KR102471298B1 - 데이터 전송 방법, 데이터의 사용 제어 방법 및 암호 장치 - Google Patents

데이터 전송 방법, 데이터의 사용 제어 방법 및 암호 장치 Download PDF

Info

Publication number
KR102471298B1
KR102471298B1 KR1020217033999A KR20217033999A KR102471298B1 KR 102471298 B1 KR102471298 B1 KR 102471298B1 KR 1020217033999 A KR1020217033999 A KR 1020217033999A KR 20217033999 A KR20217033999 A KR 20217033999A KR 102471298 B1 KR102471298 B1 KR 102471298B1
Authority
KR
South Korea
Prior art keywords
key
security context
certificate
tenant
cryptographic
Prior art date
Application number
KR1020217033999A
Other languages
English (en)
Other versions
KR20210130840A (ko
Inventor
이안 비그라베
알렉 에드징턴
리차드 케틀웰
데이비드 오'도헤르티
니콜라스 스미스
네일 워커
Original Assignee
엔사이퍼 시큐리티 리미티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엔사이퍼 시큐리티 리미티드 filed Critical 엔사이퍼 시큐리티 리미티드
Publication of KR20210130840A publication Critical patent/KR20210130840A/ko
Application granted granted Critical
Publication of KR102471298B1 publication Critical patent/KR102471298B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F21/00Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F21/60Protecting data
    • G06F21/606Protecting data by securing the transmission between two devices or processes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F21/00Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F21/50Monitoring users, programs or devices to maintain the integrity of platforms, e.g. of processors, firmware or operating systems
    • G06F21/52Monitoring users, programs or devices to maintain the integrity of platforms, e.g. of processors, firmware or operating systems during program execution, e.g. stack integrity ; Preventing unwanted data erasure; Buffer overflow
    • G06F21/53Monitoring users, programs or devices to maintain the integrity of platforms, e.g. of processors, firmware or operating systems during program execution, e.g. stack integrity ; Preventing unwanted data erasure; Buffer overflow by executing in a restricted environment, e.g. sandbox or secure virtual machine
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F21/00Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F21/60Protecting data
    • G06F21/62Protecting access to data via a platform, e.g. using keys or access control rules
    • G06F21/6209Protecting access to data via a platform, e.g. using keys or access control rules to a single file or object, e.g. in a secure envelope, encrypted and accessed using a key, or with access control rules appended to the object itself
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/08Key distribution or management, e.g. generation, sharing or updating, of cryptographic keys or passwords
    • H04L9/0816Key establishment, i.e. cryptographic processes or cryptographic protocols whereby a shared secret becomes available to two or more parties, for subsequent use
    • H04L9/0819Key transport or distribution, i.e. key establishment techniques where one party creates or otherwise obtains a secret value, and securely transfers it to the other(s)
    • H04L9/0825Key transport or distribution, i.e. key establishment techniques where one party creates or otherwise obtains a secret value, and securely transfers it to the other(s) using asymmetric-key encryption or public key infrastructure [PKI], e.g. key signature or public key certificates
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/08Key distribution or management, e.g. generation, sharing or updating, of cryptographic keys or passwords
    • H04L9/0816Key establishment, i.e. cryptographic processes or cryptographic protocols whereby a shared secret becomes available to two or more parties, for subsequent use
    • H04L9/0819Key transport or distribution, i.e. key establishment techniques where one party creates or otherwise obtains a secret value, and securely transfers it to the other(s)
    • H04L9/083Key transport or distribution, i.e. key establishment techniques where one party creates or otherwise obtains a secret value, and securely transfers it to the other(s) involving central third party, e.g. key distribution center [KDC] or trusted third party [TTP]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/08Key distribution or management, e.g. generation, sharing or updating, of cryptographic keys or passwords
    • H04L9/088Usage controlling of secret information, e.g. techniques for restricting cryptographic keys to pre-authorized uses, different access levels, validity of crypto-period, different key- or password length, or different strong and weak cryptographic algorithms
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/08Key distribution or management, e.g. generation, sharing or updating, of cryptographic keys or passwords
    • H04L9/0894Escrow, recovery or storing of secret information, e.g. secret key escrow or cryptographic key storage
    • H04L9/0897Escrow, recovery or storing of secret information, e.g. secret key escrow or cryptographic key storage involving additional devices, e.g. trusted platform module [TPM], smartcard or USB
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/32Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials
    • H04L9/3234Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials involving additional secure or trusted devices, e.g. TPM, smartcard, USB or software token
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/32Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials
    • H04L9/3263Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials involving certificates, e.g. public key certificate [PKC] or attribute certificate [AC]; Public key infrastructure [PKI] arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/32Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials
    • H04L9/3263Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials involving certificates, e.g. public key certificate [PKC] or attribute certificate [AC]; Public key infrastructure [PKI] arrangements
    • H04L9/3268Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials involving certificates, e.g. public key certificate [PKC] or attribute certificate [AC]; Public key infrastructure [PKI] arrangements using certificate validation, registration, distribution or revocation, e.g. certificate revocation list [CRL]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/32Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials
    • H04L9/3297Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials involving time stamps, e.g. generation of time stamps

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Theoretical Computer Science (AREA)
  • Software Systems (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Bioethics (AREA)
  • Health & Medical Sciences (AREA)
  • Storage Device Security (AREA)

Abstract

테넌트로부터 서비스 프로바이더에게로의 데이터 전송 방법은, 서비스 프로바이더 시스템 내의 보안 장치에 의해 생성되는 키 쌍의 공개 키로 데이터를 암호화하는 단계를 포함한다. 따라서, 데이터는 전송 동안 상기 서비스 프로바이더에 의해 액세스될 수 없다. 상기 데이터는, 일단 저장된 데이터의 특정 사용을 허가하기 위해 유효 인증서가 제시되어야 한다는 것을 지정하는, 대응하는 액세스 제어 리스트와 함께 생성된다. 따라서, 상기 테넌트는, 상기 테넌트 시스템의 외부로 전달되었음에도 불구하고 상기 데이터의 사용의 제어를 유지할 수 있다. 상기 서비스 프로바이더 시스템 내 안전하게 저장되는 데이터의 사용 제어 방법은, 상기 데이터의 사용을 요청하는 자에게 만료 시간을 갖는 사용 인증서를 발행하는 단계를 포함한다. 상기 사용 증명서는 상기 저장되는 데이터의 사용이 허가되기 전에 검증되어야 한다. 이는 상기 테넌트가 제한된 시간 기간 동안 저장되는 데이터의 사용을 허가할 수 있게 한다.

Description

데이터 전송 방법, 데이터의 사용 제어 방법 및 암호 장치{A METHOD OF DATA TRANSFER, A METHOD OF CONTROLLING USE OF DATA AND A CRYPTOGRAPHIC DEVICE}
본 발명은 데이터 전송 방법, 데이터의 사용 제어 방법, 및 암호 장치에 관한 것이다.
인터넷에 의하여 많은 조직들이 이전에는 직접 호스팅해야만 했던 컴퓨터로 구현되는 서비스들을 서비스 프로바이더(service provider)에 의해 호스트되는 컴퓨터로 구현되는 서비스들(computer implemented services)을 이용하게 되었다. 서비스 프로바이더들은 그들의 컴퓨터 구현 서비스들(computer implemented services)을 다수의 조직(테넌트(tenants))에 제공할 수 있다. 이것의 예가 스토리지 온 디맨드(storage on damand) 또는 "서비스로서의 소프트웨어"(SaaS: software as a service)와 같은 제품들을 제공하는 클라우드 서비스 프로바이더들(CSP: Cloud Service Provider)이다. 서비스 프로바이더가 호스트하는 컴퓨터 구현 서비스의 사용으로, 테넌트는 이러한 서비스들을 직접 호스트하는 관리 오버헤드를 줄일 수 있다.
서비스 프로바이더들이 멀티-테넌트 컴퓨터 구현 서비스를 제공하기 위하여 노력하고 있는 분야가 암호화 인프라 부문이고, 특히 하드웨어 보안 모듈(HSM: hardware security modules)이다.
서비스 프로바이더에 의해 호스트되는 종래의 HSM은 싱글-테넌시 솔루션을 사용한다. 즉, 이는 테넌트마다 전용 기기를 사용하여, 테넌트를 위한 데이터의 보안 암호화 프로세싱 및 암호 키의 저장을 가능하게 한다. 서비스 프로바이더는 IP 주소와 같은 암호 기기의 환경 설정을 관리하고, 반면에 테넌트는 종래의 방식으로 원격으로 암호화 인프라를 관리한다. 따라서, 서비스 프로바이더는 테넌트마다 기기를 제공해야 하고, 테넌트는 암호 기기의 유지 및 운영의 관리를 이전에 했던 것만큼 해야 한다. 이러한 시스템은 비효율적이며 종종 암호 자원의 불충분 활용을 초래한다.
또한, 이러한 시스템은 취약할 수 있다. 서비스 프로바이더는 종종 "킹덤으로의 키(keys to the kingdom)" - 즉, HSM 내에 저장되는 원시 키 재료(raw key material)를 내보내는 능력 - 를 가진다. 따라서, 서비스 프로바이더에 주어지는 권한이 호스트되는 테넌트 키의 보안을 손상시킬 수 있다. 이는, 서비스 프로바이더에 의한 테넌트의 암호 키의 가능한 악의적 사용, 테넌트가 아닌 서비스 프로바이더에 대한 권한을 가지는 보안 기관으로의 테넌트의 키의 노출, 및 다른 테넌트에 의한 테넌트의 키의 사용을 포함하는, 테넌트 및 서비스 프로바이더 모두에 대한 많은 문제를 초래한다.
본 발명의 제1 측면에서, 테넌트 시스템(tenant system) 내 제1 보안 컨텍스트(first security context) 및 서비스 프로바이더 시스템(service provider system) 내 제2 보안 컨텍스트(second security context) 간 데이터 전송 방법이 제공되고, 상기 방법은,
상기 제1 보안 컨텍스트에서 상기 데이터에 대응하는 액세스 제어 리스트(access control list)를 생성하는 단계 - 상기 액세스 제어 리스트는 상기 데이터의 제1 유형의 사용(first type of use of the data)을 허가하기 위해 유효한 사용 자격증명(valid use credential)이 제시되어야 한다는 것을 지정함 -;
상기 제2 보안 컨텍스트에서 제1 암호 인증서(first cryptographic certificate) 및 제1 암호 키 쌍(first cryptographic key pair)을 생성하는 단계 - 상기 제1 암호 키 쌍은 제1 공개 키(first public key)인, KBLOB pub, 및 제1 개인 키(first private key)인, KBLOB priv을 포함하고, 상기 제1 암호 인증서는 상기 제1 공개 키 KBLOB pub의 원본이 검증(validate)될 수 있는 정보를 포함함 -;
상기 제1 보안 컨텍스트로 상기 제1 공개 키(first public key) KBLOB pub 및 상기 제1 암호 인증서를 전송하는 단계;
상기 제1 보안 컨텍스트에서 상기 제1 암호 인증서를 검증(validating)하는 단계;
상기 제1 암호 인증서가 유효할 경우, 상기 제1 보안 컨텍스트에서 상기 제1 공개 키 KBLOB pub를 이용하여 상기 데이터 및 상기 대응하는 액세스 제어 리스트를 암호화(encrypting)하는 단계; 및
상기 제2 보안 컨텍스트로, 상기 데이터의 원본이 검증될 수 있는 정보(information from which the origin of the data can be validated), 및 상기 암호화된 데이터(encrypted data) 및 대응하는 액세스 제어 리스트(access control list)를 전송하는 단계
를 포함한다.
일 실시예에서, 상기 사용 자격증명(use credential)은 사용 인증서(use certificate)이다.
일 실시예에서, 상기 데이터는 암호 키(cryptographic key)인, Ktenant를 포함한다. 상기 방법은 상기 제1 보안 컨텍스트에서 암호 키인, Ktenant를 생성(generating)하는 단계를 더 포함할 수 있다. 상기 제1 유형의 사용은 하나 이상의 암호 연산(cryptographic operations)일 수 있다.
일 실시예에서, 상기 방법은 상기 암호화되는 데이터를 전송하기 전에, 상기 테넌트 시스템(tenant system)에서 상기 제2 보안 컨텍스트가 신뢰(trusted)된다는 것을 설정(establishing)하는 단계를 더 포함한다.
신뢰를 설정(establishing trust)하는 단계는, 상기 제2 보안 컨텍스트가 신뢰되는 제조업체(trusted manufacturer)에 의해 제조되고, 상기 제2 보안 컨텍스트의 구성이 상기 테넌트의 보안 요건(security requirements)을 충족시키고, 상기 제2 보안 컨텍스트가 상기 ACL 내 포함된 정책을 시행하도록 구성된 것을 상기 제1 보안 컨텍스트에서 검증(validating)하는 단계를 포함할 수 있다.
일 실시예에서, 제2 보안 컨텍스트로 상기 암호화된 데이터의 전송(transfer of the encrypted data) 이전에 바로 상기 제2 보안 컨텍스트의 구성이 상기 테넌트의 보안 요건을 충족시키는 것이 검증된다.
신뢰를 설정하는 단계는, 제2 보안 컨텍스트의 상태가 제조업체의 보안 요건을 충족시키는 것을 검증하는 단계 - 예를 들어, 소프트웨어 및 하드웨어는 서비스 프로바이더에 의한 공격에 영향을 받지 않는(impervious to attack) 것을 검증함 - 를 더 포함할 수 있다.
제조업체 개인 키(manufacturer private key)는 제2 보안 컨텍스트가 신뢰되는 제조업체에 의해 제조되었음을 검증하기 위해, 및 제2 보안 컨텍스트의 제2 아이덴티티 공개 키(second identity public key)를 검증하기 위해 사용될 수 있다.
일 실시예에서, 상기 제2 보안 컨텍스트(second security context)는 제2 아이덴티티 개인 키(second identity private key)인, K2ID priv를 저장하고, 상기 방법은, 상기 제2 보안 컨텍스트로부터 상기 제1 보안 컨텍스트로 제2 아이덴티티 인증서(second identity certificate), 및 제2 아이덴티티 공개 키(second identity public key)인, K2ID pub를 전송하는 단계를 더 포함하고, 상기 제2 아이덴티티 공개 키인, K2ID pub 및 상기 제2 아이덴티티 개인 키인, K2ID priv는 암호 키 쌍(cryptographic key pair)이고 상기 제2 아이덴티티 인증서는 K2ID pub를 식별하는 정보를 포함하고 제조업체 개인 키(manufacturer private key) Kman priv로 암호화 서명(cryptographically signed)된다.
일 실시예에서, 제2 아이덴티티 인증서는 제2 보안 컨텍스트의 상태(state)가 검증될 수 있는 정보를 더 포함한다. 일 실시예에서, 상기 방법은 테넌트 시스템에서 기준 시간 소스(reference time source)이 신뢰(trusted)되는 것을 설정하는 단계를 더 포함한다. 기준 시간 소스가 신뢰되는 것을 설정하는 단계는 기준 시간 소스가 신뢰되는 제조업체에 의해 제조되고, 기준 시간 소스의 상태 및 구성이 보안 요건을 충족한다는 것을 검증하는 단계를 포함한다.
일 실시예에 있어서, 상기 방법은,
상기 제2 보안 컨텍스트의 현재 구성(current configuration)과 관련된 정보를 생성하는 단계;
상기 제2 아이덴티티 개인 키인, K2ID priv를 이용하여 상기 정보를 암호화 서명(cryptographically sign)하는 단계; 및
상기 제2 보안 컨텍스트로부터 상기 제1 보안 컨텍스트로 상기 서명된 정보를 전송하는 단계
를 더 포함한다.
일 실시예에서, 상기 제1 암호 인증서는 상기 제2 보안 컨텍스트의 상기 현재 구성과 관련된 정보를 포함하고, 상기 제2 아이덴티티 개인 키(second identity private key)인, K2ID priv를 이용하여 서명(signed)된다.
일 실시예에 있어서, 상기 방법은,
상기 제1 보안 컨텍스트에서 제2 암호 키 쌍 및 제2 암호 인증서를 생성하는 단계 - 상기 제2 암호 키 쌍은 제2 공개 키인,
Figure 112022041342282-pat00001
, 및 제2 개인 키인,
Figure 112022041342282-pat00002
를 포함하고 상기 제2 암호 인증서는 상기 제2 공개 키
Figure 112022041342282-pat00003
의 원본이 검증될 수 있는 정보를 포함함 -; 및
상기 제2 보안 컨텍스트로 상기 제2 공개 키
Figure 112022041342282-pat00004
및 상기 제2 암호 인증서를 전송하는 단계
를 더 포함한다.
일 실시예에서, 상기 제1 보안 컨텍스트는 제1 아이덴티티 개인 키(first identity private key)인, K1ID priv를 저장하고(stores), 상기 방법은,
상기 제1 보안 컨텍스트로부터 상기 제2 보안 컨텍스트로 제1 아이덴티티 인증서, 및 제1 아이덴티티 공개 키인, K1ID pub를 전송하는 단계 - 상기 제1 아이덴티티 공개 키인, K1ID pub 및 상기 제1 아이덴티티 개인 키인, K1ID priv는 암호 키 쌍이고 상기 제1 아이덴티티 인증서는 K1ID pub를 식별하는 정보를 포함하고 제조업체 개인 키 Kman priv로 암호화 서명됨 -
를 더 포함한다.
일 실시예에서, 제2 암호 인증서는 제2 공개 키
Figure 112022041342282-pat00005
의 원본이 식별될 수 있는 정보를 포함하고, 상기 방법은,
상기 제1 아이덴티티 개인 키인, K1ID priv를 이용하여 상기 제2 암호 인증서를 암호화 서명(cryptographically signing)하는 단계;
제2 보안 컨텍스트에서 상기 제1 아이덴티티 공개 키인, K1ID pub를 이용하여 상기 제2 암호 인증서를 확인(verifying)하는 단계
를 더 포함한다.
상기 암호 키 Ktenant의 원본이 검증될 수 있는 상기 정보는,
Figure 112022041342282-pat00006
를 이용하여 서명되는, 대응하는 액세스 제어 리스트 및 상기 암호화된 암호 키 Ktenant를 포함할 수 있다.
상기 제2 보안 컨텍스트로, 상기 암호 키 Ktenant의 상기 원본이 검증될 수 있는 정보, 및 상기 암호화된 암호 키 Ktenant 및 대응하는 액세스 제어 리스트를 전송하는 상기 단계는,
Figure 112022041342282-pat00007
를 이용하여 대응하는 액세스 제어 리스트 및 상기 암호화된 암호 키 Ktenant를 암호화 서명(cryptographically signing)하는 단계; 및
상기 제2 보안 컨텍스트로
Figure 112022041342282-pat00008
의 해시, 및 상기 암호화된 암호 키 Ktenant 및 대응하는 액세스 제어 리스트의 상기 서명, 및 상기 암호화된 암호 키 Ktenant 및 대응하는 액세스 제어 리스트를 전송하는 단계
를 포함한다.
일 실시예에서, 상기 제1 암호 인증서는 KBLOB priv가 일시적(ephemeral)이라는 것과 KBLOB priv가 상기 제2 보안 컨텍스트를 벗어날(leave) 수 없다는 것을 검증(validate)한다. 일 실시예에서, 제1 암호 인증서는 비대칭 키 쌍(asymmetric key pair)이 제2 보안 컨텍스트에서 생성된 것을 검증한다. 제1 개인 키인, KBLOB priv는 제2 보안 컨텍스트에 저장된다.
일 실시예에서, 제1 공개 키 KBLOB pub의 원본이 검증될 수 있는 정보는 제1 공개 키인, KBLOB pub의 서명되는 해시(signed hash)이다. 제1 암호 인증서는 제1 공개 키인 KBLOB pub의 해시를 포함하고, 제2 보안 컨텍스트의 아이덴티티 키의 비공개 절반(private half of the identity key of the second security context)(K2ID priv)으로 서명된다. 제1 암호 인증서, CBLOB를 검증하는 단계는, 제2 보안 컨텍스트의 아이덴티티 키의 공개 절반(public half of the identity key of the second security context)(K2ID pub)으로 사용하는 서명(signature)을 검증(verifying)하는 단계를 포함한다.
일 실시예에서, 제2 보안 컨텍스트는 서비스 프로바이더 시스템의 나머지로부터 안전(secure)하다.
일 실시예에서, 액세스 제어 리스트(ACL)는 사용 자격증명이 사용 자격증명의 원본이 유효화될 수 있는 정보를 포함해야 한다는 것을 지정(specify)한다. 상기 액세스 제어 리스트는, 상기 암호 키인, Ktenant의 제1 유형의 사용을 허가하기 위해, 상기 사용 자격증명이 상기 제2 개인 키
Figure 112022041342282-pat00009
로써 서명되어야 하는 사용 인증서인 것을 지정할 수 있다.
상기 ACL은, 상기 사용 자격증명은 상기 사용 자격증명이 만료(expiry)되었는지 결정될 수 있는 정보를 포함해야 하고, 유효하기 위해서는 만료되지 않아야 한다는 것을 지정한다.
상기 ACL은, 테넌트 암호 키 Ktenant가 제3자에 의한 변조를 방지하는(resistant to tamper by a third party) 비-휘발성 메모리(non-volatile memory)에 저장될 수만 있다는 것을 지정할 수 있다.
일 실시예에서, ACL은 테넌트 암호 키 Ktenant가 제2 보안 컨텍스트 내측에 저장(stored inside)될 수만 있다는 것을 지정한다. 대안적인 실시예에서, ACL은, 제2 보안 컨텍스트를 벗어날 수 없는 키(a key which cannot leave the second security context)에 의한 저장을 위해 암호화되는 조건에서 테넌트 암호 키 Ktenant가 저장될 수만 있는 제한(restriction)을 포함한다.
일 실시예에 있어서, 상기 방법은,
상기 암호 키 Ktenant의 원본을, 상기 제2 보안 컨텍스트에서, 검증(validating)하는 단계; 및
상기 제2 보안 컨텍스트에서 상기 제1 개인 키 KBLOB priv를 이용하여 상기 암호화된 암호 키 Ktenant 및 대응하는 액세스 제어 리스트를 복호화(decrypting)하는 단계
를 더 포함한다.
일 실시예에 있어서, 상기 방법은,
상기 제2 보안 컨텍스트에서 추가 암호 키를 이용하여 상기 암호 키 Ktenant를 재-암호화(re-encrypt)하는 단계 - 상기 추가 암호 키는 상기 제2 보안 컨텍스트를 벗어날 수 없음 -; 및
상기 재-암호화된 암호 키 Ktenant, 대응하는 액세스 제어 리스트, 및 상기 암호 키 Ktenant의 상기 원본이 검증될 수 있는 정보를 저장하는 단계
를 더 포함한다.
본 발명의 또 다른 측면에서, 상술된 방법 중에서 임의로 컴퓨터가 수행하게 하도록 구성된 컴퓨터 판독 가능 코드(computer readable code)를 포함하는 캐리어 매체(carrier medium)가 제공된다.
본 발명의 또 다른 측면에서, 데이터의 사용 제어 방법(a method of controlling use of data)이 제공되고, 상기 데이터는 상기 서비스 프로바이더 시스템 내 신뢰되는 제2 보안 컨텍스트(trusted second security context)에게는 액세스 가능(accessible)하지만 상기 서비스 프로바이더 시스템의 나머지로부터는 안전한 방식으로 서비스 프로바이더 시스템 내 저장되고, 유효한 사용 자격증명이 상기 데이터의 제1 유형의 사용(first type of use of the data)을 허가(grant)하기 위해 제시되어야 한다는 것을 지정하는 액세스 제어 리스트는 상기 데이터를 이용하여 저장되고, 상기 방법은,
제1 보안 컨텍스트에서 사용 자격증명을 생성(generating)하는 단계 - 상기 사용 자격증명(use credential)은,
상기 사용 자격증명에 대응하는 상기 데이터가 식별될 수 있는 정보;
상기 사용 자격증명이 만료되었는지 결정될 수 있는 정보를 포함함 -;
상기 사용 자격증명의 원본이 검증될 수 있는 정보 및 상기 사용 자격증명을 발행(issuing)하는 단계;
상기 액세스 제어 리스트와 관련된 상기 사용 자격증명을 검증하고, 상기 제2 보안 컨텍스트에서 상기 사용 자격증명이 만료되지 않은 것을 검증(validate)하는 단계; 및
상기 사용 자격증명이 유효하고 만료되지 않은 상기 조건에서, 상기 제2 보안 컨텍스트에서, 상기 데이터의 제1 유형의 사용을 허가(grant)하는 단계
를 포함한다.
일 실시예에서, 사용 자격증명은 사용 인증서이다.
일 실시예에서, 상기 데이터는 암호 키인, Ktenant를 포함할 수 있다. 상기 제1 유형의 사용은 하나 이상의 암호 연산일 수 있다.
일 실시예에서, 상기 사용 자격증명의 상기 만료가 결정될 수 있는 상기 정보는,
만료 시간(an expiry time); 및
기준 시간 소스를 식별하는 정보(information identifying a reference time source)
를 포함한다.
일 실시예에서, 상기 방법은 기준 시간 소스가 신뢰되는 테넌트 시스템에서 설정하는 단계를 더 포함한다. 일 실시예에서, 상기 방법은 기준 시간 소스가 신뢰되는 서비스 프로바이더 시스템에서 설정하는 단계를 더 포함한다. 기준 시간 소스가 신뢰(trusted)되는 것을 설정하는 단계는, 기준 시간 소스가 신뢰되는 제조업체에 의해 제조되고, 기준 시간 소스의 상태 및 구성이 보안 요건을 충족하는 것을 검증하는 단계를 포함한다.
일 실시예에서, 상기 방법은 아이덴티티 암호 키 쌍의 원본을 검증하는 정보와 함께, 제1 보안 컨텍스트로 시간 소스의 아이덴티티 암호 키 쌍의 절반을 공개로 제공(providing)하는 단계를 더 포함한다.
일 실시예에서, 상기 방법은 아이덴티티 암호 키 쌍의 원본을 검증하는 정보와 함께, 제2 보안 컨텍스트로 시간 소스의 아이덴티티 암호 키 쌍의 절반을 공개로 제공하는 단계를 더 포함한다.
일 실시예에서, 제1 보안 컨텍스트에서 사용 자격증명을 생성하는 단계는,
기준 시간 소스(reference time source)를 선택(selecting)하는 단계;
기준 시간 소스로부터 현재 타임 스탬프(current time stamp)를 요청(requesting)하는 단계; 및
타임 스탬프에 기초하여 만료 시간(expiry time)을 계산(calculating)하는 단계
를 포함한다.
일 실시예에서, 상기 방법은,
메시지의 원본이 유효화 될 수 있는 정보와 함께, 상기 기준 시간 소스로부터 상기 테넌트 시스템으로 상기 현재 타임 스탬프를 포함하는 메시지를 전송하는 단계; 및
메시지의 원본(origin of the message)을 검증하는 단계
를 포함한다.
상기 메시지는 상기 기준 시간 소스의 현재 구성에 관련한 정보를 더 포함할 수 있다.
상기 메시지의 원본을 검증하는 정보는 시간 소스의 아이덴티티 암호 키 쌍의 절반을 비공개로 서명되는 상기 서명된 메시지일 수 있다.
일 실시예에서, 시작 시간(start time)과 관련되는 정보는 사용 자격증명에 포함된다.
사용 자격증명에 대응하는 데이터가 식별될 수 있는 정보는 Ktenant의 해시일 수 있다.
일 실시예에서, 사용 자격증명은 사용 인증서이며, 상기 방법은,
상기 제1 보안 컨텍스트에서 개인 키
Figure 112022041342282-pat00010
를 이용하여 상기 사용 인증서를 암호화 서명하는 단계 - 상기 사용 인증서의 원본이 검증될 수 있는 상기 정보는 상기 서명이고 상기 대응하는 공개 키
Figure 112022041342282-pat00011
는 무결성 보호이고 상기 제2 보안 컨텍스트에 액세스 가능함 -; 및
상기 제2 보안 컨텍스트에서 상기 공개 키
Figure 112022041342282-pat00012
를 사용하여 상기 사용 인증서를 확인(verifying)하는 단계
를 더 포함한다.
일 실시예에 있어서, 상기 방법은,
상기 제2 보안 컨텍스트로, 상기 사용 자격증명, 상기 사용 자격증명의 상기 원본이 검증될 수 있는 상기 정보, 및 상기 키 Ktenant를 이용하여 연산- 상기 연산은 제1 유형의 사용임 -을 수행하는 요청을 제공하는 단계; 및
상기 사용 자격증명이 유효하고 만료되지 않은 상기 조건에서, 상기 제2 보안 컨텍스트에서 상기 연산을 수행하는 단계
를 더 포함한다.
일 실시예에서, 제2 보안 컨텍스트에서 사용 자격증명이 만료되지 않았다는 것을 검증하는 단계는,
기준 시간 소스로부터 현재 타임 스탬프를 요청하는 단계;
상기 메시지의 원본이 검증될 수 있는 정보와 함께, 상기 기준 시간 소스로부터 상기 제2 보안 컨텍스트로 현재 타임 스탬프를 포함하는 메시지를 전송하는 단계; 및
상기 메시지의 원본을 검증하는 단계
를 포함한다.
상기 메시지의 원본을 검증하는 정보는 시간 소스의 아이덴티티 암호 키 쌍의 절반을 비공개로 서명되는, 상기 서명된 메시지일 수 있다.
제2 보안 컨텍스트에서 사용 자격증명이 만료되지 않았다는 것을 검증하는 단계는,
상기 타임 스탬프(time stamp)와 상기 만료 시간(expiry time)을 비교(comparing)하는 단계
를 더 포함할 수 있다.
본 발명의 또 다른 측면에서, 상술된 방법 중에서 임의로 컴퓨터가 수행하게 하도록 구성된 컴퓨터 판독 가능 코드를 포함하는 캐리어 매체가 제공된다.
본 발명의 또 다른 측면에서, 제1 보안 컨텍스트를 포함하는 암호 장치( cryptographic device)가 제공된다. 상기 제1 보안 컨텍스트는,
제2 보안 컨텍스트로부터, 상기 제1 공개 키 KBLOB pub의 원본이 검증될 수 있는 정보를 포함하는, 제1 암호 인증서 및 제1 공개 키 KBLOB pub를 수신하도록 구성된 제1 송수신기(first transceiver); 및
암호 연산(cryptographic operations)을 수행하도록 구성된 제1 프로세서(first processor)
를 포함하고,
상기 제1 프로세서는,
전송될 데이터에 대응하는 액세스 제어 리스트를 생성하고- 상기 액세스 제어 리스트는 상기 데이터의 제1 유형의 사용을 허가하기 위해 유효한 사용 자격증명이 제시되어야 한다는 것을 지정함 -,
상기 제1 암호 키 쌍이 상기 제2 보안 컨텍스트로부터 발생(originate)된 것을 검증하고,
상기 제1 공개 키 KBLOB pub를 이용하여 상기 데이터 및 상기 대응하는 액세스 제어 리스트를 암호화하도록 구성되고,
상기 제1 송수신기는,
상기 암호화된 데이터 및 대응하는 액세스 제어 리스트, 및 상기 데이터의 원본이 검증될 수 있는 정보를, 상기 제2 보안 컨텍스트로, 전송하도록 구성된다.
일 실시예에서, 사용 자격증명은 사용 인증서이다.
일 실시예에서, 상기 데이터는 암호 키인, Ktenant를 포함한다.
일 실시예에 있어서, 상기 장치는,
제1 아이덴티티 개인 키인, K1ID priv를 저장하는, 제1 장치 메모리
를 더 포함하고,
상기 제1 송수신기는,
제1 아이덴티티 공개 키인, K1ID pub, 및 제1 아이덴티티 인증서를 상기 제2 보안 컨텍스트로 전송하고 - 상기 제1 아이덴티티 공개 키인, K1ID pub 및 상기 제1 아이덴티티 개인 키인, K1ID priv은 암호 키 쌍이고, 상기 제1 아이덴티티 인증서는 K1ID pub를 식별하는 정보를 포함하고 제조업체 개인 키 Kman priv로써 암호화 서명됨 -,
상기 제2 보안 컨텍스트로부터 제2 아이덴티티 공개 키인, K2ID pub, 및 제2 아이덴티티 인증서를 수신 - 상기 제2 아이덴티티 인증서는 K2ID pub를 식별하는 정보를 포함하고 상기 제조업체 개인 키 Kman priv로써 암호화 서명됨 -하도록 더 구성되고,
상기 제1 프로세서는, 상기 제조업체 공개 키 Kman pub를 사용하여 상기 제2 아이덴티티 인증서를 확인하도록 더 구성된다.
일 실시예에 있어서, 상기 제1 송수신기는,
상기 제2 보안 컨텍스트의 현재 구성과 관련된 정보를 수신- 상기 정보는 제2 아이덴티티 개인 키인, K2ID priv를 이용하여 암호화 서명되고, 상기 제2 아이덴티티 공개 키인, K2ID pub 및 상기 제2 아이덴티티 개인 키인, K2ID priv는 암호 키 쌍임 -하도록 더 구성되고,
상기 제1 프로세서는,
상기 제2 아이덴티티 공개 키인, K2ID pub를 이용하여 상기 서명을 확인하고,
상기 제2 보안 컨텍스트의 구성이 상기 테넌트의 보안 요건을 충족시키고 상기 제2 보안 컨텍스트가 상기 ACL 내 포함된 상기 정책을 시행하도록 구성된 것을 검증하도록 더 구성된다.
일 실시예에서, 상기 제1 프로세서는,
상기 제1 보안 컨텍스트에서 제2 암호 키 쌍 및 제2 암호 인증서를 생성하고 - 상기 제2 암호 키 쌍은 제2 공개 키인,
Figure 112022041342282-pat00013
, 및 제2 개인 키인,
Figure 112022041342282-pat00014
를 포함하고 상기 제2 암호 인증서는 상기 제2 공개 키
Figure 112022041342282-pat00015
의 원본이 식별될 수 있는 정보를 포함함 -,
상기 제1 아이덴티티 개인 키인, K1ID priv를 이용하여 상기 제2 암호 인증서를 암호화 서명하도록 더 구성되고,
상기 제1 송수신기는 상기 제2 보안 컨텍스트로 상기 제2 공개 키
Figure 112022041342282-pat00016
및 상기 서명된 제2 암호 인증서를 전송하도록 더 구성된다.
본 발명의 또 다른 측면에서, 제1 보안 컨텍스트를 포함하는, 암호 장치가 제공되고, 상기 암호장치는,
제1 프로세서 - 상기 제1 프로세서는,
상기 사용 자격증명에 대응하는 데이터가 식별될 수 있는 정보; 및
상기 사용 자격증명이 만료되었는지 결정될 수 있는 정보
를 포함하는 사용 자격증명을 생성하도록 구성됨 -; 및
제2 보안 컨텍스트로 상기 사용 자격증명의 상기 원본이 검증될 수 있는 정보 및 상기 사용 자격증명을 전송하도록 구성되는, 제1 송수신기
를 포함한다.
일 실시예에서, 상기 사용 자격증명은 사용 자격증명이다.
일 실시예에서, 상기 데이터는 암호 키인, Ktenant를 포함한다.
일 실시예에서, 상기 제1 보안 컨텍스트는,
개인 키
Figure 112022041342282-pat00017
를 저장하는, 제1 장치 메모리
를 더 포함하고,
상기 제1 프로세서는 개인 키
Figure 112022041342282-pat00018
를 이용하여 상기 사용 증명을 암호화 서명하도록 구성된다.
일 실시예에서, 상기 사용 자격증명은 사용 인증서이다.
일 실시예에서, 상기 사용 자격증명의 상기 만료가 결정될 수 있는 상기 정보는,
만료 시간; 및
기준 시간 소스를 식별하는 정보
를 포함한다.
일 실시예에서, 사용 자격증명에 대응하는 암호 키 Ktenant가 식별될 수 있는 정보는 Ktenant의 해시이다.
본 발명의 또 다른 측면에서, 제1 보안 컨텍스트를 포함하는 장치 또는 장치들과 협력(cooperation)을 위한, 제2 보안 컨텍스트를 포함하는 암호 장치가 제공되고, 상기 암호 장치는,
암호 연산을 수행하도록 구성되는, 프로세서 - 상기 프로세서는,
제1 암호 인증서 및 제1 암호 키 쌍을 생성하고, 상기 제1 암호 키 쌍은 제1 공개 키인, KBLOB pub, 및 제1 개인 키인, KBLOB priv을 포함하고 상기 제1 암호 인증서는 상기 제1 공개 키 KBLOB pub의 원본이 검증될 수 있는 정보를 포함함 -;
송수신기 - 상기 송수신기는,
제1 보안 컨텍스트로 상기 제1 공개 키 KBLOB pub 및 상기 제1 암호 인증서를 전송하고,
상기 제1 보안 컨텍스트로부터 상기 데이터의 원본이 검증될 수 있는 정보, 및 암호화된 데이터 및 대응하는 액세스 제어 리스트를 수신하도록 구성됨 -
를 포함하고,
상기 프로세서는,
상기 데이터의 상기 원본을 검증하고,
상기 제1 개인 키 KBLOB priv를 사용하여 상기 암호화된 데이터 및 대응하는 액세스 제어 리스트를 복호화(decrypt)하도록 더 구성된다.
일 실시예에서, 사용 자격증명은 사용 인증서이다.
일 실시예에서, 상기 데이터는 암호 키인, Ktenant를 포함한다.
일 실시예에서, 상기 프로세서는,
추가 암호 키를 이용하여 상기 암호 키 Ktenant를 재-암호화 - 상기 추가 암호 키는 상기 제2 보안 컨텍스트를 벗어날 수 없음 - 하도록 더 구성된다.
일 실시예에서, 상기 장치는 제2 아이덴티티 개인 키인, K2ID priv를 저장하는, 장치 메모리(device memory)를 더 포함하고, 상기 송수신기는,
상기 제1 보안 컨텍스트로 제2 아이덴티티 공개 키인, K2ID pub, 및 제2 아이덴티티 인증서를 전송하고 - 상기 제2 아이덴티티 공개 키인, K2ID pub 및 상기 제2 아이덴티티 개인 키인, K2ID priv는 암호 키 쌍이고 상기 제2 아이덴티티 인증서는 K2ID pub를 식별하는 정보를 포함하고 제조업체 개인 키 Kman priv로써 암호화 서명됨 -,
상기 제1 보안 컨텍스트로부터 제1 아이덴티티 공개 키인, K1ID pub, 및 제1 아이덴티티 인증서를 수신 - 상기 제1 아이덴티티 인증서는 K1ID pub를 식별하는 정보를 포함하고 상기 제조업체 개인 키 Kman priv로써 암호화 서명됨 - 하도록 더 구성되고,
상기 프로세서는,
상기 제조업체 공개 키 Kman pub를 사용하여 상기 제1 아이덴티티 인증서를 확인하도록 더 구성된다.
일 실시예에 있어서, 상기 프로세서는,
상기 제2 보안 컨텍스트의 현재 구성과 관련된 정보를 생성하고,
상기 제2 아이덴티티 개인 키인, K2ID priv를 이용하여 상기 정보를 암호화 서명하도록 더 구성되고,
상기 송수신기는,
상기 제1 보안 컨텍스트로 상기 정보 및 서명을 전송하도록 더 구성된다.
일 실시예에 있어서, 상기 프로세서는,
상기 제2 보안 컨텍스트의 상기 현재 구성과 관련된 상기 정보를 포함하는 상기 제1 암호 인증서를 생성하고, 상기 제2 아이덴티티 개인 키인, K2ID priv를 이용하여 상기 제1 암호 인증서를 서명하도록 더 구성된다.
일 실시예에 있어서, 상기 송수신기는,
제2 공개 키
Figure 112022041342282-pat00019
및 서명된 제2 암호 인증서를 수신 - 상기 제2 암호 인증서는 상기 제1 보안 컨텍스트로부터, 상기 제2 공개 키
Figure 112022041342282-pat00020
의 원본이 검증될 수 있는 정보를 포함함 - 하도록 더 구성되고,
상기 프로세서는,
상기 제2 공개 키
Figure 112022041342282-pat00021
의 상기 원본을 검증하도록 더 구성된다.
본 발명의 또 다른 측면에 있어서, 장치가 제공되고, 상기 장치는,
장치 메모리를 포함하고, 상기 장치 메모리는,
암호화된 데이터;
상기 데이터에 대응하는 액세스 제어 리스트 - 상기 액세스 제어 리스트는 유효한 사용 자격증명이 상기 데이터의 제1 유형의 사용을 허가하기 위해서는 제시되어야 한다는 것을 지정하고, 상기 사용 자격증명이 상기 사용 자격증명의 상기 만료가 결정될 수 있는 정보를 포함해야 하고 상기 데이터의 제1 유형의 사용을 허가하기 위해서는 만료되지 않아야 한다는 것을 지정함 -; 및
상기 데이터의 상기 원본이 식별될 수 있는 정보
를 저장한다.
일 실시예에서, 상기 사용 자격증명은 사용 인증서이다.
일 실시예에서, 상기 장치는,
제1 보안 컨텍스트를 포함하는 장치 또는 장치들과 협력을 위한, 제2 보안 컨텍스트를 포함하는 암호 장치이다.
일 실시예에서, 상기 데이터는 암호 키인, Ktenant를 포함한다.
상기 액세스 제어 리스트는, 상기 암호 키인, Ktenant의 사용을 허가하기 위해, 상기 사용 자격증명이 개인 키
Figure 112022041342282-pat00022
로써 서명된 사용 인증서인 것을 지정할 수 있다.
상기 액세스 제어 리스트는, 상기 사용 자격증명이 상기 사용 자격증명에 대응하는 상기 암호 키 Ktenant가 인식될 수 있는 정보를 포함해야 한다는 것을 지정할 수 있다.
일 실시예에서, 상기 암호화된 암호 키 Ktenant는 상기 제2 보안 컨텍스트를 벗어날 수 없는 키에 의해 암호화된다.
일 실시예에 있어서, 상기 장치는,
프로세서 - 상기 프로세서는,
상기 액세스 제어 리스트에 관련된 수신된 사용 자격증명을 검증하고, 상기 사용 자격증명이 만료되지 않은 것을 검증하고,
상기 사용 자격증명이 유효하고 만료되지 않은 상기 조건에서, 상기 제2 보안 컨텍스트에서, 상기 암호 키인, Ktenant의 제1 유형의 사용을 허가하도록 구성됨 -
를 더 포함한다.
일 실시예에서, 서비스 프로바이더 시스템 내의 보안 장치에 의해 생성되는 키 쌍의 공개 키로 데이터를 암호화하는 단계를 포함하는 테넌트로부터 서비스 프로바이더로의 데이터 전송 방법이 제공된다. 따라서, 상기 데이터는 전송 중에 서비스 프로바이더에 의해 액세스될 수 없다.
일단 저장되는 데이터의 특정 사용을 허가하기 위해 유효 인증서가 제시되어야(presented) 한다는 것을 지정하는, 대응하는 액세스 제어 리스트로 데이터가 생성된다. 따라서, 상기 테넌트는 상기 테넌트 시스템의 외부로 전송되었음에도 불구하고 상기 데이터의 사용의 제어를 유지(retain control)할 수 있다.
일 실시예에서, 데이터의 사용을 요청하는 자에게 만료 시간을 갖는 사용 자격증명을 발행하는 단계를 포함하는, 서비스 프로바이더 시스템에서 안전하게 저장되는 데이터의 사용 제어 방법이 제공된다. 사용 자격증명은 저장되는 데이터의 사용이 허가되기 전에 검증되어야 한다. 이는 테넌트가 제한된 기간 동안 저장되는 데이터의 사용을 허가할 수 있게 한다.
본 명세서에서, 보안 컨텍스트 용어는 하나 이상의 보안 기기(security appliances)(예를 들어, HSMs), 또는 적어도 하나의 개인 키를 공유하고, 암호 기능의 세트를 수행하고, 보호하도록 구성되는, 보안 기기의 파티션(partitions)을 지칭한다(refers to).
본 명세서에서, 암호 키(cryptographic key) 용어는 암호 연산에서 사용하기 위한 원시 암호 재료의 블록(block of raw cryptographic material)을 지칭한다. 키에 대응하는 액세스 제어 리스트는 키 재료가 예를 들어, 권한을 주도록 하기 위해(enable permissions) 제공되어야 하는 임의의 자격증명, 및 암호화, 복호화(decryption) 또는 저장에 사용될 수 있는 연산을 기술하는 권한의 세트에 관련된 정보를 포함한다(a set of permissions describing the operations). 또한, 상기 키와 연관되는 것은 예를 들어, 상기 키가 사용될 수 있는 알고리즘 및 그 길이 - 예를 들어, 길이 256 비트의 키를 갖는 고급 암호 표준(AES : Advanced Encryption Standard) 알고리즘(algorithm), 또는 2048 비트의 키 길이(key length)를 갖는 RSA 알고리즘 - 를 식별하는 정보를 포함하는, 상기 키의 유형을 식별하는 데이터를 포함하는 상기 키 유형과 관련되는 정보일 수 있다.
본 명세서에서, "확인"이라는 용어는 암호 서명을 체크하는(checking) 방식을 지칭하는 데 사용될 수 있다. "검증" 이라는 용어는 데이터가 예상되는 바이다는 것을 체크하는 방식, 또는 서명이 정확한 것과 데이터가 예상되는 바이다는 것 모두를 체크하는 방식을 지칭하는 데 사용될 수 있다.
본 명세서에서, "액세스 제어 리스트"라는 용어는 오브젝트(object)에 부여되는(attached) 하나 이상의 권한들(permissions)을 지칭한다. 상기 권한들은 상기 오브젝트에 대한 어떤 동작(연산)(operation)들이 허용되는 것을 지정하고, 상기 동작(연산)이 허가되기 위해 조건들 및/또는 자격증명이 필요하다. 본 명세서에서 설명되는 방법에서, 공개 키는 제1 보안 컨텍스트 또는 제2 보안 컨텍스트 내에, 또는 상기 공개 키가 무결성 보호인 경우 - 예를 들어, 제1 보안 컨텍스트 또는 제2 보안 컨텍스트의 아이덴티티 키로 서명됨 -, 상기 제1 보안 컨텍스트 또는 상기 제2 보안 컨텍스트의 외측의 신뢰할 수 없는 매체(untrusted mediums) 상에 저장될 수 있다. 이는, 공개 키가 변조될(tampered) 경우, 검출될(detected) 것이라는 것을 의미한다.
본 명세서에서 설명되는 방법에서, 제1 보안 컨텍스트 및 제2 보안 컨텍스트 사이에서 전송되는 정보는 암호 인증서의 사용에 의해 검증될 수 있다. 예를 들어, 상기 정보는 전송기에 속하는 비공개 서명 키로 서명될 수 있고, 상기 서명은 수신기에 상기 정보와 함께 전송된다.
본 명세서에서 설명되는 방법은 컴퓨터 구현 방법(computer implemented methods)일 수 있다.
실시예들에 따른 일부 방법들은 소프트웨어로 구현될 수 있기 때문에, 일부 실시예들은 임의의 적합한 캐리어 매체 상에서 범용 컴퓨터에 제공되는 컴퓨터 코드를 포함한다. 상기 캐리어 매체는 플로피 디스크, CD ROM 과 같은 임의의 비-일시적인 저장 매체, 자기 장치 또는 프로그램가능 메모리 장치, 또는 예를 들어, 전기, 광학 또는 마이크로파 신호에 대한 임의의 신호와 같은 임의의 일시적 매체(transient medium)를 포함할 수 있다.
비-제한적인 실시예에 따른 장치 및 방법은 첨부되는 다음의 도면을 참조하여 설명될 것이다.
도 1a는 본 발명의 실시예에 따른 암호 장치를 포함하는 테넌트 시스템을 포함하는 네트워크의 개략도이고 서비스 프로바이더 시스템은 본 발명의 실시예에 따른 암호 장치를 포함하고,
도 1b는 본 발명의 실시예에 따른 제1 보안 컨텍스트 및 본 발명의 실시예에 따른 제2 보안 컨텍스트에 대한 개략도이고,
도 2a는 본 발명의 실시예에 따른 암호 키 전송의 방법의 일부인, 제1 보안 컨텍스트 및 제2 보안 컨텍스트 사이의 신뢰를 설정하는 단계에 대한 방법을 도시하는 흐름도이고,
도 2b는 본 발명의 실시예에 따른 암호 키 전송의 방법의 일부인, 제1 보안 컨텍스트에서 제2 보안 컨텍스트의 구성을 검증하는 단계에 대한 방법을 도시하는 흐름도이고,
도 3은 신뢰가 설정된 이후, 및 각각의 보안 컨텍스트에서 관련 키가 생성된 이후, 본 발명의 실시예에 따른 제1 보안 컨텍스트 및 본 발명의 실시예에 따른 제2 보안 컨텍스트의 개략도이고,
도 4a는 본 발명의 실시예에 따른 암호 키 전송의 방법의 일부인, 제1 보안 컨텍스트로부터 제2 보안 컨텍스트로 서명 키(Ktenant-sign)를 전송하는 단계에 대한 방법을 도시하는 흐름도이고,
도 4b는 본 발명의 실시예에 따른 암호 키 전송의 방법의 일부인, 테넌트 등록의 방법의 도면이고,
도 5는 제2 공개 키(Ktenant-sign pub)가 데이터 전송 프로세스 동안 교환된 이후 본 발명의 실시예에 따른 제1 보안 컨텍스트 및 본 발명의 실시예에 따른 제2 보안 컨텍스트에 대한 개략도이고,
도 6a는 본 발명의 일 실시예에 따른 제1 보안 컨텍스트로부터 제2 보안 컨텍스트로의 데이터 전송 방법을 도시하는 흐름도이고,
도 6b는 본 발명의 일 실시예에 따른 제1 보안 컨텍스트로부터 제2 보안 컨텍스트로의 데이터 전송 방법의 추가 단계들을 도시하는 흐름도이고,
도 7a는 본 발명의 일 실시예에 따른 암호 키 전송의 방법의 일부인, 키 등록에 대한 방법의 도면이고,
도 7b는 본 발명의 일 실시예에 따른 암호 키 전송의 방법의 흐름도이고,
도 8a는 테넌트 키(Ktenant)가 제2 보안 컨텍스트로 가져와진 이후 본 발명의 실시예에 따른 제1 보안 컨텍스트 및 본 발명의 실시예에 따른 제2 보안 컨텍스트에 대한 개략도이고,
도 8b는 서비스 프로바이더, 테넌트 또는 별개의 제3자에 의해 호스팅될 수 있는 시간 소스의 개략도이고,
도 9는 제2 보안 컨텍스트에 시간 소스를 등록하는 것에 대한 방법을 도시하는 흐름도이고,
도 10은 제1 보안 컨텍스트에 시간 소스를 등록하는 것에 대한 방법을 도시하는 흐름도이고,
도 11은 본 발명의 실시예에 따른 데이터의 사용 제어 방법을 도시하는 흐름도이고,
도 12는 본 발명의 일 실시예에 따른 암호 키(Ktenant)의 사용을 제어하는 것에 대한 방법의 일부인, 제1 보안 컨텍스트에서 사용 인증서를 생성하는 것에 대한 방법을 도시하는 흐름도이고,
도 13은 본 발명의 일 실시예에 따른 암호 키(Ktenant)의 사용을 제어하는 것에 대한 방법에 대한 도면이고,
도 14는 본 발명의 일 실시예에 따른 암호 키(Ktenant)의 사용을 제어하는 것에 대한 방법의 흐름도이다.
도 1a는 본 발명의 일 실시예에 따른 암호 장치를 포함하는 테넌트 시스템(1) 및 본 발명의 다른 실시예에 따른 암호 장치를 포함하는 서비스 프로바이더 시스템(3)에 대한 개략도이다.
예를 들어, 서비스 프로바이더는 클라우드 서비스 프로바이더일 수 있다. 서비스 프로바이더는 암호 키와 같은 데이터의 저장소를 제공하고 하나 이상의 테넌트에 대한 데이터의 보안 암호 처리를 제공한다. 예를 들어, 테넌트는 결제, 보안 및 규정과 같은 애플리케이션을 위한 서비스 프로바이더 시스템(3)의 암호 인프라를 사용한다. 서비스 프로바이더 시스템(3)은, 이와 같은 하나 이상의 애플리케이션을 수행하도록 구성되는, 서비스 프로바이더 애플리케이션 서버를 포함한다.
이들 서비스를 이용하기 위해, 테넌트 시스템(1)은 서비스 프로바이더 시스템(3)으로 암호 키(Ktenant)를 제공한다. 이와 같은 애플리케이션에서의 사용을 위해 상기 서비스 프로바이더 시스템(3)에서 상기 암호 키(Ktenant)는 안전하게 저장된다.
테넌트 시스템(1)은 제1 보안 컨텍스트(5)를 포함하고, 서비스 프로바이더 시스템(3)은 제2 보안 컨텍스트(7)를 포함한다. 보안 컨텍스트는 단일 보안 장치 - 예를 들어, 하드웨어 보안 모듈(HSM) - 일 수 있다. 대안적으로, 그것은 2 개 이상의 보안 장치, 또는 보안 장치의 파티션일 수 있다. 본 명세서에서 "보안 컨텍스트"라는 용어는 단일 보안 컨텍스트를 형성하는 장치, 장치들, 또는 장치의 파티션 - 예를 들어, 적어도 하나의 개인 키를 공유하고, 암호 기능의 세트를 수행하고 보호하도록 구성됨 - 을 지칭하기 위해 본원에서 사용된다. 제1 보안 컨텍스트(5)는 테넌트 시스템의 나머지로부터 안전하게 보호된다. 제2 보안 컨텍스트(7)는 서비스 프로바이더 시스템의 나머지로부터 안전하게 보호된다.
상기 테넌트 암호 키(tenant cryptographic key)(Ktenant)는 서비스 프로바이더 시스템(3) 내 제2 보안 컨텍스트(7)에 제공된다. 상기 테넌트 암호 키(Ktenant)는 상기 제2 보안 컨텍스트(7) 내에 저장되거나, 상기 서비스 프로바이더 시스템(3) 내 다른 곳에 저장되기 전에 상기 제2 보안 컨텍스트를 벗어날 수 없는 키로 암호화된다.
암호 키(Ktenant)를 제2 보안 컨텍스트(7)에 제공하기 전에, 테넌트는 제2 보안 컨텍스트(7)에 의해 제공되는 생성 인증서로부터 제2 보안 컨텍스트(7)를 인증 및 검증할 수 있다. 예를 들어, 상기 생성 인증서는 제2 보안 컨텍스트(7)의 일부인 장치 또는 장치들의 제조시 생성될 수 있다. 테넌트는 서비스 프로바이더가 아닌 제조업체를 신뢰한다. 생성 인증서는 제2 보안 컨텍스트(7)가 신뢰되는 제조업체에 의해 제조된 것을 인증하며, 따라서 신뢰할 수 있다. 또한, 제2 보안 컨텍스트(7)의 파라미터 및 상태는, 예를 들어, 생성 인증서 내에, 및 추가 구성 인증서 내에 포함되는 정보로부터, 검증될 수 있다.
생성 인증서는 기기의 전체 수명에 대해 유효한 정적 정보를 포함한다. 구성 인증서는 장치의 현재 구성에 관한 정보를 포함한다. 구성 정보는 구성 인증서의 생성시에서만 유효하고, 이후 단계에서 변경될 수 있다.
따라서, 제1 보안 컨텍스트(5)는 키 전송 동작이 시작하기 전에, 제2 보안 컨텍스트와의 신뢰를 설정한다.
제2 보안 컨텍스트(7)로 전송되기 전에, 제2 보안 컨텍스트(7)에서 생성되는 비대칭 키 쌍의 절반을 공개로 테넌트 암호 키(Ktenant)는 암호화된다. 제2 보안 컨텍스트(7)에서 생성되는 비대칭 키 쌍으로 제1 암호 인증서가 발행된다. 일 실시예에서, 제1 암호 인증서는, 비대칭 키 쌍이 제2 보안 컨텍스트(7)에서 생성된 것, 비대칭 키 쌍의 비공개 절반은 일시적인 것, 및 상기 비대칭 키 쌍의 비공개 절반은 제2 보안 컨텍스트(7)를 벗어날 수 없는 것을 검증한다. 이는 테넌트 암호 키(Ktenant)가 서비스 프로바이더 자체로부터 - 즉, 예를 들어 애플리케이션 서버(10)와 같은, 제2 보안 컨텍스트(7)의 외측에 있는 상기 서비스 프로바이더 시스템(3)의 나머지로부터 - 및 공격자로부터 안전한 방식으로 서비스 프로바이더 시스템(3)으로 전송되도록 할 수 있다.
일 실시예에서, 테넌트 암호 키(Ktenant)가 제2 보안 컨텍스트(7)에 저장된다. 대안적으로, 테넌트 암호 키(Ktenant)는 제2 보안 컨텍스트(7)를 벗어날 수 없는 키로 암호화되는, 서비스 프로바이더 시스템의 다른 곳에 - 예를 들어 상기 애플리케이션 서버에 - 저장된다.
제1 보안 컨텍스트에서 테넌트 암호 키(Ktenant)에 대응하는 액세스 제어 리스트(ACL)는 또한 제1 보안 컨텍스트(5) 내의 테넌트 암호 키(Ktenant)로 생성된다. 상기 ACL는 또한 테넌트 암호 키(Ktenant)와 함께 제2 보안 컨텍스트(7)로 전송된다. 상기 ACL는 테넌트 암호 키(Ktenant)와 함께 저장된다. 제1 보안 컨텍스트(5)는 제2 보안 컨텍스트(7)와의 신뢰를 설정하였고, 따라서 제2 보안 컨텍스트(7)이 상기 ACL 내 포함되는 정책을 시행할 것을 안다. 따라서, 제2 보안 컨텍스트(7)로 한번 전송되더라도, 상기 ACL은 테넌트가 키에 대한 제어를 유지하게 한다.
일 실시예에서, ACL은 테넌트 암호 키(Ktenant)가 제2 보안 컨텍스트(7) 내측에 저장될 수만 있는 것을 지정한다. 대안적인 실시예에서, ACL은, 제2 보안 컨텍스트(7)를 벗어날 수 없는 키에 의해 저장을 위해 암호화되는 조건에서, 상기 테넌트 암호 키(Ktenant)가 제2 보안 컨텍스트(7)내에 저장될 수만 있는 제한을 포함한다. 이는 상기 테넌트 암호 키(Ktenant)가 제3자로 및 상기 서비스 프로바이더로 액세스할 수 없다는 것을 보장한다. 상기 ACL은, 테넌트 암호 키(Ktenant)가 제3자에 의한 변조를 방지하는 비-휘발성 메모리에 저장될 수만 있다는 것을 지정할 수 있다.
또한, ACL은, 예를 들어 사용 인증서와 같은, 유효한 사용 자격증명이, 테넌트 암호 키(Ktenant)의 하나 이상의 유형의 사용을 허가하기 위해 제시되어야 한다는 것을 지정한다. 예를 들어, 상기 ACL은, 상기 테넌트 키(Ktenant)를 이용하여 특정 암호 연산의 수행을 허가하기 위해 상기 테넌트에 의해 소유되는 비대칭 키의 개인 절반을 비공개로 서명되는 인증서의 제시를 요청할 수 있다. 이는, 테넌트에 의해 인증되지 않을 경우 키를 사용하는 특정 유형의 연산이 사용될 수 없다는 것을 보장한다.
상기 테넌트 암호 키(Ktenant)가 서비스 프로바이더 시스템에 저장되더라도, 서비스 프로바이더 - 즉, 제2 보안 컨텍스트(7) 외측에 있는 서비스 프로바이더 시스템(3)의 나머지 - 는, 키를 액세스할 수 없고, 상기 키는 테넌트로부터 인증없이 사용될 수 없다. 이는 악의적인 서비스 프로바이더로부터 테넌트 암호 키(Ktenant)를 보호한다. 또한, 예를 들어, 테넌트가 아닌 서비스 프로바이더에 대한 권한을 가지는 보안 기관으로부터 테넌트 암호 키(Ktenant)를 보호한다.
이는, 또한, 다수의 테넌트가 서비스 프로바이더에서 동일한 암호 인프라를 사용할 수 있게 한다. 각각의 테넌트 암호 키(Ktenant)는 다른 테넌트에 액세스할 수 없고, 대응하는 테넌트로부터의 인증 없이 사용될 수 없기 때문에, 다수의 테넌트는 동일한 보안 장치에 키들을 저장할 수 있다.
상기 액세스 제어 리스트는, 상기 사용 자격증명의 만료가 결정될 수 있고 암호 키(Ktenant)의 사용을 허가하기 위해 만료되지 않아야 하는 정보를 상기 사용 자격증명이 포함해야 한다는 것을 지정할 수 있다. 따라서, 테넌트는, 사용 자격증명에서, 그것의 키에 대한 만료 기간 - 이후 상기 키는 추가 인가가 제공될 때까지 사용되지 않을 수 있음 - 을 지정할 수 있다.
만료 시간은 제1 보안 컨텍스트(5)및 제2 보안 컨텍스트(7) 모두에 의해 신뢰되는 기준 시간 소스(2)를 참조하여 계산될 수 있다. 기준 시간 소스(2)는 서비스 프로바이더, 테넌트 또는 별개의 제3자에 의해 호스팅될 수 있다. 도 1a는 기준 시간 소스(2)가 제3자에 의해 호스트되는 실시예에 대한 개략도를 도시한다.
상기 설명이 테넌트 암호 키의 전송 및 저장에 관한 것이지만, 데이터의 임의의 유형은 동일한 방식으로 전달되고 저장될 수 있다. 테넌트로부터 서비스 프로바이더로의 데이터 전송 방법은 서비스 프로바이더 시스템 내의 보안 장치에 의해 생성되는 키 쌍의 공개 키로 데이터를 암호화하는 단계를 포함한다. 따라서, 데이터는 전송 중에 서비스 프로바이더에 의해 액세스될 수 없다. 데이터의 인증 및 무결성을 보장하기 위해, 암호화되는 데이터는 전송 전에 암호화 서명된다.
한번 저장되는 데이터의 특정 사용을 허가하기 위해, 유효 인증서가 제시되어야 한다는 것을 지정하는, 대응하는 액세스 제어 리스트로 데이터가 생성된다. 따라서, 상기 테넌트는, 상기 테넌트 시스템의 외부로 전달되었음에도 불구하고 상기 데이터의 사용의 제어를 유지할 수 있다.
서비스 프로바이더 시스템에 안전하게 저장되는 데이터의 사용 제어 방법은, 데이터의 사용을 요청하는 자에게 만료 시간을 갖는 사용 자격증명을 발행하는 단계를 포함한다. 사용 자격증명은 저장되는 데이터의 사용이 허가되기 전에 검증되어야 한다. 이는 테넌트가 제한되는 시간 기간 동안 저장되는 데이터의 사용을 허가할 수 있게 한다.
도 1b는 본 발명의 일 실시예에 따른 제1 보안 컨텍스트(5) 및 본 발명의 다른 실시예에 따른 제2 보안 컨텍스트(7)에 대한 개략도를 도시한다.
제1 보안 컨텍스트(5)는 단일 보안 기기 - 예를 들어 하드웨어 보안 모듈(HSM) - 일 수 있다. 대안적으로, 제1 보안 컨텍스트(5)는 2 개 이상의 보안 기기, 또는 보안 기기의 파티션일 수 있다. 예를 들어, 제1 보안 컨텍스트(5)는 저-전력, 저 성능, 저 비용 HSM일 수 있다.
제2 보안 컨텍스트(7)는 - 예를 들어 하드웨어 보안 모듈(HSM) - 일 수 있다. 대안적으로, 제2 보안 컨텍스트(7)는 2 개 이상의 보안 기기, 또는 보안 기기의 파티션일 수 있다. 제2 보안 컨텍스트(7)는 고-성능 HSM들의 클러스터를 포함할 수 있다.
따라서, 제1 보안 컨텍스트(5) 및 제2 보안 컨텍스트(7)는 각각 하나 이상의 변조 방지 암호 기기 또는 변조 방지 암호 기기의 파티션을 포함할 수 있다.
제1 보안 컨텍스트(5)는 제1 장치 메모리(9)를 포함한다. 제1 장치 메모리(9)는 키, 키 쌍 및 인증서와 같은 암호 정보를 저장하도록 구성된다. 예를 들어, 제1 장치 메모리(9)는 플래시, 광학 디스크 또는 자기 하드 드라이브와 같은 비-휘발성 장치 메모리의 임의의 형태를 포함할 수 있다. 제1 보안 컨텍스트(5)는 휘발성 메모리를 포함하기도 한다.
제1 장치 메모리(9)는 물리적으로 안전하고, 제3자에 의한 변조가 방지될 수 있다. 예를 들어, 전체 장치를 덮고(cover) 있어서, 기본 물리적 하드웨어(underlying physical hardware)를 파괴하여 사용할 수 없게 만들지 않고는 제거될 수 없는 멤브레인(membrane)과 같은 물리적 보안을 포함할 수 있다.
고유 비대칭 아이덴티티 키(K1ID)는 대응하는 서명되는 생성 인증서({C1ID}Kman priv)와 함께, 제1 장치 메모리(9)에 저장된다. K1ID는 데이터의 원본 및 인증을 증명하기 위해 사용되는 서명 키이다. 생성 인증서(C1ID)는 키의 공개 파라미터를 기술할 수 있다 - 예를 들어, 생성 인증서(C1ID)는 키의 유형과 관련되는 정보, 및 그것의 길이를 포함할 수 있음. 생성 인증서(C1ID)는 제1 보안 컨텍스트(5)에서 아이덴티티 키(K1ID)가 생성되었음을 인증하는 정보를 포함한다. 예를 들어, 생성 인증서(C1ID)는 K1ID의 공개 절반의 해시를 포함할 수 있고, 제조업체 비대칭 키의 비공개 절반(Kman priv)으로 서명될 수 있다.
생성 인증서(C1ID)는 또한 상태 정보 - 예를 들어, 장치의 고유 식별에 관련한 정보, 제조업체를 식별하는 정보, 사용되는 하드웨어 버전, 사용되는 소프트웨어 유형, 유닛의 일련 번호 및 모델의 지원되는 특징/기능 - 를 포함할 수도 있다. 생성 인증서(C1ID)는 제1 보안 컨텍스트(5) 및 제2 보안 컨텍스트(7) 모두에 의해 신뢰되는 제조업체에 의해 서명된다. 생성 인증서는 제조업체 비대칭 키의 비공개 절반(Kman priv)으로 암호화 서명된다. 상기 제조업체는 제1 보안 컨텍스트를 형성하는 보안 기기(들) 및 제2 보안 컨텍스트를 형성하는 보안 기기(들)를 제조한 제3자일 수 있다. 신뢰되는 제조업체 키의 공개 절반(Kman pub)은 또한 제1 장치 메모리(9)에 저장되거나, 또는 무결성 보호 방식으로 제1 보안 컨텍스트(5)의 외측에 저장될 수 있다.
제2 보안 컨텍스트(7)는 제2 장치 메모리(11)를 포함한다. 상기 제2 장치 메모리(11)는 키, 키 쌍 및 인증서와 같은 암호 정보를 저장하도록 구성된다. 예를 들어, 상기 제2 장치 메모리(11)는 플래시, 광학 디스크 또는 자기 하드 드라이브와 같은 비-휘발성 장치 메모리의 임의의 형태를 포함할 수 있다. 제2 보안 컨텍스트(5)는 휘발성 메모리를 포함하기도 한다.
상기 장치 메모리는 물리적으로 안전하고, 제3자에 의한 변조가 방지될 수 있다. 예를 들어, 전체 장치를 덮고(cover) 있어서, 기본 물리적 하드웨어(underlying physical hardware)를 파괴하여 사용할 수 없게 만들지 않고는 제거될 수 없는 멤브레인(membrane)과 같은 물리적 보안을 포함할 수 있다.
고유 비대칭 아이덴티티 키(K2ID)는, 대응하는 서명되는 생성 인증서({C2ID}Kman priv)와 함께, 제2 장치 메모리(11)에 가 저장된다. K2ID는 데이터의 원본 및 인증을 증명하기 위해 사용되는 서명 키이다. 생성 인증서(C2ID)는 키의 공개 파라미터를 기술할 수 있다 - 예를 들어, 생성 인증서(C2ID)는 키의 유형과 관련되는 정보, 및 그것의 길이를 포함할 수 있음. 생성 인증서(C2ID)는 제2 보안 컨텍스트(7)에서 아이덴티티 키(K2ID)가 생성되었음을 인증하는 정보를 포함한다. 예를 들어, 생성 인증서(C2ID)는 K2ID의 공개 절반의 해시를 포함할 수 있고, 제조업체 비대칭 키의 비공개 절반(Kman priv)으로 서명될 수 있다.
생성 인증서(C2ID)는 또한 상태 정보 - 예를 들어, 장치의 고유 식별에 관련한 정보, 제조업체를 식별하는 정보, 하드웨어 버전, 사용되는 소프트웨어 유형, 유닛의 일련 번호 및 모델의 지원되는 특징/기능 - 를 포함할 수도 있다. 생성 인증서(C2ID)는 신뢰되는 제조업체에 의해 서명된다. 상기 생성 인증서는 제조업체 비대칭 키의 비공개 절반(Kman priv)으로 암호화 서명된다. 신뢰되는 제조업체 키의 공개 절반(Kman pub)은 또한 제2 장치 메모리(11)에 저장되거나, 또는 무결성 보호 방식으로 제2 보안 컨텍스트(7)의 외측에 저장될 수 있다.
제1 보안 컨텍스트(5) 및 제2 보안 컨텍스트(7) 모두에서, 암호 키는 보안, 변조-방지 포맷으로 장치 메모리에 저장된다.
제1 보안 컨텍스트(5) 및 제2 보안 컨텍스트(7)는 제조시 생성될 수 있는, 암호 인증서 - 서명되는 생성 인증서({C1ID } Kman priv 및 {C2ID } Kman priv)임 - 를 이용하여 검증 가능하게 식별될 수 있다. 따라서, 각각은 모방될 수 없는 방식으로 아이덴티티를 안전하게 저장할 수 있다. 제1 보안 컨텍스트(5) 및 제2 보안 컨텍스트(7)를 식별하는 것은 각각의 보안 컨텍스트 내의 장치 또는 장치들의 원본이 확실히 될 수 있게 한다. 예를 들어, 각각의 장치는 제조시 공장에서 생성되는 고유 비대칭 아이덴티티 키(KID)를 포함한다. 각각의 구성요소는 제조업체에게만 알려진 비대칭 키를 이용하여 서명되는, KID에 대한 키-생성 인증서를 포함하기도 한다. 제조업체 키의 공개 절반은 진품 기기를 인증하기 위한 신뢰의 근원(root of trust)으로서 사용될 수 있다.
또한, 제1 보안 컨텍스트 및 제2 보안 컨텍스트의 파라미터 및 상태는, 상기 생성 인증서에 포함되는 정보로부터, 및 추가, 구성, 인증서의 교환을 통해, 비-평판 방식으로 검증될 수 있다.
일 실시예에서, 제1 보안 컨텍스트(5) 및 제2 보안 컨텍스트(7)는, 상기 테넌트 및 서비스 프로바이더에 의해 설정되는 장치의 현재 구성에 관한 정보를 포함하는, 구성 인증서(C1V 및 C2V 각각)를 생성하도록 각각 구성된다. 장치가 테넌트 및 서비스 프로바이더에 유통되기 전, 제조시에 생성되므로, 구성 정보는, 생성 인증서 내 포함될 수 없다.
따라서, 생성 인증서(generation certificate)가 교환되고, 신뢰(trust)가 2 개의 보안 컨텍스트 사이에서 형성되면, 동적 구성(dynamic configuration)에 관련되는 추가 정보는 추가 서명되는 인증서 데이터 전송을 통해 교환될 수 있다. 구성 인증서(configuration certificate)(C1V 및 C2V) 각각은, 대응하는 보안 컨텍스트의 고유 비대칭 아이덴티티 키의 비공개 절반(the private half of the unique asymmetric identity key)으로 서명된다. KIDpriv는 이제 다른 보안 컨텍스트에 의해 신뢰할 수 있기 때문에, 상기 구성 인증서는 KIDpriv에 의해 서명되어 인증을 확인한다. 예를 들어, 구성 인증서 내 포함되는 데이터는, 보안 설정, 소프트웨어 버전, 어떤 신뢰되는 시간 소스가 사용되는지 또는 HSM이 변조하려는 시도가 있었다고 판단하는지 여부와 같은, 관리자 배포 옵션에 속할 수 있다.
서비스의 원본 및 상태는 다른 서비스가 그들의 신뢰를 인정할 수 있는 충분한 정보를 정한다. 이 정보는 생성 및 구성 인증서에서 교환된다.
제2 보안 컨텍스트는 제2 보안 컨텍스트에 제공되는 ACL 내 지정되는 규칙을 시행하도록 신뢰(trusted)되고, 그 상태 인증서들을 정확하게 업데이트하도록 신뢰된다. 일 실시예에서, 제2 보안 컨텍스트는 ACL 내에 포함되는 특정 레벨로 규칙을 시행할 수 없을 경우, 연산을 수행하지 않을 것이고, 상기 규칙을 지원하는 바와 같이 생성되는 키 또는 자체를 알리지 않을 것이다.
제1 및 제2 보안 컨텍스트의 아이덴티티 키는 제조시에 설치될 수 있고, 제조업체 키(Kman priv)로 서명되고, 상기 아이덴티티 키와 함께 저장되는, 이 키의 해시는, 따라서 그 출처를 증명한다.
"신뢰되는(trusted)" 소스로부터의 서비스들을 암호를 사용하여 식별할 수 있게 함으로써, 모든 데이터가 보호되고, 호스팅 서비스 프로바이더를 포함하는, 임의의 제3자에 의해 복구 가능하지 않는 고 보증을 갖는, 통신 채널을 통해 테넌트는 그것의 암호 키를 호스트되는 서비스와 교환할 수 있다. 상기 생성 인증서로부터, 제2 보안 컨텍스트(7) 내 서비스 프로바이더의 기기(들)이 신뢰되는 것과, 상기 구성 인증서로부터, 그 구성이 상기 테넌트의 보안 정책을 충족시키는 것을 확실히 함으로써, 상기 테넌트는 키가 지정되는 방식으로 저장될 것임을 알고 있는 그들의 키를 전송할 수 있다. 키와 함께 전송되는 상기 ACL은 키가 저장되고 사용될 방식을 지정하는 정책을 포함한다. 제2 보안 컨텍스트(7)는 상기 정책을 시행할 것이다. 제2 보안 컨텍스트(7)와의 신뢰를 설정하였으므로, 상기 테넌트는 상기 제2 보안 컨텍스트(7)가 상기 정책을 시행할 것임을 신뢰할 수 있다. 신뢰를 설정하는 단계는 보안 전송을 허용하고, 상기 키의 소유로 있을 경우 상기 ACL은 상기 제2 보안 컨텍스트(7)가 정책을 적용하게 할 수 있다.
제1 보안 컨텍스트(5)는 송수신기(13)를 더 포함한다. 송수신기(13)는 데이터 패킷을 전송 및 수신하도록 구성된다. 데이터 패킷들은 제1 송수신기(13)로부터 전송되고 제1 송수신기(13)에서 수신될 수 있다. 예를 들어, 인터넷 연결 또는 제1 보안 컨텍스트(5) 및 제2 보안 컨텍스트(7) 사이의 직접 유선 연결을 통하여 될 수 있다. 이 통신 링크는 신뢰할 수 없을 수 있으나, 도 6a와 관련하여 아래에서 설명되는 키 전달 프로토콜은 공격자로부터의 키의 보호를 제공한다.
제1 보안 컨텍스트(5)는 제1 프로세서(17)를 더 포함한다. 제1 프로세서(17)는 암호 키들 및 비대칭 암호 키 쌍들의 생성, 암호 키 또는 비대칭 암호 키 쌍에 대응하는 인증서의 생성, 암호 키에 대응하는 액세스 제어 리스트의 생성, 암호 키에 대응하는 사용 인증서의 생성, 제1 장치 메모리(9)에 저장되는 암호 키로 객체의 암호화, 제1 장치 메모리(9)에 저장되는 암호 키로 암호화된 객체를 복호화(decryption), 제1 장치 메모리(9)에 저장된 암호 키로 객체를 암호화 서명, 암호화 서명의 확인 및 제1 장치 메모리(9)에 저장된 정보를 기초로 하는 객체의 검증과 같은, 암호 연산을 수행하도록 구성된다. 제1 프로세서(17)는 물리적으로 안전할 수 있다.
일 실시예에서, 제1 보안 컨텍스트(5)는 비-암호 연산(non-cryptographic operations)을 수행하는 메인 프로세서를 포함하고, 제1 프로세서(17)는 암호 연산만을 수행하도록 구성되는 메인 프로세서로부터의 별개의 구성요소인 코프로세서(co-processor)이다. 대안적으로, 제1 프로세서(17)는 메인 프로세서일 수 있다. 암호 키 및 비대칭 암호 키 쌍의 생성은 난수의 생성을 포함할 수 있다. 제1 보안 컨텍스트(5)는 난수 생성에 사용하기 위한, 랜덤 엔트로피 소스(random entropy source)를 더 포함할 수 있다.
제2 보안 컨텍스트(7)는 송수신기(15)를 더 포함한다. 제2 송수신기(15)는 데이터 패킷을 전송 및 수신하도록 구성된다. 예를 들어, 무선 인터넷 연결 또는 제1 보안 컨텍스트(5) 및 제2 보안 컨텍스트(7) 사이의 직접 유선 연결을 통해, 데이터 패킷들은 제2 송수신기(15)로부터 전송되고 제2 송수신기(15)에서 수신될 수 있다.
제2 보안 컨텍스트(7)는 제2 프로세서(19)를 더 포함한다. 제2 보안 컨텍스트(7)는 제2 프로세서(19)를 더 포함한다. 제2 프로세서(19)는 암호 키들 및 비대칭 암호 키 쌍들의 생성, 암호 키 또는 비대칭 암호 키 쌍에 대응하는 인증서의 생성, 암호 키에 대응하는 액세스 제어 리스트의 생성, 암호 키에 대응하는 사용 인증서의 생성, 제2 장치 메모리(11)에 저장되는 암호 키로 객체의 암호화, 제2 장치 메모리(11)에 저장되는 암호 키로 암호화된 객체를 복호화(decryption), 제2 장치 메모리(11)에 저장된 암호 키로 객체를 암호화 서명, 암호화 서명의 확인 및 제2 장치 메모리(11)에 저장된 정보를 기초로 하는 객체의 검증과 같은, 암호 연산을 수행하도록 구성된다. 제2 프로세서(19)는 물리적으로 안전할 수 있다.
일 실시예에서, 제1 보안 컨텍스트(5)는 비-암호 연산을 수행하는 메인 프로세서를 포함하고, 제1 프로세서(17)는, 암호 연산(cryptographic operation)만을 수행하도록 구성되는 메인 프로세서로부터의 별개의 구성요소인 코프로세서(co-processor)이다. 대안적으로, 제1 프로세서(17)는 메인 프로세서일 수 있다.
암호 키 및 비대칭 암호 키 쌍의 생성은 난수의 생성을 포함할 수 있다. 제2 보안 컨텍스트(7)는 난수 생성에 사용하기 위한, 랜덤 엔트로피 소스(random entropy source)를 더 포함할 수 있다.
제1 보안 컨텍스트(5) 또는 제2 보안 컨텍스트(7)의 일부로서 사용될 수 있는 바와 같은 HSM 장치는, 상술한 바와 같은 장치 메모리, 프로세서, 송수신기 및 랜덤 엔트로피 소스를 포함할 수 있다. 상기 HSM은 물리적 및 비-물리적 보안 특성(non-physical security properties) 모두를 포함할 수 있다. 비-물리적 보안 특성은 암호화의 사용을 포함하며, 즉, 저장되는 데이터의 암호화를 수행하도록 구성되는 소프트웨어의 장치 또는 물리적 구성요소 내 포함된다. 물리적 특성은 물리적 액세스에 의해 트리거되는 변조 스위치(tamper switches), 및 장치의 물리적 경계를 둘러싸는 변조 방지 멤브레인(tamper proof membrane)을 포함할 수 있다.
본 출원에서 논의되는 암호 비대칭 키 쌍은 서명 및 확인을 지원하는 임의의 비대칭 키 쌍 유형일 수 있다. 예를 들어, 제조업체 키 쌍(Kman), 제1 아이덴티티 키 아이덴티티 키(K1ID), 제2 아이덴티티 키 쌍(K2ID), 시간 소스 아이덴티티 키 쌍(KTSID) 및 서명 키 쌍(Ktenant-sign) 각각은 RSA, DSA, 또는 ECDSA 키 쌍 중 어느 하나일 수 있고, 예를 들어, RSA 또는 DSA는 서명 및 검증을 위한 알고리즘이다.
예를 들어, RSA 키 쌍을 생성하기 위해, 생성 연산(generation operation)은, 데이터를 서명하는 RSA 알고리즘에 의해 사용될 수 있는 출력 키 쌍을 생성하는 제1 프로세서(17), 제2 프로세서(19) 또는 제3 프로세서(41)에 의해 수행될 수 있다.
랜덤 엔트로피 소스(random entropy source)는 난수(random numbers)를 생성하기 위해 사용될 수 있고, 상기 난수는 제1 프로세서(17), 제2 프로세서(19) 또는 제3 프로세서(41)에 의해 차례로 사용되어 암호 키 및 암호 키 쌍을 생성한다.
본 출원에서 암호 비대칭 키 쌍은 암호화 및 복호화(decryption)를 지원하는 임의의 비대칭 암호 키 쌍 유형일 수 있다. 예를 들어, 제1 암호 키 쌍(KBLOB)은 RSA 키 쌍 또는 통합 암호화 방안(Integrated Encryption Scheme)(IES) 알고리즘에서 사용될 수 있는 키 쌍일 수 있다.
다음에 기술되는 제1 보안 컨텍스트(5) 및 제2 보안 컨텍스트(7) 사이의 암호 인증서 및 암호 키의 전송은, 서비스 프로바이더에 의해 제공 및 제어되는, 상기 제1 보안 컨텍스트(5) 및 상기 제2 보안 컨텍스트(7)사이의 보안, 인증 채널을 통해 이루어진다. 상기 서비스 프로바이더에 의해 제공되는 보안 채널은 로드 밸런서 또는 방화벽 기기를 이용하여 제공될 수 있다. 이러한 인프라의 사용은 DOS(denial of Service)와 같은 공격을 줄인다.
상기 채널이 제3자로부터 안전하지만, 서비스 프로바이더에 의한 공격당하기 쉽고, 따라서 높은 가치의 암호 키의 전송에 대해 테넌트에 의해 신뢰되지 않는다. 따라서, 보안은, Ktenant의 암호화 및 채널을 통해 전송되는 암호화되는 데이터의 후속 서명으로써 테넌트에 의해 시행된다.
도 2a는 제1 보안 컨텍스트(5) 및 제2 보안 컨텍스트(7) 사이의 신뢰를 설정하는 단계에 대한 방법을 도시하는 흐름도이다. 신뢰를 설정하는 단계에 대한 방법은 본 발명의 일 실시예에 따른 암호 키 전송의 방법의 일부이다. 신뢰를 설정하는 단계에 대한 방법은, 예를 들어, 암호 키(Ktenant)가 생성되기 이전에 수행될 수 있거나, 또는 예를 들어, 상기 암호 키가 생성된 이후지만 제1 보안 컨텍스트(5) 및 제2 보안 컨텍스트(7) 사이의 암호 키의 임의의 교환 이전에 수행될 수 있다.
단계(S201)에서, 제1 보안 컨텍스트의 아이덴티티 키의 공개 절반(K1ID pub) 및 생성 인증서({C1ID } Kman priv)는, 제1 보안 컨텍스트(5)로부터 제2 보안 컨텍스트(7)로 전송된다. 제1 보안 컨텍스트(5) 내 제1 송수신기(13)는 상기 제1 보안 컨텍스트의 아이덴티티 키의 공개 절반(K1ID pub) 및 상기 생성 인증서({C1ID } Kman priv)를 제2 보안 컨텍스트(7) 내 제2 송수신기(15)로 전송하도록 구성된다. 제1 보안 컨텍스트(5) 내 장치(들)의 상태에 관련한 정보는 동일한 메시지로 전송될 수 있다. 장치(들)의 상태에 관련한 정보는 또한 이경우에 상기 생성 인증서 내 포함되고, 상기 메시지에 포함되는 상기 상태 정보를 검증하도록 수신기에 의해 사용될 수 있다.
상기 생성 인증서는 변경할 수 없고, 따라서, 제조시에 이용가능한 정보만을 포함한다. 예를 들어, IP 어드레스 또는 변조 상태와 같은, 장치의 현재 구성과 관련되는 정보가 구성 인증서에 포함될 수 있다. 구성 정보는 생성 인증서와 같은 동일한 시간에, 또는 생성 인증서 이후에 전송될 수 있다. 하지만, 생성 인증서는 제조시에 생성 및 서명되고, 반면에 구성 인증서는 키 전송시에 생성되고, K1ID-priv로 서명된다. 상기 구성 인증서는, 상기 생성 인증서가 확인된 이후에만 확인될 수 있다.
단계(S202)에서, 생성 인증서({C1ID } Kman priv)의 서명은 제2 보안 컨텍스트(7)에서 확인된다. 제2 보안 컨텍스트(7) 내 제2 프로세서(19)는 생성 인증서({C1ID } Kman priv)의 서명을 확인하도록 구성된다. 상기 장치 메모리(11) 내 저장되는 신뢰되는 제조업체 키의 공개 절반(Kman pub)을 이용하여 상기 생성 인증서가 확인된다. 제2 프로세서(19)는 서명 확인 알고리즘을 수행하도록 구성되고. 주어진 서명된 메시지({C1ID } Kman priv) 및 공개 키(Kman pub)는 인증에 대한 메시지의 클레임을 수락하거나 또는 거절한다.
제1 보안 컨텍스트의 아이덴티티 키의 공개 절반(K1ID pub)의 인증은 제2 보안 컨텍스트(7)에서 검증된다. 제2 보안 컨텍스트(7) 내 제2 프로세서(19)는 제1 보안 컨텍스트의 아이덴티티 키의 공개 절반(K1ID pub)을 검증하도록 구성된다. 생성 인증서(C1ID)가 제1 보안 컨텍스트의 아이덴티티 키의 공개 절반(K1ID pub)의 해시를 포함하는 일 실시예에서, 인증은 제1 보안 컨텍스트의 아이덴티티 키의 공개 절반(K1ID pub) 해시를 계산하고, 생성 인증서(C1ID) 내 포함된 것과 일치하는지 여부를 검증함으로써, 검증된다.
일 실시예에서, 생성 인증서(C1ID)는 K1ID의 공개 절반의 해시를 포함하고, 제조업체 비대칭 키의 비공개 절반(Kman priv)으로 서명된다. 단계(S202)는, 상기 메시지로 전송되는 상기 수신된 데이터의 해시를 계산하는 단계 - 상기 수신된 데이터의 해시는 이 경우, K1ID pub의 해시임 -; 암호화 연산이 될 수 있는, 제조업체 키의 공개 절반과 함께, 확인 알고리즘으로 상기 수신된 서명을 입력하고 출력을 확인하는 단계; 및 상기 계산되는 해시를 확인 알고리즘의 출력에 포함되는 것와 비교하여 이들이 동일한지 여부를 결정하는 단계를 포함한다.
단계(S203)에서, 상태 정보가 메시지에 포함되면, 제2 보안 컨텍스트(7)는 장치(들)의 상태가 요건을 충족하는지 여부를 검증한다. 대안적으로, 상태 정보는 생성 인증서 내 포함되지 않고, 제2 보안 컨텍스트(7)는 제1 보안 컨텍스트(5)의 상태를 검증하지 않는다. 제2 보안 컨텍스트(7)는 제1 보안 컨텍스트(5)로 임의의 보안 정보를 전송하지 않기 때문에, 제1 보안 컨텍스트(5)의 상태 정보가 검증될 필요가 없다.
상기 서명이 확인되어 상태 정보가 검증되면, 제1 보안 컨텍스트의 상기 아이덴티티 키의 공개 절반(K1ID pub)이 제2 보안 컨텍스트(7)의 제2 장치 메모리(1) 내 저장된다. 대안적으로, 상기 제1 보안 컨텍스트의 상기 아이덴티티 키의 공개 절반(K1ID pub)은 제2 보안 컨텍스트(7)에 의해 무결성 보호되고, 제2 보안 컨텍스트(7)의 외측의 신뢰할 수 없는 저장소에 저장될 수 있다. 제2 보안 컨텍스트(7)는, 저장을 위해, K2ID priv를 이용하여, 제1 보안 컨텍스트의 아이덴티티 키의 공개 절반, 및 이것은 신뢰되는 소스로부터의 공개 키인 것을 나타내는(indicate) 데이터를 서명할 수 있다. 대안적으로, 다른 비밀 키를 이용하여 암호화할 수 있다. 이 경우에, 키의 신뢰가 유지되는 동안, 신뢰할 수 없는 장치 메모리가 사용될 수 있고, 상기 장치 메모리는 제2 보안 컨텍스트(7) 내의 장치 메모리보다 더 큰 용량을 종종 가진다.
서명이 확인되지 않거나 또는 상태 정보가 검증되지 않으면, 제1 보안 컨텍스트로 에러가 리턴된다. 예를 들어, 메시지는 "액세스 거부됨(AccessDenied)" 내용으로 전송된다. 이 때, 제1 보안 컨텍스트(5) 및 제2 보안 컨텍스트(7) 사이의 통신이 종료된다.
단계(S204)에서, 제2 보안 컨텍스트의 아이덴티티 키의 공개 절반(K2ID pub) 및 생성 인증서({C2ID } Kman priv)는, 제2 보안 컨텍스트(7)로부터 제1 보안 컨텍스트(5)로 전송된다. 제2 보안 컨텍스트(7) 내 제2 송수신기(15)는 제2 보안 컨텍스트의 아이덴티티 키의 공개 절반(K2ID pub) 및 생성 인증서({C2ID } Kman priv)를 제1 보안 컨텍스트(5)내 제1 송수신기(13)로 전송하도록 구성된다. 제2 보안 컨텍스트(7) 내 장치(들)의 상태에 관련한 정보는 동일한 메시지로 전송될 수 있다. 상기 상태 정보를 검증하기 위해, 장치(들)의 상태에 관련한 정보는 또한 이 경우, 상기 생성 인증서 내 포함될 것이다. 다시, 상기 생성 인증서는 변경할 수 없고, 따라서, 제조시에 이용가능한 정보만을 포함한다. 예를 들어, IP 어드레스 또는 변조 상태와 같은, 장치의 현재 구성과 관련되는 정보가 구성 인증서에 포함될 수 있다. 구성 정보는 생성 인증서와 같은 동일한 시간에, 또는 생성 인증서 이후에 전송될 수 있다. 예를 들어, 제1 암호 인증서(CBLOB)의 일부로서 단계(S604)에서 될 수 있다. 하지만, 생성 인증서는 제조시에 생성 및 서명되고, 반면에 구성 인증서는 키 전송시에 생성되고, K2ID-priv로 서명된다. 상기 구성 인증서는, 상기 생성 인증서가 확인된 이후에만 확인될 수 있다.
단계(S205)에서, 생성 인증서({C2ID } Kman priv)의 서명은 제1 보안 컨텍스트(5)에서 확인된다. 제1 보안 컨텍스트(5) 내 제1 프로세서(17)는 생성 인증서({C2ID } Kman priv)를 확인하도록 구성된다. 서명은 장치 메모리(9) 내 저장되는 신뢰되는 제조업체 키의 공개 절반(Kman pub)을 이용하여 확인된다. 제1 프로세서(17)는 서명 확인 알고리즘을 수행하도록 구성되고, 주어진 서명된 메시지({C2ID } Kman priv) 및 공개 키(Kman pub)는 인증에 대한 메시지의 클레임을 수락하거나 거절한다. 이는 제1 보안 컨텍스트(5)가 서명을 확인함으로써, 제2 보안 컨텍스트(7)에서 제조업체 장치를 검증하게 한다.
제2 보안 컨텍스트의 아이덴티티 키의 공개 절반(K2ID pub)의 인증은 제1 보안 컨텍스트(5)에서 검증된다. 제1 보안 컨텍스트(5) 내 제1 프로세서(17)는 제2 보안 컨텍스트의 아이덴티티 키의 공개 절반(K2ID pub)을 검증하도록 구성된다. 생성 인증서(C2ID)가 제2 보안 컨텍스트의 아이덴티티 키의 공개 절반(K2ID pub)의 해시를 포함하는 일 실시예에서, 인증은 제2 보안 컨텍스트의 아이덴티티 키의 공개 절반(K2ID pub) 해시를 계산하고, 생성 인증서(C2ID) 내 포함된 것과 일치하는지 여부를 검증함으로써, 검증된다.
단계(S206)에서, 상태 정보가 메시지에 포함되면, 제1 보안 컨텍스트(5)는 장치(들)의 상태가 요건을 충족하는지 여부를 검증한다.
상기 서명이 확인되어 상태 정보가 검증되면, 제2 보안 컨텍스트의 상기 아이덴티티 키의 공개 절반(K2ID pub)이 제1 보안 컨텍스트(5)의 제1 장치 메모리(9) 내 저장된다. 대안적으로, 제2 보안 컨텍스트의 상기 아이덴티티 키의 공개 절반(K2ID pub)은 제1 보안 컨텍스트(5)에 의해 무결성 보호되고, 제1 보안 컨텍스트(5)의 외측의 신뢰할 수 없는 저장소에 저장될 수 있다. 제1 보안 컨텍스트(5)는, 저장을 위해, K1ID priv를 이용하여, 제2 보안 컨텍스트의 상기 아이덴티티 키의 공개 절반, 및 이것은 신뢰되는 소스로부터의 공개 키인 것을 나타내는 데이터를 서명할 수 있다. 대안적으로, 다른 비밀 키를 이용하여 암호화할 수 있다. 이 경우에, 키의 신뢰가 유지되는 동안, 신뢰할 수 없는 장치 메모리가 사용될 수 있고, 상기 장치 메모리는 제1 보안 컨텍스트(5) 내의 장치 메모리보다 더 큰 용량을 종종 가진다.
서명이 확인되지 않거나 또는 상태 정보가 검증되지 않으면, 제2 보안 컨텍스트(7)로 에러가 리턴된다. 예를 들어, 메시지는 "액세스 거부됨(AccessDenied)" 내용으로 전송된다. 이 때, 제1 보안 컨텍스트(5) 및 제2 보안 컨텍스트(7) 사이의 통신이 종료된다.
도 2b는 본 발명의 일 실시예에 따른 암호 키 전송의 방법의 일부인, 제1 보안 컨텍스트(5)에서 제2 보안 컨텍스트(7)의 구성을 검증하는 단계에 대한 방법을 도시하는 흐름도이다. 이 방법에서, 제2 보안 컨텍스트(7)의 구성이 검증될 수 있다. 일 실시예에서, 제2 보안 컨텍스트(7)에서 제1 보안 컨텍스트(5)의 구성을 검증하기 위해 유사한 방법이 사용될 수 있다. 대안적으로, 제2 보안 컨텍스트(7)는 제1 보안 컨텍스트(5)의 구성을 검증하지 않는다. 제2 보안 컨텍스트(7)는 제1 보안 컨텍스트(5)로 임의의 보안 정보를 전달하지 않으므로, 제1 보안 컨텍스트(5)의 구성이 검증될 필요가 없다.
단계(S211)에서, 제2 보안 컨텍스트(7)에 의해 구성 정보가 생성된다. 상기 구성 정보는 관리자에 의해 적용되는 특정 구성에 관련되는 정보를 포함할 수 있다. 예를 들어, 이것은, 지원되는 암호 연산에 관련되는 정보, 사용되는 암호 키, 및/또는 유닛의 소프트웨어의 버전을 포함할 수 있다. 예를 들어, 상기 구성 정보는, 제2 보안 컨텍스트(7) 내측에 있지 않을 때 제1 보안 컨텍스트(5)가 테넌트 키를 암호화하는 AES 알고리즘을 사용하도록 구성되었다는 것을 나타내는 정보를 포함할 수 있다. 상기 구성 정보는 보안 설정, 어떤 신뢰되는 시간 소스가 사용되는 지 또는 상기 제2 보안 컨텍스트(7)가 상기 장치를 변조하려는 시도가 있었다고 확신하는지 여부와 같은 관리자 배포 옵션에 관련되는 정보를 더 포함할 수 있다.
단계(S212)에서, 구성 정보는 제2 보안 컨텍스트의 아이덴티티 키의 비공개 절반(K2ID priv)에 의해 서명되고, 구성 인증서(C2V)를 생성한다. 상기 제2 보안 컨텍스트의 아이덴티티 키의 비공개 절반(K2ID priv)은 제2 보안 컨텍스트(7)에 저장되고, 관리자에 의해 액세스될 수 없다. 상기 구성 인증서(C2V)를 상기 제2 보안 컨텍스트의 아이덴티티 키의 비공개 절반(K2ID priv)으로 서명하는 것은 상기 구성 정보가 파괴될 수 없다는 것을 의미한다.
단계(S213)에서, 구성 정보 및 구성 인증서(C2V)는 제2 보안 컨텍스트(7)로부터 제1 보안 컨텍스트(5)로 전송된다. 예를 들어, 단계(S204)에서, 이것은 K2ID pub 및 {C2ID } Kman priv와 같이 동일한 시간에 전송될 수 있다. 대안적으로, 구성 정보는 도 6a와 관련하여 설명되는 제1 암호 인증서에 포함될 수 있고, 구성 정보는 제1 암호 인증서(CBLOB)와 같은 동일한 시간에 전송된다. 제2 보안 컨텍스트(7) 내 제2 송수신기(15)는 제1 보안 컨텍스트(5) 내 제1 송수신기(13)로 구성 정보 및 구성 인증서(C2V)를 전송하도록 구성된다.
단계(S214)에서, 서명되는 구성 인증서(C2V)는 제1 보안 컨텍스트(5)에서 확인된다. 제1 보안 컨텍스트(5)의 제1 프로세서(17)는 서명되는 구성 인증서(C2V)를 확인하도록 구성된다. 단계(S204 내지 S206)에서, 수신 및 프로세싱된 이후, 장치 메모리(9)에 저장되는 제2 아이덴티티 키의 공개 절반(K2ID pub)을 이용하여 구성 인증서(C2V)가 확인된다. 제1 프로세서(17)는 서명 확인 알고리즘(signature verification algorithm)을 수행하도록 구성되고, 주어진 서명된 구성 인증서(C2V) 및 공개 키(K2ID pub)는 인증에 대한 메시지의 클레임을 수락하거나 거절한다. 이는, 제1 보안 컨텍스트(5)가 알려진 기기에 의해 구성 정보가 생성되었음을 증명하게 한다.
단계(S215)에서, 제1 보안 컨텍스트는 구성 정보가 그것의 요건을 충족시키는 것을 검증한다.
일 실시예에서, 상기 구성 정보는 상기 제2 보안 컨텍스트(7)로 Ktenant의 전송 이전에 즉시 요청되고 체크된다. 이는 날짜 구성 정보까지 검증된 것을 보장한다.
일 실시예에서, 구성 정보 및 구성 인증서가 또한 생성되고 유사한 방식으로 제1 보안 컨텍스트(5)에 의해 전송된다. 상기 구성 정보는 관리자에 의해 적용되는 특정 구성에 관련되는 정보를 포함할 수 있다. 상기 구성 정보는 제1 보안 컨텍스트(5)의 아이덴티티 키의 비공개 절반으로 서명되고, 상기 제1 보안 컨텍스트(5)의 구성이 그것의 요건을 만족하는지 여부를 검증하는, 제2 보안 컨텍스트(7)로 전송된다.
상술된 방법에서, 상기 테넌트는 자체를 서비스 프로바이더로 등록한다. 등록은 비보안 매체를 통해 2 개의 당사자들의 상호 인증의 형태로 진행한다. 제1 보안 컨텍스트(5)와 제2 보안 컨텍스트(7)의 상호 인증은 고유 비대칭 아이덴티티 키를 이용하여 수행된다. 아이덴티티 키의 공개 절반은 매칭하는 생성 인증서와 함께, 교환된다. 각각의 보안 컨텍스트는, 증명서가 아이덴티티 키의 공개 절반의 해시를 포함하는 것과 증명서가 정말 신뢰되는 제조업체에 의해 생성되었다는 것을 체크함으로써, 다른 것의 생성 인증서를 검증한다. 아이덴티티 키의 생성 인증서는 증명서로서 지칭될 수 있다. 상기 설정된 공유되는 신뢰의 근원(root of trust)을 사용하여, 제1 보안 컨텍스트(5) 및 제2 보안 컨텍스트(7)는 확인 가능한 신뢰되는 파트너와의 보안, 인증 네트워크 통신을 설정한다. 제1 보안 컨텍스트(5) 및 제2 보안 컨텍스트(7)는, 다른 것이 신뢰되는 제조업체에 의해 구축된 것을 각각 암호로 검증한다.
단계(S205)는, Kman pub를 사용하여 제1 보안 컨텍스트에서 상기 서명된 생성 인증서 ({C2ID } Kman priv)를 확인하는 단계이고, 제2 보안 컨텍스트(7)가 알려진 신뢰할 수 있는 원본의 것임을 확인한다.
도 3은 신뢰가 설정된 이후, 및 각각의 보안 컨텍스트에서 관련 키가 생성된 이후, 테넌트 시스템(1) 및 서비스 프로바이더 시스템(3)의 개략도이다.
제1 보안 컨텍스트(5) 내 제1 장치 메모리(9)는 또한 제2 보안 컨텍스트(K2ID pub)의 아이덴티티 키의 공개 절반을 저장한다. 대안적으로, 이 키는 무결성 보호 방식으로 제1 보안 컨텍스트(5)의 외측에 저장될 수 있다. 제1 장치 메모리(9)는, 아래에서 기술되는 단계(S601)에서 생성되는, 테넌트 키(Ktenant), 및 아래에서 기술되는 단계(S401)에서 생성되는, 제2 키 쌍(Ktenant-sign)을 또한 저장한다.
제2 보안 컨텍스트(7) 내 제2 장치 메모리(11)는 또한 제1 보안 컨텍스트의 아이덴티티 키의 공개 절반(K1ID pub)을 저장한다. 대안적으로, 이 키는 무결성 보호 방식으로 제1 보안 컨텍스트(5)의 외측에 저장될 수 있다. 제2 장치 메모리(1)는 또한 후술되는 단계(S602)에서 생성되는 제1 암호 키 쌍 및 제1 암호 인증서를 저장한다.
도 4a는 본 발명의 실시예에 따른 암호 키 전송의 방법의 일부인, 제1 보안 컨텍스트(5)로부터 제2 보안 컨텍스트(7)로 서명 키(Ktenant-sign)를 전송하는 단계에 대한 방법을 도시하는 흐름도이다. 일 실시예에서, 암호 키(Ktenant)가 제2 보안 컨텍스트(7)로 전송되기 전에, 서명 키(Ktenant-sign)를 전송하는 단계의 방법이 수행된다. 암호 키(Ktenant)가 생성된 후에, 서명 키(Ktenant-sign)를 전송하는 단계의 방법이 수행될 수 있다.
단계(S401)에서, 비대칭 암호 키 쌍(
Figure 112022041342282-pat00023
Figure 112022041342282-pat00024
) 및 대응하는 인증서(Ctenant-sign)는 제1 보안 컨텍스트(5)에서 생성된다. 상기 비대칭 암호 키 쌍(
Figure 112022041342282-pat00025
Figure 112022041342282-pat00026
)은 제2 공개 키 및 제2 개인 키로서 지칭되고 상기 대응하는 인증서(Ctenant-sign)는 제2 암호 인증서로서 지칭된다. 제1 보안 컨텍스트(5) 내 제1 프로세서(17)는 비대칭 암호 키 쌍(
Figure 112022041342282-pat00027
Figure 112022041342282-pat00028
) 및 대응하는 인증서(Ctenant-sign)를 생성하도록 구성된다. 제2 암호 인증서(Ctenant-sign)는 제2 공개 키(
Figure 112022041342282-pat00029
)의 서명되는 해시를 포함할 수 있다.
단계(S402)에서, 제2 암호 인증서(Ctenant-sign)는 제1 보안 컨텍스트(K1ID priv)의 아이덴티티 키의 비공개 절반으로 암호화 서명된다. 제1 프로세서(17)는 제1 보안 컨텍스트의 아이덴티티 키의 비공개 절반으로 제2 암호 인증서(Ctenant-sign)를 암호화 서명하도록 구성된다.
따라서, 제2 암호 인증서(Ctenant-sign)는 제2 공개 키(
Figure 112022041342282-pat00030
)의 원본이 검증될 수 있는 정보를 포함한다. 제2 공개 키(
Figure 112022041342282-pat00031
)의 원본이 검증될 수 있는 정보는 제2 공개 키(
Figure 112022041342282-pat00032
)의 서명되는 해시를 포함한다. 제2 암호 인증서(Ctenant-sign)는 제2 공개 키(
Figure 112022041342282-pat00033
)의 해시를 포함하고, 상기 제2 공개 키(
Figure 112022041342282-pat00034
)의 원본이 검증되도록 하게 하는, 제1 보안 컨텍스트의 아이덴티티 키의 비공개 절반으로 서명된다.
단계(S403)에서, 제2 공개 키(
Figure 112022041342282-pat00035
) 및 제2 암호 인증서({Ctenant-sign} K1ID priv)는 제2 보안 컨텍스트(7)로 전송된다. 상기 제1 송수신기(13)는 상기 제2 공개 키(
Figure 112022041342282-pat00036
) 및 상기 제2 암호 인증서({Ctenant-sign} K1ID priv)를 상기 제2 보안 컨텍스트(7)로 전송하도록 구성된다.
단계(S404)에서, 제2 암호 인증서({Ctenant-sign} K1ID priv)는 제2 보안 컨텍스트(7)에서 확인된다. 제2 보안 컨텍스트(7) 내 제2 프로세서(19)는 제2 인증서({Ctenant-sign} K1ID priv)를 확인하도록 구성된다. 제2 인증서는 제1 보안 컨텍스트의 아이덴티티 키의 공개 절반(K1ID pub)을 이용하여 확인된다. 제2 프로세서(19)는 서명 확인 알고리즘을 수행하도록 구성되고, 주어진 서명된 메시지({Ctenant-sign} K1ID priv) 및 공개 키(K1ID pub)는 인증에 대한 메시지의 클레임을 수락하거나 거절한다.
제2 공개 키(
Figure 112022041342282-pat00037
)의 인증은 제2 보안 컨텍스트(7)에서 검증된다. 제2 보안 컨텍스트(7) 내 제2 프로세서(19)는 제2 공개 키(
Figure 112022041342282-pat00038
)를 검증하도록 구성된다. 제2 암호 인증서(Ctenant-sign)가 제2 공개 키(
Figure 112022041342282-pat00039
)의 해시를 포함하는 일 실시예에서, 제2 공개 키(
Figure 112022041342282-pat00040
)의 인증은 제2 공개 키(
Figure 112022041342282-pat00041
) 해시를 계산하고, 제2 암호 인증서(Ctenant-sign) 내 포함된 것과 일치하는지 여부를 검증함으로써, 검증된다.
상기 서명이 확인되고, 상기 제2 공개 키가 검증되면, 상기 제2 공개 키(
Figure 112022041342282-pat00042
)는 상기 제2 보안 컨텍스트(7)의 제2 장치 메모리(11) 내 저장된다. 대안적으로, 그것은 제2 보안 컨텍스트(7)에 의해 무결성 보호되고, 제2 보안 컨텍스트(7)의 외측의 신뢰할 수 없는 저장소에 저장될 수 있다.
서명이 확인되지 않거나 또는 제2 공개 키가 검증되지 않으면, 제1 보안 컨텍스트로 에러가 리턴된다. 예를 들어, 메시지는 "액세스 거부됨(AccessDenied)" 내용으로 전송된다. 이 때, 제1 보안 컨텍스트(5) 및 제2 보안 컨텍스트(7) 사이의 통신이 종료된다.
전술한 방법에서, 신뢰의 성공적인 설정에 따라, 제1 보안 컨텍스트(5)는 비대칭 키(Ktenant-sign)를 생성하고, 제2 보안 컨텍스트(7)는 K1ID의 비공개 절반으로 서명되는 인증서를 포함하는 공개 절반을 제2 보안 컨텍스트(7)로 전송한다. 제2 보안 컨텍스트(7)는, 상기 인증서를 검증하고 Ktenant.sign의 공개 절반을 제2 장치 메모리(11)에 또는 이후 사용을 위한, 보안, 변조-방지 포맷으로 다른 곳에 저장한다. 따라서, 테넌트 시스템 내 제1 보안 컨텍스트(5)는 비대칭 키(Ktenant-sign)를 생성하고, 저장 및 이후 사용을 위해 상기 공개 절반을 제2 보안 컨텍스트로 전송한다.
도 4b는 본 발명의 일 실시예에 따른 암호 키 전송의 방법의 일부인, 테넌트 등록에 대한 방법의 개략도이다. 이 방법은, 아래의 단계(S601)와 관련하여 설명되는 바와 같은 테넌트 암호 키(Ktenant)를 생성하는 단계, 상기 도 2a와 관련하여 설명한 바와 같은 신뢰를 설정하는 단계, 및 상기 도 4a와 관련하여 설명한 바와 같은 상기 제2 공개 키를 생성 및 교환하는 단계를 포함한다.
도면 내 각각의 수직 박스는, 시간의 경과에 따른 폐쇄되는 엔티티, 즉, 제1 보안 컨텍스트(5), 제2 보안 컨텍스트(7) 및 시간 소스(3)를 나타내고, 시간은 하향으로 증가한다. 화살표 및 루프가 시작하고 종료하는 블록은 특정 프로세스의 지속을 표시한다. 예를 들어, 제2 보안 컨텍스트(7)는 제1 보안 컨텍스트의 아이덴티티 키의 공개 절반(K1ID pub) 및 대응하는 생성 인증서를 수신한다. 이는 제2 보안 컨텍스트(7) 내 프로세스를 시작하는 것이다. 프로세스의 다음 단계는 인증서를 검증하고, 인증서가 검증되지 않을 경우, 에러 메시지, 또는 인증서가 검증될 경우 자신의 공개 아이덴티티 키 및 인증서를 포함하는 메시지와 같은, 제1 보안 컨텍스트(5)에 대한 응답을 전송하는 것이다. 이는 특정 프로세스의 종료이다.
루프는, 예를 들어, 검증과 같은, 임의의 다른 엔터티와의 상호 작용을 필요로 하지 않는, 프로세스에 내부에서 발생하는 액션을 표시한다. 엔티티들 사이에서 교차하는 라인은 엔티티들 사이의 통신을 표시한다.
암호 키(Ktenant)는 제1 보안 컨텍스트(5) 내 생성된다. 상기 제2 암호 키(Ktenant-sign)는 제1 보안 컨텍스트(5) 내 생성된다. 아이덴티티 키의 공개 절반(K1ID pub) 및 서명된 인증서({C1ID } Kman priv)는 제1 보안 컨텍스트(5)로부터 제2 보안 컨텍스트(7)로 전송되고, 제2 보안 컨텍스트(7)에서 및 검증된다. 아이덴티티 키의 공개 절반(K2ID pub) 및 서명된 인증서({C2ID } Kman priv)는 제2 보안 컨텍스트(7)로부터 제1 보안 컨텍스트(5)로 전송되고, 제1 보안 컨텍스트(5)에서 및 검증된다. 제2 암호 키(Ktenant-sign pub) 및 서명된 인증서({Ctenant-sign} K1ID priv)는 검증 및 저장되는 제2 보안 컨텍스트(7)로 전송된다.
도 5는, 아래의 도 6a와 관련되어 논의되는, 데이터 전송 프로세스 동안 제2 공개 키(Ktenant-sign pub)가 교환된 이후 테넌트 시스템(1) 및 서비스 제공 시스템(3)에 대한 개략도이다.
일 실시예에서, Kblob 및 Cblob는 일시적이고, 일단 Ktenant가 전송되면, 상기 제2 보안 컨텍스트(7)에서 삭제된다.
제2 보안 컨텍스트(7) 내 제2 장치 메모리(11)는 또한 제2 키(Ktenant-sign pub)의 공개 절반을 저장한다. 대안적으로, 이 키는 무결성 보호 방식으로 제1 보안 컨텍스트(5)의 외측에 저장될 수 있다.
도 6a는 본 발명의 일 실시예에 따른, 제1 보안 컨텍스트(5)로부터 제2 보안 컨텍스트(7)로의 데이터 전송 방법을 도시하는 흐름도이다. 도 6a에 도시되는 실시예에서, 데이터는 암호 키(Ktenant)이다.
일단 테넌트 시스템이 자체를 서비스 프로바이더 시스템에 등록했다면, 제1 보안 컨텍스트(5)은 보안, 인증된 연결을 통해 제2 보안 컨텍스트(7)에 연결하고, 키 전송, 또는 가져오기, 프로세스를 시작한다.
단계(S601)에서, 암호 키(Ktenant) 및 대응하는 액세스 제어 리스트(ACL)는, 제1 보안 컨텍스트(5)에서 생성된다. 제1 보안 컨텍스트(5) 내 제1 프로세서(17)는 암호 키(Ktenant) 및 대응하는 액세스 제어 리스트를 생성하도록 구성된다.
따라서, 제1 보안 컨텍스트(5)는 서비스 프로바이더에게 빌려주고 있을, 키(Ktenant)를 생성한다. Ktenant는, 액세스 제어 리스트(ACL)와 함께 제1 보안 컨텍스트(5) 내 보안 기기 내측에서 생성된다.
ACL은 예를 들어, 사용 인증서와 같은, 유효한 사용 자격증명(valid use credential)이 키의 제1 유형의 사용을 허가하기 위해 제시되어야 한다는 것을 지정한다. 예를 들어, 제1 유형의 사용은 암호화 연산일 수 있다. 상기 ACL은 키가 사용될 수 있는 방식, 그것의 사용 상의 임의의 제한 및 무슨 자격증명이 인에이블될(enabled) 각각의 연산에 제공되어야 하는지를 기술한다.
대안적인 실시예에서, 상기 암호 키(Ktenant)는 제1 보안 컨텍스트(5)에서 생성되지 않고, 하지만 제1 보안 컨텍스트(5)의 외측에 생성되고 제1 보안 컨텍스트(5)에 제공된다.
대안적인 실시예에서, 상기 암호 키(Ktenant) 대신에, 몇몇 다른 종류의 데이터가 제1 보안 컨텍스트(5)에서 생성되거나 제1 보안 컨텍스트(5)에 제공된다. 유효한 사용 자격증명이 상기 데이터의 제1 유형의 사용을 허가하기 위해 제시되어야 한다는 것을 지정하는, 상기 데이터에 대응하는 액세스 제어 리스트가 생성된다. 예를 들어, 제1 유형의 사용은 데이터 파일의 콘텐츠를 판독하는 것일 수 있다.
이하의 설명에서, 상기 방법 및 장치는 테넌트 키의 전송 및 대여를 참조하여 기술되지만, 몇몇 다른 종류의 데이터는 상기 테넌트 키를 대신할 수 있고, 동일한 방식으로 전송 및 대여될 수 있다는 것이 이해된다.
상기 ACL은 하나 이상의 권한, 또는 정책을 포함할 수 있다. 각각의 권한은 키의 특정 사용을 지배할 수 있다. 예를 들어, 제1 권한은 키가 저장될 수 있는 방식을 지배하고, 제2 권한은 키가 암호화에 사용될 수 있는 방식을 지배하고, 제3 권한은 키가 복호화(decryption) 등에 사용될 수 있는 방식을 지배한다.
상기 ACL은 특정 권한과 연관되는 자격증명(들)을 포함하기도 한다. 상기 자격증명은 특정 권한을 인가하기 위해 무엇이 제공되어야 하는지를 지정한다. 예를 들어, 저장 권한과 같은, 몇몇 권한은 연관되는 자격증명을 가지지 않을 수도 있다.
도 2a 및 b와 관련하여 기술되는 바와 같이, 키가 전송되기 전에, 상기 테넌트는 제2 보안 컨텍스트(7)가 상기 ACL에서의 요건에 부합하는지를 검증하였다. 상기 테넌트는 상기 제2 보안 컨텍스트(7)가 신뢰되는 제조업체에 의해 제조된 것을 검증한다. 상기 테넌트는 상기 제2 보안 컨텍스트(7)가 상기 테넌트의 보안 요건을 충족하는 것을 검증할 수도 있다. 제2 보안 컨텍스트(7)가 신뢰할 수 있고 상기 테넌트 요건을 충족하는 것을 검증함으로써, 상기 테넌트는 제2 보안 컨텍스트(7)가 ACL 내 포함된 정책/권한을 시행할 것이라는 것을 확신할 수 있다.
상기 액세스 제어 리스트는 암호 키(Ktenant)의 특정 사용(들)을 허용하기 위해 예를 들어, 사용 인증서와 같은, 유효한 사용 자격증명이 제시되어야 하는 것을 지정한다. 따라서, Ktenant ACL은 예를 들어, 키가 암호화에 사용될 때마다 유효 인증서가 제시되어야 한다는 것을 요청할 수 있다. 이 사용들에 관련되는 상기 권한은 따라서 연관되는 예를 들어, 사용 인증서와 같은, 자격증명을 가진다.
예를 들어, 테넌트는, 유효 사용 인증서가 암호화를 위한 키를 사용하여 지배하는 권한에 필요하다는 것을 지정할 수 있다. 따라서, 암호화를 위한 상기 암호 키(Ktenant)를 사용하기 위해, 유효 사용 인증서가 상기 권한을 활성화하도록 제시될 필요가 있을 수 있다.
상기 권한은, 상기 사용 인증서가 상기 권한에 대응하는 사용을 허가하기 위해, 상기 사용 인증서에 대응하는 암호 키(Ktenant)가 식별될 수 있는 정보를 포함해야 하는 것을 지정할 수 있다. 상기 ACL은 Ktenant의 해시를 포함할 수 있다.
상기 ACL은 제2 보안 컨텍스트(7)에 대한 참조를 포함할 수 있다. 제2 보안 컨텍스트(7)에 대한 상기 참조는 아이덴티티 키의 공개 절반(K2ID pub)의 해시를 포함할 수 있다.
일 실시예에서, 상기 권한은, 상기 권한과 연관되는 사용을 허가하기 위해 상기 테넌트에 의해 소유되는, 비대칭 키(Ktenant-sign)의 비공개 절반으로 서명되는 인증서의 제시를 요청한다. 상기 권한은, 암호 키(Ktenant)의 사용을 허가하기 위해, 사용 인증서가 제2 개인 키(
Figure 112022041342282-pat00043
로 서명되어야 하는 것을 지정한다.
일 실시예에서, 상기 권한은, 상기 사용 인증서의 만료가 결정될 수 있고, 상기 권한과 연관되는 암호 키(Ktenant)의 사용을 허가하기 위해 만료되지 않아야 하는 정보를 상기 사용 자격증명이 포함해야 한다는 것을 지정할 수 있다. 따라서, 상기 테넌트는, 상기 사용 자격증명에서, 이후 상기 키는 추가 인가가 제공될 때까지 사용되지 않을 수 있는, 그것의 키에 대한 만료 시간을 지정할 수 있다. 이는, 키가 사용될 수 있을 때의 보증과 함께, 테넌트 및 서비스 프로바이더 사이에서의 암호화 재료의 전송을 허용한다. 키의 사용이 테넌트에 의해 지정되는 바와 같은 설정된 양의 시간 동안만 가능한 것을 보장한다.
일 실시예에서, 상기 ACL은, 사용 인증서가 사용 인증서의 유효 기간의 "시작 시간(start time)"이 결정될 수 있는 정보를 포함해야 한다는 것, 및 상기 권한과 연관되는 암호 키(Ktenant)의 사용을 허가하기 위해 상기 시작 시간이 지난 것이 확실한 것을 지정하는 권한을 포함한다. 따라서, 상기 테넌트는, 추가 인가가 제공될 때까지 상기 키가 사용될 수 없는 외측의, 키에 대한 유효 기간을 지정할 수 있다. 상기 테넌트에 의해 지정되는 바와 같이, 설정된 기간 동안만 상기 키의 사용이 가능한 것을 보장한다.
암호 키(Ktenant)의 저장소를 지배하는 권한에 대해, 상기 인증서 자격증명은 제시되지 않을 수 있다. 예를 들어, 이는 저장소를 지배하는 권한은 항상 활성화되거나, 또는 키가 비-휘발성 매체에 저장될 때까지만 활성화되는 것을 의미한다. 이는 제2 보안 컨텍스트(7)가 인증서 없이 키를 저장하게 한다. 키가 비-휘발성 매체에 저장될 때까지만 저장소를 지배하는 권한이 활성화된 경우에, 상기 권한은 임시 권한이며 저장 이후 비활성화된다. 즉, 상기 ACL에서 해체된다.
상기 권한은, 제2 보안 컨텍스트(7)를 벗어날 수 없는 키로 저장을 위해 암호화될 때만, 제2 보안 컨텍스트(7)의 외측에 암호 키(Ktenant)가 저장될 수 있는 것을 지정할 수 있다. 상기 권한은, Ktenant가 제2 보안 컨텍스트(7)를 벗어날 수 없는 키로만 암호화될 수 있고 서비스 프로바이더와 같은, 관리자에 의해 제어될 수 없는 것을 지정할 수 있다. 상기 권한은, 키 유형(들)과 테넌트 키(Ktenant)를 암호화하는 것에 사용될 수 있는 메커니즘(들)을 포함할 수도 있고, 예를 들어, 테넌트 키(Ktenant)는 256 비트의 AES 키와 함께 AES-GCM 암호화를 이용하여 오직 암호화될 수 있다. 상기 권한은, 암호 키(Ktenant)가 상기 제2 보안 컨텍스트(7) 내측에 저장될 수도 있는 것을 지정할 수 있다.
일 실시예에서, 상기 권한은 암호 키(Ktenant) 및 ACL이 인증된 암호화 알고리즘에 의해 암호화되도록 하는 것을 지정한다.
일 실시예에서, 상기 권한은, 암호 키(Ktenant)의 원본이 식별될 수 있는 정보가 상기 암호화된 암호 키(Ktenant) 및 액세스 제어 리스트와 같은 동일한 데이터 구조 내 저장되고, 인증 보호되는 것을 지정한다.
대안적으로, 상기 권한은, 암호 키(Ktenant)가 제2 보안 컨텍스트(7) 내측에만 저장될 수 있는 것을 지정할 수 있다.
상기 Ktenant ACL는, 상기 테넌트 키가 제2 보안 컨텍스트(7) 내측에 저장될 수만 있고, 그리고/또는 서비스 프로바이더에 의해 획득될 수 없는 키로 제2 보안 컨텍스트(7) 외측에 저장을 위해 암호화될 경우, 제2 보안 컨텍스트(7) 외측에 저장될 수만 있는 것을 지정하는, 권한을 포함한다. 제2 보안 컨텍스트(7)가 ACL에서 지정되는 정책을 시행하는 한, 상기 테넌트 키(Ktenant)는 호스팅 제공자 시스템(3)에 노출되지 않는다.
상기 테넌트는, 제2 보안 컨텍스트(7)가, 제2 보안 컨텍스트(7)의 제조업체가 신뢰되는 제조업체인 것을 검증하는 정보를 수신하였으므로, 상기 정책을 시행할 것을 보장하였다. 제2 보안 컨텍스트의 제조업체를 식별하는 정보는 생성 인증서로 전송된다. 예를 들어, 상기 생성 인증서는 제조업체 개인 키로 서명된다. 또한, 상기 테넌트는, 제2 보안 컨텍스트(7)의 제품, 소프트웨어 및 하드웨어를 검증하는 정보를 수신하였다. 이 정보는 생성 인증서로 전송된다. 상기 제조업체가 신뢰되는 제조업체로서 식별되는 한, 상기 테넌트는 제2 보안 컨텍스트(7)가 상기 제조업체에 의해 제공되는 상기 정보에 따른다는 것을 신뢰한다. 예를 들어, 생성 인증서가 소프트웨어 및 하드웨어는 서비스 프로바이더에 의한 공격에 영향을 받지 않는다는 것을 지정하는 정보를 포함할 경우, 상기 테넌트는, 상기 정보가 신뢰되는 제조업체에 의해 제공되므로, 이것이 그 경우이다고 신뢰한다. 상기 테넌트는, 상기 서비스 프로바이더가 제2 보안 컨텍스트(7)를 이용하여, 상기 제조업체로부터 특정 보증을 가지고 있는 것을 상기 생성 인증서로부터 검증할 수 있다. 상기 제조업체는, ACL이 제2 보안 컨텍스트(7)에 의해 시행될 것임을 보증하는 생성 인증서 내 정보를 제공할 수 있다. 상기 테넌트가 상기 제조업체를 신뢰하는 한, 이 보증은 또한 신뢰할 수 있다. 따라서, 상기 테넌트가 ACL이 집행될 것임을 확실하게 하도록 하는 보증 정보는 상기 제조업체로부터 비롯한다. 또한, 구성 인증서로 전송된 구성 정보는, 물리적으로 또는 해킹을 시도함으로써, 누군가가 제2 보안 컨텍스트(7)를 변조하려는 시도를 했는지 여부를 상기 테넌트에게 알린다. 일단 상기 테넌트가 제2 보안 컨텍스트(7)가 변조되지 않았다는 것을 확정하면, 상기 제조업체로부터의 보증은 여전히 적용 가능하다.
상기 ACL은 서비스 프로바이더에게 또는 상기 서비스 프로바이더에 대한 권한을 가지는 보안 기관으로의 원시 암호화 재료의 노출 없이, 테넌트 및 서비스 프로바이더 사이에서 암호화 재료의 전송을 허용한다. 예를 들어, 영국에 기반한 테넌트는 미국 서비스 프로바이더에 의해 그들의 암호 키가 액세스 가능한 것을 원하지 않을 것이다. 이는 영국-기반 회사(UK-based company)에 대한 권한을 가지지 않는 미국 보안 기관(American security agency)으로 키가 넘겨짐에 대한 두려움 때문이다.
또한, 테넌트마다 전용 기기를 유지하는 필요를 제거하는 것은 상기 서비스 프로바이더가 단일 인프라 내측의 다수의 테넌트로부터 키를 지원하게 한다. 상기 테넌트는 그들의 키가 제3자에게 액세스 가능한 것을 원하지 않을 수 있다. 테넌트의 키를 추출할 수 있는 제3자는 상기 키를 사용할 수 있기 때문이다. 암호 키(Ktenant)가 제2 보안 컨텍스트(7)의 내측에 및/또는 제2 보안 컨텍스트(7)를 벗어날 수 없는 키로 저장을 위해 암호화될 경우, 제2 보안 컨텍스트(7)의 외측에 저장될 수만 있는 것을 지정하는, 권한을 포함하는 액세스 제어 리스트를 제공하는 것은, 원시 키 재료가 다른 테넌트로 전혀 노출되지 않는 것을 보장하는 동안, 다수의 테넌트가 동일한 암호화 인프라를 사용하게 한다. 서비스 프로바이더 및 테넌트는 효율성을 향상시키는 보안 방식으로 암호화 인프라를 공유할 수 있다.
따라서, 상기 ACL에 포함되는 권한 또는 권한들은, Ktenant가 저장될 수 있고 설정되는 방식을 제한하여 Ktenant가 상기 서비스 프로바이더를 포함하는 누군가에 의해 액세스 불가하도록 한다. 상기 키의 제1 유형의 사용에 대응하는 권한이, 상기 테넌트에게만 알려진 개인 키로 서명되는 인증서 자격증명에 의해 활성화될 수만 있으므로, 제2 보안 컨텍스트(7)는 인증서를 인가하는 것과 같은 이러한 시간이 상기 키와 함께 제시되는 때까지 상기 키의 제1 유형의 사용을 허용하지 않을 것이다. 이는 원시 키 재료의 제1 유형의 사용이 상기 서비스 프로바이더를 포함하는, 임의의 제3자에 의해 액세스 가능하지 않다는 것을 의미한다. 따라서, 상기 테넌트는 상기 서비스 프로바이더 또는 임의의 다른 자에게 그들의 암호 키가 노출되는 않는 보증을 유지할 수 있다. 상기 테넌트는, 액세스 제어 리스트를 통해, 제2 보안 컨텍스트로 한번 가져와진 그것의 키의 사용을 제어할 수 있다.
상기 액세스 제어 리스트는, 테넌트 키(Ktenant)의 특정 사용을 허용하기 위해 특정 정보가 사용 인증서로 제공되어야 하는 것을 지정할 수 있다. 이 방식에서, 상기 테넌트는 상기 서비스 프로바이더에 의해 키가 사용되는 방식을 제한할 수 있다. 예를 들어, 상기 ACL은, 특정 개인 키로 서명된 인증서가 제시되는 경우, 데이터를 암호화하도록 테넌트 키가 사용될 수 있다는 것을 지정하는 권한을 포함할 수 있다. 따라서, 권한과 연관되는 자격증명은 특정 개인 키로 서명된 인증서이다. 또한, 그것은 다른 개인 키로 서명된 인증서에 의해 제시될 경우, 복호화(decrypt)가 이용 가능하다는 것을 지정하는 권한을 포함할 수 있다. 각각의 권한은 예를 들어, 다른 개인 키로 서명된 인증서와 같은, 다른 자격증명을 요청할 수 있다.
권한이 지정할 수 있는 추가 정보는, 상기 인증서 내 포함된다. 인증서가 발행된 시간을 포함할 수 있고, 타임 스탬프는 공유된 신뢰되는 클럭 및/또는 인증서가 사용될 수 있는 기기의 아이덴티티(예를 들어, KIDpub의 해시)에 대한 참조를 포함한다. 아이덴티티를 포함하는 것은 키가 사용될 수 있는 컨텍스트 내의 어떤 기기를 제한한다.
제2 보안 컨텍스트와의 설정된 신뢰 및 테넌트 키(Ktenant)에 대응하는 ACL의 제공은, 상기 테넌트가 서비스 프로바이더가 상기 테넌트가 규칙의 세트를 지키는 것을 암호로 검증하게 한다. 상기 테넌트가 규칙의 세트는 즉, 일단 키가 전송되면 원시 암호화 재료의 비-공개 및 사용법을 보증하는, ACL에서 제공된 것이다. 이는, 상기 테넌트가 멀티-테넌시(multi-tenancy)를 지원하는 동안, 제한된 방식으로 사용을 위해 상기 서비스 프로바이더에게 암호 키를 안전하고 확인 가능하게 대여하게 한다.
상기 ACL은, 상기 서비스 프로바이더가 테넌트의 원시 키 재료에 대한 액세스를 가지지 않는다는 것을 보장하는 정책을 포함하고, 상기 테넌트는 그들의 키가 그것의 제어 하의 상황에서 사용할 수만 있는 보증을 가지고, 다수의 테넌트는 보안 방식으로 동일한 암호화 인프라를 공유할 수 있다. 이는, 사용될 수 있는 기간을 제한하는 동안, 키(Ktenant)의 대여를 허용한다. 이는, 일단 서비스 프로바이더에 의해 호스트되면, 테넌트가 그들의 키의 사용을 정확하게 제어하게 한다.
Ktenant가 생성된 후에, 상기 테넌트는 상기 서비스 프로바이더와 함께 키-대여 프로토콜을 시작한다. 예를 들어, 제1 보안 컨텍스트(5)는 단계(S602)를 시작하는, 제2 보안 컨텍스트(7)로 메시지를 전송할 수 있다. 상기 메시지는 KBLOB pub를 요청할 수 있다.
단계(S602)에서, 암호화 방식으로 사용하기 적합한 제1 암호 키 쌍 및 제1 암호 인증서(CBLOB)는 제2 보안 컨텍스트(7)에서 생성된다. 상기 제1 암호 키 쌍은 제1 공개 키(KBLOB pub) 및 제1 개인 키(KBLOB priv)를 포함한다. 일 실시예에서, 상기 제1 암호 인증서는 제1 공개 키(KBLOB pub)의 해시를 포함한다.
일 실시예에서, 새로운 제1 암호 키 쌍(KBLOB) 및 제1 암호화 인증서(CBLOB)는 데이터 전송 각각(each data transfer)에 대해 생성된다. 즉, 각각의 제1 암호 키 쌍(KBLOB) 및 제1 암호화 인증서(CBLOB)는 단일 사용(single use)에 대해서 오직 유효하다.
일 실시예에서, 제1 암호화 인증서(CBLOB) 및 구성 인증서는 단일 인증서이다. 다른 말로, 도 2b의 방법 대신에, 제1 암호 인증서는 제2 보안 컨텍스트의 현재 구성에 관련되는 정보를 더 포함하여 생성된다. 상기 제2 보안 컨텍스트의 현재 구성에 관련되는 정보는 도 2b와 관련하여 설명되는 바와 같을 수 있다.
단계(S603)에서, 제1 암호화 인증서(CBLOB)는 제2 보안 컨텍스트의 아이덴티티 키의 비공개 절반(K2ID priv)으로 암호화 서명된다. 제2 프로세서(19)는 상기 제2 보안 컨텍스트의 아이덴티티 키의 비공개 절반(K2ID priv)으로 상기 제1 암호화 인증서(CBLOB)를 암호화 서명하도록 구성된다.
일 실시예에서, 상기 제1 암호화 인증서(CBLOB)는 KBLOB pub가 제2 보안 컨텍스트(7)에서 생성된 것을 검증한다. 상기 제1 암호화 인증서는 상기 암호 키(KBLOB pub)의 원본이 검증될 수 있는 정보를 포함한다. 일 실시예에서, 상기 암호 키(KBLOB pub)의 원본이 검증될 수 있는 정보는 제1 공개 키(KBLOB pub)의 서명된 해시이다. 다른 말로, 상기 제1 암호화 인증서(CBLOB)는, 제1 공개 키(KBLOB pub)의 해시를 포함하고, 제1 공개 키(KBLOB pub)의 원본이 검증되도록 하게 하는, 상기 제2 보안 컨텍스트의 아이덴티티 키의 비공개 절반(K2ID priv)으로 서명된다.
상기 제1 암호 인증서는 상기 서비스 프로바이더가 상기 인증서를 생성한 것을 증명하기 위해 K2ID priv로 서명된다. 상기 해시를 포함하는 것은, 전송동안 제1 공개 키(KBLOB pub)와 같은, 상기 데이터가 변조되지 않았음을 검증하기도 한다.
일 실시예에서, 제1 암호 인증서는, KBLOB priv가 일시적인 것과 KBLOB priv는 제2 보안 컨텍스트를 벗어날 수 없는 것을 검증하는 정보를 포함한다. KBLOB priv가 일시적인 것과 KBLOB priv는 제2 보안 컨텍스트를 벗어날 수 없는 것을 나타내는 정보는, 제1 암호 키 쌍(KBLOB)과 함께 제1 보안 컨텍스트(5)로 전송된다. 상기 제1 암호 인증서는, 이 정보를 포함하고 서명되고, 따라서 메시지에 포함된 상기 정보를 검증한다.
단계(S604)에서, 제1 공개 키(KBLOB pub) 및 제1 암호 인증서({CBLOB}K2ID priv)는 상기 제1 보안 컨텍스트(5)로 전송된다. 예를 들어, KBLOB priv가 일시적인 것과 KBLOB priv는 제2 보안 컨텍스트를 벗어날 수 없는 것을 나타내는, KBLOB pub와 관련되는 정보는, 제1 암호 키 쌍(KBLOB)과 함께 제1 보안 컨텍스트(5)로 전송되고 상기 제1 인증서에 포함될 수도 있다. 제2 송수신기(15)는 제1 공개 키(KBLOB pub) 및 서명된 제1 암호 인증서({CBLOB}K2ID priv)를 제1 보안 컨텍스트(5)로 전송하도록 구성된다. 구성 정보 및/또는 상기 키에 대한 정보는 동일한 메시지로 상기 제1 보안 컨텍스트(5)로 전송될 수 있다.
따라서, 단계(S602 내지 S604)에서, 시작 메시지에 응답하여, 제2 보안 컨텍스트(7)는, 비대칭 키(KBLOB)를 생성하고, 상기 공개 절반 및 제2 보안 컨텍스트의 아이덴티티 키의 비공개 절반(K2ID priv)으로 서명된 인증서를 제1 보안 컨텍스트(5)로 전송한다. KBLOB는 수반되는 키 인증서(CBLOB)와 함께 제2 보안 컨텍스트(7) 내측에 생성된, 일시적 비대칭 키이다. CBLOB는, 상기 키가 제2 보안 컨텍스트(7) 내측 기기에 의해 생성된 것, Kblob의 비공개 절반은 일시적이고 제2 보안 컨텍스트(7)를 벗어날 수 없는 것을 상기 테넌트가 검증하게 한다. 상기 서비스 프로바이더는 KBLOB의 공개 절반 및 CBLOB를 제1 보안 컨텍스트(5)로 전송한다.
단계(S605)에서, 서명되는 제1 암호화 인증서({CBLOB}K2ID priv)는 제1 보안 컨텍스트(5)에서 확인된다. 제1 보안 컨텍스트(5) 내 제1 프로세서(17)는 상기 서명된 제1 암호화 인증서({CBLOB}K2ID priv)를 확인하도록 구성된다. 상기 서명된 제1 암호화 인증서({CBLOB}K2ID priv)는 제2 보안 컨텍스트의 아이덴티티 키의 공개 절반(K2ID pub)을 사용하여 확인된다. 상기 제1 프로세서(17)는 서명 확인 알고리즘을 수행하도록 구성되고, 주어진 서명된 메시지({CBLOB} K2ID priv) 및 공개 키(K2ID pub)는 인증에 대한 메시지의 클레임을 수락하거나 거절한다.
상기 제1 공개 키(KBLOB pub)의 인증은 제1 암호 인증서(CBLOB)로부터 제1 보안 컨텍스트(5)에서 검증된다. 상기 제1 보안 컨텍스트(5) 내 상기 제1 프로세서(17)는 상기 제1 공개 키(KBLOB pub)를 검증하도록 구성된다. 제1 암호 인증서(CBLOB)가 제1 공개 키(KBLOB pub)의 해시를 포함하는 일 실시예에서, KBLOB pub는 제1 공개 키(KBLOB pub)의 해시를 계산하고, 제1 암호 인증서(CBLOB) 내 포함된 것과 일치하는지 여부를 검증함으로써, 검증된다. 예를 들어, 현재 구성 정보 및 제1 공개 키(KBLOB pub)에 관련되는 정보와 같은, 제1 공개 키(KBLOB pub)와 함께 전송되는 임의의 다른 정보는 또한 상기 인증서로부터 검증된다.
서명이 확인될 경우, 상기 제1 공개 키(KBLOB pub)는 제1 보안 컨텍스트(5)의 제1 장치 메모리(9) 내 저장된다. 대안적으로, 그것은 제1 보안 컨텍스트(5)에 의해 무결성 보호되고, 제1 보안 컨텍스트(5)의 외측의 신뢰할 수 없는 저장소에 저장될 수 있다.
상기 서명이 확인되지 않거나 또는 상기 키가 검증되지 않으면, 상기 제2 보안 컨텍스트(7)로 에러가 리턴된다. 예를 들어, 메시지는 "액세스 거부됨(AccessDenied)" 내용으로 전송된다. 이 때, 제1 보안 컨텍스트(5) 및 제2 보안 컨텍스트(7) 사이의 통신이 종료된다.
제1 암호 인증서(CBLOB)가 제2 보안 컨텍스트의 현재 구성에 관련되는 정보를 더 포함하여 생성되는 일 실시예에서, 상기 제2 보안 컨텍스트의 현재 구성에 관련되는 정보는 또한 단계(S605)에서 검증된다. 도 2b와 관련하여 설명되는 바와 같다. 상기 메시지에 포함되는 임의의 키 정보는 또한 검증된다.
따라서, 단계(S605)에서, 제1 보안 컨텍스트는 인증서를 사용하여 KBLOB의 파라미터를 검증할 수 있고, 상기 소스를 인증하고, 잘-형성되고 상기 테넌트에 의해 예상되는 상기 보안 정책에 부합하는 지 여부를 체크한다. 테넌트가 요청할 수 있는 상기 보안 정책은 키 길이, 키 유형 및/또는 키 권한-자격증명 쌍을 포함할 수 있다. 키 권한은 키가 사용될 수 있는 연산을 기술하도록 사용된다. 예를 들어, 권한은 키가 다른 키를 암호화하도록 사용될 수 있다는 것 또는 데이터를 암호화 서명하기 위해 사용될 수 있다는 것을 지정할 수 있다. 권한은 사용될 수 있기 전에, 매칭되는 자격증명에 의해 활성화되어야 한다. 이 시스템에서 자격증명은 확인 가능한 암호 인증서의 형태를 취한다. 상기 제1 보안 컨텍스트(5)는 CBLOB, KBLOB의 비공개 절반이 일시적이라는 것, 상기 제2 보안 컨텍스트(7)가 신뢰되는 소스에 의해 제조된다는 것, 및 상기 제2 보안 컨텍스트(7)의 상태는 키를 대여하기에 적합하다는 것을 검증한다.
단계(S606)는 제1 보안 컨텍스트(5)에서 제1 공개 키(KBLOB pub)로 암호 키(Ktenant) 및 대응하는 액세스 제어 리스트를 암호화하는 단계를 포함한다. 상기 제1 프로세서(17)는 상기 암호 키(Ktenant) 및 상기 대응하는 액세스 제어 리스트를 상기 제1 공개 키(KBLOB pub)로 암호화하도록 구성된다.
제1 보안 컨텍스트(5) 및 제2 보안 컨텍스트(7) 사이의 통신 채널은 서비스 프로바이더에 의해 제공되고 제어될 때, Ktenant와 같은 높은 가치의 암호 키의 전송에 대해 상기 테넌트에 의해 신뢰되지 않는다. 상기 서비스 프로바이더에 의해 공격당하기 쉽기 때문이다. 따라서, Ktenant의 보안은, 제1 공개 키(KBLOB pub)를 이용한 Ktenant의 암호화로써 상기 테넌트에 의해 시행된다. 제1 인증서(CBLOB)는 상기 테넌트가 Kblob의 비공개 절반이 제2 보안 컨텍스트(7)를 전혀 벗어날 수 없는 것을 검증하게 하고, 따라서 제1 공개 키(KBLOB pub)를 이용한 Ktenant의 암호화로써, 상기 서비스 프로바이더가 상기 통신 채널을 공격할 수 있음에도, 상기 테넌트는 Ktenant가 상기 서비스 프로바이더로부터 안전한 것을 보장한다.
이 방식으로 상기 테넌트 키의 암호화는, 제1 보안 컨텍스트(5) 및 제2 보안 컨텍스트(7) 사이의 신뢰를 근원으로 하는, 안전한 채널을 제공한다. 이는, 제1 보안 컨텍스트(5) 및 제2 보안 컨텍스트(7)에 의해 신뢰되지 않는, 더 높은 레벨의 보안 인증 채널이 상기 테넌트 및 서비스 프로바이더 사이트 사이에서 사용되게 한다. 이 더 높은 레이어의 보안 채널은, 로드 밸런서 또는 방화벽 기기를 이용하여 상기 서비스 프로바이더에 의해 제공될 수 있다. 상기 테넌트 키의 상기 암호화는, 상기 서비스 프로바이더가 이 인프라를 사용하는 것을 계속하여 서비스의 거부와 같은 공격을 완화하게 하지만, 여전히 컨텍스트가 외부 보안 서비스를 신뢰해야 할 필요가 없는 컨텍스트 투 컨텍스트 보안(context to context security)을 허용한다.
KBLOB pub는 Ktenant의 암호화 이후 상기 테넌트에 의해 폐기될 수 있다.
일 실시예에서, 암호 키(Ktenant)의 원본이 검증될 수 있는 정보는 서명된 암호화된 테넌트 키 및 액세스 제어 리스트({{Ktenant , ACL} KBLOB pub} Ktenant-sign priv)이다.
따라서, 단계(S607)에서, 단계(S606)로부터의 출력 blob는 Ktenant-sign의 비공개 절반을 사용하여 암호화 서명된다. 상기 제1 프로세서(17)는 Ktenant-sign의 비공개 절반으로 단계(S606)로부터의 상기 출력 blob을 암호화 서명하도록 구성된다.
단계(S608)에서, 상기 암호화되는 암호 키 및 대응하는 액세스 제어 리스트({Ktenant, ACL} KBLOB pub), 및 상기 암호 키(Ktenant)의 원본이 검증될 수 있는 정보는 제2 보안 컨텍스트(7)로 전송된다. 일 실시예에서, 메시지의 원본이 식별될 수 있는 정보 또한 전송된다. 예를 들어, Ktenant-sign의 공개 절반의 해시일 수 있다.
일 실시예에서, 메시지의 원본이 식별될 수 있는 정보는
Figure 112022041342282-pat00044
의 해시를 포함하고, 상기 암호화된 blob, 서명 키의 해시 및 서명은 제2 보안 컨텍스트(7)로 전송된다. 상기 서명은 암호 키(Ktenant)의 원본이 검증될 수 있는 정보이다. 제1 송수신기(13)는 상기 암호화된 blob, 단계(S607)로부터 서명된 출력 blob 및 Ktenant-sign의 공개 절반의 해시를 제2 보안 컨텍스트(7)로 전송하도록 구성된다.
상기 테넌트가 적절한 암호화 길이인 것과 같이 정하는 키(KBLOB pub)와 같은 수락가능한 키(KBLOB pub)가 주어질 경우, 등록될 키(Ktenant)는 제1 보안 컨텍스트(5)에서 Kblob의 공개 절반으로 암호화된다. 상술한 바와 같이, Ktenant는, 키 재료가 사용될 수 있고, Ktenant-sign 의 비공개 절반으로 서명되어야 하는 인증서에 의해 활성화될 수 있는, ACL과 같은 수락가능한 연산을 지정하는, 권한-자격증명 쌍을 포함한다. 상기 암호화된 blob는 Ktenant-sign 의 비공개 절반으로 서명되고, 상기 암호화된 blob, 서명 및 Ktenant-sign 의 공개 절반의 해시는 제2 보안 컨텍스트(7)로 전송된다.
상기 서비스 프로바이더에서 제2 보안 컨텍스트로의 암호 키(Ktenant)의 전송은 상기 서비스 프로바이더 및 다른 공격자로부터 안전하다. 상기 암호 키(Ktenant)를 암호화하기 위해 사용되는 키는 평문으로 복구할 수 없기 때문이다. Kblobpriv는 제1 보안 컨텍스트(5)로부터 제2 보안 컨텍스트(7)로 전송되는 데이터를 성공적으로 복호화(decrypt)하기 위해 요청된다. Kblobpriv는 일시적이고 상기 서비스 프로바이더 또는 제3자에 의해 액세스되거나 변화될 수 없다.
도 6b는 본 발명의 일 실시예에 따른 상기 제1 보안 컨텍스트로부터 상기 제2 보안 컨텍스트로의 암호 키(Ktenant)를 전송하는 단계에 대한 방법의 추가 단계들을 도시하는 흐름도이다.
단계(S609)에서, 암호 키(Ktenant)의 원본은 제2 보안 컨텍스트(7)에서 검증된다. 일 실시예에서, 이것은 제1 보안 컨텍스트(5)로부터 전송된 메시지 내 포함되는 서명을 먼저 확인함으로써 검증된다.
일 실시예에서, Ktenant-sign의 공개 절반의 해시는 상기 메시지가 비롯된 상기 테넌트를 식별하고, 따라서 상기 서명을 확인하기 위해 요청되는 정확한 서명 키를 식별하기 위해 사용된다.
상기 서명은 Ktenant-sign의 공개 절반을 사용하여 확인된다. 제2 보안 컨텍스트(7) 내 제2 프로세서(19)는 상기 서명을 확인하도록 구성된다. 상기 서명은 Ktenant-sign의 공개 절반을 사용하여 확인된다. 상기 제2 프로세서(19)는 서명 확인 알고리즘을 수행하도록 구성되고, 주어진 상기 서명 및 공개 키(Ktenant-sign)는 인증에 대한 메시지의 클레임을 수락하거나 거절한다.
상기 서명의 콘텐츠가 상기 암호화된 blob와 일치하는 것이 검증된다. 이는 상기 암호화된 blob의 검증을 허용한다.
확인되거나 검증될 경우, 상기 방법은 단계(S610)로 진행한다. 확인되지 않거나 또는 검증되지 않을 경우, 에러가 제1 보안 컨텍스트(5)로 리턴된다 - 예를 들어, 메시지는 "액세스 거부됨(AccessDenied)" 내용으로 전송된다. 이 때, 제1 보안 컨텍스트(5) 및 제2 보안 컨텍스트(7) 사이의 통신이 종료된다.
단계(S610)는 제2 보안 컨텍스트(7)에서 제1 개인 키(KBLOB priv)로 상기 암호화된 암호 키(Ktenant) 및 대응하는 액세스 제어 리스트를 복호화(decrypt)하는 단계를 포함한다. 상기 제2 프로세서(19)는 상기 암호화된 암호 키(Ktenant) 및 대응하는 액세스 제어 리스트를 복호화(decrypt)하도록 구성된다. 상기 제2 프로세서(19)는 상기 암호화된 암호 키(Ktenant) 및 대응하는 액세스 제어 리스트 및 상기 제1 개인 키(KBLOB priv)가 주어지면, 복호화 알고리즘(decryption algorithm)을 수행하도록 구성된다.
단계(S611)은 제2 보안 컨텍스트(7)에서 제3 암호 키로 상기 암호 키(Ktenant) 및 상기 ACL을 재-암호화하는 단계를 포함한다. 이 단계가 수행되어, 상기 암호 키(Ktenant) 및 상기 ACL이 제2 보안 컨텍스트(7)의 외부에 저장될 수 있다. 대안적 실시 예에서, 이 단계는 생략되고, 상기 암호 키(Ktenant), 상기 ACL 및 상기 암호 키(Ktenant)의 원본을 식별하는 정보는 제2 보안 컨텍스트(7) 내에 암호화되지 않고 저장된다.
상기 ACL은, 키의 어떤 유형(들)의 파라미터 Ktenant를 암호화하기 위해 사용될 수 있고, 어떤 암호화 메커니즘이 사용될 수 있는지를 지정한다.
상기 ACL은, Ktenant가 제2 보안 컨텍스트(7)를 벗어날 수 없는 키로만 암호화될 수 있고 상기 서비스 프로바이더인, 관리자에 의해 제어 가능하지 않다는 것을 명시하는, 정책과 같은, 권한을 포함할 수 있다. 상기 권한은, 예를 들어, 테넌트 키(Ktenant)는 256 비트의 AES 키로 AES-GCM(갈루아/카운터 모드(Galois/Counter Mode)) 암호화를 사용하여 오직 암호화될 수 있는 것과 같은, 테넌트 키(Ktenant)를 암호화하기 위해 사용될 수 있는 키 유형(들) 및 메커니즘(들)을 포함할 수도 있다.
상기 암호화 메커니즘은 인증, 무결성 및 기밀성 또는 그 특성의 어떤 서브셋을 보장하기 위한 요구를 지정할 수 있다.
상기 제2 보안 컨텍스트(7)는 ACL 정책 요건을 충족하는 기존의 키를 재-사용하거나, 또는 새로운 키를 생성할 수 있다.
상기 암호 키(Ktenant) 및 상기 ACL는 지정된 메커니즘, 및 지정된 요건을 충족하는, 제3 암호 키를 사용하여 제2 보안 컨텍스트(7)에서 암호화된다. 상기 제2 프로세서는 제3 암호 키로 상기 암호 키(Ktenant)를 암호화하도록 구성된다. 일 실시예에서, 상기 암호 키(Ktenant)는, 제2 보안 컨텍스트(7)를 벗어날 수 없는 키로 저장을 위해 암호화된다.
상기 암호 키(Ktenant) 및 상기 ACL은 인증된 암호화 알고리즘을 사용하여 암호화될 수 있다.
일 실시예에서, 상기 암호 키(Ktenant) 및 ACL은, 예를 들어, AES-GCM 연산과 같은, 인증된 암호화 알고리즘에서 암호화되는 입력이고, 반면에 상기 암호 키(Ktenant)의 원본이 식별될 수 있는 정보는, 인증된 데이터 파라미터와 같은 입력이다. 일 실시예에서, 상기 암호 키(Ktenant)의 원본이 식별될 수 있는 정보는, Ktenant-sign의 공개 절반이다. 일 실시예에서, Ktenant 의 해시는 또한 상기 암호 키(Ktenant)와 함께 저장된다. 예를 들어, Ktenant 의 상기 해시는 암호화된 데이터가 저장되는 파일의 이름일 수 있다.
상기 재-암호화된 암호 키(Ktenant) 및 대응하는 액세스 제어 리스트, 및 암호 키(Ktenant)의 원본이 식별될 수 있는 인증된 정보는, 제2 보안 컨텍스트(7)의 외측의 장치 메모리로 전송된다.
따라서, 상기 암호 키(Ktenant)의 원본이 식별될 수 있는 정보는, 암호화된 암호 키(Ktenant) 및 액세스 제어 리스트와 같은 동일한 데이터 구조에 저장되고, 그러나 암호화될 필요는 없다. 하지만, 상기 암호 키(Ktenant)의 원본이 식별될 수 있는 정보는, 인증 보호되므로, 통지 없이 변경될 수 없다.
전술한 단계에서, 수신되면, 제2 보안 컨텍스트(7)는 Ktenant-sign의 공개 절반을 사용하여 페이로드 서명(payload signature)을 확인한다. 상기 수신된 페이로드 내 포함되는 해시는 상기 테넌트의 서명 키의 공개 절반을 식별하기 위해 사용된다. 상기 수신된 페이로드 서명은 상기 식별된 서명 키를 사용하여 확인된다. 상기 페이로드의 성공적인 검증에 따라, Ktenant는 Kblob의 비공개 절반을 사용하여 복호화(decrypt)되고 복구-불가능한 키(non-recoverable key) 하에 재-암호화(re-encrypt)되고, 상기 Ktenant ACL에 의해 시행되는 바와 같으며, 이후 사용을 위해 제2 보안 컨텍스트(7)의 외측에 Ktenant-sign의 공개 절반과 함께 저장된다. 대안적으로, 상기 키(Ktenant)는 제2 보안 컨텍스트(7) 내의 보호되는 비-휘발성 메모리 내 암호화되지 않고 저장된다. 두 경우 모두에서, 상기 복호화되는 키는 따라서 보안, 변조-방지 방식으로 저장된다.
Ktenant가 저장되는 방식은 권한, 또는 정책에 의해 기술된다. 특히, 생성시에, 허가된 상기 권한은, Ktenant가 저장될 수 있는 방식을 제한하고, 설정되어 Ktenant는 상기 제2 보안 컨텍스트(7) 이외의, 상기 서비스 프로바이더를 포함하는 누군가에 의해 액세스될 수 없다.
다수의 테넌트가 단일 서비스 프로바이더와 함께 키를 저장하는, 일 실시예에서, 테넌트 키의 각각은 동일한 키로 저장을 위해 암호화될 수 있다. 대안적으로, 각각의 테넌트 키는, 예를 들어, 각각의 테넌트 키에 대응하는 ACL들 간 다른 저장 권한이 있을 경우, 다른 키로 암호화될 수 있다.
도 7a는 본 발명의 일 실시예에 따른 암호 키 전송의 방법의 일부인, 키 등록에 대한 방법의 개략도이다. 상기 방법은 도 6a 및6b에 관련되어 상술된 단계(S602 내지 S611)를 포함한다.
키 등록 메시지는 제1 보안 컨텍스트(5)로부터 제2 보안 컨텍스트(7)로 전송된다. 이 메시지에 응답하여, 제1 암호 키 쌍(KBLOB)이 제2 보안 컨텍스트(7)에서 생성된다. 상기 제2 보안 컨텍스트(7)는 제1 암호 키 쌍(KBLOB)의 공개 절반 및 상기 서명된 제1 암호 인증서({CBLOB} K2ID priv)를 그것들이 검증되는, 상기 제1 보안 컨텍스트(5)로 전송한다. 암호 키(Ktenant)는 KBLOB pub로 상기 제1 보안 컨텍스트(5)에서 암호화된다. 상기 암호화된 키({Ktenant} KBLOB pub) 및 해시({Ktenant-sign pub})는 제1 보안 컨텍스트(5)에서 Ktenant-sign priv로 서명된다. 상기 서명된 메시지는 그것이 검증되는 제2 보안 컨텍스트(7)로 전송되고, 상기 암호화된 키({Ktenant} KBLOB pub)는 관리자로부터 안전한 복구-불가능한 키로 제2 보안 컨텍스트(7)에서 복호화(decrypt)되고 재-암호화된다. 상기 암호화된 테넌트 키는 상기 제2 보안 컨텍스트(7)의 외측에 저장될 수 있다.
도 7b는 본 발명의 일 실시예에 따른 암호 키 전송의 방법의 흐름도이다.
상기 테넌트는 상기 제1 보안 컨텍스트(5)에서 상기 테넌트 키의 상기 ACL를 설정한다. 상기 제1 보안 컨텍스트(5)는 제2 보안 컨텍스트(7)로부터 제1 공개 키(KBLOB pub)를 요청한다. 예를 들어, 상기 제1 보안 컨텍스트(5)는 상기 제2 보안 컨텍스트(7)로 요청 메시지를 전송한다. 상기 제1 보안 컨텍스트(5)는 상기 수신된 제1 공개 키(KBLOB pub) 및 제1 암호 인증서(CBLOB)를 검증한다. 이는 상술한 단계(S605)에 대응한다. 상기 제1 공개 키(KBLOB pub) 및 제1 암호 인증서(CBLOB)가 검증되지 않을 경우, 에러가 리턴된다. 그것들이 검증될 경우, 상기 제1 보안 컨텍스트(5)는 상기 테넌트 키 및 상기 제1 공개 키(KBLOB pub)와 연관되는 ACL를 암호화한다. 이는 상술한 단계(S605)에 대응한다. 상기 제1 보안 컨텍스트(5)는 상기 암호화된 키 및 연관되는 ACL 및 Ktenant-sign pub의 해시를 Ktenant-sign priv로 서명한다. 이는 상술한 S607에 대응한다. 상기 제1 보안 컨텍스트(5)는 상기 암호화된 blob, Ktenant-sign pub의 해시 및 상기 서명을 제2 보안 컨텍스트(7)와 교환한다. 이는 상술한 단계(S608)에 대응한다.
도 8a는 테넌트 키(Ktenant)가 제2 보안 컨텍스트로 가져와진 이후 상기 테넌트 시스템(1) 및 서비스 프로바이더 시스템(3)에 대한 개략도이다. 일 실시예에서, Kblob 및 Cblob는 일시적이고, 일단 Ktenant가 전송되었으면, 제2 보안 컨텍스트(7) 및 제1 보안 컨텍스트(5)에서 삭제된다.
제1 보안 컨텍스트(5) 내 제1 장치 메모리(9)는 또한 상기 제1 공개 키(KBLOB pub)를 저장한다. 대안적으로, 이 키는 무결성 보호되는 방식으로 상기 제1 보안 컨텍스트(5)의 외측에 저장될 수 있다. 제2 보안 컨텍스트(7) 내 제2 장치 메모리(11)는 또한 상기 테넌트 키(Ktenant) 및 상기 대응하는 ACL을 저장한다. 대안적으로, 상기 테넌트 키(Ktenant) 및 ACL은 상기 제2 보안 컨텍스트(7) 외측에 저장될 수 있고, 제2 보안 컨텍스트(7)를 벗어날 수 없는, 제3 암호 키로 암호화된다.
도 8b는 상기 서비스 프로바이더, 상기 테넌트 또는 별개의 제3자에 의해 호스팅될 수 있는, 변조-방지, 보안 기준 시간 소스(2)에 대한 개략도이다. 상기 서비스 프로바이더에 의해 호스팅될 경우, 상기 기준 시간 소스는 상기 제2 보안 컨텍스트(7)의 일부일 수 있거나, 또는 다른 보안 컨텍스트일 수 있다.
시간 소스(2)는 제3 장치 메모리(35)를 포함한다. 제3 장치 메모리(35)는 키, 키 쌍 및 인증서와 같은 암호화 정보를 저장하도록 구성된다. 상기 제3 장치 메모리(35)는 예를 들어, 플래쉬, 광 디스크 또는 자기 하드 드라이브와 같은, 비-휘발성 장치 메모리의 임의의 형태일 수 있다. 시간 소스(2)는 또한 휘발성 메모리를 포함한다.
제3 장치 메모리(35)는, 해당하는 서명된 생성 인증서({CTSID}Kman priv. KTSID)와 함께, 고유한 비대칭 아이덴티티 키(KTSID)를 저장한다. KTSID는 데이터의 원본 및 인증을 증명하기 위해 사용된다. 상기 생성 인증서(CTSID)는 예를 들어, 키의 유형과 관련된 정보, 및 그것의 길이와 같은, 상기 키의 공개 파라미터를 기술할 수 있다. 상기 생성 인증서(CTSID)는 아이덴티티 키(KTSID)가 상기 시간 소스(2)에서 생성된 것을 인증하는 정보를 포함한다. 예를 들어, 상기 생성 인증서(CTSID)는 KTSID의 공개 절반의 서명된 해시를 포함할 수 있다. 상기 생성 인증서(CTSID)는, 예를 들어, 장치의 고유 식별에 관련한 정보, 제조업체를 식별하는 정보, 상기 장치 버전, 하드웨어 버전, 소프트웨어 유형 및 모델의 지원되는 특징과 같은, 상태 정보를 포함할 수도 있다. 상기 생성 인증서(CTSID)는 제1 보안 컨텍스트(5) 및 제2 보안 컨텍스트(7) 모두에 의해 신뢰되는 제조업체에 의해 서명된다. 상기 생성 인증서는 제조업체 비대칭 키(Kman priv)의 비공개 절반으로 암호화 서명된다. 상기 제조업체는, 상기 제1 보안 컨텍스트를 형성하는 보안 기기(들), 상기 제2 보안 컨텍스트를 형성하는 보안 기기(들), 및 시간 소스(2)를 제조하는 제3자일 수 있다.
시간 소스(2)는 제3 송수신기(39)를 더 포함한다. 상기 제3 송수신기(39)는 데이터 패킷을 전송 및 수신하도록 구성된다. 예를 들어, 무선 인터넷 연결을 통해, 상기 데이터 패킷은 송수신기(39)로부터 전송되고 송수신기(39)에서 수신될 수 있다.
상기 시간 소스(2)는 제3 프로세서(41)를 더 포함한다. 상기 제3 프로세서(41)는 암호 연산을 수행하도록 구성된다. 상기 암호 연산은, 암호 키 및 비대칭 암호 키 쌍의 생성, 암호 키 및 비대칭 암호 키 쌍에 대응하는 인증서의 생성, 암호 키에 대응하는 액세스 제어 리스트의 생성, 암호 키에 대응하는 사용 인증서의 생성, 제3 장치 메모리(35) 내 저장되는 암호 키로 객체를 암호화, 제3 장치 메모리(35) 내 저장되는 암호 키로 암호화된 객체를 복호화(decryption), 제3 장치 메모리(35) 내 저장되는 암호 키로 객체를 암호화 서명, 제3 장치 메모리(35) 내 저장되는 정보에 기초한 객체의 서명 확인 및 검증과 같다.
상기 시간 소스(2)는 클럭(37)를 더 포함한다. 상기 클럭(37)은 시간에 따라 단조롭게 증가하는 카운터인, 단조 클럭일 수 있다. 상기 클럭은 높은 수준의 정확도로 하루의 시간을 나타낼 수 있다. 일 실시예에서, 클럭은 1 초 또는 그 이상으로 정확하다. 예를 들어, 상기 클럭은 클40 나노초 정도로 정확한 GPS 신호에 기초할 수 있다.
시간 소스(2)는 변조하는 것이 방지될 수 있다. 예를 들어, 전체 장치를 커버하고, 기본적인 물리적 하드웨어를 파괴함으로써, 사용 불가로 만들지 않고는 제거될 수 없는, 멤브레인과 같은 물리적 보안을 포함함으로써 될 수 있다.
도 8a 및 8b에 도시되는 3개의 서비스는, 1) 예를 들어, 테넌트에 의해 소유되고 작동되는, 보안 기기와 같은, 제1 보안 컨텍스트(5); 2) 예를 들어, 상기 서비스 프로바이더에 의해 소유되고 작동되는 하나 이상의 보안 기기와 같은, 제2 보안 컨텍스트(7); 및 3) 상기 서비스 프로바이더, 외부 제3자 또는 테넌트에 의해 소유될 수 있는, 신뢰되는 시간 소스(2)를 포함하고, 협력하는 서비스의 세트이다. 상기 협력하는 서비스의 세트는 알려진 보안 특성의 세트로 신뢰되는 제3자에 의해 구축되었고 특정 동일 규칙에 부합하는 것을 모두 확인할 수 있다. 테넌트가 협력 서비스를 구축한 전술한 제3자를 신뢰하지만 이 서비스들 중 일부를 호스팅하고 있는 상기 서비스 프로바이더를 신뢰하지 않는다고 가정한다. 보안 컨텍스트는, 암호화 프리미티브의 세트를 공유하고, 요청으로 로드-밸런스될 수 있는 클러스터를 형성하는, 하나 이상의 보안 기기일 수 있다.
제1 보안 컨텍스트(5), 제2 보안 컨텍스트(7) 및 기준 시간 소스(2)의 각각은 암호 인증서 - 예를 들어, 상기 암호 인증서는 제조시에 생성될 수 있음 - 를 사용하여 확인할 수 있게 식별될 수 있다. 각각은 모방될 수 없음을 의미하는 방식으로 그들의 아이덴티티를 안전하게 저장한다. 제1 보안 컨텍스트(5), 제2 보안 컨텍스트(7) 또는 기준 시간 소스(2)를 식별하는 것은 그것의 원본이 확실히 되도록 하게 한다.
또한, 제1 보안 컨텍스트(5), 제2 보안 컨텍스트(7) 및 기준 시간 소스(2)의 각각의 구성 및 상태는 거부할 수 없는 방식으로 검증될 수 있다. 서비스의 원본 및 상태는, 다른 서비스가 그들의 신뢰를 둘 수 있는, 충분한 정보를 정한다.
예를 들어, 각각의 구성요소는 제조시 공장에서 생성된 KID를 포함한다. 또한, 각각의 구성요소는 제조업체에게만 알려진 비대칭 키를 이용하여 서명되는, KID에 대한 키 인증서를 포함한다. 상기 제조업체 키의 공개 절반은 진품 기기를 인증하기 위한 신뢰의 근원(root of trust)으로서 사용될 수 있다.
다음에 기술되는 기준 시간 소스(2) 및 제2 보안 컨텍스트(7) 사이의 암호 인증서 및 암호 키의 전송은 상기 기준 시간 소스(2) 및 상기 제2 보안 컨텍스트(7) 사이에서 보안, 인증 채널을 통해 발생할 수 있다. 서비스 프로바이더에 의해 제공 및 제어된다. 상기 채널이 제3자로부터 안전하지만, 서비스 프로바이더에 의해 공격당하기 쉽고, 따라서 신뢰되지 않는다는 것을 알 수 있다.
아래의 도 9와 관련하여 기술되는 공개 키 및 인증서의 교환은, 제2 보안 컨텍스트(7) 및 시간 소스(2) 사이에서 신뢰되는 관계가 설정되게 한다.
도 9는 제2 보안 컨텍스트(7)에 시간 소스(2)를 등록하는 것에 대한 방법을 도시하는 흐름도이다. 이는 본 발명의 일 실시예에 따른 키 전송 방법의 일부로서, 또는 본 발명의 일 실시예에 따른 암호 키의 사용을 제어하는 것에 대한 방법의 일부로서 어떤 시점에서라도 수행될 수 있다. 예를 들어, 시간 소스(2)를 등록하는 것에 대한 방법은
제2 보안 컨텍스트(7)의 관리자가 제2 보안 컨텍스트(7)에서 기기를 인증이 수행될 때와 같이, 설정시 수행될 수 있다. 이는 드문 프로세스이고, 한번만 수행될 필요가 있다. 시간 소스(2) 등록 이후, 제2 보안 컨텍스트(7)는, 그것의 신뢰되는 시간 소스와 관련되는 정보를 잠재적인 테넌트로 브로드캐스트할 수 있다. 따라서, 상기 테넌트는 상기 서비스 프로바이더가 지원하는 시간 소스(s)가 어떤 것인지를 처음 알고, 이 시간 소스가 키의 등록이 시작하기 전에 수락 가능한 것인지 여부에 관한 결정을 할 수 있다. 예를 들어, 아래의 도 10과 관련되어 기술되는 바와 같은 시간 소스(들)의 인증, 상태 및 구성을 검증함으로써 할 수 있다.
상기 기준 시간 소스(2)가 상기 제2 보안 컨텍스트(7)의 일부일 경우, 상기 시간 소스(2)를 상기 제2 보안 컨텍스트(7)로 등록할 필요가 없고, 이 단계들은 수행되지 않는다.
도 8b에 관련하여 상술한 바와 같이, 기준 시간 소스(2)는, 장치 메모리(35) 및 클럭(37)을 포함한다.
단계(S901)에서, 제2 보안 컨텍스트(7)로부터의 질의 메시지에 대한 응답으로, 시간 소스의 아이덴티티 키의 공개 절반(KTSID pub) 및 생성 인증서({CTSID } Kman priv)는 기준 시간 소스(2)로부터 제2 보안 컨텍스트(7)로 전송된다. 기준 시간 소스(2) 내 송수신기(39)는, 시간 소스의 아이덴티티 키의 공개 절반(KTSID pub) 및 생성 인증서({CTSID } Kman priv)를 제2 보안 컨텍스트(7) 내 제2 송수신기(15)로 전송하도록 구성된다. 시간 소스 장치(2)의 상태와 관련되는 정보는 동일한 메시지로 전송될 수 있다. 이 경우에서, 상기 장치의 상태와 관련되는 정보는, 상기 상태 정보의 검증을 허용하기 위해, 상기 생성 인증서에 포함될 수도 있다.
단계(S902)에서, 상기 생성 인증서({CTSID } Kman priv)는 제2 보안 컨텍스트(7)에서 확인된다. 제2 보안 컨텍스트(7) 내 제2 프로세서(19)는 상기 생성 인증서({CTSID } Kman priv)를 확인하도록 구성된다. 상기 생성 인증서는 신뢰되는 제조업체 키의 공개 절반(Kman pub)을 이용하여 확인된다. 상기 제2 프로세서(19)는 서명 확인 알고리즘을 수행하도록 구성되고, 주어진 서명된 메시지({CTSID } Kman priv) 및 공개 키(Kman pub)는 인증에 대한 메시지의 클레임을 수락하거나 또는 거절한다.
시간 소스의 아이덴티티 키의 공개 절반(KTSID pub)의 인증은 제2 보안 컨텍스트(7)에서 검증된다. 제2 보안 컨텍스트(7) 내 제2 프로세서(19)는 시간 소스의 아이덴티티 키의 공개 절반(KTSID pub)을 검증하도록 구성된다. 생성 인증서(CTSID)가 시간 소스의 아이덴티티 키의 공개 절반(KTSID pub)의 해시를 포함하는 일 실시예에서, 상기 시간 소스의 아이덴티티 키의 공개 절반(KTSID pub)의 인증은, 상기 시간 소스의 아이덴티티 키의 공개 절반(KTSID pub)의 해시를 계산하고, 생성 인증서(CTSID) 내 포함된 것과 일치하는지 여부를 검증함으로써, 검증된다.
단계(S903)에서, 상기 제2 보안 컨텍스트(7)는 또한 상기 메시지에 포함된 임의의 상태 정보가 요건을 충족하는지 여부를 검증한다.
상기 서명이 확인되고 상기 상태 정보가 검증되면, 상기 시간 소스의 아이덴티티 키의 공개 절반(KTSID pub)이 제2 보안 컨텍스트(7)의 제2 장치 메모리(11) 내 저장된다. 대안적으로, 그것은 제2 보안 컨텍스트(7)에 의해 무결성 보호되고, 제2 보안 컨텍스트(7)의 외측의 신뢰할 수 없는 저장소에 저장될 수 있다.
서명이 확인되지 않거나, 상기 키 또는 상태 정보가 검증되지 않으면, 시간 소스(2)로 에러가 리턴된다. 예를 들어, 메시지는 "액세스 거부됨(AccessDenied)" 내용으로 전송된다. 이 때, 상기 시간 소스(2) 및 상기 제2 보안 컨텍스트(7) 사이의 통신이 종료된다.
전술한 단계들에서, 상기 제2 보안 컨텍스트(7)는 상기 기준 시간 소스(2)와의 신뢰를 설정한다. 따라서, 상기 제2 보안 컨텍스트(7)는, 인증서 체인을 통해 그것의 원본, 상태 및 인증을 검증함으로써, 상기 시간 소스(2)와의 신뢰를 설정한다.
단계(S904)에서, 일단 신뢰가 설정되었으면, 제2 보안 컨텍스트(7)는 상기 시간 소스(2)로부터 구성 정보를 요청한다. 상기 제2 보안 컨텍스트(7) 내 상기 송수신기(15)는, 상기 시간 소스(2)로 상기 정보를 요청하는 메시지를 전송한다.
단계(S905)에서, 상기 요청에 응답하여, 상기 시간 소스(2)는 구성 정보를 생성한다. 상기 구성 정보는, 상기 시간 소스(2)의 구성과 관련되는 정보를 포함하고, 클럭 및 보안 설정에 관한 정밀 정보, 설정된 암호화 프리미티브, 상기 시간 소스가 실행 중인 소프트웨어의 버전 및 시간 소스(2)의 상태를 포함할 수 있고, 검출되는 임의의 변칙들을 포함한다. 상기 시간 소스(2) 내 상기 제3 프로세서(41)는 이 메시지를 생성하도록 구성된다.
단계(S906)에서, 상기 응답 메시지는, 시간 소스의 아이덴티티 키의 비공개 절반(KTSID priv)에 의해 서명된다. 상기 시간 소스(2) 내 상기 제3 프로세서(41)는 상기 시간 소스의 아이덴티티 키의 비공개 절반(KTSID priv)으로 상기 메시지를 암호화 서명하도록 구성된다.
단계(S907)에서, 서명 및 구성 정보는 제2 보안 컨텍스트(7)로 전송된다. 상기 시간 소스(2) 내 상기 송수신기(39)는 상기 서명된 메시지를 상기 제2 보안 컨텍스트(7)로 전송하도록 구성된다.
단계(S908)에서, 상기 제2 보안 컨텍스트(7)는 상기 시간 소스의 아이덴티티 키의 공개 절반(KTSID pub)을 사용하여 상기 응답 서명을 확인한다. 제2 보안 컨텍스트(5) 내 제2 프로세서(19)는 상기 서명을 확인하도록 구성된다. 상기 서명은 상기 시간 소스의 아이덴티티 키의 공개 절반(KTSID pub)을 사용하여 확인된다. 상기 제2 프로세서(19)는 서명 확인 알고리즘을 수행하도록 구성되고, 주어진 상기 서명된 메시지 및 상기 공개 키(KTSID pub)는 인증에 대한 메시지의 클레임을 수락하거나 또는 거절한다.
단계(S909)에서, 상기 시간 소스 구성이 수락 가능한 허용 오차 내에 있는지에 관한 체크가 수행된다. 상기 구성 정보는, 상기 서비스 프로바이더의 요건을 충족하는 지 여부를 검증하기 위해 체크된다.
상기 구성 정보는, 구성 정보를 다시 요청함으로써, 타임 스탬프가 상기 제2 보안 컨텍스트(7)에 의해 요청될 때마다 다시 체크될 수 있다.
상기 제1 보안 컨텍스트(5), 상기 제2 보안 컨텍스트(7) 및 상기 기준 시간 소스(2)와 같은, 상기 시스템 내 모든 기기의 상태 및 구성은, 상기 기기 내 존재하는 상태 항목으로부터 획득된다. 초기화 이후, 각각의 기기는 이 필드를 업데이트하고 새로운 구성 메시지를 생성하여 클라이언트가 새로운 기기 설정을 암호로 확인하게 한다.
상기 서명이 성공적으로 확인되고 상기 시간 소스(2)의 구성이 허용 오차 내에 있을 경우, 상기 방법은 단계(S910)로 진행한다. 그렇지 않을 경우, 상기 시간 소스(2)로 에러가 리턴된다. 예를 들어, 메시지는 "액세스 거부됨(AccessDenied)" 내용으로 전송된다. 이 때, 시간 소스(2) 및 제2 보안 컨텍스트(7) 사이의 통신이 종료된다.
단계(S910)에서, 메시지는 상기 시간 소스(2)를 식별하는 정보 및 상기 시간 소스(2)가 상기 제2 보안 컨텍스트(7)에 의해 신뢰되는 것을 나타내는 정보를 포함하여 제1 보안 컨텍스트(5)로 전송된다. 상기 시간 소스(2)를 식별하는 정보는, 예를 들어, 상기 시간 소스(2)의 아이덴티티 키의 공개 절반의 해시 또는 상기 시간 소스(2)의 IP 주소와 같은, 고유 식별 번호를 포함할 수 있다.
상기 제2 보안 컨텍스트(7) 내 상기 송수신기(15)는, 상기 시간 소스(2)를 식별하는 정보 및 상기 시간 소스가 신뢰된다는 것(trusted)을 나타내는 정보를 포함하는 메시지를 상기 제1 보안 컨텍스트(5)로 전송하도록 구성된다. 상기 시간 소스(2)를 식별하는 정보 및 상기 시간 소스가 신뢰된다는 것을 나타내는 정보는, 또한 상기 제2 보안 컨텍스트(7)의 장치 메모리(11) 내, 또는 상기 제2 보안 컨텍스트(7) 외측에 무결성 보호 방식으로 저장된다.
일 실시예에서, 상기 제2 보안 컨텍스트(7)는 신뢰되는 시간 소스(들)의 리스트에 상기 시간 소스(2)를 추가한다. 상기 기준 시간 소스의 고유 식별은 상기 리스트에 추가될 수 있다. 신뢰되는 시간 소스(들)의 리스트는 제2 보안 컨텍스트(7)에 의해 브로드캐스트된다. 상기 제1 보안 컨텍스트(5)는 상기 제2 보안 컨텍스트(7)로부터 신뢰되는 시간 소스(들)의 리스트를 수신한다.
하나 이상의 신뢰되는 시간 소스를 식별하는 상기 수신된 정보가 주어지면, 상기 제1 보안 컨텍스트(5)는 질의할 수 있고, 상기 제2 보안 컨텍스트(7)과 같은 동일한 방식으로, 상기 시간 소스(들)의 상기 인증, 상태 및 구성을 검증할 수 있다. 이 프로세스를 도시하는 흐름도가 도 10에서 도시된다. 다시, 이것은 본 발명의 일 실시예에 따른 키 전송 방법의 일부로서, 또는 본 발명의 일 실시예에 따른 암호 키의 사용을 제어하는 것에 대한 방법의 일부로서, 어떤 시점에서라도 수행될 수 있다.
대안적으로, 상기 기준 시간 소스(2)가 제1 보안 컨텍스트(5)의 일부일 경우, 아래의 단계들은 수행되지 않을 것이다.
또한, 상기 기준 시간 소스(2)가 상기 제1 보안 컨텍스트(5)에 의해 먼저 식별되는 경우에, 아래의 단계들은 수행될 수 있고, 상기 시간 소스(2)에 관한 정보는 상기 제2 보안 컨텍스트(7)로 전송된다. 상기 제2 보안 컨텍스트(7)는 상기 시간 소스(2)를 검증한다.
다음에 기술되는 상기 기준 시간 소스(2) 및 상기 제1 보안 컨텍스트(5) 사이의 암호 인증서 및 암호 키의 전송은, 상기 기준 시간 소스(2) 및 상기 제1 보안 컨텍스트(5) 간 보안, 인증 채널을 통해 발생할 수 있다. 상기 시간 소스가 상기 서비스 프로바이더에 의해 제공되는 곳에서, 상기 채널은 상기 서비스 프로바이더 또는 프록시에 의해 제공 및 제어될 수 있다. 상기 시간 소스가 제3자 시간 서비스 프로바이더에 의해 제공되는 곳에서, 상기 채널은 상기 테넌트 및 시간 서비스 프로바이더 간 바로 제공될 수 있다. 이 채널은 상기 시간 서비스 프로바이더 또는 프록시에 의해 제공될 수 있다. 상기 채널이 제3자로부터 안전하더라도, 상기 시간 서비스 프로바이더에 의해 공격당하기 쉽다는 것을 알아야 한다. 다음에 기술되는 기준 시간 소스(2) 및 제2 보안 컨텍스트(7) 간 암호 인증서 및 암호 키의 전송은 기준 시간 소스(2) 및 제2 보안 컨텍스트(7) 사이의 보안, 인증 채널을 통해 발생될 수 있다.
도 10과 관련하여 아래에 기술되는 공개 키 및 인증서의 교환은 상기 제1 보안 컨텍스트(5) 및 상기 시간 소스(2) 사이에서 신뢰되는 관계가 설정되게 한다.
단계(S1001)에서, 상기 시간 소스의 아이덴티티 키의 공개 절반(KTSID pub), 생성 인증서({CTSID } Kman priv), 및 구성 인증서({CTSID } Kman priv)는, 제1 보안 컨텍스트(5)로부터의 질의 메시지에 응답하여, 상기 기준 시간 소스(2)로부터 상기 제1 보안 컨텍스트(5)로 전송된다. 상기 기준 시간 소스(2) 내 송수신기(39)는, 상기 제1 보안 컨텍스트(5) 내 제1 송수신기(13)로, 상기 시간 소스의 아이덴티티 키의 공개 절반(KTSID pub), 및 생성 인증서({CTSID } Kman priv)를 전송하도록 구성된다.
시간 소스 장치(들)의 상태와 관련되는 정보는 상기 동일한 메시지로 전송될 수 있다. 상기 장치(들)의 상태와 관련되는 정보는, 상기 상태 정보를 검증하기 위해, 이 경우에, 상기 생성 인증서 내 포함될 수도 있을 것이다.
단계(S1002)에서, 상기 생성 인증서 {CTSID } Kman priv는 상기 제1 보안 컨텍스트(5)에서 확인된다. 상기 제1 보안 컨텍스트(5) 내 상기 제1 프로세서(17)는 상기 생성 인증서 {CTSID } Kman priv를 확인하도록 구성된다. 상기 생성 인증서는 신뢰되는 제조업체 키의 공개 절반(Kman pub)을 사용하여 확인된다. 상기 제1 프로세서(17)는 서명 확인 알고리즘을 수행하도록 구성되고, 주어진 서명된 메시지({CTSID } Kman priv) 및 공개 키(Kman pub)는 인증에 대한 메시지의 클레임을 수락하거나 거절한다.
상기 시간 소스의 아이덴티티 키의 공개 절반(KTSID pub)의 인증은 상기 제1 보안 컨텍스트(5)에서 검증된다. 상기 제1 보안 컨텍스트(5) 내 상기 제1 프로세서(17)는 상기 시간 소스의 아이덴티티 키의 공개 절반(KTSID pub)을 검증하도록 구성된다. 상기 생성 인증서(CTSID)가 상기 시간 소스의 아이덴티티 키의 공개 절반(KTSID pub)의 해시를 포함하는, 일 실시예에서, 상기 시간 소스의 아이덴티티 키의 공개 절반(KTSID pub)의 인증은, 상기 시간 소스의 아이덴티티 키의 공개 절반(KTSID pub) 해시를 계산하고, 생성 인증서(CTSID) 내 포함된 것과 일치하는지 여부를 검증함으로써, 검증된다.
단계(S1003)에서, 제1 보안 컨텍스트(5)는, 상기 메시지 내 포함된 임의의 상태 정보로부터, 장치의 상태(들)이 요건을 충족하는지 여부를 검증할 수도 있다.
상기 서명은 확인되고 상기 키 및 상태 정보가 검증될 경우, 상기 시간 소스의 아이덴티티 키의 공개 절반(KTSID pub)은, 제1 보안 컨텍스트(5)의 제1 장치 메모리(9) 내 저장된다. 대안적으로, 그것은 제1 보안 컨텍스트(5)에 의해 무결성 보호되고 제1 보안 컨텍스트(5)의 외측의 신뢰할 수 없는 저장소에 저장될 수 있다.
상기 서명이 확인되지 않거나 또는 상기 키 또는 상태 정보가 검증되지 않으면, 상기 시간 소스(2)로 에러가 리턴된다. 예를 들어, 메시지는 "액세스 거부됨(AccessDenied)" 내용으로 전송된다. 이 때, 시간 소스(2) 및 제1 보안 컨텍스트(5) 사이의 통신이 종료된다.
상술한 단계에서, 상기 제1 보안 컨텍스트(5)는 상기 기준 시간 소스(2)와의 신뢰를 설정한다. 따라서, 상기 제1 보안 컨텍스트(5)는, 상기 시간 소스로 보안 연결을 하고, 인증서 체인을 통해 그것의 원본 및 인증을 검증함으로써, 상기 시간 소스(2)와의 신뢰를 설정한다.
단계(S1004)에서, 일단 신뢰가 설정되었으면, 상기 제1 보안 컨텍스트(5)는 상기 시간 소스(2)로부터 구성 및 상태 정보를 요청한다. 상기 제1 보안 컨텍스트(5) 내 상기 송수신기는 상기 시간 소스(2)로 메시지 요청 정보를 전송한다.
단계(S1005)에서, 상기 요청에 응답하여, 상기 시간 소스(2)는, 메시지를 생성한다. 상기 메시지는, 상기 시간 소스(2)의 구성을 포함하고, 클럭 및 보안 설정에 관한 정밀 정보, 설정된 암호화 프리미티브, 상기 시간 소스가 실행 중인 소프트웨어의 버전 및 상기 시간 소스의 상태를 포함할 수 있고, 검출되는 임의의 변칙들을 포함한다. 상기 시간 소스 내 상기 제3 프로세서(41)는 상기 구성 정보를 생성하도록 구성된다.
상기 메시지는 상기 제2 보안 컨텍스트(7)로 전송되는 동일한 메시지일 수 있다. 대안적으로, 다른 정보를 포함하는 메시지는 도 2b와 관련되어 기술한 바와 같은 유사한 방식으로 생성되고 전송될 수 있다. 상기 메시지는 상기 기준 시간 소스에 적용되는 특정 구성과 관련된 정보를 포함할 수 있다.
단계(S1006)에서, 상기 응답 메시지는 상기 시간 소스의 아이덴티티 키의 비공개 절반(KTSID priv)으로 서명된다. 상기 시간 소스 내 상기 제3 프로세서(41)는 상기 시간 소스의 아이덴티티 키의 비공개 절반(KTSID priv)으로 상기 메시지를 암호화 서명하도록 구성된다.
단계(S1007)에서, 상기 메시지 및 서명은 상기 제1 보안 컨텍스트(5)로 전송된다. 상기 시간 소스(2) 내 상기 송수신기(39)는 상기 제1 보안 컨텍스트(5)로 상기 서명된 메시지를 전송하도록 구성된다.
단계(S1008)에서, 상기 제1 보안 컨텍스트(5)는 상기 시간 소스의 아이덴티티 키의 공개 절반(KTSID pub)을 사용하여 상기 응답 서명을 확인한다. 제1 보안 컨텍스트(5) 내 제1 프로세서(17)는 상기 서명을 확인하도록 구성된다. 상기 서명은 상기 시간 소스의 아이덴티티 키의 공개 절반(KTSID pub)을 사용하여 확인된다. 상기 제1 프로세서(17)는 서명 확인 알고리즘을 수행하도록 구성되고, 주어진 상기 서명된 메시지 및 상기 공개 키(KTSID pub)는 인증에 대한 메시지의 클레임을 수락하거나 또는 거절한다.
단계(S1009)에서, 상기 시간 소스 구성 및 상기 시간 소스 상태가 수락 가능한 허용 오차 내에 있는지에 관한 체크가 수행된다. 상기 정보는, 상기 테넌트의 요건을 충족하는 지 여부를 검증하기 위해 체크된다. 일 실시예에서, 상기 구성 정보는, 제2 보안 컨텍스트(7)로 Ktenant의 전송 이전에 요청 및 즉시 체크된다. 이는 날짜 구성 정보까지 검증된 것을 보장한다.
상기 서명이 성공적으로 확인되고 상기 시간 소스(2)의 구성 및 상태가 허용 오차 내에 있을 경우, 상기 시간 소스(2)를 식별하는 정보 및 상기 시간 소스(2)가 신뢰된다는 것을 나타내는 정보는 제1 보안 컨텍스트(5)의 장치 메모리(9) 내, 또는 제1 보안 컨텍스트(5)의 외측에, 무결성 보호되는 방식으로, 저장된다. 그렇지 않을 경우, 시간 소스(2)로 에러가 리턴된다. 예를 들어, 메시지는 "액세스 거부됨(AccessDenied)" 내용으로 전송된다. 이 때, 상기 시간 소스(2) 및 상기 제1 보안 컨텍스트(5) 사이의 통신이 종료된다.
상기 구성 정보는, 구성 정보를 다시 요청함으로써, 타임 스탬프가 상기 제1 보안 컨텍스트(7)에 의해 요청될 때마다 다시 체크될 수 있다.
도 11은 본 발명의 일 실시예에 따른 암호 키(Ktenant)의 사용을 제어하는 것에 대한 방법을 도시하는 흐름도이다. 상기 암호 키(Ktenant)는, 상기 암호 키(Ktenant)의 제1 유형의 사용을 허용하기 위해, 예를 들어, 사용 인증서와 같은 유효한 사용 자격증명이 제시되어야 하는 것을 지정하는 액세스 제어 리스트와 함께 서비스 프로바이더 시스템 내 안전하게 저장된다.
대안적인 실시예에서, 암호 키(Ktenant)를 대신하여, 몇몇 다른 종류의 데이터가 상기 서비스 제공 시스템에 안전하게 저장되고, 이 데이터의 사용은 제어된다. 액세스 제어 리스트는 상기 데이터와 함께 저장된다. 상기 데이터의 제1 유형의 사용을 허가하기 위해, 유효 사용 인증서가 제시되어야 하는 것을 지정한다. 아래에서, 상기 방법 및 장치는 테넌트 키의 사용을 참조하여 기술되지만, 몇몇 다른 종류의 데이터는 테넌트 키를 대체할 수 있고, 동일한 방식으로 사용될 수 있는 것을 이해할 수 있다.
가져와진 키(imported key)의 사용을 가능하게 하는 프로세스는 키 인가(Key Authorization)로 지칭될 수 있다.
상기 테넌트가 키를 서비스 프로바이더의 암호화 인프라에서 그것의 키를 사용 가능하게 하기 원하는 시점에서, 상기 테넌트는 사용 인증서를 생성한다.
단계(S1101)는, 제1 보안 컨텍스트(5)에서 사용 자격증명을 생성하는 단계를 포함한다. 일 실시예에서, 상기 사용 자격증명은 사용 인증서이다. 상기 제1 보안 컨텍스트(5) 내 상기 프로세서(17)는 상기 사용 인증서를 생성하도록 구성된다. 상기 사용 인증서는 상기 사용 인증서에 대응하는 암호 키(Ktenant)가 식별될 수 있는 정보 및 상기 사용 인증서의 만료가 결정될 수 있는 정보를 포함한다.
일 실시예에서, 상기 사용 인증서에 대응하는 암호 키(Ktenant)가 식별될 수 있는 정보는, Ktenant의 해시를 포함한다.
일 실시예에서, 상기 사용 인증서의 만료가 결정될 수 있는 정보는, 만료 시간, 및 기준 시간 소스를 식별하는 정보를 포함한다. 상기 만료 시간은, 제1 보안 컨텍스트(5) 및 제2 보안 컨텍스트(7) 둘 모두에 의해 신뢰되는 기준 시간 소스(2)를 참조하여 계산된다. 기준 시간 소스에 대한 신뢰는, 상기 기준 타임 소스에 독립적으로 연결하고, 상기 시간 소스가 신뢰되는 것 및 상기 인증서의 모듈 상태 파라미터를 통해 상기 시간 소스가 변조-방지인 것을 검증하는, 제1 보안 컨텍스트 (5) 및 제2 보안 컨텍스트 (7)에 의해 확실히 된다. 이는 도 9 및 10과 관련하여 상술되고, 예를 들어, 키 전송의 방법 이전에 수행될 수 있거나, 또는 키 전송의 방법 이후 및 사용 인증서의 생성 이전에 수행될 수 있다.
따라서, 상기 사용 인증서는 보안 시간 소스(2)를 참조하여 유효 기간에 관한 정보를 포함한다.
따라서, 키 인가는, 자격증명 인증서, 또는 Ktenant의 권한, 상기 ACL 내 정해진 것과 일치하는 "키-사용" 인증서를 생성하는 것을 테넌트로 시작한다. 다른 말로, 상기 사용 인증서는, Ktenan에 대응하는 액세스 제어 리스트 내 정해진 요건을 충족한다.
일 실시예에서, 상기 자격증명 인증서, 또는 사용 인증서는, Ktenant-sign의 비공개 절반으로 서명된다.
도 12는 본 발명의 일 실시예에 따른 암호 키(Ktenant)의 사용을 제어하는 것에 대한 방법의 일부인, 상기 제1 보안 컨텍스트(5)에서 사용 인증서를 생성하는 것에 대한 방법을 도시한다.
단계(S1201)에서, 기준 시간 소스(2)는 제1 보안 컨텍스트(5)에 의해 선택된다. 하나 이상의 시간 소스를 식별하는 정보 및 시간 소스(들)이 신뢰되는 것을 나타내는 정보는, 제1 보안 컨텍스트(5)의 장치 메모리(9) 내 또는 제1 보안 컨텍스트의 외측에 무결성 보호 방식으로 저장될 수 있다. 상기 시간 소스들 중 하나는 상기 제1 보안 컨텍스트(5)에 의해 선택된다.
상기 시간 소스(2)는 제2 보안 컨텍스트(7)에 의해 브로드캐스트되고, 제1 보안 컨텍스트(5)가 신뢰를 설정한, 신뢰되는 시간 소스의 리스트로부터 선택된다. 따라서, 제2 보안 컨텍스트(7) 및 제1 보안 컨텍스트(5) 모두는 상기 리스트 상의 하나 이상의 시간 소스와의 신뢰를 설정하였다. 이 시간 소스의 각각은 필요한 구성 및 상태를 가지는 유효 시간 소스이다. 상기 제1 보안 컨텍스트는 하나 이상의 유효 시간 소스의 리스트로부터 시간 소스(2)를 선택한다.
단계(S1202)에서, 상기 제1 보안 컨텍스트(5)는 상기 선택된 시간 소스(2)로부터 현재 타임 스탬프를 요청한다. 상기 제1 보안 컨텍스트(5) 내 제1 송수신기(13)는 상기 시간 소스(2)로 요청 메시지를 전송한다.
단계(S1203)에서, 상기 시간 소스(2)는 상기 타임 스탬프를 포함하는 메시지를 생성한다. 상기 메시지는, 상기 시간 소스를 식별하는 정보 및 상기 시간 소스 클럭으로부터 결정된, 상기 메시지의 생성시 현재 시간을 포함할 수 있다. 상기 시간 소스를 식별하는 정보는 상기 생성하는 시간소스의 공개 아이덴티티 키(KTSID pub)의 해시를 포함할 수 있다.
상기 메시지는, 예를 들어 시간 소스가 변조되는 것의 임의의 시도와 관련된, 현재 구성 정보를 더 포함할 수 있다. 이 정보는, 상기 시간 소스가 상기 사용 인증서 내 타임 스탬스를 사용하기 이전에 수락 가능한 상태에 있는지 여부를 체크하기 위해 상기 클라이언트에 의해 사용될 수 있다.
단계(S1204)에서, 상기 메시지는 상기 시간 소스의 아이덴티티 키의 비공개 절반(KTSID priv)으로 서명된다. 상기 시간 소스 내 상기 제3 프로세서(41)는, 상기 시간 소스의 아이덴티티 키의 비공개 절반(KTSID priv)으로 상기 메시지를 암호화 서명하도록 구성된다.
단계(S1205)에서, 상기 메시지 및 서명은 상기 제1 보안 컨텍스트(5)로 전송된다. 상기 시간 소스(2) 내 상기 송수신기(39)는 상기 서명된 메시지를 상기 제1 보안 컨텍스트(5)로 전송하도록 구성된다.
단계(S1206)에서, 상기 제1 보안 컨텍스트(5)는, 상기 시간 소스의 아이덴티티 키의 공개 절반(KTSID pub)을 사용하여 상기 응답 서명을 확인한다. 상기 제1 보안 컨텍스트(5) 내 상기 제1 프로세서(17)는 상기 서명을 확인하도록 구성된다. 상기 서명은 상기 시간 소스의 아이덴티티 키의 공개 절반(KTSID pub)을 사용하여 확인된다. 상기 제1 프로세서(17)는 서명 확인 알고리즘을 수행하도록 구성되고, 주어진 서명된 메시지 및 공개 키(KTSID pub)는 인증에 대한 메시지의 클레임을 수락하거나 거절한다. 상기 서명이 성공적으로 확인될 경우 상기 방법은 단계(S1207)로 진행한다. 그렇지 않을 경우, 에러가 상기 시간 소스(2)로 리턴된다. 예를 들어, 메시지는 "액세스 거부됨(AccessDenied)" 내용으로 전송된다. 이 때, 시간 소스(2) 및 제2 보안 컨텍스트(7) 사이의 통신이 종료된다.
구성 정보가 상기 메시지로 포함될 경우, 상기 제1 보안 컨텍스트(5)는, 상기 구성이 수락할 수 있다는 것을 검증한다. 현재 구성 정보는 상기 테넌트에 수락 가능하지 않을 경우, 상기 사용 인증서 생성은 중단된다.
단계(S1207)에서, 상기 테넌트는 상술된 타임 스탬프에 기초하여 그들의 키(Ktenant)에 대한 만료 시간을 계산한다. 상기 만료 시간은, 상기 테넌트가 상기 인증서가 활성화되는 것을 원하는 시간의 양에 시간을 더한 타임 스탬프로서 계산된다. 예를 들어, 상기 타임 스탬프는 하루 이상의 시간을 더한다.
상기 만료 시간이 통신 지연에 비교하여 작은 곳에서, 예를 들어 통신 지연은 상기 만료 시간으로 고려될 수 있다. 이 경우, 상기 만료 시간은, 상기 타임 스탬프가 상기 기준 시간 소스(2)로부터 상기 제1 보안 컨텍스트(5)로의 통신 지연 더하기 상기 제1 보안 컨텍스트(5)로부터 상기 제2 보안 컨텍스트(7)로의 통신 지연 더하기 상기 테넌트가 상기 인증서가 활성화되기 원하는 시간의 양의 시간을 더한다.
상기 테넌트가 상기 인증서가 활성화되기 원하는 시간의 양은, 적용에 따라, 예를 들어 몇 초 또는 며칠일 수 있다.
"시작 시간(start time)"은 상기 사용 인증서 내 포함되어, 상기 사용 인증서는 상기 인증서가 유효한, 유효 기간을 정할 수 있다. 이는, 사용 전에, 테넌트가 하나 이상의 인증서를 미리-생성하는 것을 허용한다.
단계(S1208)에서, 상기 만료 시간, 상기 시간 소스에 대한 기준, Ktenant에 대한 기준 및 상기 제2 보안 컨텍스트(7)에 대한 기준은 사용 인증서 내 포함된다.
상기 시간 소스 또는 상기 제2 보안 컨텍스트(7)와 같은, 시스템 구성요소에 대한 기준은, 인증서를 사용하여 그것과 묶일 수 있는 고유 ID일 수 있거나, 아이덴티티 키(KID)의 공개 절반의 해시일 수 있다.
제1 보안 컨텍스트(5) 내 프로세서(17)는, 단계(S1207)에서 계산되는 만료 시간, 시간 소스에 대한 기준, Ktenant에 대한 기준, 및 제2 보안 컨텍스트(7)에 대한 기준을 생성하도록 구성된다.
일 실시예에서, Ktenant에 대한 기준은 Ktenant의 해시이다. 일 실시예에서, 상기 시간 소스(2)에 대한 기준은, 그것의 아이덴티티 키의 공개 절반(KTSID-pub)의 해시이다. 일 실시예에서, 상기 제2 보안 컨텍스트(7)에 대한 기준은, 그것의 아이덴티티 키의 공개 절반(K2ID-pub)의 해시이다.
도 11로 돌아가서, 일단 상기 사용 인증서가 생성되었으면, 그것은 상기 사용 인증서의 원본이 식별될 수 있는 정보와 함께 발행된다. 일 실시예에서, 상기 사용 인증서의 원본이 식별될 수 있는 정보는,
Figure 112022041342282-pat00045
의 해시이다.
단계(S1102)에서, 상기 사용 인증서는 서명 키(Ktenant-sign priv)의 비공개 절반으로 서명된다. 상기 제1 보안 컨텍스트(5) 내 상기 제1 프로세서(17)는, 상기 서명 키(Ktenant-sign priv)의 비공개 절반으로 암호화 서명하도록 구성된다.
단계(S1103)에서, 상기 사용 인증서는 상기 사용 인증서의 원본이 검증될 수 있는 정보와 함께, 상기 서비스 프로바이더의 애플리케이션 서버로 전송된다. 상기 사용 인증서의 원본이 검증될 수 있는 정보는 서명된 사용 인증서인, 서명이다.
상기 제1 송수신기(13)는 상기 애플리케이션 서버로 상기 사용 인증서를 전송하도록 구성된다. 상기 테넌트 키를 사용하기 위한 다른 엔티티는 사용 인증서로 전송될 수 있다. 이 엔티티는, 제2 보안 컨텍스트(7)와 직접 또는 상기 애플리케이션 서버를 통해 통신할 수 있다.
상기 사용 인증서의 원본이 검증될 수 있는 정보는 사용 인증서와 함께 전송될 수도 있다. 상기 사용 인증서의 원본이 식별될 수 있는 정보는,
Figure 112022041342282-pat00046
의 해시일 수 있다. 상기 사용 인증서의 원본이 검증될 수 있는 정보는, 어떤 서명 키가 상기 서명을 확인하도록 사용되어야 하는지를 식별하기 위해 포함된다.
따라서, 제1 보안 컨텍스트(5)는 상기 사용 인증서, 상기 서명 및 Ktenant-sign pub의 해시를 상기 서비스 프로바이더로 전송한다. 상기 서비스 프로바이더에 의한 상기 키의 각각의 사용은, 상기 제2 보안 컨텍스트(7) 로 이 정보의 제시에 의해 수반된다.
단계(S1104)에서, 상기 사용 인증서, 서명 및 상기 사용 인증서의 원본이 식별될 수 있는 정보와 같은,
Figure 112022041342282-pat00047
의 해시는 상기 애플리케이션 서버에 의해 상기 제2 보안 컨텍스트(7)에 제시된다. 상기 사용 인증서는, 상기 애플리케이션 서버가 Ktenant를 사용하기 원하는 때마다 제시된다. 상기 애플리케이션 서버는, 상기 사용 인증서와 함께, 필요한 상기 테넌트 키의 사용을 지정하는, 요청 메시지를 전송할 수 있다. 예를 들어, 상기 애플리케이션 서버는, 상기 제2 보안 컨텍스트(7)로 메시지를 전송할 수 있다. 상기 데이터 파일, 상기 제2 보안 컨텍스트(7)가 상기 데이터 파일을 상기 테넌트 키로 암호화하라는 요청, 사용 인증서, 및
Figure 112022041342282-pat00048
의 해시일 수 있는, 상기 사용 인증서의 원본이 식별될 수 있는 정보를 포함한다.
상기 제2 보안 컨텍스트(7)는, 예를 들어, 상이한 테넌트에 연관되는, 다수의 공개 키에 액세스할 수 있다. 상기 키는 상기 제2 보안 컨텍스트(7)에서, 또는 상기 제2 보안 컨텍스트(7)의 외측에 인증되는 방식으로 저장될 수 있다. 상기 제2 보안 컨텍스트(7)는,
Figure 112022041342282-pat00049
의 해시일 수 있는, 상기 사용 인증서의 원본이 식별될 수 있는 정보에 기초하여, 상기 정확한 서명 확인 키(
Figure 112022041342282-pat00050
)를 식별한다. 상기 서명된 사용 인증서는 상기 제2 보안 컨텍스트(7)에서 확인된다. 상기 제2 보안 컨텍스트(7) 내 상기 제2 프로세서(19)는 상기 서명을 확인하도록 구성된다. 상기 서명은 상기 서명 키(Ktenant-sign pub)의 공개 절반을 사용하여 확인된다. 상기 제2 프로세서(19)는 서명 확인 알고리즘을 수행하도록 구성되고, 주어진 서명된 사용 인증서 및 공개 키(Ktenant-sign pub)는 인증에 대한 메시지의 클레임을 수락하거나 또는 거절한다. 상기 서명이 성공적으로 확인될 경우, 상기 방법은 단계(S1105)로 진행한다. 그렇지 않을 경우, 상기 제1 보안 컨텍스트(5)로 에러가 리턴된다. 예를 들어, 메시지는 "액세스 거부됨(AccessDenied)" 내용으로 전송된다. 이 때, 시간 소스(2) 및 제2 보안 컨텍스트(7) 사이의 통신이 종료된다.
단계(S1105)에서, 상기 제2 보안 컨텍스트(7)는 상기 제2 장치 메모리(11) 내 저장된 상기 액세스 제어 리스트에 관하여 상기 사용 인증서를 검증한다. 이 단계의 일부로서, 상기 사용 인증서가 만료되지 않았다는 것이 검증된다. 상기 사용 인증서는 요청된 연산으로서, 상기 사용 인증서가 요청되는, 사용, 또는 연산에 대응하는 권한과 연관되는 자격증명과 일치하는지 여부를 허용한다는 것이 또한 검증된다. 상기 제2 프로세서(19)는 상기 사용 인증서를 검증하도록 구성된다. 상기 인증서가 유효하지 않을 경우 - 예를 들면, 상기 인증서 서명, 만료에 의해 나타내는 변조 때문임 - , 또는 상기 ACL은 요청된 연산을 허용하지 않을 경우, 상기 제2 보안 컨텍스트(7)는 예를 들어, 상기 애플리케이션 서버로 에러 메시지를 리턴할 수 있다.
상기 제2 보안 컨텍스트(7)는 상기 사용 인증서 내 Ktenant에 대한 참조로부터 상기 사용 인증서에 대응하는 안전하게 저장된 테넌트 키를 식별한다.
상기 제2 보안 컨텍스트는 안전하게 저장된 테넌트 키 및 ACL을 로드한다. 상기 테넌트 키를 로드하는 것은 상기 제2 보안 컨텍스트(7) 내 상기 프로세서에 대해 이용 가능하게 할 수 있는 것으로서, 아직 없을 경우, 상기 테넌트 키 및 ACL을 상기 장치 메모리(9)로 전송하는 것을 포함한다. 이는, 예를 들어, 제2 보안 컨텍스트(7)의 외측의 비휘발성 메모리 장치로부터 상기 테넌트 키 및 ACL을 로드하는 것, 상기 키를 복호화(decrypt)하는 것, 및 상기 제2 프로세서에 대해 이용 가능하게 하는 것을 포함할 수 있다.
이 때, 상기 제2 보안 컨텍스트(7)는 상기 사용 인증서 및 상기 만료 시간이 상기 기준 시간 소스와 관련하여 경과되지 않았다는 것을 검증한다. 상기 제2 보안 컨텍스트(7)는 상기 사용 인증서를 사용하여, 주어진 모든 필드가 예상되는 바이다는 것을 검증함으로써 상기 일치하는 권한을 인에이블할 수 있다.
상기 제2 프로세서(19)는 Ktenant에 대한 기준 및 제2 보안 컨텍스트(7)에 대한 기준이 상기 키(Ktenant)에 대응하고 상기 제2 장치 메모리(11) 내 저장된 ACL 내의 것과 일치하는 것을 확정하도록 구성된다. 일 실시예에서, Ktenant에 대한 기준은 Ktenant의 해시이다. 일 실시예에서, 상기 제2 보안 컨텍스트(7)에 대한 기준은 아이덴티티 키의 공개 절반(K2ID pub)의 해시이다.
Ktenant에 대한 기준 및 제2 보안 컨텍스트(7)에 대한 기준은 ACL 내의 것과 일치할 경우, 유효 기간이 만료되었는지 여부가 확정된다. 그렇지 않으면, 에러가 상기 애플리케이션 서버로 리턴될 경우, 예를 들어 메시지는 "인증서 만료됨(CertificateExpired)" 내용으로 전송된다.
상기 제2 프로세서(19)는, 유효 기간이 상기 참조되는 시간 소스(2)에 관해 만료되지 않음을 확정하도록 더 구성된다. 일 실시예에서, 상기 제2 보안 컨텍스트(7)는 상기 사용 인증서에서의 참조에 대응하는 시간 소스(2)로부터 현재 시간 스탬프를 요청한다. 제2 보안 컨텍스트(7) 내 제2 송수신기(15)는, 상기 시간 소스(2)로 요청 메시지를 전송하도록 구성된다. 상기 요청 메시지에 응답하여, 상기 시간 소스(2)는 현재 시간 스탬프를 포함하는 메시지를 생성한다. 상기 메시지는 상기 시간 소스의 아이덴티티 키의 비공개 절반(KTSID priv)으로 서명된다. 상기 시간 소스 내 상기 제3 프로세서(41)는 상기 시간 소스의 아이덴티티 키의 비공개 절반(KTSID priv)으로 상기 메시지를 암호화 서명하도록 구성된다. 상기 서명된 메시지는 상기 제2 보안 컨텍스트(7)로 전송된다. 상기 시간 소스(2) 내 송수신기(39)는 상기 제2 보안 컨텍스트(7)로 상기 서명된 메시지를 전송하도록 구성된다. 상기 메시지는 상기 시간 소스의 현재 구성 정보를 포함할 수도 있다.
상기 제2 보안 컨텍스트(7)는 상기 시간 소스의 아이덴티티 키의 공개 절반(KTSID pub)을 사용하여 응답 서명을 확인한다. 상기 제2 보안 컨텍스트(7) 내 상기 제2 프로세서(19)는 상기 서명을 확인하도록 구성된다. 상기 서명은 상기 시간 소스의 아이덴티티 키의 공개 절반(KTSID pub)을 사용하여 확인된다. 상기 제2 프로세서(19)는, 서명 확인 알고리즘을 수행하도록 구성되고, 주어진 서명된 메시지 및 공개 키(KTSID pub)는 인증에 대한 메시지의 클레임을 수락하거나 거절한다.
상기 서명이 성공적으로 확인될 경우, 상기 현재 시간 스탬프는 상기 사용 인증서가 만료되었는지 여부를 결정하기 위해 상기 사용 인증서 내 포함된 상기 만료 시간과 비교된다. 그렇지 않으면, 에러가 상기 애플리케이션 서버로 리턴된다. 예를 들어, 메시지는 "액세스 거부됨(AccessDenied)" 내용으로 전송된다. 이 때, 제1 보안 컨텍스트(5) 및 제2 보안 컨텍스트(7) 사이의 통신이 종료된다.
상기 시간 소스(2)로부터 수신된 현재 타임 스탬프는 상기 사용 인증서 내 포함되는 상기 만료 시간 이전일 경우, 상기 방법은 단계(S1106)로 진행한다. 그렇지 않을 경우, 에러가 상기 애플리케이션 서버로 리턴될 경우, 예를 들어 메시지는 "인증서 만료됨(CertificateExpired)" 내용으로 전송된다. 상기 애플리케이션 서버는, 상기 제1 보안 컨텍스트(5)를 요청하여 새로운 인증서를 제공하거나 상기 연산을 간단히 종료할 수 있다.
단계(S1106)에서, 상기 사용 인증서가 유효하고 만료되지 않는 조건에서, 상기 제2 보안 컨텍스트(7)는 상기 암호 키(Ktenant)의 사용을 허가한다. 상기 인증서는 유효하고, 상기 만료 시간이 아직 경과되지 않을 경우, 상기 암호화 연산은 진행하도록 허용된다. 상기 제2 보안 컨텍스트(7)는 상기 유효 기간 내의 테넌트 키를 이제 사용할 수 있다. 상기 제2 보안 컨텍스트(7)는 상기 요청된 사용에 대응하는 상기 ACL 내의 필요한 권한을 활성화하고, 상기 요청을 허용하는 활성화 권한에 대한 상기 ACL을 체크한다. 상기 제2 보안 컨텍스트(7)는 상기 요청된 연산을 수행하고 상기 애플리케이션 서버에 대한 결과를 리턴한다. 예를 들어, 상기 애플리케이션 서버가, 데이터 파일 및 상기 제2 보안 컨텍스트(7)가 상기 테넌트 키로 상기 데이터 파일을 암호화하는 요청을 포함하는 메시지를 전송하였을 경우에, 상기 제2 보안 컨텍스트(7)는 상기 테넌트 키로 상기 데이터 파일을 암호화하고, 상기 애플리케이션 서버로 상기 암호화된 데이터 파일을 리턴한다.
만료 시점에서 또는 이전에서, 상기 테넌트는 새로운 인증서를 생성하여 상기 키의 만료 시간을 연장할 수 있다. 새로운 인증서를 생성하는 것의 실패는 상기 서비스 프로바이더에 의해 상기 키가 사용할 수 없게 된다. 일 실시예에서, 상기 제2 보안 컨텍스트(7)는, 상기 사용 인증서의 만료 시점에서 또는 이전에 상기 제1 보안 컨텍스트(5)에 통지한다. 새로운 사용 인증서는 이후 만료 시간과 함께 상기 제1 보안 컨텍스트에서 생성될 수 있다. 대안적으로, 상기 제2 보안 컨텍스트(7)는 상기 사용 인증서의 만료 시점에서 또는 이전에 상기 애플리케이션 서버에 통지한다. 상기 애플리케이션 서버는 상기 제1 보안 컨텍스트(5)로부터 새로운 사용 인증서를 요청한다. 대안적으로, 상기 사용 인증서는, 만료의 시점에서 또는 이전에 상기 제1 보안 컨텍스트(5)으로부터 새로운 사용 인증서를 요청하는, 상기 애플리케이션 서버에 의해 판독된다. 대안적으로, 상기 테넌트 또는 상기 서비스 프로바이더에 의해 소유될 수 있는, 추가 구성요소는 인증서를 모니터하고, 만료 예정이거나 만료된 인증서에 대한 요청을 제기할 수 있다.
따라서, 상기 테넌트 시스템(1)은 상기 서비스 프로바이더 시스템(3)에게 보안 방식으로 상기 암호 키(Ktenant)를 효과적으로 대여한다. 상기 서비스 프로바이더에 의한 키의 사용은, 상기 사용 인증서 내 상기 소유하는 테넌트에 의한 세트로서, 신뢰되는 시간 소스를 참조하여, 만료 시간에 의해 암호로 제한된다. 상기 ACL은, 암호 키(Ktenant)의 사용이 만료되지 않은 사용 인증서가 제공될 경우 오직 허가되는 것을 지정한다. 또한, 상기 테넌트는 상기 서비스 프로바이더에 의해 키가 사용되는 방식을 제한할 수 있다.
도 13은 본 발명의 일 실시예에 따른, 암호 키(Ktenant)의 사용을 제어하는 것에 대한 방법의 계략도이다.
도시된 이 방법은, 상기 테넌트 키가 상기 제2 보안 컨텍스트(7)에서 사용되고, 만료 기간이 경과하는 경우에 대응한다. 상기 제2 보안 컨텍스트(7) 또는 상기 애플리케이션 서버는, 상기 사용 인증서에서 상기 기준 시간 소스(2)로부터 획득되는 현재 시간을 상기 만료 시간과 주기적으로 비교하고, 이 정보로부터 상기 인증서가 만료되었는지 여부를 결정할 수 있다. 대안적으로, 상기 제2 보안 컨텍스트(7)는 만료된 인증서를 사용하여 요청이 될 경우에만, 상기 인증서가 만료되었다는 것을 결정할 수 있다. 상기 제2 보안 컨텍스트(7)는 상기 제1 보안 컨텍스트(5), 상기 애플리케이션 서버, 또는 다른 장치에 상기 키가 타임 아웃(timed out)되었음을 통지할 수 있다.
상기 제1 보안 컨텍스트(5)는 상기 통지에 응답하여, 단계(S1202)와 관련하여 상술된 바와 같은 현재 타임 스탬프를 요청하는, 상기 시간 소스(2)에 요청 메시지를 전송하도록 구성된다.
상기 시간 소스(2)는, 단계(1203 내지 1205)와 관련하여 상술된 바와 같은, 시간 정보를 포함하는 메시지를 생성 및 전송하도록 구성된다.
단계(S1206)와 관련하여 상술된 바와 같이 상기 메시지가 상기 제1 보안 컨텍스트(5)에서 확인되고, 사용 인증서는, 단계(S1207 to S1208)에서 도시되는 바와 같이 생성되고, 단계(S1102)와 관련하여 상술된 바와 같이 서명된다. 단계(S1103)에서 상술된 바와 같이, 상기 사용 인증서는, 상기 서비스 프로바이더로 전송되고, 상기 제2 보안 컨텍스트(7)로 전송되고, 단계(S1104)와 관련하여 도시된 바와 같이 상기 제2 보안 컨텍스트(7)에서 확인된다. 상기 사용 인증서에 대응하는 상기 저장된 테넌트 키가 로드되고, 현재 시간 스탬프가 시간 소스(2)로부터 획득되고, 단계(S1105)와 관련하여 상술된 바와 같이 검증된다. 상기 테넌트 키를 로드하는 것은, 상기 프로세서에 대해 사용 가능하게 하는 것을 포함한다. - 즉, 아직 없을 경우, 상기 장치 메모리(9)로 전송된다. 이는 상기 제2 보안 컨텍스트(7)의 외측의 비-휘발성 메모리 장치로부터 상기 테넌트 키를 로드하는 것, 상기 키를 복호화(decrypt)하는 것, 및 상기 프로세서에 대해 이용 가능하게 하는 것을 포함할 수 있다. 상기 키는 위의 단계(S1106)와 같이 활성화된다.
도 14는 본 발명의 일 실시예에 따른 암호 키(Ktenant)의 사용을 제어하는 것에 대한 방법의 계략도이다.
초기 단계에서, 상기 제1 보안 컨텍스트(5)는 시간 소스(2)로부터 상기 시간 소스의 생성 인증서, 상태 및 시간을 획득한다. 상기 생성 인증서 및 타임 스탬프 서명은 상기 제1 보안 컨텍스트(5)에서 확인된다. 이는 도 10 및 위의 단계(S1201 내지 S1206)와 관련하여 기술된다.
상기 생성 인증서 및 타임 스탬프 서명은 검증되고, 상기 방법은 다음 단계("인증 인증서를 생성(generate authorisation certificate)")로 진행한다. 그렇지 않으면, 에러가 리턴된다.
상기 사용 인증서는 단계(S1207 및 S1208)에서 상술된 바와 같이 생성된다. 상기 사용 인증서는, 단계(S1103)와 관련하여 상술된 바와 같이, 상기 제2 보안 컨텍스트(7)로 전송된다.
위에서 약술된 단계들은 악의적인 서비스 프로바이더뿐만 아니라 제3자에 의한 공격에 대비하여 안전한 시스템을 정한다. 모든 키 재료는 상기 테넌트 및 상기 제2 보안 컨텍스트(7) 사이에서 암호화되고, 상기 테넌트 키 재료는 안전, 변조-방지 포맷으로 저장되고, 상기 테넌트 키는 테넌트에 의해 암호로 시행되는 방식으로 인증되는 경우에만 사용할 수 있고, 상기 테넌트 및 상기 서비스 프로바이더 모두에 의해 신뢰되는 제조업체에 의해 서명된 생성 인증서 및 아이덴티티 키(KID)의 존재에 의해 구성요소 스푸핑(component spoofing)이 방지되기 때문이다.
상술된 키 전송 방법 및 상기 키의 사용을 제어하는 것에 대한 방법은, 알려진 원본의 공유된 암호화 인프라를 호스트하는, 서비스 프로바이더에게 상기 테넌트가 암호 키를 안전하게 대여할 수 있는 것을 의미한다. 상기 테넌트 키의 사용은 암호로 보호되는 방식으로 상기 테넌트의 제어 하에서 유지된다.
상기 키 전송 방법의 일부로서, 상기 테넌트는, 자체-호스트되는, 보안 기기, 상기 제1 보안 컨텍스트(5) 내측에 키를 생성한다.
상기 테넌트의 보안 기기, 상기 제1 보안 컨텍스트(5)는, 선택된 서비스 프로바이더, 상기 제2 보안 컨텍스트(7)에 의해 호스트되는 암호화 인프라가, 상기 테넌트에 수락할 수 있는 규칙의 세트에 부합하는지 여부를 검증한다. 상기 테넌트에 수락 가능하고, 키를 대여하기에 적합한 방식으로 구성된, 신뢰되는 제조업체를 사용하여 상기 인프라가 구축되는지 여부를 검증함으로써 할 수 있다. 도 2a와 관련하여 상술된 단계(S205)는, 신뢰되는 제조를 사용하여 상기 인프라가 구축되는 것을 검증함을 허용한다. 상기 생성 인증서(C2ID)의 서명이 확인될 경우, 상기 제2 보안 컨텍스트가 신뢰되는 제조업체에 의해 구축된 것이 검증된다. 도 2b와 관련하여 상술된 단계(S215)는, 상기 테넌트에 수락 가능하고 키를 대여하기에 적합한 방식으로 상기 인프라가 구성된 것을 검증함을 허용한다.
또한, 상기 테넌트 및 서비스 프로바이더의 암호화 인프라는, 상기 테넌트에 의해 설정된 키 만료 시간을 시행하기 위해, 제3자에 의해 호스팅될 수 있는, 신뢰되는 시간 소스(2)를 사용한다.
상술된 장치 및 방법은, 멀티-테넌트되고, 호스트되는 암호화 솔루션이 CSP에 의해 제공될 수 있게 한다. 상기 시스템은 제3자 및 CSP 자체 모두에 의해 공격에 대비하여 안전하도록 설계된다. 테넌트는 CSP-호스트되는 시스템 내측의 사용을 위해, 암호화 시행되는, 사용 인증을 제공하는, 그것들의 키에 대한 제어를 계속 유지한다.
그것은 HSM들의 멀티-테넌시(multi-tenancy) 및 서비스 프로바이더의 암호화 인프라로 전송되는 키에 대한 보증 모두를 허용한다. 하나 이상의 테넌트는 단일 암호화 기기를 사용하지만, 테넌트의 키의 보안은 제3자 및 상기 서비스 프로바이더 모두로부터 보호된다.
상기 상술된 장치 및 방법은, CSP 보안 컨텍스트 내측에서 한번 키의 사용을 통한 제어가 유지되는 동안, 상기 서비스 프로바이더 및 제3자에게 액세스 불가한 방식으로 서비스 프로바이더의 암호화 인프라 내측에 사용될, 암호 키를 테넌트가 확인 가능하게 대여하도록 허용한다. 이는, 설정 시간 기간 동안 서비스 프로바이더 HSM 내측에서의 사용에 대한 테넌트 키의 사용을 제한하는 능력을 가지는, 테넌트 및 서비스 프로바이더 사이에서의 암호 키의 안전한 임대를 가능하게 하고, 악의적 또는 불량한 관리자 공격에 대한 저항력을 제공한다. CSP로의 키의 임대가 암호로 시행되는 방식으로 허용된다. 서비스 프로바이더는, 제3자 공격에 대해 강력하고, 반면에 악의적인 CSP에 맞서 강력하기도 한, 멀티-테넌트되는 서비스를 호스팅하도록 허용된다. 테넌트 키의 사용은 테넌트에 의해 제어되는 것을 암호로 시행하는 것은, 키의 사용이 이제 테넌트에 의해 제어되는 것을 보장하고, 공격에 맞선 안전한 서비스를 만들고, 다른 것들과의 인프라의 공유를 가능하게 한다.
상술된 장치 및 방법은, CSP가 그들의 테넌트에게 결제, 보안 및 규정과 같은 애플리케이션을 위한 그들의 암호화 인프라의 사용을 제공하도록 하게 한다.
상기 제2 보안 컨텍스트(7)는, 서비스 프로바이더 시스템의 일부이고, 상기 서비스 프로바이더로서, 예를 들어, CSP가 그들의 고객을 대신하여, 하드웨어 보안 모듈들(HSMs)을 통해, 암호화 서비스를 호스팅하도록 하게 한다.
특정 실시예들이 설명되었지만, 이 실시예들은 단지 예의 방식으로서 제시되었고, 본 발명의 영역을 제한하도록 의도되지 않는다. 실제로, 본원에 기술되는 신규 방법 및 장치는 다양한 다른 형태로 구현될 수 있으며, 또한 본원에 기술되는 신규 방법 및 장치의 형태에서 본 발명의 사상을 떠나지 않고 다양한 생략, 대체 및 변경이 이루어질 수 있다. 첨부되는 청구항 및 그들의 등가물들은 본 발명의 범위 및 사상 내에 들어가는 바와 같은 수정의 그러한 형태들을 커버하도록 의도된다.

Claims (31)

  1. 방법에 있어서,
    제2 하드웨어 보안 모듈에서, 제1 암호 키 쌍 및 제1 암호 인증서(first cryptographic certificate)를 생성하는 단계 - 상기 제1 암호 키 쌍은, 제1 공개 키 및 제1 개인 키를 포함하고, 상기 제1 암호 인증서는, 상기 제1 공개 키의 원본을 검증(validate)할 수 있는 정보를 포함함 -;
    상기 제1 공개 키 및 상기 제1 암호 인증서를 제1 하드웨어 보안 모듈로 전송하는 단계;
    상기 제2 하드웨어 보안 모듈에서, 제2 공개 키 및 제2 암호 인증서를 수신하는 단계 - 상기 제2 암호 인증서는, 상기 제2 공개 키의 원본을 식별(identify)할 수 있는 정보를 포함함 -;
    상기 제1 하드웨어 보안 모듈로부터, 암호화된 제1 암호 키(Ktenant) 및 서명 정보(signature information)를 수신하는 단계;
    상기 제2 하드웨어 보안 모듈에서, 상기 제2 공개 키 및 상기 서명 정보를 이용하여, 상기 암호화된 제1 암호 키(Ktenant)의 원본을 검증하는 단계;
    상기 제2 하드웨어 보안 모듈에서, 상기 제1 개인 키를 이용하여, 상기 암호화된 제1 암호 키(Ktenant)를 복호화(decrypt)하는 단계; 및
    상기 제2 하드웨어 보안 모듈에서, 제2 암호 키로 상기 제1 암호 키(Ktenant)를 재-암호화하는 단계
    를 포함하는 방법.
  2. 제1항에 있어서,
    상기 재-암호화된 제1 암호 키를 저장하는 단계
    를 더 포함하는 방법.
  3. 제1항에 있어서,
    상기 제2 하드웨어 보안 모듈은,
    제2 아이덴티티 개인 키를 저장하고,
    상기 방법은,
    상기 제2 하드웨어 보안 모듈로부터 상기 제1 하드웨어 보안 모듈로, 제2 아이덴티티 공개 키 및 제2 아이덴티티 인증서(second identity certificate)를 전송하는 단계
    를 더 포함하고,
    상기 제2 아이덴티티 공개 키 및 상기 제2 아이덴티티 개인 키는,
    암호 키 쌍(cryptographic key pair)이고,
    상기 제2 아이덴티티 인증서는,
    상기 제2 아이덴티티 공개 키를 식별하는 정보를 포함하고,
    제조업체 개인 키에 의하여 암호화 서명(cryptographically sign)되는
    방법.
  4. 제3항에 있어서,
    상기 제2 하드웨어 보안 모듈의 현재 구성과 관련된 정보를 생성하는 단계;
    상기 제2 아이덴티티 개인 키로 상기 정보를 암호화 서명하는 단계; 및
    상기 제2 하드웨어 보안 모듈로부터 상기 제1 하드웨어 보안 모듈로, 상기 서명된 정보를 전송하는 단계
    를 더 포함하는 방법.
  5. 제4항에 있어서,
    상기 제1 암호 인증서는,
    상기 제2 하드웨어 보안 모듈의 상기 현재 구성과 관련된 정보를 포함하고,
    상기 제2 아이덴티티 개인 키로 서명되는
    방법.
  6. 제1항에 있어서,
    상기 제1 암호 인증서는,
    상기 제1 개인 키가 일시적(ephemeral)이고, 상기 제2 하드웨어 보안 모듈을 벗어날 수 없다는 것을 나타내는 정보
    를 포함하는 방법.
  7. 방법에 있어서,
    제1 하드웨어 보안 모듈에서, 제2 암호 키 쌍 및 제2 암호 인증서를 생성하는 단계 - 상기 제2 암호 키 쌍은, 제2 공개 키 및 제2 개인 키를 포함하고, 상기 제2 암호 인증서는, 상기 제2 공개 키의 원본을 식별(identify)할 수 있는 정보를 포함함 -;
    제2 하드웨어 보안 모듈로부터, 제1 공개 키 및 제1 암호 인증서를 수신하는 단계 - 상기 제1 암호 인증서는, 상기 제1 공개 키의 원본을 검증(validate)할 수 있는 정보를 포함함 -;
    상기 제2 공개 키 및 상기 제2 암호 인증서를 제2 하드웨어 보안 모듈로 전송하는 단계;
    제1 하드웨어 보안 모듈에서, 상기 제1 암호 인증서를 검증하고, 상기 제1 하드웨어 보안 모듈에서, 상기 제2 하드웨어 보안 모듈은 미리 정해진 제조업체에 의해 제조된 것이라는 것을 검증하고, 상기 제2 하드웨어 보안 모듈의 구성은 상기 제1 하드웨어 보안 모듈의 보안 요건(security requirements)을 충족한다는 것을 검증하는 단계;
    상기 제1 암호 인증서가 유효한 경우, 제1 하드웨어 보안 모듈에서, 제1 암호 키를 상기 제1 공개 키로 암호화하고, 상기 암호화된 키를 상기 제2 개인 키를 이용하여 서명(sign)하는 단계; 및
    상기 암호화된 제1 암호 키 및 서명 정보를 제2 하드웨어 보안 모듈로 전송하는 단계
    를 포함하는 방법.
  8. 제7항에 있어서,
    상기 제1 하드웨어 보안 모듈은,
    제1 아이덴티티 개인 키를 저장하고,
    상기 방법은,
    상기 제1 하드웨어 보안 모듈로부터 상기 제2 하드웨어 보안 모듈로, 제1 아이덴티티 공개 키 및 제1 아이덴티티 인증서를 전송하는 단계
    를 더 포함하고,
    상기 제1 아이덴티티 공개 키 및 상기 제1 아이덴티티 개인 키는,
    암호 키 쌍(cryptographic key pair)이고,
    상기 제1 아이덴티티 인증서는,
    상기 제1 아이덴티티 공개 키를 식별하는 정보를 포함하고,
    제조업체 개인 키에 의하여 암호화 서명(cryptographically sign)되는
    방법.
  9. 제8항에 있어서,
    상기 제2 암호 인증서를 상기 제1 아이덴티티 개인 키로 암호화 서명(cryptographically sign)하는 단계
    를 더 포함하고,
    상기 제2 암호 인증서를 상기 제2 하드웨어 보안 모듈로 전송하는 단계는,
    상기 서명된 제2 암호 인증서를 상기 제2 하드웨어 보안 모듈로 전송하는 단계
    를 포함하는 방법.
  10. 제1항 내지 제9항 중 어느 한 항의 방법을 컴퓨터가 수행하도록 하는 프로그램을 저장한 비일시적 컴퓨터 판독가능 저장 매체.
  11. 하드웨어 보안 모듈 장치에 있어서,
    제2 하드웨어 보안 모듈 장치로부터 제1 공개 키 및 제1 암호 인증서를 수신하도록 구성된 제1 송수신기 - 상기 제1 암호 인증서는, 상기 제1 공개 키의 원본을 검증할 수 있는 정보를 포함함 -; 및
    암호 연산을 수행하도록 구성된 제1 프로세서
    를 포함하고,
    상기 제1 프로세서는,
    제2 암호 키 쌍 및 제2 암호 인증서를 생성하고 - 상기 제2 암호 키 쌍은, 제2 공개 키 및 제2 개인 키를 포함하고, 상기 제2 암호 인증서는, 상기 제2 공개 키의 원본을 식별(identify)할 수 있는 정보를 포함하고, 상기 제1 송수신기는, 상기 제2 공개 키 및 상기 제2 암호 인증서를 상기 제2 하드웨어 보안 모듈 장치로 전송하도록 더 구성됨 -,
    상기 제1 공개 키가 상기 제2 하드웨어 보안 모듈 장치로부터 발생된 것이라는 것을 검증하고, 상기 제2 하드웨어 보안 모듈은 미리 정해진 제조업체에 의해 제조된 것이라는 것을 검증하고, 상기 제2 하드웨어 보안 모듈의 구성은 보안 요건(security requirements)을 충족한다는 것을 검증하는 단계;
    제1 암호 키를 상기 제1 공개 키로 암호화하고, 상기 암호화된 키를 상기 제2 개인 키를 이용하여 서명하도록 더 구성되고,
    상기 제1 송수신기는,
    상기 암호화된 제1 암호 키 및 서명 정보를 상기 제2 하드웨어 보안 모듈 장치로 전송하도록 더 구성된
    장치.
  12. 제11항에 있어서,
    제1 아이덴티티 개인 키를 저장하는 제1 장치 메모리
    를 더 포함하고,
    상기 제1 송수신기는,
    제1 아이덴티티 공개 키 및 제1 아이덴티티 인증서를 상기 제2 하드웨어 보안 모듈 장치로 전송하고,
    상기 제2 하드웨어 보안 모듈 장치로부터, 제2 아이덴티티 공개 키 및 제2 아이덴티티 인증서를 수신하도록 더 구성되고,
    상기 제1 아이덴티티 공개 키 및 상기 제1 아이덴티티 개인 키는,
    암호 키 쌍(cryptographic key pair)이고,
    상기 제1 아이덴티티 인증서는,
    상기 제1 아이덴티티 공개 키를 식별하는 정보를 포함하고,
    제조업체 개인 키에 의하여 암호화 서명(cryptographically sign)되고,
    상기 제2 아이덴티티 인증서는,
    상기 제2 아이덴티티 공개 키를 식별하는 정보를 포함하고,
    상기 제조업체 개인 키에 의하여 암호화 서명(cryptographically sign)되고,
    상기 제1 프로세서는,
    제조업체 공개 키를 이용하여 상기 제2 아이덴티티 인증서를 확인(verify)하도록 더 구성된
    장치.
  13. 제12항에 있어서,
    상기 제1 송수신기는,
    상기 제2 하드웨어 보안 모듈 장치의 현재 구성과 관련된 정보를 수신하도록 더 구성되고,
    상기 정보는,
    제2 아이덴티티 개인 키로 암호화 서명되고,
    상기 제2 아이덴티티 공개 키 및 상기 제2 아이덴티티 개인 키는,
    암호 키 쌍(cryptographic key pair)이고,
    상기 제1 프로세서는,
    상기 제2 아이덴티티 공개 키를 이용하여 상기 서명을 확인(verify)하고,
    상기 제2 하드웨어 보안 모듈의 상기 구성은 상기 하드웨어 보안 모듈 장치의 보안 요건을 충족한다는 것을 검증하도록 더 구성된
    장치.
  14. 제13항에 있어서,
    상기 제1 프로세서는,
    상기 제1 아이덴티티 개인 키로 상기 제2 암호 인증서를 암호화 서명(cryptographically sign)하도록 더 구성되고,
    상기 제2 암호 인증서를 상기 제2 하드웨어 보안 모듈 장치로 전송하는 것은,
    상기 서명된 제2 암호 인증서를 상기 제2 하드웨어 보안 모듈 장치로 전송하는 것
    을 포함하는 장치.
  15. 하드웨어 보안 모듈 장치에 있어서,
    암호 연산을 수행하도록 구성된 프로세서; 및
    송수신기
    를 포함하고,
    상기 프로세서는,
    제1 암호 키 쌍 및 제1 암호 인증서를 생성하도록 더 구성되고,
    상기 제1 암호 키 쌍은,
    제1 공개 키 및 제1 개인 키를 포함하고,
    상기 제1 암호 인증서는,
    상기 제1 공개 키의 원본을 검증(validate)할 수 있는 정보를 포함하고,
    상기 송수신기는,
    상기 제1 공개 키 및 상기 제1 암호 인증서를 추가 하드웨어 보안 모듈 장치로 전송하고,
    상기 추가 하드웨어 보안 모듈 장치로부터, 제2 공개 키 및 제2 암호 인증서를 수신하고,
    상기 추가 하드웨어 보안 모듈 장치로부터, 암호화된 제1 암호 키(Ktenant) 및 서명 정보를 수신하도록 구성되고,
    상기 프로세서는,
    상기 서명 정보 및 상기 제2 공개 키를 이용하여 상기 암호화된 제1 암호 키(Ktenant)의 원본을 검증(validate)하고,
    상기 제1 개인 키를 이용하여 상기 암호화된 제1 암호 키(Ktenant)를 복호화하고,
    제2 암호 키로 상기 제1 암호 키(Ktenant)를 재-암호화하도록 구성된
    장치.
  16. 제15항에 있어서,
    제2 아이덴티티 개인 키를 저장하는 장치 메모리
    를 더 포함하고,
    상기 송수신기는,
    제2 아이덴티티 공개 키 및 제2 아이덴티티 인증서를 상기 추가 하드웨어 보안 모듈 장치로 전송하고,
    상기 추가 하드웨어 보안 모듈 장치로부터, 제1 아이덴티티 공개 키 및 제1 아이덴티티 인증서를 수신하도록 더 구성되고,
    상기 제2 아이덴티티 공개 키 및 상기 제2 아이덴티티 개인 키는,
    암호 키 쌍(cryptographic key pair)이고,
    상기 제2 아이덴티티 인증서는,
    상기 제2 아이덴티티 공개 키를 식별하는 정보를 포함하고,
    제조업체 개인 키에 의하여 암호화 서명(cryptographically sign)되고,
    상기 제1 아이덴티티 인증서는,
    상기 제1 아이덴티티 공개 키를 식별하는 정보를 포함하고,
    상기 제조업체 개인 키에 의하여 암호화 서명(cryptographically sign)되고,
    상기 프로세서는,
    제조업체 공개 키를 이용하여 상기 제1 아이덴티티 인증서를 확인(verify)하도록 더 구성된
    장치.
  17. 제16항에 있어서,
    상기 프로세서는,
    상기 장치의 현재 구성과 관련된 정보를 생성하고,
    상기 제2 아이덴티티 개인 키로 상기 정보를 암호화 서명하도록 더 구성되고,
    상기 송수신기는,
    상기 정보 및 서명을 상기 추가 하드웨어 보안 모듈로 전송하도록 구성된
    장치.
  18. 제17항에 있어서,
    상기 프로세서는,
    상기 장치의 상기 현재 구성과 관련된 상기 정보를 포함하는 상기 제1 암호 인증서를 생성하고,
    상기 제1 암호 인증서를 상기 제2 아이덴티티 개인 키로 서명하도록 더 구성된
    장치.
  19. 삭제
  20. 삭제
  21. 삭제
  22. 삭제
  23. 삭제
  24. 삭제
  25. 삭제
  26. 삭제
  27. 삭제
  28. 삭제
  29. 삭제
  30. 삭제
  31. 삭제
KR1020217033999A 2016-02-05 2017-02-03 데이터 전송 방법, 데이터의 사용 제어 방법 및 암호 장치 KR102471298B1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
GB1602088.5A GB2547025A (en) 2016-02-05 2016-02-05 A method of data transfer, a method of controlling use of data and a cryptographic device
GB1602088.5 2016-02-05
KR1020187025706A KR102318637B1 (ko) 2016-02-05 2017-02-03 데이터 전송 방법, 데이터의 사용 제어 방법 및 암호 장치
PCT/GB2017/050264 WO2017134445A2 (en) 2016-02-05 2017-02-03 A method of data transfer, a method of controlling use of data and a cryptographic device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020187025706A Division KR102318637B1 (ko) 2016-02-05 2017-02-03 데이터 전송 방법, 데이터의 사용 제어 방법 및 암호 장치

Publications (2)

Publication Number Publication Date
KR20210130840A KR20210130840A (ko) 2021-11-01
KR102471298B1 true KR102471298B1 (ko) 2022-11-29

Family

ID=55641862

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020187025706A KR102318637B1 (ko) 2016-02-05 2017-02-03 데이터 전송 방법, 데이터의 사용 제어 방법 및 암호 장치
KR1020217033999A KR102471298B1 (ko) 2016-02-05 2017-02-03 데이터 전송 방법, 데이터의 사용 제어 방법 및 암호 장치

Family Applications Before (1)

Application Number Title Priority Date Filing Date
KR1020187025706A KR102318637B1 (ko) 2016-02-05 2017-02-03 데이터 전송 방법, 데이터의 사용 제어 방법 및 암호 장치

Country Status (11)

Country Link
US (3) US11101983B2 (ko)
EP (2) EP3412001B1 (ko)
JP (1) JP6731491B2 (ko)
KR (2) KR102318637B1 (ko)
CN (3) CN113691560B (ko)
BR (1) BR112018015254A2 (ko)
CA (2) CA3013687C (ko)
ES (1) ES2800295T3 (ko)
GB (1) GB2547025A (ko)
PL (1) PL3412001T3 (ko)
WO (1) WO2017134445A2 (ko)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018236420A1 (en) * 2017-06-20 2018-12-27 Google Llc CLOUD EQUIPMENT SECURITY MODULES FOR CRYPTOGRAPHIC EXTERNALIZATION OPERATIONS
US10938560B2 (en) * 2017-06-21 2021-03-02 Microsoft Technology Licensing, Llc Authorization key escrow
US10831935B2 (en) 2017-08-31 2020-11-10 Pure Storage, Inc. Encryption management with host-side data reduction
US11374760B2 (en) 2017-09-13 2022-06-28 Microsoft Technology Licensing, Llc Cyber physical key
FR3073998B1 (fr) * 2017-11-23 2019-11-01 In Webo Technologies Procede numerique de controle d'acces a un objet, une ressource ou service par un utilisateur
EP3562089A1 (de) * 2018-04-23 2019-10-30 Siemens Aktiengesellschaft Automatisiertes zertifikatsmanagement
US10305479B1 (en) * 2018-06-12 2019-05-28 Nxp B.V. Fault attack protection against synchronized fault injections
US10869190B2 (en) * 2018-07-13 2020-12-15 Micron Technology, Inc. Secure vehicular services communication
JP6952661B2 (ja) * 2018-08-30 2021-10-20 株式会社東芝 情報処理装置、通信機器、情報処理システム、情報処理方法、および情報処理プログラム
US10965551B2 (en) * 2018-11-21 2021-03-30 Microsoft Technology Licensing, Llc Secure count in cloud computing networks
US11356283B2 (en) * 2019-05-08 2022-06-07 Seagate Technology Llc Data storage using an encryption key with a time expiration associated therewith
US11223615B2 (en) * 2019-05-09 2022-01-11 Sap Se Provisioning initial keystore for multi-tenant, microservice architecture-based integration service in a cloud computing environment setup
KR102429325B1 (ko) * 2022-05-02 2022-08-04 에스엠테크놀러지(주) 병렬형 인증서 검증 시스템 및 그 동작 방법

Family Cites Families (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7743248B2 (en) * 1995-01-17 2010-06-22 Eoriginal, Inc. System and method for a remote access service enabling trust and interoperability when retrieving certificate status from multiple certification authority reporting components
EP0898397A2 (en) 1997-08-22 1999-02-24 Nokia Mobile Phones Ltd. Method for sending a secure communication in a telecommunications system
DE19801241C2 (de) 1998-01-12 1999-11-04 Deutsche Telekom Ag Verfahren zur Generierung asymmetrischer Kryptoschlüssel beim Anwender
WO2000067447A1 (en) 1999-04-29 2000-11-09 Michael Bleahen Improvements in and relating to secure data transmission
EP1317708A4 (en) * 2000-08-08 2008-03-19 Wachovia Corp AUTHENTICATING THIRD PARTIES ON THE INTERNET USING ELECTRONIC TICKETS
GB2366470B (en) * 2000-08-25 2005-07-20 Hewlett Packard Co Improvements relating to document transmission techniques iv
US20030021417A1 (en) * 2000-10-20 2003-01-30 Ognjen Vasic Hidden link dynamic key manager for use in computer systems with database structure for storage of encrypted data and method for storage and retrieval of encrypted data
KR20010008103A (ko) * 2000-11-08 2001-02-05 안병엽 디피-헬만형 키 공유 확인이 가능한 인증된 키 합의프로토콜의 구현 방법
US7017041B2 (en) * 2000-12-19 2006-03-21 Tricipher, Inc. Secure communications network with user control of authenticated personal information provided to network entities
US20030177094A1 (en) 2002-03-15 2003-09-18 Needham Bradford H. Authenticatable positioning data
CN1215386C (zh) 2002-04-26 2005-08-17 St微电子公司 根据量子软计算控制过程或处理数据的方法和硬件体系结构
ATE378748T1 (de) 2002-09-13 2007-11-15 Ericsson Telefon Ab L M Sicherer broadcast-/multicast-dienst
FR2846819B1 (fr) 2002-11-06 2005-04-15 France Telecom Procede d'echange securise entre deux unites de communication, systeme de controle et serveur pour la mise en oeuvre du procede
US20050154889A1 (en) 2004-01-08 2005-07-14 International Business Machines Corporation Method and system for a flexible lightweight public-key-based mechanism for the GSS protocol
US9032192B2 (en) * 2004-10-28 2015-05-12 Broadcom Corporation Method and system for policy based authentication
US7725703B2 (en) 2005-01-07 2010-05-25 Microsoft Corporation Systems and methods for securely booting a computer with a trusted processing module
US8245292B2 (en) 2005-11-16 2012-08-14 Broadcom Corporation Multi-factor authentication using a smartcard
US8615663B2 (en) 2006-04-17 2013-12-24 Broadcom Corporation System and method for secure remote biometric authentication
US7971061B2 (en) 2006-12-11 2011-06-28 Pitney Bowes Inc. E-mail system and method having certified opt-in capabilities
US20080307495A1 (en) * 2007-06-08 2008-12-11 Michael Holtzman Memory device with circuitry for improving accuracy of a time estimate used in digital rights management (DRM) license validation
US7913086B2 (en) 2007-06-20 2011-03-22 Nokia Corporation Method for remote message attestation in a communication system
EP2034661A1 (en) 2007-09-07 2009-03-11 Deutsche Telekom AG Method and system for distributed, localized authentication in the framework of 802.11
WO2009070430A2 (en) * 2007-11-08 2009-06-04 Suridx, Inc. Apparatus and methods for providing scalable, dynamic, individualized credential services using mobile telephones
US20100023757A1 (en) 2008-07-22 2010-01-28 Winmagic Data Security Methods and systems for sending secure electronic data
KR100989185B1 (ko) * 2008-08-26 2010-10-20 충남대학교산학협력단 Rsa기반 패스워드 인증을 통한 세션키 분배방법
US9548859B2 (en) 2008-12-03 2017-01-17 Google Technology Holdings LLC Ticket-based implementation of content leasing
US8621203B2 (en) * 2009-06-22 2013-12-31 Nokia Corporation Method and apparatus for authenticating a mobile device
JP5068803B2 (ja) 2009-12-15 2012-11-07 日本電信電話株式会社 サービス提供システムおよび方法
JP5404501B2 (ja) * 2010-03-30 2014-02-05 日本電信電話株式会社 暗号化情報の有効期限延長システム、有効期限延長方法及びプログラム
US8887246B2 (en) * 2010-06-22 2014-11-11 Telefonaktiebolaget L M Ericsson (Publ) Privacy preserving authorisation in pervasive environments
US20120131333A1 (en) 2010-11-23 2012-05-24 General Instrument Corporation Service key delivery in a conditional access system
CN102014133B (zh) * 2010-11-26 2013-08-21 清华大学 在云存储环境下一种安全存储系统的实现方法
US8843750B1 (en) 2011-01-28 2014-09-23 Symantec Corporation Monitoring content transmitted through secured communication channels
WO2012126483A1 (en) 2011-03-21 2012-09-27 Sony Ericsson Mobile Communications Ab Data protection using distributed security key
US8429409B1 (en) * 2012-04-06 2013-04-23 Google Inc. Secure reset of personal and service provider information on mobile devices
FR2990696B1 (fr) * 2012-05-16 2016-02-12 Roquette Freres Souche productrice de turanose et utilisations
US9209973B2 (en) * 2012-11-20 2015-12-08 Google Inc. Delegate authorization in cloud-based storage system
US8938792B2 (en) * 2012-12-28 2015-01-20 Intel Corporation Device authentication using a physically unclonable functions based key generation system
US10210341B2 (en) * 2013-02-12 2019-02-19 Amazon Technologies, Inc. Delayed data access
US9547771B2 (en) * 2013-02-12 2017-01-17 Amazon Technologies, Inc. Policy enforcement with associated data
US9716728B1 (en) * 2013-05-07 2017-07-25 Vormetric, Inc. Instant data security in untrusted environments
EP2997692A1 (en) * 2013-05-13 2016-03-23 Telefonaktiebolaget LM Ericsson (publ) Procedure for platform enforced secure storage in infrastructure clouds
CN103532981B (zh) * 2013-10-31 2016-08-17 中国科学院信息工程研究所 一种面向多租户的身份托管鉴权云资源访问控制系统及控制方法
CN104753881B (zh) * 2013-12-30 2019-03-26 格尔软件股份有限公司 一种基于软件数字证书和时间戳的WebService安全认证访问控制方法
CN104980928B (zh) * 2014-04-03 2018-12-07 华为终端(东莞)有限公司 一种用于建立安全连接的方法、设备及系统
EP3860041B1 (en) * 2014-06-18 2023-03-15 Visa International Service Association Efficient methods for authenticated communication
CN105024824B (zh) * 2014-11-05 2018-12-21 浙江码博士防伪科技有限公司 基于非对称加密算法的可信标签的生成与验证方法及系统
CA2990651A1 (en) * 2015-06-30 2017-01-05 Visa International Service Association Confidential authentication and provisioning
CN105141593A (zh) * 2015-08-10 2015-12-09 刘澄宇 一种私有云平台安全计算方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KS X ISO/IEC 11770-3(2013.) 1부.*

Also Published As

Publication number Publication date
GB201602088D0 (en) 2016-03-23
CA3013687A1 (en) 2017-08-10
EP3412001A2 (en) 2018-12-12
US20210344482A1 (en) 2021-11-04
US11101983B2 (en) 2021-08-24
KR102318637B1 (ko) 2021-10-28
CA3013687C (en) 2021-08-24
BR112018015254A2 (pt) 2018-12-18
WO2017134445A2 (en) 2017-08-10
US20190052456A1 (en) 2019-02-14
PL3412001T3 (pl) 2021-01-25
CN108604985A (zh) 2018-09-28
ES2800295T3 (es) 2020-12-29
CN113691560A (zh) 2021-11-23
GB2547025A (en) 2017-08-09
KR20180111933A (ko) 2018-10-11
EP3675415A1 (en) 2020-07-01
CA3123268C (en) 2023-10-24
WO2017134445A3 (en) 2017-09-14
US20240073003A1 (en) 2024-02-29
EP3412001B1 (en) 2020-03-25
CN113691560B (zh) 2023-08-25
CA3123268A1 (en) 2017-08-10
KR20210130840A (ko) 2021-11-01
US11849029B2 (en) 2023-12-19
EP3675415B1 (en) 2023-12-06
CN108604985B (zh) 2021-11-16
JP2019509667A (ja) 2019-04-04
JP6731491B2 (ja) 2020-07-29
CN114238999A (zh) 2022-03-25

Similar Documents

Publication Publication Date Title
KR102471298B1 (ko) 데이터 전송 방법, 데이터의 사용 제어 방법 및 암호 장치
US9332002B1 (en) Authenticating and authorizing a user by way of a digital certificate
EP2954448B1 (en) Provisioning sensitive data into third party network-enabled devices
CA2357792C (en) Method and device for performing secure transactions
US20150271144A1 (en) Rule-based Validity of Cryptographic Key Material
JP5992535B2 (ja) 無線idプロビジョニングを実行するための装置及び方法
JP2023544529A (ja) 認証方法およびシステム
CN115277168B (zh) 一种访问服务器的方法以及装置、系统
US20190173880A1 (en) Secure node management using selective authorization attestation
US11936689B2 (en) Transmission of data or messages on board a vehicle using a SOME/IP communication protocol
KR100984275B1 (ko) 안전하지 않은 통신 채널에서 비인증서 공개키를 사용한 보안키 생성 방법
KR20090054774A (ko) 분산 네트워크 환경에서의 통합 보안 관리 방법
KR100970552B1 (ko) 비인증서 공개키를 사용하는 보안키 생성 방법
JP2024513521A (ja) 組み込みデバイスの安全な信頼の起点登録及び識別管理
Ko et al. Viotsoc: Controlling access to dynamically virtualized iot services using service object capability

Legal Events

Date Code Title Description
A107 Divisional application of patent
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant