KR102511052B1 - Separating Method of Carbon From Waste-matrial Contained Carbon and Manufacturing Method of Expanded or Expandable Graphite Using the Separated Carbon - Google Patents

Separating Method of Carbon From Waste-matrial Contained Carbon and Manufacturing Method of Expanded or Expandable Graphite Using the Separated Carbon Download PDF

Info

Publication number
KR102511052B1
KR102511052B1 KR1020220121851A KR20220121851A KR102511052B1 KR 102511052 B1 KR102511052 B1 KR 102511052B1 KR 1020220121851 A KR1020220121851 A KR 1020220121851A KR 20220121851 A KR20220121851 A KR 20220121851A KR 102511052 B1 KR102511052 B1 KR 102511052B1
Authority
KR
South Korea
Prior art keywords
carbon
weight
parts
containing waste
waste resources
Prior art date
Application number
KR1020220121851A
Other languages
Korean (ko)
Inventor
박동철
이정우
권혁
이창규
김태형
강경달
홍석주
정우철
Original Assignee
주식회사 위드엠텍
에스케이에코플랜트(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 위드엠텍, 에스케이에코플랜트(주) filed Critical 주식회사 위드엠텍
Priority to KR1020220121851A priority Critical patent/KR102511052B1/en
Application granted granted Critical
Publication of KR102511052B1 publication Critical patent/KR102511052B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03BSEPARATING SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS
    • B03B5/00Washing granular, powdered or lumpy materials; Wet separating
    • B03B5/28Washing granular, powdered or lumpy materials; Wet separating by sink-float separation
    • B03B5/30Washing granular, powdered or lumpy materials; Wet separating by sink-float separation using heavy liquids or suspensions
    • B03B5/36Devices therefor, other than using centrifugal force
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03DFLOTATION; DIFFERENTIAL SEDIMENTATION
    • B03D1/00Flotation
    • B03D1/02Froth-flotation processes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/205Preparation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

The present invention relates to a method for separating, floating, and recovering carbon particles from carbon-containing waste resources such as battery anode materials, mag carbon, and coke, and using the recovered carbon to manufacture expanded graphite. According to the present invention, the method for separating, floating, and recovering carbon particles from carbon-containing waste resources comprises: a first step of inputting carbon-containing waste resources in water and separating and floating carbon particles through ultrasonic processing; and a second step of filtering and separating the carbon particles separated and floated through the first step, wherein the first step can be performed by adding additional a foaming agent, and more preferably, can be performed by inputting 20 to 50 parts by weight of carbon-containing waste resources and 0.05 to 0.01 parts by weight of a foaming agent prepared with anhydrous ethanol with respect to 100 parts by weight of water at 20 to 55℃.

Description

카본 함유 폐자원으로부터 카본 분리부상 회수방법 및 그 회수된 카본을 이용한 팽창흑연 제조방법{Separating Method of Carbon From Waste-matrial Contained Carbon and Manufacturing Method of Expanded or Expandable Graphite Using the Separated Carbon}Separating Method of Carbon From Waste-matrial Contained Carbon and Manufacturing Method of Expanded or Expandable Graphite Using the Separated Carbon}

본 발명은 배터리 음극재, 마그카본, 코크스 등의 카본 함유 폐자원으로부터 카본입자를 분리부상시켜 회수하고 이렇게 회수한 카본을 사용하여 팽창흑연으로 제조하는 방법에 관한 것이다.The present invention relates to a method for manufacturing expanded graphite by separating and recovering carbon particles from carbon-containing waste resources such as battery negative electrode material, mag carbon, and coke, and using the recovered carbon.

제강공장에서 전로, 전기로, 래들 등은 내측에 높은 내화성의 내화벽돌이 구축되며, 이때 내화벽돌은 통상 내화성이 우수한 마그카본(MgO-C)계 내화물로 이루어진다. 그런데 전로 등을 일정 기간 이상 사용할 경우 내측의 내화벽돌에는 슬래그 및 이물질이 부착되어 내화기능이 저하한다. 이에 따라 일정 기간이 경과하면 기존 내화벽돌은 새로운 내화벽돌로 교체되며, 기존 내화벽돌은 폐마그카본계 내화물로 이에 대한 활용처리 방안이 요구된다. 폐마그카본계 내화물 중 주성분이 MgO인 소재는 상당부분 재활용되고 있으나 마그카본(MgO-C)은 색상 등의 특성으로 인해 거의 재활용되지 못했다. In steel mills, converters, electric furnaces, ladles, etc. are built with highly refractory refractory bricks on the inside, and at this time, the refractory bricks are usually made of magnesium carbon (MgO-C)-based refractories with excellent fire resistance. However, when a converter or the like is used for a certain period of time, slag and foreign substances are attached to the inner refractory bricks, thereby deteriorating the fire resistance function. Accordingly, after a certain period of time, the existing refractory bricks are replaced with new refractory bricks, and the existing refractory bricks are waste mag-carbon-based refractories, and a plan for utilizing them is required. Among waste magnesium refractory materials, materials whose main component is MgO are recycled to a large extent, but magcarbon (MgO-C) is hardly recycled due to its characteristics such as color.

한편 폐배터리 중 휴대폰용 배터리는 대부분 전처리 및 후처리 공정을 통해 Ni, Co, Mn, Cu, Al 등의 고가의 금속성분을 회수처리하며, 다만 회수처리 후 음극재의 주성분인 흑연은 폐기되는 실정이다. 차량용 폐배터리의 경우에는 회수 후 ESS(에너지저장장치) 등으로 재사용하고, 재사용 불가한 폐배터리는 휴대폰용 배터리의 처리와 유사하게 금속성분의 회수 후 흑연은 폐기된다On the other hand, most of the waste batteries for mobile phones recover expensive metal components such as Ni, Co, Mn, Cu, and Al through pre- and post-treatment processes, but graphite, the main component of the anode material, is discarded after recovery. . In the case of waste batteries for vehicles, they are reused as ESS (Energy Storage System) after recovery, and for non-reusable waste batteries, graphite is discarded after recovering metal components similar to the treatment of cell phone batteries.

폐자원의 폐기처리가 증대됨에 따라 폐자원 활용에 관심이 늘고 있다. 카본함유 폐자원을 활용하는 대표적인 방법으로 강산용액 처리를 통한 카본 회수 방법이 있다. 그러나 이 방법은 카본 회수 후 다량의 강산 폐용액이 발생하기 때문에 이를 다시 처리해야 하는 공정이 필요하고, 강산용액 사용이 가능한 특수한 작업환경과 요건으로 인해 제약적이라는 단점이 있다. 특히 폐마그카본의 경우에는 단순한 강산용액 처리방법을 통해서는 카본의 분리 정제가 어렵다는 한계가 있다.As the disposal of waste resources increases, interest in the utilization of waste resources is increasing. As a representative method of utilizing carbon-containing waste resources, there is a carbon recovery method through strong acid solution treatment. However, this method has disadvantages in that a large amount of strong acid waste solution is generated after carbon recovery, so a process to process it again is required, and it is limited due to special working environments and requirements that allow the use of strong acid solution. In particular, in the case of waste mag carbon, there is a limit in that it is difficult to separate and purify carbon through a simple strong acid solution treatment method.

KRKR 10-0605711 10-0605711 B1B1 KRKR 10-0908852 10-0908852 B1B1 KRKR 10-2021-0073045 10-2021-0073045 AA KRKR 10-2104562 10-2104562 B1B1

본 발명은 종래 카본 함유 폐자원의 활용 방법에서 강산용액 사용에 따른 문제를 개선하고자 개발된 것으로서, 강산용액을 사용하지 않으면서도 카본 함유 폐자원으로부터 카본의 분리 회수가 가능한 새로운 방법으로 물용매 조건에서 초음파 처리와 소량의 기포제를 사용함으로써 카본의 분리 회수 후에 폐기물의 발생을 최소화 할 수 있는 방법을 제공하는데 기술적 과제가 있다.The present invention was developed to improve the problems associated with the use of strong acid solutions in conventional methods of utilizing carbon-containing waste resources, and is a new method capable of separating and recovering carbon from carbon-containing waste resources without using strong acid solutions in a water solvent condition. There is a technical challenge in providing a method capable of minimizing the generation of waste after separation and recovery of carbon by using ultrasonic treatment and a small amount of foaming agent.

또한 본 발명은 카본 함유 폐자원에서 분리 회수된 카본을 바람직하게 이용하면서 팽창흑연으로 제조하는 방법을 제공하고자 한다.In addition, the present invention is to provide a method for producing expanded graphite while preferably using carbon separated and recovered from carbon-containing waste resources.

상기한 기술적 과제를 해결하기 위해 본 발명은, 물에 카본 함유 폐자원을 투입하고 초음파처리하여 카본 입자를 분리 부상시키는 제1단계; 제1단계를 통해 분리 부상된 카본 입자를 여과 분리하는 제2단계;를 포함하여 구성되는 것을 특징으로 하는 카본 함유 폐자원으로부터 카본 분리부상 회수방법을 제공한다. 여기서 제1단계는 기포제를 더 투입하면서 실시할 수 있으며, 더욱 바람직하게는 물 100중량부에 카본 함유 폐자원 20~50중량부와 무수에탄올로 마련된 기포제 0.05~0.01중량부를 투입하고 물 온도가 20~55℃ 유지되게 하면서 초음파처리하면서 실시할 수 있다.In order to solve the above technical problem, the present invention, a first step of separating and floating carbon particles by introducing carbon-containing waste resources into water and treating them with ultrasonic waves; A second step of filtering and separating the carbon particles separated and floated through the first step; provides a method for recovering carbon separated and floated from carbon-containing waste resources, characterized in that it comprises a. Here, the first step may be carried out while further adding a foaming agent, more preferably, 20 to 50 parts by weight of carbon-containing waste resources and 0.05 to 0.01 parts by weight of a foaming agent prepared with anhydrous ethanol are added to 100 parts by weight of water, and the water temperature is 20 It can be carried out while sonicating while maintaining ~55 ℃.

또한 본 발명은 카본 함유 폐자원으로부터 회수된 카본을 이용하여 팽창흑연으로 제조하는 방법으로, 카본 함유 폐자원으로부터 회수된 카본에 황산 수용액을 투입하고 과망간산칼륨(KMnO4), 물, 과산화수소를 투입하여 교반하는 제1단계; 제1단계의 교반물을 여과한 후, 100~120℃에서 건조하거나 300~350℃ 이상에서 열처리하는 제2단계;를 포함하여 구성되는 것을 특징으로 하는 팽창흑연 제조방법을 제공한다. 더욱 바람직하게는 제1단계는 카본 함유 폐자원으로부터 회수된 카본 1중량부에 40~50중량% 농도의 황산 수용액 10~50중량부를 투입하고, 과망간산칼륨(KMnO4) 1~5중량부, 물 100~200중량부, 과산화수소(H2O2) 100~200중량부 투입하여 교반하면서 실시할 수 있다.In addition, the present invention is a method for producing expanded graphite using carbon recovered from carbon-containing waste resources, in which an aqueous solution of sulfuric acid is added to carbon recovered from carbon-containing waste resources, and potassium permanganate (KMnO 4 ), water, and hydrogen peroxide are added to obtain A first step of stirring; Provides a method for producing expanded graphite, characterized in that it comprises: a second step of filtering the agitated material of the first step, drying at 100 to 120 ° C or heat-treating at 300 to 350 ° C or higher. More preferably, in the first step, 10 to 50 parts by weight of an aqueous sulfuric acid solution having a concentration of 40 to 50% by weight is added to 1 part by weight of carbon recovered from carbon-containing waste resources, 1 to 5 parts by weight of potassium permanganate (KMnO 4 ), water 100 to 200 parts by weight, hydrogen peroxide (H 2 O 2 ) 100 to 200 parts by weight may be added and stirred.

본 발명에 따르면 다음과 같은 효과를 기대할 수 있다.According to the present invention, the following effects can be expected.

첫째, 배터리 음극재, 마그카본, 코크스 등 카본 함유 폐자원으로부터 고순도의 카본을 분리 회수할 수 있으며, 분리 회수된 카본은 팽창흑연 제조에 이용할 수 있다. 이로써 수입에 의존하던 천연 흑연을 대체하면서 폐자원의 고부가가치화에 기여할 수 있다.First, high-purity carbon can be separated and recovered from carbon-containing waste resources such as battery anode material, mag carbon, and coke, and the separated and recovered carbon can be used to manufacture expanded graphite. As a result, it can contribute to high value-added waste resources while replacing natural graphite, which was dependent on imports.

둘째, 용매로 강약산을 사용하는 종래기술과 달리 용매로 물을 사용하기 때문에 기존 강약산용액 사용 대비 폐수의 발생이 극히 적어 친환경적이다. Second, since water is used as a solvent unlike the prior art that uses a strong and weak acid as a solvent, the generation of wastewater is extremely small compared to the conventional strong and weak acid solution, which is environmentally friendly.

도 1은 기존 상용 제품과 본 발명에 따라 제조된 팽창된 흑연의 SEM 이미지 비교사진이다. 1 is a comparative SEM image of an existing commercial product and expanded graphite prepared according to the present invention.

본 발명은 배터리 음극재, 마그카본, 코크스 등 카본 함유 폐자원으로부터 카본을 분리 회수하는 방법과, 분리 회수된 카본을 이용하여 팽창흑연을 제조하는 방법에 관한 것이다. 본 발명에서 팽창흑연은 팽창가능한 흑연(Expandable Graphite)과 팽창된 흑연(Expanded Graphite)을 포괄한다.The present invention relates to a method for separating and recovering carbon from carbon-containing waste resources such as battery negative electrode material, mag carbon, and coke, and a method for producing expanded graphite using the separated and recovered carbon. In the present invention, expanded graphite encompasses expandable graphite and expanded graphite.

1. 카본의 분리 회수1. Separation and recovery of carbon

본 발명은 배터리 음극재, 마그카본, 코크스 등 카본 함유 폐자원으로부터 카본을 분리 회수하는 방법에 관한 것으로, 수계 상태에서 초음파처리리(sonication)를 통해 카본 함유 폐자원으로부터 카본을 분리부상한 후 회수한다는데 기술적 특징이 있다. 용매로 강약산을 사용하는 종래기술과는 달리, 용매로 물을 사용하고 더불어 초음파처리를 통해 카본을 분리 부상시켜 회수하고자 한 것이다.The present invention relates to a method for separating and recovering carbon from carbon-containing waste resources such as battery anode material, mag carbon, and coke, and recovering carbon after separating and floating carbon from carbon-containing waste resources through sonication in an aqueous state. It has technical features. Unlike the prior art that uses a strong and weak acid as a solvent, water is used as a solvent and carbon is separated and floated through ultrasonic treatment to recover it.

구체적으로 본 발명에 따른 카본 함유 폐자원으로부터 카본 분리부상 회수방법은, 물에 카본 함유 폐자원을 투입하고 초음파처리하여 카본 입자를 분리 부상시키는 제1단계; 제1단계를 통해 분리 부상된 카본 입자를 여과 분리하는 제2단계;를 포함하여 구성된다.Specifically, the method for recovering carbon separation and flotation from carbon-containing waste resources according to the present invention includes a first step of separating and floating carbon particles by introducing carbon-containing waste resources into water and treating them with ultrasonic waves; and a second step of filtering and separating the carbon particles separated and floated through the first step.

제1단계는 카본 함유 폐자원을 수계 상태에서 초음파처리하여 카본을 분리 부상시키는 과정이다. 액상 중에 초음파로 기포의 발생/팽창/파괴를 유도하고 기포의 파괴과정에서 다량의 에너지를 발생시켜 액상 중의 입자를 분리, 분쇄, 제거하여 카본입자를 분리하게 되며, 발생된 기포 중 일부 파괴되지 않은 기포는 분리된 카본입자와 함께 액상의 표층 또는 액상 내부에 부상하게 되는 것이다. 초음파로 인한 파괴 에너지는 액상 중의 입자에 영향을 미치게 되는데, 입자에 손상을 주지 않으면서 입자간의 분리, 분산처리를 가능케 한다. 특히 기포 파괴과정 중에 에너지가 발생하여 온도 상승이 동반되며, 온도 상승은 기포 파괴에 유리한 분위기를 제공하여 카본입자의 분리 효과 향상에 기여한다. 분리된 카본입자는 카본 고유의 소수성(hydrophobic)을 띄고 있어 수중에 잔존하게 되는데, 수중에 잔존하는 카본입자는 초음파에 의해 발생되는 기포가 부착되어 기포의 부유특성으로 인해 수중 또는 물의 표면으로 부상하게 된다. The first step is a process of separating and flotating carbon by ultrasonicating carbon-containing waste resources in an aqueous state. Bubbles are induced/expanded/destroyed by ultrasonic waves in the liquid phase, and a large amount of energy is generated during the bubble destruction process to separate, pulverize, and remove particles in the liquid phase to separate carbon particles, and some of the generated bubbles are not destroyed. The air bubbles float on the surface layer of the liquid phase or inside the liquid phase together with the separated carbon particles. Destructive energy due to ultrasonic waves affects the particles in the liquid phase, enabling separation and dispersion treatment between particles without damaging the particles. In particular, energy is generated during the bubble breaking process, which is accompanied by a temperature increase, and the temperature rise contributes to improving the separation effect of the carbon particles by providing an atmosphere favorable for bubble breaking. The separated carbon particles remain in the water due to the inherent hydrophobicity of carbon. The carbon particles remaining in the water are attached to the carbon particles generated by ultrasonic waves and float on the water or the surface of the water due to the floating characteristics of the bubbles. do.

제1단계는 기포제를 더 투입하여 실시할 수 있는데, 기포제의 투입으로 초음파에 의한 기포 생성 효과가 향상되어 기포의 안정적인 형성이 가능해진다. 다시 말해 기포제에 의해 물의 표면장력이 저하되면서 미세한 기포가 안정적으로 형성되기 때문에 기포의 생성/파괴를 통한 카본의 분리에 도움을 주게 되는 것이다. 기포제로는 소수성의 탄화수소기를 갖는 고순도(99.5%)의 무수에탄올을 바람직하게 사용할 수 있다.The first step may be performed by further introducing a foaming agent, and the foaming agent improves the effect of generating bubbles by ultrasonic waves, thereby enabling stable formation of bubbles. In other words, since the surface tension of water is lowered by the foaming agent and fine bubbles are stably formed, it helps to separate carbon through the creation/destruction of bubbles. As the foaming agent, high-purity (99.5%) anhydrous ethanol having a hydrophobic hydrocarbon group can be preferably used.

제1단계는 물 100중량부에 카본 함유 폐자원 20~50중량부와 고순도의 무수에탄올로 마련된 기포제 0.05~0.01중량부를 투입하고, 물 온도가 20~55℃ 유지되게 하면서 2000W 세기에서 30~1시간 정도 초음파처리하면서 실시하는 것이 바람직하다. 이때 물 온도가 20℃ 미만이면 낮은 온도로 인해 열에너지 손실이 커 카본분리 성능이 저하하며, 물 온도가 55℃ 초과하면 높은 온도로 인해 기포생성이 저하하여 카본분리 성능 저하뿐만 아니라 분리된 카본의 부유 특성 또한 저하하는 요인이 된다. 카본 함유 폐자원은 물 100중량부에 20~50중량부 사용하는데, 20중량부 미만이면 카본분리 처리공정당 분리회수율(분리처리 회수된 카본시료의 회수양)이 낮아져 공정효율면에서 적합하지 않으며, 50중량부 초과하면 물 용매 대비 과도한 카본 함유 폐자원의 투입량으로 인해 카본분리 효율 확보가 어렵고 카본입자의 부유특성 확보도 어렵다. 기포제는 고순도의 무수에탄올로써 물 100중량부에 대하여 0.05~0.01중량부 사용하는 것이 바람직하며, 0.05중량부 미만이면 기포제로서의 특성확보가 어렵고, 0.01중량부 초과하면 과도한 혼입으로 인해 과도한 표면장력 저하특성을 유도하여 오히려 초음파 처리 시 기포생성에 문제를 일으킴으로써 분리된 카본입자의 분리부상 특성을 떨어뜨려 카본의 회수율을 떨어뜨릴 우려가 있다.In the first step, 20 to 50 parts by weight of carbon-containing waste resources and 0.05 to 0.01 parts by weight of a foaming agent made of high-purity anhydrous ethanol are added to 100 parts by weight of water, and the water temperature is maintained at 20 to 55 ° C. It is preferable to carry out ultrasonic treatment for about an hour. At this time, if the water temperature is less than 20 ℃, the carbon separation performance is lowered due to the large thermal energy loss due to the low temperature, and if the water temperature exceeds 55 ℃, the bubble generation is reduced due to the high temperature, resulting in a decrease in the carbon separation performance as well as floating of the separated carbon. Characteristics are also a deteriorating factor. Carbon-containing waste resources are used in an amount of 20 to 50 parts by weight per 100 parts by weight of water. If it is less than 20 parts by weight, the separation and recovery rate per carbon separation treatment process (the amount of carbon samples recovered by separation and treatment) is lowered, which is not suitable in terms of process efficiency. , If it exceeds 50 parts by weight, it is difficult to secure carbon separation efficiency due to the input amount of excessive carbon-containing waste resources compared to the water solvent, and it is difficult to secure the floating characteristics of carbon particles. The foaming agent is high-purity anhydrous ethanol, and it is preferable to use 0.05 to 0.01 parts by weight based on 100 parts by weight of water. If it is less than 0.05 parts by weight, it is difficult to secure properties as a foaming agent, and if it exceeds 0.01 parts by weight, excessive surface tension lowering characteristics due to excessive mixing There is a risk of reducing the recovery rate of carbon by degrading the separation and flotation characteristics of the separated carbon particles by causing a problem in bubble generation during ultrasonic treatment.

제2단계는 카본 입자를 회수하는 과정으로, 제1단계를 통해 분리 부상된 카본 입자를 여과하여 분리한다. 카본 입자는 제1단계를 통해 분리 부상된 상태이기 때문에 상층부를 간단하게 여과하여 카본 입자만을 분리할 수 있다. 제1단계는 물 용매에서 실시했기 때문에 분리된 카본 입자는 수세된 상태가 되며, 이로써 별도 수세과정을 거치지 않아도 정제된 상태가 된다. 이로써 배터리 음극재, 마그카본, 코크스 등 카본 함유 폐자원으로부터 분리 정제된 카본 입자를 회수할 수 있다. The second step is a process of recovering the carbon particles, and the carbon particles separated and floated through the first step are filtered and separated. Since the carbon particles are separated and floated through the first step, only the carbon particles can be separated by simply filtering the upper layer. Since the first step was carried out in a water solvent, the separated carbon particles are washed with water, and thereby become purified without going through a separate washing process. As a result, it is possible to recover carbon particles separated and refined from carbon-containing waste resources such as battery negative electrode material, mag carbon, and coke.

2. 팽창흑연 제조방법2. Manufacturing method of expanded graphite

본 발명은 카본 함유 폐자원으로부터 회수된 카본을 이용하여 팽창흑연으로 제조하는 방법을 제안한다. 본 발명에 따른 팽창흑연 제조방법은, 카본 함유 폐자원으로부터 회수된 카본에 황산 수용액을 투입하고, 과망간산칼륨(KMnO4), 물, 과산화수소를 투입하여 교반하는 제1단계; 제1단계의 교반물을 여과한 후, 100~120℃에서 건조하거나 300~350℃ 이상에서 열처리하는 제2단계;를 포함하여 구성된다. The present invention proposes a method for producing expanded graphite using carbon recovered from carbon-containing waste resources. A method for producing expanded graphite according to the present invention includes a first step of adding an aqueous solution of sulfuric acid to carbon recovered from carbon-containing waste resources, adding potassium permanganate (KMnO4), water, and hydrogen peroxide to stirring; After filtering the agitated material of the first step, a second step of drying at 100 ~ 120 ℃ or heat treatment at 300 ~ 350 ℃ or more; is configured to include.

제1단계는 카본을 산화시키는 과정으로 카본의 탄소 구조체 사이의 상호 작용력을 약화시키고 약화된 층간 결합에 산성재료를 침투시키는 과정이 된다. 제1단계는 카본 함유 폐자원으로부터 회수된 카본 1중량부에 40~50중량% 농도의 황산 수용액 10~50중량부를 투입하고, 과망간산칼륨(KMnO4) 1~5중량부, 물 100~200중량부, 과산화수소(H2O2) 100~200중량부 투입하여 상압, 상온(15~30℃)조건에서 1hr 이상 교반하면서 실시하는 것이 바람직하다. The first step is a process of oxidizing carbon, which weakens the interaction force between the carbon structures of carbon and infiltrates the acidic material into the weakened interlayer bonds. In the first step, 10 to 50 parts by weight of an aqueous solution of sulfuric acid at a concentration of 40 to 50% by weight is added to 1 part by weight of carbon recovered from carbon-containing waste resources, 1 to 5 parts by weight of potassium permanganate (KMnO 4 ), and 100 to 200 parts by weight of water It is preferable to add 100 to 200 parts by weight of hydrogen peroxide (H 2 O 2 ) and carry out stirring at normal pressure and room temperature (15 to 30° C.) for 1 hr or more.

제1단계에서 황산 수용액은 황산수소이온(HSO4 -)의 공급원으로, 사용성을 위해 40~50중량% 농도로 사용하는 것이 바람직하다. 40~50중량% 농도의 황산 수용액은 카본 1중량부에 대하여 10~50중량부 사용하는 것이 바람직하다. 황산 수용액이 10중량부 미만이면 카본 입자 구조층 사이에 침투되어야 하는 황산수소이온의 침투성능이 낮아져 팽창흑연 제조 시 카본의 팽창특성 확보가 부족하게 되고, 50중량부 초과하면 과도한 황산 수용액의 소모로 침투성능 향상 대비 비경제적이다.In the first step, the sulfuric acid aqueous solution is a source of hydrogen sulfate ions (HSO 4 - ), and is preferably used at a concentration of 40 to 50% by weight for usability. It is preferable to use 10 to 50 parts by weight of the sulfuric acid aqueous solution at a concentration of 40 to 50% by weight based on 1 part by weight of carbon. If the sulfuric acid aqueous solution is less than 10 parts by weight, the permeability of hydrogen sulfate ions, which must be penetrated between the carbon particle structure layers, is lowered, resulting in insufficient expansion properties of carbon when manufacturing expanded graphite. It is uneconomical compared to improved penetration performance.

제1단계에서 과망간산칼륨(KMnO4)은 산화제로서 물용매 하에서 황산과 반응하여 카본 층간구조에 삽입될 황산수소이온을 형성하게 되며, 또한 반응 후 생성된 망간산이온(MnO3 +)이 카본을 산화하여 황산수소이온이 카본 층간구조에 들어가는 것을 용이하게 하는 역할을 한다. 과망간산칼륨은 카본 1중량부에 대하여 1~5중량부 사용하는데, 1중량부 미만이면 카본 층간구조 사이에 들어가야 하는 황산수소이온의 생성이 충분하지 않아 팽창흑연 제조가 충분히 되지 않는 문제가 생긴다. 5중량부 초과하면 KMnO4 특성 상 발열이 심한 공정이므로 과량의 KMnO4로 인해 공정 불편이 초래되는 것은 최종 공정에서는 칼륨과 망간 이온을 제거해야 하여 과도한 KMnO4는 사용은 불필요하며, 무엇보다도 고가의 재료로서 경제적 부담이 크다. In the first step, potassium permanganate (KMnO 4 ) reacts with sulfuric acid in a water solvent as an oxidizing agent to form hydrogen sulfate ions to be inserted into the carbon interlayer structure . It oxidizes and plays a role in facilitating entry of hydrogen sulfate ions into the carbon interlayer structure. Potassium permanganate is used in an amount of 1 to 5 parts by weight based on 1 part by weight of carbon. If it is less than 1 part by weight, the production of hydrogen sulfate ions that must enter between the carbon interlayer structures is not sufficient, resulting in insufficient production of expanded graphite. If it exceeds 5 parts by weight, KMnO 4 is a highly exothermic process due to the nature of KMnO 4. The reason why excessive KMnO 4 causes process inconvenience is that potassium and manganese ions must be removed in the final process, so the use of excessive KMnO 4 is unnecessary, and above all, expensive As a material, it is economically burdensome.

물은 용매로서 KMnO4와 황산의 반응이 발열반응이므로 과도한 온도상승에 의한 위험을 제어하기 위함이며, 또한 KMnO4의 반응 후에 칼륨과 망간을 이온화하여 여과 세정을 통한 제거를 용이하게 하기 위함이다. 물은 카본 1중량부에 대하여100~200중량부 사용하는 것이 바람직하며, 100중량부 미만이면 황산과 과망간산칼륨의 반응에서 수반되는 과도한 발열을 억제하는데 부족하고, 200중량부 초과하면 황산의 과도한 희석으로 인해 과망간산칼륨과의 반응이 부족하게 됨으로써 황산수소이온의 생성이 저해되어 팽창흑연 처리에 부적합한 문제가 나타난다.Water is used as a solvent to control the risk of excessive temperature rise since the reaction between KMnO 4 and sulfuric acid is an exothermic reaction, and to facilitate removal through filtration and washing by ionizing potassium and manganese after the reaction of KMnO 4 . It is preferable to use 100 to 200 parts by weight of water based on 1 part by weight of carbon. If it is less than 100 parts by weight, it is insufficient to suppress excessive heat generated in the reaction of sulfuric acid and potassium permanganate, and if it exceeds 200 parts by weight, excessive dilution of sulfuric acid As a result, the reaction with potassium permanganate is insufficient, so that the generation of hydrogen sulfate ions is inhibited, resulting in a problem unsuitable for treatment of expanded graphite.

과산화수소(H2O2)는 잔존하는 과망간산(MnO4)의 제거를 위한 재료가 된다. KMnO4은 투입 반응에 의해 MnO4 -으로 이온화되고 이온화된 MnO4 -은 산화반응에 참여하게 된 후 잔존하는 MnO4 -가 물과 반응하여 MnO4형태로 용매에 존재하게 되는데, 과산화수소(H2O2)는 MnO4를 Mn2+로 이온화하여 카본 여과과정에서 카본과 분리 제거할 수 있게 한 것이다. 과산화수소는 카본 1중량부에 대하여 100~200중량부 사용하는 것이 바람직하다. 100중량부 미만이면 MnO4를 제거하기 위해 반응에 필요한 과산화수소 투입량이 부족하여 충분한 MnO4의 제거가 어렵게 됨으로써 카본의 순도에 영향을 미치게 되며, 200중량부 초과하면 과도한 혼입량으로 인한 불필요한 재료 소모가 된다. Hydrogen peroxide (H 2 O 2 ) becomes a material for removing the remaining permanganic acid (MnO 4 ). KMnO 4 is ionized into MnO 4 - by the input reaction, and the ionized MnO 4 - participates in the oxidation reaction, and the remaining MnO 4 - reacts with water to exist in the solvent in the form of MnO 4 . O 2 ) ionizes MnO 4 to Mn 2+ so that it can be separated and removed from carbon during the carbon filtration process. It is preferable to use 100 to 200 parts by weight of hydrogen peroxide based on 1 part by weight of carbon. If it is less than 100 parts by weight, the amount of hydrogen peroxide required for the reaction to remove MnO 4 is insufficient, making it difficult to remove sufficient MnO 4 , thereby affecting the purity of carbon. If it exceeds 200 parts by weight, unnecessary material consumption is caused by excessive mixing. .

제2단계는 흑연을 팽창시키는 단계로, 100~120℃에서 건조하여 팽창성 흑연으로 제조하거나, 300~350℃에서 12hr 이상 열처리하여 팽창된 흑연으로 제조할 수 있다. The second step is a step of expanding graphite, which may be dried at 100 to 120 ° C to produce expandable graphite or heat-treated at 300 to 350 ° C for 12 hr or more to produce expanded graphite.

[시험예1] 초음파처리에 따른 카본의 분리효율[Test Example 1] Separation efficiency of carbon according to ultrasonic treatment

1. 마그카본의 처리1. Treatment of Magcarbon

마그카본(입도 최대 1±0.1mm, 0.6mm 이상 16~19중량%, 0.6mm미만 0.3mm이상 41~52중량%, 0.3mm미만 32~40중량%, 카본의 함량은 15~25중량%)을 아래 [표 1]과 같은 조건으로 처리하여 카본 분리를 실시하였다. 아래 [표 1]에서 초음파처리는 2000W 세기로 30분동안 적용하여 실시하였다.Mag carbon (particle size up to 1±0.1mm, 0.6mm or more 16-19% by weight, less than 0.6mm, 0.3mm or more 41-52% by weight, less than 0.3mm 32-40% by weight, carbon content 15-25% by weight) was treated under the same conditions as in [Table 1] below to perform carbon separation. In [Table 1] below, ultrasonic treatment was applied for 30 minutes at an intensity of 2000 W.

마그카본의 처리Treatment of Magcarbon 구분division 비교예1Comparative Example 1 비교예2Comparative Example 2 실시예1Example 1 실시예2Example 2 적용공정Applied process 에어주입부상처리Air injection injury treatment OO OO XX XX 초음파처리sonication XX XX OO OO 기포제 투입Injection of foaming agent XX OO XX OO 투입구성 (g)Composition (g) 마그카본(MgO-C)Mag carbon (MgO-C) 3030 3030 4040 4040 water 100100 100100 100100 100100 기포제foaming agent -- 0.030.03 -- 0.040.04 초음파 처리 시간 (min)Sonication time (min) -- -- 3030 3030 물 온도 변화 범위 (℃)Water temperature change range (℃) 26~3126~31 27~3027-30 28~3628~36 24~3824-38

2. 카본의 회수2. Recovery of carbon

[표 1]과 같은 투입량 및 처리조건을 적용하여 카본 분리를 실시한 후, 분리된 카본 부상물을 케이크 상태로 여과하여 건조(수분건조를 위해 110±5℃ 12hr 건조)한 후 카본의 회수율(MgO-C 투입량 대비 회수카본량)을 확인하였다. 확인 결과는 아래 [표 2]와 같이 나타냈다.After carbon separation was performed by applying the input amount and treatment conditions as shown in [Table 1], the separated carbon floating matter was filtered and dried in a cake state (drying at 110 ± 5 ° C for 12 hr for moisture drying), and then the carbon recovery rate (MgO -The amount of recovered carbon compared to the input amount of C) was confirmed. The confirmation results are shown in [Table 2] below.

카본 회수율carbon recovery rate 구분division 비교예1Comparative Example 1 비교예2Comparative Example 2 실시예1Example 1 실시예2Example 2 카본 회수율
(MgO-C 투입량 대비 중량%)
carbon recovery rate
(% by weight compared to MgO-C input)
0.710.71 0.910.91 8.38.3 18.918.9
카본 순도carbon purity 25.525.5 26.026.0 94.394.3 98% 이상more than 98%

[표 2]에서 보는 바와 같이 에어주입 부상분리 처리만 적용한 비교예1은 카본 회수율 0.71%로 극히 낮은 회수율을 나타냈으며, 이로부터 단순한 에어주입 부상분리만을 통해서는 마그카본에서의 카본 분리 회수가 어려운 것을 알 수 있다. 비교예2는 에어주입 부상분리 처리 시 기포제를 적용하여 실시한 경우인데, 기포제를 추가하여도 카본 회수율이 0.91%로 극히 낮아 카본 분리회수가 어려운 것을 확인할 수 있다. 실시예1은 초음파친동처리를 적용한 경우인데, 보는 바와 같이 카본의 회수율이 8.3%로 비교예1,2보다 현저히 높은 회수율을 나타냈으며, 다만 마그카본 내 함유된 카본 대비 회수율은 다소 낮게 나타냈다. 실시예2는 초음파 처리 공정에 기포제를 투입 적용한 경우인데, 카본 회수율이 18.9%로 마그카본 내 함유된 카본의 함량에 버금가는 높은 회수율을 나타냈다. As shown in [Table 2], Comparative Example 1 to which only air injection flotation treatment was applied showed an extremely low carbon recovery rate of 0.71%, and from this, it is difficult to separate and recover carbon from mag carbon through simple air injection flotation separation. can know that Comparative Example 2 was carried out by applying a foaming agent during the air injection floating separation treatment. Example 1 is a case where ultrasonic affinity treatment is applied. As can be seen, the recovery rate of carbon is 8.3%, which is significantly higher than that of Comparative Examples 1 and 2, but the recovery rate compared to the carbon contained in mag carbon is slightly lower. Example 2 is a case in which a foaming agent was applied to the ultrasonic treatment process, and the carbon recovery rate was 18.9%, which showed a high recovery rate comparable to the carbon content contained in mag carbon.

[시험예2] 마그카본 투입량에 따른 카본의 분리효율[Test Example 2] Separation efficiency of carbon according to the input amount of mag carbon

1. 마그카본의 처리1. Treatment of Magcarbon

마그카본(입도 최대 1±0.1mm, 0.6mm 이상 16~19중량%, 0.6mm미만 0.3mm이상 41~52중량%, 0.3mm미만 32~40중량%, 카본의 함량은 15~25중량%)을 아래 [표 3]과 같은 조건으로 처리하여 카본 분리를 실시하였다. Mag carbon (particle size up to 1±0.1mm, 0.6mm or more 16-19% by weight, less than 0.6mm, 0.3mm or more 41-52% by weight, less than 0.3mm 32-40% by weight, carbon content 15-25% by weight) was treated under the same conditions as in [Table 3] below to perform carbon separation.

마그카본의 처리Treatment of Magcarbon 구분division 실시예3Example 3 비교예3Comparative Example 3 비교예4Comparative Example 4 적용공정Applied process 초음파처리sonication 초음파처리(2000W, 30min)Sonication (2000W, 30min) 투입구성 (g)Composition (g) 마그카본(MgO-C)Mag carbon (MgO-C) 4040 6060 8080 water 100100 100100 100100 기포제foaming agent 0.040.04 물 온도 변화 범위 (℃)Water temperature change range (℃) 24~3824-38 34~3734~37 56~6156~61

2. 카본의 회수2. Recovery of carbon

[표 3]과 같은 처리조건을 적용하여 카본 분리를 실시한 후, 분리된 카본 부상물을 케이크 상태로 여과하여 건조(수분건조를 위해 110±5℃ 12hr 건조)한 후 카본의 회수율(MgO-C 투입량 대비 회수카본량)을 확인하였다. 확인 결과는 아래 [표 4]와 나타냈다.After carbon separation was performed by applying the treatment conditions as shown in [Table 3], the separated carbon floating matter was filtered and dried in a cake state (110 ± 5 ° C for 12 hr drying for moisture drying), and then the carbon recovery rate (MgO-C The amount of recovered carbon relative to the input amount) was confirmed. The confirmation results are shown in [Table 4] below.

카본 회수율carbon recovery rate 구분division 실시예3Example 3 비교예3Comparative Example 3 비교예4Comparative Example 4 카본 회수율
(MgO-C 투입량 대비 중량%)
carbon recovery rate
(% by weight compared to MgO-C input)
18.918.9 24.424.4 29.129.1
카본순도(%)Carbon purity (%) 98 이상98 or higher 81.481.4 68.868.8

마그카본 투입량에 따른 카본 회수율과 회수 카본의 순도를 비교한 결과, 투입량이 증가할수록 회수율은 증가하였으나 회수된 카본의 순도는 낮아지는 결과를 나타냈다. 이러한 결과를 통해 마그카본 투입량이 과다하면 초음파처리를 통해 분리 부상된 카본 입자와 함께 분리되지 아니한 미분의 마그카본(MgO-C) 입자도 부상하여 전체적인 회수율(중량)이 증가한 것을 알 수 있으며, 결국 과량의 마그카본(MgO-C) 투입은 카본 회수시료의 순도에 영향을 미치게 되므로 60중량부 이상의 투입량은 적합하지 않다고 할 수 있다. As a result of comparing the carbon recovery rate and the purity of the recovered carbon according to the input amount of mag carbon, the recovery rate increased as the input amount increased, but the purity of the recovered carbon decreased. From these results, it can be seen that when the input amount of mag-carbon is excessive, the fine mag-carbon (MgO-C) particles that are not separated along with the carbon particles separated and floated through ultrasonic treatment are also floated, resulting in an increase in the overall recovery rate (weight). Since an excessive amount of magnesium carbon (MgO-C) input affects the purity of the carbon recovered sample, it can be said that an input amount of 60 parts by weight or more is not suitable.

[시험예3] 기포제 투입량에 따른 카본의 분리효율[Test Example 3] Separation efficiency of carbon according to the amount of foaming agent

1. 마그카본의 처리1. Treatment of Magcarbon

마그카본(입도 최대 1±0.1mm, 0.6mm 이상 16~19중량%, 0.6mm미만 0.3mm이상 41~52중량%, 0.3mm미만 32~40중량%, 카본의 함량은 15~25중량%)을 아래 [표 5]와 같은 조건으로 처리하여 카본 분리를 실시하였다. Mag carbon (particle size up to 1±0.1mm, 0.6mm or more 16-19% by weight, less than 0.6mm, 0.3mm or more 41-52% by weight, less than 0.3mm 32-40% by weight, carbon content 15-25% by weight) was treated under the same conditions as in [Table 5] below to perform carbon separation.

마그카본의 처리Treatment of Magcarbon 구분division 실시예4Example 4 비교예5Comparative Example 5 비교예6Comparative Example 6 적용구성Composition 초음파처리sonication 초음파처리(2000W, 30min)Sonication (2000W, 30min) 투입구성
(g)
input configuration
(g)
MgO-CMgO-C 4040 4040 4040
water 100100 100100 100100 기포제foaming agent 0.040.04 0.0050.005 0.40.4

2. 카본의 회수2. Recovery of carbon

[표 5]와 같은 처리조건을 적용하여 카본 분리를 실시한 후, 분리된 카본 부상물을 케이크 상태로 여과하여 건조(수분건조를 위해 110±5℃ 12hr 건조)한 후 카본의 회수율(MgO-C 투입량 대비 회수카본량)을 확인하였다. 확인 결과는 아래 [표 6]과 나타냈다.After carbon separation was performed by applying the treatment conditions as shown in [Table 5], the separated carbon floating matter was filtered in a cake state and dried (110 ± 5 ° C for 12 hr drying for moisture drying), and then the carbon recovery rate (MgO-C The amount of recovered carbon relative to the input amount) was confirmed. The confirmation results are shown in [Table 6] below.

카본 회수율carbon recovery rate 구분division 실시예4Example 4 비교예5Comparative Example 5 비교예6Comparative Example 6 카본 회수율
(MgO-C 투입량 대비 중량%)
carbon recovery rate
(% by weight compared to MgO-C input)
18.918.9 11.211.2 10.710.7
카본순도(%)Carbon purity (%) 98 이상98 or higher 98 이상98 or higher 79.379.3

기포제 투입량 미달 시 카본 회수율이 낮아지는 결과(비교예5)를 통해 카본 회수를 위한 기포제 영향을 확인할 수 있다. 기포제 과량 시에는 카본 회수율은 물론 순도 또한 낮게 나타냈으며, 이는 초음파처리 시 미세기포의 생성/파괴가 원활하지 않아 고품질의 카본분리 회수가 어려운 것으로 본다.The effect of the foaming agent for carbon recovery can be confirmed through the result (Comparative Example 5) that the carbon recovery rate is lowered when the amount of the foaming agent is insufficient. In the case of an excessive amount of foaming agent, the carbon recovery rate and purity were also low.

[시험예4] 초음파처리 조건에 따른 카본의 분리효율[Test Example 4] Separation efficiency of carbon according to sonication conditions

1. 마그카본의 처리1. Treatment of Magcarbon

마그카본(입도 최대 1±0.1mm, 0.6mm 이상 16~19중량%, 0.6mm미만 0.3mm이상 41~52중량%, 0.3mm미만 32~40중량%, 카본의 함량은 15~25중량%)을 아래 [표 7]과 같은 조건으로 처리하여 카본 분리를 실시하였다. Mag carbon (particle size up to 1±0.1mm, 0.6mm or more 16-19% by weight, less than 0.6mm, 0.3mm or more 41-52% by weight, less than 0.3mm 32-40% by weight, carbon content 15-25% by weight) Carbon separation was performed by treating the same under the conditions shown in Table 7 below.

마그카본의 처리Treatment of Magcarbon 구분division 비교예7Comparative Example 7 비교예8Comparative Example 8 비교예9Comparative Example 9 비교예10Comparative Example 10 실시예5Example 5 실시예6Example 6 투입구성
(g)
input configuration
(g)
MgO-CMgO-C 4040 4040 4040 4040 4040 4040
water 100100 100100 100100 100100 100100 100100 기포제foaming agent 0.040.04 0.040.04 0.040.04 0.040.04 0.040.04 0.040.04 적용조건
(초음파처리)
Application conditions
(ultrasonic treatment)
세기(W)Century (W) 750750 2,0002,000
처리시간(min)Processing time (min) 1010 3030 6060 1010 3030 6060

2. 카본의 회수2. Recovery of carbon

[표 7]와 같은 처리조건을 적용하여 카본 분리를 실시한 후, 분리된 카본 부상물을 케이크 상태로 여과하여 건조(수분건조를 위해 110±5℃ 12hr 건조)한 후 카본의 회수율(MgO-C 투입량 대비 회수카본량)을 확인하였다. 확인 결과는 아래 [표 8]과 나타냈다.After carbon separation was performed by applying the treatment conditions as shown in [Table 7], the separated carbon floating matter was filtered and dried in a cake state (110 ± 5 ° C for 12 hr drying for moisture drying), and then the carbon recovery rate (MgO-C The amount of recovered carbon relative to the input amount) was confirmed. The confirmation results are shown in [Table 8] below.

카본 회수율carbon recovery rate 구분division 비교예7Comparative Example 7 비교예8Comparative Example 8 비교예9Comparative Example 9 비교예10Comparative Example 10 실시예5Example 5 실시예6Example 6 카본회수율
(MgO-C 투입량 대비 중량%)
Carbon recovery rate
(% by weight compared to MgO-C input)
1 이하less than 1 1이하less than 1 2.72.7 6.66.6 18.918.9 19.019.0
카본순도(%)Carbon purity (%) 98 이상98 or higher 98 이상98 or higher 98 이상98 or higher 98 이상98 or higher 98 이상98 or higher 98 이상98 or higher

초음파 처리 세기/시간에 따른 특성을 비교한 결과, 750W 세기의 초음파처리를 통해서는 1시간 이내의 짧은 시간 처리를 통해 카본 회수율을 확보는 어려웠으며(비교예7,8,9), 공정효율 향상을 위해서는 2,000W, 30분 이상의 초음파처리 공정 적용이 필요한 것으로 확인되었다.As a result of comparing the characteristics according to the intensity/time of ultrasonic treatment, it was difficult to secure a carbon recovery rate through a short treatment time of less than 1 hour through ultrasonic treatment at an intensity of 750 W (Comparative Examples 7, 8, and 9), and process efficiency was improved. For this, it was confirmed that the application of an ultrasonic treatment process of 2,000 W and 30 minutes or more was necessary.

[제조예] 팽창흑연의 제조[Manufacture Example] Manufacture of expanded graphite

위 [시험예1]의 실시예2에 따라 분리 회수된 카본을 이용하여 팽창흑연을 제조하였다. 분리 회수된 카본 1중량부에 대하여 황산 40중량부, 과망간산칼륨 3.2중량부, 물 140중량부, 과산화수소 125중량부 투입 교반하여 상온, 상압 조건에서 12hr 유지 후 여과 건조하여 팽창성 흑연((expandable graphite)을 제조하고, 이러한 팽창성 흑연을 다시 300~330℃ 고온에서 4hr 열처리하는 방법으로 팽창된 흑연(expanded graphite)으로 제조하였다. 이와 같이 제조한 팽창성 흑연과 팽창된 흑은을 상용제품과 비교할 때, 아래 [표 9] 및 도 1과 같은 결과를 나타냈다.Expanded graphite was prepared using the separated and recovered carbon according to Example 2 of [Test Example 1] above. Based on 1 part by weight of separated and recovered carbon, 40 parts by weight of sulfuric acid, 3.2 parts by weight of potassium permanganate, 140 parts by weight of water, and 125 parts by weight of hydrogen peroxide were added, stirred, maintained at room temperature and normal pressure for 12 hr, and filtered and dried to obtain expandable graphite ((expandable graphite) was prepared, and expanded graphite was prepared by heat-treating the expandable graphite for 4 hr at a high temperature of 300 to 330 ° C. When comparing the expandable graphite and expanded black silver prepared in this way with commercial products, the following [Table 9] and Figure 1 showed the same results.

팽창흑연의 특성Characteristics of expanded graphite 구분division 상용 제품Commercial Products 본 발명the present invention 팽창성흑연(expandable graphite)
bulk density
Expandable graphite
bulk density
0.58
(spec 0.56~0.60)
0.58
(spec 0.56~0.60)
0.550.55
팽창흑연(expanded graphite) 팽창율Expansion rate of expanded graphite spec 250~350spec 250~350 300~340300~340

[표 9]에서와 같이 본 발명에 따라 제조된 팽창성 흑연의 bulk density는 상용제품과 유사한 특성을 가진 것으로 확인되었다. 또한 팽창된 흑연은 SEM image를 확인한 결과 도 1과 같이 카본 층간의 팽창정도가 상용품과 유사한 수준인 것으로 나타냈으며, 열처리를 통한 팽창율 또한 상용품에서 제시한 팽창 spec 범위에서 우수한 팽창율을 가지는 것으로 확인되었다. 이로써 본 발명에 따라 제조된 팽창흑연은 상용 제품과 유사한 특성을 가진다고 할 수 있다.As shown in [Table 9], the bulk density of the expandable graphite prepared according to the present invention was confirmed to have similar characteristics to commercial products. In addition, as a result of confirming the SEM image of the expanded graphite, it was found that the degree of expansion between the carbon layers was similar to that of commercial products, as shown in FIG. It became. Thus, it can be said that the expanded graphite prepared according to the present invention has properties similar to those of commercial products.

Claims (5)

물에 카본 함유 폐자원을 투입하고 초음파처리하여 카본 입자를 분리 부상시키는 제1단계; 상기 제1단계를 통해 분리 부상된 카본입자를 여과 분리하는 제2단계;를 포함하되,
상기 제1단계는, 기포제를 더 투입하면서 실시하는 것을 특징으로 하는 카본 함유 폐자원으로부터 카본 분리부상 회수방법.
A first step of separating and floating carbon particles by introducing carbon-containing waste resources into water and treating them with ultrasonic waves; A second step of filtering and separating the carbon particles separated and floated through the first step; including,
The first step is a method for recovering carbon separated floating phase from carbon-containing waste resources, characterized in that carried out while further introducing a foaming agent.
삭제delete 제1항에서,
상기 제1단계는, 물 100중량부에 카본 함유 폐자원 20~50중량부와 무수에탄올로 마련된 기포제 0.05~0.01중량부를 투입하고 물 온도가 20~55℃ 유지되게 하면서 초음파처리하면서 실시하는 것을 특징으로 하는 카본 함유 폐자원으로부터 카본 분리부상 회수방법.
In paragraph 1,
In the first step, 20 to 50 parts by weight of carbon-containing waste resources and 0.05 to 0.01 parts by weight of a foaming agent prepared with anhydrous ethanol are added to 100 parts by weight of water, and ultrasonic treatment is performed while maintaining the water temperature at 20 to 55 ° C. A method for recovering carbon separation and flotation from carbon-containing waste resources.
제1항 또는 제3항에 따라 카본 함유 폐자원으로부터 회수된 카본을 이용하여 팽창흑연으로 제조하는 방법으로,
카본 함유 폐자원으로부터 회수된 카본에 황산 수용액을 투입하고, 과망간산칼륨(KMnO4), 물, 과산화수소를 투입하여 교반하는 제1단계; 제1단계의 교반물을 여과한 후, 100~120℃에서 건조하거나 300~350℃ 이상에서 열처리하는 제2단계;를 포함하여 구성되는 것을 특징으로 하는 팽창흑연 제조방법.
A method for producing expanded graphite using carbon recovered from carbon-containing waste resources according to claim 1 or 3,
A first step of adding sulfuric acid aqueous solution to carbon recovered from carbon-containing waste resources, adding potassium permanganate (KMnO4), water, and hydrogen peroxide to stirring; After filtering the agitated material of the first step, a second step of drying at 100 ~ 120 ℃ or heat treatment at 300 ~ 350 ℃ or more; expanded graphite manufacturing method characterized in that it comprises a.
제4항에서,
상기 제1단계는, 카본 함유 폐자원으로부터 회수된 카본 1중량부에 40~50중량% 농도의 황산 수용액 10~50중량부를 투입하고, 과망간산칼륨(KMnO4) 1~5중량부, 물 100~200중량부, 과산화수소(H2O2) 100~200중량부 투입하여 교반하면서 실시하는 것을 특징으로 하는 팽창흑연 제조방법.
In paragraph 4,
In the first step, 10 to 50 parts by weight of an aqueous solution of sulfuric acid having a concentration of 40 to 50% by weight is added to 1 part by weight of carbon recovered from carbon-containing waste resources, 1 to 5 parts by weight of potassium permanganate (KMnO 4 ), 100 to 100 parts by weight of water 200 parts by weight, hydrogen peroxide (H 2 O 2 ) 100 to 200 parts by weight of expanded graphite manufacturing method, characterized in that carried out while stirring.
KR1020220121851A 2022-09-26 2022-09-26 Separating Method of Carbon From Waste-matrial Contained Carbon and Manufacturing Method of Expanded or Expandable Graphite Using the Separated Carbon KR102511052B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020220121851A KR102511052B1 (en) 2022-09-26 2022-09-26 Separating Method of Carbon From Waste-matrial Contained Carbon and Manufacturing Method of Expanded or Expandable Graphite Using the Separated Carbon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020220121851A KR102511052B1 (en) 2022-09-26 2022-09-26 Separating Method of Carbon From Waste-matrial Contained Carbon and Manufacturing Method of Expanded or Expandable Graphite Using the Separated Carbon

Publications (1)

Publication Number Publication Date
KR102511052B1 true KR102511052B1 (en) 2023-03-17

Family

ID=85872378

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020220121851A KR102511052B1 (en) 2022-09-26 2022-09-26 Separating Method of Carbon From Waste-matrial Contained Carbon and Manufacturing Method of Expanded or Expandable Graphite Using the Separated Carbon

Country Status (1)

Country Link
KR (1) KR102511052B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102670710B1 (en) 2024-04-04 2024-05-30 한국지질자원연구원 The method of refineing wasteed graphite

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100605711B1 (en) 2001-12-22 2006-08-01 주식회사 포스코 The refractory material composed by using magnesia carbon brick
KR100896253B1 (en) * 2007-07-09 2009-05-08 재단법인서울대학교산학협력재단 Purification Method of Carbon Nanotubes
KR100908852B1 (en) 2007-07-06 2009-07-22 한국세라믹기술원 METHOD FOR PRODUCING MAGNESIUM COMPOUND FROM WASTE MAG CARBON REFRACTORY
KR20110016420A (en) * 2009-08-10 2011-02-17 엔바로테크 주식회사 Method and apparatus for manufacturing nano-size graphene-based material
JP2012024729A (en) * 2010-07-27 2012-02-09 Kyoto Univ Plating wastewater treatment method using microbubble, and chemical liquid for plating wastewater treatment used for the method
JP2013001606A (en) * 2011-06-17 2013-01-07 Jfe Steel Corp Method for recycling used magnesia carbon brick and method for manufacturing magnesia carbon brick
KR102104562B1 (en) 2019-11-26 2020-04-24 한국지질자원연구원 Method for separating anode active material
KR20210073045A (en) 2019-12-10 2021-06-18 에스케이씨 주식회사 Preparation method of high purity graphene

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100605711B1 (en) 2001-12-22 2006-08-01 주식회사 포스코 The refractory material composed by using magnesia carbon brick
KR100908852B1 (en) 2007-07-06 2009-07-22 한국세라믹기술원 METHOD FOR PRODUCING MAGNESIUM COMPOUND FROM WASTE MAG CARBON REFRACTORY
KR100896253B1 (en) * 2007-07-09 2009-05-08 재단법인서울대학교산학협력재단 Purification Method of Carbon Nanotubes
KR20110016420A (en) * 2009-08-10 2011-02-17 엔바로테크 주식회사 Method and apparatus for manufacturing nano-size graphene-based material
JP2012024729A (en) * 2010-07-27 2012-02-09 Kyoto Univ Plating wastewater treatment method using microbubble, and chemical liquid for plating wastewater treatment used for the method
JP2013001606A (en) * 2011-06-17 2013-01-07 Jfe Steel Corp Method for recycling used magnesia carbon brick and method for manufacturing magnesia carbon brick
KR102104562B1 (en) 2019-11-26 2020-04-24 한국지질자원연구원 Method for separating anode active material
KR20210073045A (en) 2019-12-10 2021-06-18 에스케이씨 주식회사 Preparation method of high purity graphene

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102670710B1 (en) 2024-04-04 2024-05-30 한국지질자원연구원 The method of refineing wasteed graphite

Similar Documents

Publication Publication Date Title
KR101109961B1 (en) Method for fabricating of graphene
CN106587046B (en) A kind of method of purification of diamond
CN110878385A (en) Method for producing molten steel precipitation deoxidizer by using electrolytic aluminum carbon slag
CN111792644A (en) Method for preparing porous carbon material by using aluminum electrolysis waste cathode carbon
CN114709504A (en) Clean recovery method of waste lithium iron phosphate anode material
KR102511052B1 (en) Separating Method of Carbon From Waste-matrial Contained Carbon and Manufacturing Method of Expanded or Expandable Graphite Using the Separated Carbon
CN109616668A (en) The micro- preparation method for expanding layer natural graphite of lithium cell negative pole material manganese oxide-small size
CN108545724A (en) Graphene and its production method, purposes and battery
CN117380243A (en) Preparation of monoatomic Cu@NC material and method for treating organic wastewater by activating peroxide
Gao et al. Opportunity and challenges in recovering and functionalizing anode graphite from spent lithium-ion batteries: A review
WO2024021290A1 (en) Waste lithium battery leachate treatment method and waste lithium battery recovery method
JP2004300490A (en) Method of recovering cobalt
CN114275773B (en) Method for preparing graphene by using cathode carbon block return material
CN113501516B (en) Preparation method of high-purity coal-series graphite
CN112768798B (en) Method for preventing impurity metal from being separated out in process of recycling waste lithium battery cathode
CN112375404B (en) Method for removing impurities and modifying waste tire pyrolysis carbon black
KR101777901B1 (en) Surfactant removal from palladium nanoparticles
CN114408916A (en) Expanded graphite and preparation method thereof
JPH0692639A (en) Activated manganese dioxide and its production
CN112408378A (en) High-valued recovery method for waste cathode carbon blocks of aluminum electrolytic cell
CN110550623A (en) Method for preparing high-quality large-size graphene on large scale
CN110629033A (en) Method for recovering cobalt and nickel from tungsten waste smelting slag
KR102395046B1 (en) Method for preparing metal reductant by recycling wasted electrode materials of lithium ion battery and metal reductant prepared by the same
CN115304064A (en) Production method and application of physical activated carbon
US2299428A (en) Method for manufacturing highly active depolarizer from natural pyrolusite

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant