KR102496312B1 - Heat loss monitoring method for double-insulated heat pipe using polarization amendment which follows defect position - Google Patents

Heat loss monitoring method for double-insulated heat pipe using polarization amendment which follows defect position Download PDF

Info

Publication number
KR102496312B1
KR102496312B1 KR1020220086754A KR20220086754A KR102496312B1 KR 102496312 B1 KR102496312 B1 KR 102496312B1 KR 1020220086754 A KR1020220086754 A KR 1020220086754A KR 20220086754 A KR20220086754 A KR 20220086754A KR 102496312 B1 KR102496312 B1 KR 102496312B1
Authority
KR
South Korea
Prior art keywords
voltage
defect location
vip
steel pipe
defect position
Prior art date
Application number
KR1020220086754A
Other languages
Korean (ko)
Inventor
박태현
Original Assignee
하우솔루션 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 하우솔루션 주식회사 filed Critical 하우솔루션 주식회사
Priority to KR1020220086754A priority Critical patent/KR102496312B1/en
Application granted granted Critical
Publication of KR102496312B1 publication Critical patent/KR102496312B1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/04Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point
    • G01M3/16Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using electric detection means
    • G01M3/18Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using electric detection means for pipes, cables or tubes; for pipe joints or seals; for valves; for welds; for containers, e.g. radiators
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/10Measuring sum, difference or ratio
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/165Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values
    • G01R19/16528Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values using digital techniques or performing arithmetic operations

Abstract

The present invention relates to a heat loss monitoring method for a double-insulated heat pipe. The double-insulated heat pipe includes: a steel pipe which a thermal fluid flows inside; an external pipe formed of a synthetic resin material and accommodating the steel pipe on the inner side; a heat insulating material filled between the steel pipe and the external pipe; and a sensor line and a return line embedded between the steel pipe and the external pipe, wherein the end of the sensor line and the end of the return line are connected to each other as the sensor line and the return line are extended in a longitudinal direction. The heat loss monitoring method for a double-insulated heat pipe includes: a step of applying a defect position measurement voltage (Vm) to the sensor line; a step of measuring a defect position voltage (VIp) between the steel pipe and the return line based on the voltage in the return line as a reference voltage; a step of separating the defect position measurement voltage (Vm) applied to the sensor line and applying the defective position voltage (VIp) to a space between the sensor line and the steel pipe; a step of calculating a polarization influence voltage (Vp) based on the difference from the defect position voltage (VIp) by measuring the voltage (Vpp) between the steel pipe and the return line; a step of calculating a corrected defect position voltage (VIp') by adding the polarization influence voltage (Vp) to the defect position voltage (VIp); and a step of calculating the defect position based on a ratio (VIp'/Vm) of the corrected defect position voltage (VIp') in comparison with the defect position measurement voltage (Vm). Accordingly, the heat loss monitoring method for a double-insulated heat pipe can improve accuracy of a calculated position by applying not only the polarization influence but also the influence of the applied voltage on the calculation of the defect position.

Description

결함위치 추종 분극보정에 의한 이중보온 열수송관용 열손실 감시방법{HEAT LOSS MONITORING METHOD FOR DOUBLE-INSULATED HEAT PIPE USING POLARIZATION AMENDMENT WHICH FOLLOWS DEFECT POSITION}HEAT LOSS MONITORING METHOD FOR DOUBLE-INSULATED HEAT PIPE USING POLARIZATION AMENDMENT WHICH FOLLOWS DEFECT POSITION}

본 발명은 주로 지역냉난방용으로 적용되는 열수송관, 특히 열수송 강관에 보온재와 합성수지재 외관으로 마감된 이중보온 열수송관에 대한 열손실 감시방법에 관한 것이다.The present invention relates to a heat loss monitoring method for a heat transport pipe mainly used for district cooling and heating, particularly a double insulation heat transport pipe finished with an insulating material and a synthetic resin exterior to the heat transport steel pipe.

종래 열수송관의 열손실 감시방법에 의하면, 도 1에 도시된 바와 같이 이중보온 열수송관(10)의 결함(누수)위치를 측정하기 위해 먼저, 니켈크롬선 또는 나동선인 센서선(14)과 절연전선인 리턴선(15) 사이에 결함위치 측정전압(Vm)을 인가하고 결함위치(P)에서 센서선(14)으로부터 분배되는 전압이 누수로 인해 젖은 보온재(13)를 통과하여 강관(11)으로 유입되는 전압(VIp)을 측정하여 기준 유기전압으로 삼는다.According to the conventional heat loss monitoring method of the heat transport pipe, as shown in FIG. 1, in order to measure the defect (leakage) position of the double insulated heat transport pipe 10, first, the sensor wire 14, which is a nickel-chrome wire or a bare copper wire, is insulated from the sensor wire 14. The defect location measurement voltage (Vm) is applied between the return line (15), which is a wire, and the voltage distributed from the sensor line (14) at the defect location (P) passes through the wet insulation material (13) due to water leakage to form a steel pipe (11). Measure the voltage (VIp) flowing into and use it as the reference induced voltage.

만약, 센서선(14)에 인가한 측정전압(Vm) 대비 상기 유기전압(VIp)의 비율로 결함위치(P)를 계산하게 된다면, 센서선(14)에 인가한 전압이 결함위치 비율만큼 전압강하가 발생한 점, 그리고 보온재(13)의 습기 상태에 따라 유전체의 분극 등의 영향으로 변화하게 되는 점을 반영하지 못하므로 그만큼 결함위치(P)의 계산오차가 발생하게 된다.If the defect location (P) is calculated based on the ratio of the induced voltage (VIp) to the measured voltage (Vm) applied to the sensor line 14, the voltage applied to the sensor line 14 is equal to the defect location ratio. Since the point where the drop occurs and the point that changes due to the influence of polarization of the dielectric according to the moisture state of the insulating material 13 are not reflected, an error in calculating the defect location P occurs accordingly.

기존의 방식에서는 상기 분극의 영향을 제거하기 위해 알고 있는 전압(즉, 센서선에 인가하는 측정기준전압(Vm))을 정밀 측정하고, 기준전압에 연결된 리턴선(15)을 분리한 후, 동일한 전압이 유전체를 통과한 강관(11)에서의 전압(Vpp)을 측정하여 그 차전압(Vm-Vpp)을 분극전압(Vp)으로 계측하여 보정하는 방법을 사용하고 있다.In the conventional method, in order to remove the effect of the polarization, a known voltage (ie, measurement reference voltage (Vm) applied to the sensor line) is precisely measured, and after separating the return line 15 connected to the reference voltage, the same The voltage (Vpp) in the steel pipe 11 through which the voltage passes through the dielectric is measured, and the voltage difference (Vm-Vpp) is measured as the polarization voltage (Vp) and corrected.

그런데, 결함위치(P)는 강관(11)의 길이방향을 따라 임의의 지점에서 발생할 수 있는 것임에도 불구하고, 항상 분극전압(Vp)을 고정된 기준전압(Vm)에 대하여만 보정하는 방법이어서 이 또한 오차를 내재할 수 밖에 없다는 문제가 있었다. 바꾸어 말하면, 기존의 방법으로 보정한 분극의 영향은 결함위치(P)에 따라 달라지는 인가전압의 영향을 고려하지 못한다는 문제가 있었다.However, although the defect location (P) can occur at any point along the length direction of the steel pipe 11, it is always a method of correcting the polarization voltage (Vp) only with respect to the fixed reference voltage (Vm). This also had the problem of inherent errors. In other words, there is a problem in that the effect of the polarization corrected by the conventional method cannot consider the effect of the applied voltage that varies depending on the defect location P.

[선행기술문헌] 특허등록 제10-0545302호(2006.01.24.)[Prior art literature] Patent Registration No. 10-0545302 (2006.01.24.)

따라서, 본 발명의 목적은 결함위치의 계산에 있어서 분극의 영향 뿐 아니라 인가전압의 영향까지도 고려한 이중보온 열수송관용 열손실 감시방법을 제공하는 데 있다.Accordingly, an object of the present invention is to provide a heat loss monitoring method for a double insulated heat transport pipe that considers not only the effect of polarization but also the effect of applied voltage in calculating the defect location.

상기 목적을 달성하기 위해, 본 발명은 내부로 열유체가 흐르는 강관과 내측에 상기 강관을 수용하는 합성수지재의 외관과 상기 강관과 외관 사이에 충진되는 보온재와 상기 강관과 외관 사이에 내장되어 길이방향으로 연장되어 말단부가 서로 접속된 센서선과 리턴선을 포함하는 이중보온 열수송관에 대한 열손실 감시방법에 있어서, 상기 센서선에 결함위치 측정전압(Vm)을 인가하는 단계와; 상기 리턴선에서의 전압을 기준전압으로 삼아 상기 강관과 상기 리턴선 사이의 결함위치 전압(VIp)을 측정하는 단계와; 상기 센서선에 인가된 상기 결함위치 측정전압(Vm)을 분리하고, 상기 센서선과 상기 강관 사이에 상기 결함위치 전압(VIp)을 인가하는 단계와; 상기 강관과 상기 리턴선 사이의 전압(Vpp)을 측정하여 상기 결함위치 전압(VIp)과의 차이로부터 분극영향 전압(Vp)을 계산하는 단계와; 상기 결함위치 전압(VIp)에 상기 분극영향 전압(Vp)을 더하여 보정된 결함위치 전압(VIp')을 계산하는 단계와; 상기 결함위치 측정전압(Vm) 대비 상기 보정된 결함위치 전압(VIp')의 비율(VIp'/Vm)로부터 결함위치를 계산하는 단계를 포함하는 것을 특징으로 하는 이중보온 열수송관용 열손실 감시방법을 제공한다.In order to achieve the above object, the present invention is embedded between the steel pipe through which the thermal fluid flows, the outer appearance of the synthetic resin material accommodating the steel pipe on the inside, the insulating material filled between the steel pipe and the outer appearance, and the steel pipe and the outer appearance, in the longitudinal direction. A heat loss monitoring method for a double insulated heat transport pipe including a sensor line and a return line that are extended and connected to each other at their ends, comprising the steps of: applying a voltage (Vm) for measuring a defect location to the sensor line; measuring a defect location voltage (VIp) between the steel pipe and the return line by using the voltage at the return line as a reference voltage; separating the defect location measurement voltage (Vm) applied to the sensor line and applying the defect location voltage (VIp) between the sensor line and the steel pipe; measuring a voltage (Vpp) between the steel pipe and the return line and calculating a polarization effect voltage (Vp) from a difference with the defect location voltage (VIp); calculating a corrected defect location voltage (VIp') by adding the polarization effect voltage (Vp) to the defect location voltage (VIp); A heat loss monitoring method for a double insulated heat transport pipe comprising the step of calculating the defect location from the ratio (VIp'/Vm) of the corrected defect location voltage (VIp') to the defect location measurement voltage (Vm) to provide.

여기서, 상기 이중보온 열수송관용 열손실 감시방법은 상기 결함위치 측정전압(Vm)을 인가하기 위한 결함위치 측정전압 발생부에 더하여 상기 결함위치 전압(VIp)을 인가하기 위한 결함위치 추종 분극 측정전압 발생부를 추가적으로 구비하거나, 상기 결함위치 측정전압 발생부의 전압을 가변할 수 있도록 구비되는 것이 바람직하다.Here, the heat loss monitoring method for the double insulated heat transport pipe generates a defect location tracking voltage measuring voltage for applying the defect location voltage (VIp) in addition to a defect location measurement voltage generator for applying the defect location measurement voltage (Vm). It is preferable to additionally provide a unit or to be provided so that the voltage of the defect location measuring voltage generating unit can be varied.

이상과 같이, 본 발명에 따른 이중보온 열수송관용 열손실 감시방법에 의하면 열수송관의 결함위치를 계산함에 있어 상기 결함위치에서의 누수로 인한 분극의 영향을 반영할뿐 아니라 결함위치에 따라 달라질 수 있는 인가전압의 영향까지도 반영함으로써 더욱 높은 정확도로 결함위치를 계산해낼 수 있다.As described above, according to the heat loss monitoring method for a double insulated heat transport pipe according to the present invention, in calculating the defect location of the heat transport pipe, the effect of polarization due to water leakage at the defect location is not only reflected, but may vary depending on the location of the defect By reflecting even the effect of the applied voltage, the defect location can be calculated with higher accuracy.

도 1은 종래기술에 따른 이종보온 열수송관의 열손실 감시방법을 설명하기 위한 개략도,
도 2 및 도 3은 본 발명의 실시예에 따른 이중보온 열수송관용 열손실 감시방법을 설명하기 위한 단계별 개략도이다.
1 is a schematic diagram for explaining a heat loss monitoring method of a heterogeneous thermal insulation heat transport pipe according to the prior art;
2 and 3 are step-by-step schematic diagrams for explaining a heat loss monitoring method for a double insulated heat transport pipe according to an embodiment of the present invention.

본 발명의 실시예에 따른 이중보온 열수송관용 열손실 감시방법은 도 2에 도시된 바와 같은 이중보온 열수송관(10)에 대하여 수행된다. 이중보온 열수송관(10)은 내부로 열유체가 흐르는 강관(11), 내측에 상기 강관(11)을 수용하는 합성수지재의 외관(12), 상기 강관(11)과 외관(12) 사이에 충진되는 보온재(13)로 구성되며, 상기 강관(11)과 외관(12) 사이에 길이방향으로 연장되어 말단부(우측단부)가 서로 접속되는 센서선(14)과 리턴선(15)이 상기 보온재(13) 속에 내장된다.The method for monitoring heat loss for a double insulated heat transport pipe according to an embodiment of the present invention is performed for the double insulated heat transport pipe 10 as shown in FIG. 2 . The double insulation heat transport pipe 10 includes a steel pipe 11 through which thermal fluid flows, an outer 12 made of synthetic resin to accommodate the steel pipe 11 inside, and a filling between the steel pipe 11 and the outer 12 The sensor wire 14 and the return wire 15, which are composed of the insulating material 13 and extend in the longitudinal direction between the steel pipe 11 and the exterior 12 and have their ends (right end) connected to each other, are the insulating material 13 ) is embedded in

이와 같이 갖추어진 이중보온 열수송관(10)에 대하여 결함위치 측정전압 발생부(20)를 포함하는 회로를 도시된 바와 같이 구성한다. 결함위치 측정전압 발생부(20)에 의해서는 일정한 결합위치 측정전압(Vm)이 발생하여 센서선(14)으로 인가된다.A circuit including a voltage generation unit 20 for measuring a defect location for the double insulated heat transport pipe 10 equipped as described above is configured as shown. A constant bonding position measuring voltage Vm is generated by the defect location measuring voltage generator 20 and applied to the sensor line 14 .

보온재(13)는 절연체이나, 강관(11)의 임의의 지점(P)에서 결함으로 인한 누수가 발생할 경우 이 부위에서 수분을 함유하게 되는 보온재(13)를 통해 강관(11)으로 전류가 흐르게 된다.The insulating material 13 is an insulator, but when a leak occurs due to a defect at any point P of the steel pipe 11, current flows to the steel pipe 11 through the insulating material 13 containing moisture at this part .

이 경우에는 리턴선(15)에서의 전압을 기준전압으로 삼아 강관(11)과 리턴선(15) 사이의 결함위치 전압(VIp)을 측정할 수 있다.In this case, the defect location voltage VIp between the steel pipe 11 and the return line 15 can be measured using the voltage at the return line 15 as a reference voltage.

다음으로, 도 2의 회로에서 결함위치 측정전압 발생부(20)를 분리함으로써 센서선(14)에 인가된 결함위치 측정전압(Vm)을 분리하고, 그 대신에 상기 결함위치 전압(VIp)을 인가할 수 있는 결함위치 추종 분극 측정전압 발생부(30)를 도 3에 도시된 바와 같이 연결한다. 또한, 도 2의 회로에서 기준전압에서 리턴선(15)을 분리한다(도 3 참조).Next, in the circuit of FIG. 2, the defect location measurement voltage Vm applied to the sensor line 14 is separated by separating the defect location measurement voltage generator 20, and instead the defect location voltage VIp is The defect position tracking polarization measurement voltage generator 30 that can be applied is connected as shown in FIG. 3 . Also, in the circuit of FIG. 2, the return line 15 is separated from the reference voltage (see FIG. 3).

그런 다음, 도 3에 도시된 바와 같이 강관(11)과 리턴선(15) 사이의 전압(Vpp)을 측정한다. 이로부터, 결함위치(P)에서의 분극영향 전압(Vp)은 상기 결함위치 전압(VIp)과 상기 측정된 전압(Vpp)과의 차(즉, VIp-Vpp)로 계산된다.Then, as shown in FIG. 3, the voltage Vpp between the steel pipe 11 and the return line 15 is measured. From this, the polarization effect voltage (Vp) at the defect location (P) is calculated as the difference between the defect location voltage (VIp) and the measured voltage (Vpp) (ie, VIp-Vpp).

이로부터, 결함위치(P)에서 센서선(14)으로부터 인가되는 전압(VIp')은 도 2에서 측정된 결함위치 전압(VIp)에 상기와 같이 계산된 분극영향 전압(Vp)을 더한 것으로 계산될 수 있다.From this, the voltage VIp' applied from the sensor line 14 at the defect location P is calculated by adding the polarization effect voltage Vp calculated as described above to the defect location voltage VIp measured in FIG. 2 It can be.

센서선(14)은 그 길이를 따라 일정한 비율의 전압강하 특성치를 가지게 되므로, 결함위치 측정전압(Vm) 대비 상기 보정된 결함위치 전압(VIp')의 비율(VIp'/Vm)로부터 결함위치(P)의 발생지점을 알 수 있다.Since the sensor line 14 has a voltage drop characteristic of a constant ratio along its length, the defect location (Vm) from the ratio (VIp'/Vm) of the corrected defect location voltage (VIp') to the defect location measurement voltage (Vm) The origin of P) can be found.

이상과 같이, 본 발명에 따른 이중보온 열수송관용 열손실 감시방법에 의하면 실제 결함위치(P)에서의 분극 영향은 그 인가되는 전압에 따라 달라지는 점을 반영한 것이므로 센서선(14)이나 리턴선(15)의 절연저항에 크게 영향을 받지 않는다. 실제, 종래기술에 의할 경우 절연저항이 100kΩ 이하인 경우에만 결함위치(P) 계산의 정밀도를 보장할 수 있었으나, 상기와 같은 본 발명에 따른 열손실 감시방법에 의할 경우에는 절연저항이 2MΩ에 달하는 센서선(14)이나 리턴선(15)일 경우에도 높은 정확도를 나타낼 수 있다. 따라서, 센서선(14)이나 리턴선(15)의 결함위치 관련 규격 요건을 크게 완화시킬 수 있게 된다.As described above, according to the heat loss monitoring method for the double insulated heat transport pipe according to the present invention, the polarization effect at the actual defect location P is reflected in that it varies depending on the applied voltage, so the sensor line 14 or the return line 15 ) is not significantly affected by the insulation resistance of In fact, in the case of the prior art, the accuracy of calculating the defect location (P) could be guaranteed only when the insulation resistance was 100 kΩ or less, but in the case of the heat loss monitoring method according to the present invention as described above, the insulation resistance was 2 MΩ Even in the case of the reaching sensor line 14 or the return line 15, high accuracy can be exhibited. Accordingly, it is possible to greatly alleviate the standard requirements related to the defect location of the sensor line 14 or the return line 15.

10: 이중보온 열수송관
11: 강관
12: 외관
13: 보온재
14: 센서선
15: 리턴선
20: 결함위치 측정전압 발생부
30: 결함위치 추종 분극 측정전압 발생부
10: double insulation heat pipe
11: steel pipe
12: Appearance
13: insulation
14: sensor wire
15: return line
20: Defect location measurement voltage generation unit
30: defect location tracking polarization measurement voltage generator

Claims (2)

내부로 열유체가 흐르는 강관과, 내측에 상기 강관을 수용하는 합성수지재의 외관과, 상기 강관과 외관 사이에 충진되는 보온재와, 상기 강관과 외관 사이에 내장되어 길이방향으로 연장되어 말단부가 서로 접속된 센서선과 리턴선을 포함하는 이중보온 열수송관에 대한 열손실 감시방법에 있어서,
상기 센서선에 결함위치 측정전압(Vm)을 인가하는 단계와;
상기 리턴선에서의 전압을 기준전압으로 삼아 상기 강관과 상기 리턴선 사이의 결함위치 전압(VIp)을 측정하는 단계와;
상기 센서선에 인가된 상기 결함위치 측정전압(Vm)을 분리하고, 상기 센서선과 상기 강관 사이에 상기 결함위치 전압(VIp)을 인가하는 단계와;
상기 강관과 상기 리턴선 사이의 전압(Vpp)을 측정하여 상기 결함위치 전압(VIp)과의 차이로부터 분극영향 전압(Vp)을 계산하는 단계와;
상기 결함위치 전압(VIp)에 상기 분극영향 전압(Vp)을 더하여 보정된 결함위치 전압(VIp')을 계산하는 단계와;
상기 결함위치 측정전압(Vm) 대비 상기 보정된 결함위치 전압(VIp')의 비율(VIp'/Vm)로부터 결함위치를 계산하는 단계를 포함하는 것을 특징으로 하는 이중보온 열수송관용 열손실 감시방법.
A steel pipe through which the thermal fluid flows, an exterior of a synthetic resin material accommodating the steel tube inside, an insulating material filled between the steel pipe and the exterior, and a heat-insulating material embedded between the steel pipe and the exterior and extending in the longitudinal direction so that the distal ends are connected to each other. In the heat loss monitoring method for a double insulation heat transport pipe including a sensor line and a return line,
applying a defect location measurement voltage (Vm) to the sensor line;
measuring a defect location voltage (VIp) between the steel pipe and the return line by using the voltage at the return line as a reference voltage;
separating the defect location measurement voltage (Vm) applied to the sensor line and applying the defect location voltage (VIp) between the sensor line and the steel pipe;
measuring a voltage (Vpp) between the steel pipe and the return line and calculating a polarization effect voltage (Vp) from a difference with the defect location voltage (VIp);
calculating a corrected defect location voltage (VIp') by adding the polarization effect voltage (Vp) to the defect location voltage (VIp);
Calculating the defect location from the ratio (VIp'/Vm) of the corrected defect location voltage (VIp') to the defect location measurement voltage (Vm) Heat loss monitoring method for a double insulated heat transport pipe, characterized in that.
제1항에 있어서,
상기 결함위치 측정전압(Vm)을 인가하기 위한 결함위치 측정전압 발생부에 더하여 상기 결함위치 전압(VIp)을 인가하기 위한 결함위치 추종 분극 측정전압 발생부를 추가적으로 구비하거나, 상기 결함위치 측정전압 발생부의 전압을 가변할 수 있도록 구비되는 것을 특징으로 하는 이중보온 열수송관용 열손실 감시방법.
According to claim 1,
In addition to the defect location measurement voltage generator for applying the defect location measurement voltage (Vm), a defect location tracking polarization measurement voltage generator for applying the defect location voltage (VIp) may be additionally provided, or the defect location measurement voltage generator may be provided. A heat loss monitoring method for a double insulation heat transport pipe, characterized in that the voltage is provided to be variable.
KR1020220086754A 2022-07-14 2022-07-14 Heat loss monitoring method for double-insulated heat pipe using polarization amendment which follows defect position KR102496312B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020220086754A KR102496312B1 (en) 2022-07-14 2022-07-14 Heat loss monitoring method for double-insulated heat pipe using polarization amendment which follows defect position

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020220086754A KR102496312B1 (en) 2022-07-14 2022-07-14 Heat loss monitoring method for double-insulated heat pipe using polarization amendment which follows defect position

Publications (1)

Publication Number Publication Date
KR102496312B1 true KR102496312B1 (en) 2023-02-06

Family

ID=85224453

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020220086754A KR102496312B1 (en) 2022-07-14 2022-07-14 Heat loss monitoring method for double-insulated heat pipe using polarization amendment which follows defect position

Country Status (1)

Country Link
KR (1) KR102496312B1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050048328A (en) * 2003-11-19 2005-05-24 엄주호 Pipeline leak detection apparatus and method for improving the precision of measurement of the leak location
KR20080039570A (en) * 2006-11-01 2008-05-07 류종국 Water leakage sensing device of heat piping and its method
KR20160125937A (en) * 2016-10-21 2016-11-01 부영산전주식회사 Method for measuring the insulation resistance of heat pipes and system therefor
JP7069246B2 (en) * 2007-12-31 2022-05-17 デカ・プロダクツ・リミテッド・パートナーシップ Infusion pump assembly

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050048328A (en) * 2003-11-19 2005-05-24 엄주호 Pipeline leak detection apparatus and method for improving the precision of measurement of the leak location
KR20080039570A (en) * 2006-11-01 2008-05-07 류종국 Water leakage sensing device of heat piping and its method
JP7069246B2 (en) * 2007-12-31 2022-05-17 デカ・プロダクツ・リミテッド・パートナーシップ Infusion pump assembly
KR20160125937A (en) * 2016-10-21 2016-11-01 부영산전주식회사 Method for measuring the insulation resistance of heat pipes and system therefor

Similar Documents

Publication Publication Date Title
US10345366B2 (en) Method for monitoring transformer bushings and a system therefor
CN106871774B (en) It is a kind of for measuring the compound sensor of recession thickness and ablation layer temperature
KR102496312B1 (en) Heat loss monitoring method for double-insulated heat pipe using polarization amendment which follows defect position
JP2021508817A (en) Shunt resistor current value correction system and method
CN204214566U (en) A kind of temperature measuring equipment
BR112013015868B1 (en) electromagnetic flowmeter sensor capable of detecting a magnetic field and magnetic permeability
CN105371976A (en) Thermal resistance temperature measuring device and temperature measuring method
JP2005502297A (en) Electric motor temperature measuring device and measuring method
KR101168580B1 (en) Resistance temperature dectector assembly with vibration resistance and improved response time in the gernerator
KR101748340B1 (en) Method for measuring the insulation resistance of heat pipes and system therefor
JPWO2015083298A1 (en) Water level sensor
CN102519625B (en) A kind of method utilizing Fiber Bragg Grating Temperature sensor measurement porcelain insulator temperature
CN209727312U (en) A kind of beaming type compensating wire
CN107945984A (en) A kind of intelligent centre formula monitoring temperature single-core cable based on fiber grating
CN104931413A (en) Inductance probe with double-tube-shaped structure
CN212844057U (en) Temperature stability measuring equipment
JP2807409B2 (en) Check device for complete bridge type oil leak point measuring device
JP2009192485A (en) Electrode for capacitance level instrument, its manufacturing method, and capacitance level instrument equipped with the electrode
JP2591974B2 (en) Insulation resistance measurement method for buried pipeline insulated joints
CN210719454U (en) Temperature sensor for ultra-low temperature refrigerator
JPS6234269Y2 (en)
CN107945985A (en) The flat circulating type monitoring temperature single-core cable of intelligent mariages based on fiber grating
SU1221567A1 (en) Arrangement for determining ratio of material thermal conductivity
CN209979077U (en) Protective device for temperature measuring element
JP2010175257A (en) Temperature measuring sensor

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant