KR102473954B1 - Floating Power Plant and Employment Method therefor - Google Patents
Floating Power Plant and Employment Method therefor Download PDFInfo
- Publication number
- KR102473954B1 KR102473954B1 KR1020170182750A KR20170182750A KR102473954B1 KR 102473954 B1 KR102473954 B1 KR 102473954B1 KR 1020170182750 A KR1020170182750 A KR 1020170182750A KR 20170182750 A KR20170182750 A KR 20170182750A KR 102473954 B1 KR102473954 B1 KR 102473954B1
- Authority
- KR
- South Korea
- Prior art keywords
- gas
- hydrogen
- fuel
- power plant
- liquefied gas
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63B—SHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING
- B63B35/00—Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
- B63B35/44—Floating buildings, stores, drilling platforms, or workshops, e.g. carrying water-oil separating devices
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63B—SHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING
- B63B25/00—Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby
- B63B25/02—Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods
- B63B25/08—Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid
- B63B25/12—Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed
- B63B25/16—Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed heat-insulated
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B3/00—Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
- C01B3/02—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
- C01B3/32—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
- C01B3/34—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02G—HOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
- F02G5/00—Profiting from waste heat of combustion engines, not otherwise provided for
- F02G5/02—Profiting from waste heat of exhaust gases
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C9/00—Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure
- F17C9/02—Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure with change of state, e.g. vaporisation
- F17C9/04—Recovery of thermal energy
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/0002—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
- F25J1/0005—Light or noble gases
- F25J1/001—Hydrogen
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63B—SHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING
- B63B35/00—Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
- B63B35/44—Floating buildings, stores, drilling platforms, or workshops, e.g. carrying water-oil separating devices
- B63B2035/4433—Floating structures carrying electric power plants
- B63B2035/444—Floating structures carrying electric power plants for converting combustion energy into electric energy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/32—Hydrogen storage
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/10—Process efficiency
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/10—Process efficiency
- Y02P20/129—Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P90/00—Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
- Y02P90/45—Hydrogen technologies in production processes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- Combustion & Propulsion (AREA)
- General Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Ocean & Marine Engineering (AREA)
- Organic Chemistry (AREA)
- Structural Engineering (AREA)
- Civil Engineering (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Inorganic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Architecture (AREA)
- Filling Or Discharging Of Gas Storage Vessels (AREA)
Abstract
본 발명은, 부유식 발전 플랜트에서 전력을 생산하면서 버려지는 냉열과 폐열을 활용하여 수소를 생산하고, 에너지 효율을 증대시키고 운영 비용을 절감할 수 있는 부유식 발전 플랜트 및 부유식 발전 플랜트의 운용 방법에 관한 것이다.
본 발명에 따른 부유식 발전 플랜트는, 액화가스를 연료로 사용하여 전력을 생산하는 가스 엔진; 액화가스를 기화시켜 상기 가스 엔진으로 연료 가스를 공급하는 연료 공급 시스템; 상기 가스 엔진에서 상기 연료 가스의 연소에 의해 생성되는 폐열을 회수하여 스팀을 생산하는 폐열 회수 시스템; 상기 가스 엔진으로 공급하고 남은 연료 가스와 상기 폐열 회수 시스템에서 생산된 스팀을 이용하여 수소를 생산하는 수소 생산 시스템; 및 상기 생산된 수소를 상기 연료 공급 시스템으로 공급할 액화가스의 냉열을 이용하여 액화시키는 수소 액화 시스템;을 포함하는 것을 특징으로 한다. The present invention is a floating power plant and a method for operating a floating power plant capable of producing hydrogen by utilizing cold heat and waste heat discarded while generating power in a floating power plant, increasing energy efficiency and reducing operating costs. It is about.
A floating power plant according to the present invention includes a gas engine for generating electric power using liquefied gas as fuel; a fuel supply system supplying fuel gas to the gas engine by vaporizing liquefied gas; a waste heat recovery system for producing steam by recovering waste heat generated by combustion of the fuel gas in the gas engine; a hydrogen production system for producing hydrogen using the remaining fuel gas supplied to the gas engine and the steam produced by the waste heat recovery system; and a hydrogen liquefaction system for liquefying the produced hydrogen by using the cold heat of the liquefied gas to be supplied to the fuel supply system.
Description
본 발명은, 부유식 발전 플랜트에서 전력을 생산하면서 버려지는 냉열과 폐열을 활용하여 수소를 생산하고, 에너지 효율을 증대시키고 운영 비용을 절감할 수 있는 부유식 발전 플랜트 및 부유식 발전 플랜트의 운용 방법에 관한 것이다.The present invention is a floating power plant and a method for operating a floating power plant capable of producing hydrogen by utilizing cold heat and waste heat discarded while generating power in a floating power plant, increasing energy efficiency and reducing operating costs. It is about.
최근, 친환경 전력 생산에 대한 요구로 천연가스를 이용한 발전에 대한 관심이 증가하고 있다. 특히, 전력공급이 원활하지 않은 신흥개발국 등에서 가스 발전에 대한 관심이 높아지고 있다.Recently, interest in power generation using natural gas is increasing due to the demand for eco-friendly power production. In particular, interest in gas power generation is increasing in emerging countries where power supply is not smooth.
일반적으로, 천연가스는 생산지에서 극저온으로 액화된 액화천연가스(LNG; Liquefied Natural Gas)의 상태로 만들어진 후 LNG 운반선에 의해 목적지까지 원거리에 걸쳐 운반된다. LNG는 천연가스를 상압에서 약 -163℃의 극저온으로 냉각하여 얻어지는 것으로서 가스 상태의 천연가스일 때보다 그 부피가 대략 1/600로 감소되므로 해상을 통한 원거리 운반에 매우 적합하다. In general, natural gas is made in the state of liquefied natural gas (LNG; Liquefied Natural Gas), which is liquefied at a cryogenic temperature at a production site, and is then transported over a long distance to a destination by an LNG carrier. LNG is obtained by cooling natural gas to a cryogenic temperature of about -163 ° C. at atmospheric pressure, and its volume is reduced to about 1/600 of that of gaseous natural gas, so it is very suitable for long-distance transportation through sea.
LNG 운반선은, LNG를 싣고 바다를 운항하여 수요처에 LNG를 하역하기 위한 것이며, 이를 위해, 극저온의 LNG를 견딜 수 있는 LNG 저장탱크를 포함하고 있다. 통상 이러한 LNG 운반선은 LNG 저장탱크 내의 LNG를 액화된 상태로 그대로 육상 터미널에 하역하며, 하역된 LNG는 육상 터미널에 설치된 LNG 재기화 설비에 의해 재기화된 후, 소비처로 각각 공급된다. An LNG carrier is for loading and unloading LNG to a place of demand by operating the sea carrying LNG, and for this purpose, it includes an LNG storage tank capable of withstanding cryogenic LNG. Typically, such an LNG carrier unloads LNG in an LNG storage tank in a liquefied state to an onshore terminal, and the unloaded LNG is regasified by an LNG regasification facility installed in the onshore terminal and then supplied to consumers.
이와 같이, 가스 연료의 연소에 의해 전력을 생산하는 발전플랜트는 주로 육상, 특히 해안가에 설치되는 것이 일반적이었다. 해안가는 이러한 원료의 수급이 용이하다는 장점이 있다. 그러나, 용지 구입 등 기초 공사 비용이 비싸고, 주민들의 반대와 환경오염을 고려해야 한다. 또한, 여러 개의 섬들로 이루어진 동남아시아 국가 등에는 대용량의 가스 발전을 하는데 어려움이 많았다.As such, power generation plants that generate electricity by burning gas fuel are generally installed mainly on land, especially on the seashore. The coastal area has the advantage of easy supply and demand for these raw materials. However, the cost of foundation construction, such as land purchase, is expensive, and opposition from residents and environmental pollution must be taken into account. In addition, it was difficult to generate large-capacity gas power generation in Southeast Asian countries composed of several islands.
이러한 문제점을 해결하기 위하여, 발전플랜트를 육상에 고정한 형태에서 벗어나 선박이나 해상 구조물에 탑재하는 기술들이 개발되고 있다. 선박이나 해상 구조물은 플랜트를 설치하기 위한 용지 구입 비용이나, 기초 공사 비용을 절감할 수 있으면서도, 원료 수급이 용이한 곳이나 전력 공급이 필요한 곳에 시의적절하게 배치할 수 있다는 점에서 유리하다.In order to solve these problems, technologies for mounting the power plant on a ship or offshore structure, away from the fixed form on land, are being developed. Ships and offshore structures are advantageous in that they can be placed in a timely manner in a place where raw materials are easily supplied or where power supply is required, while reducing the cost of purchasing land for plant installation and the cost of foundation work.
이에, LNG를 저장하는 LNG 저장탱크, LNG를 재기화시키는 LNG 재기화 설비 및 재기화 가스를 이용하여 전력을 생산할 수 있는 발전 설비가 탑재되어, 선상에서 생산된 전력을 육상으로 송전할 수 있는 부유식 발전 플랜트(FSPP; Floating, Storage, Power Plant)의 개발이 요구된다. Accordingly, an LNG storage tank for storing LNG, an LNG regasification facility for regasifying LNG, and a power generation facility capable of generating power using the regasified gas are mounted, and a floating type capable of transmitting power generated on board to land. Development of a power plant (FSPP; Floating, Storage, Power Plant) is required.
기존의 부유식 발전 플랜트의 발전 설비는, 가스 터빈과 발전기를 구비하여, 재기화 가스를 이용하여 가스 터빈을 구동시키고, 발전기를 이용하여 가스 터빈의 구동력을 전기 에너지로 전환함으로써 전력을 생산하였다.A power generation facility of an existing floating power plant has a gas turbine and a generator, drives the gas turbine using regasification gas, and converts the driving force of the gas turbine into electric energy using the generator to produce electric power.
그러나, 가스 터빈의 발전 효율이 낮고, LNG의 냉열, 발전 플랜트에서 발생하는 폐열 등이 효과적으로 활용되지 못하고 그대로 버려짐으로써, 부유식 발전 플랜트의 에너지 효율이 낮다는 단점이 있었다. However, the power generation efficiency of the gas turbine is low, and the energy efficiency of the floating power plant is low because the cold heat of LNG and the waste heat generated in the power plant are not effectively utilized and are discarded.
따라서, 본 발명은 상술한 문제점을 해결하기 위하여 안출된 것으로, 액화가스의 냉열 및 발전 설비로부터 배출되는 폐열을 이용하여 부유식 발전 플랜트의 공정 효율 및 에너지 효율을 향상시킬 수 있는, 부유식 발전 플랜트 및 부유식 발전 플랜트의 운용 방법을 제공하고자 한다. Therefore, the present invention has been made to solve the above-mentioned problems, and the floating power plant, which can improve the process efficiency and energy efficiency of the floating power plant by using the cold heat of liquefied gas and waste heat discharged from power generation facilities. And to provide a method of operating a floating power plant.
상술한 목적을 달성하기 위한 본 발명의 일 측면에 따르면, 액화가스를 연료로 사용하여 전력을 생산하는 가스 엔진; 액화가스를 기화시켜 상기 가스 엔진으로 연료 가스를 공급하는 연료 공급 시스템; 상기 가스 엔진에서 상기 연료 가스의 연소에 의해 생성되는 폐열을 회수하여 스팀을 생산하는 폐열 회수 시스템; 상기 가스 엔진으로 공급하고 남은 연료 가스와 상기 폐열 회수 시스템에서 생산된 스팀을 이용하여 수소를 생산하는 수소 생산 시스템; 및 상기 생산된 수소를 상기 연료 공급 시스템으로 공급할 액화가스의 냉열을 이용하여 액화시키는 수소 액화 시스템;을 포함하는, 부유식 발전 플랜트가 제공된다. According to one aspect of the present invention for achieving the above object, a gas engine for generating electric power using liquefied gas as fuel; a fuel supply system supplying fuel gas to the gas engine by vaporizing liquefied gas; a waste heat recovery system for producing steam by recovering waste heat generated by combustion of the fuel gas in the gas engine; a hydrogen production system for producing hydrogen using the remaining fuel gas supplied to the gas engine and the steam produced by the waste heat recovery system; And a hydrogen liquefaction system for liquefying the produced hydrogen by using the cold heat of the liquefied gas to be supplied to the fuel supply system; including, a floating power plant is provided.
바람직하게는, 상기 수소 액화 시스템은, 상기 수소와 액화가스를 열교환시켜 수소를 냉각시키는 제1 열교환기;를 포함하고, 상기 제1 열교환기와 상기 연료 공급 시스템은, 상기 제1 열교환기에서 열교환에 의해 온도가 상승한 액화가스가 상기 연료 공급 시스템으로 공급되도록 하는 예열 라인;으로 연결될 수 있다.Preferably, the hydrogen liquefaction system includes a first heat exchanger that cools the hydrogen by exchanging heat between the hydrogen and the liquefied gas, and the first heat exchanger and the fuel supply system are connected to the heat exchange in the first heat exchanger. It may be connected to a preheating line for supplying liquefied gas whose temperature has risen by the fuel supply system.
바람직하게는, 상기 연료 공급 시스템은, 상기 액화가스를 기화시키는 연료 기화기; 상기 연료 기화기에서 기화된 연료 가스를 상기 가스 엔진에서 요구하는 압력으로 압축시키는 연료 압축기; 및 상기 연료 압축기에서 압축된 연료 가스를 상기 가스 엔진에서 요구하는 온도로 가열하는 연료 히터;를 포함하며, 상기 예열 라인은, 상기 제1 열교환기로부터 상기 연료 기화기로 연결되어, 상기 제1 열교환기에서 온도가 상승한 액화가스가 상기 연료 기화기로 공급될 수 있다.Preferably, the fuel supply system includes a fuel vaporizer for vaporizing the liquefied gas; a fuel compressor for compressing the fuel gas vaporized in the fuel vaporizer to a pressure required by the gas engine; and a fuel heater configured to heat the fuel gas compressed by the fuel compressor to a temperature required by the gas engine, wherein the preheating line is connected from the first heat exchanger to the fuel vaporizer so that the first heat exchanger Liquefied gas whose temperature has risen in may be supplied to the fuel vaporizer.
바람직하게는, 상기 수소 액화 시스템은, 상기 제1 열교환기에서 액화가스의 냉열에 의해 냉각된 수소를 더 냉각시키는 제2 열교환기; 및 상기 제1 열교환기로부터 제2 열교환기로 공급되는 수소 중 일부를 팽창에 의해 냉각시키는 팽창기;를 더 포함하고, 상기 제2 열교환기에서는, 상기 제1 열교환기에서 냉각된 수소가 상기 팽창기에서 팽창에 의해 냉각된 수소 냉매에 의해 냉각될 수 있다. Preferably, the hydrogen liquefaction system, the second heat exchanger for further cooling the hydrogen cooled by the cooling heat of the liquefied gas in the first heat exchanger; And an expander for cooling some of the hydrogen supplied from the first heat exchanger to the second heat exchanger by expansion, further comprising, in the second heat exchanger, the hydrogen cooled in the first heat exchanger expands in the expander. It can be cooled by the hydrogen refrigerant cooled by.
바람직하게는, 상기 수소 액화 시스템은, 상기 제2 열교환기에서 상기 수소 냉매에 의해 냉각된 수소를 팽창시켜 적어도 일부를 액화시키는 팽창밸브;를 더 포함할 수 있다.Preferably, the hydrogen liquefaction system may further include an expansion valve for liquefying at least a portion of the hydrogen cooled by the hydrogen refrigerant in the second heat exchanger.
바람직하게는, 상기 수소 액화 시스템은, 상기 팽창밸브를 통과한 수소를 기액분리하여 액체 상태의 수소를 액체 수소 탱크로 공급하는 분리기;를 더 포함할 수 있다.Preferably, the hydrogen liquefaction system may further include a separator for gas-liquid separation of hydrogen passing through the expansion valve and supplying hydrogen in a liquid state to a liquid hydrogen tank.
바람직하게는, 상기 연료 공급 시스템과 상기 수소 생산 시스템을 연결하는 수소 생산 라인;을 더 포함하고, 상기 수소 생산 시스템은, 상기 연료 가스와 상기 스팀을 개질반응시켜 수소를 생산하는 개질기;를 포함하며, 상기 수소 생산 라인은 상기 연료 압축기 후단으로부터 상기 개질기 전단으로 연결되어, 상기 연료 압축기에서 압축된 연료 가스가 상기 개질기로 공급될 수 있다.Preferably, a hydrogen production line connecting the fuel supply system and the hydrogen production system further includes, wherein the hydrogen production system includes a reformer for producing hydrogen by reforming the fuel gas and the steam, , The hydrogen production line may be connected from a rear end of the fuel compressor to a front end of the reformer, so that fuel gas compressed by the fuel compressor may be supplied to the reformer.
바람직하게는, 상기 액화가스를 재기화시켜 육상의 가스 수요처로 공급하는 재기화 시스템;을 더 포함하고, 상기 부유식 발전 플랜트에서는, 상기 액화가스를 이용하여 재기화 가스, 전력, 수소 기체 및 액체 수소가 생산될 수 있다.Preferably, a regasification system for regasifying the liquefied gas and supplying the liquefied gas to an onshore gas demand place; further comprising, in the floating power plant, regasification gas, electric power, hydrogen gas and liquid using the liquefied gas. Hydrogen can be produced.
상술한 목적을 달성하기 위한 본 발명의 다른 일 측면에 따르면, 액화가스를 가스 엔진의 연료 가스로 공급하는 단계; 상기 가스 엔진에서 연료 가스를 연료로 사용하여 전력을 생산하는 단계; 및 상기 가스 엔진에서 연료 가스의 연소에 의해 생성되는 폐열을 회수하여 스팀을 생산하는 단계;를 포함하고, 상기 연료 가스와 스팀을 원료로 사용하여 수소를 생산하는 단계; 및 상기 생산된 수소를 상기 기화시킬 액화가스와 열교환시켜 액화시키는 단계;를 포함하는, 부유식 발전 플랜트의 운용 방법이 제공된다. According to another aspect of the present invention for achieving the above object, supplying liquefied gas to the fuel gas of the gas engine; generating electric power by using fuel gas as fuel in the gas engine; and generating steam by recovering waste heat generated by combustion of the fuel gas in the gas engine, and producing hydrogen using the fuel gas and steam as raw materials; And a step of liquefying the produced hydrogen by heat exchange with the liquefied gas to be vaporized; a method of operating a floating power plant including a is provided.
바람직하게는, 상기 액화가스를 가스 엔진의 연료 가스로 공급하는 단계는, 상기 액화가스를 기화시키는 단계; 및 상기 액화가스를 기화시킨 연료 가스를 압축시키는 단계;를 포함하고, 상기 액화가스를 기화시키는 단계에서 액화가스는, 상기 수소를 액화시키면서 가열된 액화가스를 포함할 수 있다.Preferably, the step of supplying the liquefied gas as fuel gas of a gas engine comprises: vaporizing the liquefied gas; and compressing the fuel gas obtained by vaporizing the liquefied gas. In the vaporizing of the liquefied gas, the liquefied gas may include liquefied gas heated while liquefying the hydrogen.
바람직하게는, 상기 압축된 연료 가스를 상기 수소를 생산하는 단계의 원료로 공급할 수 있다.Preferably, the compressed fuel gas may be supplied as a raw material in the step of producing the hydrogen.
바람직하게는, 상기 수소를 액화가스와 열교환시켜 액화시키는 단계는, 상기 수소를 액화가스와 열교환시켜 1차 냉각시키는 단계; 및 상기 1차 냉각된 수소 중 일부를 분기시켜 팽창에 의해 더 냉각시키고, 상기 팽창에 의해 더 냉각된 수소를 냉매로 사용하여, 분기시키고 남은 나머지 수소를 2차 냉각시키는 단계;를 더 포함할 수 있다.Preferably, the step of liquefying the hydrogen by heat exchange with liquefied gas comprises: firstly cooling the hydrogen by heat exchange with liquefied gas; and branching some of the primarily cooled hydrogen to further cool it by expansion, and using the expanded hydrogen as a refrigerant to branch off and secondarily cool the remaining hydrogen. have.
바람직하게는, 상기 2차 냉각된 수소를 팽창밸브에 의해 더 냉각시키는 단계; 및 상기 팽창밸브에 의해 더 냉각된 수소를 기액분리하는 단계;를 더 포함하여, 상기 기액분리된 액체 수소는 저장하고, 분리된 기체 수소는 상기 수소를 1차 냉각시키는 단계로 재공급할 수 있다.Preferably, further cooling the secondary cooled hydrogen by an expansion valve; and gas-liquid separation of the hydrogen further cooled by the expansion valve; further including, the gas-liquid separated liquid hydrogen is stored, and the separated gas hydrogen may be re-supplied to the step of first cooling the hydrogen.
바람직하게는, 상기 액화가스를 기화시켜 육상의 가스 수요처로 공급하는 단계;를 더 포함하고, 상기 부유식 발전 플랜트에서는, 상기 액화가스를 이용하여 재기화 가스, 전력, 수소 및 액체 수소를 생산할 수 있다.Preferably, the step of vaporizing the liquefied gas and supplying it to a gas demand place on land; further comprising, in the floating power plant, using the liquefied gas to produce regasified gas, power, hydrogen and liquid hydrogen have.
본 발명에 따른 부유식 발전 플랜트 및 부유식 발전 플랜트의 운용 방법은, 액화가스를 재기화시켜 가스 수요처로 공급하고, 재기화 가스를 이용하여 전력을 생산하는 것과 동시에, 전력을 생산하면서 생성된 폐열을 이용하여 청정 에너지인 수소를 생산할 수 있다.The floating power plant and the operating method of the floating power plant according to the present invention regasify liquefied gas and supply it to a gas demand place, and use the regasified gas to produce power, and at the same time, waste heat generated while producing power. can be used to produce hydrogen, a clean energy.
청정에너지인 수소를 생산함으로써, 에너지 청정화에 기여할 수 있다. By producing hydrogen, which is clean energy, it can contribute to energy purification.
또한, 액화가스의 냉열을 이용하여 수소를 액화시켜 저장함으로써, 저장 및 수소 수요처로의 수소 공급이 용이하다.In addition, by using the cold heat of liquefied gas to liquefy and store hydrogen, it is easy to store and supply hydrogen to a hydrogen demand place.
또한, 수소를 액화시키면서 가열된 액화가스를 발전용 연료로 사용함으로써, 액화가스를 발전 설비로 공급하기 위한 열교환 효율을 높일 수 있고, 열교환기의 요구 사양을 낮출 수 있어 경제적 측면에서 유리하다.In addition, by using the liquefied gas heated while liquefying hydrogen as a fuel for power generation, it is possible to increase the heat exchange efficiency for supplying the liquefied gas to the power generation facility and lower the required specifications of the heat exchanger, which is advantageous from an economic point of view.
도 1은 본 발명의 일 실시예에 따른 부유식 발전 플랜트의 공정 설비를 개략적으로 도시한 구성도이다. 1 is a configuration diagram schematically showing process equipment of a floating power plant according to an embodiment of the present invention.
본 발명의 동작상 이점 및 본 발명의 실시에 의하여 달성되는 목적을 충분히 이해하기 위해서는 본 발명의 바람직한 실시예를 예시하는 첨부도면 및 첨부도면에 기재된 내용을 참조하여야만 한다.In order to fully understand the operational advantages of the present invention and the objects achieved by the practice of the present invention, reference should be made to the accompanying drawings illustrating preferred embodiments of the present invention and the contents described in the accompanying drawings.
이하 첨부한 도면을 참조하여 본 발명의 바람직한 실시예에 대해 구성 및 작용을 상세히 설명하면 다음과 같다. 여기서 각 도면의 구성요소들에 대해 참조 부호를 부가함에 있어 동일한 구성요소들에 한해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호로 표기되었음에 유의하여야 한다.Hereinafter, the configuration and operation of a preferred embodiment of the present invention will be described in detail with reference to the accompanying drawings. In adding reference numerals to the components of each drawing, it should be noted that the same components are marked with the same numerals as much as possible, even if they are displayed on different drawings.
후술하는 본 발명의 일 실시예에서 액화가스는, 가스를 저온으로 액화시켜 수송할 수 있는 액화가스일 수 있으며, 예를 들어, LNG(Liquefied Natural Gas), LEG(Liquefied Ethane Gas), LPG(Liquefied Petroleum Gas), 액화에틸렌가스(Liquefied Ethylene Gas), 액화프로필렌가스(Liquefied Propylene Gas) 등과 같은 액화 석유화학 가스일 수 있다. 다만, 후술하는 실시예에서는 대표적인 액화가스인 LNG가 적용되는 것을 예로 들어 설명하기로 한다. In an embodiment of the present invention described later, the liquefied gas may be a liquefied gas that can be transported by liquefying the gas at a low temperature, for example, LNG (Liquefied Natural Gas), LEG (Liquefied Ethane Gas), LPG (Liquefied Gas) Petroleum Gas), liquefied ethylene gas (Liquefied Ethylene Gas), liquefied propylene gas (Liquefied Propylene Gas) and the like. However, in the embodiment to be described later, it will be described as an example in which LNG, which is a representative liquefied gas, is applied.
또한, 후술하는 본 발명의 일 실시예에서 부유식 발전 플랜트는, 액화가스를 발전용 엔진의 연료로 사용할 수 있는 엔진이 설치되고, 발전용 엔진에서 생산한 전력을 육상의 가스 수요처로 공급할 수 있는 것을 특징으로 한다. In addition, in one embodiment of the present invention described later, the floating power plant has an engine capable of using liquefied gas as a fuel for a power generation engine, and can supply power generated by the power generation engine to a gas demand place on land. characterized by
또한, 부유식 발전 플랜트는, 추진 능력을 갖는 선박일 수도 있고, BMPP(Barge Mounted Power Plant), FSPP(Floating Storage Power Plnat)와 같이 추진 능력을 갖지는 않지만 해상에 부유하고 있는 해상 구조물을 포함할 수 있다. 다만, 후술하는 실시예에서는 FSPP에 적용되는 것을 예로 들어 설명하기로 한다. In addition, the floating power plant may be a ship having propulsion capability, and may include offshore structures that do not have propulsion capability but are floating on the sea, such as BMPP (Barge Mounted Power Plant) and FSPP (Floating Storage Power Plnat). can However, in an embodiment to be described later, an example applied to FSPP will be described.
도 1은 본 발명의 일 실시예에 따른 부유식 발전 플랜트의 공정 설비를 개략적으로 도시한 구성도이다. 이하, 도 1을 참조하여, 본 발명의 일 실시예에 따른 부유식 발전 플랜트 및 부유식 발전 플랜트의 운용 방법을 설명하기로 한다.1 is a configuration diagram schematically showing process equipment of a floating power plant according to an embodiment of the present invention. Hereinafter, with reference to FIG. 1, a floating power plant and a floating power plant operating method according to an embodiment of the present invention will be described.
본 발명의 일 실시예에 따른 부유식 발전 플랜트는, LNG를 재기화시켜 육상의 수요처로 공급하는 재기화 시스템(100); LNG를 이용하여 전력을 생산하는 연료 공급 시스템(200); 연료 공급 시스템(200)으로부터 배출되는 폐열을 회수하는 폐열 회수 시스템(300); LNG를 이용하여 수소를 생산하는 수소 생산 시스템(400); 및 LNG의 이용하여 수소를 액화시키는 수소 액화 시스템(500);을 포함한다.A floating power plant according to an embodiment of the present invention includes a
본 실시예의 부유식 발전 플랜트는, LNG를 저장하는 LNG 저장탱크(T);를 더 포함할 수 있다. 도 1에는 하나의 LNG 저장탱크(T)만을 도시하였으나, 본 실시예의 부유식 발전 플랜트에는 다수개의 LNG 저장탱크(T)가 설치될 수 있다. The floating power plant of this embodiment may further include an LNG storage tank (T) for storing LNG. Although only one LNG storage tank (T) is shown in FIG. 1, a plurality of LNG storage tanks (T) may be installed in the floating power plant of this embodiment.
본 실시예의 재기화 시스템(100), 연료 공급 시스템(200), 수소 생산 시스템(400) 및 수소 액화 시스템(500)에서 사용되는 LNG는 LNG 저장탱크(T)에 저장되어 있는 것일 수 있다. The LNG used in the
본 실시예에서는 부유식 발전 플랜트에 LNG 저장탱크(T)가 설치되고, LNG 저장탱크(T)로부터 재기화 시스템(100), 연료 공급 시스템(200), 수소 생산 시스템(400) 및 수소 액화 시스템(500) 중 어느 하나 이상으로 LNG가 이송되는 것을 예로 들어 설명하기로 한다. 그러나, 이에 한정하는 것은 아니고, 본 발명에 따른 부유식 발전 플랜트는 LNG 저장탱크(T)가 설치되지 않고, 외부 LNG 공급처, 예를 들어 육상에 설치된 LNG 저장탱크나, LNG 저장탱크가 설치된 또 다른 선박으로부터 직접 LNG를 이송받아 활용할 수도 있을 것이다.In this embodiment, an LNG storage tank (T) is installed in a floating power plant, and a
본 실시예에서 LNG는, LNG 저장탱크(T)에 약 1기압에서 약 -163℃로 저장되어 있을 수 있다. LNG 저장탱크(T)는 극저온의 LNG가 액체 상태를 유지할 수 있도록, 단열 구조를 가질 수 있다.In this embodiment, LNG may be stored at about -163 ° C. at about 1 atm in the LNG storage tank (T). The LNG storage tank T may have an insulating structure so that cryogenic LNG can maintain a liquid state.
LNG 저장탱크(T)가 단열처리되어 있더라도, 외부로부터의 열 침입에 의해 LNG는 자연기화할 수 있다. LNG가 자연기화하여 증발가스(BOG; Boil-Off Gas)가 생성되고, 증발가스의 생성은 LNG 저장탱크(T)의 내압을 상승시킨다. LNG 저장탱크(T)는, 어느 정도의 내압 상승을 견딜 수 있는 내압성 구조를 가질 수 있다. Even if the LNG storage tank T is insulated, LNG may be spontaneously vaporized due to heat intrusion from the outside. LNG is naturally vaporized to generate boil-off gas (BOG), and the generation of the boil-off gas increases the internal pressure of the LNG storage tank (T). The LNG storage tank (T) may have a pressure-resistant structure capable of withstanding a certain degree of internal pressure increase.
예를 들어, LNG 저장탱크(T)는 LNG 저장탱크(T)의 내압이 설정값 이상으로 상승하면, 안전밸브(미도시)를 개방하여 증발가스를 LNG 저장탱크(T) 외부로 배출시키도록 설계되어 있는 것일 수 있다. For example, when the internal pressure of the LNG storage tank (T) rises above a set value, the LNG storage tank (T) opens a safety valve (not shown) to discharge the boil-off gas to the outside of the LNG storage tank (T). It may be by design.
도면에 도시하지는 않았지만, LNG 저장탱크(T)로부터 배출된 증발가스 역시, 재기화 시스템(100), 연료 공급 시스템(200), 수소 생산 시스템(400) 및 수소 액화 시스템(500) 중 어느 하나 이상에서 활용될 수 있다. Although not shown in the drawings, the boil-off gas discharged from the LNG storage tank (T) also includes any one or more of the
또한, LNG 저장탱크(T)의 내부에는, LNG를 외부로 배출시키는 LNG 공급펌프(미도시)가 구비되어 있을 수 있다. LNG 공급펌프는 반잠수식 펌프일 수 있고, 하나 이상 구비될 수 있다.In addition, an LNG supply pump (not shown) may be provided inside the LNG storage tank T to discharge LNG to the outside. The LNG supply pump may be a semi-submersible pump, and one or more may be provided.
본 실시예의 재기화 시스템(100)은, 가스 수요처로 공급할 LNG를 기화시키는 기화기(120); 및 재기화시킬 LNG를 압축시켜 기화기(120)로 공급하는 재기화 펌프(110);를 포함한다. The
또한, 본 실시예의 재기화 시스템(100), 즉, LNG 저장탱크(T), 재기화 펌프(110), 기화기(120) 및 가스 수요처는 재기화 라인(GL1);에 의해 연결되고, LNG는 재기화 라인(GL1)을 따라 유동하며 재기화되고, LNG 저장탱크(T)로부터 가스 수요처로 이송된다. 본 실시예에서 가스 수요처는 발전소 등 육상(shore)에 설치되어 있는 가스 수요처일 수 있다. In addition, the
본 실시예의 재기화 펌프(110)는, 재기화시켜 가스 수요처로 공급할 LNG를 가스 수요처에서 요구하는 압력 또는 임계압력 이상으로 압축시킨다. 예를 들어, 가스 수요처에서 요구하는 재기화 가스의 압력은, 30 ~ 40 barg, 또는 50 ~ 70 barg, 또는 100 barg일 수 있고, 재기화 펌프(110)는 LNG를 30 ~ 40 barg, 50 ~ 70 barg 또는 100 barg로 압축하거나 후단 압력 손실을 고려하여 이보다 약간 높은 압력으로 압축할 수 있다.The
또한, 본 실시예에서 재기화 펌프(110)를 이용하여 기화시킬 LNG를 LNG의 임계압력보다 높은 압력으로 압축시킴으로써 기화기(120)에서의 열교환 효율을 높일 수 있다. 즉, 재기화 펌프(110)에서 압축되어 기화기(120)로 이송되는 LNG는 초임계상태일 수 있다.In addition, in the present embodiment, by using the
본 실시예의 기화기(120)는, 재기화 펌프(110)에서 가스 수요처에서 요구하는 압력 또는 그보다 약간 높은 압력으로 압축된 LNG를 열교환에 의해 기화시킨다. The
상술한 바와 같이, 재기화 펌프(110)로부터 기화기(120)로 이송되는 고압의 LNG는 초임계상태일 수 있다. 본 명세서에서 '기화시킨다'는 것은, 단순히 액체 상에서 기체 상으로의 상변화만을 의미하는 것은 아니고, 열매체로부터 LNG로 열 에너지가 이동하는 것, 즉 LNG가 열매체로부터 열 에너지를 얻어 온도가 상승하는 것을 포함하는 개념이다. As described above, the high-pressure LNG transferred from the
또한, 본 실시예에 따르면, 기화기(120)는, 압축 LNG를 기화시킬 열매체가 유동하는 열원 라인(ML1);이 연결될 수 있다. 기화기(120)로 공급되는 열매체는, 해수, 청수 또는 글리콜 워터일 수 있다. 본 실시예에서는 기화기(120)로 공급되는 열매체가 해수인 것을 예로 들어 설명하기로 한다. In addition, according to this embodiment, the
기화기(120)에서 열교환에 의해 LNG는 기화되고 해수는 냉각된다. 기화기(120)에서 LNG를 기화시키면서 냉각된 열매체, 즉 해수는 열원 라인(ML1)을 통해 기화기(120)로부터 배출된다. LNG is vaporized by heat exchange in the
도면에 도시하지는 않았지만, 기화기(120)에서 열교환에 의해 냉각된 해수는 바로 해상으로 배출될 수도 있고, 온도 조절, 정화 등 별도의 처리 공정을 거친 후 해상으로 배출될 수도 있으며, 적어도 일부는 기화기(120)로 재순환될 수도 있다.Although not shown in the figure, the seawater cooled by heat exchange in the
또한, 열원 라인(ML1)에는 열원 라인(ML1)을 따라 기화기(120)로 유동하는 해수의 유로 개폐와 유량을 조절하는 유량 조절 밸브(미도시);가 더 구비될 수 있다. In addition, a flow control valve (not shown) may be further provided in the heat source line ML1 to open and close the passage and adjust the flow rate of seawater flowing to the
도시하지 않은 제어부는, 기화기(120)에서 기화시킬 LNG의 유량, 온도, 기화기(120)로 공급되는 해수의 온도 등에 따라 유량 조절 밸브의 개폐 및 개도량을 조절하여, 기화기(120)로 공급되는 해수의 유량을 조절할 수 있다.The control unit, not shown, controls the opening and closing of the flow control valve according to the flow rate and temperature of LNG to be vaporized in the
또한, 도면에 도시되지는 않았지만, 본 실시예의 재기화 시스템(100)은, LNG 저장탱크(T)에서 생성된 증발가스를 압축하는 압축기(미도시)를 더 구비하여, 증발가스를 가스 수요처에서 요구하는 압력으로 압축시켜 가스 수요처로 공급할 수도 있다. 또는, 증발가스를 응축시키는 응축기(미도시)를 더 구비하여, 증발가스를 재액화시킨 후 기화기(120)에서 재기화시켜 가스 수요처로 공급할 수도 있다. In addition, although not shown in the drawing, the
본 실시예의 연료 공급 시스템(200)은, LNG를 기화시킨 연료 가스를 연료로 사용하여 전력을 생산하는 가스 엔진(240); 가스 엔진(240)으로 공급할 LNG를 기화시키는 연료 기화기(210); 연료 기화기(220)에서 기화된 연료 가스를 압축하는 연료 압축기(220); 및 가스 엔진(240)으로 공급할 연료 가스의 온도를 조절하는 연료 히터(230);를 포함한다.The
본 실시예의 연료 공급 시스템(200), 즉, LNG 저장탱크(T), 연료 기화기(210), 연료 압축기(220), 연료 히터(230) 및 가스 엔진(240)은 연료 공급 라인(GL2);에 의해 연결되고, LNG는 연료 공급 라인(GL2)을 따라 유동하며 연료화되고, LNG 저장탱크(T)로부터 가스 엔진(240)으로 이송된다.The
가스 엔진(240)은 엔진의 구동력을 전기 에너지로 전환하는 발전기(미도시)가 연결되어 있을 수 있다. 발전기는 연료 가스의 연소에 의한 구동력을 전기 에너지로 전환하고, 생산된 전기 에너지는 가스 엔진(240)과 전력 수요처를 연결하는 전력 공급 라인(PL)을 통해 송전한다. 본 실시예에서 전력 수요처는 육상에 설치되어 있을 수 있다. 또한, 도면에 도시하지는 않았지만, 가스 엔진(240)에 의해 생산된 전력은 본 실시예의 부유식 발전 플랜트 내 전력 수요처로 공급될 수도 있을 것이다. A generator (not shown) may be connected to the
본 실시예의 가스 엔진(240)은, DFDE(Dual Fuel Diesel Electric) 엔진일 수 있다. DFDE 엔진은, 4행정으로 구성되며, 약 3 bar 내지 8 bar, 또는 약 4 bar 내지 6.5 bar, 또는 약 6.5 bar 정도의 저압 천연가스를 연소공기 입구에 주입하여, 피스톤이 올라가면서 압축을 시키는 오토 사이클(Otto Cycle)을 채택하는 저압가스 분사엔진이다. DFDE 엔진은, 선박의 발전용 엔진으로 구비될 수 있다.The
연료 기화기(210)는, LNG 저장탱크(T)로부터 가스 엔진(240)의 연료로 공급할 LNG를 열교환에 의해 기화시킨다. The
또한, 연료 기화기(210)는, LNG를 기화시킬 열매체가 유동하는 제1 스팀라인(SL1);이 연결될 수 있다. 연료 기화기(210)로 공급되는 열매체는, 스팀 또는 글리콜 워터일 수 있다. 본 실시예에서는 연료 기화기(210)로 공급되는 열매체가 스팀인 것을 예로 들어 설명하기로 한다. 또한, 본 실시예에서 스팀은, 후술할 폐열 회수 시스템(300)에서 생산된 것일 수 있다. In addition, the
연료 기화기(210)에서 열교환에 의해 LNG는 기화되고 스팀은 냉각되며 스팀의 일부는 응축될 수 있다. 연료 기화기(210)에서 LNG를 기화시키면서 냉각된 열매체, 즉 스팀은 제1 청수 회수라인(WL1)을 통해 연료 기화기(210)로부터 배출된다. LNG is vaporized by heat exchange in the
도면에 도시하지는 않았지만, 연료 기화기(210)에서 열교환에 의해 냉각된 스팀은 외부로 배출시킬 수도 있고, 완전 응축 등 처리 공정을 거친 후 후술할 폐열 회수 시스템(300)으로 재순환시킬 수도 있다.Although not shown in the figure, the steam cooled by heat exchange in the
또한, 제1 스팀라인(SL1)에는 제1 스팀라인(SL1)을 따라 연료 기화기(210)로 유동하는 스팀의 유로 개폐와 유량을 조절하는 제1 스팀 유량 조절 밸브(미도시);가 더 구비될 수 있다. In addition, a first steam flow control valve (not shown) is further provided in the first steam line SL1 to open and close the passage and adjust the flow rate of steam flowing to the
도시하지 않은 제어부는, 연료 기화기(210)에서 기화시킬 LNG의 유량, 온도, 연료 기화기(210)로 공급되는 스팀의 온도 등에 따라 제1 스팀 유량 조절 밸브의 개폐 및 개도량을 조절하여, 연료 기화기(210)로 공급되는 스팀의 유량을 조절할 수 있다.The control unit (not shown) controls the opening and closing of the first steam flow control valve according to the flow rate and temperature of LNG to be vaporized in the
또는, 제1 스팀 유량 조절 밸브는 제1 청수 회수라인(WL1) 상에 구비될 수도 있을 것이다. Alternatively, the first steam flow control valve may be provided on the first fresh water recovery line WL1.
본 실시예의 가스 엔진(240)은, 연료 가스의 메탄가 제한이 있고, 메탄가 제한을 충족하지 못하는 연료 가스를 연료로 공급하면, 노킹 현상을 일으킬 수 있으므로, 연료 가스의 메탄가 조절이 필요하다. The
본 실시예에 따르면, 제1 스팀 유량 조절 밸브를 제어하여, 연료 기화기(210)에서 기화되는 LNG의 온도를 조절함으로써, 가스 엔진(240)으로 공급되는 연료 가스의 메탄가를 조절할 수 있다. According to this embodiment, the methane number of the fuel gas supplied to the
예를 들어, 연료 기화기(210)의 기화 온도를 낮게하면, 기화된 가스의 성분 중에 메탄이 차지하는 비율이 높아지고, 프로판, 부탄 등의 중탄화수소의 비율은 낮아지므로, 연료 기화기(210)에서 기화된 연료 가스의 메탄가는 높아진다. For example, if the vaporization temperature of the
반대로, 연료 기화기(210)의 기화 온도를 높게하면, 기화된 가스의 성분 중에 중탄화수소가 많아지게 되므로, 연료 기화기(210)에서 기화된 연료 가스의 메탄가는 낮아진다.Conversely, if the vaporization temperature of the
본 실시예의 연료 압축기(220)는, 연료 기화기(210)에서 기화된 연료 가스를 가스 엔진(240)에서 요구하는 압력, 즉, 약 3 bar 내지 8 bar, 또는 약 4 bar 내지 6.5 bar, 또는 약 6.5 bar로 압축시킬 수 있다.The
또한, 연료 압축기(220)는 다수개의 압축기로 구성되는 다단압축기일 수 있다. 예를 들어, 연료 압축기(220)는 4개의 압축기가 직렬로 연결되어, 연료 가스를 4단계에 걸쳐 가스 엔진(240)에서 요구하는 압력으로 압축시킬 수 있다. 다수개의 압축기의 각 후단에는 압축에 의해 온도가 상승한 연료 가스를 냉각시키는 인터쿨러가 구비될 수 있다. 연료 압축기(220)의 단수는 이에 한정하는 것은 아니다.Also, the
본 실시예의 연료 히터(230)는, 연료 압축기(220)에서 압축된 연료 가스의 온도를, 가스 엔진(240)에서 요구하는 조건에 맞도록 조절할 수 있다. 상술한 바와 같이, 가스 엔진(240)의 메탄가 제한으로 인해, 연료 기화기(210)에서의 기화 온도가 제어되므로, 연료 히터(230)는, 메탄가가 조절된 연료 가스의 온도가 가스 엔진(240)의 연료 조건에 부합하도록 연료 가스를 가열할 수 있다.The
연료 히터(230)는, 연료 가스를 가열할 열매체가 유동하는 제2 스팀라인(SL2);이 연결될 수 있다. 연료 히터(230)로 공급되는 열매체는, 스팀 또는 글리콜 워터일 수 있다. 본 실시예에서는 연료 히터(230)로 공급되는 열매체가 스팀인 것을 예로 들어 설명하기로 한다. 또한, 본 실시예에서 스팀은, 후술할 폐열 회수 시스템(300)에서 생산된 것일 수 있다. The
연료 히터(230)에서 열교환에 의해 연료 가스는 가열되고 스팀은 냉각되며 스팀의 일부는 응축될 수 있다. 연료 히터(230)에서 연료 가스를 가열시키면서 냉각된 열매체, 즉 스팀은 제2 청수 회수라인(WL2)을 통해 연료 히터(230)로부터 배출된다. Fuel gas is heated by heat exchange in the
도면에 도시하지는 않았지만, 연료 히터(230)에서 열교환에 의해 냉각된 스팀은 외부로 배출시킬 수도 있고, 완전 응축 등 처리 공정을 거친 후 후술할 폐열 회수 시스템(300)으로 재순환시킬 수도 있다.Although not shown in the drawing, the steam cooled by heat exchange in the
또한, 제2 스팀라인(SL2)에는 제2 스팀라인(SL2)을 따라 연료 히터(230)로 유동하는 스팀의 유로 개폐와 유량을 조절하는 제2 스팀 유량 조절 밸브(미도시);가 더 구비될 수 있다. In addition, a second steam flow control valve (not shown) is further provided in the second steam line SL2 to open and close the passage and adjust the flow rate of steam flowing to the
도시하지 않은 제어부는, 연료 히터(230)에서 가열할 연료 가스의 유량, 온도, 연료 히터(230)로 공급되는 스팀의 온도 등에 따라 제2 스팀 유량 조절 밸브의 개폐 및 개도량을 조절하여, 연료 히터(230)로 공급되는 스팀의 유량을 조절할 수 있다.The control unit (not shown) controls the opening and closing of the second steam flow control valve according to the flow rate and temperature of the fuel gas to be heated by the
또는, 제1 스팀 유량 조절 밸브는 제2 청수 회수라인(WL2) 상에 구비될 수도 있을 것이다.Alternatively, the first steam flow control valve may be provided on the second fresh water recovery line WL2.
연료 히터(230)에서 온도가 조절된 연료 가스는 연료 공급 라인(GL2)을 따라 가스 엔진(240)으로 연료로서 공급된다. The fuel gas whose temperature is controlled in the
또한, 도면에 도시하지는 않았지만, LNG 저장탱크(T)로부터 배출된 증발가스를 가스 엔진(240)에서 요구하는 압력으로 압축하는 증발가스 압축기(미도시)를 더 구비하여, 가스 엔진(240)의 연료로 공급할 수도 있다. 증발가스는 LNG가 자연기화한 것으로, 메탄이 주성분이며, 따라서 메탄가를 조절할 필요가 없을 수 있다. 증발가스 압축기는 증발가스를 압축하기 위한 용도로 별도로 구비할 수도 있고, 연료 압축기(220)를 활용할 수도 있을 것이다. In addition, although not shown in the drawings, a boil-off gas compressor (not shown) for compressing the boil-off gas discharged from the LNG storage tank T to a pressure required by the
본 실시예의 가스 엔진(240)은, 연료 공급 라인(GL2)을 통해 연료 가스를 공급받고, 연료의 연소에 의해 구동되며, 연료의 연소에 의해 연소가스가 생성된다. The
본 실시예의 폐열 회수 시스템(300)은, 가스 엔진(240)으로부터 배출되는 연소가스의 연소열을 이용하여 스팀을 생산하는 이코노마이저(310);를 포함한다. The waste
가스 엔진(240)과 이코노마이저(310)는 엔진 배기가스 라인(EL1)에 의해 연결되고, 연소가스는 가스 엔진(240)으로부터 엔진 배기가스 라인(EL1)을 따라 이코노마이저(310)로 공급된다. The
또한, 이코노마이저(310)는 청수 공급라인(WL); 및 스팀 공급라인(SL);이 연결된다. 청수 공급라인(WL)을 따라 연소가스의 열에너지에 의해 스팀을 생성할 청수가 이코노마이저(310)로 공급된다. 또한, 이코노마이저(310)에서 생성된 스팀은 스팀 공급라인(SL)을 따라 배출되어 스팀 수요처로 공급된다. In addition, the
본 실시예의 스팀 수요처는, 상술한 연료 기화기(210) 및 연료 히터(230)를 포함할 수 있고, 제1 스팀라인(SL1) 및 제2 스팀라인(SL2)은 스팀 공급라인(SL)으로부터 분기될 수 있다. The steam demand point of this embodiment may include the
또한, 스팀 수요처는, 후술할 수소 생산 시스템(400)을 포함할 수 있다. 수소 생산 시스템(400)과 연결되는 제3 스팀라인(SL3)은 스팀 공급라인(SL)으로부터 분기될 수 있다. In addition, the steam demand place may include a
도시하지 않은 제어부는, 제1 스팀라인(SL1), 제2 스팀라인(SL2) 및 제3 스팀라인(SL3)으로 공급할 스팀의 유량을 제어할 수 있다. A control unit (not shown) may control the flow rate of steam to be supplied to the first steam line SL1 , the second steam line SL2 , and the third steam line SL3 .
이코노마이저(310)에서 청수와의 열교환에 의해 스팀을 생성하면서 온도가 낮아진 연소가스는 엔진 배기가스 라인(EL1)을 따라 대기 중으로 배출될 수 있다. The combustion gas whose temperature is lowered while steam is generated by heat exchange with fresh water in the
또한, 연소가스는 이코노마이저(310)로 공급되기 전 또는 이코노마이저(310)로부터 대기 중으로 배출되기 전에, 정화 공정 등 별도의 처리과정을 거칠 수 있다. In addition, the combustion gas may undergo a separate treatment process such as a purification process before being supplied to the
본 실시예의 수소 생산 시스템(400)은, 수소를 생산하기 위한 원료로서 천연가스를 압축하는 수소 생산용 압축기(410); 천연가스와 스팀을 개질반응시켜 수소를 생산하는 개질기(430); 및 개질반응에 의해 생성된 수소를 저장하는 수소 기체 탱크(460);를 포함한다.The
본 실시예에 따르면, 수소 생산 시스템(400)으로 수소를 생산하기 위한 원료로서 LNG를 기화시킨 천연가스, 또는 LNG 저장탱크(T)로부터 생성된 증발가스를 활용할 수 있다. 본 실시예에서는, 연료 공급 시스템(200)에서 기화시킨 연료 가스를 수소 생산의 원료로 사용하는 것을 예로 들어 설명하기로 한다. According to this embodiment, as a raw material for producing hydrogen with the
즉, 본 실시예에 따르면, 연료 공급 라인(GL2)으로부터 수소 생산용 압축기(410)로 연결되는 수소 생산라인(GL4);이 구비될 수 있다. 연료 기화기(210)에서 기화되고, 연료 압축기(220)에서 압축된 연료 가스는 수소 생산라인(GL4)을 따라 수소 생산용 압축기(410)로 공급될 수 있다. That is, according to the present embodiment, a hydrogen production line GL4 connected from the fuel supply line GL2 to the
상술한 바와 같이, 연료 기화기(210)에서 기화된 연료 가스는 가스 엔진(240)의 메탄가 제한으로 인해, 메탄가가 조절되므로, 수소 생산라인(GL4)을 따라 수소 생산용 압축기(410)로 공급되는 천연가스는 메탄이 주성분이다. As described above, the fuel gas vaporized in the
따라서, 본 실시예에 따르면, 가스 엔진(240)으로 공급하기 위해 기화되고 압축된 연료 가스 중 일부 또는 전부, 또는, 가스 엔진(240)으로 공급되고 남은 가스 연료를, 즉, 메탄이 주성분인 천연가스를 수소 생산 시스템(400)의 수소 생산을 위한 원료로 공급함으로써, 수소 생산의 효율을 높일 수 있다. Therefore, according to the present embodiment, some or all of the vaporized and compressed fuel gas to be supplied to the
또한, 가스 엔진(240)에서 요구하는 압력으로 1차로 압축된 가스 연료를 수소 생산용 압축기(410)로 공급함으로써, 개질 반응에 필요한 압축 에너지를 절감할 수 있다. In addition, by supplying gas fuel primarily compressed at a pressure required by the
본 실시예의 수소 생산용 압축기(410)는, 천연가스를 개질 반응에 적합한 압력으로 압축시킨다. 예를 들어, 수소 생산용 압축기(410)는 천연가스를 약 30 내지 50 bar로 압축시킬 수 있다.The
본 실시예의 개질기(430)는, 수소 생산용 압축기(410)에서 압축된 천연가스와 스팀을 개질반응시켜 수소를 생산한다. The
본 실시예에 따른 수소 생산 시스템(400)은, 제3 스팀라인(SL3)에 의해 폐열 회수 시스템(300)과 연결된다. 제3 스팀라인(SL3)은 스팀 공급라인(SL)으로부터 분기될 수 있고, 스팀 공급라인(SL)으로부터 개질기(430)로 연결되거나, 또는 개질기(430) 전단에서 수소 생산 라인(GL4)에 합류될 수 있다. The
또는, 도면에 도시되지는 않았지만, 혼합기(미도시)를 더 구비하여, 개질기(430)의 전단에서 천연가스와 스팀을 혼합한 혼합물이 개질기(430)로 유입되도록 구성할 수도 있다. Alternatively, although not shown in the drawings, a mixer (not shown) may be further provided so that a mixture of natural gas and steam is introduced into the
즉, 본 실시예에서 개질기(430)로 공급되는 스팀은, 상술한 이코노마이저(310)에서 생산된 것일 수 있다.That is, steam supplied to the
본 실시예의 개질기(430)에서는, 수증기 개질법에 의해 수소를 생산할 수 있으며, 다음과 같은 개질 반응이 일어난다. 또한, 개질기(430)에서의 개질 반응은 촉매 하, 약 700 ~ 800℃, 약 30 ~ 50 bar의 반응 조건에서 일어날 수 있다. In the
CH4(g) + H2O(g) → CO(g) + 3H2(g) CH 4 (g) + H 2 O (g) → CO (g) + 3H 2 (g)
CH4(g) + 2H2O(g) → CO2(g) + 4H2O(g)CH4(g) + 2H 2 O(g) → CO 2 (g) + 4H 2 O(g)
개질기(430)에서 상술한 개질 반응에 의해 생성된 수소 기체는, 수소 기체를 저장하는 수소 기체 탱크(460)에 저장될 수 있다.The hydrogen gas generated by the reforming reaction described above in the
본 실시예의 수소 생산 시스템(400)은, 개질기(430)에서 생성된 생성물 중 일산화탄소와 물을 이산화탄소와 수소로 이동전환(shift conversion)시키는 전환기(440); 및 개질기(430)와 전환기(440)를 통과한 생성물인 이산화탄소와 수소의 혼합물로부터 이산화탄소를 흡수시켜 제거하는 흡수기(430);를 더 포함할 수 있다.The
전환기(440)에서는 다음과 같은 반응이 일어난다. In
CO(g) + H2O(g) → CO2(g) + H2(g)CO(g) + H 2 O(g) → CO 2 (g) + H 2 (g)
흡수기(430)에서는, 압력 순환 흡착(PSA; Pressure Swing Adsorption) 방식에 의해 이산화탄소가 혼합물로부터 분리되므로서, 수소를 회수·정제할 수 있다.In the
즉, 개질기(430)로부터 배출된 생성물은, 전환기(440) 및 흡수기(450)를 통과하면서 분리된 수소기체만이 수소 라인(HL2)을 따라 수소 기체 탱크(460)로 공급될 수 있다.That is, only hydrogen gas separated from the product discharged from the
수소 기체 탱크(460)는 압력 탱크로 구비될 수 있다. The
수소 기체 탱크(460)에 저장된 수소 기체는, 수소 기체 수요처와 연결되는 별도의 배관 라인을 통해 수소 기체 수요처로 직접 공급될 수 있다. 또는, 후술하는 수소 액화 시스템(500)으로 공급되어 액화된 후, 수소 액체 탱크(미도시)에 액체 상태로 저장될 수도 있다. 또는, 수소 기체 탱크(460) 또는 수소 액체 탱크(미도시) 자체를 하역하여 수소 수요처로 공급할 수도 있을 것이다. The hydrogen gas stored in the
또한, 개질기(430)의 전단에는, 개질기(430)로 공급되는 압축 천연가스로부터 황화수소 등 불순물을 제거하는 전처리 장치(420);가 더 구비될 수 있다. In addition, a
본 실시예의 수소 액화 시스템(500)은, 수소 기체 탱크(460)에 저장된 수소 기체를 액화시키기 위하여, 수소 기체를 냉각시키는 제1 열교환기(510); 제1 열교환기(510)에서 냉각된 수소 기체를 2차 냉각시키는 제2 열교환기(520); 및 제1 열교환기(510)와 제2 열교환기(520)를 통과하면서 적어도 일부가 액화된 수소를 기액 분리하는 분리기(540);를 포함한다.The
본 실시예의 제1 열교환기(510)는, 수소 기체 탱크(460)로부터 제1 열교환기(510)로 수소 기체가 유동하는 제2 수소라인(HL2); 및 수소 기체를 냉각시키기 위한 냉매로서 LNG 저장탱크(T)로부터 제1 열교환기(510)로 LNG가 유동하는 예열 라인(GL3);이 연결된다.The
즉, 본 실시예의 제1 열교환기(510)에서는 수소 기체와 LNG가 열교환하고, 열교환에 의해 수소 기체는 냉각되며 LNG는 예열된다. That is, in the
예열 라인(GL3)은 제1 열교환기(510)의 냉매 출구로부터 연료 공급 라인(GL2)으로 연결될 수 있다. 즉, 제1 열교환기(510)에서 열교환에 의해 온도가 상승한 LNG는 예열 라인(GL3)을 통해 연료 공급 시스템(200)으로 공급된다. The preheating line GL3 may be connected from the refrigerant outlet of the
예열 라인(GL3)이 연료 공급 라인(GL2)으로 합류되는 지점은, 연료 기화기(210)의 전단일 수 있다. 즉, 제1 열교환기(510)에서 예열된 LNG가 연료 기화기(210)로 공급된다. 따라서, 본 실시예에 따르면, 연료 기화기(210)로 예열된 LNG가 유입됨으로써, 연료 기화기(210)에서 가스 엔진(240)으로 공급할 연료 가스를 기화시키는데 필요한 히팅 듀티(heating duty)를 저감시킬 수 있다. 또한, 연료 기화기(210)의 요구 사항을 낮출 수 있어, 장치비 및 유지비 또한 저감시킬 수 있다. A point where the preheating line GL3 joins the fuel supply line GL2 may be a front end of the
예열 라인(GL3)에는, LNG 저장탱크(T)로부터 제1 열교환기(510)로 공급되는 LNG를 가압하는 수소 액화용 펌프(550);가 구비될 수 있다. A
제1 열교환기(510)에서 냉각된 수소 기체는 제3 수소라인(HL3)을 따라 제2 열교환기(520)로 공급된다. The hydrogen gas cooled in the
본 실시예에 따르면, 제1 열교환기(510)로부터 제2 열교환기(520)로 공급되는 수소 기체를 팽창에 의해 냉각시키는 팽창기(530);를 더 포함할 수 있다. According to this embodiment, the
제1 열교환기(510)로부터 제2 열교환기(520)로 공급되는 수소 기체 중 일부는, 제1 열교환기(510)와 제2 열교환기(520)를 연결하는 제3 수소라인(HL3)으로부터 분기되는 제4 수소라인(HL4)을 통해 팽창기(530)로 공급된다. 제4 수소라인(HL4)은 제2 열교환기(520)와 연결되며, 팽창기(530)에서 팽창에 의해 냉각된 수소 기체는 제2 열교환기(520)에서 수소 기체를 냉각시키는 냉매로서 활용된다. Some of the hydrogen gas supplied from the
제2 열교환기(520)에서 수소 기체를 냉각시키면서 온도가 온도가 상승한 팽창 수소 기체는, 제2 열교환기(520)의 냉매 출구와 연결되며, 제1 열교환기(510) 전단에서 제2 수소라인(HL2)으로 합류되는 제6 수소라인(HL6)을 따라 제1 열교환기(510)로 재공급될 수 있다.The expanded hydrogen gas whose temperature rises while cooling the hydrogen gas in the
제2 열교환기(520)에서 팽창된 수소 기체와의 열교환에 의해 적어도 일부가 액화된 수소는 제2 열교환기(520)와 분리기(540)를 연결하는 제5 수소라인(HL5)을 따라 분리기(540)로 공급된다. Hydrogen at least partially liquefied by heat exchange with hydrogen gas expanded in the
제5 수소라인(HL5)에는, 제2 열교환기(520)로부터 분리기(540)로 공급되는 수소 기액 혼합물, 또는 수소 액체를 단열팽창에 의해 냉각시키는 팽창밸브(도면부호 미부여);가 구비될 수 있다. 즉, 제5 수소라인(HL5)을 따라 제2 열교환기로(520)로부터 분리기(540)로 공급되는 수소는 팽창밸브에서 팽창에 의해 더 액화될 수 있다.The fifth hydrogen line HL5 is provided with an expansion valve (no reference numeral given) for cooling the hydrogen gas-liquid mixture supplied from the
본 실시예의 분리기(540)는, 제5 수소라인(HL5)을 따라 분리기(540)로 유입된 수소 기액 혼합물을 기액 분리하여 분리기(540)와 액체 수소 탱크(미도시)를 연결하는 제7 수소라인(HL7)을 통해 액체 상태의 수소만을 액체 수소 탱크로 공급할 수 있다.
분리기(540)에서 분리된 액화되지 않은 수소 또는 플래시된 기체 상태의 수소는 분리기(540)와 연결되며 제1 열교환기(510) 전단에서 제2 수소라인(HL2)으로 합류되는 제8 수소라인(HL8)을 따라 제1 열교환기(510)로 재공급될 수 있다. Non-liquefied hydrogen or flashed gaseous hydrogen separated in the
본 실시예에 따르면, LNG의 냉열을 이용하여 수소를 액화시킴으로써, 액체 상태로 액체 수소 탱크에 저장하고, 수소를 액체 상태로 저장함으로써 저장 및 운반이 용이하도록 할 수 있다. According to this embodiment, by liquefying hydrogen using the cold heat of LNG, it is possible to store hydrogen in a liquid state in a liquid hydrogen tank and store hydrogen in a liquid state, thereby making it easy to store and transport.
액체 수소 탱크에 저장된 수소는, 액체 수소 수요처와 직접 연결되는 배관 라인을 구비하여, 액체 수소 수요처로 직접 공급될 수 있다. 액체 수소 수요처는 본 실시예에 따른 부유식 발전 플랜트 내에 구비될 수도 있고, 육상 또는 또 다른 선박에 구비될 수도 있다. Hydrogen stored in the liquid hydrogen tank may be directly supplied to a liquid hydrogen consumer by having a pipe line directly connected to the liquid hydrogen consumer. The liquid hydrogen demand source may be provided in the floating power plant according to the present embodiment, or may be provided on land or in another vessel.
또는, 액체 수소 탱크 자체를 액체 수소 수요처로 하역함으로써 액체 수소를 액체 수소 수요처로 공급할 수도 있다. Alternatively, the liquid hydrogen may be supplied to the liquid hydrogen demand place by unloading the liquid hydrogen tank itself into the liquid hydrogen demand place.
수소는, 청정하고 무한하며, 동일 중량 기준 휘발유의 3배 가량의 에너지량을 가지는 미래 청정 에너지이다. 수소를 연료로 사용하면 오염물질 배출이 없다는 점에서 주목받고 있다. Hydrogen is a future clean energy that is clean, infinite, and has about three times the energy amount of gasoline by weight. When hydrogen is used as a fuel, it is attracting attention because there is no emission of pollutants.
즉, 본 발명에 따르면, 액화가스를 재기화시켜 육상의 가스 수요처로 공급하고, 액화가스를 이용하여 전력을 생산하며, 전력 생산에 의해 배출되는 폐열을 이용하여 열원(스팀)을 생산하고, 폐열에 의해 생산된 열원과 액화가스를 이용하여 수소를 생산하므로 경제적이고 친환경적이며, 액화가스의 냉열로 수소을 액화시킴으로써 수소의 수송 및 저장을 용이하게 하는 것과 동시에 연료 공급 시스템의 효율 향상 및 부유식 발전 플랜트의 운전비용을 낮출 수 있다.That is, according to the present invention, the liquefied gas is regasified and supplied to a gas demand place on land, electricity is produced using the liquefied gas, and a heat source (steam) is produced using waste heat discharged from power generation, and waste heat It is economical and eco-friendly because hydrogen is produced using the heat source and liquefied gas produced by liquefied gas, and by liquefying hydrogen with the cold heat of liquefied gas, it facilitates the transportation and storage of hydrogen, and at the same time improves the efficiency of the fuel supply system and floating power plant operation cost can be reduced.
본 발명은 상기 실시예에 한정되지 않고, 본 발명의 기술적 요지를 벗어나지 아니하는 범위 내에서 다양하게 수정 또는 변형되어 실시될 수 있음은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 있어서 자명한 것이다.It is obvious to those skilled in the art that the present invention is not limited to the above embodiments and can be variously modified or transformed without departing from the technical gist of the present invention. it did
100 : 재기화 시스템
200 : 연료 공급 시스템
300 : 폐열 회수 시스템
400 : 수소 생산 시스템
500 : 수소 액화 시스템
GL1 : 재기화 라인
GL2 : 연료 공급라인
GL3 : 예열 라인
GL4 : 수소 생산라인
SL : 스팀 공급라인
HL1 ~ HL8 : 수소라인
PL : 전력 공급라인100: regasification system
200: fuel supply system
300: waste heat recovery system
400: hydrogen production system
500: hydrogen liquefaction system
GL1: regasification line
GL2: fuel supply line
GL3: preheating line
GL4 : Hydrogen Production Line
SL: steam supply line
HL1 ~ HL8 : Hydrogen line
PL: power supply line
Claims (14)
액화가스를 상기 가스 엔진에서 요구하는 메탄가에 맞게 기화시키는 연료 기화기를 포함하며, 상기 가스 엔진으로 연료 가스를 공급하는 연료 공급 시스템;
상기 가스 엔진에서 상기 연료 가스의 연소에 의해 생성되는 폐열을 회수하여 스팀을 생산하는 폐열 회수 시스템;
상기 가스 엔진으로 공급하고 남은 연료 가스와 상기 폐열 회수 시스템에서 생산된 스팀을 이용하여 수소를 생산하는 수소 생산 시스템;
상기 생산된 수소를 상기 연료 공급 시스템으로 공급할 액화가스의 냉열을 이용하여 액화시키는 수소 액화 시스템;
상기 연료 기화기에서 기화된 연료 가스를 상기 수소 생산 시스템으로 공급하는 수소 생산 라인;
상기 액화가스를 상기 수소 액화 시스템으로 공급하는 수소 액화용 펌프; 및
상기 수소 액화 시스템에서 수소를 냉각시키면서 가열된 액화가스를 상기 연료 기화기로 공급하는 예열 라인;을 포함하는, 부유식 발전 플랜트. A gas engine that generates electricity using liquefied gas as fuel and has a limited methane number;
a fuel supply system including a fuel vaporizer for vaporizing liquefied gas according to a methane number required by the gas engine, and supplying fuel gas to the gas engine;
a waste heat recovery system for producing steam by recovering waste heat generated by combustion of the fuel gas in the gas engine;
a hydrogen production system for producing hydrogen using the remaining fuel gas supplied to the gas engine and the steam produced by the waste heat recovery system;
a hydrogen liquefaction system for liquefying the produced hydrogen by using cold heat of liquefied gas to be supplied to the fuel supply system;
a hydrogen production line supplying the fuel gas vaporized in the fuel vaporizer to the hydrogen production system;
a hydrogen liquefaction pump supplying the liquefied gas to the hydrogen liquefaction system; and
A floating power plant comprising a; preheating line for supplying heated liquefied gas to the fuel vaporizer while cooling the hydrogen in the hydrogen liquefaction system.
상기 수소 액화 시스템은,
상기 수소와 액화가스를 열교환시켜 수소를 냉각시키는 제1 열교환기;를 포함하고,
상기 제1 열교환기와 상기 연료 공급 시스템은, 상기 제1 열교환기에서 열교환에 의해 온도가 상승한 액화가스가 상기 연료 공급 시스템으로 공급되도록 하는 예열 라인;에 의해 연결되는, 부유식 발전 플랜트. The method of claim 1,
The hydrogen liquefaction system,
A first heat exchanger for cooling the hydrogen by exchanging heat between the hydrogen and the liquefied gas;
The first heat exchanger and the fuel supply system are connected by a preheating line that allows the liquefied gas whose temperature has risen by heat exchange in the first heat exchanger to be supplied to the fuel supply system.
상기 연료 공급 시스템은,
상기 연료 기화기에서 기화된 연료 가스를 상기 가스 엔진에서 요구하는 압력으로 압축시키는 연료 압축기; 및
상기 연료 압축기에서 압축된 연료 가스를 상기 가스 엔진에서 요구하는 온도로 가열하는 연료 히터;를 포함하며,
상기 예열 라인은, 상기 제1 열교환기로부터 상기 연료 기화기로 연결되어, 상기 제1 열교환기에서 온도가 상승한 액화가스가 상기 연료 기화기로 공급되는, 부유식 발전 플랜트.The method of claim 2,
The fuel supply system,
a fuel compressor for compressing the fuel gas vaporized in the fuel vaporizer to a pressure required by the gas engine; and
A fuel heater for heating the fuel gas compressed by the fuel compressor to a temperature required by the gas engine;
The preheating line is connected from the first heat exchanger to the fuel vaporizer, and the liquefied gas whose temperature has risen in the first heat exchanger is supplied to the fuel vaporizer.
상기 수소 액화 시스템은,
상기 제1 열교환기에서 액화가스의 냉열에 의해 냉각된 수소를 더 냉각시키는 제2 열교환기; 및
상기 제1 열교환기로부터 제2 열교환기로 공급되는 수소 중 일부를 팽창에 의해 냉각시키는 팽창기;를 더 포함하고,
상기 제2 열교환기에서는, 상기 제1 열교환기에서 냉각된 수소가 상기 팽창기에서 팽창에 의해 냉각된 수소 냉매에 의해 냉각되는, 부유식 발전 플랜트. The method of claim 2,
The hydrogen liquefaction system,
a second heat exchanger further cooling the hydrogen cooled by the cooling heat of the liquefied gas in the first heat exchanger; and
An expander for cooling some of the hydrogen supplied from the first heat exchanger to the second heat exchanger by expansion; further comprising,
In the second heat exchanger, the hydrogen cooled in the first heat exchanger is cooled by the hydrogen refrigerant cooled by expansion in the expander.
상기 수소 액화 시스템은,
상기 제2 열교환기에서 상기 수소 냉매에 의해 냉각된 수소를 팽창시켜 적어도 일부를 액화시키는 팽창밸브;를 더 포함하는, 부유식 발전 플랜트. The method of claim 4,
The hydrogen liquefaction system,
Further comprising, a floating power plant.
상기 수소 액화 시스템은,
상기 팽창밸브를 통과한 수소를 기액분리하여 액체 상태의 수소를 액체 수소 탱크로 공급하는 분리기;를 더 포함하는, 부유식 발전 플랜트. The method of claim 5,
The hydrogen liquefaction system,
A separator for gas-liquid separation of the hydrogen passing through the expansion valve and supplying hydrogen in a liquid state to a liquid hydrogen tank; further comprising a floating power plant.
상기 수소 생산 시스템은,
상기 연료 가스와 상기 스팀을 개질반응시켜 수소를 생산하는 개질기;를 포함하며,
상기 수소 생산 라인은 상기 연료 압축기 후단으로부터 상기 개질기 전단으로 연결되어, 상기 연료 압축기에서 압축된 연료 가스가 상기 개질기로 공급되는, 부유식 발전 플랜트. The method of claim 3,
The hydrogen production system,
A reformer for producing hydrogen by reforming the fuel gas and the steam;
The hydrogen production line is connected from the rear end of the fuel compressor to the front end of the reformer, so that the fuel gas compressed in the fuel compressor is supplied to the reformer.
상기 액화가스를 재기화시켜 육상의 가스 수요처로 공급하는 재기화 시스템;을 더 포함하고,
상기 부유식 발전 플랜트에서는, 상기 액화가스를 이용하여 재기화 가스, 전력, 수소 기체 및 액체 수소가 생산되는, 부유식 발전 플랜트. The method of claim 1,
A regasification system for regasifying the liquefied gas and supplying it to a land-based gas demander;
In the floating power plant, a floating power plant in which regasification gas, electric power, hydrogen gas and liquid hydrogen are produced using the liquefied gas.
상기 가스 엔진에서 요구하는 메탄가에 맞게 기화된 연료가스를 상기 가스 엔진의 연료 가스로 공급하는 단계;
상기 가스 엔진에서 연료 가스를 연료로 사용하여 전력을 생산하는 단계;
상기 가스 엔진에서 연료 가스의 연소에 의해 생성되는 폐열을 회수하여 스팀을 생산하는 단계;
상기 가스 엔진에서 요구하는 메탄가에 맞게 기화된 연료 가스와 스팀을 원료로 사용하여 수소를 생산하는 단계; 및
상기 생산된 수소를 상기 기화시킬 액화가스와 열교환시켜 액화시키는 단계;를 포함하고,
상기 수소와 열교환하면서 가열된 액화가스를 상기 기화시키는 단계로 공급하는, 부유식 발전 플랜트의 운용 방법.vaporizing the liquefied gas according to the methane number required by the gas engine;
supplying fuel gas vaporized according to a methane number required by the gas engine as fuel gas of the gas engine;
generating electric power by using fuel gas as fuel in the gas engine;
recovering waste heat generated by combustion of fuel gas in the gas engine to produce steam;
producing hydrogen using vaporized fuel gas and steam suitable for a methane number required by the gas engine as raw materials; and
Including; liquefying the produced hydrogen by heat exchange with the liquefied gas to be vaporized,
A method of operating a floating power plant that supplies heated liquefied gas while exchanging heat with the hydrogen to the vaporizing step.
상기 액화가스를 가스 엔진의 연료 가스로 공급하는 단계는,
상기 액화가스를 기화시킨 연료 가스를 압축시키는 단계;를 포함하는, 부유식 발전 플랜트의 운용 방법. The method of claim 9,
Supplying the liquefied gas as fuel gas of a gas engine,
A method of operating a floating power plant comprising the; step of compressing the fuel gas vaporized from the liquefied gas.
상기 수소를 액화가스와 열교환시켜 액화시키는 단계는,
상기 수소를 액화가스와 열교환시켜 1차 냉각시키는 단계; 및
상기 1차 냉각된 수소 중 일부를 분기시켜 팽창에 의해 더 냉각시키고, 상기 팽창에 의해 더 냉각된 수소를 냉매로 사용하여, 분기시키고 남은 나머지 수소를 2차 냉각시키는 단계;를 더 포함하는, 부유식 발전 플랜트의 운용 방법. The method of claim 9,
The step of liquefying the hydrogen by heat exchange with liquefied gas,
primary cooling by heat-exchanging the hydrogen with liquefied gas; and
Branching some of the primarily cooled hydrogen to further cool it by expansion, and using the hydrogen further cooled by the expansion as a refrigerant to branch and secondarily cool the remaining hydrogen; further comprising, floating How to operate a food power plant.
상기 2차 냉각된 수소를 팽창밸브에 의해 더 냉각시키는 단계; 및
상기 팽창밸브에 의해 더 냉각된 수소를 기액분리하는 단계;를 더 포함하여,
상기 기액분리된 액체 수소는 저장하고, 분리된 기체 수소는 상기 수소를 1차 냉각시키는 단계로 재공급하는, 부유식 발전 플랜트의 운용 방법. The method of claim 12,
further cooling the secondary cooled hydrogen by an expansion valve; and
Gas-liquid separation of the hydrogen further cooled by the expansion valve; further comprising,
The gas-liquid separated liquid hydrogen is stored, and the separated gaseous hydrogen is re-supplied to the step of first cooling the hydrogen.
상기 액화가스를 기화시켜 육상의 가스 수요처로 공급하는 단계;를 더 포함하고,
상기 부유식 발전 플랜트에서는, 상기 액화가스를 이용하여 재기화 가스, 전력, 수소 및 액체 수소를 생산하는, 부유식 발전 플랜트의 운용 방법.
The method of claim 9,
It further includes; vaporizing the liquefied gas and supplying it to a gas demand place on land,
In the floating power plant, a method of operating a floating power plant for producing regasified gas, electric power, hydrogen and liquid hydrogen using the liquefied gas.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020170182750A KR102473954B1 (en) | 2017-12-28 | 2017-12-28 | Floating Power Plant and Employment Method therefor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020170182750A KR102473954B1 (en) | 2017-12-28 | 2017-12-28 | Floating Power Plant and Employment Method therefor |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20190080354A KR20190080354A (en) | 2019-07-08 |
KR102473954B1 true KR102473954B1 (en) | 2022-12-05 |
Family
ID=67255930
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020170182750A KR102473954B1 (en) | 2017-12-28 | 2017-12-28 | Floating Power Plant and Employment Method therefor |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR102473954B1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102252653B1 (en) * | 2019-10-17 | 2021-05-18 | 주식회사 트랜스가스솔루션 | Hydrogen Fuel Cell Complex Power Plant Equipped with the Floating LNG Power Plant and Hydrogen Generation System and Method for Thereof |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002243360A (en) * | 2001-02-19 | 2002-08-28 | Air Liquide Japan Ltd | Method and facility for producing liquid hydrogen |
JP2005281131A (en) * | 2004-03-29 | 2005-10-13 | General Electric Co <Ge> | System and method for co-production of hydrogen and electrical energy |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20120001031A (en) * | 2010-06-29 | 2012-01-04 | 삼성중공업 주식회사 | Vessel and offshore floating body |
-
2017
- 2017-12-28 KR KR1020170182750A patent/KR102473954B1/en active IP Right Grant
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002243360A (en) * | 2001-02-19 | 2002-08-28 | Air Liquide Japan Ltd | Method and facility for producing liquid hydrogen |
JP2005281131A (en) * | 2004-03-29 | 2005-10-13 | General Electric Co <Ge> | System and method for co-production of hydrogen and electrical energy |
Also Published As
Publication number | Publication date |
---|---|
KR20190080354A (en) | 2019-07-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101064575B1 (en) | Ship for transporting liquefied hydrocarbon gas | |
JP6461988B2 (en) | Evaporative gas treatment system | |
KR102164165B1 (en) | liquefaction system of boil-off gas and ship having the same | |
KR102151575B1 (en) | Apparatus, system and method for the capture, utilization and sendout of latent heat in boil off gas onboard a cryogenic storage vessel | |
KR20190105841A (en) | Liquefied Petroleum Gas Fueled Ship and Fuel Supply Method of LPG Fueled Ship | |
JP2020507703A (en) | Ship fuel supply system and fuel supply method using liquefied natural gas as fuel | |
KR20140104953A (en) | Power generating system and corresponding method | |
US10627158B2 (en) | Coproduction of liquefied natural gas and electric power with refrigeration recovery | |
US20140245779A1 (en) | Regasification Plant | |
US20200393196A1 (en) | Device and method for processing boil-off gas in liquefied gas regasification system | |
KR102136748B1 (en) | Process and system for reliquefying boil-off gas (bog) | |
KR20210043409A (en) | Gas treating system and marine structure including the same | |
KR102252653B1 (en) | Hydrogen Fuel Cell Complex Power Plant Equipped with the Floating LNG Power Plant and Hydrogen Generation System and Method for Thereof | |
KR102535970B1 (en) | Hydrogen-Enriched Compressed Natural Gas Fuel Supply System and Method for Low Pressure Gas Engine of a Ship | |
KR102539433B1 (en) | Floating Marine Structure with Hydrogen Storage Tank | |
KR102473954B1 (en) | Floating Power Plant and Employment Method therefor | |
KR101996283B1 (en) | Boil-Off Gas Proceeding System and Method for Ship | |
KR20220048528A (en) | Floating hydrogen-production system | |
KR101623092B1 (en) | Method and apparatus for reliquefying boil-off gas using cold-heat power generation | |
KR20200144696A (en) | Boil-Off Gas Processing System and Method | |
KR102436050B1 (en) | Gas treatment system and ship having the same | |
KR102132123B1 (en) | treatment system for gas and vessel having the same | |
KR20220052382A (en) | Hydrogen-floating production and treatment system | |
KR102684482B1 (en) | Fuel Supply System And Method For Ship | |
KR102298855B1 (en) | Combined Liquefied Gas Fuel Supply System |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant |