KR102521548B1 - 유기발광 표시장치 - Google Patents

유기발광 표시장치 Download PDF

Info

Publication number
KR102521548B1
KR102521548B1 KR1020220052749A KR20220052749A KR102521548B1 KR 102521548 B1 KR102521548 B1 KR 102521548B1 KR 1020220052749 A KR1020220052749 A KR 1020220052749A KR 20220052749 A KR20220052749 A KR 20220052749A KR 102521548 B1 KR102521548 B1 KR 102521548B1
Authority
KR
South Korea
Prior art keywords
light emitting
layer
emitting layer
transport layer
hole transport
Prior art date
Application number
KR1020220052749A
Other languages
English (en)
Other versions
KR20220058881A (ko
Inventor
김동혁
송재일
장재승
Original Assignee
엘지디스플레이 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지디스플레이 주식회사 filed Critical 엘지디스플레이 주식회사
Priority to KR1020220052749A priority Critical patent/KR102521548B1/ko
Publication of KR20220058881A publication Critical patent/KR20220058881A/ko
Priority to KR1020230046879A priority patent/KR20230050309A/ko
Application granted granted Critical
Publication of KR102521548B1 publication Critical patent/KR102521548B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/125OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light
    • H10K50/13OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light comprising stacked EL layers within one EL unit
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/32Stacked devices having two or more layers, each emitting at different wavelengths
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/12OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising dopants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/123Connection of the pixel electrodes to the thin film transistors [TFT]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/124Insulating layers formed between TFT elements and OLED elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8051Anodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8052Cathodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/873Encapsulations

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electroluminescent Light Sources (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)

Abstract

본 발명의 실시예에 따른 유기발광 표시장치는, 제1 전극과 제2 전극 사이에 있으며, 제1 발광층과 제1 정공 수송층을 포함하는 제1 발광부; 및 상기 제1 발광부 위에 있으며, 제2 발광층과 제2 정공 수송층을 포함하는 제2 발광부를 포함하고, 상기 제1 발광부 및 상기 제2 발광부의 수명이 향상되도록 상기 제2 정공 수송층의 정공 이동도는 상기 제1 정공 수송층의 정공 이동도보다 느린 것을 특징으로 한다.

Description

유기발광 표시장치 {ORGANIC LIGHT EMITTING DISPLAY DEVICE}
본 발명은 유기발광 표시장치에 관한 것으로서, 더욱 상세하게는 발광 효율이나 수명을 향상시킬 수 있는 유기발광 표시장치에 관한 것이다.
최근 정보화 시대로 접어듦에 따라 전기적 정보신호를 시각적으로 표현하는 디스플레이(display) 분야가 급속도로 발전해 왔고, 이에 부응하여 박형화, 경량화, 저소비전력화의 우수한 성능을 지닌 여러 가지 다양한 표시장치(Display Device)가 개발되고 있다.
이와 같은 표시장치의 구체적인 예로는 액정표시장치(Liquid Crystal Display device: LCD), 플라즈마 표시장치(Plasma Display Panel device: PDP), 전계방출 표시장치(Field Emission Display device: FED), 유기발광 표시장치(Organic Light Emitting Device: OLED) 등을 들 수 있다.
특히, 유기발광 표시장치는 자발광소자로서 다른 표시 장치에 비해 응답속도가 빠르고 발광 효율, 휘도 및 시야각이 큰 장점이 있으므로 널리 주목받고 있다.
[백색 유기 발광 소자] (특허출원번호 제 10-2007-0053472호)
유기 발광 소자는 기판 상에 애노드가 형성되어 있고, 애노드 상부에 정공 수송층, 발광층, 전자 수송층 및 캐소드가 형성되어 있는 구조로 구성한다. 정공 수송층, 발광층 및 전자 수송층은 유기 화합물로 이루어진다. 애노드 및 캐소드 사이에 전압을 인가하면, 애노드로부터 주입된 정공은 정공 수송층을 통하여 발광층으로 이동하고, 캐소드로부터 주입된 전자는 전자 수송층을 통하여 발광층으로 이동한다. 캐리어들(정공 및 전자)은 발광층 내에서 재결합하여 여기자(exciton)를 생성하고, 이 여기자가 여기 상태(excited state)에서 기저 상태(ground state)로 변하면서 광이 생성된다.
그러나, 정공 수송층을 통하여 전달된 정공과 전자 수송층을 통하여 전달된 전자가 재결합한 여기자가 발광층 내에 생성되지 못하는 문제점이 있다. 이로 인해, 발광층 내에서 정공과 전자가 결합하여 여기자가 되지 못하는 전자가 증가한다. 이러한 전자는 정공 수송층을 그대로 통과하여 애노드 전극으로 전달되어 발광층이 발광에 기여하지 못하므로, 발광 효율이 저하되어 수명이 감소하게 된다.
이에 본 발명의 발명자들은 위에서 언급한 문제점들을 인식하고, 발광층의 발광 효율이나 수명을 향상시키기 위한 여러 실험을 하게 되었다. 여러 실험을 통하여 발광 효율이나 수명이 향상될 수 있는 새로운 구조의 유기발광 표시장치를 발명하였다.
본 발명의 실시예에 따른 해결 과제는 발광층을 포함한 발광부에 정공 이동도가 느린 정공 수송층을 적용함으로써, 발광층의 재결합 영역이 발광층 내에 위치하도록 하여 발광 효율이나 수명을 향상시킬 수 있는 유기발광 표시장치를 제공하는 것이다.
본 발명의 실시예에 따른 해결 과제들은 이상에서 언급한 과제들로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
본 발명의 실시예에 따른 유기발광 표시장치는, 제1 전극과 제2 전극 사이에 있으며, 제1 발광층과 제1 정공 수송층을 포함하는 제1 발광부; 및 상기 제1 발광부 위에 있으며, 제2 발광층과 제2 정공 수송층을 포함하는 제2 발광부를 포함하고, 상기 제2 발광층의 수명이 향상되도록 상기 제2 정공 수송층의 정공 이동도는 상기 제1 정공 수송층의 정공 이동도보다 느린 것을 특징으로 한다.
상기 제1 발광부 및 상기 제2 발광부의 효율 향상을 위하여 상기 제2 발광층은 상기 제2 전극보다 상기 제1 전극에 근접하게 위치시키는 것을 특징으로 한다.
상기 제2 발광층의 효율이 향상되도록 상기 제2 정공 수송층의 두께는 상기 제1 정공 수송층의 두께보다 작은 것을 특징으로 한다.
상기 제2 정공 수송층의 두께는 10nm 이하인 것을 특징으로 한다.
상기 제2 정공 수송층의 정공 이동도는 상기 제1 정공 수송층의 정공 이동도보다 half order의 차이를 갖는 것을 특징으로 한다.
상기 제2 정공 수송층의 정공 이동도는 5.0 X 10-6cm2/Vs 내지 9.0 X 10-5cm2/Vs 범위인 것을 특징으로 한다.
상기 제1 정공 수송층의 정공 이동도는 5.0 X 10-5cm2/Vs 내지 9.0 X 10-4cm2/Vs 범위인 것을 특징으로 한다.
상기 제2 정공 수송층은 상기 제2 발광층으로의 정공의 이동을 조절하며, 상기 제2 발광층의 재결합 영역이 상기 제2 발광층 내에 있도록 하는 것을 특징으로 한다.
상기 제2 정공 수송층은 전자 전달 특성 치환기를 포함하는 재료로 이루어진 것을 특징으로 한다.
상기 제2 정공 수송층은 피리딘(pyridine) 계열, 트리아진(triazine) 계열, 이미다졸(imidazole) 계열, 벤즈이미다졸(benzimidazole) 계열, 퀴놀린(quinolone) 계열, 트리아졸(trizole)계열, 페난쓰롤린(phenanthroline) 계열 중 하나로 이루어진 것을 특징으로 한다.
상기 제2 발광층은 황색-녹색 발광층 또는 녹색 발광층 중 하나를 포함하는 것을 특징으로 한다.
상기 제2 발광부 위에는 제3 발광층과 제3 정공 수송층을 포함하는 제3 발광부를 더 포함하는 것을 특징으로 한다.
상기 제2 정공 수송층의 두께는 상기 제3 정공 수송층의 두께보다 작은 것을 특징으로 한다.
상기 제1 정공 수송층의 두께는 상기 제3 정공 수송층의 두께보다 큰 것을 특징으로 한다.
상기 제2 발광층은 적어도 하나의 호스트와 도펀트를 포함하며, 상기 제2 발광층의 효율이 향상되도록 상기 제2 발광층은 상기 도펀트의 도핑 영역이 서로 다른 적어도 두 개의 영역을 포함하는 것을 특징으로 한다.
상기 적어도 두 개의 영역 중 도펀트의 도핑 농도가 높은 영역이 상기 제2 전극보다 상기 제1 전극에 가까운 것을 특징으로 한다.
본 발명의 실시예에 따른 유기발광 표시장치는, 제1 전극과 제2 전극 사이에 있으며, 제1 발광층과 제1 정공 수송층을 포함하는 제1 발광부; 및 상기 제1 발광부 위에 있으며, 제2 발광층과 제2 정공 수송층을 포함하는 제2 발광부를 포함하고, 상기 제2 발광층의 수명이 향상되도록 상기 제2 정공 수송층의 두께는 상기 제1 정공 수송층의 두께보다 작은 것을 특징으로 한다.
상기 제2 정공 수송층의 두께는 10nm 이하인 것을 특징으로 한다.
상기 제2 정공 수송층의 작은 두께로 인한 상기 제2 발광층으로 정공 과잉이 안 되도록 상기 제2 정공 수송층의 정공 이동도는 상기 제1 정공 수송층의 정공 이동도보다 느린 물질로 이루어진 것을 특징으로 한다.
상기 제1 정공 수송층의 정공 이동도는 5.0 X 10-5cm2/Vs 내지 9.0 X 10-4cm2/Vs 범위이며, 상기 제2 정공 수송층의 정공 이동도는 상기 제1 정공 수송층의 정공 이동도보다 half order의 차이를 갖는 것을 특징으로 한다.
상기 제2 정공 수송층의 정공 이동도는 5.0 X 10-6cm2/Vs 내지 9.0 X 10-5cm2/Vs 범위인 것을 특징으로 한다.
상기 제2 발광부 위에는 제3 발광층과 제3 정공 수송층을 포함하는 제3 발광부를 더 포함하는 것을 특징으로 한다.
본 발명의 실시예에 따른 유기발광 표시장치는, 제1 전극과 제2 전극 사이에 있으며, 제1 발광층과 제1 정공 수송층을 포함하는 제1 발광부; 및 상기 제1 발광부 위에 있으며, 제2 발광층과 제2 정공 수송층을 포함하는 제2 발광부를 포함하고, 상기 제1 발광부 및 상기 제2 발광부의 효율 향상을 위하여 상기 제2 발광층은 상기 제1 전극에 근접하게 위치하며, 상기 제2 정공 수송층의 두께를 얇게 하면서 상기 제2 발광층으로 정공 과잉이 안 되도록 상기 제2 정공 수송층은 정공 이동도가 느린 물질로 구성된 것을 특징으로 한다.
상기 제2 정공 수송층의 정공 이동도는 상기 제1 정공 수송층의 정공 이동도보다 느린 물질로 구성된 것을 특징으로 한다.
상기 제2 발광층은 황색-녹색 발광층 또는 녹색 발광층 중 하나를 포함하는 것을 특징으로 한다.
상기 제2 정공 수송층의 정공 이동도는 5.0 X 10-6cm2/Vs 내지 9.0 X 10-5cm2/Vs 범위인 것을 특징으로 한다.
상기 정공 이동도가 느린 상기 제2 정공 수송층에 의해 상기 제2 발광층의 재결합 영역이 상기 제2 발광층 내에 있는 것을 특징으로 한다.
상기 정공 이동도가 느린 상기 제2 정공 수송층을 포함한 유기발광 표시장치는 상기 정공 이동도가 느린 상기 제2 정공 수송층을 포함하지 않는 유기발광 표시장치와 비교하여 수명이 향상된 것을 특징으로 한다.
상기 제2 정공 수송층은 전자 전달 특성 치환기를 포함하는 재료로 이루어진 것을 특징으로 한다.
상기 제2 정공 수송층은 피리딘(pyridine) 계열, 트리아진(triazine) 계열, 이미다졸(imidazole) 계열, 벤즈이미다졸(benzimidazole) 계열, 퀴놀린(quinolone) 계열, 트리아졸(trizole)계열, 페난쓰롤린(phenanthroline) 계열 중 하나로 이루어진 것을 특징으로 한다.
상기 제2 정공 수송층의 두께는 10nm 이하인 것을 특징으로 한다.
상기 제2 정공 수송층의 정공 이동도는 상기 제1 정공 수송층의 정공 이동도보다 half order의 차이를 갖는 것을 특징으로 한다.
상기 제1 정공 수송층의 정공 이동도는 5.0 X 10-5cm2/Vs 내지 9.0 X 10-4cm2/Vs 범위인 것을 특징으로 한다.
상기 제2 발광부는 전자 수송층을 더 포함하며, 상기 전자 수송층의 전자 이동도는 1.0 X 10-3cm2/Vs 이상인 것을 특징으로 한다.
상기 제2 발광부는 상기 전자 이동도가 빠른 상기 전자 수송층과 상기 정공 이동도가 느린 제2 정공 수송층에 의해 상기 제2 발광층의 전하 균형을 조절하는 것을 특징으로 한다.
상기 제2 발광부 위에는 제3 발광층과 제3 정공 수송층을 포함하는 제3 발광부를 더 포함하는 것을 특징으로 한다.
상기 제2 정공 수송층의 두께는 상기 제3 정공 수송층의 두께보다 작은 것을 특징으로 한다.
상기 제1 정공 수송층의 두께는 상기 제3 정공 수송층의 두께보다 큰 것을 특징으로 한다.
상기 제2 발광층은 적어도 하나의 호스트와 도펀트를 포함하며, 상기 제2 발광층의 효율이 향상되도록 상기 제2 발광층은 상기 도펀트의 도핑 영역이 서로 다른 적어도 두 개의 영역을 포함하는 것을 특징으로 한다.
상기 두 개의 영역 중 도펀트의 도핑 농도가 높은 영역이 상기 제1 전극에 가까운 것을 특징으로 한다.
기타 실시예의 구체적인 사항들은 상세한 설명 및 도면들에 포함되어 있다.
본 발명에서는 유기발광 표시장치의 효율 향상을 위하여 제1 색과 제2 색을 발광하는 두 개 이상의 발광층들 중 제2 색을 발광하는 발광층을 제1 전극에 근접하게 위치시킴으로써, 발광층의 효율이나 수명을 향상시킬 수 있는 효과가 있다.
또한, 본 발명에서는 제1 색과 제2 색을 발광하는 두 개 이상의 발광층들
중 제2 색을 발광하는 발광층을 제1 전극에 근접하게 위치시키기 위해서 정공 수송층의 두께를 얇게 하면서도 발광층의 효율이나 수명을 향상시킬 수 있는 유기발광 표시장치를 제공할 수 있다.
또한, 본 발명에서는 제1 색과 제2 색을 발광하는 두 개 이상의 발광층들
중 제2 색을 발광하는 발광층을 제1 전극에 근접하게 위치시키기 위해서 정공 수송층의 두께를 얇게 하면서 발광층으로의 정공 과잉이 안 되도록, 정공 이동도가 느린 물질로 정공 수송층을 구성함으로써, 발광층의 효율이나 수명을 향상시킬 수 있는 효과가 있다.
또한, 정공 이동도가 느린 물질로 정공 수송층을 구성하여, 전자와 정공이 결합하는 재결합 영역이 발광층 내에 생성되도록 함으로써, 발광층의 효율이나 수명을 향상시킬 수 있는 효과가 있다.
또한, 정공 이동도가 느린 물질로 정공 수송층을 구성하여, 발광층내에서 재결합 영역이 생성되도록 발광층의 전하 균형을 조절하므로, 발광층의 수명을 향상시킬 수 있는 효과가 있다.
또한, 본 발명에서는 적어도 두 개 이상의 발광부로 구성하고, 두 개 이상의 발광부에 포함된 정공 수송층들의 정공 이동도를 서로 다르게 구성함으로써, 전자와 정공이 결합하는 재결합 영역이 발광층 내에 생성되도록 함으로써, 발광층의 효율이나 수명을 향상시킬 수 있는 효과가 있다.
본 발명의 효과는 이상에서 언급한 효과에 제한되지 않으며, 언급되지 않은 또 다른 효과는 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
이상에서 해결하고자 하는 과제, 과제 해결 수단, 효과에 기재한 발명의 내용이 청구항의 필수적인 특징을 특정하는 것은 아니므로, 청구항의 권리 범위는 발명의 내용에 기재된 사항에 의하여 제한되지 않는다.
도 1은 본 발명의 제1 실시예에 따른 유기 발광 소자를 나타내는 도면이다.
도 2는 본 발명의 제1 실시예에 따른 발광층들의 발광 위치를 나타내는 도면이다.
도 3은 본 발명의 제1 실시예 따른 에너지 밴드 다이어그램을 나타내는 도면이다.
도 4는 본 발명의 제2 실시예에 따른 유기 발광 소자를 나타내는 도면이다.
도 5는 본 발명의 제2 실시예 따른 에너지 밴드 다이어그램을 나타내는 도면이다.
도 6은 본 발명의 제3 실시예에 따른 유기 발광 소자를 나타내는 도면이다.
도 7은 본 발명의 제4 실시예에 따른 유기 발광 소자를 나타내는 도면이다.
도 8은 본 발명의 제4 실시예에 따른 유기 발광 소자를 나타내는 도면이다.
도 9는 비교예 및 본 발명의 실시예에 따른 전압 평가 결과를 나타내는 도면이다.
도 10은 비교예 및 본 발명의 실시예에 따른 효율 평가 결과를 나타내는 도면이다.
도 11은 비교예 및 본 발명의 실시예에 따른 수명 평가 결과를 나타내는 도면이다.
도 12는 본 발명의 실시예에 따른 유기발광 표시장치를 나타내는 도면이다.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하며, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다.
본 발명의 실시예를 설명하기 위한 도면에 개시된 형상, 크기, 비율, 각도, 개수 등은 예시적인 것이므로 본 발명이 도시된 사항에 한정되는 것은 아니다. 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성 요소를 지칭한다. 또한, 본 발명을 설명함에 있어서, 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우 그 상세한 설명은 생략한다. 본 명세서 상에서 언급한 '포함한다', '갖는다', '이루어진다' 등이 사용되는 경우 '~만'이 사용되지 않는 이상 다른 부분이 추가될 수 있다. 구성 요소를 단수로 표현한 경우에 특별히 명시적인 기재 사항이 없는 한 복수를 포함하는 경우를 포함한다.
구성 요소를 해석함에 있어서, 별도의 명시적 기재가 없더라도 오차 범위를 포함하는 것으로 해석한다.
위치 관계에 대한 설명일 경우, 예를 들어, '~상에', '~상부에', '~하부에', '~옆에' 등으로 두 부분의 위치 관계가 설명되는 경우, '바로' 또는 '직접'이 사용되지 않는 이상 두 부분 사이에 하나 이상의 다른 부분이 위치할 수도 있다.
시간 관계에 대한 설명일 경우, 예를 들어, '~후에', '~에 이어서', '~다음에', '~전에' 등으로 시간적 선후 관계가 설명되는 경우, '바로' 또는 '직접'이 사용되지 않는 이상 연속적이지 않은 경우도 포함할 수 있다.
제1, 제2 등이 다양한 구성요소들을 서술하기 위해서 사용되나, 이들 구성요소들은 이들 용어에 의해 제한되지 않는다. 이들 용어들은 단지 하나의 구성 요소를 다른 구성요소와 구별하기 위하여 사용하는 것이다. 따라서, 이하에서 언급되는 제1 구성요소는 본 발명의 기술적 사상 내에서 제2 구성요소일 수도 있다.
본 발명의 여러 실시예들의 각각 특징들이 부분적으로 또는 전체적으로 서로 결합 또는 조합 가능하고, 기술적으로 다양한 연동 및 구동이 가능하며, 각 실시예들이 서로에 대하여 독립적으로 실시 가능할 수도 있고 연관 관계로 함께 실시할 수도 있다.
이하, 첨부된 도면 및 실시예를 통해 본 발명의 실시예를 구체적으로 살펴보면 다음과 같다.
도 1은 본 발명의 제1 실시예에 따른 유기 발광 소자를 나타내는 도면이다.
도 1에 도시된 유기 발광 소자(100)는 기판(101)과, 제1 전극(102) 및 제2 전극(104)과, 제1 및 제2 전극(102,104) 사이에 제1 발광부(110) 및 제2 발광부(120) 및 제3 발광부(130)를 구비한다.
제1 발광부(110)는 제1 전극(102) 위에 제1 정공 수송층(HTL; Hole Transporting Layer)(112), 제1 발광층(EML; Emitting Layer)(114), 제1 전자 수송층(ETL; Electron Transporting Layer)(116)을 포함하여 이루어질 수 있다.
제1 발광층(EML)(114)은 청색(Blue) 발광층으로 구성할 수 있다.
제2 발광부(120)는 제2 정공 수송층(HTL)(112), 제2 발광층(EML)(124), 제2 전자 수송층(ETL)(126)을 포함하여 이루어질 수 있다.
제2 발광층(EML)(124)은 황색-녹색(Yellow-Green) 발광층으로 구성할 수 있다.
제1 발광부(110)와 상기 제2 발광부(120) 사이에는 제1 전하 생성층(CGL)(140)이 더 구성될 수 있다. 제1 전하 생성층(CGL)(140)은 상기 제1 발광부(110) 및 제2 발광부(120) 간의 전하 균형을 조절한다. 제1 전하 생성층(CGL)(140)은 N형 전하 생성층(N-CGL)과 P형 전하 생성층(P-CGL)을 포함할 수 있다.
상기 제3 발광부(130)는 상기 제2 발광부(120) 위에 제2 정공 수송층(HTL)(132), 제3 발광층(EML)(134) 및 제3 전자 수송층(ETL)(136)을 포함하여 이루어질 수 있다.
제3 발광층(EML)(134)은 청색(Blue) 발광층으로 구성할 수 있다.
제2 발광부(120)와 제3 발광부(130) 사이에는 제2 전하 생성층(CGL)(150)이 더 구성될 수 있다. 제2 전하 생성층(150)은 상기 제2 및 제3 발광부(120,130) 간의 전하 균형을 조절한다. 제2 전하 생성층(CGL)(150)은 N형 전하 생성층(N-CGL) 및 P형 전하 생성층(P-CGL)을 포함할 수 있다.
그리고, 도 2는 본 발명의 제1 실시예에 따른 발광층들의 발광 위치를 나타내는 도면이다.
도 2에서 가로축은 빛의 파장 영역을 나타낸 것이며, 세로축은 유기층들의 두께를 나타낸 것이다. 여기서 제1 전극과 제2 전극 사이에 있는 유기층들의 두께는 0nm 내지 500nm로 도시하였으나, 이 두께가 본 발명의 내용을 제한하는 것은 아니다. 유기층들은 도 1에서 설명한 제1 발광부(110), 제2 발광부(120) 및 제3 발광부(130)를 구성하는 층들을 말한다. 도 2에서는 제1 발광부(110), 제2 발광부(120) 및 제3 발광부(130)를 구성하는 각 유기층들의 두께에 대해서는 도시하지 않았다. 도 2는 contour map(등고선)이라고 할 수 있다.
도 2에 도시한 바와 같이, 제1 발광부(110)를 구성하는 제1 발광층(EML)(114)은 청색(Blue) 발광층이므로, 상기 제1 발광층(EML)(114)의 발광 영역(114E)에 해당하는 발광 피크(Emittance Peak)는 상기 제1 발광층(EML)(114)의 피크 파장(?max)인 440㎚ 내지 480㎚에 위치하게 한다. 이렇게 함으로써, 청색(Blue) 발광층이 440㎚ 내지 480㎚에서 빛을 발광하게 되므로, 청색(Blue) 발광층인 제1 발광층(EML)(114)이 최대 효율을 낼 수 있다.
그리고, 제2 발광부(120)를 구성하는 제2 발광층(EML)(124)은 황색-녹색(Yellow-Green) 발광층이므로, 상기 제2 발광층(EML)(124)의 발광 영역(124E)에 해당하는 발광 피크(Emittance Peak)는 상기 제2 발광층(EML)(124)의 피크 파장(?max)인 540㎚ 내지 580㎚에 위치하게 한다. 이렇게 함으로써 황색-녹색(Yellow-Green) 발광층이 540㎚ 내지 580㎚에서 빛을 발광하게 되므로, 황색-녹색(Yellow-Green) 발광층인 제2 발광층(EML)(124)이 최대 효율을 낼 수 있다.
그리고, 제3 발광부(130)를 구성하는 제3 발광층(EML)(134)은 청색(Blue) 발광층이므로, 상기 제3 발광층(EML)(134)의 발광 영역(134E)에 해당하는 발광 피크(Emittance Peak)가 상기 제3 발광층(EML)(134)의 피크 파장(?max)인 440㎚ 내지 480㎚에 위치하게 한다. 이렇게 함으로써, 청색(Blue) 발광층이 440㎚ 내지 480㎚에서 빛을 발광하게 되므로, 청색(Blue) 발광층인 제3 발광층(EML)(134)이 최대 효율을 낼 수 있다.
따라서, 청색(Blue) 발광층의 피크 파장(?max)인 440㎚ 내지 480㎚와, 황색-녹색(Yellow-Green) 발광층의 피크 파장(?max)인 540㎚ 내지 580㎚에서 빛이 발광하도록 하여야 발광층들이 최대 효율을 낼 수 있으므로, 유기발광 표시장치의 효율이 향상될 수 있다.
여기서 피크 파장(?max)은 EL(ElectroLuminescence)의 최대 파장을 말한다. 발광부를 구성하는 유기물층들이 고유의 빛을 내는 파장을 PL (PhotoLuminescence)이라 하며, 이 PL (PhotoLuminescence)이 광학적 특성인 캐비티 피크(cavity peak)의 영향을 받아 나오는 빛을 EL(ElectroLuminescence)이라 한다. 그리고, 캐비티 피크(cavity peak)는 광학적으로 투과도가 최대가 되는 지점을 말하는 것으로, 일반적으로 두 개의 미러(mirror) 사이에 발생한 빛이 양쪽 미러(본 발명에서는 제2 전극이 반사가 되는 부분임)에서 두께, 발광 영역의 발광 위치를 조절하여 빛의 파장이 보강간섭을 통해 최대가 되는 부분을 찾는 것이다. 또한, 캐비티 피크(cavity peak)는 유기 발광 소자의 전체 두께 및 유기물층들의 PL, 제1 전극의 두께 등에 따라 발광 피크(Emittance Peak)는 달라진다.
따라서, 도 2에 도시한 바와 같이, 유기발광 표시장치의 효율이나 수명을 향상시키기 위해서 캐비티 피크(cavity peak)를 고려하여 원하는 파장 영역에서 최대 효율을 낼 수 있도록 발광층들의 발광 영역을 설정하여야 한다.
본 발명에서는 캐비티 피크를 고려하여 유기 발광 소자의 효율이나 수명을 향상시키기 위해서, 유기 발광 소자의 전체 두께를 설정하고, 이 전체 두께 내에서 발광층들의 발광 영역을 설정한다. 그리고, 각 발광층들의 발광 영역 내에서 제1 발광부(110), 제2 발광부(120), 제3 발광부(130)들을 구성하는 각 유기층들의 두께를 설정한다. 유기 발광 소자의 전체 두께는 제1 전극(102)과 제2 전극(104) 사이에 있는 유기층들의 두께를 말한다. 예를 들어, 유기 발광 소자의 전체 두께는 350nm 내지 500nm 범위로 설정하고, 이 전체 두께 내에서 제1 발광부(110), 제2 발광부(120), 제3 발광부(130)들을 구성하는 각 유기층들의 두께를 설정한다. 여기서 유기층들은 도 1에서 설명한 바와 같이, 정공 수송층, 전자 수송층, 발광층 등일 수 있다.
도 2에 도시한 바와 같이, 제1 발광층(EML)(114)의 발광 영역(114E)과 제2 발광층(EML)(124)의 발광 영역(124E)은 가깝게 위치하고 있음을 알 수 있다. 즉, 제2 발광부(120)를 구성하는 제2 발광층(EML)(124)인 황색-녹색 발광층은 제1 전극(102)에 근접하게 위치시켜야 황색-녹색 발광층이 최대 효율을 낼 수 있음을 알 수 있다.
따라서, 제2 발광부(120)를 제1 전극(102)에 근접하게 위치시켜야 제2 발광층(EML)(124)이 발광 영역(124E)에서 발광할 수 있으므로 최대 효율을 낼 수 있다. 유기 발광 소자의 전체 두께 내에서 제1 발광층(EML)(114)의 발광 영역, 제2 발광층(EML)(124)의 발광 영역, 제3 발광층(EML)(134)의 발광 영역을 고려하여 각 발광부들에 포함된 유기층들의 두께는 이미 설정하였으므로, 상기 제2 발광층(EML)(124)을 제1 전극(102)에 근접하게 위치시키기 위해서는 제2 발광부(120)에 포함된 유기층들의 두께를 감소시켜야 한다.
이에 본 발명의 발명자들은 제2 발광부(120)를 구성하는 유기층들인 제2 정공 수송층(HTL)(122), 제2 발광층(EML)(124), 제2 전자 수송층(ETL)(126), 전자 주입층, 정공 주입층 중에서 발광층의 발광 효율이나 수명에 영향을 주지 않으면서 제2 발광부(120)의 두께를 줄이기 위해서 여러 실험을 하였다. 여러 실험을 통하여, 이들 유기층들 중에서 제2 정공 수송층(HTL)(122)의 두께를 줄이는 것이 제2 발광층(EML)(124)의 수명 향상에 유리함을 알 수 있었다.
따라서, 제2 발광부(120)를 구성하는 유기층들 중 제2 정공 수송층(ETL)(122)의 두께를 줄여 유기 발광 소자를 구성하였다. 제2 정공 수송층(ETL)(122)의 두께를 줄일 경우에 제2 발광층(EML)(124)의 재결합 영역에 대해서 도 3를 참조하여 설명한다.
도 3은 본 발명의 제1 실시예에 따른 에너지 밴드 다이어그램을 나타내는 도면이다.
도 3에 도시한 바와 같이, 제2 정공 수송층(HTL)(122)에서의 정공 (도면에서는 "h+" 또는 "+"로 표시)이 제2 발광층(EML)(124)으로 이동한다. 그리고, 제2 전극(104)으로부터 생성된 전자(도면에서는 "e-" 또는 "-"로 표시)는 제2 전자 수송층(ETL)(126)에서 제2 발광층(EML)(124)으로 이동하여 제2 발광층(EML)(124) 내에서 정공과 전자가 결합하는 여기자(exciton)를 생성하여야 발광할 수 있다. 그러나, 제2 발광부(120)를 구성하는 유기층들 중 제2 정공 수송층(HTL)(122)의 두께를 줄일 경우, 과잉의 정공이 제2 발광층(EML)(124)으로 주입되거나 제2 전자 수송층(ETL)(126)에 주입된다. 따라서, 제2 발광층(EML)(124) 내에서 정공과 전자가 재결합하는 확률이 낮아진다. 이로 인해 정공과 전자가 결합하는 재결합 영역(RZ1; Recombination Zone)은 제2 발광층(EML)(124) 및 제2 전자 수송층(ETL)(126) 사이의 계면에 생성된다. 따라서, 제2 전자 수송층(ETL)(126)의 열화가 생기므로, 소자의 수명이 감소하는 문제가 생긴다.
이에 본 발명의 발명자들은 제2 발광부의 정공 수송층의 두께를 줄일 경우에 정공의 과잉으로 인해 발광층의 수명이 저하되는 문제점을 해결하기 위해 여러 실험을 진행하였다. 즉, 발광층의 발광 효율을 향상시키기 위해서 제2 발광부의 발광층은 제1 전극에 근접하게 배치하고, 발광층으로의 정공의 과잉을 줄여 발광층 내에 재결합 영역이 있도록 정공 이동도가 느린 정공 수송층을 구성함으로써 발광 효율이나 수명이 향상된 새로운 구조의 유기발광 표시장치를 발명하였다.
본 발명의 실시예에서는 두 개 이상의 발광부를 포함하는 유기발광 표시장치에서 발광부에 정공 이동도가 느린 정공 수송층을 구성한다. 정공 이동도가 느린 정공 수송층을 포함하는 발광부는 황색-녹색 발광층 또는 녹색 발광층을 포함하는 발광부일 수 있다. 따라서, 황색-녹색 발광층 또는 녹색 발광층의 발광 효율이나 수명이 향상되도록 황색-녹색 발광층 또는 녹색 발광층을 포함하는 발광부에 정공 이동도가 느린 정공 수송층을 구성한다. 이에 대해서는 도 4 내지 도 11을 참조하여 설명한다.
도 4는 본 발명의 제2 실시예에 따른 유기 발광 소자를 나타내는 도면이다.
도 4에 도시된 유기 발광 소자(200)는 기판(201)과, 제1 전극(202) 및 제2 전극(204)과, 제1 및 제2 전극(202,204) 사이에 제1 발광부(210), 제2 발광부(220) 및 제3 발광부(230)를 구비한다.
기판(201)은 절연 물질, 또는 유연성(flexibility)을 가지는 재료로 구성될 수 있다. 유리, 금속, 또는 플라스틱 등으로 이루어질 수 있으나, 이에 한정되는 것은 아니다. 유기 발광 표시 장치가 플렉서블(flexible) 유기발광 표시장치인 경우에는 플라스틱 등과 같은 유연한 재질로 이루어질 수도 있다.
제1 전극(202)은 정공(hole)을 공급하는 양극으로 TCO(Transparent Conductive Oxide)와 같은 투명 도전 물질인 ITO(Indium Tin Oxide), IZO(Indium Zinc Oxide) 등으로 형성될 수 있으나, 반드시 이에 한정되는 것은 아니다.
제2 전극(204)은 전자(electron)를 공급하는 음극으로 금속성 물질인 금(Au), 은(Ag), 알루미늄(Al), 몰리브덴(Mo), 마그네슘(Mg) 등으로 형성되거나, 이들의 합금으로 형성될 수 있으나, 반드시 이에 한정되는 것은 아니다.
제1 전극(202)과 제2 전극(204)은 각각 애노드(anode) 또는 캐소드(cathode)로 지칭될 수 있다. 또는, 제1 전극(202)은 투과 전극이고, 제2 전극(204)은 반사 전극으로 구성될 수 있다.
제1 발광부(210)는 제1 전극(202) 위에 제1 정공 수송층(HTL)(212), 제1 발광층(EML)(214) 및 제1 전자 수송층(ETL)(216)을 포함하여 이루어질 수 있다.
정공 주입층(HIL)은 상기 제1 전극(202) 위에 추가로 구성될 수 있으며, 제1 전극(202)으로부터의 정공(hole) 주입을 원활하게 하는 역할을 한다.
제1 정공 수송층(HTL)(212)은 정공 주입층(HIL)으로부터의 정공을 제1 발광층(EML)(214)에 공급한다. 제1 전자 수송층(ETL)(216)은 제2 전극(204)으로부터의 전자를 제1 발광층(EML)(214)에 공급한다. 따라서, 제1 발광층(EML)(214)에서는 제1 정공 수송층(HTL)(212)을 통해 공급된 정공(hole)과 제1 전자 수송층(ETL)(216)을 통해 공급된 전자(electron)들이 재결합되므로 광이 생성된다.
제1 전자 수송층(ETL)(216)은 2개 이상의 층이나 2개 이상의 재료를 적용하여 구성할 수 있다. 제1 전자 수송층(ETL)(216) 위에는 전자 주입층(EIL)이 더 구성될 수도 있다.
제1 발광층(EML)(214) 위에 정공 저지층(HBL)을 추가로 구성할 수 있다. 정공 저지층(HBL)은 제1 발광층(EML)(214)에 주입된 정공이 제1 전자 수송층(ETL)(216)으로 넘어오는 것을 방지함으로써 제1 발광층(EML)(214)에서 전자와 정공의 결합을 향상시켜 제1 발광층(EML)(214)의 발광 효율을 향상시킬 수 있다. 제1 전자 수송층(ETL)(216)과 정공 저지층(HBL)은 하나의 층으로도 구성할 수 있다.
제1 발광층(EML)(214) 아래에 전자 저지층(EBL)을 추가로 구성할 수 있다. 상기 전자 저지층(EBL)은 제1 발광층(EML)(214)에 주입된 전자가 제1 정공 수송층(HTL)(212)으로 넘어오는 것을 방지함으로써 제1 발광층(EML)(214)에서 전자와 정공의 결합을 향상시켜 제1 발광층(EML)(214)의 발광 효율을 향상시킬 수 있다. 제1 정공 수송층(HTL)(212)과 전자 저지층(EBL)은 하나의 층으로도 구성할 수 있다.
제1 발광층(EML)(214)은 제1 색을 발광하는 발광층일 수 있다. 즉, 제1 발광층(EML)(214)은 청색(Blue) 발광층, 진청색(Deep Blue) 발광층, 또는 스카이 블루(Sky Blue) 발광층 중 하나를 포함할 수 있다. 제1 발광층(EML)(214)의 발광 영역은 440㎚ 내지 480㎚의 범위일 수 있다.
제1 발광층(EML)(214)은 다른 색을 발광할 수 있는 보조 발광층을 포함한 청색(Blue) 발광층으로 구성된다. 상기 보조 발광층으로는 황색-녹색(Yellow-Green) 발광층 또는 적색(Red) 발광층 중 하나로 구성되거나 이들의 조합으로 구성될 수 있다. 보조 발광층을 더 구성할 경우 녹색(Green) 발광층이나 적색(Red) 발광층의 발광 효율을 더 개선할 수 있다. 보조 발광층을 포함하여 제1 발광층(EML)(214)을 구성하는 경우, 황색-녹색(Yellow-Green) 발광층 또는 적색(Red) 발광층 또는 녹색(Green) 발광층이 제1 발광층(EML)(214)의 위 또는 아래에 구성하는 것도 가능하다. 또한, 보조 발광층으로 황색-녹색(Yellow-Green) 발광층 또는 적색(Red) 발광층 또는 녹색(Green) 발광층이 제1 발광층(EML)(214)의 위 및 아래에 동일하게 구성하거나 다르게 구성할 수 있다. 발광층의 위치나 수 등은 소자의 구성 및 특성에 따라 선택적으로 배치하는 것이 가능하며, 반드시 이에 한정되는 것은 아니다.
제1 발광층(EML)(214)에 상기 보조 발광층을 구성할 경우, 제1 발광층(EML)(214)의 발광 영역은 440㎚ 내지 650㎚ 범위일 수 있다.
상기 제1 발광층(EML)(214)은 적어도 하나의 호스트와 도펀트로 구성될 수 있다. 또는 상기 제1 발광층(EML)(214)은 두 개 이상의 호스트가 혼합된 혼합 호스트(mixed host)와 적어도 하나의 도펀트로 구성할 수도 있다. 상기 혼합 호스트는 정공 수송 특성을 가진 호스트와 전자 수송 특성을 가진 호스트가 포함될 수 있다.
상기 제1 발광부(210)를 구성하는 제1 정공 수송층(HTL)(212), 제1 발광층(EML)(214), 제1 전자 수송층(ETL)(216), 전자 주입층(EIL), 정공 주입층(HIL), 정공 저지층(HBL), 전자 저지층(EBL) 등은 유기층들이라고 할 수 있다.
제2 발광부(220)는 제2 정공 수송층(HTL)(228), 제2 발광층(EML)(224), 제2 전자 수송층(ETL)(226)을 포함하여 이루어질 수 있다.
제2 전자 수송층(ETL)(226) 위에 전자 주입층(EIL)을 추가로 구성할 수 있다. 또한, 제2 정공 수송층(HTL)(228) 아래에 정공 주입층(HIL)을 추가로 구성할 수 있다.
제2 발광층(EML)(224) 위에 정공 저지층(HBL)을 추가로 구성할 수 있다. 정공 저지층(HBL)은 제2 발광층(EML)(224)에 주입된 정공이 제2 전자 수송층(ETL)(224)으로 넘어오는 것을 방지함으로써 제2 발광층(EML)(224)에서 전자와 정공의 결합을 향상시켜 제2 발광층(EML)(224)의 발광 효율을 향상시킬 수 있다. 제2 전자 수송층(ETL)(226)과 정공 저지층(HBL)은 하나의 층으로도 구성할 수 있다.
제2 발광층(EML)(224) 아래에 전자 저지층(EBL)을 추가로 구성할 수 있다. 상기 전자 저지층(EBL)은 제2 발광층(EML)(224)에 주입된 전자가 제2 정공 수송층(HTL)(228)으로 넘어오는 것을 방지함으로써 제2 발광층(EML)(224)에서 전자와 정공의 결합을 향상시켜 제2 발광층(EML)(224)의 발광 효율을 향상시킬 수 있다. 제2 정공 수송층(HTL)(228)과 전자 저지층(EBL)은 하나의 층으로도 구성할 수 있다.
상기 제2 발광부(220)를 구성하는 제2 정공 수송층(HTL)(228), 제2 발광층(EML)(224), 제2 전자 수송층(ETL)(226), 전자 주입층(EIL), 정공 주입층(HIL), 정공 저지층(HBL), 전자 저지층(EBL) 등은 유기층들이라고 할 수 있다.
제2 발광층(EML)(224)은 제2 색을 발광하는 발광층일 수 있다. 즉, 제2 발광층(EML)(224)은 황색-녹색(Yellow-Green) 발광층 또는 녹색(Green) 발광층으로 구성한다. 제2 발광층(EML)(224)의 발광 영역은 510㎚ 내지 590㎚ 범위일 수 있다. 상기 제2 발광층(EML)(224)은 적어도 하나의 호스트와 도펀트로 구성될 수 있다. 또는 상기 제2 발광층(EML)(224)은 두 개 이상의 호스트가 혼합된 혼합 호스트(mixed host)와 적어도 하나의 도펀트로 구성할 수도 있다. 상기 혼합 호스트는 정공 수송 특성을 가진 호스트와 전자 수송 특성을 가진 호스트가 포함될 수 있다.
제1 발광부(210) 및 제2 발광부(220)의 효율 향상 즉, 제2 색을 발광하는 제2 발광층(EML)(224)의 효율 향상을 위하여 제2 발광부(220)는 제1 전극(202)에 근접하게 위치시켜야 한다. 또는, 제1 발광층(EML)(214)과 제2 발광층(EML)(224) 사이에 있는 유기층들의 두께는 제1 전극(202)과 제1 발광층(EML)(214) 사이에 있는 유기층들의 두께보다 작게 구성함으로써, 제2 발광부(220)를 제1 전극(202)에 근접하게 위치시킬 수 있다. 따라서, 제2 발광부(220)가 제1 전극(202)에 근접하게 위치시키기 위해서는, 제2 발광부(220)를 구성하는 제2 정공 수송층(HTL)(228)의 두께를 조절함으로써, 유기 발광 소자의 효율이나 수명을 향상시킬 수 있다. 제2 발광부(220)의 캐비티 피크를 고려하여 제2 정공 수송층(HTL)(228)의 두께는 10nm 이하로 구성할 수 있다. 즉, 제1 발광층(EML)(214)과 제2 발광층(EML)(224) 사이에 있는 유기층들의 두께는 제1 전극(202)과 제1 발광층(EML)(214) 사이에 있는 유기층들의 두께보다 작도록 제2 정공 수송층(HTL)(228)의 두께는 제1 정공 수송층(HTL)(212)의 두께보다 작게 구성할 수 있다. 제1 정공 수송층(HTL)(212)의 두께는 90 내지 110nm 범위로 할 수 있다.
그리고, 본 발명에서는 정공 수송층의 두께가 감소함에 따른 발광층으로의 정공의 과잉을 줄이기 위해 정공 수송층의 특성을 조절한 것을 특징으로 한다. 또는, 유기 발광 소자의 효율 향상을 위하여 제2 정공 수송층(HTL)(228)과 제1 정공 수송층(HTL)(212)은 정공 이동도가 서로 다른 물질로 구성할 수 있다. 따라서, 제2 정공 수송층(HTL)(228)은 제1 정공 수송층(HTL)(212)보다 정공 이동도가 느린 물질로 구성할 수 있다.
즉, 유기 발광 소자의 효율 향상을 위하여 제2 발광층(EML)(224)은 제1 전극(201)에 근접하게 위치하며, 제2 정공 수송층(HTL)(228)의 두께를 얇게 하면서 제2 발광층(EML)(224)으로 정공 과잉이 안 되도록 제2 정공 수송층(HTL)(228)은 정공 이동도가 느린 물질로 구성한 것을 특징으로 한다.
따라서, 상기 제2 정공 수송층(HTL)(228)은 정공 조절층이라고 할 수 있다. 상기 정공 조절층은 제2 발광층(EML)(224)으로의 정공의 이동을 조절하며, 상기 제2 발광층(EML)(224)의 재결합 영역이 제2 발광층(EML)(224)과 제2 전자 수송층(ETL)(226)의 계면이 아닌 상기 제2 발광층(EML)(224) 내에 있도록 하는 것을 특징으로 한다.
상기 제2 정공 수송층(HTL)(228)은 정공 이동도가 느린 재료로 구성하여야 하므로, 제2 정공 수송층(HTL)(228)의 정공 수송 물질은 코어(core)에 정공 전달 특성의 치환기보다는 전자 전달 특성의 치환기를 포함하는 화합물로 구성할 수 있다. 전자 전달 특성의 치환기를 포함하는 화합물은 예를 들어, 피리딘(pyridine) 계열, 트리아진(triazine) 계열, 이미다졸(imidazole) 계열, 벤즈이미다졸(benzimidazole) 계열, 퀴놀린(quinolone) 계열, 트리아졸(trizole)계열, 페난쓰롤린(phenanthroline) 계열 중 어느 하나일 수 있으나, 이에 한정되는 것은 아니다.
구체적으로 예를 들면, 제2 정공 수송층(HTL)(228)은 PY1(3,5-di(pyren-1-yl)pyridine, TmPPPyTz(2,4,6-tris(3'-(pyridine-3-yl)biphenyl-3-yl)-1,3,5-triazine), TPBi(2,2',2"-(1,3,5-benzinetriyl)-tris(1-phenyl-1-H-benzimidazole), TAZ(3-(4-biphenyl)-4-phenyl-5-tert-butylphenyl-1,2,4-triazole), BPhen(4,7-diphenyl-1,10-phenanthroline) 등으로 이루어질 수 있지만, 반드시 이에 한정되는 것은 아니다.
제1 정공 수송층(HTL)(212)은 예를 들면, NPD(N,N'-bis(naphthalene-1-yl)-N,N'-bis(phenyl)-2,2'-dimethylbenzidine)로 이루어질 수 있다.
그리고, 제1 정공 수송층(HTL)(212)의 정공 이동도는 5.0 X 10-5cm2/Vs 내지 9.0 X 10-4cm2/Vs 범위일 수 있다. 제2 정공 수송층(HTL)(228)의 정공 이동도는 제1 정공 수송층(HTL)(212)의 정공 이동도보다 half order의 차이를 가질 수 있다. 따라서, 제2 정공 수송층(HTL)(228)의 정공 이동도는 5.0 X 10-6cm2/Vs 내지 9.0 X 10-5cm2/Vs 범위일 수 있다.
제2 정공 수송층(HTL)(228)의 정공 이동도가 느리므로, 제2 발광층(EML)(224)의 전하 균형(charge balance)을 조절하기 위해서, 제2 전자 수송층(ETL)(226)은 전자 이동도가 빠른 물질로 구성할 수 있다. 제2 전자 수송층(ETL)(226)의 전자 이동도는 1.0 X 10-3cm2/Vs 이상일 수 있다.
예를 들어, 제2 전자 수송층(ETL)(226)은 PBD(2-(4-biphenyl)-5-(4-tert-butylphenyl)-1,3,4-oxadiazole), BAlq(Bis(2-methyl-8-quinolinolate)-4-(phenylphenolato)aluminium), Liq(8-hydroxyquinolinolato-lithium)로 이루어진 군에서 선택된 어느 하나 이상으로 이루어질 수 있으나, 이에 한정되지 않는다. 따라서, 전자 이동도가 빠른 제2 전자 수송층(ETL)(226)과 정공 이동도가 느린 제2 정공 수송층(HTL)(228)에 의해서 상기 제2 발광층(EML)(224)의 전하 균형을 조절할 수 있다. 상기 제2 발광층(EML)(224)의 전하 균형이 이루어지면, 제2 발광층(EML)(224) 내에 정공과 전자가 결합하는 재결합 영역이 생성될 수 있으므로, 제2 발광층(EML)(224)의 수명이 향상될 수 있다. 즉, 상기 제2 발광층(EML)(224) 내에서 재결합 영역이 생성되도록 제2 발광층(EML)(224)의 전하 균형을 조절하므로, 제2 발광층(EML)(224)의 수명이 향상될 수 있다. 또한, 상기 제2 정공 수송층(HTL)(228)의 두께가 얇음으로 인해서 전하 균형이 상기 제2 전자 수송층(ETL)(226)과 상기 제2 발광층(EML)(224)의 계면에 생성되나, 정공 이동도가 느린 제2 정공 수송층(HTL)(228)에 의해 상기 제2 발광층(EML)(224)으로의 정공의 주입을 늦추므로 제2 발광층(EML)(224)의 전하 균형이 이루어질 수 있다. 따라서, 상기 제2 발광층(EML)(224) 내에서 재결합 영역이 생성되도록 상기 제2 발광층(EML)(224)의 전하 균형을 조절하므로, 제2 발광층(EML)(224)의 수명이 향상될 수 있다.
그리고, 제2 전자 수송층(ETL)(226)은 2개 이상의 층이나 상기 재료 중에서 2개 이상의 재료를 적용하여 구성할 수 있다.
상기 제1 전자 수송층(ETL)(216)은 예를 들면, Alq3(tris(8-hydroxy-quinolinato)aluminium)로 이루어질 수 있다. 상기 제1 전자 수송층(ETL)(216)의 전자 이동도는 1.0 X 10-5cm2/Vs 이상일 수 있다.
제1 발광부(210)와 상기 제2 발광부(220) 사이에는 제1 전하 생성층(CGL)(240)이 더 구성될 수 있다. 제1 전하 생성층(CGL)(240)은 제1 발광부(210) 및 제2 발광부(220) 간의 전하 균형을 조절한다. 제1 전하 생성층(240)은 N형 전하 생성층(N-CGL)과 P형 전하 생성층(P-CGL)을 포함할 수 있다.
N형 전하 생성층(N-CGL)은 제1 발광부(210)로 전자(electron)를 주입해주는 역할을 하며, P형 전하 생성층(P-CGL)은 제2 발광부(220)로 정공(hole)을 주입해주는 역할을 한다.
N형 전하 생성층(N-CGL)은 각각 리튬(Li), 나트륨(Na), 칼륨(K), 또는 세슘(Cs)과 같은 알칼리 금속, 또는 마그네슘(Mg), 스트론튬(Sr), 바륨(Ba), 또는 라듐(Ra)과 같은 알칼리 토금속으로 도핑된 유기층으로 이루어질 수 있지만, 반드시 이에 한정되는 것은 아니다.
P형 전하 생성층(P-CGL)은 P형 도펀트가 포함된 유기층으로 이루어질 수 있지만, 반드시 이에 한정되는 것은 아니다. 제1 전하 생성층(CGL)(240)은 단일층으로 구성할 수도 있다.
상기 제3 발광부(230)는 상기 제2 발광부(220) 위에 제3 정공 수송층(HTL)(232), 제3 발광층(EML)(234) 및 제3 전자 수송층(ETL)(236)을 포함하여 이루어질 수 있다.
제3 전자 수송층(ETL)(236) 위에 전자 주입층(EIL)을 추가로 구성할 수 있다. 또한, 제3 정공 수송층(HTL)(232) 아래에 정공 주입층(HIL)을 추가로 구성할 수 있다.
제3 정공 수송층(HTL)(232)은 2개 이상의 층이나 2개 이상의 재료를 적용하여 구성할 수 있다.
그리고, 유기 발광 소자의 효율 향상을 위하여 제3 정공 수송층(HTL)(232)의 두께는 제2 정공 수송층(HTL)(228)의 두께보다 두껍게 구성한다. 예를 들어, 제3 정공 수송층(HTL)(232)의 두께는 80 내지 100nm 범위로 할 수 있다. 따라서, 제1 정공 수송층(HTL)(212)의 두께가 제3 정공 수송층(HTL)(232)보다 두껍게 구성될 수 있다.
제3 전자 수송층(ETL)(236)은 2개 이상의 층이나 2개 이상의 재료를 적용하여 구성할 수 있다.
제3 전자 수송층(ETL)(236)은 벤젠(benzene), 벤족사졸(benzoxazole) 등으로 이루어질 수 있지만, 반드시 이에 한정되는 것은 아니다.
제3 발광층(EML)(234)은 제1 색과 동일한 색을 발광하는 발광층일 수 있다. 즉, 제3 발광층(EML)(234)은 청색(Blue) 발광층, 진청색(Deep Blue) 발광층, 또는 스카이 블루(Sky Blue) 발광층 중 하나를 포함할 수 있다. 제3 발광층(EML)(234)의 발광 영역은 440㎚ 내지 480㎚의 범위일 수 있다.
제3 발광층(EML)(234)은 다른 색을 발광할 수 있는 보조 발광층을 포함한 청색(Blue) 발광층으로 구성된다. 상기 보조 발광층으로는 황색-녹색(Yellow-Green) 발광층 또는 적색(Red) 발광층 중 하나로 구성되거나 이들의 조합으로 구성될 수 있다. 보조 발광층을 더 구성할 경우 녹색(Green) 발광층이나 적색(Red) 발광층의 발광 효율을 더 개선할 수 있다. 보조 발광층을 포함하여 제3 발광층(EML)(234)을 구성하는 경우, 황색-녹색(Yellow-Green) 발광층 또는 적색(Red) 발광층 또는 녹색(Green) 발광층이 제3 발광층(EML)(234)의 위 또는 아래에 구성하는 것도 가능하다. 또한, 보조 발광층으로 황색-녹색(Yellow-Green) 발광층 또는 적색(Red) 발광층 또는 녹색(Green) 발광층이 제3 발광층(EML)(234)의 위 및 아래에 동일하게 구성하거나 다르게 구성할 수 있다. 발광층의 위치나 수 등은 소자의 구성 및 특성에 따라 선택적으로 배치하는 것이 가능하며, 반드시 이에 한정되는 것은 아니다.
제3 발광층(EML)(234)에 상기 보조 발광층을 구성할 경우, 제3 발광층(EML)(234)의 발광 영역은 440㎚ 내지 650㎚ 범위일 수 있다.
상기 제3 발광층(EML)(234)은 적어도 하나의 호스트와 도펀트로 구성될 수 있다. 또는 상기 제3 발광층(EML)(234)은 두 개 이상의 호스트가 혼합된 혼합 호스트(mixed host)와 적어도 하나의 도펀트로 구성할 수도 있다. 상기 혼합 호스트는 정공 수송 특성을 가진 호스트와 전자 수송 특성을 가진 호스트가 포함될 수 있다.
제3 발광층(EML)(234) 위에 정공 저지층(HBL)을 추가로 구성할 수 있다. 정공 저지층(HBL)은 제3 발광층(EML)(234)에 주입된 정공이 제3 전자 수송층(ETL)(236)으로 넘어오는 것을 방지함으로써 제3 발광층(EML)(234)에서 전자와 정공의 결합을 향상시켜 제3 발광층(EML)(234)의 발광 효율을 향상시킬 수 있다. 제3 전자 수송층(ETL)(236)과 정공 저지층(HBL)은 하나의 층으로도 구성할 수 있다.
제3 발광층(EML)(234) 아래에 전자 저지층(EBL)을 추가로 구성할 수 있다. 전자 저지층(EBL)은 제3 발광층(EML)(234)에 주입된 전자가 제3 정공 수송층(HTL)(232)으로 넘어오는 것을 방지함으로써 제3 발광층(EML)(234)에서 전자와 정공의 결합을 향상시켜 제3 발광층(EML)(234)의 발광 효율을 향상시킬 수 있다. 제3 정공 수송층(HTL)(232)과 전자 저지층(EBL)은 하나의 층으로도 구성할 수 있다.
상기 제3 발광부(230)를 구성하는 제3 정공 수송층(HTL)(232), 제3 발광층(EML)(234), 제3 전자 수송층(ETL)(236), 전자 주입층(EIL), 정공 주입층(HIL), 정공 저지층(HBL), 전자 저지층(EBL) 등은 유기층들이라고 할 수 있다.
제2 발광부(220)와 제3 발광부(230) 사이에는 제2 전하 생성층(CGL)(250)이 더 구성될 수 있다. 제2 전하 생성층(250)은 상기 제2 및 제3 발광부(220,230) 간의 전하 균형을 조절한다. 제2 전하 생성층(CGL)(250)은 N형 전하 생성층(N-CGL) 및 P형 전하 생성층(P-CGL)을 포함할 수 있다.
N형 전하 생성층(N-CGL)은 제2 발광부(220)로 전자(electron)를 주입해주는 역할을 하며, P형 전하 생성층(P-CGL)은 제3 발광부(230)로 정공(hole)을 주입해주는 역할을 한다.
N형 전하 생성층(N-CGL)은 각각 리튬(Li), 나트륨(Na), 칼륨(K), 또는 세슘(Cs)과 같은 알칼리 금속, 또는 마그네슘(Mg), 스트론튬(Sr), 바륨(Ba), 또는 라듐(Ra)과 같은 알칼리 토금속으로 도핑된 유기층으로 이루어질 수 있지만, 반드시 이에 한정되는 것은 아니다.
P형 전하 생성층(P-CGL)은 P형 도펀트가 포함된 유기층으로 이루어질 수 있지만, 반드시 이에 한정되는 것은 아니다. 제2 전하 생성층(CGL)(250)은 제1 전하 생성층(CGL)(240)의 N형 전하 생성층(N-CGL)과 P형 전하 생성층(P-CGL)의 동일한 물질로 이루어질 수 있지만, 반드시 이에 한정되는 것은 아니다. 그리고, 제2 전하 생성층(CGL)(250)은 단일층으로 형성할 수 있다.
본 발명의 제2 실시예에 따른 백색 유기 발광 소자는 하부 발광(Bottom Emission) 방식에 적용할 수 있다. 이에 한정되지 않고, 상부 발광(Top Emission) 방식, 또는 양부 발광(Dual Emission) 방식에 적용하는 것도 가능하다. 상부 발광 방식이나 양부 발광 방식에서는 소자의 특성이나 구조에 따라 발광층들의 위치 등이 달라질 수 있다.
그리고, 본 발명의 제2 실시예에 따른 유기 발광 소자를 포함하는 유기발광 표시장치는, 기판(201) 상에 서로 교차하여 각 화소 영역을 정의하는 게이트 배선과 데이터 배선과 이중 어느 하나와 평행하게 연장되는 전원 배선이 위치하며, 각 화소 영역에는 게이트 배선 및 데이터 배선에 연결된 스위칭 박막트랜지스터와 스위칭 박막 트랜지스터에 연결된 구동 박막 트랜지스터가 위치한다. 구동 박막 트랜지스터는 상기 제1 전극(202)에 연결된다.
본 발명의 제2 실시예를 적용한 경우의 제2 발광층(EML)(224)의 재결합 영역에 대해서 도 5를 참조하여 설명한다.
도 5는 본 발명의 제2 실시예에 따른 에너지 밴드 다이어그램을 나타내는 도면이다.
도 5에 도시한 바와 같이, 제2 정공 수송층(HTL)(228)에서의 정공 (도면에서는 "h+"로 표시)이 제2 발광층(EML)(224)으로 이동한다. 그리고, 제2 전극(204)으로부터 생성된 전자(도면에서는 "e-"로 표시)는 제2 전자 수송층(ETL)(226)에서 제2 발광층(EML)(224)으로 이동하여 제2 발광층(EML)(224) 내에서 정공과 전자가 결합하여 여기자가 생성됨을 알 수 있다. 따라서, 정공과 전자가 결합하는 재결합 영역(RZ2; Recombination Zone)은 제2 발광층(EML)(224) 내에 생성된다. 따라서, 제2 발광층(EML)(224)이 발광에 기여하므로, 소자의 수명이 향상될 수 있다.
즉, 유기 발광 소자의 효율 향상을 위하여 제2 발광층(EML)(224)은 제1 전극(201)에 근접하게 위치하며, 제2 정공 수송층(HTL)(222)의 두께를 얇게 하면서 제2 발광층(EML)(224)으로 정공 과잉이 안 되도록 제2 정공 수송층(HTL)(222)은 정공 이동도가 느린 물질로 구성한다, 따라서, 제2 발광층(EML)(224)의 재결합 영역(RZ2)이 제2 정공 수송층(HTL)(222)과 제2 발광층(EML)(224)의 계면에 생성되어 제2 발광층(EML)(224)이 발광에 기여하지 못하여 수명이 저하되는 문제점을 해결할 수 있다. 즉, 제2 발광층(EML)(224)의 재결합 영역(RZ2)이 제2 전자 수송층(ETL)(226)과 제2 발광층(EML)(224)의 계면에 생성되어 제2 전자 수송층(ETL)(226)의 열화로 인한 수명이 저하되는 문제점을 해결할 수 있다.
또한, 상기 제2 정공 수송층(HTL)(228)의 두께가 얇음으로 인해서 전하 균형이 상기 제2 전자 수송층(ETL)(226)과 상기 제2 발광층(EML)(224)의 계면에 생성되나, 정공 이동도가 느린 제2 정공 수송층(HTL)(228)에 의해 상기 제2 발광층(EML)(224)으로의 정공의 주입을 늦추므로 제2 발광층(EML)(224)의 전하 균형이 이루어질 수 있다. 따라서, 상기 제2 발광층(EML)(224) 내에서 재결합 영역이 생성되도록 상기 제2 발광층(EML)(224)의 전하 균형을 조절하므로, 제2 발광층(EML)(224)의 수명이 향상될 수 있다.
그리고, 제2 발광층(EML)(224)인 황색-녹색 발광층 또는 녹색 발광층은 녹색과 적색을 모두 발광하여야 하므로 녹색 효율 대비 적색 효율이 저하될 수 있다. 따라서, 적색 효율을 향상시키기 위해서 제2 발광층(EML)(224)은 제2 발광층(EML)(224)에 포함된 도펀트의 농도를 다르게 구성한 적어도 두 개의 영역을 포함할 수 있다. 이에 대해서는 도 6을 참조하여 설명한다.
도 6은 본 발명의 제3 실시예에 따른 유기 발광 소자를 나타내는 도면이다.
도 6에 도시된 유기 발광 소자(300)는 기판(301)과, 제1 전극(302) 및 제2 전극(304)과, 제1 및 제2 전극(302,304) 사이에 제1 발광부(310), 제2 발광부(320) 및 제3 발광부(330)를 구비한다. 도 6의 기판(301), 제1 전극(302), 제2 전극(304), 제1 발광부(310), 제2 발광부(320) 및 제3 발광부(330)는 도 4를 결부하여 설명한 기판(201), 제1 전극(202), 제2 전극(204), 제1 발광부(210), 제2 발광부(220) 및 제3 발광부(230)는 실질적으로 동일하다. 따라서, 도 6의 기판(301), 제1 전극(302), 제2 전극(304), 제1 발광부(310), 제2 발광부(320) 및 제3 발광부(330)에 대한 자세한 설명은 생략한다.
제1 발광부(310)는 제1 전극(302) 위에 제1 정공 수송층(HTL)(312), 제1 발광층(EML)(314) 및 제1 전자 수송층(ETL)(316)을 포함하여 이루어질 수 있다.
상기 제1 정공 수송층(HTL)(312) 아래에는 정공 주입층(HIL)이 더 구성될 수도 있다. 그리고, 상기 제1 전자 수송층(ETL)(216) 위에는 전자 주입층(EIL)이 더 구성될 수도 있다.
제1 발광층(EML)(314)은 제1 색을 발광하는 발광층일 수 있다. 제1 발광층(EML)(314)은 청색(Blue) 발광층, 진청색(Deep Blue) 발광층, 또는 스카이 블루(Sky Blue) 발광층 중 하나를 포함할 수 있다. 제1 발광층(EML)(314)의 발광 영역은 440㎚ 내지 480㎚의 범위일 수 있다. 상기 제1 발광층(EML)(314)은 적어도 하나의 호스트와 도펀트로 구성될 수 있다. 또는 상기 제2 발광층(EML)(314)은 두 개 이상의 호스트가 혼합된 혼합 호스트(mixed host)와 적어도 하나의 도펀트로 구성할 수도 있다. 상기 혼합 호스트는 정공 수송 특성을 가진 호스트와 전자 수송 특성을 가진 호스트가 포함될 수 있다.
상기 제1 발광층(EML)(314) 위에 정공 저지층(HBL)을 추가로 구성할 수 있다. 상기 제1 전자 수송층(ETL)(316)과 정공 저지층(HBL)은 하나의 층으로도 구성할 수 있다. 그리고, 상기 제1 발광층(EML)(314) 아래에 전자 저지층(EBL)을 추가로 구성할 수 있다. 상기 제1 정공 수송층(HTL)(312)과 전자 저지층(EBL)은 하나의 층으로도 구성할 수 있다.
상기 제1 발광부(310)를 구성하는 제1 정공 수송층(HTL)(312), 제1 발광층(EML)(314), 제1 전자 수송층(ETL)(316), 전자 주입층(EIL), 정공 주입층(HIL), 정공 저지층(HBL), 전자 저지층(EBL) 등은 유기층들이라고 할 수 있다.
제2 발광부(320)는 제2 정공 수송층(HTL)(328), 제2 발광층(EML)(324), 제2 전자 수송층(ETL)(326)을 포함하여 이루어질 수 있다.
상기 제2 정공 수송층(HTL)(328) 아래에는 정공 주입층(HIL)이 더 구성될 수도 있다. 그리고, 상기 제2 전자 수송층(ETL)(326) 위에는 전자 주입층(EIL)이 더 구성될 수도 있다.
제2 발광층(EML)(324)은 제2 색을 발광하는 발광층일 수 있다. 제2 발광층(EML)(324)은 황색-녹색(Yellow-Green) 발광층 또는 녹색(Green) 발광층으로 구성할 수 있다. 제2 발광층(EML)(324)의 발광 영역은 510㎚ 내지 590㎚ 범위일 수 있다. 상기 제2 발광층(EML)(324)은 적어도 하나의 호스트와 도펀트로 구성될 수 있다. 또는 상기 제2 발광층(EML)(324)은 두 개 이상의 호스트가 혼합된 혼합 호스트(mixed host)와 적어도 하나의 도펀트로 구성할 수도 있다. 상기 혼합 호스트는 정공 수송 특성을 가진 호스트와 전자 수송 특성을 가진 호스트가 포함될 수 있다.
상기 제2 발광층(EML)(324) 위에 정공 저지층(HBL)을 추가로 구성할 수 있다. 상기 제2 전자 수송층(ETL)(326)과 정공 저지층(HBL)은 하나의 층으로도 구성할 수 있다. 그리고, 상기 제2 발광층(EML)(324) 아래에 전자 저지층(EBL)을 추가로 구성할 수 있다. 상기 제2 정공 수송층(HTL)(328)과 전자 저지층(EBL)은 하나의 층으로도 구성할 수 있다.
상기 제2 발광부(320)를 구성하는 제2 정공 수송층(HTL)(328), 제2 발광층(EML)(324), 제2 전자 수송층(ETL)(326), 전자 주입층(EIL), 정공 주입층(HIL), 정공 저지층(HBL), 전자 저지층(EBL) 등은 유기층들이라고 할 수 있다.
그리고, 유기 발광 소자의 효율 향상을 위하여 제2 색을 발광하는 제2 발광층(EML)(324)은 제1 전극(301)에 근접하게 위치하며, 제2 정공 수송층(HTL)(328)의 두께를 얇게 하면서 제2 발광층(EML)(324)으로 정공 과잉이 안 되도록 제2 정공 수송층(HTL)(328)은 정공 이동도가 느린 물질로 구성한 것을 특징으로 한다.
또는, 제1 발광층(EML)(314)과 제2 발광층(EML)(324) 사이에 있는 유기층들의 두께는 제1 전극(302)과 제1 발광층(EML)(314) 사이에 있는 유기층들의 두께보다 작게 구성함으로써, 제2 발광부(320)를 제1 전극(302)에 근접하게 위치시킬 수 있다. 즉, 제1 발광층(EML)(314)과 제2 발광층(EML)(324) 사이에 있는 유기층들의 두께는 제1 전극(302)과 제1 발광층(EML)(314) 사이에 있는 유기층들의 두께보다 작도록 제2 정공 수송층(HTL)(328)의 두께는 제1 정공 수송층(HTL)(312)의 두께보다 작게 구성할 수 있다. 제2 발광부(320)의 캐비티 피크를 고려하여 제2 정공 수송층(HTL)(328)의 두께는 10nm 이하로 할 수 있다. 그리고, 제1 정공 수송층(HTL)(312)의 두께는 90 내지 110nm 범위로 할 수 있다.
그리고, 상기 제2 정공 수송층(HTL)(328)은 정공 조절층이라고 할 수 있다. 상기 정공 조절층은 제2 발광층(EML)(324)으로의 정공의 이동을 조절하며, 상기 제2 발광층(EML)(324)의 재결합 영역이 상기 제2 발광층(EML)(324) 내에 있도록 있는 것을 특징으로 한다. 따라서, 도 5에서 설명한 바와 같이, 상기 제2 발광층(EML)(324) 내에서 재결합 영역이 생성되도록 상기 제2 발광층(EML)(324)의 전하 균형을 조절하므로, 제2 발광층(EML)(324)의 수명이 향상될 수 있다.
그리고, 유기 발광 소자의 효율 향상을 위하여 제2 정공 수송층(HTL)(328)과 제1 정공 수송층(HTL)(312)은 정공 이동도가 서로 다른 물질로 구성할 수 있다. 즉, 상기 제2 정공 수송층(HTL)(328)은 제1 정공 수송층(HTL)(312)보다 정공 이동도가 느린 재료로 구성할 수 있다. 따라서, 제2 정공 수송층(HTL)(328)은 정공 이동도가 느린 재료로 구성하여야 하므로, 정공 수송 물질은 코어(core)에 정공 전달 특성의 치환기보다는 전자 전달 특성의 치환기를 포함하는 화합물로 구성할 수 있다. 전자 전달 특성의 치환기를 포함하는 화합물은 예를 들어, 피리딘(pyridine) 계열, 트리아진(triazine) 계열, 이미다졸(imidazole) 계열, 벤즈이미다졸(benzimidazole) 계열, 퀴놀린(quinolone) 계열, 트리아졸(trizole)계열, 페난쓰롤린(phenanthroline) 계열 중 어느 하나일 수 있으나, 이에 한정되는 것은 아니다.
구체적으로 예를 들면, 제2 정공 수송층(HTL)(328)은 PY1(3,5-di(pyren-1-yl)pyridine, TmPPPyTz(2,4,6-tris(3'-(pyridine-3-yl)biphenyl-3-yl)-1,3,5-triazine), TPBi(2,2',2"-(1,3,5-benzinetriyl)-tris(1-phenyl-1-H-benzimidazole), TAZ(3-(4-biphenyl)-4-phenyl-5-tert-butylphenyl-1,2,4-triazole), BPhen(4,7-diphenyl-1,10-phenanthroline) 등으로 이루어질 수 있지만, 반드시 이에 한정되는 것은 아니다.
제1 정공 수송층(HTL)(312)은 예를 들면, NPD(N,N'-bis(naphthalene-1-yl)-N,N'-bis(phenyl)-2,2'-dimethylbenzidine)로 이루어질 수 있다.
그리고, 제1 정공 수송층(HTL)(312)의 정공 이동도는 5.0 X 10-5cm2/Vs 내지 9.0 X 10-4cm2/Vs 범위일 수 있다. 제2 정공 수송층(HTL)(328)의 정공 이동도는 제1 정공 수송층(HTL)(312)의 정공 이동도보다 half order의 차이를 가질 수 있다. 따라서, 제2 정공 수송층(HTL)(328)의 정공 이동도는 5.0 X 10-6cm2/Vs 내지 9.0 X 10-5cm2/Vs 범위일 수 있다.
제2 정공 수송층(HTL)(328)의 정공 이동도가 느리므로, 제2 발광층(EML)(324)의 전하 균형(charge balance)을 조절하기 위해서, 제2 전자 수송층(ETL)(326)은 전자 이동도가 빠른 물질로 구성할 수 있다. 제2 전자 수송층(ETL)(326)의 전자 이동도는 1.0 X 10-3cm2/Vs 이상일 수 있다.
예를 들어, 제2 전자 수송층(ETL)(326)은 PBD(2-(4-biphenyl)-5-(4-tert-butylphenyl)-1,3,4-oxadiazole), BAlq(Bis(2-methyl-8-quinolinolate)-4-(phenylphenolato)aluminium), Liq(8-hydroxyquinolinolato-lithium)로 이루어진 군에서 선택된 어느 하나 이상으로 이루어질 수 있으나, 이에 한정되지 않는다.
그리고, 제2 전자 수송층(ETL)(326)은 2개 이상의 층이나 상기 재료 중에서 2개 이상의 재료를 적용하여 구성할 수 있다.
상기 제1 전자 수송층(ETL)(316)은 예를 들면, Alq3(tris(8-hydroxy-quinolinato)aluminium)로 이루어질 수 있다. 상기 제1 전자 수송층(ETL)(316)의 전자 이동도는 1.0 X 10-5cm2/Vs 이상일 수 있다.
따라서, 전자 이동도가 빠른 제2 전자 수송층(ETL)(326)과 정공 이동도가 느린 제2 정공 수송층(HTL)(328)에 의해서 상기 제2 발광층(EML)(324)의 전하 균형을 조절할 수 있다. 상기 제2 발광층(EML)(324)의 전하 균형이 이루어지면, 제2 발광층(EML)(324) 내에 정공과 전자가 결합하는 재결합 영역이 생성될 수 있으므로, 제2 발광층(EML)(324)의 수명이 향상될 수 있다.
그리고, 적색 효율을 향상시키기 위해서, 제2 발광층(EML)(324)이 도펀트의 도핑 영역이 서로 다른 두 개의 영역인 제1 영역(321)과 제2 영역(323)으로 구성된다. 제1 전극(302)에 가까운 제1 영역(321)이 도펀트의 도핑 농도는 제2 영역(323)보다 높게 구성하여 적색 효율을 향상시킬 수 있다. 즉, 양극으로 기능하는 제1 전극(302)에서 가까운 제1 영역(321)의 도펀트 도핑 농도를 상기 제1 전극(302)에서 먼 제2 영역(323)의 도펀트 도핑 농도보다 크게 함으로써, 상대적으로 도펀트 도핑 농도가 큰 제1 영역(321)에서 발광된 광의 광효율을 향상시킬 수 있으므로, 적색을 띠는 백색광 방출에 유리할 수 있다. 따라서, 제2 발광층(EML)(324)은 도펀트의 도핑 영역이 서로 다른 적어도 두 개의 영역으로 구성하고, 적어도 두 개의 영역 중 상대적으로 도핑 농도가 큰 영역이 제2 전극(304)보다 제1 전극(302)에 가깝게 위치함으로써, 적색 효율을 향상시킬 수 있다. 여기서는 제2 발광층(EML)(324)이 도펀트의 농도가 다른 두 개의 영역인 제1 영역(321)과 제2 영역(323)으로 구성된 것으로 도시하였으나, 도펀트의 농도가 다른 적어도 두 개 이상의 영역을 포함할 수 있다. 상기 제1 영역(321)에 포함된 도펀트의 도핑 농도는 전체 호스트의 부피에 대해서 10 % 내지 30%일 수 있으며, 제2 영역(323)에 포함된 도펀트의 도핑 농도는 전체 호스트의 부피대해서 0.1% 내지 15%일 수 있으나, 이 범위에 한정되는 것은 아니다.
그리고, 제1 발광부(310)와 상기 제2 발광부(320) 사이에는 제1 전하 생성층(CGL)(340)이 더 구성될 수 있다. 제1 전하 생성층(CGL)(340)은 제1 발광부(310) 및 제2 발광부(320) 간의 전하 균형을 조절한다. 제1 전하 생성층(340)은 N형 전하 생성층(N-CGL)과 P형 전하 생성층(P-CGL)을 포함할 수 있다. N형 전하 생성층(N-CGL)은 제1 발광부(310)로 전자(electron)를 주입해주는 역할을 하며, P형 전하 생성층(P-CGL)은 제2 발광부(320)로 정공(hole)을 주입해주는 역할을 한다.
상기 제3 발광부(330)는 상기 제2 발광부(320) 위에 제2 정공 수송층(HTL)(332), 제3 발광층(EML)(334) 및 제3 전자 수송층(ETL)(336)을 포함하여 이루어질 수 있다.
제3 전자 수송층(ETL)(336) 위에 전자 주입층(EIL)을 추가로 구성할 수 있다. 또한, 제3 정공 수송층(HTL)(332) 아래에 정공 주입층(HIL)을 추가로 구성할 수 있다.
그리고, 제3 전자 수송층(ETL)(336)은 2개 이상의 층이나 2개 이상의 재료를 적용하여 구성할 수 있다.
유기 발광 소자의 효율 향상을 위하여 제3 정공 수송층(HTL)(332)의 두께는 제2 정공 수송층(HTL)(328)의 두께보다 두껍게 구성한다. 예를 들어, 제3 정공 수송층(HTL)(332)의 두께는 80 내지 100nm 범위로 할 수 있다. 따라서, 제1 정공 수송층(HTL)(312)의 두께가 제3 정공 수송층(HTL)(332)보다 두껍게 구성될 수 있다.
상기 제3 발광층(EML)(334)은 제1 색과 동일한 색을 발광하는 발광층일 수 있다. 즉, 제3 발광층(EML)(334)은 청색(Blue) 발광층, 진청색(Deep Blue) 발광층, 또는 스카이 블루(Sky Blue) 발광층 중 하나를 포함할 수 있다. 제3 발광층(EML)(334)의 발광 영역은 440㎚ 내지 480㎚의 범위일 수 있다. 상기 제3 발광층(EML)(334)은 적어도 하나의 호스트와 도펀트로 구성될 수 있다. 또는 상기 제2 발광층(EML)(334)은 두 개 이상의 호스트가 혼합된 혼합 호스트(mixed host)와 적어도 하나의 도펀트로 구성할 수도 있다. 상기 혼합 호스트는 정공 수송 특성을 가진 호스트와 전자 수송 특성을 가진 호스트가 포함될 수 있다.
상기 제3 발광층(EML)(334) 위에 정공 저지층(HBL)을 추가로 구성할 수 있다. 상기 제3 전자 수송층(ETL)(336)과 정공 저지층(HBL)은 하나의 층으로도 구성할 수 있다. 그리고, 상기 제3 발광층(EML)(334) 아래에 전자 저지층(EBL)을 추가로 3구성할 수 있다. 상기 제3 정공 수송층(HTL)(332)과 전자 저지층(EBL)은 하나의 층으로도 구성할 수 있다.
상기 제3 발광부(330)를 구성하는 제3 정공 수송층(HTL)(332), 제3 발광층(EML)(334), 제3 전자 수송층(ETL)(336), 전자 주입층(EIL), 정공 주입층(HIL), 정공 저지층(HBL), 전자 저지층(EBL) 등은 유기층들이라고 할 수 있다.
제2 발광부(320)와 제3 발광부(330) 사이에는 제2 전하 생성층(CGL)(350)이 더 구성될 수 있다. 제2 전하 생성층(350)은 상기 제2 및 제3 발광부(320,330) 간의 전하 균형을 조절한다. 제2 전하 생성층(CGL)(350)은 N형 전하 생성층(N-CGL) 및 P형 전하 생성층(P-CGL)을 포함할 수 있다.
N형 전하 생성층(N-CGL)은 제2 발광부(320)로 전자(electron)를 주입해주는 역할을 하며, P형 전하 생성층(P-CGL)은 제3 발광부(330)로 정공(hole)을 주입해주는 역할을 한다.
따라서, 본 발명의 제3 실시예에서는 유기 발광 소자의 효율 향상을 위하여 제2 발광층(EML)(324)은 제1 전극(201)에 근접하게 위치하며, 제2 정공 수송층(HTL)(328)의 두께를 얇게 하면서 제2 발광층(EML)(324)으로 정공 과잉이 안 되도록 제2 정공 수송층(HTL)(328)은 정공 이동도가 느린 물질로 구성한 것을 특징으로 한다. 이렇게 구성함으로써, 제2 발광층(EML)(324)의 발광 효율이나 수명을 향상시킬 수 있으므로, 유기 발광 소자의 효율이나 수명을 향상시킬 수 있다. 그리고, 제2 발광층(EML)(324)은 도펀트의 도핑 영역이 서로 다른 적어도 두 개의 영역으로 구성하고, 적어도 두 개의 영역 중 상대적으로 도핑 농도가 큰 영역이 제2 전극(304)보다 제1 전극(302)에 가깝게 위치함으로써, 적색 효율을 향상시킬 수 있다.
본 발명의 제3 실시예에 따른 백색 유기 발광 소자는 하부 발광(Bottom Emission) 방식에 적용할 수 있다. 이에 한정되지 않고, 상부 발광(Top Emission) 방식, 또는 양부 발광(Dual Emission) 방식에 적용하는 것도 가능하다. 상부 발광 방식이나 양부 발광 방식에서는 소자의 특성이나 구조에 따라 발광층들의 위치 등이 달라질 수 있다.
그리고, 본 발명의 제3 실시예에 따른 유기 발광 소자를 포함하는 유기발광 표시장치는, 기판(301) 상에 서로 교차하여 각 화소 영역을 정의하는 게이트 배선과 데이터 배선과 이중 어느 하나와 평행하게 연장되는 전원 배선이 위치하며, 각 화소 영역에는 게이트 배선 및 데이터 배선에 연결된 스위칭 박막트랜지스터와 스위칭 박막 트랜지스터에 연결된 구동 박막 트랜지스터가 위치한다. 구동 박막 트랜지스터는 상기 제1 전극(302)에 연결된다.
이상에서 설명한 유기 발광 소자는 청색 효율을 향상시키기 위해서 두 개의 발광부 위에 청색 발광층을 포함하는 발광부를 더 구성한 세 개의 발광부를 실시예로 설명하였으나, 이에 본 발명의 내용이 제한되는 것은 아니다. 따라서, 두 개의 발광부 또는 세 개 이상의 발광부를 포함하는 유기 발광 소자에도 적용할 수 있다. 이미 설명한 바와 같이, 적어도 두 개 이상의 발광부들로 구성하고 유기 발광 소자의 효율 향상을 위하여 제2 발광층(EML)은 제1 전극에 근접하게 위치시키며, 정공 수송층(HTL)의 두께를 얇게 하면서 제2 발광층(EML)으로 정공 과잉이 안 되도록 정공 수송층(HTL)은 정공 이동도가 느린 물질로 구성할 수 있다. 이렇게 구성함으로써, 발광층의 발광 효율이나 수명을 향상시킬 수 있으므로, 유기 발광 소자의 효율을 향상시킬 수 있다. 그리고, 제2 발광층(EML)은 도펀트의 도핑 영역이 서로 다른 적어도 두 개의 영역으로 구성하고, 적어도 두 개의 영역 중 상대적으로 도핑 농도가 큰 영역이 제2 전극보다 제1 전극에 가깝게 위치함으로써, 적색 효율을 향상시킬 수 있다.
따라서, 두 개의 발광부를 포함하는 유기 발광 소자에 대해서는 도 7 내지 도 8을 참조하여 설명한다.
도 7은 본 발명의 제4 실시예에 따른 유기 발광 소자를 나타내는 도면이다.
도 7에 도시된 유기 발광 소자(400)는 기판(401)과, 제1 전극(402) 및 제2 전극(404)과, 제1 및 제2 전극(402,404) 사이에 제1 발광부(410) 및 제2 발광부(420)를 구비한다. 도 7의 기판(401), 제1 전극(402), 제2 전극(404), 제1 발광부(410) 및 제2 발광부(420)는 도 4를 결부하여 설명한 기판(201), 제1 전극(202), 제2 전극(204), 제1 발광부(410) 및 제2 발광부(420)는 실질적으로 동일하다. 따라서, 도 7의 기판(401), 제1 전극(402), 제2 전극(404), 제1 발광부(410) 및 제2 발광부(420)에 대한 자세한 설명은 생략한다.
제1 발광부(410)는 제1 전극(402) 위에 제1 정공 수송층(HTL)(412), 제1 발광층(EML)(414) 및 제1 전자 수송층(ETL)(416)을 포함하여 이루어질 수 있다.
제1 전자 수송층(ETL)(416) 위에 전자 주입층(EIL)을 추가로 구성할 수 있다. 또한, 제1 정공 수송층(HTL)(412) 아래에 정공 주입층(HIL)을 추가로 구성할 수 있다.
제1 발광층(EML)(414)은 제1 색을 발광하는 발광층일 수 있다. 즉, 제1 발광층(EML)(414)은 청색(Blue) 발광층, 진청색(Deep Blue) 발광층, 또는 스카이 블루(Sky Blue) 발광층 중 하나를 포함할 수 있다. 제1 발광층(EML)(414)의 발광 영역은 440㎚ 내지 480㎚의 범위일 수 있다. 그리고, 상기 제1 발광층(EML)(414)은 적어도 하나의 호스트와 도펀트로 구성될 수 있다. 또는, 상기 제1 발광층(EML)(414)은 두 개 이상의 호스트가 혼합된 혼합 호스트(mixed host)와 적어도 하나의 도펀트로 구성할 수도 있다. 상기 혼합 호스트는 정공 수송 특성을 가진 호스트와 전자 수송 특성을 가진 호스트가 포함될 수 있다.
상기 제1 발광층(EML)(414) 위에 정공 저지층(HBL)을 추가로 구성할 수 있다. 상기 제1 전자 수송층(ETL)(416)과 정공 저지층(HBL)은 하나의 층으로도 구성할 수 있다. 그리고, 상기 제1 발광층(EML)(414) 아래에 전자 저지층(EBL)을 추가로 구성할 수 있다. 상기 제1 정공 수송층(HTL)(412)과 전자 저지층(EBL)은 하나의 층으로도 구성할 수 있다.
상기 제1 발광부(410)를 구성하는 제1 정공 수송층(HTL)(412), 제1 발광층(EML)(414), 제1 전자 수송층(ETL)(416), 전자 주입층(EIL), 정공 주입층(HIL), 정공 저지층(HBL), 전자 저지층(EBL) 등은 유기층들이라고 할 수 있다.
제2 발광부(420)는 제2 정공 수송층(HTL)(428), 제2 발광층(EML)(424), 제2 전자 수송층(ETL)(426)을 포함하여 이루어질 수 있다.
제2 전자 수송층(ETL)(426) 위에 전자 주입층(EIL)을 추가로 구성할 수 있다. 또한, 제2 정공 수송층(HTL)(428) 아래에 정공 주입층(HIL)을 추가로 구성할 수 있다.
제2 발광층(EML)(424)은 제2 색을 발광하는 발광층일 수 있다. 제2 발광층(EML)(424)은 황색-녹색(Yellow-Green) 발광층 또는 녹색(Green) 발광층으로 구성할 수 있다. 제2 발광층(EML)(424)의 발광 영역은 510㎚ 내지 590㎚ 범위일 수 있다. . 그리고, 상기 제2 발광층(EML)(424)은 적어도 하나의 호스트와 도펀트로 구성될 수 있다. 또는, 상기 제1 발광층(EML)(424)은 두 개 이상의 호스트가 혼합된 혼합 호스트(mixed host)와 적어도 하나의 도펀트로 구성할 수도 있다. 상기 혼합 호스트는 정공 수송 특성을 가진 호스트와 전자 수송 특성을 가진 호스트가 포함될 수 있다.
상기 제2 발광층(EML)(424) 위에 정공 저지층(HBL)을 추가로 구성할 수 있다. 상기 제2 전자 수송층(ETL)(426)과 정공 저지층(HBL)은 하나의 층으로도 구성할 수 있다. 그리고, 상기 제2 발광층(EML)(424) 아래에 전자 저지층(EBL)을 추가로 구성할 수 있다. 상기 제2 정공 수송층(HTL)(428)과 전자 저지층(EBL)은 하나의 층으로도 구성할 수 있다.
상기 제2 발광부(420)를 구성하는 제2 정공 수송층(HTL)(428), 제2 발광층(EML)(424), 제2 전자 수송층(ETL)(426), 전자 주입층(EIL), 정공 주입층(HIL), 정공 저지층(HBL), 전자 저지층(EBL) 등은 유기층들이라고 할 수 있다.
유기 발광 소자의 효율 향상을 위하여 제2 발광층(EML)(424)은 제1 전극(401)에 근접하게 위치하며, 제2 정공 수송층(HTL)(428)의 두께를 얇게 하면서 제2 발광층(EML)(424)으로 정공 과잉이 안 되도록 제2 정공 수송층(HTL)(428)은 정공 이동도가 느린 물질로 구성한 것을 특징으로 한다.
그리고, 상기 제2 정공 수송층(HTL)(428)은 정공 조절층이라고 할 수 있다. 상기 정공 조절층은 제2 발광층(EML)(424)으로의 정공의 이동을 조절하며, 상기 제2 발광층(EML)(424)의 재결합 영역이 상기 제2 발광층(EML)(424) 내에 있도록 하는 것을 특징으로 한다. 따라서, 도 5에서 설명한 바와 같이, 상기 제2 발광층(EML)(424) 내에서 재결합 영역이 생성되도록 상기 제2 발광층(EML)(424)의 전하 균형을 조절하므로, 제2 발광층(EML)(424)의 수명이 향상될 수 있다.
즉, 제1 발광층(EML)(414)과 제2 발광층(EML)(424) 사이에 있는 유기층들의 두께는 제1 전극(402)과 제1 발광층(EML)(414) 사이에 있는 유기층들의 두께보다 작도록 제2 정공 수송층(HTL)(428)의 두께는 제1 정공 수송층(HTL)(412)의 두께보다 작게 구성한다. 제2 발광부(420)의 캐비티 피크를 고려하여 제2 정공 수송층(HTL)(428)의 두께는 10nm 이하로 할 수 있다. 그리고, 제1 정공 수송층(HTL)(412)의 두께는 90 내지 110nm 범위로 할 수 있다.
그리고, 유기 발광 소자의 효율 향상을 위하여 제2 정공 수송층(HTL)(428)과 제1 정공 수송층(HTL)(412)은 정공 이동도가 서로 다른 물질로 구성할 수 있다. 즉, 제2 정공 수송층(HTL)(428)은 제1 정공 수송층(HTL)(412)보다 정공 이동도가 느린 재료로 구성할 수 있다. 제2 정공 수송층(HTL)(428)은 정공 이동도가 느린 재료로 구성하여야 하므로, 정공 수송 물질은 코어(core)에 정공 전달 특성의 치환기보다는 전자 전달 특성의 치환기를 포함하는 화합물로 구성할 수 있다. 전자 전달 특성의 치환기를 포함하는 화합물은 예를 들어, 피리딘(pyridine) 계열, 트리아진(triazine) 계열, 이미다졸(imidazole) 계열, 벤즈이미다졸(benzimidazole) 계열, 퀴놀린(quinolone) 계열, 트리아졸(trizole)계열, 페난쓰롤린(phenanthroline) 계열 중 어느 하나일 수 있으나, 이에 한정되는 것은 아니다.
구체적으로 예를 들면, 제2 정공 수송층(HTL)(428)은 PY1(3,5-di(pyren-1-yl)pyridine, TmPPPyTz(2,4,6-tris(3'-(pyridine-3-yl)biphenyl-3-yl)-1,3,5-triazine), TPBi(2,2',2"-(1,3,5-benzinetriyl)-tris(1-phenyl-1-H-benzimidazole), TAZ(3-(4-biphenyl)-4-phenyl-5-tert-butylphenyl-1,2,4-triazole), BPhen(4,7-diphenyl-1,10-phenanthroline) 등으로 이루어질 수 있지만, 반드시 이에 한정되는 것은 아니다.
제1 정공 수송층(HTL)(412)은 예를 들면, NPD(N,N'-bis(naphthalene-1-yl)-N,N'-bis(phenyl)-2,2'-dimethylbenzidine)로 이루어질 수 있다.
그리고, 제1 정공 수송층(HTL)(412)의 정공 이동도는 5.0 X 10-5cm2/Vs 내지 9.0 X 10-4cm2/Vs 범위일 수 있다. 제2 정공 수송층(HTL)(428)의 정공 이동도는 제1 정공 수송층(HTL)(212)의 정공 이동도보다 half order의 차이를 가질 수 있다. 따라서, 제2 정공 수송층(HTL)(428)의 정공 이동도는 5.0 X 10-6cm2/Vs 내지 9.0 X 10-5cm2/Vs 범위일 수 있다.
제2 정공 수송층(HTL)(428)의 정공 이동도가 느리므로, 제2 발광층(EML)(424)의 전하 균형(charge balance)을 조절하기 위해서, 제2 전자 수송층(ETL)(426)은 전자 이동도가 빠른 물질로 구성할 수 있다. 제2 전자 수송층(ETL)(426)의 전자 이동도는 1.0 X 10-3cm2/Vs 이상일 수 있다.
예를 들어, 제2 전자 수송층(ETL)(426)은 PBD(2-(4-biphenyl)-5-(4-tert-butylphenyl)-1,3,4-oxadiazole), BAlq(Bis(2-methyl-8-quinolinolate)-4-(phenylphenolato)aluminium), Liq(8-hydroxyquinolinolato-lithium)로 이루어진 군에서 선택된 어느 하나 이상으로 이루어질 수 있으나, 이에 한정되지 않는다.
그리고, 제2 전자 수송층(ETL)(426)은 2개 이상의 층이나 상기 재료 중에서 2개 이상의 재료를 적용하여 구성할 수 있다.
상기 제1 전자 수송층(ETL)(416)은 예를 들면, Alq3(tris(8-hydroxy-quinolinato)aluminium)로 이루어질 수 있다. 상기 제1 전자 수송층(ETL)(416)의 전자 이동도는 1.0 X 10-5cm2/Vs 이상일 수 있다.
따라서, 전자 이동도가 빠른 제2 전자 수송층(ETL)(426)과 정공 이동도가 느린 제2 정공 수송층(HTL)(428)에 의해서 상기 제2 발광층(EML)(424)의 전하 균형을 조절할 수 있다. 상기 제2 발광층(EML)(424)의 전하 균형이 이루어지면, 제2 발광층(EML)(424) 내에 정공과 전자가 결합하는 재결합 영역이 생성될 수 있으므로, 제2 발광층(EML)(424)의 수명이 향상될 수 있다.
제1 발광부(410)와 상기 제2 발광부(420) 사이에는 전하 생성층(CGL)(440)이 더 구성될 수 있다. 전하 생성층(CGL)(440)은 제1 발광부(410) 및 제2 발광부(420) 간의 전하 균형을 조절한다. 전하 생성층(440)은 N형 전하 생성층(N-CGL)과 P형 전하 생성층(P-CGL)을 포함할 수 있다.
N형 전하 생성층(N-CGL)은 제1 발광부(410)로 전자(electron)를 주입해주는 역할을 하며, P형 전하 생성층(P-CGL)은 제2 발광부(420)로 정공(hole)을 주입해주는 역할을 한다.
따라서, 본 발명의 제4 실시예에서는 유기 발광 소자의 효율 향상을 위하여 제2 발광층(EML)(424)은 제1 전극(401)에 근접하게 위치하며, 제2 정공 수송층(HTL)(428)의 두께를 얇게 하면서 제2 발광층(EML)(424)으로 정공 과잉이 안 되도록 제2 정공 수송층(HTL)(428)은 정공 이동도가 느린 물질로 구성한 것을 특징으로 한다. 이렇게 구성함으로써, 제2 발광층(EML)(424)의 발광 효율이나 수명을 향상시킬 수 있으므로, 유기 발광 소자의 효율이나 수명을 향상시킬 수 있다.
본 발명의 제4 실시예에 따른 백색 유기 발광 소자는 하부 발광(Bottom Emission) 방식에 적용할 수 있다. 이에 한정되지 않고, 상부 발광(Top Emission) 방식, 또는 양부 발광(Dual Emission) 방식에 적용하는 것도 가능하다. 상부 발광 방식이나 양부 발광 방식에서는 소자의 특성이나 구조에 따라 발광층들의 위치 등이 달라질 수 있다.
그리고, 본 발명의 제4 실시예에 따른 유기 발광 소자를 포함하는 유기발광 표시장치는, 기판(401) 상에 서로 교차하여 각 화소 영역을 정의하는 게이트 배선과 데이터 배선과 이중 어느 하나와 평행하게 연장되는 전원 배선이 위치하며, 각 화소 영역에는 게이트 배선 및 데이터 배선에 연결된 스위칭 박막트랜지스터와 스위칭 박막 트랜지스터에 연결된 구동 박막 트랜지스터가 위치한다. 구동 박막 트랜지스터는 상기 제1 전극(402)에 연결된다.
그리고, 제2 발광층(EML)(424)은 녹색과 적색을 모두 발광하여야 하므로 녹색 효율 대비 적색 효율이 저하될 수 있다. 따라서, 적색 효율을 향상시키기 위해서 제2 발광층(EML)(424)은 제2 발광층(EML)(424)에 포함된 도펀트의 농도를 다르게 구성한 적어도 두 개의 영역을 포함할 수 있다. 이에 대해서는 도 8을 참조하여 설명한다.
도 8은 본 발명의 제5 실시예에 따른 유기 발광 소자를 나타내는 도면이다.
도 8에 도시된 백색 유기 발광 소자(500)는 기판(501)과, 제1 전극(502) 및 제2 전극(504)과, 제1 및 제2 전극(502,504) 사이에 제1 발광부(510)와 제2 발광부(520)를 구비한다. 도 8의 기판(501), 제1 전극(502), 제2 전극(504), 제1 발광부(510) 및 제2 발광부(520)는 도 4을 결부하여 설명한 기판(201), 제1 전극(202), 제2 전극(204), 제1 발광부(210) 및 제2 발광부(220)는 실질적으로 동일하다. 따라서, 도 8의 기판(501), 제1 전극(502), 제2 전극(504), 제1 발광부(510) 및 제2 발광부(520)에 대한 자세한 설명은 생략한다.
제1 발광부(510)는 제1 전극(502) 위에 제1 정공 수송층(HTL)(512), 제1 발광층(EML)(514) 및 제1 전자 수송층(ETL)(516)을 포함하여 이루어질 수 있다.
상기 제1 전자 수송층(ETL)(516) 위에 전자 주입층(EIL)을 추가로 구성할 수 있다. 또한, 제1 정공 수송층(HTL)(512) 아래에 정공 주입층(HIL)을 추가로 구성할 수 있다.
제1 발광층(EML)(514)은 제1 색을 발광하는 발광층일 수 있다. 제1 발광층(EML)(514)은 청색(Blue) 발광층, 진청색(Deep Blue) 발광층, 또는 스카이 블루(Sky Blue) 발광층 중 하나를 포함할 수 있다. 제1 발광층(EML)(514)의 발광 영역은 440㎚ 내지 480㎚의 범위일 수 있다. 상기 제1 발광층(EML)(514)은 적어도 하나의 호스트와 도펀트로 구성될 수 있다. 또는, 상기 제1 발광층(EML)(514)은 두 개 이상의 호스트가 혼합된 혼합 호스트(mixed host)와 적어도 하나의 도펀트로 구성할 수도 있다. 상기 혼합 호스트는 정공 수송 특성을 가진 호스트와 전자 수송 특성을 가진 호스트가 포함될 수 있다.
상기 제1 발광층(EML)(514) 위에 정공 저지층(HBL)을 추가로 구성할 수 있다. 상기 제1 전자 수송층(ETL)(516)과 정공 저지층(HBL)은 하나의 층으로도 구성할 수 있다. 그리고, 상기 제1 발광층(EML)(514) 아래에 전자 저지층(EBL)을 추가로 구성할 수 있다. 상기 제1 정공 수송층(HTL)(512)과 전자 저지층(EBL)은 하나의 층으로도 구성할 수 있다.
상기 제1 발광부(510)를 구성하는 제1 정공 수송층(HTL)(512), 제1 발광층(EML)(514), 제1 전자 수송층(ETL)(516), 전자 주입층(EIL), 정공 주입층(HIL), 정공 저지층(HBL), 전자 저지층(EBL) 등은 유기층들이라고 할 수 있다.
제2 발광부(520)는 제2 정공 수송층(HTL)(528), 제2 발광층(EML)(524), 제2 전자 수송층(ETL)(526)을 포함하여 이루어질 수 있다.
상기 제2 전자 수송층(ETL)(526) 위에 전자 주입층(EIL)을 추가로 구성할 수 있다. 또한, 제2 정공 수송층(HTL)(528) 아래에 정공 주입층(HIL)을 추가로 구성할 수 있다.
제2 발광층(EML)(524)은 제2 색을 발광하는 발광층일 수 있다. 제2 발광층(EML)(524)은 황색-녹색(Yellow-Green) 발광층 또는 녹색(Green) 발광층으로 구성할 수 있다. 제2 발광층(EML)(524)의 발광 영역은 510㎚ 내지 590㎚ 범위일 수 있다. 상기 제2 발광층(EML)(524)은 적어도 하나의 호스트와 도펀트로 구성될 수 있다. 또는, 상기 제2 발광층(EML)(524)은 두 개 이상의 호스트가 혼합된 혼합 호스트(mixed host)와 적어도 하나의 도펀트로 구성할 수도 있다. 상기 혼합 호스트는 정공 수송 특성을 가진 호스트와 전자 수송 특성을 가진 호스트가 포함될 수 있다.
상기 제2 발광층(EML)(524) 위에 정공 저지층(HBL)을 추가로 구성할 수 있다. 상기 제2 전자 수송층(ETL)(526)과 정공 저지층(HBL)은 하나의 층으로도 구성할 수 있다. 그리고, 상기 제2 발광층(EML)(524) 아래에 전자 저지층(EBL)을 추가로 구성할 수 있다. 상기 제2 정공 수송층(HTL)(528)과 전자 저지층(EBL)은 하나의 층으로도 구성할 수 있다.
상기 제2 발광부(520)를 구성하는 제2 정공 수송층(HTL)(528), 제2 발광층(EML)(524), 제2 전자 수송층(ETL)(526), 전자 주입층(EIL), 정공 주입층(HIL), 정공 저지층(HBL), 전자 저지층(EBL) 등은 유기층들이라고 할 수 있다.
그리고, 유기 발광 소자의 효율 향상을 위하여 제2 발광층(EML)(524)은 제1 전극(501)에 근접하게 위치하며, 제2 정공 수송층(HTL)(528)의 두께를 얇게 하면서 제2 발광층(EML)(524)으로 정공 과잉이 안 되도록 제2 정공 수송층(HTL)(528)은 정공 이동도가 느린 물질로 구성한 것을 특징으로 한다.
그리고, 상기 제2 정공 수송층(HTL)(528)은 정공 조절층이라고 할 수 있다. 상기 정공 조절층은 제2 발광층(EML)(524)으로의 정공의 이동을 조절하며, 상기 제2 발광층(EML)(524)의 재결합 영역이 상기 제2 발광층(EML)(524) 내에 있도록 하는 것을 특징으로 한다. 따라서, 도 5에서 설명한 바와 같이, 상기 제2 발광층(EML)(524) 내에서 재결합 영역이 생성되도록 상기 제2 발광층(EML)(524)의 전하 균형을 조절하므로, 제2 발광층(EML)(524)의 수명이 향상될 수 있다.
즉, 제1 발광층(EML)(514)과 제2 발광층(EML)(524) 사이에 있는 유기층들의 두께는 제1 전극(502)과 제1 발광층(EML)(514) 사이에 있는 유기층들의 두께보다 작도록 제2 정공 수송층(HTL)(528)의 두께는 제1 정공 수송층(HTL)(512)의 두께보다 작게 구성한다. 제2 발광부(520)의 캐비티 피크를 고려하여 제2 정공 수송층(HTL)(528)의 두께는 10nm 이하로 할 수 있다. 그리고, 제1 정공 수송층(HTL)(512)의 두께는 90 내지 110nm 범위로 할 수 있다.
그리고, 유기 발광 소자의 효율 향상을 위하여 제2 정공 수송층(HTL)(528)과 제1 정공 수송층(HTL)(512)은 정공 이동도가 서로 다른 물질로 구성할 수 있다. 즉, 제2 정공 수송층(HTL)(528)의 정공 이동도는 제1 정공 수송층(HTL)(512)의 정공 이동도보다 느린 재료로 구성할 수 있다. 제2 정공 수송층(HTL)(528)은 정공 이동도가 느린 재료로 구성하여야 하므로, 정공 수송 물질은 코어(core)에 정공 전달 특성의 치환기보다는 전자 전달 특성의 치환기를 포함하는 화합물로 구성할 수 있다. 전자 전달 특성의 치환기를 포함하는 화합물은 예를 들어, 피리딘(pyridine) 계열, 트리아진(triazine) 계열, 이미다졸(imidazole) 계열, 벤즈이미다졸(benzimidazole) 계열, 퀴놀린(quinolone) 계열, 트리아졸(trizole)계열, 페난쓰롤린(phenanthroline) 계열 중 어느 하나일 수 있으나, 이에 한정되는 것은 아니다.
구체적으로 예를 들면, 제2 정공 수송층(HTL)(528)은 PY1(3,5-di(pyren-1-yl)pyridine, TmPPPyTz(2,4,6-tris(3'-(pyridine-3-yl)biphenyl-3-yl)-1,3,5-triazine), TPBi(2,2',2"-(1,3,5-benzinetriyl)-tris(1-phenyl-1-H-benzimidazole), TAZ(3-(4-biphenyl)-4-phenyl-5-tert-butylphenyl-1,2,4-triazole), BPhen(4,7-diphenyl-1,10-phenanthroline) 등으로 이루어질 수 있지만, 반드시 이에 한정되는 것은 아니다.
제1 정공 수송층(HTL)(512)은 예를 들면, NPD(N,N'-bis(naphthalene-1-yl)-N,N'-bis(phenyl)-2,2'-dimethylbenzidine)로 이루어질 수 있다.
그리고, 제1 정공 수송층(HTL)(512)의 정공 이동도는 5.0 X 10-5cm2/Vs 내지 9.0 X 10-4cm2/Vs 범위일 수 있다. 제2 정공 수송층(HTL)(528)의 정공 이동도는 제1 정공 수송층(HTL)(512)의 정공 이동도보다 half order의 차이를 가질 수 있다. 따라서, 제2 정공 수송층(HTL)(528)의 정공 이동도는 5.0 X 10-6cm2/Vs 내지 9.0 X 10-5cm2/Vs 범위일 수 있다.
제2 정공 수송층(HTL)(528)의 정공 이동도가 느리므로, 제2 발광층(EML)(524)의 전하 균형(charge balance)을 조절하기 위해서, 제2 전자 수송층(ETL)(526)은 전자 이동도가 빠른 물질로 구성할 수 있다. 제2 전자 수송층(ETL)(526)의 전자 이동도는 1.0 X 10-3cm2/Vs 이상일 수 있다.
예를 들어, 제2 전자 수송층(ETL)(526)은 PBD(2-(4-biphenyl)-5-(4-tert-butylphenyl)-1,3,4-oxadiazole), BAlq(Bis(2-methyl-8-quinolinolate)-4-(phenylphenolato)aluminium), Liq(8-hydroxyquinolinolato-lithium)로 이루어진 군에서 선택된 어느 하나 이상으로 이루어질 수 있으나, 이에 한정되지 않는다.
그리고, 제2 전자 수송층(ETL)(526)은 2개 이상의 층이나 상기 재료 중에서 2개 이상의 재료를 적용하여 구성할 수 있다.
상기 제1 전자 수송층(ETL)(516)은 예를 들면, Alq3(tris(8-hydroxy-quinolinato)aluminium)로 이루어질 수 있다. 상기 제1 전자 수송층(ETL)(516)의 전자 이동도는 1.0 X 10-5cm2/Vs 이상일 수 있다.
따라서, 전자 이동도가 빠른 제2 전자 수송층(ETL)(526)과 정공 이동도가 느린 제2 정공 수송층(HTL)(528)에 의해서 상기 제2 발광층(EML)(524)의 전하 균형을 조절할 수 있다. 상기 제2 발광층(EML)(524)의 전하 균형이 이루어지게 되면, 제2 발광층(EML)(524) 내에 정공과 전자가 결합하는 재결합 영역이 생성될 수 있으므로, 제2 발광층(EML)(524)의 수명이 향상될 수 있다.
그리고, 적색 효율을 향상시키기 위해서, 제2 발광층(EML)(524)이 도펀트의 농도가 다른 두 개의 영역인 제1 영역(521)과 제2 영역(523)으로 구성된다. 제1 전극(502)에 가까운 제1 영역(521)이 도펀트의 농도가 제2 영역(523)보다 높게 구성하여 적색 효율을 향상시킬 수 있다. 즉, 양극으로 기능하는 제1 전극(502)에서 가까운 제1 영역(521)의 도펀트 도핑 농도를 상기 제1 전극(502)에서 먼 제2 영역(523)의 도펀트 도핑 농도보다 크게 함으로써, 상대적으로 도펀트 도핑 농도가 큰 제1 영역(521)에서 발광된 광의 광효율을 향상시킬 수 있으므로, 적색을 띠는 백색광 방출에 유리할 수 있다. 따라서, 제2 발광층(EML)(524)은 도펀트의 도핑 영역이 서로 다른 적어도 두 개의 영역으로 구성하고, 적어도 두 개의 영역 중 상대적으로 도핑 농도가 큰 영역이 제2 전극(504)보다 제1 전극(502)에 가깝게 위치함으로써, 적색 효율을 향상시킬 수 있다. 여기서는 제2 발광층(EML)(524)이 도펀트의 농도가 다른 두 개의 영역인 제1 영역(521)과 제2 영역(523)으로 구성된 것으로 도시하였으나, 도펀트의 농도가 다른 적어도 두 개 이상의 영역을 포함할 수 있다. 상기 제1 영역(521)에 포함된 도펀트의 도핑 농도는 전체 호스트의 부피에 대해서 10 % 내지 30%일 수 있으며, 제2 영역(523)에 포함된 도펀트의 도핑 농도는 전체 호스트의 부피에 대해서 0.1% 내지 15%일 수 있으나, 이 범위에 한정되는 것은 아니다.
그리고, 제1 발광부(510)와 상기 제2 발광부(520) 사이에는 전하 생성층(CGL)(540)이 더 구성될 수 있다. 전하 생성층(CGL)(340)은 제1 발광부(510) 및 제2 발광부(520) 간의 전하 균형을 조절한다. 전하 생성층(540)은 N형 전하 생성층(N-CGL)과 P형 전하 생성층(P-CGL)을 포함할 수 있다. N형 전하 생성층(N-CGL)은 제1 발광부(510)로 전자(electron)를 주입해주는 역할을 하며, P형 전하 생성층(P-CGL)은 제2 발광부(520)로 정공(hole)을 주입해주는 역할을 한다.
따라서, 본 발명의 제5 실시예에서는 유기 발광 소자의 효율 향상을 위하여 제2 발광층(EML)(524)은 제1 전극(501)에 근접하게 위치하며, 제2 정공 수송층(HTL)(528)의 두께를 얇게 하면서 제2 발광층(EML)(524)으로 정공 과잉이 안 되도록 제2 정공 수송층(HTL)(528)은 정공 이동도가 느린 물질로 구성한 것을 특징으로 한다. 이렇게 구성함으로써, 제2 발광층(EML)(524)의 발광 효율이나 수명을 향상시킬 수 있으므로, 유기 발광 소자의 효율이나 수명을 향상시킬 수 있다. 그리고, 제2 발광층(EML)(524)은 도펀트의 도핑 영역이 서로 다른 적어도 두 개의 영역으로 구성하고, 적어도 두 개의 영역 중 상대적으로 도핑 농도가 큰 영역이 제2 전극(504)보다 제1 전극(502)에 가깝게 위치함으로써, 적색 효율을 향상시킬 수 있다.
본 발명의 제5 실시예에 따른 백색 유기 발광 소자는 하부 발광(Bottom Emission) 방식에 적용할 수 있다. 이에 한정되지 않고, 상부 발광(Top Emission) 방식, 또는 양부 발광(Dual Emission) 방식에 적용하는 것도 가능하다. 상부 발광 방식이나 양부 발광 방식에서는 소자의 특성이나 구조에 따라 발광층들의 위치 등이 달라질 수 있다.
그리고, 본 발명의 제5 실시예에 따른 유기 발광 소자를 포함하는 유기발광 표시장치는, 기판(501) 상에 서로 교차하여 각 화소 영역을 정의하는 게이트 배선과 데이터 배선과 이중 어느 하나와 평행하게 연장되는 전원 배선이 위치하며, 각 화소 영역에는 게이트 배선 및 데이터 배선에 연결된 스위칭 박막트랜지스터와 스위칭 박막 트랜지스터에 연결된 구동 박막 트랜지스터가 위치한다. 구동 박막 트랜지스터는 상기 제1 전극(502)에 연결된다.
그리고, 비교예와 본 발명의 실시예에 따른 전압, 효율 및 수명을 평가한 결과를 표 1, 도 9 내지 도 10을 참조하여 설명한다.
비교예는 도 1에 도시된 유기 발광 소자를 적용한 유기발광 표시장치이다. 본 발명의 실시예는 도 4에 도시된 유기 발광 소자를 적용한 유기발광 표시장치이다. 전류 밀도가 10mA/cm2에서 전압, 효율 및 수명을 평가하였다.
Figure 112022045738072-pat00001
비교예의 전압, 효율, 양자 효율 및 수명이 100%라고 가정하고 실시예와 비교한 것이다.
표 1에 나타낸 바와 같이, 전압은 비교예와 비교하여 본 발명와 거의 유사함을 알 수 있다.
그리고, EQE (External quantum efficiency)는 외부 양자 효율로, 빛이 유기 발광 소자 외부로 나갈 때의 발광 효율을 말한다. 양자 효율은 비교예와 비교하여 본 발명의 실시예와 거의 유사함을 알 수 있다.
수명은 초기 발광 휘도의 95% 수준의 발광 휘도를 나타내는데 까지의 시간을 측정한 것이다. 수명은 비교예와 비교하여 본 발명의 실시예가 41% 상승하였음을 알 수 있다. 따라서, 본 발명의 실시예는 정공 수송층의 두께를 얇게 하면서 발광층으로의 정공 과잉이 안 되도록, 정공 이동도가 느린 물질로 정공 수송층을 구성함으로써, 유기 발광 소자의 수명이 향상됨을 알 수 있다.
도 9는 비교예와 본 발명의 실시예에 따른 전압 평가 결과를 도시한 도면이다. 도 9의 가로축은 전압(V)을 나타내고, 세로축은 전류 밀도(mA/cm2)를 나타낸 것으로, 도 9는 전압에 대한 전류 밀도를 도시한 것이다. 전압 면에서는 비교예와 본 발명의 실시예가 거의 유사함을 알 수 있다.
도 10은 비교예와 본 발명의 실시예에 따른 효율 평가 결과를 도시한 도면이다. 도 10의 가로축은 휘도(cd/m2)를 나타내고, 세로축은 효율(%)을 나타내는 것으로, 도 10은 휘도에 대한 효율을 도시한 것이다. 효율 면에서는 비교예가 본 발명의 실시예와 비교하여 거의 유사함을 알 수 있다.
도 11은 비교예와 본 발명의 실시예에 따른 수명 평가 결과를 도시한 도면이다. 도 11의 가로축은 시간(hr)을 나타내고, 세로축은 휘도 감소율(L/L0)을 나타낸다. 초기 발광 휘도의 95% 수준의 발광 휘도를 나타내는데 까지의 시간, 즉 유기 발광 소자의 95% 수명 시간(T95)이 약 80시간의 수준을 나타내었다. 실시예 의 경우는 95% 수명 시간(T95)이 약 120시간의 수준을 나타내므로 수명 면에서는 본 발명의 실시예가 비교예와 비교하여 훨씬 향상하였음을 알 수 있다. 따라서, 본 발명의 실시예에서 발광층(EML) 내에서 재결합 영역이 생성되도록 발광층(EML)의 전하 균형을 조절하므로, 수명이 향상되었음을 알 수 있다.
이상 설명한 바와 같이, 본 발명에서는 유기발광 표시장치의 효율 향상을
위하여 제1 색과 제2 색을 발광하는 두 개 이상의 발광층들 중 제2 색을 발광하는 발광층을 제1 전극에 근접하게 위치시킴으로써, 발광층의 효율이나 수명을 향상시킬 수 있는 효과가 있다.
또한, 본 발명에서는 제1 색과 제2 색을 발광하는 두 개 이상의 발광층들 중 제2 색을 발광하는 발광층을 제1 전극에 근접하게 위치시키기 위해서 정공 수송층의 두께를 얇게 하면서도 발광층의 효율이나 수명을 향상시킬 수 있는 유기발광 표시장치를 제공할 수 있다.
또한, 본 발명에서는 제1 색과 제2 색을 발광하는 두 개 이상의 발광층들 중 제2 색을 발광하는 발광층을 제1 전극에 근접하게 위치시키기 위해서 정공 수송층의 두께를 얇게 하면서 발광층으로의 정공 과잉이 안 되도록, 정공 이동도가 느린 물질로 정공 수송층을 구성함으로써, 발광층의 효율이나 수명을 향상시킬 수 있는 효과가 있다.
또한, 정공 이동도가 느린 물질로 정공 수송층을 구성하여, 전자와 정공이 결합하는 재결합 영역이 발광층 내에 생성되도록 함으로써, 발광층의 효율이나 수명을 향상시킬 수 있는 효과가 있다.
또한, 정공 이동도가 느린 물질로 정공 수송층을 구성하여, 발광층내에서 재결합 영역이 생성되도록 발광층의 전하 균형을 조절하므로, 발광층의 수명을 향상시킬 수 있는 효과가 있다.
또한, 본 발명에서는 적어도 두 개 이상의 발광부로 구성하고, 각 발광부들에 포함된 정공 수송층들의 정공 이동도를 서로 다르게 구성함으로써, 전자와 정공이 결합하는 재결합 영역이 발광층 내에 생성되도록 함으로써, 발광층의 효율이나 수명을 향상시킬 수 있는 효과가 있다.
도 12는 본 발명의 실시예에 따른 유기 발광 소자를 포함하는 유기발광 표시장치의 단면도로서, 이는 전술한 본 발명의 제1 실시예 내지 제5 실시예에 따른 유기 발광 소자를 적용한 것이다.
도 12에 도시한 바와 같이, 본 발명에 따른 유기발광 표시장치(1000)는 기판(201), 박막트랜지스터(TFT), 오버코팅층(1150), 제1 전극(202), 발광부(1180) 및 제2 전극(204)을 포함한다. 박막트랜지스터(TFT)는 게이트 전극(1115), 게이트 절연층(1120), 반도체층(1131), 소스 전극(1133) 및 드레인 전극(1135)을 포함한다.
도 12에서는 박막 트랜지스터(TFT)가 인버티드 스태거드(inverted staggered) 구조로 도시되었으나, 코플라나(coplanar) 구조로 형성할 수도 있다.
기판(201)은 절연 물질, 또는 유연성(flexibility)을 가지는 재료로 구성될 수 있다. 유리, 금속, 또는 플라스틱 등으로 이루어질 수 있으나, 이에 한정되는 것은 아니다. 유기발광 표시장치가 플렉서블(flexible) 유기발광 표시장치인 경우에는 플라스틱 등과 같은 유연한 재질로 이루어질 수도 있다.
게이트 전극(1115)은 기판(201) 위에 형성되며, 게이트 라인(도시하지 않음)에 연결되어 있다. 상기 게이트 전극(1115)은 몰리브덴(Mo), 알루미늄(Al), 크롬(Cr), 금(Au), 티타늄(Ti), 니켈(Ni), 네오디뮴(Nd) 및 구리(Cu)로 이루어진 군에서 선택된 어느 하나 또는 이들의 합금으로 이루어진 다중층일 수 있다.
게이트 절연층(1120)은 게이트 전극(1115) 위에 형성되며, 실리콘 산화막(SiOx), 실리콘 질화막(SiNx) 또는 이들의 다중층일 수 있으나, 이에 한정되지는 않는다.
반도체층(1131)은 게이트 절연층(1120) 위에 형성되며, 비정질 실리콘(amorphous silicon, a-Si), 다결정 실리콘(polycrystalline silicon, poly-Si), 산화물(oxide) 반도체 또는 유기물 (organic) 반도체 등으로 형성할 수 있다. 반도체층을 산화물 반도체로 형성할 경우, ITO(Indium Tin Oxide), IZO(Indium Zinc Oxide), 또는 ITZO(Indium Tin Zinc Oxide) 등으로 형성할 수 있으나, 이에 한정하는 것은 아니다. 그리고, 에치 스토퍼(도시하지 않음)는 상기 반도체층(1131) 위에 형성되어 반도체층(1131)을 보호하는 기능을 할 수 있으나 소자의 구성에 따라서 생략할 수도 있다.
소스 전극(1133) 및 드레인 전극(1135)은 반도체층(1131) 상에 형성될 수 있다. 소스 전극(1133) 및 드레인 전극(1135)은 단일층 또는 다중층으로 이루어질 수 있으며, 몰리브덴(Mo), 알루미늄(Al), 크롬(Cr), 금(Au), 티타늄(Ti), 니켈(Ni), 네오디뮴(Nd) 및 구리(Cu)로 이루어진 군에서 선택된 어느 하나 또는 이들의 합금으로 이루어질 수 있다.
보호층(1140)은 상기 소스 전극(1133) 및 드레인 전극(1135) 상에 형성되며, 실리콘 산화막(SiOx), 실리콘 질화막(SiNx) 또는 이들의 다중층으로 형성할 수 있다. 또는 아크릴계(acryl) 수지, 폴리이미드(polyimide) 수지 등으로 형성할 수 있으나, 이에 한정되는 것은 아니다.
컬러층(1145)은 상기 제1 보호층(1140) 상에 형성되며, 도면에서는 하나의 서브화소만을 도시하였으나, 상기 컬러층(1145)은 적색 서브화소, 청색 서브화소 및 녹색 서브화소의 영역에 형성된다. 상기 컬러층(1145)은 서브화소 별로 패턴 형성된 적색(R) 컬러필터, 녹색(G) 컬러필터, 및 청색(B) 컬러필터를 포함하여 이루어진다. 상기 컬러층(1145)은 상기 발광부(1180)에서 방출되는 백색광 중에서 특정 파장의 광만을 투과시킨다.
오버코팅층(1150)은 상기 컬러층(1145) 상에 형성되며, 아크릴계(acryl) 수지 또는 폴리이미드(polyimide) 수지, 산화막(SiOx), 실리콘 질화막(SiNx) 또는 이들의 다중층일 수 있으나, 이에 한정되지 않는다.
제1 전극(202)은 상기 오버코팅층(1150) 상에 형성된다. 제1 전극(202)은 상기 보호층(1140)과 오버코팅층(1150)의 소정 영역의 콘택홀(CH)을 통해 상기 드레인 전극(1135)과 전기적으로 연결된다. 도 12에서는 드레인 전극(1135)과 제1 전극(202)이 전기적으로 연결되는 것으로 도시되었으나, 상기 보호층(1140)과 오버코팅층(1150)의 소정 영역의 콘택홀(CH)을 통해 소스 전극(1133)과 제1 전극(302)이 전기적으로 연결되는 것도 가능하다.
뱅크층(1170)은 상기 제1 전극(202) 상에 형성되며, 화소 영역을 정의한다. 즉, 상기 뱅크층(1170)은 복수의 화소들 사이의 경계 영역에 매트릭스 구조로 형성됨으로써, 상기 뱅크층(1170)에 의해서 화소 영역이 정의된다. 뱅크층(1170)은 벤조사이클로부텐(benzocyclobutene; BCB)계 수지, 아크릴계(acryl) 수지 또는 폴리이미드(polyimide) 수지 등의 유기물로 형성할 수 있다. 또는, 뱅크층(1170)은 검정색 안료를 포함하는 감광제로 형성할 수 있으며, 이 경우에는 뱅크층(1170)은 차광부재의 역할을 하게 된다.
발광부(1180)는 상기 뱅크층(1170) 상에 형성된다. 상기 발광부(1180)는 본 발명의 제1 실시예 내지 제5 실시예에서 도시한 바와 같이, 제1 전극(202) 상에 형성된 제1 발광부, 제2 발광부 및 제3 발광부로 이루어진다. 또는, 상기 발광부(1180)는 제1 발광부 및 제2 발광부로 구성될 수 있다.
제2 전극(204)은 상기 발광부(1180) 상에 형성된다.
도 12에 도시되지 않았으나, 봉지부가 상기 제2 전극(204) 상에 구성될 수 있다. 봉지부는 상기 발광부(1180) 내부로 수분이 침투하는 것을 방지하는 역할을 한다. 봉지부는 서로 상이한 무기물이 적층된 복수의 층으로 이루어질 수도 있고, 무기물과 유기물이 교대로 적층된 복수의 층으로 이루어질 수도 있다. 그리고, 봉지 기판이 봉지부 상에 추가로 구성될 수 있다. 봉지 기판은 유리 또는 플라스틱으로 이루어질 수도 있고, 금속으로 이루어질 수도 있다. 봉지 기판은 접착제에 의해서 봉지부에 접착될 수 있다.
이상 첨부된 도면을 참조하여 본 발명의 실시예들을 더욱 상세하게 설명하였으나, 본 발명은 반드시 이러한 실시예로 국한되는 것은 아니고, 본 발명의 기술사상을 벗어나지 않는 범위 내에서 다양하게 변형 실시될 수 있다. 따라서, 본 발명에 개시된 실시예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 그러므로, 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 본 발명의 보호 범위는 청구 범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리 범위에 포함되는 것으로 해석되어야 할 것이다.
100, 200, 300, 400, 500: 유기 발광 소자
110, 210, 310, 410, 510: 제1 발광부
120, 220, 320, 420, 520: 제2 발광부
130, 230, 330: 제3 발광부
140, 150, 240, 250, 340, 350, 440, 540: 전하 생성층
112, 122, 132, 212, 228, 232: 정공 수송층
312, 328, 332, 412, 428, 512, 528: 정공 수송층
116, 126, 136, 216, 226, 236: 전자 수송층
316, 326, 336, 416, 426, 516, 526: 전자 수송층
114, 214, 314, 414, 514: 제1 발광층
124, 224, 324, 424, 524: 제2 발광층
134, 234, 334: 제3 발광층

Claims (20)

  1. 제1 전극;
    상기 제1 전극 상에 형성되며, 제1 발광층과 제1 정공 수송층을 포함하는 제1 발광부;
    상기 제1 발광부 상에 형성되며, 제2 발광층과 제2 정공 수송층을 포함하는 제2 발광부;
    상기 제2 발광부 상에 형성되며, 제3 발광층과 제3 정공 수송층을 포함하는 제3 발광부; 및
    상기 제3 발광부 상에 형성되는 제2 전극을 포함하고,
    상기 제1 정공 수송층의 두께는 상기 제2 정공 수송층의 두께보다 크고,
    상기 제1 정공 수송층의 두께는 상기 제3 정공 수송층의 두께보다 크고,
    상기 제2 발광층은 상기 제1 전극에 가까운 제1 영역 및 상기 제1 영역 상에 형성된 제2 영역을 포함하며,
    상기 제1 영역의 도펀트의 도핑 농도는 상기 제2 영역의 도펀트의 도핑 농도보다 높은, 유기발광 표시장치.
  2. 제1 항에 있어서,
    상기 제3 정공 수송층의 두께는 상기 제2 정공 수송층의 두께보다 큰, 유기 발광 표시장치.
  3. 제1 항에 있어서,
    상기 제1 발광층은 청색 발광층, 황색-녹색 발광층, 적색 발광층 및 녹색 발광층 중 적어도 하나를 포함하는, 유기발광 표시장치.
  4. 제1 항에 있어서,
    상기 제1 정공 수송층의 정공 이동도는 상기 제2 정공 수송층의 정공 이동도와 상이한, 유기발광 표시장치.
  5. 제4 항에 있어서,
    상기 제2 정공 수송층의 정공 이동도는 상기 제1 정공 수송층의 정공 이동도보다 느린, 유기발광 표시장치.
  6. 제5 항에 있어서,
    상기 제2 정공 수송층의 정공 이동도는 상기 제1 정공 수송층의 정공 이동도보다 half order의 차이를 갖는, 유기발광 표시장치.
  7. 삭제
  8. 삭제
  9. 기판 상에 형성된 제1 전극;
    상기 제1 전극 상에 형성되며, 제1 발광층을 포함하는 제1 발광부;
    상기 제1 발광부 상에 형성되며, 제2 발광층을 포함하는 제2 발광부;
    상기 제2 발광부 상에 형성되며, 제3 발광층을 포함하는 제3 발광부; 및
    상기 제3 발광부 상에 형성되는 제2 전극을 포함하고,
    상기 제1 발광층과 상기 제2 발광층 사이에 형성된 유기층들의 두께는 상기 제1 전극과 상기 제1 발광층 사이에 형성된 유기층들의 두께와 다른, 유기발광 표시장치.
  10. 제9 항에 있어서,
    상기 제1 발광층과 상기 제2 발광층 사이에 있는 유기층들의 두께는 상기 제1 전극과 상기 제1 발광층 사이의 유기층들의 두께보다 작은, 유기발광 표시장치.
  11. 제9 항에 있어서,
    상기 제1 발광층은 청색 발광층, 황색-녹색 발광층, 적색 발광층 및 녹색 발광층 중 적어도 하나를 포함하는, 유기발광 표시장치.
  12. 제9 항에 있어서,
    상기 제2 발광층은 황색-녹색 발광층 또는 녹색 발광층인, 유기발광 표시장치.
  13. 제9 항에 있어서,
    상기 제3 발광층은 청색 발광층, 황색-녹색 발광층, 적색 발광층 및 녹색 발광층 중 적어도 하나를 포함하는, 유기발광 표시장치.
  14. 제9 항에 있어서,
    상기 제1 전극과 상기 제1 발광층 사이의 유기층들은 제1 정공 수송층 및 정공 주입층 중 하나 이상을 포함하고,
    상기 제1 발광층과 상기 제2 발광층 사이에 있는 유기층들은 제1 전자 수송층 및 제2 정공 수송층 중 하나 이상을 포함하는, 유기발광 표시장치.
  15. 제14 항에 있어서,
    상기 제1 정공 수송층의 두께는 상기 제2 정공 수송층의 두께보다 큰, 유기 발광 표시장치.
  16. 제15 항에 있어서,
    상기 제2 발광층과 상기 제3 발광층 사이에 형성된 유기층들을 더 포함하고,
    상기 유기층들은 제2 전자 수송층 및 제3 정공 수송층 중 하나 이상을 포함하는, 유기발광 표시장치.
  17. 제16 항에 있어서,
    상기 제1 정공 수송층의 두께는 상기 제3 정공 수송층의 두께보다 큰, 유기 발광 표시장치.
  18. 제16 항에 있어서,
    상기 제3 정공 수송층의 두께는 상기 제2 정공 수송층의 두께보다 큰, 유기 발광 표시장치.
  19. 제9 항에 있어서,
    상기 제1 발광부와 상기 제2 발광부 사이에 형성되는 제1 전하 생성층; 및
    상기 제2 발광부와 상기 제3 발광부 사이에 형성되는 제2 전하 생성층을 더 포함하는, 유기발광 표시장치.
  20. 제9 항에 있어서,
    상기 기판 상에 형성되는 박막 트랜지스터;
    상기 박막 트랜지스터 상에 형성되는 보호층;
    상기 보호층 상에 형성되는 컬러층; 및
    상기 제2 전극 상에 형성되는 봉지부를 더 포함하는, 유기발광 표시장치.
KR1020220052749A 2015-06-30 2022-04-28 유기발광 표시장치 KR102521548B1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020220052749A KR102521548B1 (ko) 2015-06-30 2022-04-28 유기발광 표시장치
KR1020230046879A KR20230050309A (ko) 2015-06-30 2023-04-10 유기발광 표시장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020150092614A KR102393794B1 (ko) 2015-06-30 2015-06-30 유기발광 표시장치
KR1020220052749A KR102521548B1 (ko) 2015-06-30 2022-04-28 유기발광 표시장치

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020150092614A Division KR102393794B1 (ko) 2015-06-30 2015-06-30 유기발광 표시장치

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020230046879A Division KR20230050309A (ko) 2015-06-30 2023-04-10 유기발광 표시장치

Publications (2)

Publication Number Publication Date
KR20220058881A KR20220058881A (ko) 2022-05-10
KR102521548B1 true KR102521548B1 (ko) 2023-04-12

Family

ID=57811871

Family Applications (3)

Application Number Title Priority Date Filing Date
KR1020150092614A KR102393794B1 (ko) 2015-06-30 2015-06-30 유기발광 표시장치
KR1020220052749A KR102521548B1 (ko) 2015-06-30 2022-04-28 유기발광 표시장치
KR1020230046879A KR20230050309A (ko) 2015-06-30 2023-04-10 유기발광 표시장치

Family Applications Before (1)

Application Number Title Priority Date Filing Date
KR1020150092614A KR102393794B1 (ko) 2015-06-30 2015-06-30 유기발광 표시장치

Family Applications After (1)

Application Number Title Priority Date Filing Date
KR1020230046879A KR20230050309A (ko) 2015-06-30 2023-04-10 유기발광 표시장치

Country Status (1)

Country Link
KR (3) KR102393794B1 (ko)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014185032A1 (ja) 2013-05-17 2014-11-20 パナソニックIpマネジメント株式会社 有機エレクトロルミネッセンス素子

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070053472A (ko) 2005-11-21 2007-05-25 삼성전자주식회사 표시기판 및 이의 제조 방법
US7521858B2 (en) * 2005-11-25 2009-04-21 Toshiba Matsushita Display Technology Co., Ltd. Organic EL display and method of manufacturing the same
KR102113606B1 (ko) * 2012-12-28 2020-05-22 엘지디스플레이 주식회사 유기 발광 표시 장치 및 그 제조 방법

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014185032A1 (ja) 2013-05-17 2014-11-20 パナソニックIpマネジメント株式会社 有機エレクトロルミネッセンス素子

Also Published As

Publication number Publication date
KR20230050309A (ko) 2023-04-14
KR20220058881A (ko) 2022-05-10
KR20170003747A (ko) 2017-01-10
KR102393794B1 (ko) 2022-05-03

Similar Documents

Publication Publication Date Title
KR102523495B1 (ko) 유기발광 표시장치
EP2927983B1 (en) White organic light emitting device
KR102410499B1 (ko) 유기발광 표시장치
KR102521109B1 (ko) 유기발광 표시장치
KR102520085B1 (ko) 유기 발광 소자
KR20220163324A (ko) 백색 유기 발광 소자
KR102587943B1 (ko) 유기발광 표시장치
KR20230053562A (ko) 유기 발광 소자
EP3151301B1 (en) Organic light emitting device
CN106920816B (zh) 有机发光显示装置及有机发光堆叠结构
KR102521548B1 (ko) 유기발광 표시장치
KR20220031867A (ko) 유기발광 표시장치
KR102435038B1 (ko) 유기발광 표시장치

Legal Events

Date Code Title Description
A107 Divisional application of patent
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
A107 Divisional application of patent
GRNT Written decision to grant