KR102471774B1 - 비디오 신호의 부호화/복호화 방법 및 이를 위한 장치 - Google Patents

비디오 신호의 부호화/복호화 방법 및 이를 위한 장치 Download PDF

Info

Publication number
KR102471774B1
KR102471774B1 KR1020217011015A KR20217011015A KR102471774B1 KR 102471774 B1 KR102471774 B1 KR 102471774B1 KR 1020217011015 A KR1020217011015 A KR 1020217011015A KR 20217011015 A KR20217011015 A KR 20217011015A KR 102471774 B1 KR102471774 B1 KR 102471774B1
Authority
KR
South Korea
Prior art keywords
transform
current block
index
mts
region
Prior art date
Application number
KR1020217011015A
Other languages
English (en)
Other versions
KR20210055087A (ko
Inventor
구문모
김승환
살레후메디
임재현
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to KR1020227041170A priority Critical patent/KR102630190B1/ko
Publication of KR20210055087A publication Critical patent/KR20210055087A/ko
Application granted granted Critical
Publication of KR102471774B1 publication Critical patent/KR102471774B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/12Selection from among a plurality of transforms or standards, e.g. selection between discrete cosine transform [DCT] and sub-band transform or selection between H.263 and H.264
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/60Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding
    • H04N19/625Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding using discrete cosine transform [DCT]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/119Adaptive subdivision aspects, e.g. subdivision of a picture into rectangular or non-rectangular coding blocks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/12Selection from among a plurality of transforms or standards, e.g. selection between discrete cosine transform [DCT] and sub-band transform or selection between H.263 and H.264
    • H04N19/122Selection of transform size, e.g. 8x8 or 2x4x8 DCT; Selection of sub-band transforms of varying structure or type
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/132Sampling, masking or truncation of coding units, e.g. adaptive resampling, frame skipping, frame interpolation or high-frequency transform coefficient masking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/17Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
    • H04N19/176Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a block, e.g. a macroblock
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/18Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being a set of transform coefficients
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/42Methods or arrangements for coding, decoding, compressing or decompressing digital video signals characterised by implementation details or hardware specially adapted for video compression or decompression, e.g. dedicated software implementation
    • H04N19/423Methods or arrangements for coding, decoding, compressing or decompressing digital video signals characterised by implementation details or hardware specially adapted for video compression or decompression, e.g. dedicated software implementation characterised by memory arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/70Methods or arrangements for coding, decoding, compressing or decompressing digital video signals characterised by syntax aspects related to video coding, e.g. related to compression standards

Abstract

본 발명의 실시예들은 비디오 신호 처리 방법 및 장치를 제공한다. 특히, 본 발명의 실시예에 따른 축소된 변환(Reduced transform)을 기반으로 비디오 신호를 디코딩하는 방법은, 현재 블록의 수평 및 수직 방향에 적용되는 변환 커널들(transform kernels)을 지시하는 변환 인덱스(transform index)를 상기 비디오 신호로부터 획득하는 단계; 상기 변환 인덱스에 의해 지시되는 변환 커널들 및 상기 현재 블록의 크기에 기초하여, 상기 현재 블록에 변환이 적용되는 영역을 결정하는 단계; 상기 현재 블록 내에서, 상기 변환이 적용되는 영역 이외의 나머지 영역의 계수들을 0으로 간주하는 단계; 및 상기 변환이 적용되는 영역에 대하여, 상기 변환 인덱스에 의해 지시되는 변환 커널을 이용하여 역변환(inverse transform)을 수행하는 단계를 포함할 수 있다.

Description

비디오 신호의 부호화/복호화 방법 및 이를 위한 장치
본 명세서의 실시예는 비디오 신호를 처리하기 위한 방법 및 장치에 관한 것으로서, 보다 구체적으로 축소된 변환을 기반으로 변환을 수행함으로써 비디오 신호를 부호화/복호하하기 위한 방법 및 장치에 관한 것이다.
압축 부호화란 디지털화한 정보를 통신 회선을 통해 전송하거나, 저장 매체에 적합한 형태로 저장하기 위한 일련의 신호 처리 기술을 의미한다. 영상, 이미지, 음성 등의 미디어가 압축 부호화의 대상이 될 수 있으며, 특히 영상을 대상으로 압축 부호화를 수행하는 기술을 비디오 영상 압축이라고 일컫는다.
차세대 비디오 컨텐츠는 고해상도(high spatial resolution), 고프레임율(high frame rate) 및 영상 표현의 고차원화(high dimensionality of scene representation)라는 특징을 갖게 될 것이다. 그러한 컨텐츠를 처리하기 위해서는 메모리 저장(memory storage), 메모리 액세스율(memory access rate) 및 처리 전력(processing power) 측면에서 엄청난 증가를 가져올 것이다.
따라서, 차세대 영상 컨텐츠를 보다 효율적으로 처리하기 위한 코딩 툴을 디자인할 필요가 있다. 특히, HEVC(high efficiency video coding) 표준 이후의 비디오 코덱 표준은 보다 높은 정확도를 갖는 예측 기술과 함께 공간 영역(spatial domain)의 비디오 신호를 주파수 영역(frequency domain)으로 변환시키기 위한 효율적인 변환 기술을 필요로 한다.
본 명세서의 실시예의 목적은, 특정 조건에 따라 미리 정의된 영역에 대하여 일차 변환(primary transform)을 수행하는 방법을 제안한다.
본 명세서의 실시예에서 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 명세서의 실시예의 일 양상은, 축소된 변환(Reduced transform)을 기반으로 비디오 신호를 디코딩하는 방법에 있어서, 현재 블록의 수평 및 수직 방향에 적용되는 변환 커널들(transform kernels)을 지시하는 변환 인덱스(transform index)를 상기 비디오 신호로부터 획득하는 단계; 상기 변환 인덱스에 의해 지시되는 변환 커널들 및 상기 현재 블록의 크기에 기초하여, 상기 현재 블록에 변환이 적용되는 영역을 결정하는 단계; 상기 현재 블록 내에서, 상기 변환이 적용되는 영역 이외의 나머지 영역의 계수들을 0으로 간주하는 단계; 및 상기 변환이 적용되는 영역에 대하여, 상기 변환 인덱스에 의해 지시되는 변환 커널을 이용하여 역변환(inverse transform)을 수행하는 단계를 포함할 수 있다.
바람직하게, 상기 변환이 적용되는 영역을 결정하는 단계는, 상기 변환 인덱스에 의해 지시되는 변환 커널들이 미리 정의된 변환이고, 상기 현재 블록의 너비(width) 및 높이(height)가 미리 정의된 크기보다 큰 경우, 상기 미리 정의된 크기의 너비 및 높이를 가지는 영역을 상기 변환이 적용되는 영역으로 결정함으로써 수행될 수 있다.
바람직하게, 상기 미리 정의된 변환은 DST7 및 DCT8의 조합으로 구성된 복수의 변환 조합들 중 어느 하나일 수 있다.
바람직하게, 상기 미리 정의된 크기는 16일 수 있다.
바람직하게, 상기 변환이 적용되는 영역을 결정하는 단계는, 상기 변환 인덱스에 의해 지시되는 변환 커널들이 제1 변환 그룹에 속하는 경우, 상기 현재 블록의 너비(width) 및 32 중 작은 값을 상기 변환이 적용되는 영역의 너비로 결정하고, 상기 현재 블록의 높이(height) 및 32 중 작은 값을 상기 변환이 적용되는 영역의 높이로 결정하고, 상기 변환 인덱스에 의해 지시되는 변환 커널들이 제2 변환 그룹에 속하는 경우, 상기 현재 블록의 너비 및 16 중 작은 값을 상기 변환이 적용되는 영역의 너비로 결정하고, 상기 현재 블록의 높이 및 16 중 작은 값을 상기 변환이 적용되는 영역의 높이로 결정함으로써 수행될 수 있다.
바람직하게, 상기 현재 블록 내에서 스캔 순서 상 마지막 유효 계수(last significant coefficient)의 위치를 지시하는 신택스 엘리먼트를 획득하는 단계를 더 포함하고, 상기 역변환이 적용되는 계수들은 상기 마지막 유효 계수의 위치에 기초하여 상기 비디오 신호로부터 획득될 수 있다.
바람직하게, 상기 신택스 엘리먼트는 절삭형 단항(truncated unary) 방식으로 이진화되고, 상기 신택스 엘리먼트의 최대값은 상기 0으로 간주되는 영역에 기초하여 결정될 수 있다.
본 명세서의 실시예의 일 양상은, 축소된 변환(Reduced transform)을 기반으로 비디오 신호를 복호화하는 장치에 있어서, 상기 비디오 신호를 저장하는 메모리; 및 상기 메모리와 결합된 프로세서를 포함하고, 상기 프로세서는, 현재 블록의 수평 및 수직 방향에 적용되는 변환 커널들(transform kernels)을 지시하는 변환 인덱스(transform index)를 상기 비디오 신호로부터 획득하고, 상기 변환 인덱스에 의해 지시되는 변환 커널들 및 상기 현재 블록의 크기에 기초하여, 상기 현재 블록에 변환이 적용되는 영역을 결정하고, 상기 현재 블록 내에서, 상기 변환이 적용되는 영역 이외의 나머지 영역의 계수들을 0으로 간주하고, 그리고, 상기 변환이 적용되는 영역에 대하여, 상기 변환 인덱스에 의해 지시되는 변환 커널을 이용하여 역변환(inverse transform)을 수행할 수 있다.
본 명세서의 실시예에 따르면, 특정 조건에 따라 미리 정의된 영역에 대해서만 변환을 수행함으로써, 복잡도를 현저하게 감소시킬 수 있다.
본 명세서의 실시예에서 얻을 수 있는 효과는 이상에서 언급한 효과로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명에 관한 이해를 돕기 위해 상세한 설명의 일부로 포함되는, 첨부 도면은 본 발명에 대한 실시예를 제공하고, 상세한 설명과 함께 본 발명의 기술적 특징을 설명한다.
도 1은 본 발명이 적용되는 실시예로서 영상 코딩 시스템의 예를 도시한다.
도 2는 본 발명이 적용되는 실시예로서, 비디오/이미지 신호의 인코딩이 수행되는 인코딩 장치의 개략적인 블록도를 나타낸다.
도 3은 본 발명이 적용되는 실시예로서, 영상 신호의 디코딩이 수행되는 디코딩 장치의 개략적인 블록도를 나타낸다.
도 4는 본 발명이 적용되는 실시예로서, 컨텐츠 스트리밍 시스템의 구조도이다.
도 5는 본 발명이 적용될 수 있는 실시예들로서, 도 5a는 QT(QuadTree, 이하 'QT'라 함), 도 5b는 BT(Binary Tree, 이하 'BT'라 함), 도 5c는 TT(Ternary Tree, 이하 'TT'라 함) 도 5d는 AT(Asymmetric Tree, 이하 'AT'라 함)에 의한 블록 분할 구조들을 설명하기 위한 도면이다.
도 6 및 도 7은 본 발명이 적용되는 실시예들로서, 도 6은 인코딩 장치 내의 변환 및 양자화부, 역양자화 및 역변환부의 개략적인 블록도를 나타내고, 도 7은 디코딩 장치 내의 역양자화 및 역변환부의 개략적인 블록도를 나타낸다.
도 8은 AMT(adaptive multiple transform)가 수행되는 과정을 나타내는 흐름도이다.
도 9는 AMT가 수행되는 디코딩 과정을 나타내는 흐름도이다.
도 10은 본 발명의 실시예에 따라 MTS에 기반하여 역변환 과정을 나타내는 흐름도이다.
도 11은 본 발명의 실시예에 따라 MTS에 기반하여 디코딩을 수행하는 장치의 블록도이다.
도 12 및 도 13은 본 발명이 적용되는 실시예로서, 2차 변환이 적용되는 인코딩/디코딩 흐름도이다.
도 14 및 도 15는 본 발명이 적용되는 실시예로서, 도 14는 기븐스 회전(Givens rotation)을 설명하기 위한 다이어그램을 나타내고, 도 15는 기븐스 회전 레이어와 치환(permutation)들로 구성된 4x4 NSST(non-separable secondary transform)에서의 한 라운드(round)의 구성을 나타낸다.
도 16은 본 발명이 적용되는 실시예로서, RST(reduced secondary transform)의 동작을 도시한다.
도 17은 본 발명이 적용되는 실시예로서, 역방향 스캔 순서에 따라 64번째부터 17번째까지의 역방향 스캔을 수행하는 과정을 나타내는 도면이다.
도 18은 본 발명이 적용되는 실시예로서, 단일 변환 지시자(single transform indica-tor, STI)를 사용한 인코딩 흐름도의 예를 도시한다.
도 19는 본 발명이 적용되는 실시예로서, 통일된 변환 지시자(unified transform in-dicator, UTI)를 사용한 인코딩 흐름도의 예를 도시한다.
도 20a 및 도 20b는 본 발명이 적용되는 실시예로서, UTI를 사용한 인코딩 흐름도의 다른 예를 도시한다.
도 21은 본 발명이 적용되는 실시예로서, 변환을 수행하는 인코딩 흐름도의 예를 도시한다.
도 22는 본 발명이 적용되는 실시예로서, 변환을 수행하는 디코딩 흐름도의 예를 도시한다.
도 23은 본 발명이 적용되는 실시예로서, 인코딩 장치(100) 내 변환부(120)의 세부 블록도의 예를 도시한다.
도 24는 본 발명이 적용되는 실시예로서, 디코딩 장치(200) 내 역변환부(230)의 세부 블록도의 예를 도시한다.
도 25는 본 발명이 적용되는 실시예로서, 비디오 신호를 처리하기 위한 흐름도를 도시한다.
도 26은 본 발명이 적용되는 실시예에 따른 비디오 신호의 변환 방법을 예시하는 흐름도이다.
도 27은 본 발명이 적용되는 실시예로서, 축소된 변환(Reduced transform)을 이용하여 비디오 신호를 인코딩하는 방법을 예시하는 도면이다.
도 28은 본 발명이 적용되는 실시예로서, 축소된 변환(Reduced transform)을 이용하여 비디오 신호를 디코딩 하는 방법을 예시하는 도면이다.
도 29는 본 명세서의 실시예에 따른 축소된 변환(Reduced transform)을 기반으로 비디오 신호를 디코딩하는 방법을 예시하는 흐름도이다.
도 30은 본 발명이 적용되는 실시예로서, 비디오 신호를 처리하기 위한 장치의 블록도의 예를 도시한다.
이하, 본 발명에 따른 바람직한 실시 형태를 첨부된 도면을 참조하여 상세하게 설명한다. 첨부된 도면과 함께 이하에 개시될 상세한 설명은 본 발명의 예시적인 실시형태를 설명하고자 하는 것이며, 본 발명이 실시될 수 있는 유일한 실시형태를 나타내고자 하는 것이 아니다. 이하의 상세한 설명은 본 발명의 완전한 이해를 제공하기 위해서 구체적 세부사항을 포함한다. 그러나, 당업자는 본 발명이 이러한 구체적 세부사항 없이도 실시될 수 있음을 안다.
몇몇 경우, 본 발명의 개념이 모호해지는 것을 피하기 위하여 공지의 구조 및 장치는 생략되거나, 각 구조 및 장치의 핵심기능을 중심으로 한 블록도 형식으로 도시될 수 있다.
아울러, 본 발명에서 사용되는 용어는 가능한 한 현재 널리 사용되는 일반적인 용어를 선택하였으나, 특정한 경우는 출원인이 임의로 선정한 용어를 사용하여 설명한다. 그러한 경우에는 해당 부분의 상세 설명에서 그 의미를 명확히 기재하므로, 본 발명의 설명에서 사용된 용어의 명칭만으로 단순 해석되어서는 안 될 것이며 그 해당 용어의 의미까지 파악하여 해석되어야 함을 밝혀두고자 한다.
이하의 설명에서 사용되는 특정 용어들은 본 발명의 이해를 돕기 위해서 제공된 것이며, 이러한 특정 용어의 사용은 본 발명의 기술적 사상을 벗어나지 않는 범위에서 다른 형태로 변경될 수 있다. 예를 들어, 신호, 데이터, 샘플, 픽처, 프레임, 블록 등의 경우 각 코딩 과정에서 적절하게 대체되어 해석될 수 있을 것이다.
이하 본 명세서에서 '처리 유닛'은 예측, 변환 및/또는 양자화 등과 같은 인코딩/디코딩의 처리 과정이 수행되는 단위를 의미한다. 또한, 처리 유닛은 휘도(luma) 성분에 대한 단위와 색차(chroma) 성분에 대한 단위를 포함하는 의미로 해석될 수 있다. 예를 들어, 처리 유닛은 블록(block), 코딩 유닛(coding unit, CU), 예측 유닛(prediction unit, PU) 또는 변환 블록(transform unit, TU)에 해당될 수 있다.
또한, 처리 유닛은 휘도 성분에 대한 단위 또는 색차 성분에 대한 단위로 해석될 수 있다. 예를 들어, 처리 유닛은 휘도 성분에 대한 코딩 트리 블록(coding tree block, CTB), 코딩 블록(coding block, CB), PU 또는 변환 블록(transform block, TB)에 해당될 수 있다. 또는, 처리 유닛은 색차 성분에 대한 CTB, CB, PU 또는 TB에 해당할 수 있다. 또한, 이에 한정되는 것은 아니며 처리 유닛은 휘도 성분에 대한 단위와 색차 성분에 대한 단위를 포함하는 의미로 해석될 수도 있다.
또한, 처리 유닛은 반드시 정사각형의 블록으로 한정되는 것은 아니며, 3개 이상의 꼭지점을 가지는 다각형 형태로 구성될 수도 있다.
또한, 이하 본 명세서에서 픽셀 또는 화소 등을 샘플로 통칭한다. 그리고, 샘플을 이용한다는 것은 픽셀 값 또는 화소 값 등을 이용한다는 것을 의미할 수 있다.
도 1은 본 발명이 적용되는 실시예로서 영상 코딩 시스템의 예를 도시한다.
영상 코딩 시스템은 소스 디바이스(10) 및 수신 디바이스(20)를 포함할 수 있다. 소스 디바이스(10)는 인코딩된 비디오/영상 정보 또는 데이터를 파일 또는 스트리밍 형태로 디지털 저장매체 또는 네트워크를 통하여 수신 디바이스(20)로 전달할 수 있다.
소스 디바이스(10)는 비디오 소스(11), 인코딩 장치(12), 송신기(13)를 포함할 수 있다. 수신 디바이스(20)는 수신기(21), 디코딩 장치(22) 및 렌더러(23)를 포함할 수 있다. 인코딩 장치(10)는 비디오/영상 인코딩 장치라고 불릴 수 있고, 디코딩 장치(20)는 비디오/영상 디코딩 장치라고 불릴 수 있다. 송신기(13)는 인코딩 장치(12)에 포함될 수 있다. 수신기(21)는 디코딩 장치(22)에 포함될 수 있다. 렌더러(23)는 디스플레이부를 포함할 수도 있고, 디스플레이부는 별개의 디바이스 또는 외부 컴포넌트로 구성될 수도 있다.
비디오 소스는 비디오/영상의 캡쳐, 합성 또는 생성 과정 등을 통하여 비디오/영상을 획득할 수 있다. 비디오 소스는 비디오/영상 캡쳐 디바이스 및/또는 비디오/영상 생성 디바이스를 포함할 수 있다. 비디오/영상 캡쳐 디바이스는 예를 들어, 하나 이상의 카메라, 이전에 캡쳐된 비디오/영상을 포함하는 비디오/영상 아카이브 등을 포함할 수 있다. 비디오/영상 생성 디바이스는 예를 들어 컴퓨터, 타블렛 및 스마트폰 등을 포함할 수 있으며 (전자적으로) 비디오/영상을 생성할 수 있다. 예를 들어, 컴퓨터 등을 통하여 가상의 비디오/영상이 생성될 수 있으며, 이 경우 관련 데이터가 생성되는 과정으로 비디오/영상 캡쳐 과정이 갈음될 수 있다.
인코딩 장치(12)는 입력 비디오/영상을 인코딩할 수 있다. 인코딩 장치(12)는 압축 및 코딩 효율을 위하여 예측, 변환, 양자화 등 일련의 절차를 수행할 수 있다. 인코딩된 데이터(인코딩된 비디오/영상 정보)는 비트스트림(bitstream) 형태로 출력될 수 있다.
전송부(13)는 비트스트림 형태로 출력된 인코딩된 비디오/영상 정보 또는 데이터를 파일 또는 스트리밍 형태로 디지털 저장매체 또는 네트워크를 통하여 수신 디바이스의 수신부로 전달할 수 있다. 디지털 저장 매체는 USB, SD, CD, DVD, 블루레이, HDD, SSD 등 다양한 저장 매체를 포함할 수 있다. 전송부(13)는 미리 정해진 파일 포멧을 통하여 미디어 파일을 생성하기 위한 엘레먼트를 포함할 수 있고, 방송/통신 네트워크를 통한 전송을 위한 엘레멘트를 포함할 수 있다. 수신기(21)는 비트스트림을 추출하여 디코딩 장치(22)로 전달할 수 있다.
디코딩 장치(22)는 인코딩 장치(12)의 동작에 대응하는 역양자화, 역변환, 예측 등 일련의 절차를 수행하여 비디오/영상을 디코딩할 수 있다.
렌더러(23)는 디코딩된 비디오/영상을 렌더링할 수 있다. 렌더링된 비디오/영상은 디스플레이부를 통하여 디스플레이될 수 있다.
도 2는 본 발명이 적용되는 실시예로서, 비디오/이미지 신호의 인코딩이 수행되는 인코딩 장치의 개략적인 블록도를 나타낸다. 도 2의 인코딩 장치(100)는 도 1의 인코딩 장치(12)에 대응할 수 있다.
영상 분할부(110)는 인코딩 장치(100)에 입력된 입력 영상(또는, 픽쳐, 프레임)를 하나 이상의 처리 유닛(processing unit)으로 분할할 수 있다. 일 예로, 상기 처리 유닛은 코딩 유닛(CU)이라고 불릴 수 있다. 이 경우 코딩 유닛은 코딩 트리 유닛(coding tree unit, CTU) 또는 최대 코딩 유닛(largest coding unit, LCU)으로부터 QTBT (Quad-tree binary-tree) 구조에 따라 재귀적으로(recursively) 분할될 수 있다. 예를 들어, 하나의 코딩 유닛은 쿼드 트리 구조 및/또는 바이너리 트리 구조를 기반으로 하위(deeper) 뎁스의 복수의 코딩 유닛들로 분할될 수 있다. 이 경우 예를 들어 쿼드 트리 구조가 먼저 적용되고 바이너리 트리 구조가 나중에 적용될 수 있다. 또는 바이너리 트리 구조가 먼저 적용될 수도 있다. 더 이상 분할되지 않는 최종 코딩 유닛을 기반으로 본 발명에 따른 코딩 절차가 수행될 수 있다. 이 경우 영상 특성에 따른 코딩 효율 등을 기반으로, 최대 코딩 유닛이 바로 최종 코딩 유닛으로 사용될 수 있고, 또는 필요에 따라 코딩 유닛은 재귀적으로(recursively) 보다 하위 뎁스의 코딩 유닛들로 분할되어 최적의 사이즈의 코딩 유닛이 최종 코딩 유닛으로 사용될 수 있다. 여기서 코딩 절차라 함은 후술하는 예측, 변환, 및 복원 등의 절차를 포함할 수 있다. 다른 예로, 상기 처리 유닛은 예측 유닛(PU: Prediction Unit) 또는 변환 유닛(TU: Transform Unit)을 더 포함할 수 있다. 이 경우 상기 예측 유닛 및 상기 변환 유닛은 각각 상술한 최종 코딩 유닛으로부터 분할 또는 파티셔닝될 수 있다. 상기 예측 유닛은 샘플 예측의 단위일 수 있고, 상기 변환 유닛은 변환 계수를 유도하는 단위 및/또는 변환 계수로부터 레지듀얼 신호(residual signal)를 유도하는 단위일 수 있다.
유닛은 경우에 따라서 블록(block) 또는 영역(area) 등의 용어와 혼용하여 사용될 수 있다. 일반적인 경우, MxN 블록은 M개의 열과 N개의 행으로 이루어진 샘플들 또는 변환 계수(transform coefficient)들의 집합을 나타낼 수 있다. 샘플은 일반적으로 픽셀 또는 픽셀의 값을 나타낼 수 있으며, 휘도(luma) 성분의 픽셀/픽셀값만을 나타낼 수도 있고, 채도(chroma) 성분의 픽셀/픽셀 값만을 나타낼 수도 있다. 샘플은 하나의 픽처(또는 영상)을 픽셀(pixel) 또는 펠(pel)에 대응하는 용어로서 사용될 수 있다.
인코딩 장치(100)는 입력 영상 신호(원본 블록, 원본 샘플 어레이)에서 인터 예측부(180) 또는 인트라 예측부(185)로부터 출력된 예측 신호(예측된 블록, 예측 샘플 어레이)를 감산하여 레지듀얼 신호(residual signal, 잔여 블록, 잔여 샘플 어레이)를 생성할 수 있고, 생성된 레지듀얼 신호는 변환부(120)로 전송된다. 이 경우 도시된 바와 같이 인코더(100) 내에서 입력 영상 신호(원본 블록, 원본 샘플 어레이)에서 예측 신호(예측 블록, 예측 샘플 어레이)를 감산하는 유닛은 감산부(115)라고 불릴 수 있다. 예측부는 처리 대상 블록(이하, 현재 블록이라 함)에 대한 예측을 수행하고, 현재 블록에 대한 예측 샘플들을 포함하는 예측된 블록(predicted block)을 생성할 수 있다. 예측부는 현재 블록 또는 CU 단위로 인트라 예측이 적용되는지 또는 인터 예측이 적용되는지 결정할 수 있다. 예측부는 각 예측모드에 대한 설명에서 후술하는 바와 같이 예측 모드 정보 등 예측에 관한 다양한 정보를 생성하여 엔트로피 인코딩부(190)로 전달할 수 있다. 예측에 관한 정보는 엔트로피 인코딩부(190)에서 인코딩되어 비트스트림 형태로 출력될 수 있다.
인트라 예측부(185)는 현재 픽처 내의 샘플들을 참조하여 현재 블록을 예측할 수 있다. 참조되는 샘플들은 예측 모드에 따라 상기 현재 블록의 주변(neighbor)에 위치할 수 있고, 또는 떨어져서 위치할 수도 있다. 인트라 예측에서 예측 모드들은 복수의 비방향성 모드와 복수의 방향성 모드를 포함할 수 있다. 비방향성 모드는 예를 들어 DC 모드 및 플래너 모드(Planar 모드)를 포함할 수 있다. 방향성 모드는 예측 방향의 세밀한 정도에 따라 예를 들어 33개의 방향성 예측 모드 또는 65개의 방향성 예측 모드를 포함할 수 있다. 다만, 이는 예시로서 설정에 따라 그 이상 또는 그 이하의 개수의 방향성 예측 모드들이 사용될 수 있다. 인트라 예측부(185)는 주변 블록에 적용된 예측 모드를 이용하여, 현재 블록에 적용되는 예측 모드를 결정할 수도 있다.
인터 예측부(180)는 참조 픽처 상에서 움직임 벡터에 의해 특정되는 참조 블록(참조 샘플 어레이)을 기반으로, 현재 블록에 대한 예측된 블록을 유도할 수 있다. 이때, 인터 예측 모드에서 전송되는 움직임 정보의 양을 줄이기 위해 주변 블록과 현재 블록 간의 움직임 정보의 상관성에 기초하여 움직임 정보를 블록, 서브블록 또는 샘플 단위로 예측할 수 있다. 움직임 정보는 움직임 벡터 및 참조 픽처 인덱스를 포함할 수 있다. 움직임 정보는 인터 예측 방향(L0 예측, L1 예측, Bi 예측 등) 정보를 더 포함할 수 있다. 인터 예측의 경우에, 주변 블록은 현재 픽처 내에 존재하는 공간적 주변 블록(spatial neighboring block)과 참조 픽처에 존재하는 시간적 주변 블록(temporal neighboring block)을 포함할 수 있다. 참조 블록을 포함하는 참조 픽처와 시간적 주변 블록을 포함하는 참조 픽처는 동일할 수도 있고, 다를 수도 있다. 상기 시간적 주변 블록은 동일 위치 참조 블록(collocated reference block), 동일 위치 CU(colCU) 등의 이름으로 불릴 수 있으며, 시간적 주변 블록을 포함하는 참조 픽처는 동일 위치 픽처(collocated picture, colPic)라고 불릴 수도 있다. 예를 들어, 인터 예측부(180)는 주변 블록들을 기반으로 움직임 정보 후보 리스트를 구성하고, 상기 현재 블록의 움직임 벡터 및/또는 참조 픽처 인덱스를 도출하기 위하여 어떤 후보가 사용되는지를 지시하는 정보를 생성할 수 있다. 다양한 예측 모드를 기반으로 인터 예측이 수행될 수 있으며, 예를 들어 스킵 모드와 머지 모드의 경우에, 인터 예측부(180)는 주변 블록의 움직임 정보를 현재 블록의 움직임 정보로 이용할 수 있다. 스킵 모드의 경우, 머지 모드와 달리 레지듀얼 신호가 전송되지 않을 수 있다. 움직임 정보 예측(motion vector prediction, MVP) 모드의 경우, 주변 블록의 움직임 벡터를 움직임 벡터 예측자(motion vector predictor)로 이용하고, 움직임 벡터 차분(motion vector difference)을 시그널링함으로써 현재 블록의 움직임 벡터를 지시할 수 있다.
인터 예측부(180) 또는 인트라 예측부(185)를 통해 생성된 예측 신호는 복원 신호를 생성하기 위해 이용되거나 레지듀얼 신호를 생성하기 위해 이용될 수 있다.
변환부(120)는 레지듀얼 신호에 변환 기법을 적용하여 변환 계수들(transform coefficients)를 생성할 수 있다. 예를 들어, 변환 기법은 DCT(Discrete Cosine Transform), DST(Discrete Sine Transform), KLT(Karhunen-Loeve Transform), GBT(Graph-Based Transform), 또는 CNT(Conditionally Non-linear Transform) 중 적어도 하나를 포함할 수 있다. 여기서, GBT는 픽셀 간의 관계 정보를 그래프로 표현한다고 할 때 이 그래프로부터 얻어진 변환을 의미한다. CNT는 이전에 복원된 모든 픽셀(all previously reconstructed pixel)를 이용하여 예측 신호를 생성하고 그에 기초하여 획득되는 변환을 의미한다. 또한, 변환 과정은 정사각형의 동일한 크기를 갖는 픽셀 블록에 적용될 수도 있고, 정사각형이 아닌 가변 크기의 블록에도 적용될 수 있다.
양자화부(130)는 변환 계수들을 양자화하여 엔트로피 인코딩부(190)로 전송되고, 엔트로피 인코딩부(190)는 양자화된 신호(양자화된 변환 계수들에 관한 정보)를 인코딩하여 비트스트림으로 출력할 수 있다. 양자화된 변환 계수들에 관한 정보는 레지듀얼 정보라고 불릴 수 있다. 양자화부(130)는 계수 스캔 순서(scan order)를 기반으로 블록 형태의 양자화된 변환 계수들을 1차원 벡터 형태로 재정렬할 수 있고, 1차원 벡터 형태의 양자화된 변환 계수들을 기반으로 상기 양자화된 변환 계수들에 관한 정보를 생성할 수도 있다. 엔트로피 인코딩부(190)는 예를 들어 지수 골롬(exponential Golomb), CAVLC(context-adaptive variable length coding), CABAC(context-adaptive binary arithmetic coding) 등과 같은 다양한 인코딩 방법을 수행할 수 있다. 엔트로피 인코딩부(190)는 양자화된 변환 계수들 외 비디오/이미지 복원에 필요한 정보들(예컨대 신택스 요소들(syntax elements)의 값 등)을 함께 또는 별도로 인코딩할 수도 있다. 인코딩된 정보(예: 비디오/영상 정보)는 비트스트림 형태로 NAL(network abstraction layer) 유닛 단위로 전송 또는 저장될 수 있다. 상기 비트스트림은 네트워크를 통하여 전송될 수 있고, 또는 디지털 저장매체에 저장될 수 있다. 여기서 네트워크는 방송망 및/또는 통신망 등을 포함할 수 있고, 디지털 저장매체는 USB, SD, CD, DVD, 블루레이, HDD, SSD 등 다양한 저장매체를 포함할 수 있다. 엔트로피 인코딩부(190)로부터 출력된 신호는 전송하는 전송부(미도시) 및/또는 저장하는 저장부(미도시)가 인코딩 장치(100)의 내/외부 엘리먼트로서 구성될 수 있고, 또는 전송부는 엔트로피 인코딩부(190)의 구성요소일 수도 있다.
양자화부(130)로부터 출력된 양자화된 변환 계수들은 예측 신호를 생성하기 위해 이용될 수 있다. 예를 들어, 양자화된 변환 계수들은에 루프 내의 역양자화부(140) 및 역변환부(150)를 통해 역양자화 및 역변환을 적용함으로써 레지듀얼 신호를 복원할 수 있다. 가산부(155)는 복원된 레지듀얼 신호를 인터 예측부(180) 또는 인트라 예측부(185)로부터 출력된 예측 신호에 더함으로써 복원(reconstructed) 신호(복원 픽처, 복원 블록, 복원 샘플 어레이)가 생성될 수 있다. 스킵 모드가 적용된 경우와 같이 처리 대상 블록에 대한 레지듀얼이 없는 경우, 예측된 블록이 복원 블록으로 사용될 수 있다. 가산부(155)는 복원부 또는 복원 블록 생성부라고 불릴 수 있다. 생성된 복원 신호는 현재 픽처 내 다음 처리 대상 블록의 인트라 예측을 위하여 사용될 수 있고, 후술하는 바와 같이 필터링을 거쳐서 다음 픽처의 인터 예측을 위하여 사용될 수도 있다.
필터링부(160)는 복원 신호에 필터링을 적용하여 주관적/객관적 화질을 향상시킬 수 있다. 예를 들어 필터링부(160)은 복원 픽처에 다양한 필터링 방법을 적용하여 수정된(modified) 복원 픽처를 생성할 수 있고, 수정된 복원 픽처를 복호 픽쳐 버퍼(170)에 전송할 수 있다. 다양한 필터링 방법은 예를 들어, 디블록킹 필터링, 샘플 적응적 오프셋(sample adaptive offset), 적응적 루프 필터(adaptive loop filter), 양방향 필터(bilateral filter) 등을 포함할 수 있다. 필터링부(160)은 각 필터링 방법에 대한 설명에서 후술하는 바와 같이 필터링에 관한 다양한 정보를 생성하여 엔트로피 인코딩부(190)로 전달할 수 있다. 필터링 관한 정보는 엔트로피 인코딩부(190)에서 인코딩되어 비트스트림 형태로 출력될 수 있다.
복호 픽처 버퍼(170)에 전송된 수정된 복원 픽처는 인터 예측부(180)에서 참조 픽처로 사용될 수 있다. 인코딩 장치는 이를 통하여 인터 예측이 적용되는 경우, 인코딩 장치(100)와 디코딩 장치에서의 예측 미스매치를 피할 수 있고, 부호화 효율도 향상시킬 수 있다.
복호 픽처 버퍼(170)는 수정된 복원 픽처를 인터 예측부(180)에서의 참조 픽처로 사용하기 위해 저장할 수 있다.
도 3은 본 발명이 적용되는 실시예로서, 영상 신호의 디코딩이 수행되는 디코딩 장치의 개략적인 블록도를 나타낸다. 도 3의 디코딩 장치(200)는 도 1의 디코딩 장치(22)에 대응할 수 있다.
도 3을 참조하면, 디코딩 장치(200)는 엔트로피 디코딩부(210), 역양자화부(220), 역변환부(230), 가산부(235), 필터링부(240), 복호 픽쳐 버퍼(DPB)(250), 인터 예측부(260) 및 인트라 예측부(265)를 포함하여 구성될 수 있다. 인터 예측부(260) 및 인트라 예측부(265)를 합쳐서 예측부라고 불릴 수 있다. 즉, 예측부는 인터 예측부(180) 및 인트라 예측부(185)를 포함할 수 있다. 역양자화부(220), 역변환부(230)를 합쳐서 레지듀얼 처리부라고 불릴 수 있다. 즉, 레지듀얼 처리부는 역양자화부(220), 역변환부(230)을 포함할 수 있다. 상술한 엔트로피 디코딩부(210), 역양자화부(220), 역변환부(230), 가산부(235), 필터링부(240), 인터 예측부(260) 및 인트라 예측부(265)는 실시예에 따라 하나의 하드웨어 컴포넌트(예를 들어 디코더 또는 프로세서)에 의하여 구성될 수 있다. 또한 복호 픽처 버퍼(250)은 실시예에 따라 하나의 하드웨어 컴포넌트(예를 들어 메모리 또는 디지털 저장 매체)에 의하여 구성될 수 있다.
비디오/이미지 정보를 포함하는 비트스트림이 입력되면, 디코딩 장치(200)는 도 2의 인코딩 장치(100)에서 비디오/이미지 정보가 처리된 프로세스에 대응하여 영상을 복원할 수 있다. 예를 들어, 디코딩 장치(200)는 인코딩 장치(100)에서 적용된 처리 유닛을 이용하여 디코딩을 수행할 수 있다. 따라서 디코딩의 처리 유닛은 예를 들어 코딩 유닛일 수 있고, 코딩 유닛은 코딩 트리 유닛 또는 최대 코딩 유닛으로부터 쿼드 트리 구조 및/또는 바이너리 트리 구조를 따라서 분할될 수 있다. 그리고, 디코딩 장치(200)를 통해 디코딩 및 출력된 복원 영상 신호는 재생 장치를 통해 재생될 수 있다.
디코딩 장치(200)는 도 2의 인코딩 장치(100)로부터 출력된 신호를 비트스트림 형태로 수신할 수 있고, 수신된 신호는 엔트로피 디코딩부(210)를 통해 디코딩될 수 있다. 예를 들어, 엔트로피 디코딩부(210)는 비트스트림을 파싱하여 영상 복원(또는 픽처 복원)에 필요한 정보(예: 비디오/영상 정보)를 도출할 수 있다. 예컨대, 엔트로피 디코딩부(210)는 지수 골롬 부호화, CAVLC 또는 CABAC 등의 코딩 방법을 기초로 비트스트림 내 정보를 디코딩하고, 영상 복원에 필요한 신택스 엘리먼트의 값, 레지듀얼에 관한 변환 계수의 양자화된 값 들을 출력할 수 있다. 보다 상세하게, CABAC 엔트로피 디코딩 방법은, 비트스트림에서 각 구문 요소에 해당하는 빈을 수신하고, 디코딩 대상 구문 요소 정보와 주변 및 디코딩 대상 블록의 디코딩 정보 혹은 이전 단계에서 디코딩된 심볼/빈의 정보를 이용하여 문맥(context) 모델을 결정하고, 결정된 문맥 모델에 따라 빈(bin)의 발생 확률을 예측하여 빈의 산술 디코딩(arithmetic decoding)를 수행하여 각 구문 요소의 값에 해당하는 심볼을 생성할 수 있다. 이때, CABAC 엔트로피 디코딩 방법은 문맥 모델 결정 후 다음 심볼/빈의 문맥 모델을 위해 디코딩된 심볼/빈의 정보를 이용하여 문맥 모델을 업데이트할 수 있다. 엔트로피 디코딩부(210)에서 디코딩된 정보 중 예측에 관한 정보는 예측부(인터 예측부(260) 및 인트라 예측부(265))로 제공되고, 엔트로피 디코딩부(210)에서 엔트로피 디코딩이 수행된 레지듀얼 값, 즉 양자화된 변환 계수들 및 관련 파라미터 정보는 역양자화부(220)로 입력될 수 있다. 또한, 엔트로피 디코딩부(210)에서 디코딩된 정보 중 필터링에 관한 정보는 필터링부(240)로 제공될 수 있다. 한편, 인코딩 장치(100)로부터 출력된 신호를 수신하는 수신부(미도시)가 디코딩 장치(200)의 내/외부 엘리먼트로서 더 구성될 수 있고, 또는 수신부는 엔트로피 디코딩부(210)의 구성요소일 수도 있다.
역양자화부(220)에서는 양자화된 변환 계수들을 역양자화하여 변환 계수들을 출력할 수 있다. 역양자화부(220)는 양자화된 변환 계수들을 2차원의 블록 형태로 재정렬할 수 있다. 이 경우 인코딩 장치(100)에서 수행된 계수 스캔 순서에 기반하여 재정렬이 수행될 수 있다. 역양자화부(220)는 양자화 파라미터(예를 들어 양자화 스텝 사이즈 정보)를 이용하여 양자화된 변환 계수들에 대한 역양자화를 수행하고, 변환 계수들(transform coefficient)을 획득할 수 있다.
역변환부(230)는 변환 계수들을 역변환하여 레지듀얼 신호(레지듀얼 블록, 레지듀얼 샘플 어레이)를 획득하게 된다.
예측부는 현재 블록에 대한 예측을 수행하고, 상기 현재 블록에 대한 예측 샘플들을 포함하는 예측된 블록(predicted block)을 생성할 수 있다. 예측부는 엔트로피 디코딩부(210)로부터 출력된 상기 예측에 관한 정보를 기반으로 상기 현재 블록에 인트라 예측이 적용되는지 또는 인터 예측이 적용되는지 결정할 수 있고, 구체적인 인트라/인터 예측 모드를 결정할 수 있다.
인트라 예측부(265)는 현재 픽처 내의 샘플들을 참조하여 현재 블록을 예측할 수 있다. 참조되는 샘플들은 예측 모드에 따라 현재 블록의 주변(neighbor)에 위치할 수 있고, 또는 이격되어 위치할 수도 있다. 인트라 예측에서 예측 모드들은 복수의 비방향성 모드와 복수의 방향성 모드를 포함할 수 있다. 인트라 예측부(265)는 주변 블록에 적용된 예측 모드를 이용하여, 현재 블록에 적용되는 예측 모드를 결정할 수도 있다.
인터 예측부(260)는 참조 픽처 상에서 움직임 벡터에 의해 특정되는 참조 블록(참조 샘플 어레이)을 기반으로, 현재 블록에 대한 예측된 블록을 유도할 수 있다. 이때, 인터 예측 모드에서 전송되는 움직임 정보의 양을 줄이기 위해 주변 블록과 현재 블록 간의 움직임 정보의 상관성에 기초하여 움직임 정보를 블록, 서브블록 또는 샘플 단위로 예측할 수 있다. 움직임 정보는 움직임 벡터 및 참조 픽처 인덱스를 포함할 수 있다. 움직임 정보는 인터 예측 방향(L0 예측, L1 예측, Bi 예측 등) 정보를 더 포함할 수 있다. 인터 예측의 경우, 주변 블록은 현재 픽처 내에 존재하는 공간적 주변 블록(spatial neighboring block)과 참조 픽처에 존재하는 시간적 주변 블록(temporal neighboring block)을 포함할 수 있다. 예를 들어, 인터 예측부(260)는 주변 블록들을 기반으로 움직임 정보 후보 리스트를 구성하고, 수신된 후보 선택 정보를 기반으로 현재 블록의 움직임 벡터 및/또는 참조 픽처 인덱스를 도출할 수 있다. 다양한 예측 모드를 기반으로 인터 예측이 수행될 수 있으며, 예측에 관한 정보는 현재 블록에 대한 인터 예측의 모드를 지시하는 정보를 포함할 수 있다.
가산부(235)는 획득된 레지듀얼 신호를 인터 예측부(260) 또는 인트라 예측부(265)로부터 출력된 예측 신호(예측된 블록, 예측 샘플 어레이)에 더함으로써 복원 신호(복원 픽처, 복원 블록, 복원 샘플 어레이)를 생성할 수 있다. 스킵 모드가 적용된 경우와 같이 처리 대상 블록에 대한 레지듀얼이 없는 경우, 예측된 블록이 복원 블록으로 사용될 수 있다.
가산부(235)는 복원부 또는 복원 블록 생성부라고 불릴 수 있다. 생성된 복원 신호는 현재 픽처 내 다음 처리 대상 블록의 인트라 예측을 위하여 사용될 수 있고, 후술하는 바와 같이 필터링을 거쳐서 다음 픽처의 인터 예측을 위하여 사용될 수도 있다.
필터링부(240)는 복원 신호에 필터링을 적용함으로써 주관적/객관적 화질을 향상시킬 수 있다. 예를 들어 필터링부(240)는 복원 픽처에 다양한 필터링 방법을 적용하여 수정된(modified) 복원 픽처를 생성할 수 있고, 수정된 복원 픽처를 복호 픽쳐 버퍼(250)에 전송할 수 있다. 다양한 필터링 방법은 예를 들어, 디블록킹 필터링, 샘플 적응적 오프셋(sample adaptive offset, SAO), 적응적 루프 필터(adaptive loop filter, ALF), 양방향 필터(bilateral filter) 등을 포함할 수 있다.
복호 픽쳐 버퍼(250)에 전송된 수정된 복원 픽처는 인터 예측부(260)에 의해 참조 픽쳐로 사용될 수 있다.
본 명세서에서, 인코딩 장치(100)의 필터링부(160), 인터 예측부(180) 및 인트라 예측부(185)에서 설명된 실시예들은 각각 디코딩 장치의 필터링부(240), 인터 예측부(260) 및 인트라 예측부(265)에도 동일 또는 대응되도록 적용될 수 있다.
도 4는 본 발명이 적용되는 실시예로서, 컨텐츠 스트리밍 시스템의 구조도이다.
본 발명이 적용되는 컨텐츠 스트리밍 시스템은 크게 인코딩 서버(410), 스트리밍 서버(420), 웹 서버(430), 미디어 저장소(440), 사용자 장치(450) 및 멀티미디어 입력 장치(460)를 포함할 수 있다.
인코딩 서버(410)는 스마트폰, 카메라, 캠코더 등과 같은 멀티미디어 입력 장치들로부터 입력된 컨텐츠를 디지털 데이터로 압축하여 비트스트림을 생성하고 이를 스트리밍 서버(420)로 전송하는 역할을 한다. 다른 예로, 스마트폰, 카메라, 캠코더 등과 같은 멀티미디어 입력 장치(460)들이 비트스트림을 직접 생성하는 경우, 인코딩 서버(410)는 생략될 수 있다.
비트스트림은 본 발명이 적용되는 인코딩 방법 또는 비트스트림 생성 방법에 의해 생성될 수 있고, 스트리밍 서버(420)는 비트스트림을 전송 또는 수신하는 과정에서 일시적으로 비트스트림을 저장할 수 있다.
스트리밍 서버(420)는 웹 서버(430)를 통한 사용자 요청에 기초하여 멀티미디어 데이터를 사용자 장치(450)에 전송하고, 웹 서버(430)는 사용자에게 어떠한 서비스가 있는지를 알려주는 매개체 역할을 한다. 사용자가 웹 서버(430)에 원하는 서비스를 요청하면, 웹 서버(430)는 이를 스트리밍 서버(420)에 전달하고, 스트리밍 서버(420)는 사용자에게 멀티미디어 데이터를 전송한다. 이때, 컨텐츠 스트리밍 시스템은 별도의 제어 서버를 포함할 수 있고, 이 경우 제어 서버는 컨텐츠 스트리밍 시스템 내 각 장치 간 명령/응답을 제어하는 역할을 한다.
스트리밍 서버(420)는 미디어 저장소(440) 및/또는 인코딩 서버(410)로부터 컨텐츠를 수신할 수 있다. 예를 들어, 인코딩 서버(410)로부터 컨텐츠를 수신하게 되는 경우, 컨텐츠를 실시간으로 수신할 수 있다. 이 경우, 원활한 스트리밍 서비스를 제공하기 위하여 스트리밍 서버(420)는 비트스트림을 일정 시간동안 저장할 수 있다.
사용자 장치(450)의 예로는, 휴대폰, 스마트 폰(smart phone), 노트북 컴퓨터(laptop computer), 디지털방송용 단말기, PDA(personal digital assistants), PMP(portable multimedia player), 네비게이션, 슬레이트 PC(slate PC), 태블릿 PC(tablet PC), 울트라북(ultrabook), 웨어러블 디바이스(wearable device, 예를 들어, 워치형 단말기 (smartwatch), 글래스형 단말기 (smart glass), HMD(head mounted display)), 디지털 TV, 데스크탑 컴퓨터, 디지털 사이니지 등이 있을 수 있다.
컨텐츠 스트리밍 시스템 내 각 서버들은 분산 서버로 운영될 수 있으며, 이 경우 각 서버에서 수신하는 데이터는 분산 처리될 수 있다.
도 5는 본 발명이 적용될 수 있는 실시예들로서, 도 5a는 QT(QuadTree, QT), 도 5b는 BT(Binary Tree, BT), 도 5c는 TT(Ternary Tree, TT) 도 5d는 AT(Asymmetric Tree, AT)에 의한 블록 분할 구조들을 설명하기 위한 도면이다.
비디오 코딩에서 하나의 블록은 QT 기반으로 분할될 수 있다. 또한, QT에 의해서 분할된 하나의 서브 블록(subblock)은 QT를 사용하여 재귀적으로 더 분할될 수 있다. 더 이상 QT 분할되지 않는 리프 블록(leaf block)은 BT, TT 또는 AT 중 적어도 하나의 방식에 의해서 분할될 수 있다. BT는 horizontal BT (2NxN, 2NxN)과 vertical BT (Nx2N, Nx2N)의 두 가지 형태의 분할을 가질 수 있다. TT는 horizontal TT (2Nx1/2N, 2NxN, 2Nx1/2N)와 vertical TT (1/2Nx2N, Nx2N, 1/2Nx2N)의 두 가지 형태의 분할을 가질 수 있다. AT는 horizontal-up AT (2Nx1/2N, 2Nx3/2N), horizontal-down AT (2Nx3/2N, 2Nx1/2N), vertical-left AT (1/2Nx2N, 3/2Nx2N), vertical-right AT (3/2Nx2N, 1/2Nx2N)의 네 가지 형태의 분할을 가질 수 있다. 각각의 BT, TT, AT는 BT, TT, AT를 사용하여 재귀적으로 더 분할될 수 있다.
도 5a는 QT 분할의 예를 보여준다. 블록 A는 QT에 의해서 4개의 서브 블록 (A0, A1, A2, A3)으로 분할될 수 있다. 서브 블록 A1은 다시 QT에 의해서 4개의 서브 블록 (B0, B1, B2, B3)로 분할될 수 있다.
도 5b는 BT 분할의 예를 보여준다. QT에 의해서 더 이상 분할되지 않는 블록 B3은 vertical BT(C0, C1) 또는 horizontal BT(D0, D1)로 분할될 수 있다. 블록 C0와 같이 각각의 서브 블록은 horizontal BT(E0, E1) 또는 vertical BT (F0, F1)의 형태와 같이 재귀적으로 더 분할될 수 있다.
도 5c는 TT 분할의 예를 보여준다. QT에 의해서 더 이상 분할되지 않는 블록 B3은 vertical TT (C0, C1, C2) 또는 horizontal TT (D0, D1, D2)으로 분할될 수 있다. 블록 C1와 같이 각각의 서브 블록은 horizontal TT (E0, E1, E2) 또는 vertical TT (F0, F1, F2)의 형태와 같이 재귀적으로 더 분할될 수 있다.
도 5d는 AT 분할의 예를 보여준다. QT에 의해서 더 이상 분할되지 않는 블록 B3은 vertical AT (C0, C1) 또는 horizontal AT (D0, D1)으로 분할 될 수 있다. 블록 C1와 같이 각각의 서브 블록은 horizontal AT (E0, E1) 또는 vertical TT (F0, F1)의 형태와 같이 재귀적으로 더 분할 될 수 있다.
한편, BT, TT, AT 분할은 함께 사용하여 분할이 가능하다. 예를 들어, BT에 의해 분할된 서브 블록은 TT 또는 AT에 의한 분할이 가능하다. 또한, TT에 의해 분할된 서브 블록은 BT 또는 AT에 의한 분할이 가능하다. AT에 의해 분할된 서브 블록은 BT 또는 TT에 의한 분할이 가능하다. 예를 들어, horizontal BT 분할 이후, 각각의 서브 블록이 vertical BT로 분할될 수 있고, 또는 vertical BT 분할 이후, 각각의 서브 블록이 horizontal BT로 분할될 수도 있다. 이 경우 분할 순서는 다르지만 최종적으로 분할되는 모양은 동일하다.
또한, 블록이 분할되면 블록을 탐색하는 순서를 다양하게 정의할 수 있다. 일반적으로, 좌측에서 우측으로, 상단에서 하단으로 탐색을 수행하며, 블록을 탐색한다는 것은 각 분할된 서브 블록의 추가적인 블록 분할 여부를 결정하는 순서를 의미하거나, 블록이 더 이상 분할되지 않을 경우 각 서브 블록의 부호화 순서를 의미하거나, 또는 서브 블록에서 다른 이웃 블록의 정보를 참조할 때의 탐색 순서를 의미할 수 있다.
도 5a 내지 5d과 같은 분할 구조에 의해 분할된 처리 유닛(또는, 변환 블록) 별로 변환이 수행될 수 있으며, 특히, 행(row) 방향과 열(column) 방향 별로 분할되어 변환 행렬이 적용될 수 있다. 본 발명의 실시예에 따르면, 처리 유닛(또는 변환 블록)의 행 방향 또는 열 방향의 길이에 따라 다른 변환 타입이 사용될 수 있다.
변환은 레지듀얼 블록들에 적용되는데, 이는 최대한 레지듀얼 블록들을 무상관화(decorrelate)하고, 저 주파수에 계수들을 집중시키고, 블록의 끝단에 0의 꼬리(zero tail)를 만들기 위함이다. JEM 소프트웨어에서 변환 파트는 2개의 주요 기능들(코어 변환(core transform), 2차 변환(secondary transform))을 포함한다. 코어 변환은, 레지듀얼 블록의 모든 행들과 열들에 적용되는 DCT(discrete cosine transform) 및 DST(discrete sine transform) 변환 패밀리들로 구성된다. 이후 2차 변환이 코어 변환의 출력의 좌상측 코너(top left corner)에 추가적으로 적용될 수 있다. 유사하게 2차 역변환과 코어 역변환 순서의 역변환이 적용될 수 있다. 먼저 2차 역변환이 계수 블록의 좌상측 코너에 적용될 수 있다. 이후 코어 역변환이 2차 역변환의 출력의 행들 및 열들에 적용된다. 코어 변환 또는 역변환은 1차 변환 또는 역변환으로 지칭될 수 있다.
도 6 및 도 7은 본 발명이 적용되는 실시예들로서, 도 6은 도 2의 인코딩 장치(100) 내의 변환 및 양자화부 (120/130), 역양자화 및 역변환부 (140/150)의 개략적인 블록도를 나타내고, 도 7은 디코딩 장치(200) 내의 역양자화 및 역변환부 (220/230)의 개략적인 블록도를 나타낸다.
도 6을 살펴보면, 변환 및 양자화부(120/130)는 1차 변환부(primary transform unit)(121), 2차 변환부(secondary transform unit)(122) 및 양자화부(130)를 포함할 수 있다. 역양자화 및 역변환부 (140/150)는 역양자화부(140), 역 2차 변환부(inverse secondary transform unit)(151) 및 역 1차 변환부(inverse primary transform unit)(152)를 포함할 수 있다.
도 7을 살펴보면, 역양자화 및 역변환부 (220/230)는 역양자화부(220), 역 2차 변환부(inverse secondary transform unit)(231) 및 역 1차 변환부(inverse primary transform unit)(232)를 포함할 수 있다.
본 발명에서, 변환을 수행할 때 복수의 단계를 통해 변환을 수행할 수 있다. 예를 들어, 도 6에서와 같이 1차 변환(primary transform), 2차 변환(secondary transform)의 2단계를 적용할 수 있고, 또는 알고리즘에 따라 그 이상의 변환 단계가 이용될 수도 있다. 여기서, 1차 변환은 코어 변환(core transform)으로 지칭될 수 있다.
1차 변환부(121)는 레지듀얼 신호에 대해 1차 변환을 적용할 수 있으며, 여기서 1차 변환은 인코더 및/또는 디코더에서 테이블로 기정의될 수 있다.
2차 변환부(122)는 1차 변환된 신호에 대해 2차 변환을 적용할 수 있으며, 여기서 2차 변환은 인코더 및/또는 디코더에서 테이블로 기정의될 수 있다.
일 실시예에서, 2차 변환으로서 비분리 2차 변환(non-separable secondary transform)(NSST)이 조건적으로 적용될 수 있다. 예를 들어, NSST는 화면내 예측 블록일 경우에만 적용되며, 예측 모드 그룹마다 적용 가능한 변환 셋을 가질 수 있다.
여기서, 예측 모드 그룹은 예측 방향에 대한 대칭성에 기초하여 설정될 수 있다. 예를 들어, 예측 모드 52와 예측 모드 16은 예측 모드 34 (대각 방향)를 기준으로 대칭이므로, 하나의 그룹을 형성하여 동일한 변환 셋(transform set)이 적용될 수 있다. 이때, 예측 모드 52에 대한 변환을 적용할 때 입력 데이터를 전치(transpose)한 후 적용하며, 이는 예측 모드 16과 변환 셋이 동일하기 때문이다.
한편, 플래너 모드(Planar mode)와 DC 모드(DC mode)의 경우 방향에 대한 대칭성이 존재하지 않으므로 각자의 변환 셋을 가지며, 해당 변환 셋은 2개의 변환들로 구성될 수 있다. 나머지 방향성 모드에 대해서는 변환 셋마다 3개의 변환들로 구성될 수 있다.
양자화부(130)는 2차 변환된 신호에 대해 양자화를 수행할 수 있다.
역양자화 및 역변환부 (140/150)는 앞서 설명된 과정을 역으로 수행하며, 중복되는 설명은 생략하도록 한다.
도 7은 디코딩 장치(200) 내의 역양자화 및 역변환부 (220/230)의 개략적인 블록도를 나타낸다.
도 7을 참조하면, 역양자화 및 역변환부 (220/230)는 역양자화부(220), 역 2차 변환부(inverse secondary transform unit)(231) 및 역 1차 변환부(inverse primary transform unit)(232)를 포함할 수 있다.
역양자화부(220)는 양자화 스텝 사이즈 정보를 이용하여 엔트로피 디코딩된 신호로부터 변환 계수를 획득한다.
역 2차 변환부(231)에서는 변환 계수에 대해 역 2차 변환을 수행한다. 여기서, 역 2차 변환은 도 6에서 설명한 2차 변환의 역변환을 나타낸다.
역 1차 변환부(232)는 역 2차 변환된 신호(또는 블록)에 대해 역 1차 변환을 수행하고, 잔차 신호(residual signal)를 획득하게 된다. 여기서, 역 1차 변환은 도 6에서 설명한 상기 1차 변환(primary transform)의 역변환을 나타낸다.
HEVC에 적용된 DCT-2와 4x4 DST-4에 더하여, 적응적(또는 명시적) 다중 변환(adaptive multiple transform 또는 explicit multiple transform)(AMT 또는 EMT) 기법이 인터 및 인트라 코딩된 블록에 대한 레지듀얼 코딩을 위해 사용된다. HEVC에서의 변환들 외의 DCT/DST 패밀리들로부터 다수개의 선택된 변환들이 사용된다. JEM에서 새롭게 소개된 변환 행렬들은 DST-7, DCT-8, DST-1, 및 DCT-5이다. 아래의 표 1은 선택된 DST/DCT의 기저 함수들을 나타낸다.
Figure 112021043268336-pct00001
EMT는 64보다 작거나 같은 너비와 높이를 갖는 CU들에 적용될 수 있고, EMT가 적용되는지 여부는 CU 레벨 플래그에 의해 제어될 수 있다. CU 레벨 플래그가 0이면, DCT-2가 잔차(residue)를 인코딩하기 위해 CU에 적용된다. EMT가 적용되는 CU 내 루마 코딩 블록에 대하여, 2개의 추가적인 플래그들이 사용될 수평 및 수직 변환을 식별하기 위해 시그널링된다. HEVC에서와 같이, JEM에서 블록의 레지듀얼은 변환 스킵 모드로 코딩될 수 있다. 인트라 레지듀얼 코딩을 위하여, 다른 인트라 예측 모드들의 다른 레지듀얼 통계들로 인하여, 모드-의존적 변환 후보 선택 프로세스가 사용된다. 3개의 변환 서브셋들이 아래의 표 2와 같이 정의되어 있고, 변환 서브셋은 표 3에 나타난 것과 같이 인트라 예측 모드에 기반하여 변환 서브셋이 선택된다.
Figure 112021043268336-pct00002
서브셋 컨셉과 함께, 변환 서브셋은 CU-레벨 EMT_CU_flag가 1인 CU의 인트라 예측 모드를 사용함으로써 표 2에 기반하여 최초로 확인된다. 이후, 수평(EMT_TU_horizontal_flag) 및 수직 (EMT_TU_vertical_flag) 변환 각각에 대해, 확인된 변환 서브셋 내 2개의 변환 후보들 중에서 하나가, 표 3에 따라, 플래그들을 사용한 명시적인 시그널링에 기반하여 선택된다.
Figure 112021043268336-pct00003
Figure 112021043268336-pct00004
표 4는 본 발명이 적용되는 실시예로서, AMT(adaptive multiple transform)가 적용되는 변환 설정 그룹(transform configuration group)을 나타낸다.
표 4를 살펴보면, 변환 설정 그룹(transform configuration group)들은 예측 모드에 기초하여 결정되고 그룹의 개수는 총 6개(G0~G5)일 수 있다. 그리고, G0~G4는 인트라 예측이 적용되는 경우에 해당하고 G5는 인터 예측에 의해 생성된 잔차 블록에 적용되는 변환 조합들(또는 변환 셋, 변환 조합 셋)을 나타낸다.
하나의 변환 조합은 해당 2D 블록의 행(row)들에 적용되는 수평 변환(horizontal transform)(또는 행 변환(row transform))과 열(column)들에 적용되는 수직 변환(vertical transoform)(또는 열 변환(column transform))으로 이루어질 수 있다.
여기서, 모든 변환 설정 그룹들은 각 4개의 변환 조합 후보들을 가질 수 있다. 4개의 변환 조합 후보들은 0~3의 변환 조합 인덱스를 통해 선택 또는 결정될 수 있으며, 인코더에서 디코더로 변환 조합 인덱스를 인코딩하여 전송할 수 있다.
일 실시예로, 인트라 예측을 통해 획득된 잔차 데이터(또는 잔차 신호)는 인트라 예측 모드에 따라 그 통계적 특성이 각기 다를 수 있다. 따라서, 표 4와 같이 인트라 예측 별로 일반적인 코사인 변환이 아닌 다른 변환들이 적용될 수 있다. 본 명세서에서, 변환 타입은, 예를 들어 DCT-Type 2, DCT-II, DCT-2와 같이 표기될 수 있다.
표 4를 살펴보면, 35개의 인트라 예측 모드를 사용하는 경우와 67개의 인트라 예측 모드를 사용하는 경우가 나타난다. 각 인트라 예측 모드 열에서 구분된 변환 설정 그룹 별로 복수개의 변환 조합들이 적용될 수 있다. 예를 들어, 복수개의 변환 조합들은 4개의 (행 방향 변환, 열 방향 변환) 조합으로 구성될 수 있다. 구체적 예로, 그룹 0에서는 행(수평) 방향과 열(수직) 방향 모두 DST-7과 DCT-5가 적용될 수 있어 총 4개의 조합이 가능하다.
각 인트라 예측 모드에 대해 총 4개의 변환 커널 조합이 적용될 수 있으므로, 그 중 하나를 선택하기 위한 변환 조합 인덱스가 변환 단위(transform unit)마다 전송될 수 있다. 본 명세서에서, 변환 조합 인덱스는 AMT 인덱스(AMT index)로 지칭될 수 있으며, amt_idx로 표현될 수 있다.
또한, 표 4에서 제시된 변환 커널들 이외에도, 잔차 신호의 특성상 행 방향과 열 방향 모두에 대해 DCT-2가 최적인 경우가 발생할 수 있다. 따라서, 코딩 유닛마다 AMT 플래그를 정의함으로써 적응적으로 변환이 적용될 수 있다. 여기서, AMT 플래그가 0이면 행 방향과 열 방향 모두에 대해 DCT-2가 적용되고, AMT 플래그가 1이면 AMT 인덱스를 통해 4개의 조합 중 하나가 선택 또는 결정될 수 있다.
일 실시예로, AMT 플래그가 0인 경우 하나의 변환 단위에 대해 변환 계수의 개수가 3보다 작으면 표 4의 변환 커널들이 적용되지 않고 행 방향과 열 방향에 대해 모두 DST-7이 적용될 수 있다.
일 실시예로, 변환 계수 값들을 먼저 파싱하여 변환 계수의 개수가 3보다 작으면, AMT 인덱스가 파싱되지 않고 DST-7이 적용됨으로써 부가 정보 전송량이 감소될 수 있다.
일 실시예로, AMT는 변환 단위의 너비와 높이가 모두 32 이하일 경우에만 적용될 수 있다.
일 실시예로, 표 4는 오프라인 트레이닝(off-line training)을 통해 기설정될 수 있다.
일 실시예로 AMT 인덱스는 수평 변환과 수직 변환의 조합을 동시에 가리킬 수 있는 하나의 인덱스로 정의될 수 있다. 또는, AMT 인덱스는 별도의 수평 변환 인덱스와 수직 변환 인덱스로 정의될 수 있다.
도 8은 AMT(adaptive multiple transform)가 수행되는 과정을 나타내는 흐름도이다.
본 명세서에서, 수평 방향과 수직 방향에 대해 분리하여 변환이 적용되는 분리가능한 변환(separable transform)에 대한 실시예가 기본적으로 설명되나, 변환 조합은 비분리 변환(non-separable transform)들로도 구성될 수 있다.
또는, 분리가능한 변환들과 비분리 변환들의 혼합으로도 변환 조합이 구성될 수 있다. 이 경우, 비분리 변환이 이용되면 행/열별 변환 선택이나 수평/수직 방향별 선택은 불필요해지며, 분리가능한 변환이 선택되는 경우에만 표 4의 변환 조합들이 이용될 수 있다.
또한, 본 명세서에서 제안되는 방식들은 1차 변환이나 2차 변환에 관계없이 적용될 수 있다. 즉, 둘 중 어느 한쪽에만 적용되어야 한다는 제약이 없으며, 둘다 적용될 수 있다. 여기서, 1차 변환은 잔차 블록을 맨 처음에 변환하기 위한 변환을 의미할 수 있고, 2차 변환은 1차 변환의 결과로 생성된 블록에 대해 변환을 적용하기 위한 변환을 의미할 수 있다.
먼저 인코딩 장치(100)는 현재 블록에 대응되는 변환 그룹을 결정할 수 있다(S805). 여기서, 변환 그룹은 표 4의 변환 그룹을 의미할 수 있으나, 본 발명은 이에 한정되지 않으며 다른 변환 조합들로 구성될 수 있다.
인코딩 장치(100)는 변환 그룹 내 이용가능한 후보 변환 조합들에 대해 변환을 수행할 수 있다(S810). 변환 수행 결과, 인코딩 장치(100)는 RD(rate distortion) 비용이 가장 작은 변환 조합을 결정 또는 선택할 수 있다(S815). 인코딩 장치(100)는 선택된 변환 조합에 대응되는 변환 조합 인덱스를 인코딩할 수 있다(S820).
도 9는 AMT가 수행되는 디코딩 과정을 나타내는 흐름도이다.
먼저, 디코딩 장치(200)는 현재 블록을 위한 변환 그룹을 결정할 수 있다(S905). 디코딩 장치(200)는 변환 조합 인덱스를 파싱할 수 있으며, 여기서 변환 조합 인덱스는 변환 그룹 내 복수개의 변환 조합들 중 어느 하나에 대응될 수 있다(S910). 디코딩 장치(200)는 변환 조합 인덱스에 대응하는 변환 조합을 유도할 수 있다(S915). 여기서, 변환 조합은 표 4에서 설명된 변환 조합을 의미할 수 있으나, 본 발명은 이에 한정되지 않는다. 즉, 다른 변환 조합에 의한 구성도 가능하다.
디코딩 장치(200)는 변환 조합에 기초하여 현재 블록에 대해 역변환을 수행할 수 있다(S920). 변환 조합이 행 변환과 열 변환으로 구성되는 경우, 행 변환을 먼저 적용한 후 열 변환을 적용할 수 있다. 다만, 본 발명은 이에 한정되지 않으며, 반대로 적용되거나, 또는 비분리 변환들로 구성된 경우에는 바로 비분리 변환이 적용될 수 있다.
한편, 다른 일실시예로, 변환 그룹을 결정하는 과정과 변환 조합 인덱스를 파싱하는 과정은 동시에 수행될 수 있다.
본 발명의 실시예에 따르면, 위에서 설명된 용어 'AMT'는 'MTS(multiple transform set 또는 multiple transform selection)'로 재정의될 수 있다. 이하 설명되는 MTS 관련 신택스(syntax)들과 시맨틱스(semantics)들은 VVC(versatile video coding) 표준 문서 JVET-K1001-v4에서 정의된다.
본 발명의 실시예에서 아래와 같이 방향성 모드에 대해 2개의 MTS 후보들과 비방향성 모드에 대해 4개의 MTS 후보들을 사용할 수 있다.
A) 비방향성 모드(DC, 플래너)
MTS 인덱스가 0일때, DST-7이 수평 및 수직 변환에 사용됨
MTS 인덱스가 1일때, DST-7이 수직 변환에, DCT-8이 수평 변환에 사용됨
MTS 인덱스가 2일때, DCT-8이 수직 변환에, DST-7이 수평 변환에 사용됨
MTS 인덱스가 3일때, DCT-8이 수평 및 수직 변환에 사용됨
B) 수평 그룹 모드에 속하는 모드들
MTS 인덱스가 0일때, DST-7이 수평 및 수직 변환에 사용됨
MTS 인덱스가 1일때, DCT-8이 수직 변환에, DST-7이 수평 변환에 사용됨
C) 수직 그룹 모드에 속하는 모드들
MTS 인덱스가 0일때, DST-7이 수평 및 수직 변환에 사용됨
MTS 인덱스가 1일때, DST-7이 수직 변환에, DCT-8이 수평 변환에 사용됨
여기서(67개의 모드들이 사용되는 VTM 2.0에서), 수평 그룹 모드들은 2 내지 34번 인트라 예측 모드들을 포함하고, 수직 모드들은 35번 내지 66번 인트라 예측 모드들을 포함한다.
본 발명의 다른 실시예에서, 모든 인트라 예측 모드들에 대해 3개의 MTS 후보들을 사용한다.
MTS 인덱스가 0일때, DST-7이 수평 및 수직 변환에 사용됨
MTS 인덱스가 1일때, DST-7이 수직 변환에, DCT-8이 수평 변환에 사용됨
MTS 인덱스가 2일때, DCT-8이 수직 변환에, DST-7이 수평 변환에 사용됨
본 발명의 다른 실시예에서, 방향성 예측 모드들에 대해 2개의 MTS 후보들을, 비방향성 예측 모드들에 대해 3개의 MTS 후보들을 사용한다.
A) 비방향성 모드들(DC, 플래너)
MTS 인덱스가 0일때, DST-7이 수평 및 수직 변환에 사용됨
MTS 인덱스가 1일때, DST-7이 수직 변환에, DCT-8이 수평 변환에 사용됨
MTS 인덱스가 2일때, DCT-8이 수직 변환에, DST-7이 수평 변환에 사용됨
B) 수평 그룹 모드에 해당하는 예측 모드들
MTS 인덱스가 0일때, DST-7이 수평 및 수직 변환에 사용됨
MTS 인덱스가 1일때, DCT-8이 수직 변환에, DST-7이 수평 변환에 사용됨
C) 수직 그룹 모드에 해당하는 예측 모드들
MTS 인덱스가 0일때, DST-7이 수평 및 수직 변환에 사용됨
MTS 인덱스가 1일때, DST-7이 수직 변환에, DCT-8이 수평 변환에 사용됨
본 발명의 다른 실시예에서, 하나의 MTS 후보(예: DST-7)를 모든 인트라 모드들에 대해 사용할 수 있다. 이 경우, 마이너한 코딩 손실과 함께 인코딩 시간이 40%까지 감소할 수 있다. 추가적으로, 하나의 플래그가 DCT-2와 DST-7 사이에서 지시하기 위해 사용될 수 있다.
도 10은 본 발명의 실시예에 따라 MTS에 기반하여 역변환 과정을 나타내는 흐름도이다.
본 발명이 적용되는 디코딩 장치(200)는, sps_mts_intra_enabled_flag 또는 sps_mts_inter_enabled_flag를 획득할 수 있다(S1005). 여기서, sps_mts_intra_enabled_flag는 cu_mts_flag가 인트라 코딩 유닛의 레지듀얼 코딩 신택스에 존재하는지 여부를 나타낸다. 예를 들어, sps_mts_intra_enabled_flag = 0 이면, cu_mts_flag가 인트라 코딩 유닛의 레지듀얼 코딩 신택스에 존재하지 않고, sps_mts_intra_enabled_flag = 1 이면, cu_mts_flag가 인트라 코딩 유닛의 레지듀얼 코딩 신택스에 존재한다. 그리고, sps_mts_inter_enabled_flag는 cu_mts_flag가 인터 코딩 유닛의 레지듀얼 코딩 신택스에 존재하는지 여부를 나타낸다. 예를 들어, sps_mts_inter_enabled_flag = 0 이면, cu_mts_flag 가 인터 코딩 유닛의 레지듀얼 코딩 신택스에 존재하지 않고, sps_mts_inter_enabled_flag = 1 이면, cu_mts_flag가 인터 코딩 유닛의 레지듀얼 코딩 신택스에 존재한다.
디코딩 장치(200)는 sps_mts_intra_enabled_flag 또는 sps_mts_inter_enabled_flag에 기초하여 cu_mts_flag를 획득할 수 있다(S1010). 예를 들어, sps_mts_intra_enabled_flag = 1 또는 sps_mts_inter_enabled_flag = 1 일 때, 디코딩 장치(200)는 cu_mts_flag를 획득할 수 있다. 여기서, cu_mts_flag는 MTS가 루마 변환 블록의 레지듀얼 샘플에 적용되는지 여부를 나타낸다. 예를 들어, cu_mts_flag = 0 이면 MTS가 루마 변환 블록의 레지듀얼 샘플에 적용되지 않고, cu_mts_flag = 1 이면 MTS가 루마 변환 블록의 레지듀얼 샘플에 적용된다.
디코딩 장치(200)는 cu_mts_flag에 기초하여 mts_idx를 획득할 수 있다(S1015). 예를 들어, cu_mts_flag = 1 일 때, 디코딩 장치(200)는 mts_idx를 획득할 수 있다. 여기서, mts_idx는 어떤 변환 커널이 현재 변환 블록의 수평 및/또는 수직 방향에 따른 루마 레지듀얼 샘플들에 적용되는지를 나타낸다.
예를 들어, mts_idx에 대해, 본 명세서에서 설명되는 실시예들 중 적어도 하나가 적용될 수 있다.
디코딩 장치(200)는 mts_idx에 대응되는 변환 커널을 유도할 수 있다(S1020). 예를 들어, mts_idx에 대응되는 변환 커널은 수평 변환 및 수직 변환으로 구분되어 정의될 수 있다.
일 예로, 현재 블록에 MTS가 적용되는 경우(즉, cu_mts_flag = 1), 디코딩 장치(200)는 현재 블록의 인트라 예측 모드에 기초하여 MTS 후보를 구성할 수 있다. 이 경우, 도 10의 디코딩 흐름도에 MTS 후보를 구성하는 단계가 더 포함될 수 있다. 그리고, 디코딩 장치(200)는 구성된 MTS 후보 중에서 mts_idx를 이용하여 현재 블록에 적용되는 MTS 후보를 결정할 수 있다.
다른 일 예로, 수평 변환 및 수직 변환은 서로 다른 변환 커널이 적용될 수 있다. 다만, 본 발명은 이에 한정되지 않으며, 상기 수평 변환 및 수직 변환은 동일한 변환 커널이 적용될 수도 있다.
그리고, 디코딩 장치(200)는 변환 커널에 기초하여 역변환을 수행할 수 있다(S1025).
또한, 본 문서에서 MTS는 AMT 또는 EMT로도 표현될 수 있으며, 마찬가지로, mts_idx 도 AMT_idx, EMT_idx, AMT_TU_idx EMT_TU_idx 등과 같이 표현될 수 있으며, 본 발명은 이러한 표현에 한정되지 않는다.
또한, 본 발명에서, MTS 플래그에 기초하여 MTS가 적용되는 경우와 그렇지 않은 경우를 구분하여 설명하나, 본 발명이 이러한 표현에 제한되는 것은 아니다. 예를 들어, MTS의 적용 여부는, 미리 정의된 특정 변환 타입(기본 변환 타입, 디폴트 변환 타입 등으로 지칭될 수 있다) 이외의 다른 변환 타입(또는 변환 커널)을 사용하는지 여부와 동일한 의미일 수 있다. 만약 MTS가 적용되는 경우, 기본 변환 타입 이외의 다른 변환 타입(예컨대, 복수의 변환 타입들 중 어느 하나 또는 둘 이상의 조합된 변환 타입)이 변환에 이용되고, MTS가 적용되지 않는 경우, 기본 변환 타입이 변환에 이용될 수 있다. 일 실시예에서, 상기 기본 변환 타입은 DCT2로 설정(또는 정의)될 수 있다.
일 예로서, 현재 변환 블록에 MTS가 적용되는지 여부를 지시하는 MTS 플래그 신택스와 MTS가 적용되는 경우 상기 현재 블록에 적용되는 변환 타입을 지시하는 MTS 인덱스 신택스가 개별적으로 인코더로부터 디코더로 전송될 수도 있고, 다른 일 예로서, 현재 변환 블록에 MTS가 적용되는지 여부 및 MTS가 적용되는 경우 상기 현재 블록에 적용되는 변환 타입을 모두 포함하는 신택스(예를 들어, MTS 인덱스)가 인코더로부터 디코더로 전송될 수도 있다. 즉, 후자의 실시예에서, 상술한 기본 변환 타입을 포함하는 전체 변환 타입 그룹(또는 변환 타입 셋) 내에서 현재 변환 블록(또는 유닛)에 적용되는 변환 타입을 지시하는 신택스(또는 신택스 요소)가 인코더로부터 디코더로 전송될 수 있다.
따라서, 그 표현에도 불구하고 현재 변환 블록에 적용되는 변환 타입을 지시하는 신택스(MTS 인덱스)는 MTS 적용 여부에 관한 정보를 포함할 수 있다. 다시 말해, 후자의 실시예에서 MTS 플래그 없이 MTS 인덱스만 시그널링될 수 있어, 이 경우는 MTS에 DCT2가 포함되는 것으로 해석할 수 있으나, 본 발명에서는 DCT2를 적용하는 경우를 MTS를 적용하지 않는 것으로 기술할 수 있으며, 그럼에도 불구하고 MTS에 관한 기술적 범위는 해당 정의 내용에 한정되지 않는다.
도 11은 본 발명의 실시예에 따라 MTS에 기반하여 디코딩을 수행하는 장치의 블록도이다.
본 발명이 적용되는 디코딩 장치(200)는, 시퀀스 파라미터 획득부(1105), MTS 플래그 획득부(1110), MTS 인덱스 획득부(1115), 및 변환 커널 유도부(1120)를 포함할 수 있다.
시퀀스 파라미터 획득부(1105)는 sps_mts_intra_enabled_flag 또는 sps_mts_inter_enabled_flag를 획득할 수 있다. 여기서, sps_mts_intra_enabled_flag는 cu_mts_flag가 인트라 코딩 유닛의 레지듀얼 코딩 신택스에 존재하는지 여부를 나타내고, sps_mts_inter_enabled_flag는 cu_mts_flag가 인터 코딩 유닛의 레지듀얼 코딩 신택스에 존재하는지 여부를 나타낸다. 구체적인 예는 도 10과 관련된 설명이 적용될 수 있다.
MTS 플래그 획득부(1110)는 sps_mts_intra_enabled_flag 또는 sps_mts_inter_enabled_flag에 기초하여 cu_mts_flag를 획득할 수 있다. 예를 들어, sps_mts_intra_enabled_flag = 1 또는 sps_mts_inter_enabled_flag = 1 일 때, MTS 플래그 획득부(1115)는 cu_mts_flag를 획득할 수 있다. 여기서, cu_mts_flag는 MTS가 루마 변환 블록의 레지듀얼 샘플에 적용되는지 여부를 나타낸다. 구체적인 예는 상기 도 10과 관련된 설명이 적용될 수 있다.
MTS 인덱스 획득부(1115)는 cu_mts_flag에 기초하여 mts_idx를 획득할 수 있다. 예를 들어, cu_mts_flag = 1 일 때, MTS 인덱스 획득부(1115)는 mts_idx를 획득할 수 있다. 여기서, mts_idx는 어떤 변환 커널이 현재 변환 블록의 수평 및/또는 수직 방향에 따른 루마 레지듀얼 샘플들에 적용되는지를 나타낸다. 구체적인 예는 상기 도 10의 설명이 적용될 수 있다.
변환 커널 유도부(1120)는 mts_idx에 대응되는 변환 커널을 유도할 수 있다. 그리고, 디코딩 장치(200)는 유도된 변환 커널에 기초하여 역변환을 수행할 수 있다.
모드-의존적 비분리 2차 변환(mode-dependent non-separable secondary transform, MDNSST)이 적용될 수 있다. 저 복잡도를 유지하기 위하여, MDNSST는 1차 변환 이후 저 주파수의 계수들에만 적용된다. 또한, 주로 저주파수의 계수들에 대해 적용되는 비분리 변환은 LFNST(low frequency non-separable transform)로 지칭될 수 있다. 변환 계수 블록의 너비(width, W)와 높이(height, H)가 모두 8보다 크거나 같으면, 8x8 비분리 2차 변환이 변환 계수 블록의 좌상측 8x8 영역에 적용된다. 그렇지 않으면, 너비 또는 높이가 8보다 작은 경우, 4x4 비분리 2차 변환이 적용되고, 4x4 비분리 2차 변환은 변환 계수 블록의 좌상측 min(8, W) x min(8, H)에 수행될 수 있다. 여기서, min(A, B)는 A와 B 중에서 더 작은 값을 출력하는 함수이다. 또한, WxH는 블록의 사이즈로서, W는 너비(width), H는 높이(height)를 나타낸다.
일 실시예에서, 4x4 및/또는 8x8 블록 사이즈에 대하여 총 35x3개의 비분리 2차 변환이 있을 수 있고, 여기서 35는 인트라 예측 모드에 의해 특정되는 변환 집합들의 개수이고, 3은 각 예측 모드에 대한 NSST 후보의 개수이다. 인트라 예측 모드로부터 변환 집합으로의 맵핑은 아래의 표 5와 같이 정의될 수 있다.
Figure 112021043268336-pct00005
또한, 본 발명의 실시예에 따르면, 인트라 예측 모드에 따라 4개의 비분리 변환 집합들 중에서 변환 커널을 지시하기 위하여, NSST 인덱스(NSST idx)가 코딩될 수 있다. NSST가 적용되지 않으면, 0의 값을 갖는 NSST 인덱스가 시그널링될 수 있다.
도 12 및 도 13은 본 발명이 적용되는 실시예로서, 2차 변환이 적용되는 인코딩/디코딩 흐름도이다.
JEM에서, 2차 변환(MDNSST)는 변환 스킵 모드로 코딩된 블록에 적용되지 않는다. MDNSST 인덱스가 CU에 대해 시그널링되고 0이 아니면, MDNSST는 CU 내에서 변환 스킵 모드로 코딩된 성분의 블록에 대해 사용되지 않는다. 계수 코딩과 NSST 인덱스 코딩을 포함한 전반적인 코딩 구조가 도 12 및 도 13에 도시된다. CBF(coded block flag)가 계수 코딩 및 NSST 코딩 여부를 결정하기 위하여 인코딩된다. 도 12 및 도 13에서, CBF 플래그는 루마 블록 cbf 플래그(cbf_luma flag) 또는 크로마 블록 cbf 플래그(cbf_cb flag 또는 cbf_cr flag)를 나타낼 수 있다. CBF 플래그가 1일 때 변환 계수들이 코딩된다.
도 12를 참조하면, 인코딩 장치(100)는 CBF가 1인지 여부를 확인한다(S1205). CBF가 0인 경우, 인코딩 장치(100)는 변환 계수의 인코딩 및 NSST 인덱스 인코딩을 수행하지 않는다. CBF가 1인 경우, 인코딩 장치(100)는 변환 계수에 대한 인코딩을 수행한다(S1210). 이후, 인코딩 장치(100)는 NSST 인덱스 코딩 여부를 결정하고(S1215), NSST 인덱스 코딩을 수행한다(S1220). NSST 인덱스 코딩이 적용되지 않는 경우, 인코딩 장치(100)는 NSST를 적용하지 않은 상태로 변환 절차를 종료하고 이후의 단계(예: 양자화)를 수행할 수 있다.
도 13을 참조하면, 디코딩 장치(200)는 CBF가 1인지 여부를 확인한다(S1305). CBF가 0인 경우, 디코딩 장치(200)는 변환 계수의 디코딩 및 NSST 인덱스 디코딩을 수행하지 않는다. CBF가 1인 경우, 디코딩 장치(200)는 변환 계수에 대한 디코딩을 수행한다(S1310). 이후, 디코딩 장치(200)는 NSST 인덱스 코딩 여부를 결정하고(S1315), NSST 인덱스를 파싱한다(S1320).
NSST는 1차 변환이 적용된 블록(HEVC의 경우 TU) 전체에 대해 적용되는 것이 아니라 좌상측 8x8 영역 또는 4x4 영역에 대해서 적용될 수 있다. 일 예로, 블록의 크기가 8x8 이상인 경우(즉, 너비와 높이가 모두 8 이상인 경우), 8x8 NSST가 적용되고, 8x8 미만인 경우(즉, 너비 또는 높이가 8 미만인 경우), 4x4 NSST가 적용될 수 있다. 또한, 8x8 NSST가 적용되는 경우(즉, 블록의 크기가 8x8 이상인 경우에도), 4x4 블록들 별로(즉, 좌상측 8x8 영역을 4x4블록들로 나누어 각 블록 별로) 4x4 NSST가 적용될 수 있다. 8x8 NSST와 4x4 NSST 모두 상술한 변환 집합 구성에 따라 결정될 수 있으며, 비분리 변환인 만큼 8x8 NSST는 64개의 입력 데이터와 64개의 출력 데이터를 갖고, 4x4 NSST는 16개의 입력과 16개의 출력을 가질 수 있다.
도 14 및 도 15는 본 발명이 적용되는 실시예로서, 도 14는 기븐스 회전(Givens rotation)을 설명하기 위한 다이어그램을 나타내고, 도 15는 기븐스 회전 레이어와 치환(permutation)들로 구성된 4x4 NSST에서의 한 라운드(round)의 구성을 나타낸다.
8x8 NSST와 4x4 NSST 모두 기븐스 회전들의 계층적 조합으로 구성될 수 있다. 하나의 기븐스 회전에 해당하는 행렬은 수학식 1과 같으며 행렬 곱을 다이어그램으로 표현하면 도 14와 같다.
Figure 112021043268336-pct00006
도 14에서, 기븐스 회전에 의해 출력되는 t m과 t n은 수학식 2와 같이 계산될 수 있다.
Figure 112021043268336-pct00007
도 14와 같이 하나의 기븐스 회전은 2개의 데이터를 회전시키는 것이기 때문에 64개의 데이터(8x8 NSST의 경우) 또는 16개의 데이터(4x4 NSST의 경우)의 처리를 위하여 각각 32개 또는 8개의 기븐스 회전이 필요하다. 따라서, 32개 또는 8개의 기븐스 회전의 묶음이 기븐스 회전 레이어(Given rotation layer)를 형성할 수 있다. 도 15와 같이 하나의 기븐스 회전 레이어에 대한 출력 데이터가 치환(셔플링)을 통해 다음 기븐스 회전 레이어에 대한 입력 데이터로 전달된다. 도 15와 같이 치환되는 패턴은 규칙적으로 정의되며, 4x4 NSST의 경우 4개의 기븐스 회전 레이어 및 대응하는 치환들이 하나의 라운드를 형성한다. 4x4 NSST는 2번의 라운드에 의해 수행되고, 8x8 NSST는 4번의 라운드에 의해 수행된다. 서로 다른 라운드들은 동일한 치환 패턴을 사용하지만 적용되는 기븐스 회전 각도들은 각각 다른다. 따라서, 각 변환을 구성하는 모든 기븐스 회전에 대한 각도 데이터의 저장이 필요하다.
마지막 단계로 기븐스 회전 레이어들을 거쳐 출력된 데이터에 대해 최종적으로 한번의 치환이 더 수행되며, 해당 치환에 대한 정보는 변환마다 별도로 저장된다. 순방향(forward) NSST의 맨 마지막에 해당 치환이 수행되며, 역방향(inverse) NSST는 최초에 해당 역방향 치환이 적용된다.
역방향 NSST는 순방향 NSST에서 적용되었던 기븐스 회전 레이어들과 치환들을 역순으로 수행하고, 각 기븐스 회전의 각도에 대해서도 마이너스(-)의 값을 취함으로써 회전시킨다.
RST (Reduced secondary transform)
도 16은 본 발명이 적용되는 실시예로서, RST의 동작을 도시한다.
한 변환을 나타내는 직교(orthogonal) 행렬이 NxN 형태를 갖는다고 했을 때, RT(reduced transform)는 N개의 변환 기저 벡터들 중에서 R개만을 남긴다(R < N). 변환 계수를 생성하는 순방향 RT에 대한 행렬은 수학식 3과 같이 정의될 수 있다.
Figure 112021043268336-pct00008
역방향 RT에 대한 행렬은 순방향 RT 행렬의 전치(transpose) 행렬이 되므로, 순방향 RT와 역방향 RT의 적용을 도식화하면 도 16a 및 도 16b와 같을 수 있다.
1차 변환이 적용된 변환 계수 블록의 좌상단 8x8 블록에 대해 적용되는 RT는 8x8 RST로 지칭될 수 있다. 수학식 3에서의 R의 값을 16으로 두었을 때, 순방향 8x8 RST는 16x64 행렬의 형태를 가지며, 역방향 8x8 RST는 64x16의 형태를 가진다. 이때, MxN 행렬은 M개의 행과 N개의 열로 구성될 수 있다. 또한, 8x8 RST에 대하여도 표 5와 같은 변환 집합 구성이 적용될 수 있다. 즉, 표 5과 같이 인트라 예측 모드에 따른 변환 집합에 기반하여 8x8 RST가 결정될 수 있다. 하나의 변환 집합은 인트라 예측 모드에 따라 2개 또는 3개의 변환들로 구성되므로, 2차 변환을 적용하지 않는 경우까지 포함하여 최대 4개의 변환들 중 하나가 선택될 수 있다(하나의 변환은 항등 행렬에 해당할 수 있다). 4개의 변환들에 대해 각각 0, 1, 2, 3의 인덱스가 부여되었을 때, NSST 인덱스에 해당하는 신택스 요소(syntax element)가 변환 계수 블록마다 시그널링됨으로써 적용되는 변환이 지정될 수 있다. 예를 들어, 0번 인덱스는 항등 행렬, 즉, 2차 변환이 적용되지 않는 경우로 할당될 수 있다. 결론적으로, NSST 인덱스를 통해 8x8 좌상단 블록에 대해, JEM NSST에 따르면, 8x8 NSST가 지정될 수 있고, RST 구성에 따르면 8x8 RST가 지정될 수 있다.
도 17은 본 발명이 적용되는 실시예로서, 역방향 스캔 순서에 따라 64번째부터 17번째까지의 역방향 스캔을 수행하는 과정을 나타내는 도면이다.
수학식 3과 같은 순방향 8x8 RST가 적용되면, 16개의 유효한 변환 계수가 생성되므로 8x8 영역을 구성하는 64개의 입력 데이터가 16개의 출력 데이터로 축소되며, 2차원 영역 관점에 따르면 1/4 만큼의 영역에만 유효한 변환 계수가 채워진다. 따라서, 순방향 8x8 RST를 적용함으로써 획득된 16개의 출력 데이터가 도 17의 좌상단 영역에 채워진다.
도 17에서 좌상단 4x4 영역이 유효한 변환 계수가 채워지는 ROI(region of interest) 영역이 되고, 나머지 영역은 비워진다. 비워지는 영역에는 0의 값이 디폴트로 채워질 수 있다. 만약, 도 17의 ROI 영역 외에 0이 아닌 유효한 변환 계수가 발견되면 8x8 RST가 적용되지 않는 것이 확실하므로 해당 NSST 인덱스에 해당 코딩이 생략될 수 있다. 반대로 도 17의 ROI 영역 이외에서 0이 아닌 변환 계수가 발견되지 않으면(8x8 RST가 적용되는 경우, ROI 이외의 영역이 0으로 채워졌을 때), 8x8 RST가 적용되었을 수 있으므로 NSST 인덱스가 코딩될 수 있다. 이와 같은 조건적 NSST 인덱스 코딩은 0이 아닌 변환 계수의 존재 유무를 체크가 필요하므로 레지듀얼 코딩 과정 이후에 수행될 수 있다.
도 18은 본 발명이 적용되는 실시예로서, 단일 변환 지시자(single transform indicator)를 사용한 인코딩 흐름도의 예를 도시한다.
본 발명의 실시예에서, 단일 변환 지시자(single transform indicator, STI)가 소개된다. 2개의 변환들(1차 변환 및 2차 변환)을 순차적으로 사용하는 대신, 단일 변환 지시자가 활성화되었을 때(STI coding == 1) 단일 변환(single transform)이 적용될 수 있다. 여기서 단일 변환은 어느 종류의 변환이든 될 수 있다. 예를 들어, 단일 변환은 분리 변환 또는 비분리 변환일 수 있다. 단일 변환은 비분리 변환으로부터 근사된 변환일 수 있다. 단일 변환 인덱스(도 18의 ST_idx)는 단일 변환 지시자가 활성화되었을 때 시그널링될 수 있다. 여기서 단일 변환 인덱스는 사용가능한 변환 후보들 중에서 적용될 변환에 해당하는 변환을 지시할 수 있다.
도 18을 참조하면, 인코딩 장치(100)는 CBF가 1인지 여부를 결정한다(S1805). CBF가 1인 경우, 인코딩 장치(100)는 STI 코딩이 적용되는지 여부를 결정한다(S1810). STI 코딩이 적용되는 경우, 인코딩 장치(100)는 STI 인덱스(STI_Idx)를 인코딩하고(S1845), 변환 계수들에 대한 코딩을 수행한다(S1850). STI 코딩이 적용되지 않는 경우, 인코딩 장치(100)는 CU 레벨에서 EMT(또는 MTS)가 적용되는지 여부를 나타내는 플래그(EMT_CU_Flag)를 인코딩한다(S1815). 이후, 인코딩 장치(100)는 변환 계수들에 대한 코딩을 수행한다(S1820). 이후, 인코딩 장치(100) 변환 유닛(TU)에 EMT가 적용되는지 여부를 결정한다(S1825). TU에 EMT가 적용되는 경우, 인코딩 장치(100)는 TU에 적용되는 1차 변환의 인덱스(EMT_TU Idx)를 인코딩한다(S1830). 이후, 인코딩 장치(100)는 NSST가 적용되는 지 여부를 결정한다(S1835). NSST가 적용되는 경우, 인코딩 장치(100)는 적용될 NSST를 지시하는 인덱스(NSST_Idx)를 인코딩한다(S1840).
일 예에서, 단일 변환 코딩 조건이 충족/활성화(예: STI_coding == 1)되면 단일 변환 인덱스(ST_Idx)가 시그널링되지 않고 암묵적으로(implicitly) 유도될 수 있다. ST_idx는 블록 사이즈와 인트라 예측 모드에 기반하여 암시적으로 결정될 수 있다. 여기서, ST_idx는 현재 변환 블록에 적용되는 변환(또는 변환 커널)을 지시할 수 있다.
단일 변환 지시자는 아래의 조건들 중에서 하나 또는 다수의 조건이 만족되면 활성화될 수 있다(STI_coding == 1).
1) 블록 사이즈가 4 또는 8과 같이 미리 결정된 값에 해당한다.
2) 블록 너비 == 블록 높이 (정방형 블록)
3) DC 또는 플래너와 같이 미리 결정된 모드들 중 하나의 인트라 예측 모드이다.
다른 예에서, STI 코딩 플래그는 단일 변환이 적용되는지 아닌지를 나타내기 위해 시그널링될 수 있다. STI 코딩 플래그는 STI 코딩 값 및 CBF에 기반하여 시그널링될 수 있다. 예를 들어, STI 코딩 플래그는 CBF가 1이고 STI 코딩이 활성화될 때 시그널링될 수 있다. 나아가 STI 코딩 플래그는 블록 사이즈, 블록 형태(정방형 블록 또는 비정방향 블록), 또는 인트라 예측 모드를 고려하여 조건적으로 시그널링될 수 있다.
계수 코딩 중 획득된 정보가 사용되기 위하여 계수 코딩 이후에 ST_idx가 결정될 수 있다. 일 예에서 ST_idx는 블록 사이즈, 인트라 예측 모드, 및 0이 아닌 계수(non-zero coefficient)들의 개수에 기반하여 암묵적으로 결정될 수 있다. 다른 예에서, ST_idx는 블록 사이즈 및/또는 블록 형태 및/또는 인트라 예측 모드 및/또는 0이 아닌 계수들의 개수에 기반하여 조건적으로 인코딩/디코딩될 수 있다. 다른 예에서, ST_idx 시그널링은 0이 아닌 계수들의 분포(즉, 0이 아닌 계수들의 위치)에 의존하여 생략될 수 있다. 특히, 0이 아닌 계수들이 좌상측 4x4 영역이 아닌 영역에서 발견되면 ST_idx의 시그널링이 생략될 수 있다.
도 19는 본 발명이 적용되는 실시예로서, 통일된 변환 지시자(unified transform indicator, UTI)를 사용한 인코딩 흐름도의 예를 도시한다.
본 발명의 실시예에서, 통일된 변환 지시자가 소개된다. UTI는 1차 변환 지시자와 2차 변환 지시자를 포괄한다.
도 19를 참조하면, 인코딩 장치(100)는 CBF가 1인지 여부를 결정한다(S1905). CBF가 1인 경우, 인코딩 장치(100)는 UTI 코딩이 적용되는지 여부를 결정한다(S1910). UTI 코딩이 적용되는 경우, 인코딩 장치(100)는 UTI 인덱스(UTI_Idx)를 인코딩하고(S1945), 변환 계수들에 대한 코딩을 수행한다(S1950). UTI 코딩이 적용되지 않는 경우, 인코딩 장치(100)는 CU 레벨에서 EMT(또는 MTS)가 적용되는지 여부를 나타내는 플래그(EMT_CU_Flag)를 인코딩한다(S1915). 이후, 인코딩 장치(100)는 변환 계수들에 대한 코딩을 수행한다(S1920). 이후, 인코딩 장치(100) 변환 유닛(TU)에 EMT가 적용되는지 여부를 결정한다(S1925). TU에 EMT가 적용되는 경우, 인코딩 장치(100)는 TU에 적용되는 1차 변환의 인덱스(EMT_TU Idx)를 인코딩한다(S1930). 이후, 인코딩 장치(100)는 NSST가 적용되는 지 여부를 결정한다(S1935). NSST가 적용되는 경우, 인코딩 장치(100)는 적용될 NSST를 지시하는 인덱스(NSST_Idx)를 인코딩한다(S1940).
UTI는 각각의 미리 결정된 유닛(CTU 또는 CU)마다 코딩될 수 있다.
UTI 코딩 모드는 아래의 조건들에 의존할 수 있다.
1) 블록 사이즈
2) 블록 형태
3) 인트라 예측 모드
어떻게 UTI로부터 코어 변환 인덱스를 유도/추출할 것인가가 사전에 정의된다. 어떻게 UTI로부터 2차 변환 인덱스를 유도/추출할 것인가가 사전에 정의된다.
UTI에 대한 신택스 구조는 선택적으로 사용될 수 있다. UTI는 CU(또는 TU) 사이즈에 의존할 수 있다. 예를 들어, 더 작은 CU(TU)가 상대적으로 좁은 범위의 UTI 인덱스를 가질 수 있다. 일 예에서, 미리 정의된 조건(예: 블록 사이즈가 미리 정의된 임계치보다 작음)이 만족되면 UTI는 코어 변환 인덱스만을 지시할 수 있다.
Figure 112021043268336-pct00009
다른 예에서, 2차 변환이 사용될 것으로 지시되지 않을 때(예: 2차 변환 인덱스 == 0 또는 2차 변환이 이미 결정된 경우) UTI 인덱스는 코어 변환 인덱스로서 취급될 수 있다. 동일한 방식으로, 코어 변환 인덱스가 알려지면 UTI 인덱스는 2차 변환 인덱스로 취급될 수 있다. 특히, 인트라 예측 모드와 블록 사이즈를 고려하여, 미리 결정된 코어 변환이 사용될 수 있다.
도 20a 및 도 20b는 본 발명이 적용되는 실시예로서, UTI를 사용한 인코딩 흐름도의 다른 예를 도시한다.
다른 예에서, 변환 코딩 구조는 도 20a 및 도 20b와 같이 UTI 인덱스 코딩을 사용할 수 있다. 여기서, UTI 인덱스는 계수 코딩 이전에 코딩되거나 계수 코딩 이후에 코딩될 수 있다.
도 20a를 참조하면, 인코딩 장치(100)는 CBF가 1인지 여부를 확인한다(S2005). CBF가 1이면, 인코딩 장치(100)는 UTI 인덱스(UTI_Idx)를 코딩하고(S2010), 변환 계수에 대한 코딩을 수행한다(S2015).
도 20b를 참조하면, 인코딩 장치(100)는 CBF가 1인지 여부를 확인한다(S2055). CBF가 1이면, 인코딩 장치(100)는 변환 계수에 대한 코딩을 수행하고(S2060), UTI 인덱스(UTI_Idx)를 코딩한다(S2065).
본 발명의 다른 실시예에서, 변환 지시자들에 대한 데이터 숨김(data hiding) 및 암시적 코딩 방법들(implicit coding methods)이 소개된다. 여기서 변환 지시자들은 ST_idx, UTI_idx, EMT_CU_Flag, EMT_TU_Flag, NSST_idx 및 변환 커널을 지시하기 위해 사용되는 변환 관련 인덱스를 포함한다. 상술한 변환 지시자는 시그널링되지 않고 해당 정보가 계수 코딩 프로세스에 삽입될 수 있다(계수 코딩 프로세스 중에 추출될 수 있다). 계수 코딩 프로세스는 아래의 부분들을 포함할 수 있다.
- 마지막 x 위치(Last_position_x), 마지막 y 위치(Last_position_y)
- 그룹 플래그(Group flag)
- 의미 맵(significance map)
- 1 보다 큰지 여부를 지시하는 플래그(Greater_than_1_flag)
- 2 보다 큰지 여부를 지시하는 플래그(Greater_than_2_flag)
- 나머지 레벨 코딩(Remaining level coding)
- 사인 코딩(Sign coding)
예를 들어, 변환 지시자 정보가 상술한 계수 코딩 프로세스들의 하나 또는 그 이상들에 삽입될 수 있다. 변환 지시자 정보를 삽입하기 위하여 함께 고려될 수 잇는 것들은 아래와 같다.
- 사인 코딩의 패턴(Pattern of Sign coding)
- 나머지 레벨의 절대값(The absolute value of remaining level)
- 1 보다 큰지 여부를 지시하는 플래그의 개수(The number of Greater_than_1_flag)
- 마지막 x 위치 및 마지막 y 위치의 값(The value of Last_position_X and Last_position_Y)
상술한 데이터 숨김 방법은 조건적으로 고려될 수 있다. 예를 들어 데이터 숨김 방법은 0이 아닌 계수들의 개수에 의존적일 수 있다.
또 다른 예에서, NSST_idx 및 EMT_idx는 의존적일 수 있다. 예를 들어, EMT_CU_flag가 0(또는 1)일 때 NSST_idx는 0이 아닐 수 있다. 이 경우, NSST_idx-1이 NSST_idx를 대신하여 시그널링될 수 있다.
본 발명의 다른 실시예에서, 인트라 예측 모드에 기반한 NSST 변환 집합 매핑이 아래의 표 7과 같이 소개된다. 앞서 설명한 바와 같이 이하 설명에서는 비분리 변환의 예로서 NSST를 중심으로 설명하나, 비분리 변환에 대하여 다른 알려진 용어들(예: LFNST)이 사용될 수 있다. 예를 들어, NSST 집합(NSST Set), NSST 인덱스는 LFNST 집합, LFNST 인덱스로 대체되어 사용될 수 있다. 또한, 본 문서에서 설명되는 RST는 변환 블록의 적어도 일부 영역(좌상측 4x4, 8x8 영역 또는 8x8 블록에서 우-하측 4x4 영역을 제외한 나머지 영역)에 적용되는 정방형 비분리 변환 행렬에서 축소된 입력 길이 및/또는 축소된 출력 길이를 갖는 비정방형의 변환 행렬을 사용하는 비분리 변환(예: LFNST)의 예로서, RST 또한 LFNST로 대체되어 사용될 수 있다.
Figure 112021043268336-pct00010
NSST 집합 넘버는 표 8과 같이 0에서 3사이에서 재배열될 수 있다.
Figure 112021043268336-pct00011
NSST 변환 집합에서, 요구되는 메모리 공간을 저감시키기 위하여 (35 대신) 4개의 변환 집합이 사용된다.
추가적으로, 각 변환 집합마다 다양한 개수의 변환 커널들이 아래와 같이 사용될 수 있다.
케이스 A: 각 변환 집합마다 2개의 사용가능한 변환 커널들이 사용되고, NSST 인덱스 범위는 0 내지 2이다. 예를 들어, NSST 인덱스가 0인 경우 이차 변환(디코더를 기준으로 이차 역변환)이 적용되지 않을 수 있다. NSST 인덱스가 1 또는 2인 경우 이차 변환이 적용될 수 있다. 변환 집합은 2개의 변환 커널을 포함할 수 있고, 상기 2개의 변환 커널에 1 또는 2의 인덱스가 맵핑될 수 있다.
Figure 112021043268336-pct00012
표 9를 참조하면, 0번 내지 3번 비분리 변환(NSST 또는 LFNST) 집합에 대해 각각 2개의 변환 커널들이 사용된다.
케이스 B: 0번 변환 집합에 대해 2개의 사용가능한 변환 커널들을 사용하고 나머지 변환 집합에 대해 각각 하나의 변환 커널을 사용한다. 0번 변환 집합(DC, 플래너)에 대해 사용가능한 NSST 인덱스는 0 내지 2이다. 그러나, 다른 모드들(1, 2, 3번 변환 집합)에 대한 NSST 인덱스는 0 내지 1이다.
Figure 112021043268336-pct00013
표 10을 참조하면, 0번 인덱스에 대응하는 비분리 변환(NSST) 집합에 대하여 2개의 비분리 변환 커널들이 설정되고, 1, 2, 3번 인덱스에 대응하는 비분리 변환(NSST) 집합들 각각에 대하여 1개의 비분리 변환 커널이 설정된다.
케이스 C: 각 변환 집합마다 하나의 변환 커널을 사용하고, NSST 인덱스 범위는 0 내지 1이다.
Figure 112021043268336-pct00014
도 21은 본 발명이 적용되는 실시예로서, 변환을 수행하는 인코딩 흐름도의 예를 도시한다.
인코딩 장치(100)는 레지듀얼 블록에 대하여 1차 변환을 수행한다(S2105). 1차 변환은 코어 변환으로 지칭될 수 있다. 실시예로서, 인코딩 장치(100)는 전술한 MTS를 이용하여 1차 변환을 수행할 수 있다. 또한, 인코딩 장치(100)는 MTS 후보들 중에서 특정 MTS를 지시하는 MTS 인덱스를 디코딩 장치(200)로 전송할 수 있다. 이때, MTS 후보는 현재 블록의 인트라 예측 모드에 기반하여 구성될 수 있다.
인코딩 장치(100)는 2차 변환의 적용 여부를 결정한다(S2110). 일 예로, 인코딩 장치(100)는 1차 변환된 레지듀얼 변환 계수에 기초하여 2차 변환의 적용 여부를 결정할 수 있다. 예를 들어, 2차 변환은 NSST 또는 RST일 수 있다.
인코딩 장치(100)는 2차 변환을 결정한다(S2115). 이때, 인코딩 장치(100)는 인트라 예측 모드에 따라 지정된 NSST(또는 RST) 변환 집합에 기초하여 2차 변환을 결정할 수 있다.
또한, 일 예로, 인코딩 장치(100)는 S2115 단계에 앞서 현재 블록의 크기에 기초하여 2차 변환이 적용되는 영역을 결정할 수 있다.
인코딩 장치(100)는 S2115 단계에서 결정된 2차 변환을 이용하여 2차 변환을 수행한다(S2120).
도 22는 본 발명이 적용되는 실시예로서, 변환을 수행하는 디코딩 흐름도의 예를 도시한다.
디코딩 장치(200)는 2차 역변환의 적용여부를 결정한다(S2205). 예를 들어, 2차 역변환은 NSST 또는 RST일 수 있다. 일 예로, 디코딩 장치(200)는 인코딩 장치(100)로부터 수신된 2차 변환 플래그에 기초하여 2차 역변환의 적용 여부를 결정할 수 있다.
디코딩 장치(200)는 2차 역변환을 결정한다(S2210). 이때, 디코딩 장치(200)는 상술한 인트라 예측 모드에 따라 지정된 NSST(또는 RST) 변환 집합에 기초하여 현재 블록에 적용되는 2차 역변환을 결정할 수 있다.
또한, 일 예로, 디코딩 장치(200)는 S2210 단계에 앞서 현재 블록의 크기에 기초하여 2차 역변환이 적용되는 영역을 결정할 수 있다.
디코딩 장치(200)는 S2210 단계에서 결정된 2차 역변환을 이용하여 역양자화된 레지듀얼 블록에 대해 2차 역변환을 수행한다(S2215).
디코딩 장치(200)는 2차 역변환된 레지듀얼 블록에 대하여 1차 역변환을 수행한다(S2220). 1차 역변환은 코어 역변환으로 지칭될 수 있다. 실시예로서, 디코딩 장치(200)는 상술한 MTS를 이용하여 1차 역변환을 수행할 수 있다. 또한, 일 예로, 디코딩 장치(200)는 S2220 단계에 앞서 현재 블록에 MTS가 적용되는지 여부를 결정할 수 있다. 이 경우, 도 22의 디코딩 흐름도에 MTS가 적용되는지 여부를 결정하는 단계가 더 포함될 수 있다.
일 예로, 현재 블록에 MTS가 적용되는 경우(즉, cu_mts_flag = 1), 디코딩 장치(200)는 현재 블록의 인트라 예측 모드에 기초하여 MTS 후보를 구성할 수 있다. 이 경우, 도 22의 디코딩 흐름도에 MTS 후보를 구성하는 단계가 더 포함될 수 있다. 그리고, 디코딩 장치(200)는 구성된 MTS 후보들 중에서 특정 MTS를 지시하는 mts_idx를 이용하여 현재 블록에 적용되는 1차 역변환을 결정할 수 있다.
도 23은 본 발명이 적용되는 실시예로서, 인코딩 장치(100) 내 변환부(120)의 세부 블록도의 예를 도시한다.
본 발명의 실시예가 적용되는 인코딩 장치(100)는, 1차 변환부(2310), 2차 변환 적용여부 결정부(2320), 2차 변환 결정부(2330), 2차 변환부(2340)를 포함할 수 있다.
1차 변환부(2310)는 레지듀얼 블록에 대하여 1차 변환을 수행할 수 있다. 1차 변환은 코어 변환으로 지칭될 수 있다. 실시예로서, 1차 변환부(2310)는 전술한 MTS를 이용하여 1차 변환을 수행할 수 있다. 또한, 1차 변환부(2310)는 MTS 후보들 중에서 특정 MTS를 지시하는 MTS 인덱스를 디코딩 장치(200)로 전송할 수 있다. 이때, MTS 후보는 현재 블록의 인트라 예측 모드에 기반하여 구성될 수 있다.
2차 변환 적용 여부 결정부(2320)는 2차 변환의 적용 여부를 결정할 수 있다. 일 예로, 2차 변환 적용 여부 결정부(2320)는 1차 변환된 레지듀얼 블록의 변환 계수에 기초하여 2차 변환의 적용 여부를 결정할 수 있다. 예를 들어, 2차 변환은 NSST 또는 RST일 수 있다.
2차 변환 결정부(2330)는 2차 변환을 결정한다. 이때, 2차 변환 결정부(2330)는 상술한 바와 같이 인트라 예측 모드에 따라 지정된 NSST(또는 RST) 변환 집합에 기초하여 2차 변환을 결정할 수 있다.
또한, 일 예로, 2차 변환 결정부(2330)는 현재 블록의 크기에 기초하여 2차 변환이 적용되는 영역을 결정할 수도 있다.
2차 변환부(2340)는 결정된 2차 변환을 이용하여 2차 변환을 수행할 수 있다.
도 24는 본 발명이 적용되는 실시예로서, 디코딩 장치(200) 내 역변환부(230)의 세부 블록도의 예를 도시한다.
본 발명이 적용되는 디코딩 장치(200)는, 2차 역변환 적용여부 결정부(2410), 2차 역변환 결정부(2420), 2차 역변환부(2430), 1차 역변환부(2440)를 포함한다.
2차 역변환 적용여부 결정부(2410)는 2차 역변환의 적용 여부를 결정할 수 있다. 예를 들어, 2차 역변환은 NSST 또는 RST일 수 있다. 일 예로, 2차 역변환 적용 여부 결정부(2410)는 인코딩 장치(100)로부터 수신된 2차 변환 플래그에 기초하여 2차 역변환의 적용여부를 결정할 수 있다. 다른 일 예로, 2차 역변환 적용 여부 결정부(2410)는 레지듀얼 블록의 변환 계수에 기초하여 2차 역변환의 적용 여부를 결정할 수도 있다.
2차 역변환 결정부(2420)는 2차 역변환을 결정할 수 있다. 이때, 2차 역변환 결정부(2420)는 인트라 예측 모드에 따라 지정된 NSST(또는 RST) 변환 집합에 기초하여 현재 블록에 적용되는 2차 역변환을 결정할 수 있다.
또한, 일 예로, 2차 역변환 결정부(2420)는 현재 블록의 크기에 기초하여 2차 역변환이 적용되는 영역을 결정할 수 있다.
또한, 일 예로, 2차 역변환부(2430)는 결정된 2차 역변환을 이용하여 역양자화된 레지듀얼 블록에 대하여 2차 역변환을 수행할 수 있다.
1차 역변환부(2440)는 2차 역변환된 레지듀얼 블록에 대하여 1차 역변환을 수행할 수 있다. 실시예로서, 1차 역변환부(2440)는 상술한 MTS를 이용하여 1차 변환을 수행할 수 있다. 또한, 일 예로, 1차 역변환부(2440)는 현재 블록에 MTS가 적용되는지 여부를 결정할 수 있다.
일 예로, 현재 블록에 MTS가 적용되는 경우(즉, cu_mts_flag = 1), 1차 역변환부(2440)는 현재 블록의 인트라 예측 모드에 기초하여 MTS 후보를 구성할 수 있다. 그리고, 1차 역변환부(2440)는 구성된 MTS 후보들 중에서 특정 MTS를 지시하는 mts_idx를 이용하여 현재 블록에 적용되는 1차 변환을 결정할 수 있다.
도 25는 본 발명이 적용되는 실시예로서, 비디오 신호를 처리하기 위한 흐름도를 도시한다. 도 25의 흐름도는 디코딩 장치(200) 또는 역변환부(230)에 의해 수행될 수 있다.
먼저, 디코딩 장치(200)는 비분리 변환 인덱스 및 현재 블록의 너비와 높이에 기반하여 현재 블록에 대한 역방향 비분리 변환의 적용 여부를 결정할 수 있다. 예를 들어, 디코딩 장치(200)는 비분리 변환 인덱스가 0이 아니고 현재 블록의 너비와 높이가 각각 4보다 크거나 같으면 상기 비분리 변환을 적용하도록 결정할 수 있다. 만약 비분리 변환 인덱스가 0이거나 현재 블록의 너비 또는 높이가 4보다 작으면, 디코딩 장치(200)는 역방향 비분리 변환을 생략하고 역방향 1차 변환을 수행할 수 있다.
S2505 단계에서, 디코딩 장치(200)는 현재 블록의 인트라 예측 모드에 기초하여 미리 정의된 비분리 변환 집합들 중에서 현재 블록의 비분리 변환에 이용되는 비분리 변환 집합을 지시하는 비분리 변환 집합 인덱스를 결정한다. 비분리 변환 집합 인덱스는, 표 7 또는 표 8과 같이, 인트라 예측 모드의 범위에 따라 설정되는 4개의 변환 집합들에 각각 할당되도록 설정될 수 있다. 즉, 표 7 또는 표 8과 같이, 인트라 예측 모드가 0 내지 1인 경우, 비분리 변환 집합 인덱스는 제1 인덱스 값으로 결정되고, 인트라 예측 모드가 2 내지 12 또는 56 내지 66이면, 비분리 변환 집합 인덱스는 제2 인덱스 값으로 결정되고, 인트라 예측 모드가 13 내지 23 또는 45 내지 55이면, 비분리 변환 집합 인덱스는 제3 인덱스 값으로 결정되고, 인트라 예측 모드가 24 내지 44이면, 비분리 변환 집합 인덱스는 제4 인덱스 값으로 결정될 수 있다.
여기서, 미리 정의된 비분리 변환 집합들은 표 9와 같이 각각 2개의 변환 커널을 포함할 수 있다. 또한, 미리 정의된 비분리 변환 집합들은 표 10 또는 표 11과 같이 1개 또는 2개의 변환 커널을 포함할 수도 있다.
S2510 단계에서, 디코딩 장치(200)는 비분리 변환 집합 인덱스에 의해 지시되는 비분리 변환 집합에 포함된 변환 커널들 중 현재 블록에 대한 비분리 변환 인덱스에 의해 지시되는 변환 커널을 비분리 변환 행렬로 결정한다. 예를 들어, 비분리 변환 집합 인덱스의 인덱스 값들 각각에 대해 2개의 비분리 변환 커널들이 설정될 수 있고, 디코딩 장치(200)는 비분리 변환 집합 인덱스에 대응하는 2개의 변환 행렬 커널들 중에서 비분리 변환 인덱스에 의해 지시되는 변환 커널에 기반하여 비분리 변환 행렬을 결정할 수 있다.
S2515 단계에서, 디코딩 장치(200)는 현재 블록의 너비 및 높이에 따라 결정되는 현재 블록의 좌상측 영역에 대해 비분리 변환 행렬을 적용한다. 예를 들어, 현재 블록의 너비와 높이가 모두 8보다 크거나 같으면 현재 블록의 좌상측 8x8 영역에 대하여 비분리 변환이 적용되고, 현재 블록의 너비 또는 높이가 8보다 작으면 현재 블록의 좌상측 4x4 영역에 대하여 비분리 변환이 적용될 수 있다. 비분리 변환의 사이즈 또한 비분리 변환이 적용될 영역에 대응하여 8x8 또는 4x4에 대응되는 사이즈(e.g.48x16, 16x16)로 설정될 수 있다.
또한, 디코딩 장치(200)는 비분리 변환이 적용된 현재 블록에 대하여 수평 방향 변환 및 수직 방향 변환을 적용할 수 있다. 여기서, 수평 방향 변환 및 수직 방향 변환은 현재 블록에 적용된 예측 모드 및 변환 행렬의 선택을 위한 MTS 인덱스에 기반하여 결정될 수 있다.
이하에서는, 일차 변환(primary transform) 및 이차 변환(secondary transform)을 조합 적용하는 방법을 설명한다. 즉, 본 발명의 실시예에서는, 일차 변환 및 이차 변환에 이용되는 변환을 효율적으로 설계하는 방법을 제안한다. 이때, 앞서 도 1 내지 도 25에서 제안한 방법들이 적용될 수 있으며, 관련하여 중복되는 설명은 생략한다.
전술한 바와 같이, 일차 변환은 인코더를 기준으로 잔차 블록에 먼저 적용되는 변환을 나타낸다. 이차 변환이 적용되는 경우, 인코더는 일차 변환된 잔차 블록에 대하여 이차 변환을 수행할 수 있다. 한편, 이차 변환이 적용되는 경우, 디코더를 기준으로 일차 역변환에 앞서 이차 역변환이 수행될 수 있다. 디코더는 이차 역변환된 변환 계수 블록에 대하여 일차 역변환을 수행함으로써 잔차 블록을 유도할 수 있다.
또한, 전술한 바와 같이, 이차 변환으로 비분리 변환이 이용될 수 있으며, 낮은 복잡도를 유지하기 위하여, 좌상측 특정 영역의 저주파수의 계수들에만 적용될 수 있다. 이러한, 저주파수의 계수들에 대해 적용되는 이차 변환은 NSST(Non-Separable Secondary Transform), LFNST(low frequency non-separable transform), RST(reduced secondary transform)으로 지칭될 수 있다. 또한, 상기 일차 변환은 코어 변환(core transform)으로 지칭될 수 있다.
본 발명의 일 실시예에서, 일차 변환에 이용되는 일차 변환 후보 및 이차 변환에 이용되는 이차 변환 커널은 다양한 여러 조합으로 미리 정의될 수 있다. 본 명세서에서, 일차 변환에 이용되는 일차 변환 후보는 MTS 후보로 지칭될 수 있으나, 그 명칭에 제한되지 않는다. 일 예로, 일차 변환 후보는 수평 및 수직 방향 각각에 적용되는 변환 커널(또는 변환 타입)의 조합일 수 있고, 상기 변환 커널은 DCT2, DST7 및/또는 DCT8 중 어느 하나일 수 있다. 다시 말해, 일차 변환 후보는 DCT2, DST7 및/또는 DCT8 중 적어도 하나의 조합일 수 있다. 이하에서 구체적인 예를 들어 설명한다.
- 조합 A
조합 A에서는 다음의 표 12와 같이, 인트라 예측 모드에 따라 일차 변환 후보 및 이차 변환 커널이 정의될 수 있다.
Figure 112021043268336-pct00015
표 12를 참조하면, 일 예(Case 1)로서, 인트라 예측 모드가 방향성을 가지는 경우 2개의 일차 변환 후보가 사용될 수 있고, 방향성을 갖지 않는 경우(예를 들어, DC, 플래너 모드), 4개의 일차 변환 후보가 사용될 수 있다. 이때, 이차 변환 후보는 인트라 예측 모드의 방향성에 관계 없이 2개의 변환 커널을 포함할 수 있다. 즉, 전술한 바와 같이, 인트라 예측 모드에 따라 복수의 이차 변환 커널 셋이 미리 정의될 수 있고, 상기 미리 정의된 복수의 이차 변환 커널 셋은 각각 2개의 변환 커널을 포함할 수 있다.
또한, 일 예(Case 2)로서, 인트라 예측 모드가 방향성을 가지는 경우 2개의 일차 변환 후보가 사용될 수 있고, 방향성을 갖지 않는 경우, 4개의 일차 변환 후보가 사용될 수 있다. 이때, 이차 변환 후보는 인트라 예측 모드가 방향성을 가지는 경우, 1개의 변환 커널을 포함하고, 방향성을 갖지 않는 경우, 2개의 변환 커널을 포함할 수 있다.
또한, 일 예(Case 3)로서, 인트라 예측 모드가 방향성을 가지는 경우 2개의 일차 변환 후보가 사용될 수 있고, 방향성을 갖지 않는 경우, 4개의 일차 변환 후보가 사용될 수 있다. 이때, 이차 변환 후보는 인트라 예측 모드의 방향성에 관계 없이 1개의 변환 커널을 포함할 수 있다.
- 조합 B
조합 B에서는 다음의 표 13과 같이, 인트라 예측 모드에 따라 일차 변환 후보 및 이차 변환 커널이 정의될 수 있다.
Figure 112021043268336-pct00016
표 13을 참조하면, 일 예(Case 1)로서, 인트라 예측 모드의 방향성에 관계 없이, 3개의 일차 변환 후보가 사용될 수 있다. 이때, 이차 변환 후보는 인트라 예측 모드의 방향성에 관계 없이 2개의 변환 커널을 포함할 수 있다. 즉, 전술한 바와 같이, 인트라 예측 모드에 따라 복수의 이차 변환 커널 셋이 미리 정의될 수 있고, 상기 미리 정의된 복수의 이차 변환 커널 셋은 각각 2개의 변환 커널을 포함할 수 있다.
또한, 일 예(Case 2)로서, 인트라 예측 모드의 방향성에 관계 없이, 3개의 일차 변환 후보가 사용될 수 있다. 이때, 이차 변환 후보는 인트라 예측 모드가 방향성을 가지는 경우, 1개의 변환 커널을 포함하고, 방향성을 갖지 않는 경우, 2개의 변환 커널을 포함할 수 있다.
또한, 일 예(Case 3)로서, 인트라 예측 모드의 방향성에 관계 없이, 3개의 일차 변환 후보가 사용될 수 있다. 이때, 이차 변환 후보는 인트라 예측 모드의 방향성에 관계 없이 1개의 변환 커널을 포함할 수 있다.
- 조합 C
조합 C에서는 다음의 표 14와 같이, 인트라 예측 모드에 따라 일차 변환 후보 및 이차 변환 커널이 정의될 수 있다.
Figure 112021043268336-pct00017
표 14를 참조하면, 일 예(Case 1)로서, 인트라 예측 모드가 방향성을 가지는 경우 2개의 일차 변환 후보가 사용될 수 있고, 방향성을 갖지 않는 경우(예를 들어, DC, 플래너 모드), 3개의 일차 변환 후보가 사용될 수 있다. 이때, 이차 변환 후보는 인트라 예측 모드의 방향성에 관계 없이 2개의 변환 커널을 포함할 수 있다. 즉, 전술한 바와 같이, 인트라 예측 모드에 따라 복수의 이차 변환 커널 셋이 미리 정의될 수 있고, 상기 미리 정의된 복수의 이차 변환 커널 셋은 각각 2개의 변환 커널을 포함할 수 있다.
또한, 일 예(Case 2)로서, 인트라 예측 모드가 방향성을 가지는 경우 2개의 일차 변환 후보가 사용될 수 있고, 방향성을 갖지 않는 경우, 3개의 일차 변환 후보가 사용될 수 있다. 이때, 이차 변환 후보는 인트라 예측 모드가 방향성을 가지는 경우, 1개의 변환 커널을 포함하고, 방향성을 갖지 않는 경우, 2개의 변환 커널을 포함할 수 있다.
또한, 일 예(Case 3)로서, 인트라 예측 모드가 방향성을 가지는 경우 2개의 일차 변환 후보가 사용될 수 있고, 방향성을 갖지 않는 경우, 3개의 일차 변환 후보가 사용될 수 있다. 이때, 이차 변환 후보는 인트라 예측 모드의 방향성에 관계 없이 1개의 변환 커널을 포함할 수 있다.
이상에서는 복수 개의 일차 변환 후보를 사용하는 경우를 위주로 설명하였다. 이하에서는, 고정된 일차 변환 후보를 이용하는 경우에 대한 일차 변환과 이차 변환의 조합들을 예로 들어 설명한다.
- 조합 D
조합 D에서는 다음의 표 15와 같이, 인트라 예측 모드에 따라 일차 변환 후보 및 이차 변환 커널이 정의될 수 있다.
Figure 112021043268336-pct00018
표 15를 참조하면, 실시예로서, 인트라 예측 모드에 관계없이 하나의 일차 변환 후보가 고정적으로 사용될 수 있다. 예를 들어, 상기 고정된 일차 변환 후보는, DCT2, DST7 및/또는 DCT8 중 적어도 하나의 조합일 수 있다.
일 예(Case 1)로서, 인트라 예측 모드에 관계없이 하나의 일차 변환 후보가 고정적으로 사용될 수 있고, 이때, 이차 변환 후보는 인트라 예측 모드의 방향성에 관계 없이 2개의 변환 커널을 포함할 수 있다. 즉, 전술한 바와 같이, 인트라 예측 모드에 따라 복수의 이차 변환 커널 셋이 미리 정의될 수 있고, 상기 미리 정의된 복수의 이차 변환 커널 셋은 각각 2개의 변환 커널을 포함할 수 있다.
또한, 일 예(Case 2)로서, 인트라 예측 모드에 관계없이 하나의 일차 변환 후보가 고정적으로 사용될 수 있고, 이때, 이차 변환 후보는 인트라 예측 모드가 방향성을 가지는 경우, 1개의 변환 커널을 포함하고, 방향성을 갖지 않는 경우, 2개의 변환 커널을 포함할 수 있다.
또한, 일 예(Case 3)로서, 인트라 예측 모드에 관계없이 하나의 일차 변환 후보가 고정적으로 사용될 수 있고, 이때, 이차 변환 후보는 인트라 예측 모드의 방향성에 관계 없이 1개의 변환 커널을 포함할 수 있다.
- 조합 E
조합 E에서는 다음의 표 16과 같이, 인트라 예측 모드에 따라 일차 변환 후보 및 이차 변환 커널이 정의될 수 있다.
Figure 112021043268336-pct00019
표 16을 참조하면, 일차 변환으로 DCT2가 적용되는 경우에 한하여, 이차 변환이 정의될 수 있다. 다시 말해, MTS가 적용되지 않는 경우(즉, 일차 변환으로 DCT2가 적용되는 경우), 이차 변환이 적용 가능할 수 있다. 앞서 도 10에서 설명한 바와 같이, 본 명세서에서, MTS가 적용되는 경우와 그렇지 않은 경우를 구분하여 설명되나, 본 발명이 이러한 표현에 제한되는 것은 아니다. 예를 들어, MTS의 적용 여부는, 미리 정의된 특정 변환 타입(기본 변환 타입, 디폴트 변환 타입 등으로 지칭될 수 있다) 이외의 다른 변환 타입(또는 변환 커널)을 사용하는지 여부와 동일한 의미일 수 있다. 만약 MTS가 적용되는 경우, 기본 변환 타입 이외의 다른 변환 타입(예컨대, 복수의 변환 타입들 중 어느 하나 또는 둘 이상의 조합된 변환 타입)이 변환에 이용되고, MTS가 적용되지 않는 경우, 기본 변환 타입이 변환에 이용될 수 있다. 일 실시예에서, 상기 기본 변환 타입은 DCT2로 설정(또는 정의)될 수 있다.
일 예(Case 1)로서, 일차 변환에 DCT2가 적용되는 경우, 이차 변환이 적용 가능할 수 있고, 이때, 이차 변환 후보는 인트라 예측 모드의 방향성에 관계 없이 2개의 변환 커널을 포함할 수 있다. 즉, 전술한 바와 같이, 인트라 예측 모드에 따라 복수의 이차 변환 커널 셋이 미리 정의될 수 있고, 상기 미리 정의된 복수의 이차 변환 커널 셋은 각각 2개의 변환 커널을 포함할 수 있다.
또한, 일 예(Case 2)로서, 일차 변환에 DCT2가 적용되는 경우, 이차 변환이 적용 가능할 수 있고, 이때, 이차 변환 후보는 인트라 예측 모드가 방향성을 가지는 경우, 1개의 변환 커널을 포함하고, 방향성을 갖지 않는 경우, 2개의 변환 커널을 포함할 수 있다.
또한, 일 예(Case 3)로서, 일차 변환에 DCT2가 적용되는 경우, 이차 변환이 적용 가능할 수 있고, 이때, 이차 변환 후보는 인트라 예측 모드의 방향성에 관계 없이 1개의 변환 커널을 포함할 수 있다.
도 26은 본 발명이 적용되는 실시예에 따른 비디오 신호의 변환 방법을 예시하는 흐름도이다.
도 26을 참조하면, 설명의 편의를 위해 디코더를 위주로 설명하나, 본 발명이 이에 한정되는 것은 아니며, 본 실시예에 따른 비디오 신호에 대한 변환 방법은 인코더에서도 실질적으로 동일하게 적용될 수 있다. 도 26의 흐름도는 디코딩 장치(200) 또는 역변환부(230)에 의해 수행될 수 있다.
디코딩 장치(200)는 디코더는 현재 블록의 일차 변환(primary transform)에 적용되는 일차 변환 커널(primary transform kernel)을 지시하는 제1 신택스 요소(syntax element)를 파싱한다(S2601).
디코딩 장치(200)는 상기 제1 신택스 요소에 기초하여 상기 현재 블록에 이차 변환(secondary transform)이 적용될 수 있는지 여부를 결정한다(S2602).
디코딩 장치(200)는 상기 현재 블록에 이차 변환이 적용될 수 있는 경우, 상기 현재 블록의 이차 변환에 적용되는 이차 변환 커널(secondary transform kernel)을 지시하는 제2 신택스 요소를 파싱한다(S2603)
디코딩 장치(200)는 상기 제2 신택스 요소에 의해 지시되는 이차 변환 커널을 이용하여 상기 현재 블록의 좌상측 특정 영역에 대하여 이차 역변환을 수행함으로써, 이차 역변환된 블록을 유도한다(S2604).
디코딩 장치(200)는 상기 제1 신택스 요소에 의해 지시되는 일차 변환 커널을 이용하여 상기 이차 역변환된 블록에 대하여 일차 역변환을 수행함으로써, 상기 현재 블록의 잔차 블록을 유도한다(S2605).
전술한 바와 같이, S2602 단계는 상기 제1 신택스 요소가 미리 정의된 제1 변환 커널을 지시하는 경우, 상기 현재 블록에 이차 변환이 적용될 수 있는 것으로 결정함으로써 수행될 수 있다. 이때, 상기 제1 변환 커널은 DCT2로 정의될 수 있다.
또한, 전술한 바와 같이, 디코딩 장치(200)는 상기 현재 블록의 인트라 예측 모드에 기초하여 미리 정의된 이차 변환 커널 셋들(secondary transform kernel set) 중에서 상기 현재 블록의 이차 변환에 이용되는 이차 변환 커널 셋을 결정할 수 있다. 그리고, 상기 제2 신택스 요소는 상기 결정된 이차 변환 커널 셋 내에서 상기 현재 블록의 이차 변환에 적용되는 이차 변환 커널을 지시할 수 있다.
또한, 전술한 바와 같이, 상기 미리 정의된 이차 변환 커널 셋들은 각각 2개의 변환 커널을 포함할 수 있다.
본 발명의 일 실시예에서, MTS(Multiple Transform Set)이 이용되는 신택스 구조의 일 예를 설명한다.
일 예로, 다음의 표 17은 시퀀스 파라미터 세트(sequence parameter set)의 신택스 구조의 일 예를 나타낸다.
Figure 112021043268336-pct00020
표 17을 참조하면, 본 발명의 실시예에 따른 MTS의 사용 가능 여부는 시퀀스 파라미터 셋 신택스를 통해 시그널링될 수 있다. 여기서, sps_mts_intra_enabled_flag는 인트라 코딩 유닛에 대한 하위 레벨 신택스(예컨대, 레지듀얼 코딩 신택스, 변환 유닛 신택스) 내에 MTS 플래그 또는 MTS 인덱스가 존재하는지 여부를 지시한다. 그리고, sps_mts_inter_enabled_flag는 인터 코딩 유닛에 대한 하위 레벨 신택스 내에 MTS 플래그 또는 MTS 인덱스가 존재하는지 여부를 지시한다.
또한, 다른 일 예로, 다음의 표 18은 변환 유닛 신택스 구조의 일 예를 나타낸다.
Figure 112021043268336-pct00021
도 18을 참조하면, cu_mts_flag는 MTS가 루마 변환 블록의 레지듀얼 샘플에 적용되는지 여부를 나타낸다. 예를 들어, cu_mts_flag = 0 이면 MTS가 루마 변환 블록의 레지듀얼 샘플에 적용되지 않고, cu_mts_flag = 1 이면 MTS가 루마 변환 블록의 레지듀얼 샘플에 적용된다.
전술한 바와 같이, 본 발명에서, MTS 플래그에 기초하여 MTS가 적용되는 경우와 그렇지 않은 경우를 구분하여 설명하나, 본 발명이 이러한 표현에 제한되는 것은 아니다. 예를 들어, MTS의 적용 여부는, 미리 정의된 특정 변환 타입(기본 변환 타입, 디폴트 변환 타입 등으로 지칭될 수 있다) 이외의 다른 변환 타입(또는 변환 커널)을 사용하는지 여부와 동일한 의미일 수 있다. 만약 MTS가 적용되는 경우, 기본 변환 타입 이외의 다른 변환 타입(예컨대, 복수의 변환 타입들 중 어느 하나 또는 둘 이상의 조합된 변환 타입)이 변환에 이용되고, MTS가 적용되지 않는 경우, 기본 변환 타입이 변환에 이용될 수 있다. 일 실시예에서, 상기 기본 변환 타입은 DCT2로 설정(또는 정의)될 수 있다.
일 예로서, 현재 변환 블록에 MTS가 적용되는지 여부를 지시하는 MTS 플래그 신택스와 MTS가 적용되는 경우 상기 현재 블록에 적용되는 변환 타입을 지시하는 MTS 인덱스 신택스가 개별적으로 인코더로부터 디코더로 전송될 수도 있고, 다른 일 예로서, 현재 변환 블록에 MTS가 적용되는지 여부 및 MTS가 적용되는 경우 상기 현재 블록에 적용되는 변환 타입을 모두 포함하는 신택스(예를 들어, MTS 인덱스)가 인코더로부터 디코더로 전송될 수도 있다. 즉, 후자의 실시예에서, 상술한 기본 변환 타입을 포함하는 전체 변환 타입 그룹(또는 변환 타입 셋) 내에서 현재 변환 블록(또는 유닛)에 적용되는 변환 타입을 지시하는 신택스(또는 신택스 요소)가 인코더로부터 디코더로 전송될 수 있다.
따라서, 그 표현에도 불구하고 현재 변환 블록에 적용되는 변환 타입을 지시하는 신택스(MTS 인덱스)는 MTS 적용 여부에 관한 정보를 포함할 수 있다. 다시 말해, 후자의 실시예에서 MTS 플래그 없이 MTS 인덱스만 시그널링될 수 있어, 이 경우는 MTS에 DCT2가 포함되는 것으로 해석할 수 있으나, 본 발명에서는 DCT2를 적용하는 경우를 MTS를 적용하지 않는 것으로 기술할 수 있으며, 그럼에도 불구하고 MTS에 관한 기술적 범위는 해당 정의 내용에 한정되지 않는다.
또한, 다른 일 예로, 다음의 표 19는 레지듀얼 유닛 신택스 구조의 일 예를 나타낸다.
Figure 112021043268336-pct00022
Figure 112021043268336-pct00023
Figure 112021043268336-pct00024
표 19를 참조하면, transform_skip_flag 및/또는 mts_idx 신택스(또는 신택스 요소)는 레지듀얼 신택스를 통해 시그널링될 수 있다. 다만, 이는 하나의 예시로서, 본 발명이 이에 한정되는 것은 아니다. 예를 들어, transform_skip_flag 및/또는 mts_idx 신택스는 변환 유닛 신택스를 통해 시그널링될 수도 있다.
이하에서는, 미리 정의된 영역에 대해서만 일차 변환(primary transform)을 적용함으로써, 복잡도를 개선하는 방법을 제안한다. MTS와 같은 다양한 여러 변환(또는 변환 커널)들(예컨대, DCT2, DST7, DCT8, DST1, DCT5 등)의 조합들이 선택적으로 일차 변환에 적용되는 경우 복잡도가 증가할 수 있다. 특히, 코딩 블록(또는 변환 블록)의 크기가 커질수록 다양한 여러 변환을 고려하여야 함에 따라 현저하게 복잡도가 증가할 수 있다.
따라서, 본 명세서의 실시예에서는, 복잡도 감소를 위해 모든 영역에 대하여 변환을 수행(또는 적용)하는 것이 아니라, 특정 조건에 따라 미리 정의된 영역에 대해서만 변환을 수행하는 방법을 제안한다.
실시예로서, 앞서 도 16 내지 24에서 설명한 축소된 변환(RT: Reduced transform) 방법을 기반으로, 인코더는 MxM 크기의 화소 블록(luma block)에 대해서 순방향 일차 변환(Primary transform)을 적용하여 MxM 크기의 변환 블록을 획득하는 대신, RxR 크기의 변환 블록을 획득할 수 있다. 일 예로, RxR 영역은 현재 블록(코딩 블록, 변환 블록) 내 좌상측(top-left) RxR 영역일 수 있다. 디코더는 RxR (M>=R) 크기의 영역에 대해서만 역방향 일차 변환을 수행함으로써, MxM 크기의 변환 블록을 획득할 수 있다.
결과적으로, RxR 영역에 대해서만 유효한 계수들(non-zero coefficients)이 존재할 수 있다. 일 예로, 이 경우 디코더는 RxR 영역 이외의 영역 내 존재하는 계수들에 대해서는 계산을 수행하지 않고 값을 0으로 간주(zero-out)할 수 있다. 인코더는 RxR 영역만 남도록(RxR 영역만 유효 계수가 존재할 수 있도록) 순방향 변환을 수행할 수 있다.
또한, 디코더는 코딩 블록(또는 변환 블록)의 크기 및/또는 변환(또는 변환 커널)의 종류에 따라 결정되는 미리 정의된 영역에 대해서만 일차 변환(즉, 역변환)을 적용할 수 있다. 다음 표 20은 변환의 크기(또는 변환 블록의 크기)에 따라 미리 정의된 R(Reduced factor, Reduced transform factor 등으로 지칭될 수 있음) 값을 사용하는 Reduced Adaptive Multiple Transform(RAMT)를 예시한다. 본 발명에서, 블록 크기에 따라 적응적으로 결정되는 축소된 변환을 나타내는 Reduced Adaptive Multiple Transform(RAMT)는 Reduced MTS(Multiple Transform Selection), Reduced explicit multiple transform, Reduced primary transform 등으로 지칭될 수 있다.
Figure 112021043268336-pct00025
표 20을 참조하면, 변환의 크기(또는 변환 블록의 크기)에 따라 적어도 하나 이상의 축소된 변환이 정의될 수 있다. 일 실시예에서, 표 20에 예시된 축소된 변환들 중에서 어떠한 축소된 변환이 이용될지는 현재 블록(코딩 블록 또는 변환 블록)에 적용되는 변환(또는 변환 커널)에 따라 결정될 수 있다. 상기 표 20에서는 3개의 축소된 변환이 이용되는 경우를 가정하나, 본 발명이 이에 한정되는 것은 아니며, 변환의 크기에 따라 하나 이상의 다양한 여러 개수의 축소된 변환이 미리 정의될 수 있다.
또한, 본 발명의 실시예에서, 상술한 reduced adaptive multiple transform을 적용함에 있어서, reduced transform factor (R)가 일차 변환에 따라 의존적으로 결정될 수 있다. 예를 들어, 일차 변환이 DCT2인 경우, 다른 일차 변환(예컨대, DST7 및/또는 DCT8의 조합)들에 비해서 계산량이 비교적 간단하므로 크기가 작은 블록에 대해서는 축소된 변환을 사용하지 않거나, 상대적으로 큰 R값을 사용함으로써, 부호화 성능의 감소를 최소화할 수 있다. 다음 표 21은 변환의 크기(또는 변환 블록의 크기) 및 변환 커널에 따라 미리 정의된 R 값을 사용하는 Reduced Adaptive Multiple Transform(RAMT)를 예시한다.
Figure 112021043268336-pct00026
표 21을 참조하면, 일차 변환에 적용되는 변환이 DCT2인 경우 및 그 외의 변환(예컨대, DST7 및/또는 DCT8의 조합)인 경우, 서로 다른 Reduced transform factor를 사용할 수 있다.
도 27은 본 발명이 적용되는 실시예로서, 축소된 변환(Reduced transform)을 이용하여 비디오 신호를 인코딩하는 방법을 예시하는 도면이다.
도 27를 참조하면, 먼저 인코더는 현재 블록에 변환을 적용할지 여부를 결정한다(S2701). 인코더는 결정된 결과에 따라 변환 스킵 플래그(transform skip flag) 를 인코딩할 수 있다. 이 경우, 변환 스킵 플래그를 인코딩하는 단계가 S2701 단계에 포함될 수 있다.
인코더는 현재 블록에 변환이 적용되는 경우, 현재 블록의 일차 변환(primary transform)에 적용되는 변환 커널을 결정한다(S2702). 인코더는 결정된 변환 커널을 지시하는 변환 인덱스(transform index)를 인코딩할 수 있고, 이 경우, 변환 인덱스(transform index)를 인코딩하는 단계가 S2702 단계에 포함될 수 있다.
인코더는 현재 블록의 일차 변환에 적용되는 변환 커널 및 현재 블록의 크기에 기초하여, 현재 블록 내 유효 계수가 존재하는 영역을 결정한다(S2703).
또한, 일 실시예로서, 인코더는 변환 인덱스에 의해 지시되는 변환 커널이 미리 정의된 변환이고, 현재 블록의 너비(width) 및/또는 높이(height)가 미리 정의된 크기보다 큰 경우, 상기 미리 정의된 크기의 너비 및/또는 높이를 가지는 영역을 상기 유효 계수가 존재하는 영역으로 결정할 수 있다.
예를 들어, 상기 미리 정의된 변환은 DST7 및/또는 DCT8의 조합으로 구성된 복수의 변환 조합들 중 어느 하나일 수 있고, 상기 미리 정의된 크기는 16일 수 있다. 또는, 상기 미리 정의된 변환은 DCT2를 제외한 나머지 변환일 수 있다. 또한, 일 예로, 인코더는 상기 변환 인덱스에 의해 지시되는 변환 커널이 DCT2이고, 상기 현재 블록의 너비 및/또는 높이가 32보다 큰 경우, 너비 및/또는 높이가 32인 영역을 상기 일차 변환이 적용되는 영역으로 결정할 수 있다.
또한, 일 실시예로서, 인코더는 상기 변환 인덱스에 의해 지시되는 변환 커널이 제1 변환 그룹에 속하는 경우, 현재 블록의 너비(width) 및 제1 임계값 중 작은 값을 상기 일차 변환이 적용되는 영역의 너비로 결정하고, 현재 블록의 높이(height) 및 제1 임계값 중 작은 값을 상기 유효 계수가 존재하는 영역의 높이로 결정할 수 있다. 일 예로, 상기 제1 임계값은 32일 수 있으나, 본 발명이 이에 제한되는 것은 아니며, 상술한 표 20 또는 표 21과 같이 4, 8, 16일 수도 있다.
그리고, 인코더는 상기 변환 인덱스에 의해 지시되는 변환 커널이 제2 변환 그룹에 속하는 경우, 현재 블록의 너비 및 제2 임계값 중 작은 값을 일차 변환이 적용되는 영역의 너비로 결정하고, 현재 블록의 높이 및 제2 임계값 중 작은 값을 유효 계수가 존재하는 영역의 높이로 결정할 수 있다. 일 예로, 상기 제2 임계값은 16일 수 있으나, 본 발명이 이에 제한되는 것은 아니며, 상술한 표 20 또는 표 21과 같이, 4, 6, 8, 12, 32일 수도 있다.
일 실시예로서, 상기 제1 변환 그룹은 DCT2를 포함하고, 상기 제2 변환 그룹은 DST7 및/또는 DCT8의 조합으로 구성된 복수의 변환 조합들을 포함할 수 있다.
인코더는 현재 블록의 일차 변환에 적용되는 변환 커널을 이용하여 순방향 일차 변환(forward primary transform)을 수행한다(S2704). 인코더는 순방향 일차 변환을 수행함으로써 유효 계수가 존재하는 영역 내 일차 변환된 변환 계수를 획득할 수 있다. 일 실시예로서, 인코더는 일차 변환된 변환 계수에 이차 변환(secondary transform)을 적용할 수 있고, 이 경우, 앞서 도 6 내지 도 26에서 설명한 방법이 적용될 수 있다.
도 28은 본 발명이 적용되는 실시예로서, 축소된 변환(Reduced transform)을 이용하여 비디오 신호를 디코딩 하는 방법을 예시하는 도면이다.
디코더는 현재 블록에 변환 스킵(transform skip)이 적용되는지 여부를 확인한다(S2801).
디코더는 현재 블록에 변환 스킵이 적용되지 않는 경우, 비디오 신호로부터 현재 블록에 적용되는 변환 커널(transform kernel)을 지시하는 변환 인덱스(transform index)를 획득한다(S2802).
디코더는 변환 인덱스에 의해 지시되는 변환 커널 및 현재 블록의 크기(즉, 너비 및/또는 높이)에 기초하여, 현재 블록에 일차 변환(primary transform)(즉, 일차 역변환)이 적용되는 영역을 결정한다(S2803).
일 실시예로서, 디코더는 현재 블록 내에서, 일차 변환이 적용되는 영역 이외의 나머지 영역의 계수들을 0으로 간주할 수 있다.
또한, 일 실시예로서, 디코더는 변환 인덱스에 의해 지시되는 변환 커널이 미리 정의된 변환이고, 현재 블록의 너비(width) 및/또는 높이(height)가 미리 정의된 크기보다 큰 경우, 상기 미리 정의된 크기의 너비 및/또는 높이를 가지는 영역을 상기 일차 변환이 적용되는 영역으로 결정할 수 있다.
예를 들어, 상기 미리 정의된 변환은 DST7 및/또는 DCT8의 조합으로 구성된 복수의 변환 조합들 중 어느 하나일 수 있고, 상기 미리 정의된 크기는 16일 수 있다. 또는, 상기 미리 정의된 변환은 DCT2를 제외한 나머지 변환일 수 있다. 또한, 일 예로, 디코더는 상기 변환 인덱스에 의해 지시되는 변환 커널이 DCT2이고, 상기 현재 블록의 너비 및/또는 높이가 32보다 큰 경우, 너비 및/또는 높이가 32인 영역을 상기 일차 변환이 적용되는 영역으로 결정할 수 있다.
또한, 일 실시예로서, 디코더는 상기 변환 인덱스에 의해 지시되는 변환 커널이 제1 변환 그룹에 속하는 경우, 현재 블록의 너비(width) 및 제1 임계값 중 작은 값을 상기 일차 변환이 적용되는 영역의 너비로 결정하고, 현재 블록의 높이(height) 및 제1 임계값 중 작은 값을 상기 일차 변환이 적용되는 영역의 높이로 결정할 수 있다. 일 예로, 상기 제1 임계값은 32일 수 있으나, 본 발명이 이에 제한되는 것은 아니며, 상술한 표 20 또는 표 21과 같이 4, 8, 16일 수도 있다.
그리고, 디코더는 상기 변환 인덱스에 의해 지시되는 변환 커널이 제2 변환 그룹에 속하는 경우, 현재 블록의 너비 및 제2 임계값 중 작은 값을 일차 변환이 적용되는 영역의 너비로 결정하고, 현재 블록의 높이 및 제2 임계값 중 작은 값을 일차 변환이 적용되는 영역의 높이로 결정할 수 있다. 일 예로, 상기 제2 임계값은 16일 수 있으나, 본 발명이 이에 제한되는 것은 아니며, 상술한 표 20 또는 표 21과 같이, 4, 6, 8, 12, 32일 수도 있다.
일 실시예로서, 상기 제1 변환 그룹은 DCT2를 포함하고, 상기 제2 변환 그룹은 DST7 및/또는 DCT8의 조합으로 구성된 복수의 변환 조합들을 포함할 수 있다.
디코더는 일차 변환이 적용되는 영역에 대하여, 변환 인덱스에 의해 지시되는 변환 커널을 이용하여 역방향 일차 변환(inverse primary transform)을 수행한다(S2804). 디코더는 역방향 일차 변환을 수행함으로써 일차 역변환된 변환 계수를 획득할 수 있다. 일 실시예로서, 디코더는 일차 변환을 수행하기에 앞서 역양자화된 변환 계수에 이차 변환(secondary transform)을 적용할 수 있고, 이 경우, 앞서 도 6 내지 도 26에서 설명한 방법이 적용될 수 있다.
본 명세서의 실시예에 따르면, 특정 조건에 따라 미리 정의된 영역에 대해서만 변환을 수행함으로써, worst case 복잡도를 현저하게 감소시킬 수 있다.
또한, 본 명세서의 일 실시예에서, MTS(EMT 또는 AMT) 플래그가 0인 경우(즉, 수평(가로) 방향과 수직(세로) 방향에 대해 모두 DCT-2 변환이 적용되는 경우), 인코더/디코더는 수평 및 수직 방향에 대해 각각 좌측 및 상측부터 32개의 계수만을 남기고 고주파 성분에 대하여 제로 아웃(zero-out)을 수행(즉, 0으로 간주 또는 설정)할 수 있다. 본 실시예는 후술하는 실시예에서의 설명의 편의를 위해 제1 실시예로 지칭하나, 본 명세서의 실시예가 이에 제한되는 것은 아니다.
예를 들어, 인코더/디코더는 64x64 TU(또는 CU)의 경우 좌상단(top-left) 32x32 영역에 대해서만 변환 계수를 남기고, 나머지 영역의 계수에 대해서 제로 아웃을 수행할 수 있다. 또한, 인코더/디코더는 64x16 TU의 경우 좌상단 32x16 영역에 대해서만 변환 계수를 남기고, 나머지 영역의 계수에 대해서 제로 아웃을 수행할 수 있다. 또한, 인코더/디코더는 8x64 TU의 경우 좌상단 8x32 영역에 대해서만 변환 계수를 남기고, 나머지 영역의 계수에 대해서 제로 아웃을 수행할 수 있다. 즉, 수평 및 수직 방향 모두 최대 길이 32만큼까지만 변환 계수가 존재하도록 설정할 수 있고, 이를 통해 변환 효율을 높일 수 있다.
일 실시예로서, 이러한 제로 아웃 방법은 인트라 예측이 적용된 잔차 신호에만 적용될 수도 있고, 인터 예측이 적용된 잔차 신호에만 적용될 수도 있으며, 인트라 예측이 적용된 잔차 신호 및 인터 예측이 적용된 잔차 신호 모두에 적용될 수도 있다.
또한, 본 명세서의 일 실시예에서, MTS 플래그가 1인 경우(즉, 수평 방향 및 수직 방향에 대해 DCT-2 변환 이외의 다른 변환(예컨대, DST-7 또는 DCT-8)이 적용될 수 있는 경우), 인코더/디코더는 좌상단 특정 영역의 계수들을 남기고 나머지 고주파 성분에 대하여 제로 아웃(zero-out)을 수행(즉, 0으로 간주 또는 설정)할 수 있다. 본 실시예는 후술하는 실시예에서의 설명의 편의를 위해 제2 실시예로 지칭하나, 본 명세서의 실시예가 이에 제한되는 것은 아니다.
실시예로서, 인코더/디코더는 다음의 예시와 같이 일부 좌상단 영역의 변환 계수 영역만을 남기도록 구성할 수 있다. 즉, 인코더/디코더는 너비 및/또는 높이에 따라 일차 변환이 적용되는 수평 및/또는 수직 방향의 변환 계수의 길이(또는 개수)를 미리 설정할 수 있다. 일 예로, 일차 변환이 적용되는 길이를 벗어나는 계수들은 제로 아웃될 수 있다.
- 너비(w)가 2 n보다 같거나 큰 경우, 좌측부터 w/2 p 길이만큼에 대해서만 변환 계수를 남기고 나머지 영역의 변환 계수는 0 값으로 고정(또는 설정, 간주)(zero-out)시킬 수 있다.
- 높이(h)가 2 m 보다 같거나 큰 경우, 위쪽에서부터 h/2 q 길이만큼에 대해서만 변환 계수를 남기고 나머지 변환 계수는 0 값으로 고정시킬 수 있다.
일 예로, m, n, p, q 값은 다양한 여러 값으로 미리 정의될 수 있다. 예를 들어, m, n, p, q 값은 0보다 같거나 큰 정수 값으로 설정될 수 있다. 또는, 구체적으로 다음의 예시와 같이 설정될 수 있다.
1) (m, n, p, q) = (5, 5, 1, 1)
2) (m, n, p, q) = (4, 4, 1, 1)
예를 들어, 1)번 구성으로 미리 정의되는 경우, 32x16 TU에 대해서는 좌상단 16x16 영역에 대해서만 변환 계수가 남을 수 있고, 8x32 TU에 대해서는 좌상단 8x16 영역에 대해서만 변환 계수가 남을 수 있다.
일 실시예로서, 이러한 제로 아웃 방법은 인트라 예측이 적용된 잔차 신호에만 적용될 수도 있고, 인터 예측이 적용된 잔차 신호에만 적용될 수도 있으며, 인트라 예측이 적용된 잔차 신호 및 인터 예측이 적용된 잔차 신호 모두에 적용될 수도 있다.
또한, 본 명세서의 다른 일 실시예에서, MTS 플래그가 1인 경우(즉, 수평 방향 및 수직 방향에 대해 DCT-2 변환 이외의 다른 변환(예컨대, DST-7 또는 DCT-8)이 적용될 수 있는 경우), 인코더/디코더는 좌상단 특정 영역의 계수들을 남기고 나머지 고주파 성분에 대하여 제로 아웃(zero-out)을 수행(즉, 0으로 간주 또는 설정)할 수 있다. 또는, 보다 구체적으로 인코더는 미리 정의된 좌상단 특정 영역의 계수들을 남기고 나머지 고주파 성분에 대하여 제로 아웃(zero-out)을 수행할 수 있고, 디코더는 제로 아웃된 영역을 미리 인지하고 제로 아웃되지 않은 영역의 계수들을 이용하여 디코딩을 수행할 수 있다. 다만 본 명세서의 실시예가 이에 제한되는 것은 아니며, 디코더 측면에서의 제로 아웃 프로세스는 제로 아웃된 영역을 0으로 간주(또는 인지, 설정)하는 프로세스로 이해될 수 있다. 본 실시예는 후술하는 실시예에서의 설명의 편의를 위해 제3 실시예로 지칭하나, 본 명세서의 실시예가 이에 제한되는 것은 아니다.
실시예로서, 인코더/디코더는 다음의 예시와 같이 일부 좌상단 영역의 변환 계수 영역만을 남기도록 구성할 수 있다. 즉, 인코더/디코더는 너비 및/또는 높이에 따라 일차 변환이 적용되는 수평 및/또는 수직 방향의 변환 계수의 길이(또는 개수)를 미리 설정할 수 있다. 일 예로, 일차 변환이 적용되는 길이를 벗어나는 계수들은 제로 아웃될 수 있다.
- 높이(h)가 너비(w)보다 같거나 크고 높이가 2 n보다 같거나 큰 경우, 좌상단 wx(h/2 p) 영역만 변환 계수를 남기고 나머지 영역의 변환 계수는 0 값으로 고정(또는 설정, 간주)(zero-out)시킬 수 있다.
- 너비(w)가 높이(h)보다 크고 너비가 2 m보다 같거나 큰 경우, 좌상단 (w/2 q)xh 영역만 변환 계수를 남기고 나머지 변환 계수는 0 값으로 고정시킬 수 있다.
상술한 예시에서 높이(h)와 너비(w)가 같은 경우에 대해서는 세로 방향을 줄이는 것으로 (h/2 p) 되어 있으나, 가로 방향을 줄이도록 (w/2 q) 설정할 수도 있다.
일 예로, m, n, p, q 값은 다양한 여러 값으로 미리 정의될 수 있다. 예를 들어, m, n, p, q 값으로는 0보다 같거나 큰 정수 값으로 설정될 수 있다. 또는, 구체적으로 다음의 예시와 같이 설정될 수 있다.
1) (m, n, p, q) = (4, 4, 1, 1)
2) (m, n, p, q) = (5, 5, 1, 1)
예를 들어, 1)번 구성으로 미리 정의되는 경우, 32x16 TU에 대해서는 좌상단 16x16 영역에 대해서만 변환 계수가 남을 수 있고, 8x16 TU에 대해서는 좌상단 8x8 영역에 대해서만 변환 계수가 남을 수 있다.
일 실시예로서, 이러한 제로 아웃 방법은 인트라 예측이 적용된 잔차 신호에만 적용될 수도 있고, 인터 예측이 적용된 잔차 신호에만 적용될 수도 있으며, 인트라 예측이 적용된 잔차 신호 및 인터 예측이 적용된 잔차 신호 모두에 적용될 수도 있다.
이상에서, MTS 플래그가 0인 경우에 대한 변환 계수 영역 제한 방법에 관한 제1 실시예, MTS 플래그가 1인 경우에 대한 변환 계수 영역 제한 방법에 관한 제2 및 제3 실시예는 각각 개별적으로 적용될 수도 있고, 조합 적용될 수도 있다.
일 실시예로서, 다음과 같은 조합된 구성이 적용될 수 있다.
1) 제1 실시예 + 제2 실시예
2) 제1 실시예 + 제3 실시예
앞서 제2 실시예 및 제3 실시예에서 언급한 바와 같이, 실시예로서, 이러한 제로 아웃 방법은 인트라 예측이 적용된 잔차 신호에만 적용될 수도 있고, 인터 예측이 적용된 잔차 신호에만 적용될 수도 있으며, 인트라 예측이 적용된 잔차 신호 및 인터 예측이 적용된 잔차 신호 모두에 적용될 수도 있다. 따라서, MTS 플래그가 1인 경우에 대해 다음과 같은 조합된 구성이 적용될 수 있다. 이때, MTS 플래그가 0인 경우에 대해서는 상술한 제1 실시예가 적용될 수 있다.
Figure 112021043268336-pct00027
본 명세서의 일 실시예에서, 인코더/디코더는 상술한 실시예에서의 제로 아웃에 따라 변환 계수가 0의 값을 갖는 것으로 간주되는 영역에 대하여 레지듀얼 코딩을 수행하지 않을 수 있다. 즉, 인코더/디코더는 제로 아웃 영역을 제외한 영역에 대해서만 레지듀얼 코딩을 수행하도록 정의할 수 있다.
앞서 설명한 제1 실시예, 제2 실시예, 제3 실시예에서, TU 내에서 0 값을 가질 수밖에 없는 영역(또는 계수)이 분명히 정해지게 된다. 즉, 변환 계수 존재가 허락되는 좌상단 영역을 제외하고 나머지는 0 값으로 제로 아웃된다. 따라서, 엔트로피 코딩(또는 레지듀얼 코딩) 프로세스에서, 인코더/디코더는 0 값을 가지는 것이 보장되는 영역에 대해서는 레지듀얼 코딩을 수행하지 않고 바이패스(bypass)하도록 구성할 수 있다.
일 실시예에서, 인코더/디코더는 CG(Coefficient Group) 내 0이 아닌 변환 계수가 존재하는지 여부를 나타내는 플래그(subblock_flag로 지칭함)(또는 신택스, 신택스 엘리먼트)를 코딩할 수 있다. 여기서, 상기 CG는 TU의 서브 블록으로서, TU 블록의 모양 및/또는 색차/휘도 컴포넌트인지에 따라 4x4 또는 2x2 블록으로 설정될 수 있다.
이때, 인코더/디코더는 상기 subblock_flag가 1인 경우에 한해서만 해당 CG 내부를 스캔하여 계수 값(또는 계수의 레벨 값)들을 코딩할 수 있다. 따라서, 0값으로 제로 아웃되는 영역에 속한 CG들에 대해서, 인코더/디코더는 subblock_flag 코딩을 하지 않고 0 값을 디폴트로 가지도록 구성할 수 있다.
또한, 일 실시예에서, 인코더는 순방향 스캔 순서상 가장 나중에 위치하는 계수의 위치(또는 마지막 유효 계수의 위치를 나타내는 신택스, 신택스 엘리먼트)를 먼저 코딩할 수 있다. 예를 들어, 인코더는 수평 방향 위치인 last_coefficient_position_x와 수직 방향 위치인 last_coefficient_position_y를 코딩할 수 있다.
last_coefficient_position_x와 last_coefficient_position_y가 가질 수 있는 값의 최대값은 각각 TU의 (너비 - 1)과 (높이 - 1) 값으로 결정될 수 있으나, 제로 아웃에 의해 0이 아닌 계수가 존재할 수 있는 영역이 제한되는 경우 last_coefficient_position_x와 last_coefficient_position_y가 가질 수 있는 값의 최대값도 함께 제한될 수 있다.
따라서, 인코더/디코더는 last_coefficient_position_x와 last_coefficient_position_y가 가질 수 있는 최대값을 제로 아웃을 고려하여 제한한 후 코딩할 수 있다. 예를 들어, last_coefficient_position_x와 last_coefficient_position_y에 적용되는 이진화 방법이 절삭형 단항(truncated unary) (또는, 절삭형 라이스(truncated Rice, TR), 절삭형 이진(truncated binary, TB)) 이진화 방법인 경우, 인코더/디코더는 절삭형 단항 코드의 최대 길이를 조정된(즉, last_coefficient_position_x와 last_coefficient_position_y가 가질 수 있는) 최대값에 대응되도록 조절할(줄일) 수 있다.
이상에서 설명한 본 발명의 실시예들 중 일부는 설명의 편의상 실시예들을 구분하여 설명하였으나, 본 발명이 이에 제한되는 것은 아니다. 즉, 앞서 설명한 실시예들은 각각 독립적으로 수행될 수도 있고, 하나 이상의 여러 실시예가 조합되어 수행될 수도 있다.
도 29는 본 명세서의 실시예에 따른 축소된 변환(Reduced transform)을 기반으로 비디오 신호를 디코딩하는 방법을 예시하는 흐름도이다.
도 29를 참조하면, 설명의 편의를 위해 디코더를 위주로 설명하나, 본 발명이 이에 한정되는 것은 아니며, 본 실시예에 따른 비디오 신호에 대한 변환 방법은 인코더에서도 실질적으로 동일하게 적용될 수 있다. 도 29의 흐름도는 디코딩 장치(200) 또는 역변환부(230)에 의해 수행될 수 있다.
디코더는 현재 블록의 수평 및 수직 방향에 적용되는 변환 커널들(transform kernels)을 지시하는 변환 인덱스(transform index)를 상기 비디오 신호로부터 획득한다(S2901).
디코더는 상기 변환 인덱스에 의해 지시되는 변환 커널들 및 상기 현재 블록의 크기에 기초하여, 상기 현재 블록에 변환(즉, 역변환)이 적용되는 영역을 결정한다(S2902).
디코더는 상기 현재 블록 내에서, 상기 변환이 적용되는 영역 이외의 나머지 영역의 계수들을 0으로 간주한다(S2903).
디코더는 상기 변환이 적용되는 영역에 대하여, 상기 변환 인덱스에 의해 지시되는 변환 커널을 이용하여 역변환(inverse transform)을 수행한다(S2904).
전술한 바와 같이, 상기 변환이 적용되는 영역을 결정하는 단계는, 상기 변환 인덱스에 의해 지시되는 변환 커널들이 미리 정의된 변환이고, 상기 현재 블록의 너비(width) 및/또는 높이(height)가 미리 정의된 크기보다 큰 경우, 상기 미리 정의된 크기의 너비 및/또는 높이를 가지는 영역을 상기 변환이 적용되는 영역으로 결정함으로써 수행될 수 있다.
전술한 바와 같이, 상기 미리 정의된 변환은 DST7 및/또는 DCT8의 조합으로 구성된 복수의 변환 조합들 중 어느 하나일 수 있다.
전술한 바와 같이, 상기 미리 정의된 크기는 16일 수 있다.
전술한 바와 같이, 상기 변환이 적용되는 영역을 결정하는 단계는, 상기 변환 인덱스에 의해 지시되는 변환 커널들이 제1 변환 그룹에 속하는 경우, 상기 현재 블록의 너비(width) 및 32 중 작은 값을 상기 변환이 적용되는 영역의 너비로 결정하고, 상기 현재 블록의 높이(height) 및 32 중 작은 값을 상기 변환이 적용되는 영역의 높이로 결정하고, 상기 변환 인덱스에 의해 지시되는 변환 커널들이 제2 변환 그룹에 속하는 경우, 상기 현재 블록의 너비 및 16 중 작은 값을 상기 변환이 적용되는 영역의 너비로 결정하고, 상기 현재 블록의 높이 및 16 중 작은 값을 상기 변환이 적용되는 영역의 높이로 결정함으로써 수행될 수 있다. 일 실시예로서, 상기 제1 변환 그룹은 DCT2를 포함하고, 상기 제2 변환 그룹은 DST7 및/또는 DCT8의 조합으로 구성된 복수의 변환 조합들을 포함할 수 있다.
전술한 바와 같이, 상기 현재 블록 내에서 스캔 순서 상 마지막 유효 계수(last significant coefficient)의 위치를 지시하는 신택스 엘리먼트를 획득하는 단계를 더 포함하고, 상기 역변환이 적용되는 계수들은 상기 마지막 유효 계수의 위치에 기초하여 상기 비디오 신호로부터 획득될 수 있다.
전술한 바와 같이, 상기 신택스 엘리먼트는 절삭형 단항(truncated unary) 방식으로 이진화되고, 상기 신택스 엘리먼트의 최대값은 상기 0으로 간주되는 영역에 기초하여 결정될 수 있다.
도 30은 본 발명이 적용되는 실시예로서, 비디오 신호를 처리하기 위한 장치의 블록도의 예를 도시한다. 도 30의 비디오 신호 처리 장치는 도 1의 인코딩 장치 또는 도 2의 디코딩 장치에 해당할 수 있다.
영상 신호를 처리하는 영상 처리 장치(3000)는, 영상 신호를 저장하는 메모리(3020)와, 상기 메모리와 결합되면서 영상 신호를 처리하는 프로세서(3010)를 포함한다.
본 발명의 실시예에 따른 프로세서(3010)는 영상 신호의 처리를 위한 적어도 하나의 프로세싱 회로로 구성될 수 있으며, 영상 신호를 인코딩 또는 디코딩을 위한 명령어들을 실행함으로써 영상 신호를 처리할 수 있다. 즉, 프로세서(3010)는 상술한 인코딩 또는 디코딩 방법들을 실행함으로써 원본 영상 데이터를 인코딩하거나 인코딩된 영상 신호를 디코딩할 수 있다.
또한, 본 발명이 적용되는 처리 방법은 컴퓨터로 실행되는 프로그램의 형태로 생산될 수 있으며, 컴퓨터가 판독할 수 있는 기록 매체에 저장될 수 있다. 본 발명에 따른 데이터 구조를 가지는 멀티미디어 데이터도 또한 컴퓨터가 판독할 수 있는 기록 매체에 저장될 수 있다. 상기 컴퓨터가 판독할 수 있는 기록 매체는 컴퓨터로 읽을 수 있는 데이터가 저장되는 모든 종류의 저장 장치 및 분산 저장 장치를 포함한다. 상기 컴퓨터가 판독할 수 있는 기록 매체는, 예를 들어, 블루레이 디스크(BD), 범용 직렬 버스(USB), ROM, PROM, EPROM, EEPROM, RAM, CD-ROM, 자기 테이프, 플로피 디스크 및 광학적 데이터 저장 장치를 포함할 수 있다. 또한, 상기 컴퓨터가 판독할 수 있는 기록 매체는 반송파(예를 들어, 인터넷을 통한 전송)의 형태로 구현된 미디어를 포함한다. 또한, 인코딩 방법으로 생성된 비트스트림이 컴퓨터가 판독할 수 있는 기록 매체에 저장되거나 유무선 통신 네트워크를 통해 전송될 수 있다.
또한, 본 발명의 실시예는 프로그램 코드에 의한 컴퓨터 프로그램 제품으로 구현될 수 있고, 상기 프로그램 코드는 본 발명의 실시예에 의해 컴퓨터에서 수행될 수 있다. 상기 프로그램 코드는 컴퓨터에 의해 판독가능한 캐리어 상에 저장될 수 있다.
상기 기술된 것과 같이, 본 발명에서 설명한 실시예들은 프로세서, 마이크로 프로세서, 컨트롤러 또는 칩 상에서 구현되어 수행될 수 있다. 예를 들어, 각 도면에서 도시한 기능 유닛들은 컴퓨터, 프로세서, 마이크로 프로세서, 컨트롤러 또는 칩 상에서 구현되어 수행될 수 있다.
또한, 본 발명이 적용되는 디코더 및 인코더는 멀티미디어 방송 송수신 장치, 모바일 통신 단말, 홈 시네마 비디오 장치, 디지털 시네마 비디오 장치, 감시용 카메라, 비디오 대화 장치, 비디오 통신과 같은 실시간 통신 장치, 모바일 스트리밍 장치, 저장 매체, 캠코더, 주문형 비디오(VoD) 서비스 제공 장치, OTT 비디오(Over the top video) 장치, 인터넷 스트리밍 서비스 제공 장치, 3차원(3D) 비디오 장치, 화상 전화 비디오 장치, 및 의료용 비디오 장치 등에 포함될 수 있으며, 비디오 신호 또는 데이터 신호를 처리하기 위해 사용될 수 있다. 예를 들어, OTT 비디오(Over the top video) 장치로는 게임 콘솔, 블루레이 플레이어, 인터넷 접속 TV, 홈시어터 시스템, 스마트폰, 태블릿 PC, DVR(Digital Video Recoder) 등을 포함할 수 있다.
또한, 본 발명이 적용되는 처리 방법은 컴퓨터로 실행되는 프로그램의 형태로 생산될 수 있으며, 컴퓨터가 판독할 수 있는 기록 매체에 저장될 수 있다. 본 발명에 따른 데이터 구조를 가지는 멀티미디어 데이터도 또한 컴퓨터가 판독할 수 있는 기록 매체에 저장될 수 있다. 상기 컴퓨터가 판독할 수 있는 기록 매체는 컴퓨터로 읽을 수 있는 데이터가 저장되는 모든 종류의 저장 장치 및 분산 저장 장치를 포함한다. 상기 컴퓨터가 판독할 수 있는 기록 매체는, 예를 들어, 블루레이 디스크(BD), 범용 직렬 버스(USB), ROM, PROM, EPROM, EEPROM, RAM, CD-ROM, 자기 테이프, 플로피 디스크 및 광학적 데이터 저장 장치를 포함할 수 있다. 또한, 상기 컴퓨터가 판독할 수 있는 기록 매체는 반송파(예를 들어, 인터넷을 통한 전송)의 형태로 구현된 미디어를 포함한다. 또한, 인코딩 방법으로 생성된 비트스트림이 컴퓨터가 판독할 수 있는 기록 매체에 저장되거나 유무선 통신 네트워크를 통해 전송될 수 있다.
또한, 본 발명의 실시예는 프로그램 코드에 의한 컴퓨터 프로그램 제품으로 구현될 수 있고, 상기 프로그램 코드는 본 발명의 실시예에 의해 컴퓨터에서 수행될 수 있다. 상기 프로그램 코드는 컴퓨터에 의해 판독가능한 캐리어 상에 저장될 수 있다.
이상에서 설명된 실시예들은 본 발명의 구성요소들과 특징들이 소정 형태로 결합된 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려되어야 한다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 발명의 실시예를 구성하는 것도 가능하다. 본 발명의 실시예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시예에 포함될 수 있고, 또는 다른 실시예의 대응하는 구성 또는 특징과 교체될 수 있다. 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함시킬 수 있음은 자명하다.
본 발명에 따른 실시예는 다양한 수단, 예를 들어, 하드웨어, 펌웨어(firmware), 소프트웨어 또는 그것들의 결합 등에 의해 구현될 수 있다. 하드웨어에 의한 구현의 경우, 본 발명의 일 실시예는 하나 또는 그 이상의 ASICs(application specific integrated circuits), DSPs(digital signal processors), DSPDs(digital signal processing devices), PLDs(programmable logic devices), FPGAs(field programmable gate arrays), 프로세서, 콘트롤러, 마이크로 콘트롤러, 마이크로 프로세서 등에 의해 구현될 수 있다.
펌웨어나 소프트웨어에 의한 구현의 경우, 본 발명의 일 실시예는 이상에서 설명된 기능 또는 동작들을 수행하는 모듈, 절차, 함수 등의 형태로 구현될 수 있다. 소프트웨어 코드는 메모리에 저장되어 프로세서에 의해 구동될 수 있다. 상기 메모리는 상기 프로세서 내부 또는 외부에 위치하여, 이미 공지된 다양한 수단에 의해 상기 프로세서와 데이터를 주고받을 수 있다.
본 발명은 본 발명의 필수적 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있음은 당업자에게 자명하다. 따라서, 상술한 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니 되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.
이상, 전술한 본 발명의 바람직한 실시예는, 예시의 목적을 위해 개시된 것으로, 당업자라면 이하 첨부된 특허청구범위에 개시된 본 발명의 기술적 사상과 그 기술적 범위 내에서, 다양한 다른 실시예들을 개량, 변경, 대체 또는 부가 등이 가능할 것이다.

Claims (21)

  1. 비디오 신호를 디코딩하는 방법에 있어서,
    현재 블록의 수평 및 수직 방향으로 적용되는 변환 커널들(transform kernels)을 지시하는 변환 인덱스(transform index)를 상기 비디오 신호로부터 획득하는 단계;
    상기 변환 인덱스에 의해 지시되는 변환 커널들 및 상기 현재 블록의 너비 및 높이에 기초하여, 상기 현재 블록 내 변환이 적용되는 0이 아닌 영역을 결정하는 단계;
    상기 현재 블록 내에서, 상기 변환이 적용되는 0이 아닌 영역 이외의 잔여 영역의 계수들을 0으로 유도하는 단계; 및
    상기 변환 인덱스에 의해 지시되는 변환 커널에 기초하여, 상기 변환이 적용되는 0이 아닌 영역에 대해 역변환(inverse transform)을 수행하는 단계를 포함하되,
    상기 변환이 적용되는 0이 아닌 영역을 결정하는 단계는,
    상기 변환 인덱스에 의해 지시되는 변환 커널들이 제1 변환 그룹에 속하는 것에 기초하여, 상기 현재 블록의 너비(width) 및 32 중 작은 값을 상기 변환이 적용되는 0이 아닌 영역의 너비로 결정하고, 상기 현재 블록의 높이(height) 및 32 중 작은 값을 상기 변환이 적용되는 0이 아닌 영역의 높이로 결정하고,
    상기 변환 인덱스에 의해 지시되는 변환 커널들이 제2 변환 그룹에 속하는 것에 기초하여, 상기 현재 블록의 너비 및 16 중 작은 값을 상기 변환이 적용되는 0이 아닌 영역의 너비로 결정하고, 상기 현재 블록의 높이 및 16 중 작은 값을 상기 변환이 적용되는 0이 아닌 영역의 높이로 결정함으로써 수행되는, 비디오 신호 디코딩 방법.
  2. 제1항에 있어서,
    상기 변환이 적용되는 0이 아닌 영역을 결정하는 단계는,
    상기 변환 인덱스에 의해 지시되는 변환 커널들이 미리 정의된 변환이고, 상기 현재 블록의 너비(width) 및 높이(height)에 기초하여, 상기 미리 정의된 크기의 너비 및 높이를 가지는 영역을 상기 변환이 적용되는 0이 아닌 영역으로 결정함으로써 수행되는, 비디오 신호 디코딩 방법.
  3. 제2항에 있어서,
    상기 미리 정의된 변환은 DST7 및 DCT8의 조합으로 구성된 복수의 변환 조합들 중 어느 하나인 것을 특징으로 하는, 비디오 신호 디코딩 방법.
  4. 제2항에 있어서,
    상기 미리 정의된 크기는 16 또는 32인 것을 특징으로 하는, 비디오 신호 디코딩 방법.
  5. 삭제
  6. ◈청구항 6은(는) 설정등록료 납부시 포기되었습니다.◈
    제1항에 있어서,
    상기 현재 블록 내에서 스캔 순서 상 마지막 유효 계수(last significant coefficient)의 위치를 지시하는 신택스 엘리먼트들을 획득하는 단계를 더 포함하고,
    상기 역변환이 적용되는 계수들은 상기 마지막 유효 계수의 위치에 기초하여 상기 비디오 신호로부터 획득되는, 비디오 신호 디코딩 방법.
  7. ◈청구항 7은(는) 설정등록료 납부시 포기되었습니다.◈
    제6항에 있어서,
    상기 신택스 엘리먼트들은 절삭형 라이스(truncated Rice) 방식으로 이진화되고,
    상기 신택스 엘리먼트들의 최대값은 상기 0이 아닌 영역에 기초하여 결정되는 것을 특징으로 하는, 비디오 신호 디코딩 방법.
  8. 삭제
  9. 삭제
  10. 삭제
  11. 삭제
  12. 삭제
  13. 삭제
  14. 삭제
  15. 비디오 신호를 인코딩하는 방법에 있어서,
    현재 블록에 적용되는 변환 커널들을 유도하는 단계, 여기서 상기 변환 커널들은 수평 변환 커널 및 수직 변환 커널을 포함함;
    상기 변환 커널들 및 상기 현재 블록의 너비 및 높이에 기초하여, 상기 현재 블록 내 변환이 적용되는 0이 아닌 영역을 결정하는 단계;
    상기 현재 블록 내에서, 상기 변환이 적용되는 0이 아닌 영역 이외의 잔여 영역의 계수들을 0으로 유도하는 단계;
    상기 변환 커널들에 기초하여, 상기 현재 블록에 대해 변환을 수행하는 단계; 및
    상기 현재 블록의 수평 및 수직 방향으로 적용되는 변환 커널들(transform kernels)을 지시하는 변환 인덱스(transform index)를 생성하는 단계
    포함하되,
    상기 변환이 적용되는 0이 아닌 영역을 결정하는 단계는,
    상기 변환 인덱스에 의해 지시되는 변환 커널들이 제1 변환 그룹에 속하는 것에 기초하여, 상기 현재 블록의 너비(width) 및 32 중 작은 값을 상기 변환이 적용되는 0이 아닌 영역의 너비로 결정하고, 상기 현재 블록의 높이(height) 및 32 중 작은 값을 상기 변환이 적용되는 0이 아닌 영역의 높이로 결정하고,
    상기 변환 인덱스에 의해 지시되는 변환 커널들이 제2 변환 그룹에 속하는 것에 기초하여, 상기 현재 블록의 너비 및 16 중 작은 값을 상기 변환이 적용되는 0이 아닌 영역의 너비로 결정하고, 상기 현재 블록의 높이 및 16 중 작은 값을 상기 변환이 적용되는 0이 아닌 영역의 높이로 결정함으로써 수행되는, 비디오 신호 인코딩 방법.
  16. 제15항에 있어서,
    상기 변환이 적용되는 0이 아닌 영역을 결정하는 단계는,
    상기 변환 인덱스에 의해 지시되는 변환 커널들이 미리 정의된 변환이고, 상기 현재 블록의 너비(width) 및 높이(height)에 기초하여, 상기 미리 정의된 크기의 너비 및 높이를 가지는 영역을 상기 변환이 적용되는 0이 아닌 영역으로 결정함으로써 수행되는, 비디오 신호 인코딩 방법.
  17. 제16항에 있어서,
    상기 미리 정의된 변환은 DST7 및 DCT8의 조합으로 구성된 복수의 변환 조합들 중 어느 하나인 것을 특징으로 하는, 비디오 신호 인코딩 방법.
  18. 제16항에 있어서,
    상기 미리 정의된 크기는 16 또는 32인 것을 특징으로 하는, 비디오 신호 인코딩 방법.
  19. ◈청구항 19은(는) 설정등록료 납부시 포기되었습니다.◈
    제15항에 있어서,
    상기 현재 블록 내에서 스캔 순서 상 마지막 유효 계수(last significant coefficient)의 위치를 지시하는 신택스 엘리먼트들을 생성하는 단계를 더 포함하고,
    상기 변환이 적용되는 계수들은 상기 마지막 유효 계수의 위치에 기초하여 생성되는, 비디오 신호 인코딩 방법.
  20. ◈청구항 20은(는) 설정등록료 납부시 포기되었습니다.◈
    제19항에 있어서,
    상기 신택스 엘리먼트들은 절삭형 라이스(truncated Rice) 방식으로 이진화되고,
    상기 신택스 엘리먼트들의 최대값은 상기 0이 아닌 영역에 기초하여 결정되는 것을 특징으로 하는, 비디오 신호 인코딩 방법.
  21. 비디오 인코딩 방법에 의해 생성된 픽쳐 정보를 저장하기 위한 컴퓨터 판독가능한 저장 매체에 있어서, 상기 비디오 인코딩 방법은,
    현재 블록에 적용되는 변환 커널들을 유도하는 단계, 여기서 상기 변환 커널들은 수평 변환 커널 및 수직 변환 커널을 포함함;
    상기 변환 커널들 및 상기 현재 블록의 너비 및 높이에 기초하여, 상기 현재 블록 내 변환이 적용되는 0이 아닌 영역을 결정하는 단계;
    상기 현재 블록 내에서, 상기 변환이 적용되는 0이 아닌 영역 이외의 잔여 영역의 계수들을 0으로 유도하는 단계;
    상기 변환 커널들에 기초하여, 상기 현재 블록에 대해 변환을 수행하는 단계; 및
    상기 현재 블록의 수평 및 수직 방향으로 적용되는 변환 커널들(transform kernels)을 지시하는 변환 인덱스(transform index)를 생성하는 단계
    포함하되,
    상기 변환이 적용되는 0이 아닌 영역을 결정하는 단계는,
    상기 변환 인덱스에 의해 지시되는 변환 커널들이 제1 변환 그룹에 속하는 것에 기초하여, 상기 현재 블록의 너비(width) 및 32 중 작은 값을 상기 변환이 적용되는 0이 아닌 영역의 너비로 결정하고, 상기 현재 블록의 높이(height) 및 32 중 작은 값을 상기 변환이 적용되는 0이 아닌 영역의 높이로 결정하고,
    상기 변환 인덱스에 의해 지시되는 변환 커널들이 제2 변환 그룹에 속하는 것에 기초하여, 상기 현재 블록의 너비 및 16 중 작은 값을 상기 변환이 적용되는 0이 아닌 영역의 너비로 결정하고, 상기 현재 블록의 높이 및 16 중 작은 값을 상기 변환이 적용되는 0이 아닌 영역의 높이로 결정함으로써 수행되는, 컴퓨터 판독가능한 저장 매체.
KR1020217011015A 2018-09-23 2019-09-23 비디오 신호의 부호화/복호화 방법 및 이를 위한 장치 KR102471774B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020227041170A KR102630190B1 (ko) 2018-09-23 2019-09-23 비디오 신호의 부호화/복호화 방법 및 이를 위한 장치

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201862735152P 2018-09-23 2018-09-23
US62/735,152 2018-09-23
PCT/KR2019/012352 WO2020060364A1 (ko) 2018-09-23 2019-09-23 비디오 신호의 부호화/복호화 방법 및 이를 위한 장치

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020227041170A Division KR102630190B1 (ko) 2018-09-23 2019-09-23 비디오 신호의 부호화/복호화 방법 및 이를 위한 장치

Publications (2)

Publication Number Publication Date
KR20210055087A KR20210055087A (ko) 2021-05-14
KR102471774B1 true KR102471774B1 (ko) 2022-11-29

Family

ID=69888563

Family Applications (3)

Application Number Title Priority Date Filing Date
KR1020247002696A KR20240014624A (ko) 2018-09-23 2019-09-23 비디오 신호의 부호화/복호화 방법 및 이를 위한 장치
KR1020217011015A KR102471774B1 (ko) 2018-09-23 2019-09-23 비디오 신호의 부호화/복호화 방법 및 이를 위한 장치
KR1020227041170A KR102630190B1 (ko) 2018-09-23 2019-09-23 비디오 신호의 부호화/복호화 방법 및 이를 위한 장치

Family Applications Before (1)

Application Number Title Priority Date Filing Date
KR1020247002696A KR20240014624A (ko) 2018-09-23 2019-09-23 비디오 신호의 부호화/복호화 방법 및 이를 위한 장치

Family Applications After (1)

Application Number Title Priority Date Filing Date
KR1020227041170A KR102630190B1 (ko) 2018-09-23 2019-09-23 비디오 신호의 부호화/복호화 방법 및 이를 위한 장치

Country Status (9)

Country Link
US (3) US11336920B2 (ko)
EP (2) EP3852374A4 (ko)
JP (2) JP7245323B2 (ko)
KR (3) KR20240014624A (ko)
CN (5) CN117097895A (ko)
AU (2) AU2019345211B2 (ko)
CA (1) CA3113988A1 (ko)
RU (1) RU2766571C1 (ko)
WO (1) WO2020060364A1 (ko)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116996669A (zh) * 2017-09-28 2023-11-03 三星电子株式会社 编码方法和装置以及解码方法和装置
WO2020006338A1 (en) * 2018-06-29 2020-01-02 Interdigital Vc Holdings, Inc. Method and apparatus for video encoding and decoding based on adaptive coefficient group
CA3105072A1 (en) * 2018-06-29 2020-01-02 Vid Scale, Inc. Adaptive control point selection for affine motion model based video coding
CN117097895A (zh) * 2018-09-23 2023-11-21 Lg 电子株式会社 编码/解码视频信号的方法及其装置
WO2020071736A1 (ko) * 2018-10-01 2020-04-09 엘지전자 주식회사 비디오 신호의 부호화/복호화 방법 및 이를 위한 장치
TWI737143B (zh) * 2019-01-25 2021-08-21 聯發科技股份有限公司 帶有變換塊級別約束的變換係數編碼的方法和設備
WO2020218861A1 (ko) * 2019-04-23 2020-10-29 주식회사 윌러스표준기술연구소 다중 변환 커널을 사용하는 비디오 신호 처리 방법 및 장치
BR112022002287A2 (pt) * 2019-08-08 2022-04-26 Lg Electronics Inc Método e aparelho para codificação de imagem com base em transformada
CN116016915B (zh) * 2019-11-21 2024-04-23 北京达佳互联信息技术有限公司 变换与系数信令的方法和装置
US11228787B2 (en) * 2019-11-27 2022-01-18 Mediatek Inc. Signaling multiple transmission selection
CN114097243A (zh) * 2020-03-27 2022-02-25 株式会社迓廷试 影像的译码方法及装置
GB2593778A (en) * 2020-04-03 2021-10-06 Sony Group Corp Video data encoding and decoding
CN115398911A (zh) * 2020-04-05 2022-11-25 北京达佳互联信息技术有限公司 变换与系数信令的方法和装置
US20230137884A1 (en) * 2020-04-07 2023-05-04 Lg Electronics Inc. Transform-based image coding method and apparatus therefor
EP4369715A1 (en) * 2021-07-06 2024-05-15 LG Electronics Inc. Non-separable primary transform-based image encoding/decoding method and device, and recording medium for storing bitstream
GB2603559B (en) * 2021-07-22 2023-08-09 Imagination Tech Ltd Coding blocks of pixels
US20230099505A1 (en) * 2021-09-29 2023-03-30 Qualcomm Incorporated Adaptive determination of multiple transform candidates for video coding
WO2023208057A1 (en) * 2022-04-27 2023-11-02 Beijing Bytedance Network Technology Co., Ltd. Method, apparatus, and medium for video processing
CN115174908B (zh) * 2022-06-30 2023-09-15 北京百度网讯科技有限公司 视频编码的变换量化方法、装置、设备以及存储介质

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018065154A1 (en) * 2016-10-05 2018-04-12 Thomson Licensing Method and device for context-adaptive binary arithmetic coding a sequence of binary symbols representing a syntax element related to picture data

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1246469A3 (fr) * 2001-03-27 2005-04-13 Koninklijke Philips Electronics N.V. Procédé de réduction de format et de décodage similtanés de signaux vidéo codés
US6882755B2 (en) * 2001-10-19 2005-04-19 Hewlett-Packard Development Company, L.P. Image transmission for low bandwidth with region of interest
US20070285500A1 (en) * 2006-04-21 2007-12-13 Dilithium Holdings, Inc. Method and Apparatus for Video Mixing
CN102388610B (zh) * 2009-02-09 2015-03-04 三星电子株式会社 使用低复杂度频率变换的视频编码方法和设备以及视频解码方法和设备
CN101848383A (zh) * 2009-03-24 2010-09-29 虹软(上海)科技有限公司 对mpeg2格式视频进行降采样解码的方法
US9635368B2 (en) * 2009-06-07 2017-04-25 Lg Electronics Inc. Method and apparatus for decoding a video signal
WO2012044075A2 (ko) * 2010-09-28 2012-04-05 삼성전자 주식회사 영상의 변환 방법 및 장치, 역변환 방법 및 장치
KR101641863B1 (ko) * 2011-10-19 2016-07-22 주식회사 케이티 영상 부호화/복호화 방법 및 그 장치
US9357185B2 (en) * 2011-11-08 2016-05-31 Qualcomm Incorporated Context optimization for last significant coefficient position coding
JP6134651B2 (ja) * 2011-12-28 2017-05-24 シャープ株式会社 算術復号装置、算術符号化装置および算術復号方法
US20130182772A1 (en) * 2012-01-13 2013-07-18 Qualcomm Incorporated Determining contexts for coding transform coefficient data in video coding
US20140286412A1 (en) * 2013-03-25 2014-09-25 Qualcomm Incorporated Intra dc prediction for lossless coding in video coding
US10306229B2 (en) 2015-01-26 2019-05-28 Qualcomm Incorporated Enhanced multiple transforms for prediction residual
WO2017014585A1 (ko) * 2015-07-21 2017-01-26 엘지전자(주) 그래프 기반 변환을 이용하여 비디오 신호를 처리하는 방법 및 장치
US10491922B2 (en) * 2015-09-29 2019-11-26 Qualcomm Incorporated Non-separable secondary transform for video coding
EP4106333A1 (en) * 2016-02-12 2022-12-21 Samsung Electronics Co., Ltd. Image encoding method and apparatus, and image decoding method and apparatus
ES2817100B1 (es) * 2016-03-28 2022-04-13 Kt Corp Metodo y aparato para procesar senales de video
US11758136B2 (en) * 2016-06-24 2023-09-12 Electronics And Telecommunications Research Institute Method and apparatus for transform-based image encoding/decoding
US10972733B2 (en) * 2016-07-15 2021-04-06 Qualcomm Incorporated Look-up table for enhanced multiple transform
US11589066B2 (en) * 2017-07-04 2023-02-21 Samsung Electronics Co., Ltd. Video decoding method and apparatus using multi-core transform, and video encoding method and apparatus using multi-core transform
WO2019076138A1 (en) * 2017-10-16 2019-04-25 Huawei Technologies Co., Ltd. METHOD AND APPARATUS FOR ENCODING
WO2020059611A1 (ja) * 2018-09-20 2020-03-26 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ 符号化装置、復号装置、符号化方法及び復号方法
CN117097895A (zh) * 2018-09-23 2023-11-21 Lg 电子株式会社 编码/解码视频信号的方法及其装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018065154A1 (en) * 2016-10-05 2018-04-12 Thomson Licensing Method and device for context-adaptive binary arithmetic coding a sequence of binary symbols representing a syntax element related to picture data

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
M. Koo et al, Description of SDR video coding technology proposal by LG Electronics, JVET of ITU-T and ISO/IEC, JVET-J0017 version 2 (2018.04.11.) 1부.*

Also Published As

Publication number Publication date
US20230328288A1 (en) 2023-10-12
RU2766571C1 (ru) 2022-03-15
AU2023202678A1 (en) 2023-05-18
AU2019345211A1 (en) 2021-05-20
EP3852374A1 (en) 2021-07-21
CN117097897A (zh) 2023-11-21
EP4258659A3 (en) 2023-11-22
EP4258659A2 (en) 2023-10-11
CN113039803B (zh) 2023-10-03
US11336920B2 (en) 2022-05-17
US20220109879A1 (en) 2022-04-07
CA3113988A1 (en) 2020-03-26
EP3852374A4 (en) 2021-12-08
JP7245323B2 (ja) 2023-03-23
US20210211729A1 (en) 2021-07-08
KR20210055087A (ko) 2021-05-14
CN117097896A (zh) 2023-11-21
KR20220163512A (ko) 2022-12-09
JP2022500965A (ja) 2022-01-04
CN117082240A (zh) 2023-11-17
KR102630190B1 (ko) 2024-01-25
CN117097895A (zh) 2023-11-21
AU2019345211B2 (en) 2023-02-02
WO2020060364A1 (ko) 2020-03-26
US11729425B2 (en) 2023-08-15
KR20240014624A (ko) 2024-02-01
JP2023081995A (ja) 2023-06-13
RU2022102721A (ru) 2022-03-28
CN113039803A (zh) 2021-06-25

Similar Documents

Publication Publication Date Title
KR102471774B1 (ko) 비디오 신호의 부호화/복호화 방법 및 이를 위한 장치
KR102631802B1 (ko) 비디오 신호의 부호화/복호화 방법 및 이를 위한 장치
KR102543493B1 (ko) 비디오 신호의 부호화/복호화 방법 및 이를 위한 장치
KR102432400B1 (ko) 영상 신호를 처리하기 위한 방법 및 장치
JP7465333B2 (ja) 映像信号を処理するための方法及び装置
CN113316937A (zh) 处理视频信号的方法和设备
RU2792219C2 (ru) Способ кодирования/декодирования видеосигналов и устройство для этого

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant