KR102500286B1 - Infrared optical lens equipped with ta-C and yttrium oxide thin film - Google Patents

Infrared optical lens equipped with ta-C and yttrium oxide thin film Download PDF

Info

Publication number
KR102500286B1
KR102500286B1 KR1020210026578A KR20210026578A KR102500286B1 KR 102500286 B1 KR102500286 B1 KR 102500286B1 KR 1020210026578 A KR1020210026578 A KR 1020210026578A KR 20210026578 A KR20210026578 A KR 20210026578A KR 102500286 B1 KR102500286 B1 KR 102500286B1
Authority
KR
South Korea
Prior art keywords
thin film
film layer
coating
optical lens
infrared optical
Prior art date
Application number
KR1020210026578A
Other languages
Korean (ko)
Other versions
KR20220122225A (en
Inventor
강희영
Original Assignee
한국광기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국광기술원 filed Critical 한국광기술원
Priority to KR1020210026578A priority Critical patent/KR102500286B1/en
Publication of KR20220122225A publication Critical patent/KR20220122225A/en
Application granted granted Critical
Publication of KR102500286B1 publication Critical patent/KR102500286B1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/113Anti-reflection coatings using inorganic layer materials only
    • G02B1/115Multilayers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0605Carbon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/083Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/32Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
    • C23C14/325Electric arc evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/343Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one DLC or an amorphous carbon based layer, the layer being doped or not
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/36Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including layers graded in composition or physical properties

Abstract

본 발명은 bF3 및 Y2O3 코팅 박막층을 구비한 하이브리드 적외선 광학렌즈에 관한 것으로서, 더욱 상세하게는 양면 ARC를 유지하여 고투과율을 확보하고, 전체 투과율 및 내구성을 확보할 수 있는 ta-C 및 Y2O3 코팅 박막층을 구비한 하이브리드 적외선 광학렌즈에 관한 것이다.
본 발명에 따른 YbF3 코팅 박막층을 구비한 원적외선 광학렌즈는 양면 ARC를 유지하여 고투과율을 확보하고, 기존의 DLC 박막을 100nm 내지 200nm 두께를 갖는 ta-C 보호층으로 대체하여 전체 투과율 및 내구성을 확보할 수 있는 장점을 가진다.
The present invention relates to a hybrid infrared optical lens having a bF3 and Y2O3 coating thin film layer, and more particularly, a ta-C and Y2O3 coating thin film layer capable of securing high transmittance by maintaining double-sided ARC and securing overall transmittance and durability. It relates to a hybrid infrared optical lens having a.
The far-infrared optical lens having a YbF3 coating thin film layer according to the present invention secures high transmittance by maintaining double-sided ARC, and secures overall transmittance and durability by replacing the existing DLC thin film with a ta-C protective layer having a thickness of 100 nm to 200 nm. has the advantage of being able to

Description

ta-C 및 Y2O3 코팅 박막층을 구비한 하이브리드 적외선 광학렌즈{Infrared optical lens equipped with ta-C and yttrium oxide thin film}Hybrid infrared optical lens equipped with ta-C and yttrium oxide thin film

본 발명은 ta-C 및 Y2O3 코팅 박막층을 구비한 하이브리드 적외선 광학렌즈에 관한 것으로서, 더욱 상세하게는 양면 ARC를 유지하여 고투과율을 확보하고, ta-C를 무반사 코팅에 적용할 수 있도록 Y2O3 등의 접착층을 얇게 증착 후 그 위에 100nm 내지 200nm 두께를 갖는 ta-C 를 형성함으로써 전체 투과율을 향상시키면서 내구성 또한 확보할 수 있는 ta-C 및 Y2O3 코팅 박막층을 구비한 하이브리드 적외선 광학렌즈에 관한 것이다.The present invention relates to a hybrid infrared optical lens having a thin film layer of ta-C and Y2O3 coating, and more particularly, to maintain high transmittance by maintaining double-sided ARC, and to apply ta-C to an anti-reflection coating, such as Y2O3 It relates to a hybrid infrared optical lens having ta-C and Y2O3 coating thin film layers capable of securing durability while improving overall transmittance by depositing a thin adhesive layer and then forming ta-C having a thickness of 100 nm to 200 nm thereon.

일반적으로 DLC(Diamond-like carbon) 박막은 높은 경도, 내마모성, 윤활성, 평활한 표면 조도 등의 뛰어난 기계적 특성과 전기절연성, 화학적 안정성 그리고 높은 광학적 투과성이 있어 산업적으로 다양하게 사용되고 있다.In general, DLC (Diamond-like carbon) thin films have excellent mechanical properties such as high hardness, wear resistance, lubricity, and smooth surface roughness, electrical insulation, chemical stability, and high optical transmittance, so they are widely used industrially.

이러한 DLC 박막의 형성 방식은 수소의 영향에 의한 박막의 물성변화를 초래하므로 최근에는 고체상의 카본을 이용하여 수소가 함유되지 않은 박막의 코팅에 관심이 증대되고 있다. DLC 박막에서 수소 함유는 큰 문제점의 하나로 수소 함유를 원천적으로 배제한다는 것은 큰 의미를 가진다. Since this method of forming the DLC thin film causes a change in physical properties of the thin film due to the influence of hydrogen, interest in coating a thin film that does not contain hydrogen using solid carbon has recently increased. In the DLC thin film, hydrogen content is one of the major problems, and it is significant to fundamentally exclude hydrogen content.

DLC 박막의 형성을 위한 CVD나 PVD와 같은 종래의 화학적, 물리적 증착방법은 수소 함유와 상관없이 적외선 투과율이 평균 10% 정도 감소하며, 경도가 높지 않다는 단점이 있다. 또한, 부착력과 광학적 특성을 고려하여 다층 구조로 형성되므로 막이 두껍고 코팅공정이 복잡해져 공정효율이 감소된다.Conventional chemical and physical deposition methods such as CVD or PVD for forming a DLC thin film have disadvantages in that infrared transmittance decreases by about 10% on average regardless of hydrogen content and hardness is not high. In addition, since it is formed in a multilayer structure in consideration of adhesion and optical characteristics, the film is thick and the coating process is complicated, reducing process efficiency.

이와 달리 FCVA 증착방법은 다른 물리적 증착방법에 비해 발생하는 이온의 에너지가 높고, 이온화율이 높으며 또한 이온 플럭스(flux)가 높기 때문에 다이아몬드에 가까운 높은 경도와 밀도를 가지며, 기판과의 부착력이 좋고 투과성이나 굴절률 등의 광학적 특성이 우수하며, 열적 안정성이 높은 DLC 박막을 증착할 수 있고, 단층의 박막 형성이 가능하다. Unlike other physical deposition methods, the FCVA deposition method has high ion energy, high ionization rate, and high ion flux compared to other physical deposition methods, so it has high hardness and density close to diamond, and has good adhesion to the substrate and excellent permeability. It is possible to deposit a DLC thin film having excellent optical properties such as or refractive index and high thermal stability, and it is possible to form a single layer thin film.

상술한 FCVA 증착방법으로 증착된 DLC 박막을 비정질 탄소 박막 또는 ta-C(tetrahedral amorphous carbon) 박막이라 부른다. 이러한 FCVA 증착방법은 카본 소스로 고상의 흑연을 사용하므로 수소함유를 원천적으로 방지할 수 있는 장점을 갖는다. The DLC thin film deposited by the above-described FCVA deposition method is called an amorphous carbon thin film or a tetrahedral amorphous carbon (ta-C) thin film. Since this FCVA deposition method uses solid graphite as a carbon source, it has the advantage of fundamentally preventing hydrogen content.

한편, 렌즈와 같은 광학제품에는 표면에서 반사되어 소멸되는 빛의 양을 줄여 렌즈를 통과하는 빛의 양을 증대시키기 위해 표면에 무반사(AR; Anti-Reflection) 코팅막이 형성된다. 그러나, 이러한 무반사 코팅막은 경도가 낮아 외부에 노출될 경우 쉽게 스크래치가 발생되는 문제점이 있다.On the other hand, an anti-reflection (AR) coating film is formed on the surface of an optical product such as a lens to increase the amount of light passing through the lens by reducing the amount of light reflected and extinguished from the surface. However, this anti-reflection coating film has a problem in that scratches easily occur when exposed to the outside due to its low hardness.

KRKR 10-149443910-1494439 B1B1 KRKR 10-2001-006821710-2001-0068217 AA KRKR 10-2008-001540010-2008-0015400 AA

본 발명은 상기와 같은 종래의 문제를 해결하기 위한 것으로서, 적외선 광학렌즈에 양면 무반사 코팅막 구조를 적용하여 고투과율을 확보할 수 있는 ta-C 및 Y2O3 코팅 박막층을 구비한 하이브리드 적외선 광학렌즈를 제공하는 데 그 목적이 있다.The present invention is to solve the above conventional problems, and to provide a hybrid infrared optical lens having a ta-C and Y2O3 coating thin film layer capable of securing high transmittance by applying a double-sided anti-reflection coating film structure to an infrared optical lens It has its purpose.

또한, 본 발명은 적외선 광학렌즈에 구비되는 무반사 코팅막의 스크래치 방지를 위한 기존의 DLC 박막보다 높은 경도와 밀도를 갖고, 투과성 및 굴절률 등의 광학적 특성이 우수하면서 수소를 포함하지 않은 ta-C 박막층을 적외선 무반사 코팅에 적용함에 있어, Y2O3 등의 접착층을 얇게 증착 후 그 위에 100nm 내지 200nm 두께를 갖는 ta-C 박막층을 형성함으로써 높은 투과율과 내구성을 확보할 수 있는 ta-C 및 Y2O3 코팅 박막층을 구비한 하이브리드 적외선 광학렌즈를 제공하는 데 그 목적이 있다. In addition, the present invention provides a ta-C thin film layer that has higher hardness and density than the existing DLC thin film for scratch prevention of the anti-reflection coating film provided in the infrared optical lens, has excellent optical properties such as transmittance and refractive index, and does not contain hydrogen. In application to infrared anti-reflection coating, after depositing a thin adhesive layer such as Y2O3, a ta-C thin film layer having a thickness of 100 nm to 200 nm is formed thereon, thereby securing high transmittance and durability. Equipped with a ta-C and Y2O3 coating thin film layer Its purpose is to provide a hybrid infrared optical lens.

상기와 같은 목적을 달성하기 위한 본 발명에 따른 ta-C 및 Y2O3 코팅 박막층을 구비한 하이브리드 적외선 광학렌즈는 칼코겐 또는 칼코겐 화합물로 형성된 렌즈 기재부와; 상기 렌즈 기재부의 전면에 형성되는 전면 코팅부;를 구비하고, 상기 전면 코팅부는 상기 렌즈 기재부 상에 형성되는 제1 게르마늄 박막층과, 상기 제1 게르마늄 박막층 상에 형성되는 제1 황화아연 박막층과, 상기 제1 황화아연 박막층 상에 형성되는 제2 게르마늄 박막층과, 상기 제2 게르마늄 박막층 상에 형성되는 제2 황화아연 박막층과, 상기 제2 황화아연 박막층 상에 형성되는 불화이터븀 박막층과, 상기 불화이터븀 박막층 상에 형성되는 산화이트륨 박막층과, 상기 산화이트륨 박막층 상에 형성되는 비정질탄소 박막층을 포함하는 것을 특징으로 한다.A hybrid infrared optical lens having a ta-C and Y2O3 coating thin film layer according to the present invention for achieving the above object includes a lens substrate formed of chalcogen or a chalcogen compound; and a front coating portion formed on the entire surface of the lens substrate portion, wherein the front coating portion includes a first germanium thin film layer formed on the lens substrate portion, and a first zinc sulfide thin film layer formed on the first germanium thin film layer; A second germanium thin film layer formed on the first zinc sulfide thin film layer, a second zinc sulfide thin film layer formed on the second germanium thin film layer, an ytterbium fluoride thin film layer formed on the second zinc sulfide thin film layer, and the fluoride It is characterized by comprising a yttrium oxide thin film layer formed on the ytterbium thin film layer and an amorphous carbon thin film layer formed on the yttrium oxide thin film layer.

본 발명에 따른 ta-C 및 Y2O3 코팅 박막층을 구비한 하이브리드 적외선 광학렌즈의 상기 비정질탄소 박막층은 100nm 내지 200nm의 두께로 형성된 것을 특징으로 한다.The amorphous carbon thin film layer of the hybrid infrared optical lens having ta-C and Y2O3 coating thin film layers according to the present invention is characterized in that it is formed to a thickness of 100 nm to 200 nm.

본 발명에 따른 ta-C 및 Y2O3 코팅 박막층을 구비한 하이브리드 적외선 광학렌즈의 상기 산화이트륨 박막층은 60nm 내지 70nm 두께로 형성된 것을 특징으로 한다.The yttrium oxide thin film layer of the hybrid infrared optical lens having ta-C and Y2O3 coating thin film layers according to the present invention is characterized in that it is formed to a thickness of 60 nm to 70 nm.

본 발명에 따른 ta-C 및 Y2O3 코팅 박막층을 구비한 하이브리드 적외선 광학렌즈의 상기 불화이터븀 박막층과 상기 산화이트륨 박막층 사이에는 제3 황화아연 박막층이 개재된 것을 특징으로 한다.It is characterized in that a third zinc sulfide thin film layer is interposed between the yttrium oxide thin film layer and the yttrium oxide thin film layer of the hybrid infrared optical lens having ta-C and Y2O3 coated thin film layers according to the present invention.

본 발명에 따른 ta-C 및 Y2O3 코팅 박막층을 구비한 하이브리드 적외선 광학렌즈의 상기 제3 황화아연 박막층은 300nm 이상의 두께로 형성된 것을 특징으로 한다.The third zinc sulfide thin film layer of the hybrid infrared optical lens having ta-C and Y2O3 coating thin film layers according to the present invention is characterized in that it is formed to a thickness of 300 nm or more.

본 발명에 따른 ta-C 및 Y2O3 코팅 박막층을 구비한 하이브리드 적외선 광학렌즈의 상기 렌즈 기재부의 후면에 상기 전면 코팅부와 대응되는 후면 코팅부가 더 구비된 것을 특징으로 한다.It is characterized in that a rear surface coating part corresponding to the front surface coating part is further provided on the rear surface of the lens base part of the hybrid infrared optical lens having ta-C and Y2O3 coating thin film layers according to the present invention.

본 발명에 따른 ta-C 및 Y2O3 코팅 박막층을 구비한 하이브리드 적외선 광학렌즈는 양면 ARC를 유지하여 고투과율을 확보하고, 기존의 투과율, 경도, 공정 효율이 좋지 못한 DLC 박막을 대신하여 100nm 내지 200nm 두께를 갖는 ta-C 박막을 적외선 무반사 코팅에 적용함에 있어서, Y2O3 등의 접착층을 얇게 증착 후 그 위에 ta-C 박막을 형성함으로써 높은 투과율 및 내구성을 확보할 수 있는 장점을 가진다.The hybrid infrared optical lens having ta-C and Y2O3 coating thin film layers according to the present invention secures high transmittance by maintaining double-sided ARC, and replaces the existing DLC thin film with poor transmittance, hardness, and process efficiency, and has a thickness of 100 nm to 200 nm In applying the ta-C thin film having an anti-reflection coating to infrared rays, it has the advantage of securing high transmittance and durability by depositing a thin adhesive layer such as Y2O3 and then forming a ta-C thin film thereon.

도 1은 본 발명의 일 실시 예에 따른 ta-C 및 Y2O3 코팅 박막층을 구비한 하이브리드 적외선 광학렌즈의 단면도.
도 2는 본 발명의 다른 실시 예에 따른 ta-C 및 Y2O3 코팅 박막층을 구비한 하이브리드 적외선 광학렌즈의 단면도.
도 3은 본 발명의 또 다른 실시 예에 따른 ta-C 및 Y2O3 코팅 박막층을 구비한 하이브리드 적외선 광학렌즈의 단면도.
도 4와 5는 칼코겐으로 형성된 본 발명의 일 실시 예에 따른 ta-C 및 Y2O3 코팅 박막층을 구비한 하이브리드 적외선 광학렌즈와 실리콘으로 형성된 적외선 광학렌즈의 파장별 투과도 특성을 나타낸 그래프.
1 is a cross-sectional view of a hybrid infrared optical lens having ta-C and Y2O3 coating thin film layers according to an embodiment of the present invention.
2 is a cross-sectional view of a hybrid infrared optical lens having ta-C and Y2O3 coating thin film layers according to another embodiment of the present invention.
3 is a cross-sectional view of a hybrid infrared optical lens having ta-C and Y2O3 coating thin film layers according to another embodiment of the present invention.
4 and 5 are graphs showing transmittance characteristics by wavelength of a hybrid infrared optical lens having a ta-C and Y2O3 coating thin film layer according to an embodiment of the present invention formed of chalcogen and an infrared optical lens formed of silicon.

이하, 첨부된 도면을 참조하면서 본 발명의 바람직한 실시 예에 따른 ta-C 및 Y2O3 코팅 박막층을 구비한 하이브리드 적외선 광학렌즈에 대하여 상세하게 설명한다. Hereinafter, a hybrid infrared optical lens having ta-C and Y2O3 coating thin film layers according to a preferred embodiment of the present invention will be described in detail with reference to the accompanying drawings.

도 1에는 본 발명의 제1 실시 예에 따른 ta-C 및 Y2O3 코팅 박막층을 구비한 하이브리드 적외선 광학렌즈가 도시되어 있다. 도 1을 참조하면, 본 발명의 제1 실시 예에 따른 ta-C 및 Y2O3 코팅 박막층을 구비한 하이브리드 적외선 광학렌즈는 렌즈 기재부(100)와, 전면 코팅부(200)를 구비한다.1 shows a hybrid infrared optical lens having a ta-C and Y2O3 coating thin film layer according to a first embodiment of the present invention. Referring to FIG. 1 , a hybrid infrared optical lens having a ta-C and Y2O3 coating thin film layer according to a first embodiment of the present invention includes a lens base unit 100 and a front coating unit 200.

상기 렌즈 기재부(100)는 적외선 영역에 사용할 수 있도록 중적외선과 원적외선에서 효과적으로 사용할 수 있는 재질을 적용하는 것이 바람직하며, 그 재질은 높은 굴절률과, 낮은 열분산 특성, 낮은 분산과 흡수, AR코팅의 용이성, 높은 내구성을 만족하는 것을 적용하는 것이 바람직하다.It is preferable to apply a material that can be effectively used in mid-infrared and far-infrared rays so that the lens base unit 100 can be used in the infrared region, and the material has a high refractive index, low heat dissipation characteristics, low dispersion and absorption, and AR coating. It is preferable to apply one that satisfies the ease of use and high durability.

상기 렌즈 기재부(100)의 일 예로, 칼코겐(Chalcogen) 또는 칼코겐 화합물(황(S) 화합물, 셀레늄(Se) 화합물, 텔루르(Te) 화합물 등)로 형성하는 것이 바람하다. 이와 다르게 상기 렌즈 기재부(100)는 게르마늄(Ge), 황화아연(ZnS), 셀렌화아연(ZnSe), 불화마그네슘(MgF2), 사파이어(Sapphire)로 형성할 수도 있으며, 이외 에도 플루오르화칼슘(calcium fluoride), 플루오르화바륨(barium fluoride), 플루오르화나트륨(sodium fluoride), lithium fluoride, potassium bromide 등의 다른 물질을 적용할 수도 있다. As an example of the lens base unit 100, it is preferable to form a chalcogen or a chalcogen compound (sulfur (S) compound, selenium (Se) compound, tellurium (Te) compound, etc.). Alternatively, the lens base unit 100 may be formed of germanium (Ge), zinc sulfide (ZnS), zinc selenide (ZnSe), magnesium fluoride (MgF2), or sapphire, in addition to calcium fluoride ( Other materials such as calcium fluoride, barium fluoride, sodium fluoride, lithium fluoride, and potassium bromide can also be applied.

한편, 상기 전면 코팅부(200)는 렌즈 기재부(100) 전면에 게르마늄(Ge)으로 형성되는 제1 게르마늄 박막층(210)과, 제1 게르마늄 박막층(210) 상에 황화아연(ZnS)으로 형성되는 제1 황화아연 박막층(220)과, 제1 황화아연 박막층(220) 상에 게르마늄으로 형성되는 제2 게르마늄 박막층(230)과, 제2 게르마늄 박막층(230) 상에 황화아연으로 형성되는 제2 황화아연 박막층(240)과, 제2 황화아연 박막층(240) 상에 불화이터븀(YbF3)으로 형성되는 불화이터븀 박막층(250)과, 불화이터븀 박막층(250) 상에 산화이트륨으로 형성되는 산화이트륨 박막층(260)과, 산화이트륨 박막층(260) 상에 형성되는 비정질탄소 박막층(270)을 포함하여 구성된다.On the other hand, the front coating part 200 is formed of a first germanium thin film layer 210 formed of germanium (Ge) on the front surface of the lens substrate part 100 and zinc sulfide (ZnS) on the first germanium thin film layer 210. A first zinc sulfide thin film layer 220, a second germanium thin film layer 230 formed of germanium on the first zinc sulfide thin film layer 220, and a second germanium thin film layer 230 formed of zinc sulfide on the second germanium thin film layer 230. The zinc sulfide thin film layer 240, the ytterbium fluoride thin film layer 250 formed of ytterbium fluoride (YbF 3 ) on the second zinc sulfide thin film layer 240, and the yttrium oxide formed on the ytterbium fluoride thin film layer 250. It is configured to include a yttrium oxide thin film layer 260 and an amorphous carbon thin film layer 270 formed on the yttrium oxide thin film layer 260.

상기 비정질탄소 박막층(270)은 큰 경도를 유지할 수 있도록 100nm 내지 200nm의 두께로 형성되는 것이 바람직하다.The amorphous carbon thin film layer 270 is preferably formed to a thickness of 100 nm to 200 nm so as to maintain high hardness.

그리고, 상기 산화이트륨 박막층(260)은 비정질탄소 박막층(270)과의 부착력을 높이면서 흡수율은 낮출 수 있도록 산화이트륨(Y2O3)을 적용하며, 60nm 내지 70nm 두께로 형성하는 것이 바람직하다.In addition, the yttrium oxide thin film layer 260 is formed with a thickness of 60 nm to 70 nm by applying yttrium oxide (Y 2 O 3 ) so as to increase adhesion with the amorphous carbon thin film layer 270 and lower absorption rate.

산화이트륨(yttrium oxide)은 근자외선 영역에서부터 적외선 영역까지 광학 코팅 용도로 사용되는 중간 굴절률의 저흡수성 물질로서, 전자빔이나 스퍼터링으로 밀도가 높은 박막층을 증착할 수 있다. 산화이트륨은 실리콘 디옥사이드층과 함께 결합하여 높은 굴절률 대비 구조를 형성하는데 사용될 수 있고, TiO2(Titanium dioxide)와 Ta2O5(Tantalum pentoxide)와 같은 더 높은 굴절률의 물질과 결합하여 사용될 수도 있다.Yttrium oxide is a low-absorption material with a medium refractive index used for optical coatings from the near-ultraviolet region to the infrared region, and a high-density thin film layer can be deposited by electron beam or sputtering. Yttrium oxide can be used to form a high refractive index contrast structure in combination with a silicon dioxide layer, and can also be used in combination with higher refractive index materials such as TiO 2 (titanium dioxide) and Ta 2 O 5 (tantalum pentoxide).

상기 산화이트륨 박막층(260)은 300nm에서 최소 11um 범위에 걸쳐서 비흡수성이고, 글라스(glass), 게르마늄(germanium), 실리콘(silicon), 황화아연(zinc sulfide), 셀렌화아연(zinc selenide) 및 알루미늄(aluminum), 은(silver)과 같은 소재에 대한 고착력이 탁월한 성질을 가진다. 또한, 얇은 산화이트륨 박막층(260)은 비산화물 기판에서의 다층 코팅용인 고착제로서 기능을 가진다. The yttrium oxide thin film layer 260 is non-absorbent over a range of 300 nm to at least 11 um, and is made of glass, germanium, silicon, zinc sulfide, zinc selenide and aluminum It has excellent adhesion to materials such as aluminum and silver. In addition, the thin yttrium oxide thin film layer 260 has a function as an adhesive for multi-layer coating on non-oxide substrates.

도 2에는 본 발명의 제2 실시 예에 따른 ta-C 및 Y2O3 코팅 박막층을 구비한 하이브리드 적외선 광학렌즈가 도시되어 있다. 도 2를 참조하면, 본 발명의 제2 실시 예에 따른 ta-C 및 Y2O3 코팅 박막층을 구비한 하이브리드 적외선 광학렌즈는 렌즈 기재부(100)와, 전면 코팅부(200)를 구비한다.2 shows a hybrid infrared optical lens having ta-C and Y2O3 coating thin film layers according to a second embodiment of the present invention. Referring to FIG. 2 , the hybrid infrared optical lens having the ta-C and Y2O3 coating thin film layers according to the second embodiment of the present invention includes a lens base unit 100 and a front coating unit 200.

본 발명의 제2 실시 예에 따른 ta-C 및 Y2O3 코팅 박막층을 구비한 하이브리드 적외선 광학렌즈의 렌즈 기재부(100)는 도 1을 참조하여 설명한 본 발명의 제1 실시 예에 따른 ta-C 및 Y2O3 코팅 박막층을 구비한 하이브리드 적외선 광학렌즈와 동일한 것을 적용하였다.The lens base unit 100 of the hybrid infrared optical lens having ta-C and the Y2O3 coating thin film layer according to the second embodiment of the present invention is the ta-C and the ta-C according to the first embodiment of the present invention described with reference to FIG. The same hybrid infrared optical lens having a Y2O3 coating thin layer was applied.

전면 코팅부(200)는 상기 전면 코팅부(200)는 렌즈 기재부(100) 전면에 게르마늄(Ge)으로 형성되는 제1 게르마늄 박막층(210)과, 제1 게르마늄 박막층(210) 상에 황화아연(ZnS)으로 형성되는 제1 황화아연 박막층(220)과, 제1 황화아연 박막층(220) 상에 게르마늄으로 형성되는 제2 게르마늄 박막층(230)과, 제2 게르마늄 박막층(230) 상에 황화아연으로 형성되는 제2 황화아연 박막층(240)과, 제2 황화아연 박막층(240) 상에 불화이터븀(YbF3)으로 형성되는 불화이터븀 박막층(250)과, 불화이터븀 박막층(250) 상에 산화이트륨으로 형성되는 산화이트륨 박막층(260)과, 산화이트륨 박막층(260) 상에 형성되는 비정질탄소 박막층(270)을 포함하여 구성되며, 본 발명의 제1 실시 예에 따른 ta-C 및 Y2O3 코팅 박막층을 구비한 하이브리드 적외선 광학렌즈와 다르게 불화이터븀 박막층(250)과 산화이트륨 박막층(260) 사이에 제3 황화아연 박막층(280)이 더 개재된다.The front coating unit 200 includes a first germanium thin film layer 210 formed of germanium (Ge) on the front surface of the lens base unit 100, and zinc sulfide on the first germanium thin film layer 210. A first zinc sulfide thin film layer 220 formed of (ZnS), a second germanium thin film layer 230 formed of germanium on the first zinc sulfide thin film layer 220, and zinc sulfide on the second germanium thin film layer 230 The second zinc sulfide thin film layer 240 formed of, the ytterbium fluoride thin film layer 250 formed of ytterbium fluoride (YbF 3 ) on the second zinc sulfide thin film layer 240, and the ytterbium fluoride thin film layer 250 formed of It is composed of a yttrium oxide thin film layer 260 formed of yttrium oxide and an amorphous carbon thin film layer 270 formed on the yttrium oxide thin film layer 260, ta-C and Y2O3 according to the first embodiment of the present invention. Unlike the hybrid infrared optical lens having a coating thin film layer, a third zinc sulfide thin film layer 280 is further interposed between the ytterbium fluoride thin film layer 250 and the yttrium oxide thin film layer 260.

상기 제3 황화아연 박막층(280)은 산화이트륨 박막층(260)과 비정질탄소 박막층(270)의 스트레스를 최소화하기 위해 300nm 이상의 두께로 형성하는 것이 바람직하다.The third zinc sulfide thin film layer 280 is preferably formed to a thickness of 300 nm or more to minimize stress between the yttrium oxide thin film layer 260 and the amorphous carbon thin film layer 270.

도 3에는 본 발명의 제3 실시 예에 따른 ta-C 및 Y2O3 코팅 박막층을 구비한 하이브리드 적외선 광학렌즈가 도시되어 있다. 도 3을 참조하면, 본 발명의 제3 실시 예에 따른 ta-C 및 Y2O3 코팅 박막층을 구비한 하이브리드 적외선 광학렌즈는 렌즈 기재부(100)와, 전면 코팅부(200)와, 후면 코팅부(300)를 구비한다.3 shows a hybrid infrared optical lens having ta-C and Y2O3 coating thin film layers according to a third embodiment of the present invention. Referring to FIG. 3, the hybrid infrared optical lens having ta-C and Y2O3 coating thin film layers according to the third embodiment of the present invention includes a lens base unit 100, a front coating unit 200, and a rear coating unit ( 300) is provided.

본 발명의 제3 실시 예에 따른 ta-C 및 Y2O3 코팅 박막층을 구비한 하이브리드 적외선 광학렌즈의 렌즈 기재부(100)는 도 1을 참조하여 설명한 본 발명의 제1 실시 예에 따른 ta-C 및 Y2O3 코팅 박막층을 구비한 하이브리드 적외선 광학렌즈와 동일한 것을 적용하였다.The lens base unit 100 of the hybrid infrared optical lens having ta-C and the Y2O3 coating thin film layer according to the third embodiment of the present invention is the ta-C and the ta-C according to the first embodiment of the present invention described with reference to FIG. The same hybrid infrared optical lens having a Y2O3 coating thin layer was applied.

전면 코팅부(200)는 렌즈 기재부(100) 전면에 게르마늄(Ge)으로 형성되는 제1 게르마늄 박막층(210)과, 제1 게르마늄 박막층(210) 상에 황화아연(ZnS)으로 형성되는 제1 황화아연 박막층(220)과, 제1 황화아연 박막층(220) 상에 게르마늄으로 형성되는 제2 게르마늄 박막층(230)과, 제2 게르마늄 박막층(230) 상에 황화아연으로 형성되는 제2 황화아연 박막층(240)과, 제2 황화아연 박막층(240) 상에 불화이터븀(YbF3)으로 형성되는 불화이터븀 박막층(250)을 구비한다.The front coating unit 200 includes a first germanium thin film layer 210 formed of germanium (Ge) on the front surface of the lens base unit 100 and a first germanium thin film layer 210 formed of zinc sulfide (ZnS) on the first germanium thin film layer 210. A zinc sulfide thin film layer 220, a second germanium thin film layer 230 formed of germanium on the first zinc sulfide thin film layer 220, and a second zinc sulfide thin film layer formed of zinc sulfide on the second germanium thin film layer 230 240, and a ytterbium fluoride thin film layer 250 formed of ytterbium fluoride (YbF 3 ) on the second zinc sulfide thin film layer 240.

본 발명의 제3 실시 예에 따른 ta-C 및 Y2O3 코팅 박막층을 구비한 하이브리드 적외선 광학렌즈는 렌즈 기재부(100)의 전면 뿐만 아니라, 렌즈 기재부(100)의 후면에 전면 코팅부(200)와 대응되는 후면 코팅부(300)가 더 구비된 구조를 가진다.The hybrid infrared optical lens having the ta-C and Y2O3 coating thin film layers according to the third embodiment of the present invention has a front surface coating unit 200 on the rear surface of the lens substrate unit 100 as well as the front surface of the lens substrate unit 100. It has a structure in which the back coating portion 300 corresponding to is further provided.

상기 후면 코팅부(300)는 렌즈 기재부(100) 후면에 게르마늄(Ge)으로 형성되는 제1 게르마늄 박막층과, 제1 게르마늄 박막층 저면에 황화아연(ZnS)으로 형성되는 제1 황화아연 박막층과, 제1 황화아연 박막층 저면에 게르마늄으로 형성되는 제2 게르마늄 박막층과, 제2 게르마늄 박막층 저면에 황화아연으로 형성되는 제2 황화아연 박막층과, 제2 황화아연 박막층 저면에 불화이터븀으로 형성되는 불화이터븀 박막층을 포함하여 구성될 수 있다.The back coating part 300 includes a first germanium thin film layer formed of germanium (Ge) on the rear surface of the lens substrate part 100, and a first zinc sulfide thin film layer formed of zinc sulfide (ZnS) on the bottom surface of the first germanium thin film layer, A second germanium thin film layer formed of germanium on the bottom of the first zinc sulfide thin film layer, a second zinc sulfide thin film layer formed of zinc sulfide on the bottom of the second germanium thin film layer, and a fluoride formed of ytterbium fluoride on the bottom of the second zinc sulfide thin film layer. It may include a bium thin film layer.

상기 후면 코팅부(300)는 렌즈 기재부(100)를 기준으로 제1 게르마늄 박막층(210), 제1 황화아연 박막층(220), 제2 게르마늄 박막층(230), 제2 황화아연 박막층(240), 불화이터븀 박막층(250)으로 구성된 전면 코팅부(200)와 대칭되는 구조로 형성될 수 있다.The back coating part 300 includes a first germanium thin film layer 210, a first zinc sulfide thin film layer 220, a second germanium thin film layer 230, and a second zinc sulfide thin film layer 240 based on the lens base part 100. , It may be formed in a structure symmetrical to the front coating portion 200 composed of the ytterbium fluoride thin film layer 250.

도면에 도시되어 있지 않지만, 상기 후면 코팅부(300)는 필요에 따라 불화이터븀 박막층(250) 저면에 도 1과 같은 산화이트륨으로 형성되는 산화이트륨 박막층(260)과, 산화이트륨 박막층(260) 저면에 형성되는 비정질탄소 박막층(270)이 순차적으로 더 구비될 수 있다.Although not shown in the drawings, the back coating part 300 includes a yttrium oxide thin film layer 260 formed of yttrium oxide as shown in FIG. An amorphous carbon thin film layer 270 formed on the bottom surface may be sequentially further provided.

한편, 도 4에는 렌즈기재부를 2mm 두께의 Si로 형성하고 그 표면에 유전체무반사코팅막이나 DLC 박막이 없는 비교렌즈샘플#1과, 비교렌즈샘플#1의 표면에 유전체무반사코팅막을 형성한 비교렌즈샘플#2와, 비교렌즈샘플#2의 표면에 서로 다른 조성 및 두께의 DLC 박막을 형성한 비교렌즈샘플#3 내지 비교렌즈샘플#5 각각에 대한 적외선 파장대역 투과도 그래프가 도시되어 있다.On the other hand, in FIG. 4, a comparative lens sample #1 in which the lens substrate is formed of 2 mm thick Si and has no dielectric anti-reflection coating film or DLC thin film on the surface, and a comparative lens sample in which a dielectric anti-reflection coating film is formed on the surface of comparative lens sample #1 Infrared wavelength band transmittance graphs for each of comparative lens sample #3 to comparative lens sample #5 in which DLC thin films having different compositions and thicknesses are formed on the surfaces of #2 and comparative lens sample #2 are shown.

그리고, 도 5에는 렌즈기재부가 2mm 두께의 칼코겐으로 형성되고 그 표면에 유전체무반사코팅막이나 DLC 박막이 없는 기준렌즈샘플#1과, 기준렌즈샘플#1의 표면에 유전체무반사코팅막을 형성한 기준렌즈샘플#2와, 기준렌즈샘플#2의 표면에 특정 조성비 및 두께의 DLC 박막을 형성한 기준렌즈샘플#3 각각에 대한 적외선 파장대역 투과도 그래프가 도시되어 있다.In FIG. 5, reference lens sample # 1 in which the lens base is formed of 2 mm thick chalcogen and has no dielectric anti-reflection coating film or DLC thin film on the surface, and a reference lens in which the dielectric anti-reflection coating film is formed on the surface of reference lens sample # 1 Infrared wavelength band transmittance graphs are shown for each of sample #2 and reference lens sample #3 in which a DLC thin film having a specific composition ratio and thickness is formed on the surface of sample #2.

도 4를 참조하면, 비교렌즈샘플#1의 경우에는 8um~12um 구간에서 전체적으로 투과도가 약 50%에서 약 35%로 감소하는 패턴을 보였고, 특히 9um에서는 약 25%까지 급격하게 투과도가 감소하는 현상을 보였다.Referring to FIG. 4, in the case of comparative lens sample #1, the overall transmittance decreased from about 50% to about 35% in the range of 8um to 12um, and in particular, the transmittance decreased rapidly to about 25% at 9um. showed

그리고, 비교렌즈샘플#2 내지 비교렌즈샘플#4의 경우 비교렌즈샘플#2 내지 비교렌즈샘플#4 모두 동일한 패턴을 나타냈다. 더욱 상세하게는 비교렌즈샘플#2 내지 비교렌즈샘플#4는 8um~12um 구간에서 투과도가 약 85%에서 약 70%로 전제척으로 감소하는 패턴을 보였으며, 특히 9um에서 투과도가 45%~55%까지 현저하게 감소하는 패턴을 보였다.And, in the case of comparative lens sample #2 to comparative lens sample #4, all of comparative lens sample #2 to comparative lens sample #4 showed the same pattern. More specifically, Comparative Lens Samples #2 to Comparative Lens Samples #4 showed a pattern in which the transmittance decreased completely from about 85% to about 70% in the range of 8um to 12um, and in particular, the transmittance at 9um was 45% to 55%. % showed a marked decrease.

한편, 기준렌즈샘플#1은 4um~16um 구간에서 투과도가 약 66.12%로 거의 동일하게 유지되는 것으로 나타났다.On the other hand, the reference lens sample #1 was found to maintain almost the same transmittance of about 66.12% in the range of 4um to 16um.

그리고, 기준렌즈샘플#2는 4um~8um 구간에서 약 50%~ 약 96%까지 투과도가 급격하게 상승하고, 8um~12um 구간까지 평균 96.87%의 투과도를 유지하다 16um에서는 투과도가 약 60%까지 떨어지는 것으로 나타났다. In addition, the transmittance of the reference lens sample #2 rapidly rises from about 50% to about 96% in the range of 4um to 8um, maintains an average transmittance of 96.87% in the range of 8um to 12um, and then the transmittance drops to about 60% in the range of 16um. appeared to be

그리고, 기준렌즈샘플#3은 4um~8um 구간에서 약 17%~ 약 96%까지 투과도가 급격하게 상승하고, 8um~12um 구간까지 평균 94.5%의 투과도를 유지하다 16um에서는 투과도가 약 50%까지 떨어지는 것으로 나타났다. In addition, the transmittance of the reference lens sample #3 rapidly rises from about 17% to about 96% in the range of 4um to 8um, maintains an average transmittance of 94.5% in the range of 8um to 12um, and then the transmittance drops to about 50% in the range of 16um. appeared to be

상술한 바와 같이 Si로 렌즈기재부를 형성한 적외선렌즈는 대체로 8um~12um 구간에서 투과도가 감소하는 특성, 특이 9um에서 투과도가 현저하게 감소하는 특성이 나타났고, 칼코겐으로 렌즈기재부를 형성한 적외선렌즈는 대체로 8um~12um 구간에서 그 외의 구간보다 투과도가 높고, 투과도가 90%이상으로 유지되는 특성이 나타났다. As described above, the infrared lens in which the lens base was formed of Si showed a characteristic of decreasing transmittance in the range of 8um to 12um in general, and a marked decrease in transmittance in the specific 9um range, and an infrared lens in which the lens base was formed of chalcogen. In general, in the 8um ~ 12um section, the transmittance was higher than the other sections, and the transmittance was maintained at 90% or more.

이러한 결과는 Si로 렌즈기재부를 형성한 적외선렌즈보다 칼코겐으로 렌즈기재부를 형성한 적외선렌즈가 8um~12um 구간에서 적외선 투과도가 상대적으로 높으므로 8um~12um 구간에 적외선렌즈를 사용하고자 하는 경우 렌즈기재부를 Si보다 칼코겐으로 형성하는 것이 바람직하다.These results show that the infrared lens having the lens base formed with chalcogen has a relatively higher infrared transmittance in the 8um to 12um range than the infrared lens with the lens base formed with Si. It is preferable to form the moiety with chalcogen rather than Si.

이상에서 설명한 본 발명에 따른 ta-C 및 Y2O3 코팅 박막층을 구비한 하이브리드 적외선 광학렌즈는 첨부된 도면을 참조로 설명하였으나 이는 예시적인 것에 불과하며, 당해 기술분야에서 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시 예가 가능하다는 점을 이해할 것이다. 따라서, 본 발명의 진정한 기술적 보호의 범위는 첨부된 청구범위의 기술적 사상에 의해서만 정해져야 할 것이다.The hybrid infrared optical lens having the ta-C and Y2O3 coating thin film layers according to the present invention described above has been described with reference to the accompanying drawings, but this is only exemplary, and those skilled in the art can learn from this It will be appreciated that various modifications and equivalent other embodiments are possible. Therefore, the scope of true technical protection of the present invention should be determined only by the technical spirit of the appended claims.

100 : 렌즈 기재부
200 : 전면 코팅부
210 : 제1 게르마늄 박막층
220 : 제1 황화아연 박막층
230 : 제2 게르마늄 박막층
240 : 제2 황화아연 박막층
250 : 불화이터븀 박막층
260 : 산화이트륨 박막층
270 : 비정질탄소 박막층
280 : 제3 황화아연 박막층
300 : 후면 코팅부
100: lens substrate
200: front coating
210: first germanium thin film layer
220: first zinc sulfide thin film layer
230: second germanium thin film layer
240: second zinc sulfide thin film layer
250: fluoride ytterbium thin film layer
260: yttrium oxide thin film layer
270: amorphous carbon thin film layer
280: third zinc sulfide thin film layer
300: back coating

Claims (6)

칼코겐 또는 칼코겐 화합물로 형성된 렌즈 기재부와;
상기 렌즈 기재부의 전면에 형성되는 전면 코팅부;를 구비하고,
상기 전면 코팅부는
상기 렌즈 기재부 상에 형성되는 제1 게르마늄 박막층과,
상기 제1 게르마늄 박막층 상에 형성되는 제1 황화아연 박막층과,
상기 제1 황화아연 박막층 상에 형성되는 제2 게르마늄 박막층과,
상기 제2 게르마늄 박막층 상에 형성되는 제2 황화아연 박막층과,
상기 제2 황화아연 박막층 상에 형성되는 불화이터븀 박막층과,
상기 불화이터븀 박막층 상에 형성되는 산화이트륨 박막층과,
상기 산화이트륨 박막층 상에 형성되는 비정질탄소 박막층을 포함하고,
8um~12um 파장대역의 투과도가 90% 이상인 것을 특징으로 하는 ta-C 및 Y2O3 코팅 박막층을 구비한 하이브리드 적외선 광학렌즈.
a lens substrate formed of chalcogen or a chalcogen compound;
And a front coating portion formed on the front surface of the lens substrate portion,
The front coating part
A first germanium thin film layer formed on the lens substrate;
A first zinc sulfide thin film layer formed on the first germanium thin film layer;
A second germanium thin film layer formed on the first zinc sulfide thin film layer;
A second zinc sulfide thin film layer formed on the second germanium thin film layer;
An ytterbium fluoride thin film layer formed on the second zinc sulfide thin film layer;
A yttrium oxide thin film layer formed on the ytterbium fluoride thin film layer;
Including an amorphous carbon thin film layer formed on the yttrium oxide thin film layer,
A hybrid infrared optical lens having a ta-C and Y2O3 coating thin film layer, characterized in that the transmittance in the 8um ~ 12um wavelength band is 90% or more.
제1항에 있어서,
상기 비정질탄소 박막층은 100nm 내지 200nm의 두께로 형성된 것을 특징으로 하는 ta-C 및 Y2O3 코팅 박막층을 구비한 하이브리드 적외선 광학렌즈.
According to claim 1,
The hybrid infrared optical lens having a ta-C and Y2O3 coating thin film layer, characterized in that the amorphous carbon thin film layer is formed to a thickness of 100 nm to 200 nm.
제1항에 있어서,
상기 산화이트륨 박막층은 60nm 내지 70nm 두께로 형성된 것을 특징으로 하는 ta-C 및 Y2O3 코팅 박막층을 구비한 하이브리드 적외선 광학렌즈.
According to claim 1,
The yttrium oxide thin film layer is a hybrid infrared optical lens having a ta-C and Y2O3 coating thin film layer, characterized in that formed to a thickness of 60 nm to 70 nm.
제1항에 있어서,
상기 불화이터븀 박막층과 상기 산화이트륨 박막층 사이에는 제3 황화아연 박막층이 개재된 것을 특징으로 하는 ta-C 및 Y2O3 코팅 박막층을 구비한 하이브리드 적외선 광학렌즈.
According to claim 1,
A hybrid infrared optical lens having a ta-C and Y2O3 coating thin film layer, characterized in that a third zinc sulfide thin film layer is interposed between the ytterbium fluoride thin film layer and the yttrium oxide thin film layer.
제4항에 있어서,
상기 제3 황화아연 박막층은 300nm 이상의 두께로 형성된 것을 특징으로 하는 ta-C 및 Y2O3 코팅 박막층을 구비한 하이브리드 적외선 광학렌즈.
According to claim 4,
The third zinc sulfide thin film layer is a hybrid infrared optical lens having a ta-C and Y2O3 coating thin film layer, characterized in that formed to a thickness of 300nm or more.
제1항 내지 제5항 중 어느 한 항에 있어서,
상기 렌즈 기재부의 후면에 상기 전면 코팅부와 대응되는 후면 코팅부가 더 구비된 것을 특징으로 하는 ta-C 및 Y2O3 코팅 박막층을 구비한 하이브리드 적외선 광학렌즈.

According to any one of claims 1 to 5,
A hybrid infrared optical lens having a ta-C and Y2O3 coating thin film layer, characterized in that a rear surface coating portion corresponding to the front surface coating portion is further provided on the rear surface of the lens substrate portion.

KR1020210026578A 2021-02-26 2021-02-26 Infrared optical lens equipped with ta-C and yttrium oxide thin film KR102500286B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020210026578A KR102500286B1 (en) 2021-02-26 2021-02-26 Infrared optical lens equipped with ta-C and yttrium oxide thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020210026578A KR102500286B1 (en) 2021-02-26 2021-02-26 Infrared optical lens equipped with ta-C and yttrium oxide thin film

Publications (2)

Publication Number Publication Date
KR20220122225A KR20220122225A (en) 2022-09-02
KR102500286B1 true KR102500286B1 (en) 2023-02-15

Family

ID=83280905

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210026578A KR102500286B1 (en) 2021-02-26 2021-02-26 Infrared optical lens equipped with ta-C and yttrium oxide thin film

Country Status (1)

Country Link
KR (1) KR102500286B1 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100374205B1 (en) 2000-01-03 2003-03-04 한국과학기술원 Method of fabricating a refractive silicon microlens
KR100955975B1 (en) 2006-01-30 2010-05-04 스미토모 덴키 고교 가부시키가이샤 Infrared lens, infrared camera and night vision
KR101494439B1 (en) 2013-09-23 2015-02-24 한국세라믹기술원 Infrared lens and method of manufacturing the same
KR20190010222A (en) * 2017-07-21 2019-01-30 한국광기술원 Infrared optical lens equipped with ytterbium fluoride thin film layer
KR102342322B1 (en) * 2017-07-21 2021-12-23 한국광기술원 Infrared optical lens equipped with ta-C and yttrium oxide thin film
KR20200071848A (en) * 2018-12-04 2020-06-22 한국세라믹기술원 ZnS LENS FOR INFRARED SENSOR HAVING HIGH TRANSMITTANCE AT INTRARED REGION

Also Published As

Publication number Publication date
KR20220122225A (en) 2022-09-02

Similar Documents

Publication Publication Date Title
KR102342322B1 (en) Infrared optical lens equipped with ta-C and yttrium oxide thin film
JP6490810B2 (en) Temperature and corrosion resistant surface reflectors
CA2090109C (en) Abrasion wear resistant coated substrate product
US5110637A (en) Amorphous oxide film and article having such film thereon
US5399435A (en) Amorphous oxide film and article having such film thereon
US5190807A (en) Abrasion wear resistant polymeric substrate product
JP4519136B2 (en) Corrosion resistant low emissivity coating
JP7280198B2 (en) Extension of Reflection Bandwidth of Silver Coated Laminate for High Reflector
JP3739815B2 (en) Highly reflective silver mirror
PL210014B1 (en) First surface mirror with dlc coating
Pawlewicz et al. Recent developments in reactively sputtered optical thin films
CN107422402B (en) Scratch-resistant transparent film and preparation method thereof
KR102500286B1 (en) Infrared optical lens equipped with ta-C and yttrium oxide thin film
US5688608A (en) High refractive-index IR transparent window with hard, durable and antireflective coating
US8394502B2 (en) Highly durable first surface silver based optical coatings and method of making the same
JP2023182732A (en) Optical coating having nano-laminate for improved durability
JPH07104102A (en) Water repellant reflection preventive film for glass-made optical parts and production thereof
JP5665751B2 (en) Hafnium oxide-coating
WO1997008357A1 (en) Anti-reflective coating
JP3028576B2 (en) Heat shielding glass
JP2518116B2 (en) Method for manufacturing an optical body with excellent durability
JP2687614B2 (en) Method for manufacturing an optical body with excellent durability
JPH0682163B2 (en) Optical body with excellent durability
JPH03218821A (en) Heat ray reflective glass
US20190064398A1 (en) Durable silver-based mirror coating employing nickel oxide

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right