KR102489672B1 - Permeable concrete using steelmaking slag and waste carbon nanotube and manufacturing method thereof - Google Patents
Permeable concrete using steelmaking slag and waste carbon nanotube and manufacturing method thereof Download PDFInfo
- Publication number
- KR102489672B1 KR102489672B1 KR1020220076636A KR20220076636A KR102489672B1 KR 102489672 B1 KR102489672 B1 KR 102489672B1 KR 1020220076636 A KR1020220076636 A KR 1020220076636A KR 20220076636 A KR20220076636 A KR 20220076636A KR 102489672 B1 KR102489672 B1 KR 102489672B1
- Authority
- KR
- South Korea
- Prior art keywords
- steelmaking slag
- aggregate
- waste carbon
- carbon nanotubes
- waste
- Prior art date
Links
- 239000002893 slag Substances 0.000 title claims abstract description 68
- 238000009628 steelmaking Methods 0.000 title claims abstract description 68
- 239000002699 waste material Substances 0.000 title claims abstract description 63
- 239000002041 carbon nanotube Substances 0.000 title claims abstract description 60
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims abstract description 48
- 229910021393 carbon nanotube Inorganic materials 0.000 title claims abstract description 41
- 239000004567 concrete Substances 0.000 title claims abstract description 29
- 238000004519 manufacturing process Methods 0.000 title claims description 11
- 239000004568 cement Substances 0.000 claims abstract description 22
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 36
- 239000006185 dispersion Substances 0.000 claims description 21
- 229920000049 Carbon (fiber) Polymers 0.000 claims description 13
- 239000004917 carbon fiber Substances 0.000 claims description 13
- 239000003638 chemical reducing agent Substances 0.000 claims description 11
- 239000000203 mixture Substances 0.000 claims description 10
- 239000002253 acid Substances 0.000 claims description 8
- 239000011247 coating layer Substances 0.000 claims description 8
- 238000002156 mixing Methods 0.000 claims description 8
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 claims description 7
- 229910001861 calcium hydroxide Inorganic materials 0.000 claims description 7
- 239000000920 calcium hydroxide Substances 0.000 claims description 7
- 241001474374 Blennius Species 0.000 claims description 6
- 239000000843 powder Substances 0.000 claims description 6
- 230000000694 effects Effects 0.000 claims description 5
- 230000000903 blocking effect Effects 0.000 claims description 3
- 238000003795 desorption Methods 0.000 claims description 3
- 238000003756 stirring Methods 0.000 claims description 3
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 7
- 230000035699 permeability Effects 0.000 description 7
- 239000010410 layer Substances 0.000 description 6
- 230000008901 benefit Effects 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 4
- 230000008014 freezing Effects 0.000 description 4
- 238000007710 freezing Methods 0.000 description 4
- 230000020169 heat generation Effects 0.000 description 4
- 230000006855 networking Effects 0.000 description 4
- 238000010257 thawing Methods 0.000 description 4
- 238000004220 aggregation Methods 0.000 description 3
- 239000011575 calcium Substances 0.000 description 3
- 238000004132 cross linking Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 229920005646 polycarboxylate Polymers 0.000 description 3
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- 230000002776 aggregation Effects 0.000 description 2
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- 239000010419 fine particle Substances 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 239000011398 Portland cement Substances 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000012615 aggregate Substances 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- 238000009415 formwork Methods 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 230000000887 hydrating effect Effects 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000002086 nanomaterial Substances 0.000 description 1
- 239000002071 nanotube Substances 0.000 description 1
- 231100000719 pollutant Toxicity 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B18/00—Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
- C04B18/04—Waste materials; Refuse
- C04B18/14—Waste materials; Refuse from metallurgical processes
- C04B18/141—Slags
- C04B18/142—Steelmaking slags, converter slags
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F23/00—Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
- B01F23/50—Mixing liquids with solids
- B01F23/55—Mixing liquids with solids the mixture being submitted to electrical, sonic or similar energy
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B20/00—Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
- C04B20/10—Coating or impregnating
- C04B20/1003—Non-compositional aspects of the coating or impregnation
- C04B20/1014—Coating or impregnating materials characterised by the shape, e.g. fibrous materials
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B20/00—Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
- C04B20/10—Coating or impregnating
- C04B20/1018—Coating or impregnating with organic materials
- C04B20/1029—Macromolecular compounds
- C04B20/1048—Polysaccharides, e.g. cellulose, or derivatives thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B20/00—Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
- C04B20/10—Coating or impregnating
- C04B20/1055—Coating or impregnating with inorganic materials
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B24/00—Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
- C04B24/24—Macromolecular compounds
- C04B24/38—Polysaccharides or derivatives thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B28/00—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
- C04B28/02—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
-
- E—FIXED CONSTRUCTIONS
- E01—CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
- E01C—CONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
- E01C11/00—Details of pavings
- E01C11/22—Gutters; Kerbs ; Surface drainage of streets, roads or like traffic areas
- E01C11/224—Surface drainage of streets
- E01C11/225—Paving specially adapted for through-the-surfacing drainage, e.g. perforated, porous; Preformed paving elements comprising, or adapted to form, passageways for carrying off drainage
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2103/00—Function or property of ingredients for mortars, concrete or artificial stone
- C04B2103/30—Water reducers, plasticisers, air-entrainers, flow improvers
- C04B2103/302—Water reducers
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2103/00—Function or property of ingredients for mortars, concrete or artificial stone
- C04B2103/44—Thickening, gelling or viscosity increasing agents
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2111/00—Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
- C04B2111/00241—Physical properties of the materials not provided for elsewhere in C04B2111/00
- C04B2111/00284—Materials permeable to liquids
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
- Y02W30/91—Use of waste materials as fillers for mortars or concrete
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Structural Engineering (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Civil Engineering (AREA)
- Inorganic Chemistry (AREA)
- Environmental & Geological Engineering (AREA)
- Dispersion Chemistry (AREA)
- Architecture (AREA)
- Curing Cements, Concrete, And Artificial Stone (AREA)
Abstract
본 발명은 시멘트, 개질 제강슬래그 골재, 혼화제가 포함되는 것을 특징으로 하는 제강슬래그와 폐탄소나노튜브를 이용한 투수 콘크리트에 관한 것이다. The present invention relates to permeable concrete using steelmaking slag and waste carbon nanotubes, characterized in that cement, a modified steelmaking slag aggregate, and an admixture are included.
Description
본 발명은 폐탄소나노튜브가 표면에 코팅된 제강슬래그 골재가 첨가되어 투수성이 확보되면서도 강도가 보강되고, 발열이 이루어지도록 하는 투수 콘크리트 및 이의 제조방법에 관한 것이다. The present invention relates to a water-permeable concrete and a method for manufacturing the same, in which steelmaking slag aggregate coated with waste carbon nanotubes is added to secure water permeability, reinforce strength, and generate heat.
일반적으로 콘크리트는 주택, 도로, 다리, 초고층빌딩, 댐 등 도처에서 다양한 구조물의 시공에 필요한 것으로, 현대사회에서는 이러한 콘크리트의 영향에서 벗어나기 힘들 정도로 그 활용도가 상당한 실정이다.In general, concrete is necessary for the construction of various structures everywhere, such as houses, roads, bridges, skyscrapers, and dams.
이중 종래의 다공성 투수 콘크리트의 가장 큰 문제점은 다공성 재질의 골재를 다량으로 사용함에 의해 투수율을 향상시킬 수 있으나, 이에 반해 강도가 저하되고, 내부 공극에 의한 균열의 확산으로 전체 구조물의 내구성 저하, 골재 탈락에 의한 노출부에 파손부 발생의 문제가 있었다. Among them, the biggest problem of the conventional porous permeable concrete is that the permeability can be improved by using a large amount of porous aggregate, but on the other hand, the strength is lowered, and the durability of the entire structure is reduced due to the spread of cracks due to the internal voids, the aggregate There was a problem of generation of damaged parts in exposed parts due to falling off.
이는 골재를 다량으로 사용함에 따라 시멘트를 적게 사용하게 됨에 따라 필연적으로 강도가 낮아지며, 내부 공극에 의해 균열의 확산이 구조물 내구성을 저하시키고, 노출부의 골재가 사후적으로 탈락하여 파손되는 문제가 발생하는 것으로 이를 보완하기 위해 시멘트를 많이 사용하면 시공성이 저하되고, 투수율이 낮아져서 투수 콘크리트로서의 기능이 떨어지는 문제가 있다. As a large amount of aggregate is used, the strength is inevitably lowered as less cement is used, and the spread of cracks due to internal voids reduces the durability of the structure, and the aggregate in the exposed part falls off ex post facto, resulting in damage. Therefore, if a lot of cement is used to compensate for this, workability deteriorates and permeability decreases, resulting in poor function as permeable concrete.
종래 기술의 예로 대한민국 특허등록 제10-0414901호에서는 시멘트, 골재, 고성능AE감수제, 착색재 및 물로 구성되는 투수성 콘크리트 조성물에 있어서, 콘크리트 1㎥ 당 최대치수 15㎜인 골재 또는 최대치수 10㎜인 골재를 1500㎏ 내지 1700㎏을 사용하고, 물의 량이 90 내지 100kg이며, 시멘트에 대한 물의 비(W/C)가 25중량% 내지 35중량%, 고성능AE감수제를 시멘트에 대하여 0.5중량% 내지 2.0중량%, 착색재를 시멘트에 대하여 2중량% 내지 5중량%로 하되, 상기 골재가 1개월 이상 물을 뿌리거나 수중에 침지시켜 에이징(aging)한 제강슬래그를 전체골재량에 대하여 10부피% 내지 20부피% 함유되어 있는 것을 특징으로 하는 제강슬래그를 이용한 투수성 콘크리트 조성물을 제시하고 있다. As an example of the prior art, Korean Patent Registration No. 10-0414901 discloses a water-permeable concrete composition composed of cement, aggregate, high-performance AE water reducing agent, coloring material, and water, aggregate having a maximum size of 15 mm or maximum size of 10 mm per 1 cubic meter of concrete. 1500 kg to 1700 kg of aggregate is used, the amount of water is 90 to 100 kg, the ratio of water to cement (W / C) is 25% to 35% by weight, and the high-performance AE water reducing agent is 0.5% to 2.0% by weight based on cement %, the colorant is 2% to 5% by weight based on cement, but the steelmaking slag aged by spraying water or immersing in water for at least one month is 10% to 20% by volume based on the total amount of aggregate It proposes a water-permeable concrete composition using steelmaking slag, characterized in that it contains %.
그러나 상기 기술의 경우 투수성 확보에 따른 강도저하를 해결할 수 없는 문제가 있고, 에이징 처리의 번거로움이 있으며, 투수성에 따른 동결융해에 대한 저항성이 약한 문제가 있다. However, in the case of the above technology, there is a problem that the strength decrease due to the securing of water permeability cannot be solved, there is a hassle of aging treatment, and resistance to freezing and thawing according to water permeability is weak.
본 발명은 폐탄소나노튜브가 표면에 코팅된 제강슬래그 골재가 적용되도록 하여, 투수성이 확보되면서도 강도저하를 방지할 수 있고, 동결융해에 대한 저항성을 향상시킬 수 있는 투수 콘크리트 및 이의 제조방법을 제공하고자 함이다. The present invention provides a water-permeable concrete and a method for manufacturing the same that can prevent a decrease in strength while securing water permeability by applying steelmaking slag aggregate coated with waste carbon nanotubes on the surface, and can improve resistance to freezing and thawing. is to provide
상술한 문제점들을 해결하기 위한 수단으로 본 발명의 제강슬래그와 폐탄소나노튜브를 이용한 투수 콘크리트(이하, “본 발명의 투수 콘크리트”라 함)는 시멘트, 개질 제강슬래그 골재, 혼화제가 포함되는 것을 특징으로 한다. As a means for solving the above-mentioned problems, the permeable concrete using the steelmaking slag and waste carbon nanotubes of the present invention (hereinafter referred to as "permeable concrete of the present invention") is characterized in that it includes cement, modified steelmaking slag aggregate, and admixture. to be
하나의 예로 상기 개질 제강슬래그 골재는 폐탄소나노튜브가 제강슬래그 골재의 표면에 도포된 것을 특징으로 한다. As an example, the modified steelmaking slag aggregate is characterized in that waste carbon nanotubes are coated on the surface of the steelmaking slag aggregate.
하나의 예로 탄소섬유가 더 포함되는 것을 특징으로 한다. One example is characterized in that carbon fiber is further included.
한편 본 발명의 제강슬래그와 폐탄소나노튜브를 이용한 투수 콘크리트의 제조방법(이하, “본 발명의 제조방법”이라 함)은, 폐탄소나노튜브 분산액을 제조하는 단계(S10); 폐탄소나노튜브 분산액에 제강슬래그 골재를 함침시켜 개질 제강슬래그 골재를 제조하는 단계(S20); 시멘트, 개질 제강슬래그 골재, 혼화제를 배합하는 단계(S30); 상기 배합물을 타설 및 양생하는 단계(S40);를 포함하는 것을 특징으로 한다. On the other hand, the manufacturing method of permeable concrete using steelmaking slag and waste carbon nanotubes (hereinafter, referred to as "the manufacturing method of the present invention") of the present invention includes the steps of preparing a dispersion of waste carbon nanotubes (S10); Impregnating the steelmaking slag aggregate into the waste carbon nanotube dispersion to prepare a modified steelmaking slag aggregate (S20); Blending cement, modified steelmaking slag aggregate, and admixture (S30); It is characterized in that it comprises; pouring and curing the mixture (S40).
하나의 예로 상기 S10단계에는, 교반용기에 폐탄소나노튜브, 물, 폴리카르본산계 감수제, 해초분말을 혼합하고 초음파발생구를 가동하여 폐탄소나노튜브 분산액을 제조하는 것을 특징으로 한다. As an example, in step S10, waste carbon nanotubes, water, polycarboxylic acid-based water reducing agent, and seaweed powder are mixed in a stirring container and an ultrasonic generator is operated to prepare a dispersion of waste carbon nanotubes.
이상에서 설명한 바와 같이 본 발명의 투수 콘크리트는 폐자재를 재활용 할 수 있어 친환경적인 장점이 있다. As described above, the permeable concrete of the present invention has an environmentally friendly advantage because waste materials can be recycled.
또한 본 발명의 투수 콘크리트는 투수성이 확보되면서도 강도를 향상시킬 수 있는 장점이 있다. In addition, the permeable concrete of the present invention has the advantage of improving strength while securing water permeability.
또한 본 발명의 투수 콘크리트는 균일한 발열을 통해 동결융해에 대한 저항성 등을 향상시킬 수 있는 장점이 있다. In addition, the permeable concrete of the present invention has the advantage of improving resistance to freezing and thawing through uniform heat generation.
또한 본 발명의 투수 콘크리트는 전도성 단절구간을 제어하여 발열효율을 배가시키도록 하는 장점이 있다. In addition, the permeable concrete of the present invention has the advantage of doubling the heating efficiency by controlling the conductive disconnection section.
도 1은 종래 투수 콘크리트의 파손을 나타내는 사진이고,
도 2는 폐탄소나노튜브를 나타내는 사진이고,
도 3은 개질 제강슬래그를 나타내는 측단면도이고,
도 4는 본 발명의 실시예들에 대한 전도성 실험결과를 나타내는 그래프이다. 1 is a photograph showing the damage of conventional permeable concrete,
2 is a photograph showing waste carbon nanotubes;
3 is a side cross-sectional view showing reformed steelmaking slag;
4 is a graph showing conductivity test results for embodiments of the present invention.
이하, 본 발명의 구성 및 작용을 첨부된 도면에 의거하여 좀 더 구체적으로 설명한다. 본 발명을 설명함에 있어서, 본 명세서 및 청구범위에 사용된 용어나 단어는 발명자가 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.Hereinafter, the configuration and operation of the present invention will be described in more detail based on the accompanying drawings. In describing the present invention, the terms or words used in this specification and claims are based on the principle that the inventor can appropriately define the concept of the term in order to best describe his or her invention. should be interpreted as a meaning and concept that corresponds to the technical idea of
본 발명의 투수 콘크리트는 시멘트, 개질 제강슬래그 골재, 혼화제가 포함되는 것을 특징으로 한다.The permeable concrete of the present invention is characterized in that it includes cement, modified steelmaking slag aggregate, and an admixture.
바람직하게 시멘트 100중량부에 대해 개질 제강슬래그 골재 100 내지 300중량부, 혼화제 0.01 내지 1중량부를 포함하도록 배합되는 것이 타당하다. Preferably, it is reasonable to include 100 to 300 parts by weight of modified steelmaking slag aggregate and 0.01 to 1 part by weight of an admixture based on 100 parts by weight of cement.
상기 시멘트는 1종 보통 포틀랜드 시멘트인 것이 타당하다. It is reasonable that the cement is a
상기 혼화제는 그 종류를 한정하지 않으며, 일 예로 고성능 유동화제가 첨가될 수 있다. The type of the admixture is not limited, and for example, a high-performance glidant may be added.
상기 개질 제강슬래그 골재는 폐탄소나노튜브가 제강슬래그 골재의 표면에 도포된 것을 특징으로 한다. The reformed steelmaking slag aggregate is characterized in that waste carbon nanotubes are coated on the surface of the steelmaking slag aggregate.
상기 제강슬래그 골재를 제조하는데 사용되는 제강슬래그는 제한되는 것은 아니며, 일반적으로 제강슬래그를 받아서 이송하는 포트 상층부의 제강슬래그를 이용하는 것이 바람직하다. 포트의 하층부는 금속함량이 높고 상층부는 금속성분이 낮은 경향이 있어, 상층부의 제강슬래그를 이용하는 것이 하층부의 높은 금속성분을 포함하는 부분까지 사용하는 경우에 비하여 경제적으로 유리하다. The steelmaking slag used to manufacture the steelmaking slag aggregate is not limited, and it is generally preferable to use the steelmaking slag of the upper layer of the port for receiving and transporting the steelmaking slag. The lower part of the pot tends to have a high metal content and the upper part tends to have a low metal component, so using the steelmaking slag of the upper layer is economically advantageous compared to using the lower part with a high metal content.
또한 제강슬래그를 이용하여 제강슬래그 골재를 제조하는 방법은 다양한 공지기술의 적용이 가능하므로 그 상세 설명은 생략한다. In addition, since the method for manufacturing steel-making slag aggregate using steel-making slag can be applied to various known technologies, its detailed description will be omitted.
이러한 제강슬래그는 화합물 중 3CaO.SiO2가 천천히 냉각되면서 2CaO.SiO2 + CaO로 변환되는데, 이와 같이 정출되는 CaO를 Free-CaO라고 하며, Free-CaO는 하기 식에서와 같이 물과 반응 시 Ca(OH)2로 변환되며, 변환시 2.5배 이상의 부피팽창을 일으키게 된다.Such steelmaking slag is converted into 2CaO.SiO 2 + CaO as 3CaO.SiO 2 among the compounds is slowly cooled. OH) 2 , and when converted, it causes a volume expansion of 2.5 times or more.
또한, Ca(OH)2는 하기 식에서와 같이 CO2와 반응하여 CaCO3로 변환되는 특징이 있으며, 특히, 수중에서 회색빛으로 변하는 현상인 백탁현상을 일으키게 된다.In addition, Ca(OH) 2 is characterized by being converted into CaCO 3 by reacting with CO 2 as shown in the following formula, and in particular, it causes a whitish phenomenon, which is a phenomenon that turns gray in water.
CaO + H2O --> Ca(OH)2 CaO + H2O --> Ca(OH) 2
Ca(OH)2 + CO2 --> CaCO3 + H2O Ca(OH) 2 + CO 2 --> CaCO 3 + H 2 O
따라서, 일반적인 제강슬래그 골재의 경우 Free-CaO에 의한 팽창현상에 의해 골재탈리 등 구조적 문제를 야기할 수 있으며, 백탁현상에 의한 오염수 발생 등의 문제가 발생할 수 있다.Therefore, in the case of general steelmaking slag aggregate, expansion by Free-CaO may cause structural problems such as aggregate detachment, and problems such as generation of contaminated water due to cloudiness may occur.
이에 본 발명에서는 개질 제강슬래그 골재가 제시되고 있는 바, 상기 개질 제강슬래그는 제강슬래그 골재 표면에 폐탄소나노튜브가 도포된 것을 특징으로 한다. Accordingly, in the present invention, a modified steelmaking slag aggregate is proposed, and the modified steelmaking slag is characterized in that waste carbon nanotubes are coated on the surface of the steelmaking slag aggregate.
즉 도 3에서 보는 바와 같이 개질 제강슬래그(1)는 제강슬래그 골재로 이루어진 몸체(2)와 상기 몸체(2) 표면에 폐탄소나노튜브로 이루어진 코팅층(3)으로 구성되는 것이다. 상기 코팅층(3)의 구성에 의해 제강슬래그 골재가 직접적으로 물과 반응이 이루어지는 것을 차단토록 함으로써 상기에서 언급한 바와 같이 수산화칼슘의 생성에 의한 팽창으로부터 야기되는 골재탈리의 문제가 제어되도록 하는 것이다. That is, as shown in FIG. 3, the reformed
또한 도면에서 보는 바와 같이 코팅층(3)에서 몸체(2)가 외부로 노출되는 부분이 있을 수 있는데, 이러한 부분은 제강슬래그 골재가 물과 반응하여 수산화칼슘층(4)이 형성되는 것인데 도면에서 보는 바와 같이 수산화칼슘층(4)이 형성되더라도 개질 제강슬래그(1)와 페이스 사이의 공간을 수산화칼슘층(4)이 충진되도록 하여 골재탈리의 문제가 없음은 물론 더욱 밀실한 페이스트의 구현이 가능하도록 하는 것이다. In addition, as shown in the drawing, there may be a portion of the
상기 폐탄소나노튜브(이하 “폐CNT”라함)는 CNT 생산과정에서 발생되는 폐자재로 폐CNT 일부는 활성탄 제품에 활용되고 있고 대부분이 매립 또는 소각되고 있는 실정이며 나노 소재인 CNT가 토양에 침투하거나 소각 시 발생되는 오염물질에 대한 영향성을 평가하기 어려운 상황이다. 이에 본 발명에서는 폐기 처리되는 CNT를 재활용하여 투수콘크리트에 적용코자 한 것이며, 적용 결과 발열효과가 발현됨을 알 수 있었다. The waste carbon nanotubes (hereinafter referred to as "waste CNT") are waste materials generated in the CNT production process, and some of the waste CNTs are used in activated carbon products, and most of them are landfilled or incinerated. CNTs, which are nanomaterials, penetrate the soil. However, it is difficult to evaluate the impact on pollutants generated during incineration. Accordingly, in the present invention, it was intended to recycle the discarded CNTs and apply them to permeable concrete, and it was found that the application results in a heating effect.
이러한 발현효과의 발현에 의해 투수 콘크리트에서 문제시 되는 동결융해에 대한 저항성을 향상시키도록 하여 내구성을 증진시킬 수 있는 것이다. By the expression of this expression effect, it is possible to improve the durability by improving the resistance to freezing and thawing, which is a problem in permeable concrete.
시멘트복합체에서 CNT에 의한 발열효과의 발현기작은 다양한 공지기술의 적용이 가능하므로 그 상세 설명은 생략한다. Since various known technologies can be applied to the expression mechanism of the exothermic effect by CNT in cement composites, a detailed description thereof will be omitted.
상기 폐CNT는 제강슬래그 골재가 직접적으로 물과 반응하는 것을 차단토록 하며, 발열기능이 발현되도록 하는 것은 물론 콘크리트의 수축 저감 및 강도 향상에 기여하게 되는데 투수콘크리트의 단점인 강도도 보강되도록 하는 것이다. The waste CNT blocks the steelmaking slag aggregate from directly reacting with water, and contributes to reducing shrinkage and improving strength of concrete, as well as allowing the exothermic function to be expressed.
또한 폐CNT가 콘크리트 내에서 원활한 수축저감 및 강도 향상 작용을 수행하기 위해서는 폐CNT가 균일하게 분산되어야 한다. 이와 같이 콘크리트 조성물의 배합시 폐CNT의 분산성을 향상시켜야 되는데, 본 발명에서는 폐CNT가 제강슬래그 골재의 표면에 도포된 상태로 배합이 되므로 분산의 균일성도 도모할 수 있게 되는 것이다. In addition, in order for waste CNTs to smoothly reduce shrinkage and improve strength in concrete, waste CNTs must be uniformly dispersed. In this way, the dispersibility of the waste CNTs should be improved when mixing the concrete composition. In the present invention, since the waste CNTs are mixed in a state in which they are applied to the surface of the steelmaking slag aggregate, uniformity of dispersion can also be promoted.
한편 소정의 전도성능이나 강도강화 성능을 발현하기 위해서는 필러로서 폐CNT 간에 네트워킹(Networking)이 형성되어야 하며, 이러한 필러간에 좋은 네트워킹을 형성하기 위해서는 장축비가 큰 폐CNT가 절대적으로 유리하다. 즉, 장축비가 큰 폐CNT는 적은 량의 함량으로도 우수한 전기전도성을 발현하게 되는 것이다. On the other hand, in order to express a predetermined conductivity or strength reinforcing performance, networking must be formed between waste CNTs as fillers, and waste CNTs with a large long axis ratio are absolutely advantageous to form good networking between such fillers. That is, waste CNTs having a large long axis ratio exhibit excellent electrical conductivity even with a small amount of content.
이에 더하여 이러한 네트워킹을 더욱 강화하기 위해 본 발명에서는 폐CNT에 더하여 탄소섬유가 더 혼합되는 예를 제시한다. 상기 탄소섬유는 유기섬유를 불활성기체 속에서 적당한 온도로 열처리해 탄화, 결정화시킨 섬유를 정의하는 것으로, 탄소섬유는 그래파이트(graphite)상의 탄소로 된 고강도ㆍ고강성 등 기계적 성질이 발현된다. 이렇게 탄소섬유가 혼입됨으로써 가교작용을 통한 균열저항성을 향상시키도록 하는 것이며 탄소섬유는 전기전도성을 가지고 있는 바, 페이스트에 전기전도성을 부여하게 되는 것이다. In addition to this, in order to further strengthen this networking, the present invention presents an example in which carbon fibers are further mixed in addition to waste CNTs. The carbon fiber defines a carbonized and crystallized fiber obtained by heat-treating an organic fiber at an appropriate temperature in an inert gas, and the carbon fiber exhibits mechanical properties such as high strength and high stiffness made of carbon on graphite. The incorporation of carbon fibers in this way improves crack resistance through cross-linking, and since carbon fibers have electrical conductivity, electrical conductivity is imparted to the paste.
특히 상기 탄소섬유는 폐CNT에 비해 장축비가 월등히 커서 네트워킹이 더욱 강화되는 것으로 폐CNT 간에 응집에 의해 전도성의 단절구간이 형성되더라도 탄소섬유가 폐CNT 간에 응집부분을 연결하여 더욱 전도성을 강화시켜 발열효율을 배가시키도록 하는 것이다. In particular, the carbon fiber has a much larger long axis ratio than the waste CNT, so the networking is further strengthened. Even if a conductive disconnection section is formed by aggregation between the waste CNTs, the carbon fiber connects the aggregation part between the waste CNTs to further enhance the conductivity and heat generation efficiency. is to double it.
또한 콘크리트에 균열이 발생되는 경우 균열부분에서 상기에서 언급한 전도성의 단절구간이 형성되는데 탄소섬유가 첨가됨에 의해 탄소섬유의 가교작용을 통해 페이스트의 균열을 제어함으로써 이와 같은 문제가 해결되도록 하는 것이다. In addition, when cracks occur in concrete, the above-mentioned conductive disconnection section is formed in the cracked portion. This problem is solved by controlling the cracking of the paste through the crosslinking action of carbon fibers by adding carbon fibers.
바람직하게 시멘트 100중량부에 대해 탄소섬유 1 내지 3중량부가 포함되도록 배합되는 것이 타당하다. Preferably, it is reasonable to include 1 to 3 parts by weight of carbon fiber with respect to 100 parts by weight of cement.
이하, 실험예에 의해 본 발명의 실시예를 설명한다. Hereinafter, embodiments of the present invention will be described by means of experimental examples.
실시예 1의 경우는 시멘트를 100중량부에 대해 제강슬래그 골재 150중량부, 유동화제 0.1중량부가 배합된 예이고, 실시예 2의 경우 실시예 1과 동일하게 배합하되, 폐CNT로 표면개질 된 제강슬래그 골재가 적용된 예이며, 실시예 3의 경우 실시예 2와 동일하되 탄소섬유 1중량부가 더 배합된 예이다. Example 1 is an example in which 150 parts by weight of steelmaking slag aggregate and 0.1 part by weight of a plasticizing agent are mixed with respect to 100 parts by weight of cement, and in the case of Example 2, the mixture is the same as in Example 1, but the surface is modified with waste CNT. This is an example in which the steelmaking slag aggregate is applied, and in the case of Example 3, it is the same as in Example 2, but 1 part by weight of carbon fiber is further mixed.
압축강도면에서 보면 상기 표 1에서 보는 바와 같이 실시예 1보다 실시예 2의 경우가 더욱 압축강도면에서 유리한 것을 알 수 있는데, 이는 골재로 폐CNT로 표면개질 된 제강슬래그 골재가 사용됨에 의해 골재탈리가 방지됨에 기인한 것이며, 폐CNT의 첨가에 기인한 것으로 판단된다. In terms of compressive strength, as shown in Table 1 above, it can be seen that Example 2 is more advantageous in terms of compressive strength than Example 1. It is due to the prevention of desorption, and it is judged to be due to the addition of waste CNT.
또한 발열효율에서 보면 도 4에서 보는 바와 같이 실시예 1보다 실시예 2의 경우가 더욱 발열효율이 좋은 것을 알 수 있는데 이는 골재로 폐CNT로 표면개질 된 제강슬래그 골재가 사용됨에 의해 골재탈리가 방지되어 전도성 단절구간의 형성을 제어함에 기인한 것으로 판단되며, 실시예 3이 실시예 2의 경우보다 발열효율이 좋은 것을 알 수 있는데 이는 탄소섬유가 폐CNT 간에 응집부분을 연결하여 전도성을 강화시키는 점과 가교작용에 의해 균열을 제어하는 점 등에 기인한 것으로 판단된다. In addition, in terms of heat generation efficiency, as shown in FIG. 4, it can be seen that Example 2 has a better heat generation efficiency than Example 1, which is prevented from detaching the aggregate by using steelmaking slag aggregate surface-modified with waste CNT as aggregate. It is determined that this is due to controlling the formation of the conductive disconnection section, and it can be seen that Example 3 has a better heating efficiency than Example 2. It is judged that it is due to the fact that cracks are controlled by cross-linking.
한편 본 발명의 제조방법은, 폐탄소나노튜브 분산액을 제조하는 단계(S10); 폐탄소나노튜브 분산액에 제강슬래그 골재를 함침시켜 개질 제강슬래그 골재를 제조하는 단계(S20); 시멘트, 개질 제강슬래그 골재, 혼화제를 배합하는 단계(S30); 상기 배합물을 타설 및 양생하는 단계(S40);를 포함하는 것을 특징으로 한다. Meanwhile, the production method of the present invention includes preparing a dispersion of waste carbon nanotubes (S10); Impregnating the steelmaking slag aggregate into the waste carbon nanotube dispersion to prepare a modified steelmaking slag aggregate (S20); Blending cement, modified steelmaking slag aggregate, and admixture (S30); It is characterized in that it comprises; pouring and curing the mixture (S40).
상기 폐탄소나노튜브 분산액은 폐CNT, 물, 폴리카르본산계 감수제, 폴리비닐피로리돈을 혼합하여 제조되는 것을 특징으로 한다. 폐CNT를 물에 희석하여 폐CNT 분산액이 제조되도록 하는 것이다. The waste carbon nanotube dispersion is characterized in that it is prepared by mixing waste CNTs, water, a polycarboxylic acid-based water reducing agent, and polyvinylpyrrolidone. Waste CNTs are diluted in water to prepare a waste CNT dispersion.
일반적인 탄소나노튜브 입자들은 강한 반데르발스(Van der Waals) 인력으로 인해 입자간 인력이 생기며, 이로 인해 자기-응집(self-aggregation)을 이루게 된다. 탄소나노튜브의 이러한 특성으로 인해 페이스트에서 탄소나노튜브 입자 자체를 미세입자로 분산시키고, 분산된 미세입자들의 분산성을 유지하는 것에 한계가 있다. 특히 탄소나노튜브는 비중이 매우 낮아 배합시 고르게 분포되지 못하며 표면으로 떠오르기 때문으로 균일한 분산이 이루어지기 어려운 문제가 있다. In general, carbon nanotube particles have strong van der Waals attractive forces between particles, resulting in self-aggregation. Due to these characteristics of carbon nanotubes, there is a limit to dispersing the carbon nanotube particles themselves into fine particles in the paste and maintaining the dispersibility of the dispersed fine particles. In particular, carbon nanotubes have a very low specific gravity, so they are not evenly distributed during mixing, and since they float to the surface, it is difficult to achieve uniform dispersion.
이에 본 발명에 있어 상기 분산액에는 폴리카르본산계 감수제가 더 포함되도록 하여 폐CNT의 균일한 분산이 이루어지도록 하는 것이다. Therefore, in the present invention, the polycarboxylic acid-based water reducing agent is further included in the dispersion so that the waste CNTs are uniformly dispersed.
상기 폴리카르본산(Polycarboxylate)계 감수제를 사용하는데, 주쇄(main chain)가 긴 폴리카르본산계 감수제는 카르복실기(COO-)가 시멘트의 초기 분산을 효과적으로 유도하여 단위수량을 감소시키고 시멘트가 수화하여 강도를 발현하도록 한다. The polycarboxylate-based water-reducing agent is used. The polycarboxylic acid-based water reducing agent having a long main chain has a carboxyl group (COO-) that effectively induces the initial dispersion of cement, thereby reducing the unit water quantity and hydrating the cement to increase strength. to manifest.
이에 더하여 상기 폴리카르본산(Polycarboxylate)계 감수제와 더불어 폴리카르본산(Polycarboxylate)계 유지제가 더 함유되도록 하는 것이 바람직하다. 측쇄(side chain)가 긴 폴리카르본계 유지제의 카르복실기(COO-)의 주쇄가 시멘트 수화물의 생성물에 매립되면 측쇄의 2차 분산 능력으로 장시간 작업성을 유지하는 역할을 수행한다. In addition to this, it is preferable to further contain a polycarboxylate-based retaining agent in addition to the polycarboxylate-based water reducing agent. When the main chain of the carboxyl group (COO-) of the polycarbone-based retaining agent with a long side chain is embedded in the cement hydrate product, it plays a role in maintaining workability for a long time with the secondary dispersion ability of the side chain.
상기 분산액에 있어 폐CNT, 물, 폴리카르본산계 감수제, 폴리카르본산계 유지제의 경우 폐CNT의 농도, 용도 등 다양한 인자에 의해 그 배합비를 선택적으로 조절할 수 있음은 당연하다. In the case of waste CNTs, water, polycarboxylic acid-based water reducing agent, and polycarboxylic acid-based retaining agent in the above dispersion, it is natural that the blending ratio can be selectively adjusted according to various factors such as the concentration and use of waste CNTs.
이에 더하여 상기 S10단계에는 해초분말이 더 혼합되는 예를 제시하고 있는데, 해초분말은 증점제로서 기능이 발현되도록 하여 제강슬래그 골재 표면에 폐CNT의 부착력을 강화시키기 위한 것이고, 이에 더하여 개질 후에는 해초분말이 페이스트로부터 물을 흡수토록 하여 제강슬래그의 Free-CaO가 물과 반응하는 것을 제어토록 하는 것이다. 즉 팽창에 의한 골재탈리 저항성을 더욱 배가시키도록 하는 것이다. In addition to this, in step S10, an example in which seaweed powder is further mixed is presented. The seaweed powder functions as a thickener to enhance the adhesion of waste CNTs to the surface of steelmaking slag aggregate. In addition, after modification, seaweed powder It is to absorb water from this paste and control the reaction of Free-CaO in steelmaking slag with water. In other words, the resistance to aggregate detachment due to expansion is further doubled.
상기 S10단계에는, 교반용기에 폐탄소나노튜브, 물, 폴리카르본산계 감수제, 해초분말을 혼합한 후 초음파발생구를 가동하여 폐탄소나노튜브 분산액을 제조하는 것을 특징으로 한다. In the step S10, the waste carbon nanotubes, water, polycarboxylic acid-based water reducing agent, and seaweed powder are mixed in a stirring container, and then an ultrasonic generator is operated to prepare a waste carbon nanotube dispersion.
상기에서 언급한 바와 같이 폐탄소나노튜브 분산액을 제조하는 단계(S10)를 거치면, 폐탄소나노튜브 분산액에 제강슬래그 골재를 함침시켜 개질 제강슬래그 골재를 제조하는 단계(S20)를 갖는 바, 폐탄소나노튜브 분산액에 제강슬래그 골재를 함침시켜 제강슬래그 골재 표면에 폐탄소나노튜브 분산액이 도포되도록 한후 건조시켜 폐탄소나노튜브가 표면에 코팅된 개질 제강슬래그 골재가 제조되도록 하는 것이다. As mentioned above, after the step of preparing the waste carbon nanotube dispersion (S10), the waste carbon nanotube dispersion is impregnated with the steelmaking slag aggregate to prepare the reformed steelmaking slag aggregate (S20). The steelmaking slag aggregate is impregnated with the nanotube dispersion so that the waste carbon nanotube dispersion is applied to the surface of the steelmaking slag aggregate, and then dried to produce a reformed steelmaking slag aggregate coated with the waste carbon nanotubes on the surface.
그 다음으로 시멘트, 개질 제강슬래그 골재, 혼화제를 배합하는 단계(S30)를 갖는다. Next, there is a step (S30) of mixing cement, modified steelmaking slag aggregate, and admixture.
마지막으로 상기 혼합물을 타설 및 양생하는 단계(S40)를 갖는다. 본 단계(S40)에서는 용도에 따라 상기 조성물을 타설 및 양생토록 하는데, 용도에 따라 전극이 거푸집에 기 설치된 상태에서 상기 조성물을 타설 및 양생토록 하여 전극이 매립된 형태의 구조물이 제조 또는 시공이 될 수 있도록 하는 것이다. Finally, it has a step (S40) of pouring and curing the mixture. In this step (S40), the composition is poured and cured according to the use. Depending on the use, the composition is poured and cured in a state where the electrodes are already installed in the formwork, so that a structure in which electrodes are embedded is manufactured or constructed. is to make it possible
이상 설명한 내용을 통해 당업자라면 본 발명의 기술사상을 일탈하지 아니하는 범위에서 다양한 변경 및 수정 가능함을 알 수 있을 것이다. 따라서, 본 발명의 기술적 범위는 명세서의 상세한 설명에 기재된 내용으로 한정되는 것이 아니라 특허청구범위에 의해 정해져야만 할 것이다. Through the above description, those skilled in the art will know that various changes and modifications are possible without departing from the technical idea of the present invention. Therefore, the technical scope of the present invention is not limited to the contents described in the detailed description of the specification, but should be defined by the claims.
1 : 개질 제강슬래그 골재
2 : 몸체
3 : 코팅층
4 : 수산화칼슘층1: reformed steelmaking slag aggregate
2: body
3: coating layer
4: calcium hydroxide layer
Claims (5)
상기 개질 제강슬래그 골재는,
제강슬래그 골재로 이루어진 몸체와, 상기 몸체 표면에 도포되고 폐탄소나노튜브로 이루어지는 코팅층을 포함하며, 상기 코팅층의 폐탄소나노튜브에 의해 발열 효과가 발현되면서 몸체의 제강슬래그 골재가 직접적으로 물과 반응하는 것을 차단하여 수산화칼슘의 생성에 의한 팽창 현상과 골재탈리 발생이 제어되게 하는 것을 특징으로 하는 제강슬래그와 폐탄소나노튜브를 이용한 투수 콘크리트.
100 to 300 parts by weight of modified steelmaking slag aggregate and 0.01 to 1 part by weight of an admixture based on 100 parts by weight of cement,
The reformed steelmaking slag aggregate,
It includes a body made of steelmaking slag aggregate, and a coating layer applied to the surface of the body and made of waste carbon nanotubes, and the steelmaking slag aggregate of the body directly reacts with water as an exothermic effect is expressed by the waste carbon nanotubes in the coating layer. Permeable concrete using steelmaking slag and waste carbon nanotubes, characterized in that the expansion phenomenon caused by the generation of calcium hydroxide and the occurrence of aggregate desorption are controlled by blocking the
탄소섬유가 더 포함되는 것을 특징으로 하는 제강슬래그와 폐탄소나노튜브를 이용한 투수 콘크리트.
According to claim 1,
Permeable concrete using steelmaking slag and waste carbon nanotubes, characterized in that carbon fibers are further included.
폐탄소나노튜브 분산액에 제강슬래그 골재를 함침시켜 개질 제강슬래그 골재를 제조하는 단계(S20);
시멘트, 개질 제강슬래그 골재, 혼화제를 배합하는 단계(S30); 및
상기 배합물을 타설 및 양생하는 단계(S40);를 포함하되,
상기 개질 제강슬래그 골재는,
제강슬래그 골재로 이루어진 몸체와, 상기 몸체 표면에 도포되고 폐탄소나노튜브로 이루어지는 코팅층을 포함하며, 상기 코팅층의 폐탄소나노튜브에 의해 발열 효과가 발현되면서 몸체의 제강슬래그 골재가 직접적으로 물과 반응하는 것을 차단하여 수산화칼슘의 생성에 의한 팽창 현상과 골재탈리 발생이 제어되게 하는 것을 특징으로 하는 제강슬래그와 폐탄소나노튜브를 이용한 투수 콘크리트의 제조방법.
Preparing a dispersion of waste carbon nanotubes (S10);
Impregnating the steelmaking slag aggregate into the waste carbon nanotube dispersion to prepare a modified steelmaking slag aggregate (S20);
Blending cement, modified steelmaking slag aggregate, and admixture (S30); and
Including; pouring and curing the mixture (S40);
The reformed steelmaking slag aggregate,
It includes a body made of steelmaking slag aggregate, and a coating layer applied to the surface of the body and made of waste carbon nanotubes, and the steelmaking slag aggregate of the body directly reacts with water as an exothermic effect is expressed by the waste carbon nanotubes in the coating layer. A method for producing permeable concrete using steelmaking slag and waste carbon nanotubes, characterized in that the expansion phenomenon caused by the generation of calcium hydroxide and the occurrence of aggregate desorption are controlled by blocking the
상기 S10단계에는, 교반용기에 폐탄소나노튜브, 물, 폴리카르본산계 감수제, 해초분말을 혼합하고 초음파발생구를 가동하여 폐탄소나노튜브 분산액을 제조하는 것을 특징으로 하는 제강슬래그와 폐탄소나노튜브를 이용한 투수 콘크리트의 제조방법.According to claim 4,
In the step S10, the steelmaking slag and waste carbon nanotubes are mixed with waste carbon nanotubes, water, polycarboxylic acid-based water reducing agent, and seaweed powder in a stirring container and an ultrasonic generator is operated to produce a waste carbon nanotube dispersion. Manufacturing method of permeable concrete using a tube.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020220076636A KR102489672B1 (en) | 2022-06-23 | 2022-06-23 | Permeable concrete using steelmaking slag and waste carbon nanotube and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020220076636A KR102489672B1 (en) | 2022-06-23 | 2022-06-23 | Permeable concrete using steelmaking slag and waste carbon nanotube and manufacturing method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
KR102489672B1 true KR102489672B1 (en) | 2023-01-19 |
Family
ID=85078191
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020220076636A KR102489672B1 (en) | 2022-06-23 | 2022-06-23 | Permeable concrete using steelmaking slag and waste carbon nanotube and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR102489672B1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118580047A (en) * | 2024-08-06 | 2024-09-03 | 广东文科绿色科技股份有限公司 | A kind of recycled aggregate concrete and preparation method thereof |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20020069759A (en) * | 2001-02-27 | 2002-09-05 | 주식회사 유로엔지니어링플러스 | A concrete composite using slag |
KR20220049080A (en) * | 2020-10-13 | 2022-04-21 | 주식회사 남평산업 | Exothermic water permeable concrete and its manufacturing method using waste anode materials |
-
2022
- 2022-06-23 KR KR1020220076636A patent/KR102489672B1/en active IP Right Grant
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20020069759A (en) * | 2001-02-27 | 2002-09-05 | 주식회사 유로엔지니어링플러스 | A concrete composite using slag |
KR100414901B1 (en) | 2001-02-27 | 2004-01-13 | 주식회사 유로엔지니어링플러스 | A concrete composite using slag |
KR20220049080A (en) * | 2020-10-13 | 2022-04-21 | 주식회사 남평산업 | Exothermic water permeable concrete and its manufacturing method using waste anode materials |
Non-Patent Citations (1)
Title |
---|
김경우., 부산대학교 대학원 토목환경공학과 (2022. 2. 공지) 1부.* * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118580047A (en) * | 2024-08-06 | 2024-09-03 | 广东文科绿色科技股份有限公司 | A kind of recycled aggregate concrete and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2768920C1 (en) | Additives based on graphene nanomaterials for improving cementitious compositions, cementing composition, method for producing reinforced concrete, reinforced concrete and its application | |
CN110105018A (en) | A kind of modified coarse aggregate and utilize nanometer regenerated concrete of fiber made from the modification coarse aggregate and preparation method thereof | |
CN108117335A (en) | A kind of graphene oxide concrete of fly ash and preparation method thereof | |
RU2447036C1 (en) | Composition for producing construction materials | |
KR102489672B1 (en) | Permeable concrete using steelmaking slag and waste carbon nanotube and manufacturing method thereof | |
CN116354679B (en) | Strain hardening type recycled coarse aggregate concrete and preparation method thereof | |
CN108164214A (en) | A kind of C70 High-performance graphite oxide alkene concrete for mixing microballon flyash and preparation method thereof | |
KR102493676B1 (en) | Exothermic concrete and its manufacturing method using waste carbon nanotube and waste anode materials | |
KR102496925B1 (en) | Heat-generating concrete with solid carbon capsules and manufacturing method | |
CN116986866A (en) | Concrete suitable for chlorine salt dry and wet environment and preparation method thereof | |
KR20220053079A (en) | Repair and Reinforcement Mortar Constructions for Chloride Invasion Resistance and Construction Methods Using them | |
CN111875301A (en) | Nano reinforcement method for recycled aggregate concrete and reinforced recycled aggregate obtained by nano reinforcement method | |
CN107344842A (en) | A kind of good endurance Aggregate of recycled concrete aerated bricks and preparation method thereof | |
CN107162526A (en) | A kind of impervious RPC and preparation method thereof | |
KR102672161B1 (en) | Ultra-fast hardening concrete composition containing nano air cells and bridge surface repair method using the same | |
CN117602901A (en) | Ultra-high ductility and high temperature resistant coal gangue concrete and preparation method thereof | |
CN115124298B (en) | High-strength recycled aggregate concrete prepared from waste stone powder and preparation method thereof | |
KR102493675B1 (en) | Exothermic water permeable concrete and its manufacturing method using waste anode materials | |
CN112777990B (en) | Solid waste base light heat-insulating concrete 3D printing material and preparation method thereof | |
CN114890742A (en) | A nanomaterial composite ultra-high performance concrete | |
JP4180870B2 (en) | Inorganic board and method for producing the same | |
KR102326273B1 (en) | Concrete for preventing freezing and melting and its manufacturing method | |
KR101309088B1 (en) | Concrete comprising superplasticizer combined carbon amino silica black | |
CN116177913B (en) | Regenerated aggregate reinforcing agent based on fluorocarbon as well as preparation method and application thereof | |
CN113845346B (en) | High-water-permeability concrete combined with acrylic acid and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20220623 |
|
PA0201 | Request for examination | ||
PA0302 | Request for accelerated examination |
Patent event date: 20220721 Patent event code: PA03022R01D Comment text: Request for Accelerated Examination Patent event date: 20220623 Patent event code: PA03021R01I Comment text: Patent Application |
|
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20220915 Patent event code: PE09021S01D |
|
E701 | Decision to grant or registration of patent right | ||
PE0701 | Decision of registration |
Patent event code: PE07011S01D Comment text: Decision to Grant Registration Patent event date: 20230111 |
|
GRNT | Written decision to grant | ||
PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 20230112 Patent event code: PR07011E01D |
|
PR1002 | Payment of registration fee |
Payment date: 20230113 End annual number: 3 Start annual number: 1 |
|
PG1601 | Publication of registration |