solvents selected from methanol, ethanol, butanol, acetone, ethyl acetate, acenonitrile, ethylene glycol, tri-ethylene glycol, glycol ether, glycerol, sorbitol, xylitol, dialkyl ether, and tetrahydrofuran. It can be selected from, and can be used sequentially or as a mixed solution.

2) 백금-주석 혼합용액을 다공성 알루미나 담체에 균일 함침: 기공크기 및 기공부피 조절을 위해 소성로에서 850-1100도에서 열처리된 감마 및 세타 결정성의 다공성 알루미나 담체를 사용한다. 예비된 백금-주석 용액은 열처리된 담체에 분무담지법으로 함침된다. 열처리온도는 담체의 결정상, 기공구조와 밀접한 관련이 있고, 열처리 온도가 850도 이하일 경우에는 알루미나의 결정상은 감마상이 주를 이루는 상태이며 담체의 기공크기가 작아 반응물이 담체 내에서 확산속도가 낮아질 수 있고, 열처리 온도가 1100도 이상일 경우에는 알루미나의 결정상은 알파상이 주를 이루는 상태로서 기공크기는 반응에 유리한 상태로 존재하지만 활성금속을 담지하는 과정에서 알파 알루미나 상에 분포하는 활성금속들의 분산도가 낮아지므로, 열처리 온도를 850-1100도로 설정하여 감마 및 세타 알루미나의 혼합 상태로 개질한다.2) Uniformly impregnating the porous alumina carrier with the platinum-tin mixed solution: To control the pore size and pore volume, use a gamma- and theta-crystalline porous alumina carrier heat-treated at 850-1100 degrees in a firing furnace. The prepared platinum-tin solution is impregnated into the heat-treated carrier by a spray-dipping method. The heat treatment temperature is closely related to the crystal phase and pore structure of the carrier, and when the heat treatment temperature is 850 degrees or less, the crystal phase of alumina is mainly gamma phase, and the diffusion rate of reactants in the carrier may be lowered due to the small pore size of the carrier. When the heat treatment temperature is 1100 degrees or more, the alpha phase of the alumina crystal phase is predominant, and the pore size exists in a state favorable to the reaction, but the dispersity of the active metals distributed on the alpha alumina phase in the process of supporting the active metal is high. Since it is lowered, the heat treatment temperature is set to 850-1100 degrees to reform into a mixed state of gamma and theta alumina.

3) 담체 내 금속 고정: 함침 후에 100-150도 이상의 건조기에서 12시간 이상 건조과정을 거친 후, 공기 분위기 400-700도 범위에서 소성하여 담체 내 금속을 고정시킨다.3) Fixing the metal in the carrier: After impregnation, drying in a dryer at 100-150 degrees or more for 12 hours or more, firing in an air atmosphere in the range of 400-700 degrees Celsius fixes the metal in the carrier.

4) 알칼리금속 담지 및 고정: 다공성 알루미나 담체에 잔존하는 산점에 의해 발생하는 부반응을 억제하기 위해 알칼리 금속을 담지한다. 칼륨을 분무담지법으로 담체 내부 기공에 담지하고 100-150도 건조기에서 12시간 이상 건조, 및 공기 분위기 400-700도 범위에서 소성하여 칼륨을 담체 내에 고정시킨다.4) Alkali metal support and fixation: An alkali metal is supported to suppress side reactions caused by acid sites remaining in the porous alumina carrier. Potassium is loaded into the pores inside the carrier by the spray-supporting method, dried in a dryer at 100-150 degrees for 12 hours or more, and calcined in an air atmosphere at 400-700 degrees to fix potassium in the carrier.

5) 환원: 알칼리금속 고정 후 400-600도 범위 내에서 수소가스를 이용하여 환원과정을 진행하여 최종촉매를 얻는다. 환원과정에서 온도가 400도 이하일 경우 금속 산화종들이 완전히 환원되지 않을 수 있고, 온도가 600도보다 높을 경우 금속입자의 응집 및 소결이 발생하여 활성점이 감소될 수 있다.5) Reduction: After fixing the alkali metal, a reduction process is performed using hydrogen gas within the range of 400-600 degrees to obtain the final catalyst. In the reduction process, when the temperature is 400 degrees or less, metal oxidizing species may not be completely reduced, and when the temperature is higher than 600 degrees, aggregation and sintering of metal particles may occur, thereby reducing active points.

본 발명에 의한 촉매를 대상으로 금속 활성물질의 분산도를 확인하기 위하여 일산화탄소 흡착실험을 진행하였다. 우선 헬륨가스로 400도까지 승온 후, 산소 및 수소 처리를 통해 촉매 내 수분을 제거하고 환원되지 않은 금속산화물을 환원시킨다. 이어, 50도로 냉각 후 7% 일산화탄소 가스를 주입하여 귀금속에 흡착한 일산화탄소 가스량을 분석한다. 일산화탄소와 백금이 1:1 의 비율로 흡착한다고 가정하여 백금의 분산도와 입자 사이즈를 최종적으로 계산한다. 한편, 탈수소화 성능을 평가하기 위하여, 파라핀, 이소파라핀, 알킬 방향족을 포함하는 탄소원자 개수 2~5, 바람직하게는 3~4의 탄소원자 개수를 가지는 탄화수소를 수소로 희석시켜 500~680℃, 바람직하게는 570℃, 0-2기압, 바람직하게는 1.5기압, 파라핀 탄화수소의 액체공간속도(LHSV: Liquid Hourly Space Velocity) 1-40h-1인 조건 하에서 기상반응으로 탈수소화 반응을 수행한다.A carbon monoxide adsorption experiment was conducted to confirm the degree of dispersion of the metal active material for the catalyst according to the present invention. First, after raising the temperature to 400 degrees with helium gas, moisture in the catalyst is removed through oxygen and hydrogen treatment, and unreduced metal oxide is reduced. Subsequently, after cooling to 50 degrees, 7% carbon monoxide gas is injected to analyze the amount of carbon monoxide gas adsorbed to the noble metal. Assuming that carbon monoxide and platinum are adsorbed in a ratio of 1:1, the dispersion degree and particle size of platinum are finally calculated. On the other hand, in order to evaluate the dehydrogenation performance, hydrocarbons having 2 to 5 carbon atoms, preferably 3 to 4 carbon atoms, including paraffin, isoparaffin, and alkyl aromatics, are diluted with hydrogen and heated to 500 to 680 ° C. Preferably 570 ℃, 0-2 atm, preferably 1.5 atm, liquid hourly space velocity (LHSV: Liquid Hourly Space Velocity) 1-40h -1 of paraffinic hydrocarbons under conditions of gas phase reaction to perform the dehydrogenation reaction.

실시예 1Example 1

비드 타입의 알루미나 담체를 950도에서 열처리하여 사용하였다. 백금전구체로서 염화백금산, 주석전구체로서 염화주석을 사용하였고, 촉매 전체 중량 대비 0.2wt%에 해당하는 염화주석과 전체용액의 5%에 해당하는 염산을 혼합하였다. 이후 촉매 전체 중량 대비 0.4wt%에 해당하는 염화백금산을 추가하여 백금-주석용액을 제조한 후, 담체가 가지는 총 기공 부피에 해당하는 양의 에탄올에 첨가하여 용해시켰다. 백금-주석 용액을 분무담지법을 이용하여 예비된 알루미나 담체에 함침하였다. 백금-주석 혼합용액이 담지된 담체를 120℃에서 12시간 건조 후 공기분위기에서 550℃로 3시간 열처리 과정을 거쳐 활성금속을 고정시켰다. 이후 질화칼륨을 촉매 전체 중량 대비 0.8wt%로 역시 분무함침법으로 백금과 주석이 함유된 알루미나의 내부 기공에 담지하였으며, 금속이 담지된 담체를 120℃에서 12시간 건조 후 550℃에서 3시간 열처리 과정을 거쳐 금속 담지 촉매를 제조하였다. 촉매 환원과정은 step 방식으로 550℃까지 공기 분위기에서 승온 후, 수소 분위기에서 1시간 유지하여 촉매를 완성하였다. 실시예 1은 백금-주석 동시함침법으로 촉매를 제조한 것이다.A bead-type alumina carrier was used by heat treatment at 950 degrees. Chloroplatinic acid as a platinum precursor and tin chloride as a tin precursor were used, and tin chloride corresponding to 0.2 wt% of the total weight of the catalyst and hydrochloric acid corresponding to 5% of the total solution were mixed. Thereafter, chloroplatinic acid corresponding to 0.4wt% of the total weight of the catalyst was added to prepare a platinum-tin solution, and then added to and dissolved in ethanol in an amount corresponding to the total pore volume of the carrier. The prepared alumina carrier was impregnated with the platinum-tin solution using a spray-dipping method. After drying the carrier supported with the platinum-tin mixture solution at 120 ° C. for 12 hours, an active metal was fixed through a heat treatment process at 550 ° C. for 3 hours in an air atmosphere. Then, 0.8wt% of potassium nitride based on the total weight of the catalyst was also loaded into the internal pores of alumina containing platinum and tin by spray impregnation, and the metal-supported carrier was dried at 120 ° C for 12 hours and then heat-treated at 550 ° C for 3 hours. Through the process, a supported metal catalyst was prepared. In the catalytic reduction process, the catalyst was completed by raising the temperature to 550 ° C in an air atmosphere in a step method and maintaining it in a hydrogen atmosphere for 1 hour. In Example 1, a catalyst was prepared by a platinum-tin co-impregnation method.

비교예 1Comparative Example 1

실시예 1과는 달리 백금, 주석, 칼륨을 순차적으로 함침하는 방법으로 비교 촉매를 제조하였다. 실시예 1과 동일하게 열처리된 알루미나를 사용하였다. 백금전구체로서 염화백금산을 사용하여 촉매 전체 중량 대비 0.4wt%에 해당하는 백금과 전체용액의 5wt%에 해당하는 염산을 혼합한 용액을 담체가 가지는 총 기공의 부피에 해당하는 탈이온수에 희석하여 분무담지법으로 담체에 함침하였다. 백금이 담지된 담체를 실시예 1과 같이 건조 및 열처리 과정을 거쳐 활성금속을 고정시켰다. 이후 주석전구체로서 염화주석을 사용하여 촉매 전체 중량 대비 0.2wt%에 해당하는 주석 및 백금 투입단계에서와 동일 양의 염산을 혼합한 용액을 백금 투입 단계와 동일 방법으로 담지 후, 건조와 열처리 과정을 거친다. 이후 촉매 전체 중량 대비 0.8wt%에 해당하는 질화칼륨 및 전체 용액의 1%에 해당하는 질산을 혼합 후 탈이온수에 희석하여 동일 방법으로 함침 후 건조, 소성한다. 촉매 환원은 step 방식으로 550℃까지 공기 분위기에서 승온 후, 수소 분위기에서 1시간 유지하여 촉매를 제조하였다.Unlike Example 1, a comparative catalyst was prepared by sequentially impregnating platinum, tin, and potassium. Alumina heat-treated in the same manner as in Example 1 was used. Using chloroplatinic acid as a platinum precursor, a solution obtained by mixing platinum corresponding to 0.4wt% of the total weight of the catalyst and hydrochloric acid corresponding to 5wt% of the total solution is diluted in deionized water corresponding to the total pore volume of the carrier and sprayed. The carrier was impregnated by the supporting method. As in Example 1, the platinum-supported carrier was subjected to drying and heat treatment to fix the active metal. Then, using tin chloride as a tin precursor, a solution containing 0.2 wt% of tin and hydrochloric acid of the same amount as in the platinum input step corresponding to 0.2 wt% of the total weight of the catalyst is loaded in the same way as in the platinum input step, followed by drying and heat treatment. go through Thereafter, potassium nitride corresponding to 0.8wt% of the total weight of the catalyst and nitric acid corresponding to 1% of the total solution were mixed, diluted in deionized water, impregnated in the same way, dried, and calcined. Catalyst reduction was carried out in an air atmosphere up to 550 ° C. in a step manner, and then maintained in a hydrogen atmosphere for 1 hour to prepare a catalyst.

비교예 2Comparative Example 2

비드 타입의 알루미나 담체를 850도에서 열처리하여 사용한 것을 제외하고 실시예 1과 동일한 방법으로 촉매를 제조하였다.A catalyst was prepared in the same manner as in Example 1, except that a bead-type alumina carrier was heat-treated at 850 degrees.

비교예 3Comparative Example 3

비드 타입의 알루미나 담체를 1050도에서 열처리하여 사용한 것을 제외하고 실시예 1과 동일한 방법으로 촉매를 제조하였다.A catalyst was prepared in the same manner as in Example 1, except that a bead-type alumina carrier was heat-treated at 1050 degrees.

비교예 4Comparative Example 4

비드 타입의 알루미나 담체를 1100도에서 열처리하여 사용한 것을 제외하고 실시예 1과 동일한 방법으로 촉매를 제조하였다.A catalyst was prepared in the same manner as in Example 1, except that a bead-type alumina carrier was heat-treated at 1100 degrees.

실험예:Experimental example:

실시예 및 비교예들에 의한 촉매를 고정층 촉매반응기에 충전하여 프로판 탈수소화 반응을 실시하였다. 반응기 내 반응가스의 조성은 수소 및 프로판의 부피비는 0.61이며 SUS 반응기의 부식을 방지하기 위하여 전체 가스의 95ppm은 H2S 가스로 구성된다. 607도까지 수소분위기로 분당 6도의 승온속도로 승온 후, 프로판과 수소를 상기의 일정비율로 넣어주면서 프로판 탈수소화 반응을 진행한다. 전환율과 선택도 계산은 Gas chromatography를 이용하여 생성가스를 분석하여 계산한다.A propane dehydrogenation reaction was performed by charging the catalyst according to Examples and Comparative Examples to a fixed bed catalytic reactor. The volume ratio of hydrogen and propane in the composition of the reaction gas in the reactor is 0.61, and 95 ppm of the total gas is composed of H 2 S gas to prevent corrosion of the SUS reactor. After raising the temperature to 607 degrees in a hydrogen atmosphere at a rate of 6 degrees per minute, the propane dehydrogenation reaction proceeds while adding propane and hydrogen at the above constant ratio. The conversion rate and selectivity are calculated by analyzing the product gas using gas chromatography.

표 1은 실시예 및 비교예들에 의한 촉매에 대하여 일산화탄소 흡착을 이용한 백금의 분산도 측정결과 및 프로판 탈수소화 반응 결과를 요약한 것이고, 표 2는 열처리된 담체의 표면적 및 기공구조의 변화를 정리한 것이다. 도1 은 시간 경과에 따른 전환율 및 선택도 변화를 도시한 것이다.Table 1 summarizes the results of platinum dispersion measurement and propane dehydrogenation reaction using carbon monoxide adsorption for catalysts according to Examples and Comparative Examples, and Table 2 summarizes changes in the surface area and pore structure of the heat-treated carrier. it did Figure 1 shows the change in conversion rate and selectivity over time.

구분division 활성금속 분포형태Active metal distribution pattern 담체
소성온도
(℃)
carrier
firing temperature
(℃)
분산도
(%)
dispersion
(%)
활성금속 평균
입자크기
(nm)
active metal average
particle size
(nm)
전환율 (%)
Ci/Cf
Conversion rate (%)
C i /C f
선택도 (%)
Si/Sf
Selectivity (%)
S i /S f
수율 (%)
Yi/Yf
transference number (%)
Y i /Y f
수율
감소율
(%)
transference number
decrease rate
(%)
실시예 1Example 1 에그-쉘egg-shell 950950 36.236.2 3.133.13 37.0/36.137.0/36.1 90.1/89.990.1/89.9 33.3/32.533.3/32.5 2.652.65 비교예 1Comparative Example 1 전체분포overall distribution 950950 21.221.2 5.345.34 36.2/34.536.2/34.5 90.0/89.690.0/89.6 32.6/30.932.6/30.9 5.125.12 비교예 2Comparative Example 2 에그-쉘egg-shell 850850 4242 2.702.70 39.1/37.939.1/37.9 82.2/77.882.2/77.8 32.1/29.532.1/29.5 8.268.26 비교예 3Comparative Example 3 에그-쉘egg-shell 10501050 32.832.8 3.453.45 36.7/35.536.7/35.5 91.0/90.591.0/90.5 33.4/32.133.4/32.1 3.803.80 비교예 4Comparative Example 4 에그-쉘egg-shell 11001100 14.414.4 7.877.87 35.8/32.335.8/32.3 92.7/91.192.7/91.1 33.2/29.433.2/29.4 11.3311.33

구분division 담체 열처리온도
(℃)
Carrier heat treatment temperature
(℃)
표면적
(m2/g)
surface area
(m 2 /g)
메조기공 부피
(cm3/g)
mesopore volume
(cm 3 /g)
기공 평균 크기
(Å)
average pore size
(Å)
알루미나 담체 1alumina carrier 1 850850 132132 0.6150.615 139139 알루미나 담체 2alumina carrier 2 950950 114114 0.5980.598 154154 알루미나 담체 3alumina carrier 3 10501050 9191 0.5240.524 170170 알루미나 담체 4alumina carrier 4 11001100 5454 0.3670.367 221221

분산도 평가Dispersion evaluation

표 1에 의하면 백금-주석 혼합용액을 이용하여 제조된 실시예 1이 순차적 방법을 통해 제조된 비교예 1과 비교하여 백금의 분산도가 높았다.According to Table 1, Example 1 prepared using the platinum-tin mixed solution had higher dispersion of platinum than Comparative Example 1 prepared through the sequential method.

촉매의 성능 평가Catalyst performance evaluation

높은 분산도를 가진 합금촉매가 초기 전환율과 선택도가 높아, 높은 프로필렌 수율을 보이며, 실험 대상 모든 촉매가 10시간 활성 후, 백금 소결 및 탄소 침적으로 인한 프로필렌 수율이 감소하지만, 초기 분산도 값이 높은 백금-주석 합금 촉매의 경우, 순차적 함침에 의해 제조된 비교 촉매와 대비하여 수율 감소율이 낮았다.Alloy catalysts with high dispersion show high propylene yields due to high initial conversion and selectivity. After 10 hours of activation of all catalysts tested, propylene yields decrease due to platinum sintering and carbon deposition, but the initial dispersity values For the high platinum-tin alloy catalyst, the yield reduction rate was low compared to the comparative catalyst prepared by sequential impregnation.

담체 구조 평가Carrier structure evaluation

표 2의 담체 소성온도의 변화에 따른 담체 구조를 비교하면, 소성온도가 가장 낮은 비교예 2의 경우, 전환율은 높지만 선택도가 낮으며 시간에 따른 프로필렌 수율 감소율이 크다. 이론에 국한되지 않지만, 이러한 현상은 낮은 소성온도로 인해 담체 내에 산점이 많이 존재하여 비록 백금의 분산도가 높더라도, 존재하는 산점들로 인하여 탄소 침적이 가속화되고, 침적된 탄소들이 백금 활성점을 막아 내구성이 낮아지기 때문이라고 예측된다. 이와 반대로 담체 소성온도가 1100도로 가장 높은 비교예 4의 경우, 담체의 산점은 대부분 제거되었지만 담체의 기공구조가 무너져 표면적이 감소하므로 이로써 백금의 분산도와 활성면적이 낮아졌기 때문에 활성과 내구성 모두 저하되었음을 확인할 수 있다.Comparing the carrier structure according to the change in the carrier calcination temperature in Table 2, in the case of Comparative Example 2, which has the lowest calcination temperature, the conversion rate is high, but the selectivity is low, and the propylene yield reduction rate with time is large. Although not limited by theory, this phenomenon is due to the presence of many acid sites in the carrier due to the low firing temperature, even if the dispersion of platinum is high, the carbon deposition is accelerated due to the existing acid sites, and the deposited carbons form platinum active sites. It is predicted that this is due to the decrease in durability. On the contrary, in the case of Comparative Example 4, where the carrier firing temperature is the highest at 1100 degrees, most of the acid points of the carrier were removed, but the pore structure of the carrier collapsed and the surface area decreased. You can check.

Claims (3)

경질탄화수소의 탈수소화 촉매반응에 사용되는 구형 탈수소화 촉매로서, 알루미나 담체를 950도에서 열처리하여 알루미나 담체는 감마 알루미나 및 세타 알루미나의 혼합물로 구성되고, 백금 및 주석 합금 성분이 에그-쉘 형태로 존재하고, 칼륨은 균일하게 분포되되, 상기 백금의 분산도는 30~50%인, 탈수소화 촉매.As a spherical dehydrogenation catalyst used in the dehydrogenation catalytic reaction of light hydrocarbons, the alumina support is heat-treated at 950 degrees, and the alumina support is composed of a mixture of gamma alumina and theta alumina, and platinum and tin alloy components exist in the form of an egg-shell. And, potassium is uniformly distributed, but the dispersion of the platinum is 30 to 50%, a dehydrogenation catalyst. 제1항에 있어서, 상기 담체는 0.5~0.65cc/g의 기공부피를 가지는, 탈수소화 촉매.The dehydrogenation catalyst according to claim 1, wherein the carrier has a pore volume of 0.5 to 0.65 cc/g. 제1항에 있어서, 상기 백금-주석 합금의 평균 입자 크기는 3nm~5nm인, 탈수소화 촉매.The dehydrogenation catalyst according to claim 1, wherein the platinum-tin alloy has an average particle size of 3 nm to 5 nm.
KR1020200168063A 2020-12-04 2020-12-04 Dehydrogenation catalysts with carriers having treated pores KR102523345B1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020200168063A KR102523345B1 (en) 2020-12-04 2020-12-04 Dehydrogenation catalysts with carriers having treated pores
ES202390035A ES2957010A2 (en) 2020-12-04 2021-11-18 Dehydrogenation catalyst with controlled carrier pores
PCT/KR2021/016938 WO2022119191A1 (en) 2020-12-04 2021-11-18 Dehydrogenation catalyst with controlled carrier pores
CN202180081472.2A CN116547073A (en) 2020-12-04 2021-11-18 Dehydrogenation catalyst with regulation of support pores

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200168063A KR102523345B1 (en) 2020-12-04 2020-12-04 Dehydrogenation catalysts with carriers having treated pores

Publications (2)

Publication Number Publication Date
KR20220078856A KR20220078856A (en) 2022-06-13
KR102523345B1 true KR102523345B1 (en) 2023-04-18

Family

ID=81854069

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200168063A KR102523345B1 (en) 2020-12-04 2020-12-04 Dehydrogenation catalysts with carriers having treated pores

Country Status (4)

Country Link
KR (1) KR102523345B1 (en)
CN (1) CN116547073A (en)
ES (1) ES2957010A2 (en)
WO (1) WO2022119191A1 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101972121B1 (en) * 2017-05-11 2019-04-24 희성촉매 주식회사 Method for producing catalysts of high regeneration efficiency for dehydrogenation of light straight-chain hydrocarbons
KR101981886B1 (en) * 2018-02-01 2019-05-23 효성화학 주식회사 Dehydrogenation catalyst
KR102035470B1 (en) * 2018-02-01 2019-10-23 효성화학 주식회사 Dehydrogenation catalyst
KR102090234B1 (en) * 2018-04-23 2020-03-18 효성화학 주식회사 Preparation method of alumina support
KR102175701B1 (en) * 2018-10-19 2020-11-06 희성촉매 주식회사 Method for producing catalysts of high efficiency for dehydrogenation of light branched hydrocarbons
KR102162079B1 (en) * 2019-01-18 2020-10-07 효성화학 주식회사 Method of preparing catalyst support and dehydrogenation catalysts

Also Published As

Publication number Publication date
WO2022119191A1 (en) 2022-06-09
KR20220078856A (en) 2022-06-13
CN116547073A (en) 2023-08-04
ES2957010A2 (en) 2024-01-08

Similar Documents

Publication Publication Date Title
KR101716170B1 (en) A stabilized active metal complex based catalyst for dehydrogenation of light straight-chain hydrocarbons
US11040333B2 (en) Method for preparing dehydrogenation catalyst for straight chain-type light hydrocarbon using stabilized active material complex
US20170001174A1 (en) Method For Producing Hydrocarbon Dehydrogenation Catalyst Using Sponge-Type Support
KR102223637B1 (en) Preparation method of propane dehydrogenation catalyst
CN110603096B (en) Preparation method of dehydrogenation catalyst of linear light hydrocarbon with high regeneration efficiency
KR20180081659A (en) Dehydrogenation catalysts and preparation method thereof
KR102046771B1 (en) Dehydrogenation catalyst
KR102090234B1 (en) Preparation method of alumina support
KR102523345B1 (en) Dehydrogenation catalysts with carriers having treated pores
KR102035470B1 (en) Dehydrogenation catalyst
JP4054116B2 (en) Dehydrogenation catalyst
KR102175701B1 (en) Method for producing catalysts of high efficiency for dehydrogenation of light branched hydrocarbons
KR102162079B1 (en) Method of preparing catalyst support and dehydrogenation catalysts
KR20110078818A (en) Dehydrogenation aerogel catalyst
KR102035471B1 (en) Preparation of dehydrogenation catalysts having superior selectivity
JP4166333B2 (en) Dehydrogenation catalyst
KR20210077020A (en) Dehydrogenation catalyst
KR102464144B1 (en) Dehydrogenation catalysts with active metals being distributed as a ring form
CN115518679B (en) Aromatization catalyst, preparation method and application thereof and butane aromatization method
KR100505526B1 (en) Pd-Ti-K catalyst for selective hydrogenation of acetylene and production method of the same
CN111036244A (en) Fluorine-containing catalyst, preparation method and application thereof, and glycerol hydrogenolysis method

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
X091 Application refused [patent]
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant