KR102469690B1 - Space-through charge transfer compound, and Organic light emitting diode device and Display device using the same - Google Patents

Space-through charge transfer compound, and Organic light emitting diode device and Display device using the same Download PDF

Info

Publication number
KR102469690B1
KR102469690B1 KR1020150144199A KR20150144199A KR102469690B1 KR 102469690 B1 KR102469690 B1 KR 102469690B1 KR 1020150144199 A KR1020150144199 A KR 1020150144199A KR 20150144199 A KR20150144199 A KR 20150144199A KR 102469690 B1 KR102469690 B1 KR 102469690B1
Authority
KR
South Korea
Prior art keywords
light emitting
dopant
formula
charge transfer
organic light
Prior art date
Application number
KR1020150144199A
Other languages
Korean (ko)
Other versions
KR20160068645A (en
Inventor
김준연
양중환
윤경진
노효진
윤대위
신인애
Original Assignee
엘지디스플레이 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지디스플레이 주식회사 filed Critical 엘지디스플레이 주식회사
Priority to US14/954,840 priority Critical patent/US10056556B2/en
Priority to TW104140144A priority patent/TWI646085B/en
Priority to JP2015235442A priority patent/JP6114805B2/en
Priority to CN201510881852.0A priority patent/CN105669577B/en
Priority to EP15197969.7A priority patent/EP3029753B1/en
Publication of KR20160068645A publication Critical patent/KR20160068645A/en
Application granted granted Critical
Publication of KR102469690B1 publication Critical patent/KR102469690B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D251/00Heterocyclic compounds containing 1,3,5-triazine rings
    • C07D251/02Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings
    • C07D251/12Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D251/00Heterocyclic compounds containing 1,3,5-triazine rings
    • C07D251/02Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings
    • C07D251/12Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members
    • C07D251/14Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members with hydrogen or carbon atoms directly attached to at least one ring carbon atom
    • C07D251/24Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members with hydrogen or carbon atoms directly attached to at least one ring carbon atom to three ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/80[b, c]- or [b, d]-condensed
    • C07D209/82Carbazoles; Hydrogenated carbazoles
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D239/00Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings
    • C07D239/02Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings
    • C07D239/24Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members
    • C07D239/26Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D249/00Heterocyclic compounds containing five-membered rings having three nitrogen atoms as the only ring hetero atoms
    • C07D249/02Heterocyclic compounds containing five-membered rings having three nitrogen atoms as the only ring hetero atoms not condensed with other rings
    • C07D249/081,2,4-Triazoles; Hydrogenated 1,2,4-triazoles
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/10Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings linked by a carbon chain containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • H01L51/0072
    • H01L51/50
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/633Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1059Heterocyclic compounds characterised by ligands containing three nitrogen atoms as heteroatoms

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

본 발명은, 카바졸(carbazole) 또는 디페닐아민(diphenyl amine)으로부터 선택되는 전자주개 모이어티와 피리미딘(pyrimidine), 디페닐트리아진(diphenyltriazine), 트리아졸(triazole)로부터 선택되는 전자받개 모이어티가 직접 또는, 치환 또는 비치환된 벤젠 링커를 통해 파라사이클로판 코어에 각각 결합되는 분자식을 갖는 공간 전하 이동 화합물을 제공한다.In the present invention, an electron donor moiety selected from carbazole or diphenyl amine and an electron acceptor moiety selected from pyrimidine, diphenyltriazine, and triazole A space charge transfer compound having a molecular formula in which Ti is each bonded to the paracyclophane core directly or through a substituted or unsubstituted benzene linker.

Description

공간 전하 이동 화합물, 이를 포함하는 유기발광다이오드소자 및 표시장치{Space-through charge transfer compound, and Organic light emitting diode device and Display device using the same}Space-through charge transfer compound, and organic light emitting diode device and display device using the same}

본 발명은 발광물질에 관한 것이다. 보다 구체적으로, 전자주개(electron donor) 모이어티와 전자받개(electron acceptor) 모이어티 간의 전하 이동이 분자 내 공간을 통해 직접 이루어지는 공간 전하 이동 화합물, 이를 포함하는 유기발광다이오드소자 및 표시장치에 관한 것이다.The present invention relates to a luminescent material. More specifically, it relates to a space charge transfer compound in which charge transfer between an electron donor moiety and an electron acceptor moiety is directly performed through an intramolecular space, an organic light emitting diode device including the same, and a display device. .

최근 표시장치의 대형화에 따라 공간 점유가 적은 평면표시소자의 요구가 증대되고 있는데, 이러한 평면표시소자 중 하나로서 유기발광다이오드(organic light emitting diode: OLED)라고도 불리는 유기발광다이오드소자의 기술이 빠른 속도로 발전하고 있다.Recently, demand for a flat display device that occupies less space is increasing according to the size of the display device. is developing into

유기발광다이오드소자는 전자 주입 전극(음극)과 정공 주입 전극(양극) 사이에 형성된 발광물질층에 음극과 양극으로부터 전자와 정공이 주입되면 전자와 정공이 쌍을 이룬 후 소멸하면서 빛을 내는 소자이다. 플라스틱 같은 휠 수 있는(flexible) 투명 기판 위에도 소자를 형성할 수 있을 뿐 아니라, 낮은 전압에서 (10V이하) 구동이 가능하고, 또한 전력 소모가 비교적 적으며, 색감이 뛰어나다는 장점이 있다.An organic light emitting diode device emits light when electrons and holes are injected from the cathode and anode into the light emitting material layer formed between the electron injecting electrode (cathode) and the hole injecting electrode (anode), and then the electrons and holes form pairs and then disappear. . The device can be formed on a flexible transparent substrate such as plastic, can be driven at a low voltage (less than 10V), consumes relatively little power, and has excellent color sense.

유기발광다이오드소자는, 기판 상부에 형성되며 양극인 제 1 전극, 상기 제 1 전극과 이격하며 마주하는 제 2 전극, 상기 제 1 전극과 상기 제 2 전극 사이에 위치하는 유기발광층을 포함한다.An organic light emitting diode device is formed on a substrate and includes a first electrode serving as an anode, a second electrode spaced apart from and facing the first electrode, and an organic light emitting layer positioned between the first electrode and the second electrode.

발광효율을 향상시키기 위하여, 상기 유기발광층은 상기 제 1 전극에 순차 적층되는 정공주입층(hole injection layer, HIL), 정공수송층(hole transporting layer, HTL), 발광물질층(emitting material layer, EML), 전자수송층(electron transporting layer, ETL), 전자주입층(electron injection layer, EIL)을 포함할 수 있다.In order to improve luminous efficiency, the organic light emitting layer includes a hole injection layer (HIL), a hole transporting layer (HTL), and an emitting material layer (EML) sequentially stacked on the first electrode. , an electron transporting layer (ETL), and an electron injection layer (EIL).

양극인 제 1 전극으로부터 정공이 정공주입층, 정공수송층을 통해 발광물질층으로 이동되고, 음극인 제 2 전극으로부터 전자가 전자주입층, 전자수송층을 통해 발광물질층으로 이동된다.Holes move from the first electrode, which is an anode, to the light emitting material layer through the hole injection layer and the hole transport layer, and electrons move from the second electrode, which is a cathode, to the light emitting material layer through the electron injection layer and the electron transport layer.

상기 발광물질층으로 이동된 정공과 전자는 결합하여 엑시톤(exciton)을 형성하며 불안정한 에너지 상태로 여기 되었다가 안정한 에너지 상태로 돌아오며 빛을 방출하게 된다.Holes and electrons moved to the light-emitting material layer combine to form excitons, and are excited to an unstable energy state, then return to a stable energy state to emit light.

발광물질층에 이용되는 발광물질의 외부양자효율(ηext)은 아래 식으로 얻어질 수 있다.The external quantum efficiency (η ext ) of the light emitting material used in the light emitting material layer can be obtained by the following formula.

ηext = ηint ×г × Φ × ηout - coupling η ext = η int × г × Φ × η out - coupling

(여기서, ηint: 내부양자효율, г: charge balance factor, Φ: radiative quantum efficiency, ηout - coupling: out coupling efficiency)(Where, η int : internal quantum efficiency, г: charge balance factor, Φ: radiative quantum efficiency, η out - coupling : out coupling efficiency)

Charge balance factor(г)는 exciton 을 형성하는 hole 과 electron 의 balance를 의미하며 일반적으로 100% 의 1:1 matching을 가정하여 '1'의 값을 가진다. Radiative quantum efficiency(Φ)는 실질적인 발광물질의 발광효율에 관여하는 값으로, host-dopant 시스템에서는 dopant의 형광 양자효율에 의존한다. Charge balance factor (г) means the balance of electrons and holes that form exciton, and generally has a value of '1' assuming 1:1 matching of 100%. Radiative quantum efficiency (Φ) is a value related to the luminous efficiency of the actual light emitting material, and in the host-dopant system, it depends on the fluorescence quantum efficiency of the dopant.

내부양자효율(ηint)은 생성된 여기자(exciton)가 빛의 형태로 전환되는 비율로, 형광 물질의 경우 최대 0.25의 제한적인 값을 갖는다. 정공과 전자가 결합하여 여기자가 형성될 때, spin의 배열에 따라 단일항 여기자(singlet exciton)와 삼중항 여기자(triplet exciton)가 1:3 의 비율로 생성된다. 그러나, 형광 물질에서는 단일항 여기자만이 발광에 참여하고 나머지 75%의 삼중항 여기자는 발광에 참여하지 못하기 때문이다. The internal quantum efficiency (η int ) is the rate at which generated excitons are converted into light, and has a limiting value of up to 0.25 in the case of fluorescent materials. When an exciton is formed by combining a hole and an electron, a singlet exciton and a triplet exciton are generated at a ratio of 1:3 according to the spin arrangement. However, in fluorescent materials, only singlet excitons participate in light emission, and the remaining 75% of triplet excitons do not participate in light emission.

Out coupling efficiency(ηout - coupling)는 발광된 빛 중 외부로 추출되는 빛의 비율이다. 일반적으로 isotropic한 형태의 분자를 열증착하여 박막을 형성할 경우 개개의 발광분자는 일정한 방향성을 가지지 않고 무질서한 상태로 존재하게 된다. 이러한 무질서한 배열(random orientation) 상태에서의 out coupling efficiency는 일반적으로 0.2로 가정한다.Out coupling efficiency (η out - coupling ) is the ratio of light extracted to the outside among emitted light. In general, when isotropic molecules are thermally deposited to form a thin film, individual light emitting molecules do not have a certain directionality and exist in a disordered state. The out-coupling efficiency in this random orientation state is generally assumed to be 0.2.

따라서, 형광 물질을 이용한 유기발광다이오드소자의 최대 발광 효율은 약 5%이하가 된다. Therefore, the maximum light emitting efficiency of the organic light emitting diode device using the fluorescent material is about 5% or less.

이와 같이 형광 물질의 낮은 효율 문제를 극복하기 위해, 단일항 여기자와 삼중항 여기자 모두를 빛으로 전환 시키는 발광 메커니즘을 갖는 인광 물질이 개발되었다.In order to overcome the low efficiency problem of fluorescent materials, a phosphorescent material having a light emitting mechanism that converts both singlet excitons and triplet excitons into light has been developed.

적색 및 녹색의 경우 높은 발광효율을 갖는 인광 물질이 개발되어 있으나, 청색의 경우 요구되는 발광효율 및 신뢰성을 만족하는 인광 물질이 개발되지 않고 있다.In the case of red and green, phosphorescent materials having high luminous efficiency have been developed, but in the case of blue, phosphorescent materials satisfying the required luminous efficiency and reliability have not been developed.

따라서, 신뢰성을 만족하는 형광 물질에서, 양자 효율을 증가시킴으로써 발광효율을 증가시킬 수 있는 물질의 개발이 요구되고 있다.Therefore, in a fluorescent material that satisfies reliability, there is a need to develop a material capable of increasing luminous efficiency by increasing quantum efficiency.

본 발명은 형광 물질의 낮은 양자 효율 문제를 해결하고자 한다.The present invention is intended to solve the problem of low quantum efficiency of fluorescent materials.

위와 같은 과제의 해결을 위해, 본 발명은, 파라사이클로판 코어에 전자주개 모이어티와 전자받개 모이어티가 직접 또는 링커를 통해 결합되는 구조의 공간 전하 이동 화합물을 제공한다.In order to solve the above problems, the present invention provides a space charge transfer compound having a structure in which an electron donor moiety and an electron acceptor moiety are bonded directly or through a linker to a paracyclophane core.

전자주개 모이어티는 카바졸 또는 디페닐아민에서 선택되고, 전자받개 모이어티는 피리미딘, 디페닐트리아진, 트리아졸로부터 선택되며, 링커는 치환 또는 비치환된 벤젠일 수 있다.The electron donor moiety is selected from carbazole or diphenylamine, the electron acceptor moiety is selected from pyrimidine, diphenyltriazine, and triazole, and the linker may be substituted or unsubstituted benzene.

즉, 본 발명의 공간 전하 이동 화합물은, 하기 화학식으로 표시되고, D는 카바졸 또는 디페닐아민에서 선택되며, A는 피리미딘, 디페닐트리아진, 트리아졸로부터 선택되고, L1, L2 각각은 치환 또는 비치환된 벤젠에서 선택되며, n1, n2 각각은 0 또는 1이다.That is, the space charge transfer compound of the present invention is represented by the following formula, D is selected from carbazole or diphenylamine, A is selected from pyrimidine, diphenyltriazine, and triazole, and each of L1 and L2 is It is selected from substituted or unsubstituted benzene, and each of n1 and n2 is 0 or 1.

Figure 112015099843733-pat00001
Figure 112015099843733-pat00001

또한, 본 발명은, 유기 발광층이 전술한 공간 전하 이동 화합물을 포함하는 유기발광다이오드소자 및 표시장치를 제공한다.In addition, the present invention provides an organic light emitting diode device and a display device in which the organic light emitting layer includes the space charge transfer compound described above.

본 발명의 공간 전하 이동 화합물은, 전자주개 모이어티와 전자받개 모이어티가 분자 내에서 결합되고 최고준위 점유 분자궤도(highest occupied molecular orbital, HOMO)와 최저준위 비점유 분자궤도(lowest unoccupied molecular orbital, LUMO)의 중첩이 감소됨으로써 전하 이동(charge transfer) 착물이 형성되어, 화합물의 발광효율이 향상된다. 즉, 본 발명의 공간 전하 이동 화합물에서는, 삼중항 상태의 엑시톤이 발광에 이용되기 때문에, 발광 효율이 향상된다.In the space charge transfer compound of the present invention, an electron donor moiety and an electron acceptor moiety are bound in a molecule, and the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (HOMO) LUMO) is reduced, thereby forming a charge transfer complex, thereby improving the luminous efficiency of the compound. That is, in the space charge transfer compound of the present invention, since excitons in the triplet state are used for light emission, the light emission efficiency is improved.

또한, 전자주개(electron donor) 모이어티와 전자받개(electron acceptor) 모이어티가 파라사이클로판(paracyclophane)의 벤젠에 결합됨으로써 전자주개 모이어티와 전자받개 모이어티 사이 간격이 최소화된다. 따라서, 전자주개 모이어티와 전자받개 모이어티 사이 공간을 통해 전하의 이동이 직접적으로 이루어지기 때문에, 분자의 결합 오비탈(bonding orbital)을 통해 전하가 이동하는 전하 이동 착물(charge transfer complex)에 비해 컨쥬게이션 길이(conjugation length)가 짧아지고 화합물로부터 방출되는 빛의 레드 쉬프트 문제가 최소화된다. 즉, 딥 블루(deep blue) 발광 특성의 청색 화합물을 제공할 수 있다.In addition, since the electron donor moiety and the electron acceptor moiety are bonded to benzene of paracyclophane, the distance between the electron donor moiety and the electron acceptor moiety is minimized. Therefore, since the transfer of charge is directly performed through the space between the electron donor moiety and the electron acceptor moiety, compared to a charge transfer complex in which charge moves through a bonding orbital of a molecule, a conjugate The conjugation length is shortened and the red shift problem of light emitted from the compound is minimized. That is, it is possible to provide a blue compound having deep blue emission characteristics.

또한, 전자주개 모이어티와 전자받개 모이어티 사이의 입체장애(steric hinderance)를 최소화할 수 있는 벤젠 링커(linker)가 도입됨으로써, 안정한 구조의 화합물을 얻을 수 있다.In addition, a compound having a stable structure can be obtained by introducing a benzene linker capable of minimizing steric hinderance between the electron donor moiety and the electron acceptor moiety.

따라서, 본 발명의 공간 전하 이동 화합물을 포함하는 유기발광다이오드소자 및 표시장치의 발광 효율이 향상되며 고품질의 영상을 구현할 수 있다.Accordingly, the light emitting efficiency of the organic light emitting diode device and the display device including the space charge transfer compound of the present invention is improved, and high quality images can be realized.

도 1은 본 발명의 실시예에 따른 공간 전하 이동 화합물의 발광 메커니즘을 설명하기 위한 도면이다.
도 2a 내지 도 2c는 본 발명의 실시예에 따른 지연 형광 화합물의 지연 형광 특성을 보여주는 그래프이다.
도 3은 본 발명의 실시예에 따른 유기발광다이오드소자의 개략적인 단면도이다.
1 is a view for explaining a light emitting mechanism of a space charge transfer compound according to an embodiment of the present invention.
2a to 2c are graphs showing delayed fluorescence characteristics of delayed fluorescence compounds according to embodiments of the present invention.
3 is a schematic cross-sectional view of an organic light emitting diode device according to an embodiment of the present invention.

본 발명은, 카바졸(carbazole) 또는 디페닐아민(diphenyl amine)으로부터 선택되는 전자주개 모이어티와 피리미딘(pyrimidine), 트리아진(triazine), 트리아졸(triazole)로부터 선택되는 전자받개 모이어티가 직접 또는, 치환 또는 비치환된 벤젠 링커를 통해 파라사이클로판 코어에 각각 결합되는 분자식을 갖는 공간 전하 이동 화합물을 제공한다.In the present invention, an electron donor moiety selected from carbazole or diphenyl amine and an electron acceptor moiety selected from pyrimidine, triazine, and triazole are A space charge transfer compound having a molecular formula each bonded to the paracyclophane core directly or through a substituted or unsubstituted benzene linker.

다른 관점에서, 본 발명은, 하기 화학식1로 표시되며, D는 하기 화학식2에서 선택되고, A는 하기 화학식3에서 선택되며, L1, L2 각각은 치환 또는 비치환된 벤젠에서 선택되고, n1, n2 각각은 0 또는 1인 공간 전하 이동 화합물을 제공한다.In another aspect, the present invention is represented by Formula 1 below, D is selected from Formula 2, A is selected from Formula 3 below, L1 and L2 are each selected from substituted or unsubstituted benzene, n1, Each n2 is 0 or 1 to provide a space charge transfer compound.

[화학식1][Formula 1]

Figure 112015099843733-pat00002
Figure 112015099843733-pat00002

[화학식2][Formula 2]

Figure 112015099843733-pat00003
Figure 112015099843733-pat00003

[화학식3][Formula 3]

Figure 112015099843733-pat00004
Figure 112015099843733-pat00004

본 발명의 공간 전하 이동 화합물에서, 단일항 에너지와 삼중항 에너지의 차이는 0.3eV 이하일 수 있다.In the space charge transfer compound of the present invention, the difference between singlet energy and triplet energy may be 0.3 eV or less.

다른 관점에서, 본 발명은, 제 1 전극과, 상기 제 1 전극과 마주보는 제 2 전극과, 상기 제 1 및 제 2 전극 사이에 위치하는 유기 발광층을 포함하고, 상기 유기 발광층은, 카바졸(carbazole) 또는 디페닐아민(diphenyl amine)으로부터 선택되는 전자주개 모이어티와 피리미딘(pyrimidine), 트리아진(triazine), 트리아졸(triazole)로부터 선택되는 전자받개 모이어티가 직접 또는, 치환 또는 비치환된 벤젠 링커를 통해 파라사이클로판 코어에 각각 결합되는 분자식을 갖는 공간 전하 이동 화합물을 포함하는 유기발광다이오드소자를 제공한다.From another point of view, the present invention includes a first electrode, a second electrode facing the first electrode, and an organic light emitting layer positioned between the first and second electrodes, wherein the organic light emitting layer includes carbazole ( An electron donor moiety selected from carbazole or diphenyl amine and an electron acceptor moiety selected from pyrimidine, triazine, and triazole are directly, substituted or unsubstituted Provided is an organic light emitting diode device including space charge transfer compounds having a molecular formula each bonded to a paracyclophane core through a benzene linker.

다른 관점에서, 본 발명은, 제 1 전극과, 상기 제 1 전극과 마주보는 제 2 전극과, 상기 제 1 및 제 2 전극 사이에 위치하는 유기 발광층을 포함하고, 상기 유기 발광층은, 하기 화학식1로 표시되며, D는 하기 화학식2에서 선택되고, A는 하기 화학식3에서 선택되며, L1, L2 각각은 독립적으로 치환 또는 비치환된 벤젠에서 선택되고, n1, n2 각각은 0 또는 1인 공간 전하 이동 화합물을 포함하는 유기발광다이오드소자를 제공한다.From another point of view, the present invention includes a first electrode, a second electrode facing the first electrode, and an organic light emitting layer positioned between the first and second electrodes, wherein the organic light emitting layer comprises Chemical Formula 1 below. , D is selected from Formula 2, A is selected from Formula 3, L1 and L2 are each independently selected from substituted or unsubstituted benzene, and n1 and n2 are each 0 or 1 space charge. An organic light emitting diode device comprising a mobile compound is provided.

[화학식1][Formula 1]

Figure 112015099843733-pat00005
Figure 112015099843733-pat00005

[화학식2][Formula 2]

Figure 112015099843733-pat00006
Figure 112015099843733-pat00006

[화학식3][Formula 3]

Figure 112015099843733-pat00007
Figure 112015099843733-pat00007

본 발명의 유기발광다이오드소자에 있어서, 상기 공간 전하 이동 화합물의 단일항 에너지와 삼중항 에너지의 차이는 0.3eV 이하일 수 있다.In the organic light emitting diode device of the present invention, a difference between singlet energy and triplet energy of the space charge transfer compound may be 0.3 eV or less.

본 발명의 유기발광다이오드소자에 있어서, 상기 공간 전하 이동 화합물은 도펀트로 이용되고, 상기 유기 발광층은 호스트를 더 포함할 수 있다.In the organic light emitting diode device of the present invention, the space charge transfer compound is used as a dopant, and the organic light emitting layer may further include a host.

본 발명의 유기발광다이오드소자에 있어서, 상기 호스트의 최고준위 점유 분자궤도 레벨(HOMOHost)과 상기 도펀트의 최고준위 점유 분자궤도 레벨(HOMODopant) 차이(|HOMOHost-HOMODopant|) 또는 상기 호스트의 최저준위 비점유 분자궤도 레벨(LUMOHost)과 상기 도펀트의 최저준위 비점유 분자궤도 레벨(LUMODopant) 차이(|LUMOHost- LUMODopant|)는 0.5eV이하일 수 있다.In the organic light emitting diode device of the present invention, the difference between the highest level occupied molecular orbital level of the host (HOMO Host ) and the highest level occupied molecular orbital level of the dopant (HOMO Dopant ) (|HOMO Host -HOMO Dopant |) or the host The difference (|LUMO Host - LUMO Dopant |) between the lowest level unoccupied molecular orbital level (LUMO Host ) of the dopant and the lowest level unoccupied molecular orbital level (LUMO Dopant ) of the dopant may be 0.5 eV or less.

본 발명의 유기발광다이오드소자에 있어서, 상기 공간 전하 이동 화합물은 호스트로 이용되고, 상기 유기 발광층은 도펀트를 더 포함할 수 있다.In the organic light emitting diode device of the present invention, the space charge transfer compound is used as a host, and the organic light emitting layer may further include a dopant.

본 발명의 유기발광다이오드소자에 있어서, 상기 공간 전하 이동 화합물은 제 1 도펀트로 이용되고, 상기 유기 발광층은 호스트 및 제 2 도펀트를 더 포함하며, 상기 제 1 도펀트의 제 1 삼중항 에너지는 상기 호스트의 제 2 삼중항 에너지보다 작고 상기 제 2 도펀트의 제 3 삼중항 에너지보다 클 수 있다.In the organic light emitting diode device of the present invention, the space charge transfer compound is used as a first dopant, the organic light emitting layer further includes a host and a second dopant, and the first triplet energy of the first dopant is the host It may be smaller than the second triplet energy of and greater than the third triplet energy of the second dopant.

본 발명의 유기발광다이오드소자에 있어서, 상기 유기 발광층은 정공주입층과, 정공수송층과, 발광물질층과, 전자수송층과 전자주입층을 포함하고, 상기 정공주입층과, 상기 정공수송층과, 상기 발광물질층과, 상기 전자수송층과 상기 전자주입층 중 적어도 하나가 상기 공간 전하 이동 화합물을 포함할 수 있다.In the organic light emitting diode device of the present invention, the organic light emitting layer includes a hole injection layer, a hole transport layer, a light emitting material layer, an electron transport layer, and an electron injection layer, and the hole injection layer, the hole transport layer, and the above At least one of the light emitting material layer, the electron transport layer, and the electron injection layer may include the space charge transfer compound.

또 다른 관점에서, 본 발명은, 기판과, 상기 기판 상에 위치하는 전술한 유기발광다이오드소자와, 상기 유기발광다이오드소자를 덮는 인캡슐레이션 필름과, 상기 인캡슐레이션 필름 상의 커버 윈도우를 포함하는 표시장치를 제공한다.In another aspect, the present invention provides a substrate, the above-described organic light emitting diode device disposed on the substrate, an encapsulation film covering the organic light emitting diode device, and a cover window on the encapsulation film. display device is provided.

이하, 본 발명의 실시예에 따른 공간 전하 이동 화합물의 구조 및 그 합성예와, 이를 이용한 유기발광다이오드소자에 대해 설명한다.Hereinafter, a structure of a space charge transfer compound according to an embodiment of the present invention, a synthesis example thereof, and an organic light emitting diode device using the same will be described.

본 발명의 실시예에 따른 공간 전하 이동 화합물은 전자주개 모이어티 및 전자받개 모이어티가 치환 또는 비치환된 벤젠 링커를 통해 또는 직접 파라사이클로판 코어에 각각 결합되는 구조를 가지며, 아래 화학식1로 표시된다.The space charge transfer compound according to an embodiment of the present invention has a structure in which an electron donor moiety and an electron acceptor moiety are bonded to a paracyclophane core through a substituted or unsubstituted benzene linker or directly, respectively, represented by Formula 1 below. do.

[화학식1][Formula 1]

Figure 112015099843733-pat00008
Figure 112015099843733-pat00008

이때, n은 0 또는 1이며, n1 및 n2 각각은 0 또는 1이다.In this case, n is 0 or 1, and each of n1 and n2 is 0 or 1.

즉, 상기 화학식1의 화합물은 하기 화학식2-1 내지 화학식2-4의 구조를 가질 수 있다.That is, the compound represented by Chemical Formula 1 may have structures represented by Chemical Formulas 2-1 to 2-4 below.

[화학식2-1][Formula 2-1]

Figure 112015099843733-pat00009
Figure 112015099843733-pat00009

[화학식2-2][Formula 2-2]

Figure 112015099843733-pat00010
Figure 112015099843733-pat00010

[화학식2-3][Formula 2-3]

Figure 112015099843733-pat00011
Figure 112015099843733-pat00011

[화학식2-4][Formula 2-4]

Figure 112015099843733-pat00012
Figure 112015099843733-pat00012

즉, 전자주개 모이어티와 전자받개 모이어티가 파라사이클로판 코어에 직접 결합되는 구조(n1=n2=0, 화학식2-1)를 갖거나, 전자주개 모이어티와 전자받개 모이어티가 파라사이클로판 코어에 링커를 통해 결합되는 구조(n1=n2=1, 화학식2-2)를 가질 수 있다. 또한, 전자주개 모이어티는 파라사이클로판 코어에 링커를 통해 결합되고 전자받개 모이어티는 파라사이클로판 코어에 직접 결합되는 구조(n1=0, n2=1, 화학식2-3)를 갖거나, 전자주개 모이어티는 파라사이클로판 코어에 직접 결합되고 전자받개 모이어티는 파라사이클로판 코어에 링커를 통해 결합되는 구조(n1=1, n2=0, 화학식2-4)를 가질 수 있다.That is, it has a structure in which the electron donor moiety and the electron acceptor moiety are directly bonded to the paracyclophane core (n1=n2=0, Chemical Formula 2-1), or the electron donor moiety and the electron acceptor moiety are paracyclophane. It may have a structure (n1=n2=1, Chemical Formula 2-2) bonded to the core through a linker. In addition, the electron donor moiety is bonded to the paracyclophane core through a linker and the electron acceptor moiety has a structure directly bonded to the paracyclophane core (n1 = 0, n2 = 1, Formula 2-3), or electron The donor moiety may have a structure (n1 = 1, n2 = 0, Chemical Formula 2-4) in which the donor moiety is directly bonded to the paracyclophane core and the electron acceptor moiety is bonded to the paracyclophane core through a linker.

상기 화학식1에서, 전자주개 모이어티 D는 카바졸(carbazole) 또는 디페닐아민(diphenyl amine)으로부터 선택될 수 있다. 예를 들어, 전자주개 모이어티인 D는 하기 화학식3에 표시된 물질로부터 선택될 수 있다.In Formula 1, the electron-donating moiety D may be selected from carbazole or diphenyl amine. For example, the electron-donating moiety D may be selected from materials represented by Formula 3 below.

[화학식3][Formula 3]

Figure 112015099843733-pat00013
Figure 112015099843733-pat00013

또한, 상기 화학식1에서, 전자받개 모이어티인 A는 피리미딘(pyrimidine), 디페닐트리아진(diphenyltriazine), 트리아졸(triazole)로부터 선택될 수 있다. 예를 들어, 전자받개 모이어티인 A는 하기 화학식4에 표시된 물질로부터 선택될 수 있다.In addition, in Formula 1, the electron acceptor moiety A may be selected from pyrimidine, diphenyltriazine, and triazole. For example, the electron acceptor moiety A may be selected from materials represented by Formula 4 below.

[화학식4][Formula 4]

Figure 112015099843733-pat00014
Figure 112015099843733-pat00014

또한, 상기 화학식1에서, 링커 L1 및 L2 각각은 독립적으로 치환 또는 비치환된 벤젠으로부터 선택될 수 있다. 예를 들어, 링커 L1 및 L2 각각은 하기 화학식5에 표시된 물질일 수 있다.In addition, in Formula 1, each of the linkers L1 and L2 may be independently selected from substituted or unsubstituted benzene. For example, each of the linkers L1 and L2 may be a substance represented by Chemical Formula 5 below.

[화학식5][Formula 5]

Figure 112015099843733-pat00015
Figure 112015099843733-pat00015

상기 화학식5에서, R은 수소 또는 C1~C10의 알킬로부터 선택될 수 있다.In Formula 5, R may be selected from hydrogen or C1-C10 alkyl.

이와 같은 공간 전하 이동 화합물에 있어서, 전자주개 모이어티와 전자받개 모이어티가 분자 내에서 결합되고 최고준위 점유 분자궤도(highest occupied molecular orbital, HOMO)와 최저준위 비점유 분자궤도(lowest unoccupied molecular orbital, LUMO)의 중첩이 감소됨으로써, 전하 이동(charge transfer) 착물이 형성되어 화합물의 발광효율이 향상된다. 즉, 본 발명의 공간 전하 이동 화합물에서는, 삼중항 상태의 엑시톤이 발광에 이용되기 때문에, 발광 효율이 향상된다.In such a space charge transfer compound, the electron donor moiety and the electron acceptor moiety are combined in a molecule, and the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (HOMO) are formed. By reducing the overlapping of LUMO), charge transfer complexes are formed and the luminous efficiency of the compound is improved. That is, in the space charge transfer compound of the present invention, since excitons in the triplet state are used for light emission, the light emission efficiency is improved.

다시 말해, 본 발명의 공간 전하 이동 화합물은 전자주개 모이어티와 전자받개 모이어티를 모두 포함함으로써, 분자 내에서 전하의 이동이 쉽게 일어나고 발광 효율이 향상된다. In other words, since the space charge transfer compound of the present invention includes both an electron donor moiety and an electron acceptor moiety, charge transfer easily occurs in the molecule and luminous efficiency is improved.

특히, 본 발명의 공간 전하 이동 화합물에 있어서, 전자주개 모이어티와 전자받개 모이어티가 파라사이클로판 코어에 결합됨으로써 전자주개 모이어티와 전자받개 모이어티 사이 간격이 최소화된다. 따라서, 전자주개 모이어티와 전자받개 모이어티 사이 공간을 통해 전하의 이동이 직접적으로 이루어지기 때문에, 분자의 결합 오비탈(bonding orbital)을 통해 전하가 이동하는 전하 이동 착물(charge transfer complex)에 비해 컨쥬게이션 길이(conjugation length)가 짧아지고 화합물로부터 방출되는 빛의 레드 쉬프트 문제가 방지된다. 즉, 딥 블루(deep blue) 발광 특성의 청색 화합물을 제공할 수 있다.In particular, in the space charge transfer compound of the present invention, the electron donor moiety and the electron acceptor moiety are bonded to the paracyclophane core, thereby minimizing the distance between the electron donor moiety and the electron acceptor moiety. Therefore, since the transfer of charge is directly performed through the space between the electron donor moiety and the electron acceptor moiety, compared to a charge transfer complex in which charge moves through a bonding orbital of a molecule, a conjugate The conjugation length is shortened and the problem of red shift of light emitted from the compound is avoided. That is, it is possible to provide a blue compound having deep blue emission characteristics.

또한, 전자주개 모이어티와 전자받개 모이어티 사이의 입체장애(steric hinderance)를 최소화할 수 있는 치환 또는 비치환된 벤젠 링커가 도입됨으로써, 안정한 구조의 화합물을 얻을 수 있다.In addition, a compound having a stable structure can be obtained by introducing a substituted or unsubstituted benzene linker capable of minimizing steric hinderance between the electron donor moiety and the electron acceptor moiety.

본 발명의 실시예에 따른 공간 전하 이동 화합물의 발광 메커니즘을 설명하기 위한 도면인 도 1을 참조하면, 본 발명의 공간 전하 이동 화합물에서는, 단일항 여기자와삼중항 여기자 모두가 발광에 참여하여 양자 효율이 향상된다.Referring to FIG. 1, which is a diagram for explaining a light emitting mechanism of a space charge transfer compound according to an embodiment of the present invention, in the space charge transfer compound of the present invention, both singlet excitons and triplet excitons participate in light emission, resulting in quantum efficiency. this improves

즉, 본 발명의 공간 전하 이동 화합물은 전계(field)에 의해 삼중항 여기자가 활성화되어, 삼중항 여기자와 단일항 여기자가 중간 상태(intermediate state, I1)로 이동하고 바닥상태(ground state, S0)로 떨어지면서 발광하게 된다. 다시 말해, 단일항 상태(S1)와 삼중항 상태(T1)에서 중간 상태(I1)로 전이가 일어나고 (S1-> I1 <-T1), 단일항 여기자와 삼중항 여기자 모두가 발광에 참여함으로써, 발광 효율이 향상된다. 이를 FADF (filed activated delayed fluorescence) 화합물로 지칭한다.That is, in the space charge transfer compound of the present invention, triplet excitons are activated by an electric field, and the triplet excitons and singlet excitons move to an intermediate state (I 1 ) and ground state (S). 0 ) and emits light. In other words, a transition occurs from the singlet state (S 1 ) and triplet state (T 1 ) to the intermediate state (I 1 ) (S 1 -> I 1 <-T 1 ), and both singlet and triplet excitons By participating in light emission, the light emission efficiency is improved. This is referred to as a filed activated delayed fluorescence (FADF) compound.

종래 형광 물질은 HOMO와 LUMO가 분자 전체에 퍼져 있기 때문에 단일항상태와 삼중항 상태 사이의 상호 전환이 불가능하다. (selection rule, 선택 규칙)Conventional fluorescent materials cannot interconvert between a singlet state and a triplet state because HOMO and LUMO are spread throughout the molecule. (selection rule)

그러나, 본 발명에서와 같은 FADF 화합물에서는, 분자 내 HOMO와 LUMO 겹침이 적기 때문에, HOMO와 LUMO 사이의 상호작용이 작다. 따라서, 전자의 스핀 상태 변화가 다른 전자에 영향을 미치지 않게 되고, 선택 규칙을 따르지 않는 새로운 전하 이동 밴드(charge transfer band)가 형성된다.However, in the FADF compound as in the present invention, the interaction between HOMO and LUMO is small because the intramolecular HOMO and LUMO overlap is small. Therefore, a change in spin state of an electron does not affect other electrons, and a new charge transfer band that does not follow the selection rule is formed.

또한, 전자받개 모이어티와 전자주개 모이어티가 분자 내에서 이격되어 있기 때문에, 분자 내 쌍극자 모멘트(dipole moment)가 분극된 형태로 존재하게 된다. 쌍극자 모멘트가 분극된 상태에서는 HOMO와 LUMO 간의 상호 작용이 작아지게 되어 선택 규칙을 따르지 않을 수 있다. 따라서, FADF 화합물에서는, 삼중항 상태(T1)와 단일항 상태(S1)에서 중간 상태(I1)으로 전이가 가능해지고, 삼중항 여기자가 발광에 참여하게 된다.In addition, since the electron acceptor moiety and the electron donor moiety are spaced apart in the molecule, the dipole moment in the molecule exists in a polarized form. In a state where the dipole moment is polarized, the interaction between the HOMO and the LUMO becomes small, and the selection rule may not be followed. Therefore, in the FADF compound, a transition is possible from the triplet state (T 1 ) and the singlet state (S 1 ) to the intermediate state (I 1 ), and triplet excitons participate in light emission.

유기발광다이오드소자가 구동되면, 전계에 의해 25%의 단일항 상태(S1) 여기자와 75%의 삼중항 상태(T1) 여기자가 중간 상태(I1)로 계간 전이를 일으키고 바닥 상태(S0)로 떨어지면서 발광이 일어나기 때문에 내부 양자 효율은 이론적으로 100%가 된다.When an organic light emitting diode device is driven, 25% of singlet state (S 1 ) excitons and 75% of triplet state (T 1 ) excitons undergo a systemic transition to an intermediate state (I 1 ) by an electric field and ground state (S 1 ). 0 ), the internal quantum efficiency theoretically becomes 100%.

예를 들어, 화학식1의 공간 전하 이동 화합물은 하기 화학식6의 화합물 중 어느 하나일 수 있다. For example, the space charge transfer compound of Chemical Formula 1 may be any one of the compounds of Chemical Formula 6 below.

[화학식6][Formula 6]

Figure 112015099843733-pat00016
Figure 112015099843733-pat00016

Figure 112015099843733-pat00017
Figure 112015099843733-pat00017

Figure 112015099843733-pat00018
Figure 112015099843733-pat00018

또한, 본 발명의 공간 전하 이동 화합물은 넓은 에너지 밴드갭을 가져, 이를 포함하는 유기발광다이오드소자의 발광효율이 더욱 향상된다.In addition, the space charge transfer compound of the present invention has a wide energy band gap, so that the luminous efficiency of the organic light emitting diode device including the same is further improved.

이하에서는, 본 발명에 실시예에 따른 공간 전하 이동 화합물의 합성예를 설명한다.Hereinafter, synthetic examples of space charge transfer compounds according to embodiments of the present invention will be described.

합성예synthesis example

1. 화합물1의 합성1. Synthesis of Compound 1

(1) 화합물a의 합성(1) Synthesis of compound a

[반응식1-1][Scheme 1-1]

Figure 112015099843733-pat00019
Figure 112015099843733-pat00019

질소 분위기에서 4,16-dibromo[2,2]paracyclophane과 diphenylamine(1.1 당량), Pd(OAc)2 (0.019 당량), P(t-Bu)3 (50 wt%, 0.046 당량), NaOt-Bu(sodium tert-butoxide, 1.9 당량)을 톨루엔 용매에 투입하여 교반하였다. 120℃에서 12시간 동안 환류교반하였다. 반응 종료 후, 실온까지 냉각하고 물과 에틸아세테이트로 추출하였다. 추출된 유기층에서 마그네슘설페이트(MgSO4)를 이용하여 수분을 제거하고, 남은 유기 용매를 제거하였다. 헥산과 에틸아세테이트를 이용한 컬럼크로마토그래피를 통해 습식정제함으로써 화합물a를 얻었다. (수율 : 65 %)4,16-dibromo[2,2]paracyclophane and diphenylamine (1.1 equiv.), Pd(OAc) 2 (0.019 equiv.), P(t-Bu) 3 (50 wt%, 0.046 equiv.), NaOt-Bu in a nitrogen atmosphere. (sodium tert-butoxide, 1.9 equivalent) was added to the toluene solvent and stirred. The mixture was stirred under reflux at 120° C. for 12 hours. After completion of the reaction, the mixture was cooled to room temperature and extracted with water and ethyl acetate. Moisture was removed from the extracted organic layer using magnesium sulfate (MgSO 4 ), and the remaining organic solvent was removed. Compound a was obtained by wet purification through column chromatography using hexane and ethyl acetate. (Yield: 65%)

(2) 화합물b의 합성(2) Synthesis of compound b

[반응식1-2][Scheme 1-2]

Figure 112015099843733-pat00020
Figure 112015099843733-pat00020

화합물a(17.9 mmol)를 tetrahydrofurane(THF) 용매에 녹이고 질소 환경에서 교반하였다. -78℃ 조건에서 n-bytyllithium(26.9 mmol)을 천천히 투입한 후, 1시간 동안 교반하였다. 저온 환경을 유지한 상태로 triethylborate(21.6 mmol)를 투입하여 실온으로 만든 후 교반하였다. 실온에서 12 시간 교반한 후 반응을 종료시켰다. 증류수를 천천히 투입하고 증류수:HCl(8:2)를 투입하여 pH2를 만들어 주었다. 증류수와 에틸아세테이트를 이용하여 추출하고, 추출된 유기층에서 마그네슘설페이트을 이용하여 수분을 제거하였다. 후 남은 유기 용매를 제거하고, 에틸아세테이트와 헥산을 이용한 컬럼크로마토그래피 습식 정제를 통해 화합물b를 얻었다. (수율 : 80 %)Compound a (17.9 mmol) was dissolved in a tetrahydrofurane (THF) solvent and stirred in a nitrogen environment. After slowly adding n-bytyllithium (26.9 mmol) at -78°C, the mixture was stirred for 1 hour. While maintaining a low-temperature environment, triethylborate (21.6 mmol) was added to bring the mixture to room temperature, followed by stirring. The reaction was terminated after stirring at room temperature for 12 hours. Distilled water was added slowly and distilled water:HCl (8:2) was added to make pH 2. Extraction was performed using distilled water and ethyl acetate, and moisture was removed from the extracted organic layer using magnesium sulfate. After removing the remaining organic solvent, compound b was obtained through column chromatography wet purification using ethyl acetate and hexane. (Yield: 80%)

(3) 화합물1의 합성(3) Synthesis of Compound 1

[반응식1-3][Scheme 1-3]

Figure 112015099843733-pat00021
Figure 112015099843733-pat00021

2-chloro-4,6-diphenyl-1,3,5-triazine과 화합물b(1 당량), 탄산나트륨 (NaCO3, 0.6 당량)을 toluene/dioxane/증류수(1:1:0.7) 용매에 넣고 질소 분위기에서 교반하였다. 테트라키스(트리페닐포스핀)팔라듐(0) (0.3 당량)을 추가 첨가하고 16시간 동안 환류교반하였다. 반응 종료 후 실온까지 냉각하고 유기층을 실리카켈에 증류수로 세척하여 여과하였다. 용매 및 증류수를 제거하고, chloroform으로 재결정한 후 건조하여 화합물1을 얻었다. (수율 : 75 %)2-chloro-4,6-diphenyl-1,3,5-triazine, compound b (1 equivalent) and sodium carbonate (NaCO 3 , 0.6 equivalent) were added to toluene/dioxane/distilled water (1:1:0.7) solvent and nitrogen Atmosphere was stirred. Tetrakis(triphenylphosphine)palladium(0) (0.3 eq.) was additionally added and stirred at reflux for 16 hours. After completion of the reaction, it was cooled to room temperature, and the organic layer was washed with silica gel and distilled water and filtered. The solvent and distilled water were removed, recrystallized with chloroform and dried to obtain Compound 1. (Yield: 75%)

2. 화합물2의 합성2. Synthesis of Compound 2

(1) 화합물c의 합성(1) Synthesis of compound c

[반응식2-1][Scheme 2-1]

Figure 112015099843733-pat00022
Figure 112015099843733-pat00022

질소 환경에서 carbazole을 1,4-dioxane 용매에 녹인 후, CuI 및 K3PO4를 첨가하였다. 4,16-dibromo[2,2]paracyclophane(1.1 당량)과 trans-1,2-diaminocyclohexane을 추가 첨가하고, 110℃에서 24시간 동안 환류교반하였다. 반응 종류 후, 실온까지 냉각하고 에틸아세테이트와 증류수로 추출하였다. 추출된 유기층에서 마그네슘설페이트로 수분을 제거하고 남은 유기 용매를 제거하였다. ethylacetate와 hexane을 이용한 컬럼크로마토그래피 습식정제를 통해 화합물c를 얻었다. (수율 : 63 %)After dissolving carbazole in 1,4-dioxane solvent in a nitrogen environment, CuI and K 3 PO 4 were added. 4,16-dibromo[2,2]paracyclophane (1.1 eq) and trans-1,2-diaminocyclohexane were additionally added, and the mixture was refluxed and stirred at 110°C for 24 hours. After completion of the reaction, the mixture was cooled to room temperature and extracted with ethyl acetate and distilled water. Moisture was removed from the extracted organic layer with magnesium sulfate, and the remaining organic solvent was removed. Compound c was obtained through column chromatography wet purification using ethylacetate and hexane. (Yield: 63%)

(2) 화합물2의 합성(2) Synthesis of Compound 2

[반응식2-2][Scheme 2-2]

Figure 112015099843733-pat00023
Figure 112015099843733-pat00023

2-chloro-4,6-diphenyl-1,3,5-triazine, 화합물c(1 당량), 탄산나트륨 (NaCO3, 0.6 당량)을 톨루엔/dioxane/증류수(1:1:0.7) 용매에 넣고 질소 분위기에서 교반하였다. 테트라키스(트리페닐포스핀)팔라듐(0) (0.3 당량)을 추가 첨가하고 16시간 동안 환류교반하였다. 반응 종료 후 실온까지 냉각하고 유기층을 실리카켈에 증류수로 세척하여 여과하였다. 용매 및 증류수를 제거하고, chloroform으로 재결정한 후 건조하여 화합물2를 얻었다. (수율 : 70 %)2-chloro-4,6-diphenyl-1,3,5-triazine, compound c (1 equivalent), and sodium carbonate (NaCO 3 , 0.6 equivalent) were added to toluene/dioxane/distilled water (1:1:0.7) solvent and nitrogen Atmosphere was stirred. Tetrakis(triphenylphosphine)palladium(0) (0.3 eq.) was additionally added and stirred at reflux for 16 hours. After completion of the reaction, it was cooled to room temperature, and the organic layer was washed with silica gel and distilled water and filtered. The solvent and distilled water were removed, recrystallized with chloroform and dried to obtain Compound 2. (Yield: 70%)

3. 화합물3의 합성3. Synthesis of Compound 3

[반응식3][Scheme 3]

Figure 112015099843733-pat00024
Figure 112015099843733-pat00024

질소 분위기에서, 화합물a와, 5-pyrimidylboronic acid(1.5 당량), Pd(dppf)Cl2 (4 mol%) 및 K3PO4 (2 당량)의 반응물을 toluene 용매에 투입하고 교반하고, 24시간 동안 환류교반하였다. 반응 종료 후, 실온까지 냉각하고 toluene을 추가하여 희석한 다음 10% NaOH로 가수분해하였다. Ethyl acetate를 이용하여 추출하고 유기층에서 MgSO4를 이용하여 수분을 제거하였다. 남은 유기 용매를 제거하고, Ethyl acetate와 hexane을 이용한 컬럼 크로마토그래피 습식정제를 하여 화합물3을 얻었다. (수율 : 80 %)In a nitrogen atmosphere, the reactants of compound a, 5-pyrimidylboronic acid (1.5 equivalents), Pd(dppf)Cl 2 (4 mol%) and K 3 PO 4 (2 equivalents) were added to a toluene solvent and stirred, followed by stirring for 24 hours. It was refluxed while stirring. After completion of the reaction, it was cooled to room temperature, diluted by adding toluene, and then hydrolyzed with 10% NaOH. Extraction was performed using ethyl acetate, and water was removed from the organic layer using MgSO 4 . The remaining organic solvent was removed, and compound 3 was obtained by column chromatography wet purification using ethyl acetate and hexane. (Yield: 80%)

4. 화합물4의 합성4. Synthesis of Compound 4

[반응식4][Scheme 4]

Figure 112015099843733-pat00025
Figure 112015099843733-pat00025

질소 분위기에서, 화합물c와, 5-pyrimidylboronic acid(1.5 당량), Pd(dppf)Cl2 (4 mol%) 및 K3PO4 (2 당량)의 반응물을 toluene 용매에 투입하고 교반하고, 24시간 동안 환류교반하였다. 반응 종료 후, 실온까지 냉각하고 toluene 을 추가하여 희석한 다음 10% NaOH로 가수분해하였다. Ethyl acetate를 이용하여 추출하고 유기층에서 MgSO4를 이용하여 수분을 제거하였다. 남은 유기 용매를 제거하고, Ethyl acetate와 hexane을 이용한 컬럼 크로마토그래피 습식정제를 하여 화합물4를 얻었다. (수율 : 70 %)In a nitrogen atmosphere, the reactants of compound c, 5-pyrimidylboronic acid (1.5 equivalents), Pd(dppf)Cl 2 (4 mol%) and K 3 PO 4 (2 equivalents) were added to a toluene solvent and stirred, followed by stirring for 24 hours. It was refluxed while stirring. After completion of the reaction, it was cooled to room temperature, diluted by adding toluene, and then hydrolyzed with 10% NaOH. Extraction was performed using ethyl acetate, and water was removed from the organic layer using MgSO 4 . The remaining organic solvent was removed, and compound 4 was obtained by column chromatography wet purification using ethyl acetate and hexane. (Yield: 70%)

5. 화합물5의 합성5. Synthesis of Compound 5

[반응식5][Scheme 5]

Figure 112015099843733-pat00026
Figure 112015099843733-pat00026

질소 분위기에서, 1,2,4-triazole(1.5 당량), 화합물c, K2CO3(2 당량), copper(Ⅰ)3-methylsalicylate(0.01 당량)을 dimethyl sulfoxide(DMSO) 용매에 투입하고 교반하였다. 110℃에서 3 시간 동안 교반하고 실온으로 냉각하였다. 냉각된 용액을 여과한 다음, 소량의 DMSO를 이용하여 세척하였다. 차가운 증류수와 ethyl acetate로 추출하고, 추출된 유기층에서 MgSO4를 이용하여 수분을 제거하였다. 남은 유기 용매를 제거하고, ethyl acetate와 hexane을 이용한 column chromatography 및 재결정을 통해 습식정제함으로써 화합물5를 얻었다. (수율 : 50 %)In a nitrogen atmosphere, add 1,2,4-triazole (1.5 equivalents), compound c, K 2 CO 3 (2 equivalents), and copper(Ⅰ)3-methylsalicylate (0.01 equivalents) to dimethyl sulfoxide (DMSO) solvent and stir did Stir at 110° C. for 3 hours and cool to room temperature. The cooled solution was filtered and then washed with a small amount of DMSO. Extraction was performed with cold distilled water and ethyl acetate, and water was removed from the extracted organic layer using MgSO 4 . After removing the remaining organic solvent, compound 5 was obtained by wet purification through column chromatography and recrystallization using ethyl acetate and hexane. (Yield: 50%)

6. 화합물6의 합성6. Synthesis of Compound 6

(1) 화합물d의 합성(1) Synthesis of compound d

[반응식6-1][Scheme 6-1]

Figure 112015099843733-pat00027
Figure 112015099843733-pat00027

질소 분위기에서, carbazole(29.9 mmol), 1,4-dibromobenzene(44.9 mmol), 팔라듐(II)아세테이트(2mol%), tri-tert-butylphosphate(5mol%), sodium-tert-butoxide(2.03 당량)를 toluene 용매에 혼합하고 교반하였다. 혼합용액을 환류교반하여 12시간 반응하였다. 반응 종료 후 증류수와 ethyl acetate로 추출하였다. 추출된 유기층에서 MgSO₄를 이용하여 수분을 제거하고, 이용하여 수분을 제거하고, 남은 유기용매를 제거하였다. ethyl acetate와 hexane을 이용하여 column chromatography하고 습식정제함으로써 화합물d를 얻었다. (수율 : 80 %)In a nitrogen atmosphere, carbazole (29.9 mmol), 1,4-dibromobenzene (44.9 mmol), palladium (II) acetate (2 mol%), tri-tert-butylphosphate (5 mol%), sodium-tert-butoxide (2.03 equiv.) Mixed with toluene solvent and stirred. The mixed solution was stirred under reflux and reacted for 12 hours. After completion of the reaction, it was extracted with distilled water and ethyl acetate. In the extracted organic layer, water was removed using MgSO4, water was removed using MgSO4, and the remaining organic solvent was removed. Compound d was obtained by column chromatography and wet purification using ethyl acetate and hexane. (Yield: 80%)

(2) 화합물e의 합성(2) synthesis of compound e

[반응식6-2][Scheme 6-2]

Figure 112015099843733-pat00028
Figure 112015099843733-pat00028

화합물d(17.9 mmol)를 THF 용매에 녹이고 질소 환경에서 교반하였다. -78℃ 조건에서 n-butyllithium(26.9 mmol)을 천천히 투입한 후, 1시간 동안 교반하였다. 저온 환경을 유지한 채로 triethylborate(21.6 mmol)를 투입하여 실온으로 만든 후 교반하였다. 실온에서 12 시간 교반하고 반응 종료시켰다. 증류수를 천천히 투입하고 증류수:염산(8:2) 혼합액을 투입하여 pH2를 만들어 주었다. 증류수와 ethyl acetate를 사용하여 추출하고, 추출된 유기층에서 MgSO4를 이용하여 수분을 제거하였다. 남은 유기 용매를 제거하고, ethylacetate와 hexane을 이용한 column chromatography 습식 정제를 통해 화합물e를 얻었다. (수율 : 87 %)Compound d (17.9 mmol) was dissolved in THF solvent and stirred in a nitrogen environment. After slowly adding n-butyllithium (26.9 mmol) at -78°C, the mixture was stirred for 1 hour. While maintaining the low-temperature environment, triethylborate (21.6 mmol) was added to bring the mixture to room temperature, followed by stirring. After stirring at room temperature for 12 hours, the reaction was terminated. Distilled water was slowly added and a mixture of distilled water and hydrochloric acid (8:2) was added to make pH 2. Extraction was performed using distilled water and ethyl acetate, and water was removed from the extracted organic layer using MgSO 4 . The remaining organic solvent was removed, and compound e was obtained through column chromatography wet purification using ethylacetate and hexane. (Yield: 87%)

(3) 화합물f의 합성(3) Synthesis of compound f

[반응식6-3][Scheme 6-3]

Figure 112015099843733-pat00029
Figure 112015099843733-pat00029

질소 분위기에서, 1,2,4-triazole(1 당량), 1,4-dibromobenzene, K2CO3(2 당량), copper(Ⅰ)3-methylsalicylate(0.01 당량)을 DMSO 용매에 투입하고 교반하였다. 110℃에서 3 시간 동안 교반하고 실온으로 방각하였다. 냉각된 용액을 여과한 다음, 소량의 DMSO를 이용하여 세척하였다. 차가운 증류수와 ethyl acetate로 추출하고, 추출된 유기층에서 MgSO4를 이용하여 수분을 제거하였다. 남은 유기 용매를 제거하고, ethyl acetate와 hexane을 이용한 column chromatography 및 재결정을 통해 습식정제함으로써 화합물f를 얻었다. (수율 : 56 %)In a nitrogen atmosphere, 1,2,4-triazole (1 equivalent), 1,4-dibromobenzene, K 2 CO 3 (2 equivalents), and copper(Ⅰ)3-methylsalicylate (0.01 equivalent) were added to the DMSO solvent and stirred. . The mixture was stirred at 110° C. for 3 hours and allowed to cool to room temperature. The cooled solution was filtered and then washed with a small amount of DMSO. Extraction was performed with cold distilled water and ethyl acetate, and water was removed from the extracted organic layer using MgSO 4 . After removing the remaining organic solvent, compound f was obtained by wet purification through column chromatography and recrystallization using ethyl acetate and hexane. (Yield: 56%)

(4) 화합물g의 합성(4) synthesis of compound g

[화학식6-4][Formula 6-4]

Figure 112015099843733-pat00030
Figure 112015099843733-pat00030

화합물f를 THF 용매에 녹이고 질소 환경에서 교반하였다. -78℃ 조건에서 n-butyllithium(1.5 당량)을 천천히 투입한 후, 1시간 동안 교반하였다. 저온 환경을 유지한 채로 triethylborate(1.2 당량)를 투입하여 실온으로 만든 후 교반하였다. 실온에서 12 시간 교반하여 반응 종료 후, 증류수를 천천히 투입하고 증류수:염산(8:2) 혼합액을 투입하여 pH2를 만들어 주었다. 증류수와 ethylacetate를 사용하여 추출하고, 추출된 유기층에서 MgSO4를 이용하여 수분을 제거하였다. 남은 유기 용매를 제거하고, ethylacetate와 hexane을 이용한 column chromatography 습식 정제를 통해 화합물g를 얻었다. (수율 : 79 %)Compound f was dissolved in THF solvent and stirred in a nitrogen environment. After slowly adding n-butyllithium (1.5 equivalents) at -78°C, the mixture was stirred for 1 hour. While maintaining a low-temperature environment, triethylborate (1.2 equivalents) was added to bring the temperature to room temperature, followed by stirring. After completion of the reaction by stirring at room temperature for 12 hours, distilled water was slowly added and a mixture of distilled water: hydrochloric acid (8:2) was added to make pH 2. Extraction was performed using distilled water and ethylacetate, and water was removed from the extracted organic layer using MgSO 4 . The remaining organic solvent was removed, and compound g was obtained through column chromatography wet purification using ethylacetate and hexane. (Yield: 79%)

(5) 화합물h의 합성(5) Synthesis of compound h

[반응식6-5][Scheme 6-5]

Figure 112015099843733-pat00031
Figure 112015099843733-pat00031

질소 분위기에서, 4,16-dibromo[2,2]paracyclophane와, 화합물e(1.1 당량), Pd(dppf)Cl2 (4 mol%) 및 K3PO4 (2 당량)의 반응물을 toluene 용매에 투입하고 교반하였다. 이후, 24시간 동안 환류교반하였다. 반응 종료 후, 실온까지 냉각하고 toluene을 추가하여 희석한 다음 10% NaOH로 가수분해하였다. Ethyl acetate를 사용하여 추출하고, 추출된 유기층에서 MgSO4를 이용하여 수분을 제거하였다. 남은 유기 용매를 제거하고, ethylacetate와 hexane을 이용한 column chromatography 습식 정제를 통해 화합물h를 얻었다. (수율 : 65 %)In a nitrogen atmosphere, the reactants of 4,16-dibromo[2,2]paracyclophane, compound e (1.1 equiv.), Pd(dppf)Cl 2 (4 mol%) and K 3 PO 4 (2 equiv.) were mixed in toluene solvent. It was added and stirred. Thereafter, the mixture was stirred under reflux for 24 hours. After completion of the reaction, it was cooled to room temperature, diluted by adding toluene, and then hydrolyzed with 10% NaOH. Extraction was performed using ethyl acetate, and water was removed from the extracted organic layer using MgSO 4 . The remaining organic solvent was removed, and compound h was obtained through column chromatography wet purification using ethylacetate and hexane. (Yield: 65%)

(6) 화합물6의 합성(6) Synthesis of Compound 6

[반응식6-6][Scheme 6-6]

Figure 112015099843733-pat00032
Figure 112015099843733-pat00032

질소 분위기에서, 화합물h와, 화합물g(1.3 당량), Pd(dppf)Cl2 (4 mol%) 및 K3PO4 (2 당량)의 반응물을 toluene 용매에 투입하고 교반하였다. 이후, 24시간 동안 환류교반하였다. 반응 종료 후, 실온까지 냉각하고 toluene을 추가하여 희석한 다음 10% NaOH로 가수분해하였다. Ethyl acetate를 사용하여 추출하고, 추출된 유기층에서 MgSO4를 이용하여 수분을 제거하였다. 남은 유기 용매를 제거하고, ethylacetate와 hexane을 이용한 column chromatography 습식 정제를 통해 화합물6을 얻었다. (수율 : 58 %)In a nitrogen atmosphere, reactants of compound h, compound g (1.3 equivalent), Pd(dppf)Cl 2 (4 mol%), and K 3 PO 4 (2 equivalent) were added to a toluene solvent and stirred. Thereafter, the mixture was stirred under reflux for 24 hours. After completion of the reaction, it was cooled to room temperature, diluted by adding toluene, and then hydrolyzed with 10% NaOH. Extraction was performed using ethyl acetate, and water was removed from the extracted organic layer using MgSO 4 . The remaining organic solvent was removed, and compound 6 was obtained through column chromatography wet purification using ethylacetate and hexane. (Yield: 58%)

화합물1 내지 6의 질량분석 결과를 표1에 기재하였다.The mass spectrometry results of compounds 1 to 6 are shown in Table 1.

Figure 112015099843733-pat00033
Figure 112015099843733-pat00033

Hamamatsu 사의 Quantarus tau 장비를 이용하여 O2 free 조건에서 상기 화합물1, 3, 5(Com1, Com3, Com5)의 발광 특성을 측정하였고, 측정 결과를 표2 및 도 2a 내지 도 2c에 기재하였다.The luminescent properties of the compounds 1, 3, and 5 (Com1, Com3, and Com5) were measured under O 2 -free conditions using Hamamatsu's Quantarus tau equipment, and the measurement results are shown in Table 2 and FIGS. 2a to 2c.

Figure 112015099843733-pat00034
Figure 112015099843733-pat00034

표2와 도 2a 내지 도 2c에서 보여지는 바와 같이 본 발명에 따른 지연 형광 화합물인 화합물1, 3, 5(Com1, Com3, Com5) 각각은 수천~수만 nano-second (ns)의 지연형광 현상을 보였다.As shown in Table 2 and FIGS. 2a to 2c, each of compounds 1, 3, and 5 (Com1, Com3, Com5), which are delayed fluorescence compounds according to the present invention, exhibits a delayed fluorescence phenomenon of thousands to tens of thousands of nano-seconds (ns). seemed

전술한 바와 같이, 본 발명의 공간 전하 이동 화합물은 전계 활성화(field activated)되어 단일항 상태(S1) 여기자와 삼중항 상태(T1) 여기자가 중간 상태(I1)으로 전이되고 이들 모두가 발광에 참여한다.As described above, the space charge transfer compound of the present invention is field activated, so that the singlet state (S 1 ) excitons and the triplet state (T 1 ) excitons are transferred to an intermediate state (I 1 ), and both of them are participate in luminescence;

이러한 전계 활성화 착물은 한 분자 내에 전자 주개 모이어티와 전자 받개 모이어티를 동시에 가지고 있는 단분자 화합물이며, 분자 내 공간을 통해 전자의 이동이 쉽게 일어나게 된다. 전계 활성화 착물은 특정 조건에서 전자 주개 모이어티에서 전자가 전자 받개 모이어티로 전자주개 모이어티와 전자받개 모이어티 사이 공간을 통해 이동하여 분자 내에서 전하(charge)의 분리가 일어날 수 있다.These field-activated complexes are monomolecular compounds having both an electron donor moiety and an electron acceptor moiety in one molecule, and electrons easily move through the intramolecular space. In the field-activated complex, electrons may move from the electron donor moiety to the electron acceptor moiety through a space between the electron donor moiety and the electron acceptor moiety under certain conditions, and thus charge separation may occur in the molecule.

전계 할성화 착물은 외부 환경에 의해 형성 되는데, 이는 다양한 용매를 이용한 용액 상태의 흡수 파장과 발광 파장을 비교해 봄으로써 쉽게 확인 할 수 있다. The field activation complex is formed by the external environment, which can be easily confirmed by comparing the absorption wavelength and emission wavelength of the solution state using various solvents.

Figure 112015099843733-pat00035
Figure 112015099843733-pat00035

위의 식에서 Δν는 stock shift 값으로 νabs와 νfl은 각각 최대 흡수 파장과 최대 발광 파장의 파수 (wavenumber)이다. 또한 h는 플랭크 상수 (Plank’s constant)이고, c는 빛의 속도(velocity of light)이며, a는 onsager cavity radius이고, Δμ는 exicited state의 dipole moment와 ground state의 dipole moment의 차이 (Δμ = μeg)를 나타낸다. In the above equation, Δν is the stock shift value, and νabs and νfl are the wavenumbers of the maximum absorption wavelength and maximum emission wavelength, respectively. Also, h is Plank's constant, c is the velocity of light, a is the onsager cavity radius, and Δμ is the difference between the dipole moment of the excited state and the dipole moment of the ground state (Δμ = μ eg ).

Δf는 용매의 방향성 편극도(orientational polarizability)를 나타내는 값으로 아래의 식과 같이 용매의 유전 상수(dielectric constant, ε)와 굴절률(refractive index, n)로 표현된다.Δf is a value representing the orientational polarizability of the solvent and is expressed by the dielectric constant (ε) and the refractive index (n) of the solvent as shown in the following formula.

Figure 112015099843733-pat00036
Figure 112015099843733-pat00036

전계 활성화 착물의 형성 여부는 다양한 용매를 이용한 용액 상태의 흡수 파장과 발광 파장을 비교해 봄으로써 확인할 수 있다. 이는 excitation되었을 때의 분극의 정도(dipole moment의 크기)가 주변의 극성에 의해 결정되기 때문이다.Formation of the field-activated complex can be confirmed by comparing absorption wavelengths and emission wavelengths in a solution state using various solvents. This is because the degree of polarization (magnitude of the dipole moment) at the time of excitation is determined by the polarity of the surroundings.

혼합 용매의 방향성 편극도, Δf는 각각 순수한 용매의 방향성 편극도 값들을 몰분율의 비율로 계산하여 사용할 수 있으며, 전계 활성화 착물의 형성 유무는 위의 식 (Lippert-Mataga equation)을 이용하여 Δf와 Δν를 그렸을 때(ploting) 선형 관계가 나타나는지를 확인함으로써 판단할 수 있다.The directional polarization of the mixed solvent, Δf, can be used by calculating the directional polarization values of the pure solvent as a ratio of the mole fraction, and the formation of the field activated complex can be determined by using the above equation (Lippert-Mataga equation) to determine Δf and Δν It can be judged by checking whether a linear relationship appears when plotting .

즉, 용매의 방향성 편극도에 따라 전계 활성화 착물이 안정화가 되며 이 안정화 정도에 따라 발광 파장이 장파장으로 이동한다. 따라서, 전계 활성화 착물이 형성되면 Δf와 Δν가 선형 그래프를 이루게 되고, 역으로 Δf와 Δν가 선형 그래프를 이루면, 그 발광 재료는 전계 활성화 착물임을 알 수 있다.That is, the field activation complex is stabilized according to the directional polarization of the solvent, and the emission wavelength shifts to a longer wavelength according to the stabilization degree. Accordingly, when the field-activated complex is formed, Δf and Δν form a linear graph, and conversely, when Δf and Δν form a linear graph, it can be seen that the light emitting material is a field-activated complex.

본 발명의 공간 전하 이동 화합물에서는, 25%의 단일항 상태 엑시톤과 75%의 삼중항 상태 엑시톤이 외부 환경, 예를 들어 유기발광다이오드소자 구동시 생성된 전자기장에 의해 단일항 상태와 삼중항 상태의 중간 상태로 계간 전이(intersystem crossing)를 일으키는 것으로 해석되고, 이러한 중간 상태에서 바닥 상태로 되면서 발광이 일어나기 때문에 양자 효율이 향상된다. 즉, 형광 물질에서 단일항 상태 엑시톤 뿐만 아니라 삼중항 상태 엑시톤도 발광에 참여함으로써, 발광 효율이 향상된다.In the space charge transfer compound of the present invention, 25% of the singlet state excitons and 75% of the triplet state excitons are generated by the external environment, for example, the electromagnetic field generated when the organic light emitting diode device is driven. Intersystem crossing is interpreted as an intermediate state, and quantum efficiency is improved because light emission occurs while going from this intermediate state to the ground state. That is, luminous efficiency is improved by not only singlet state excitons but also triplet state excitons participating in light emission in the fluorescent material.

이하, 상기한 본 발명의 공간 전하 이동 화합물을 이용한 유기발광다이오드와 화학식6의 비교물질을 이용한 유기발광다이오드의 성능을 비교 설명한다. Hereinafter, the performance of the organic light emitting diode using the space charge transfer compound of the present invention and the organic light emitting diode using the comparative material of Chemical Formula 6 will be compared and described.

소자 제작device fabrication

ITO 기판의 발광 면적이 3 mm X 3 mm 크기가 되도록 패터닝한 후 세정하였다. 다음, 상기 기판을 진공 증착 챔버 내로 이송하였다. 베이스 압력이 약 10-6 ~ 10-7 Torr가 되도록 한 후 양극인 ITO 위에, i) 정공주입층 (500Å, NPB(N,N'-di(naphthalen-1-yl)-N,N'-diphenyl-benzidine)), ii) 정공수송층 (100Å, mCP(N,N'-Dicarbazolyl-3,5-benzene)), iii) 발광물질층 (350Å, 호스트(bis{2-[di(phenyl)phosphino]phenyl}ether oxide/도펀트 (6%)), iv) 전자수송층 (300Å, 1,3,5-tri(phenyl-2-benzimidazole)-benzene), v) 전자주입층 (LiF), vi) 음극 (Al)을 순차 적층하였다. After the ITO substrate was patterned so that the light emitting area had a size of 3 mm X 3 mm, it was cleaned. Next, the substrate was transferred into a vacuum deposition chamber. After setting the base pressure to about 10 -6 ~ 10 -7 Torr, on the anode, ITO, i) hole injection layer (500Å, NPB (N,N'-di(naphthalen-1-yl)-N,N'- diphenyl-benzidine)), ii) hole transport layer (100Å, mCP (N,N'-Dicarbazolyl-3,5-benzene)), iii) light-emitting material layer (350Å, host (bis{2-[di(phenyl)phosphino ]phenyl}ether oxide/dopant (6%)), iv) electron transport layer (300Å, 1,3,5-tri(phenyl-2-benzimidazole)-benzene), v) electron injection layer (LiF), vi) cathode (Al) was sequentially laminated.

(1) 비교예 (Ref)(1) Comparative Example (Ref)

전술한 소자에서, 발광물질층의 도펀트로 화학식7의 화합물을 이용하였다.In the above-described device, the compound of formula 7 was used as a dopant of the light emitting material layer.

(2) 실험예1 (Ex1)(2) Experimental Example 1 (Ex1)

전술한 소자에서, 발광물질층의 도펀트로 화합물1을 이용하였다.In the device described above, Compound 1 was used as a dopant for the light emitting material layer.

(3) 실험예2 (Ex2)(3) Experimental Example 2 (Ex2)

전술한 소자에서, 발광물질층의 도펀트로 화합물3을 이용하였다.In the above device, compound 3 was used as a dopant for the light emitting material layer.

(4) 실험예3 (Ex3)(4) Experimental Example 3 (Ex3)

전술한 소자에서, 발광물질층의 도펀트로 화합물5를 이용하였다.In the above device, compound 5 was used as a dopant for the light emitting material layer.

[화학식7][Formula 7]

Figure 112015099843733-pat00037
Figure 112015099843733-pat00037

Figure 112015099843733-pat00038
Figure 112015099843733-pat00038

표3에서 알 수 있는 바와 같이, 본 발명의 공간 전하 이동 화합물을 이용한 유기발광다이오드소자는 구동전압, 발광효율 등에서 향상된 특성을 갖는다.As can be seen from Table 3, the organic light emitting diode device using the space charge transfer compound of the present invention has improved characteristics in terms of driving voltage and luminous efficiency.

본 발명의 공간 전하 이동 화합물을 포함하여 이루어지는 유기발광다이오드소자에 대한 일 실시예를 도 3에 도시하였다.An embodiment of an organic light emitting diode device including the space charge transfer compound of the present invention is shown in FIG. 3 .

도 3에 도시한 바와 같이, 유기발광다이오드소자는 기판(미도시) 상에 위치하는 발광다이오드(E)를 포함한다.As shown in FIG. 3, the organic light emitting diode device includes a light emitting diode (E) positioned on a substrate (not shown).

상기 발광다이오드(E)는 양극 역할을 하는 제 1 전극(110), 음극 역할을 하는 제 2 전극(130) 및 상기 제 1 및 제 2 전극(110, 130) 사이에 형성되는 유기발광층(120)으로 이루어진다. The light emitting diode (E) includes a first electrode 110 serving as an anode, a second electrode 130 serving as a cathode, and an organic light emitting layer 120 formed between the first and second electrodes 110 and 130. made up of

한편, 도시하지 않았으나, 무기층과 유기층을 포함하고 상기 발광다이오드(E)를 덮는 인캡슐레이션 필름과, 상기 인캡슐레이션 필름 상의 커버 윈도우를 포함하여 표시장치를 이룰 수 있다. 이때, 상기 기판과 상기 커버 윈도우가 플렉서블 특성을 가져, 플렉서블 표시장치를 이룰 수 있다.Meanwhile, although not shown, a display device may be formed by including an encapsulation film including an inorganic layer and an organic layer and covering the light emitting diode E, and a cover window on the encapsulation film. In this case, since the substrate and the cover window have flexible characteristics, a flexible display device may be formed.

상기 제 1 전극(110)은 일함수 값이 비교적 높은 물질, 예를 들어, 인듐-틴-옥사이드(ITO)로 이루어지며, 상기 제 2 전극(130)은 일함수 값이 비교적 낮은 물질, 예를 들어, 알루미늄(Al) 또는 알루미늄 합금(AlNd)으로 이루어진다. 또한, 상기 유기발광층(120)은 적색, 녹색, 청색의 유기발광패턴으로 이루어진다.The first electrode 110 is made of a material having a relatively high work function value, for example, indium-tin-oxide (ITO), and the second electrode 130 is made of a material having a relatively low work function value, for example, indium-tin-oxide (ITO). For example, it is made of aluminum (Al) or aluminum alloy (AlNd). In addition, the organic light emitting layer 120 is composed of red, green, and blue organic light emitting patterns.

상기 유기발광층(120)은 단일층 구조를 갖거나, 발광효율의 향상을 위해, 상기 유기발광층(120)은 다중층 구조를 가질 수 있다. 예를 들어, 제 1 전극(110)으로부터 순차적으로 정공주입층(hole injection layer; HIL) (121), 정공수송층(hole transporting layer; HTL) (122), 발광물질층(emitting material layer; EML) (123), 전자수송층(electron transporting layer, ETL)(124) 및 전자주입층(electron injection layer, EIL)(125)으로 이루어질 수 있다. The organic light emitting layer 120 may have a single-layer structure, or may have a multi-layer structure to improve light emitting efficiency. For example, a hole injection layer (HIL) 121, a hole transporting layer (HTL) 122, and an emitting material layer (EML) are sequentially formed from the first electrode 110. 123, an electron transporting layer (ETL) 124, and an electron injection layer (EIL) 125.

여기서, 상기 정공주입층(121), 정공수송층(122), 발광물질층(123), 전자수송층(124) 및 전자주입층(125) 중 적어도 하나는 상기 화학식1로 표시되는 공간 전하 이동 화합물을 포함하여 이루어질 수 있다. Here, at least one of the hole injection layer 121, the hole transport layer 122, the light emitting material layer 123, the electron transport layer 124, and the electron injection layer 125 contains a space charge transfer compound represented by Chemical Formula 1. can be made including

예를 들어, 상기 발광물질층(123)이 상기 화학식1로 표시되는 공간 전하 이동 화합물을 포함할 수 있다. 상기 발광물질층(123)은 본 발명의 공간 전하 이동 화합물을 도펀트 물질로 포함하고, 호스트에 대하여 약 1~30wt%로 도핑될 수 있으며, 청색을 발광하게 된다. For example, the light emitting material layer 123 may include the space charge transfer compound represented by Formula 1 above. The light emitting material layer 123 includes the space charge transfer compound of the present invention as a dopant material, may be doped with a host at about 1 to 30 wt%, and emits blue light.

상기 호스트의 최고준위 점유 분자궤도 레벨(HOMOHost)과 상기 도펀트의 최고준위 점유 분자궤도 레벨(HOMODopant) 차이(|HOMOHost-HOMODopant|) 또는 상기 호스트의 최저준위 비점유 분자궤도 레벨(LUMOHost)과 상기 도펀트의 최저준위 비점유 분자궤도 레벨(LUMODopant) 차이(|LUMOHost-LUMODopant|)는 0.5eV이하가 되도록 한다. 이에 따라, 호스트에서 도펀트로의 전하이동(charge transfer) 효율이 향상된다.The difference between the highest level occupied molecular orbital level of the host (HOMO Host ) and the highest level occupied molecular orbital level of the dopant (HOMO Dopant ) (|HOMO Host -HOMO Dopant |) or the lowest level unoccupied molecular orbital level of the host (LUMO Host ) and the lowest unoccupied molecular orbital level (LUMO Dopant ) of the dopant (|LUMO Host -LUMO Dopant |) is set to be 0.5 eV or less. Accordingly, charge transfer efficiency from the host to the dopant is improved.

이때, 상기 도펀트의 삼중항 에너지가 상기 호스트의 삼중항 에너지보다 작고, 도펀트의 단일항 에너지와 도펀트의 삼중항 에너지의 차이(ΔEST)는 0.3eV이하인 것을 특징으로 한다. ΔEST가 작을수록 발광효율이 증가하며, 본 발명의 공간 전하 이동 화합물에서는, 도펀트의 단일항 에너지와 삼중항 에너지의 차이(ΔEST)가 비교적 큰 약 0.3eV가 되더라도 전계에 의해 단일항 상태(S1) 여기자와 삼중항 상태(T1) 여기자가 중간 상태(I1)로 전이 될 수 있다. (ΔEST≤0.3)At this time, the triplet energy of the dopant is smaller than the triplet energy of the host, and the difference between the singlet energy of the dopant and the triplet energy of the dopant (ΔE ST ) is characterized in that 0.3 eV or less. The smaller ΔE ST , the higher the luminous efficiency, and in the space charge transfer compound of the present invention, even if the difference between the singlet energy and the triplet energy (ΔE ST ) of the dopant is relatively large, about 0.3 eV, the singlet state ( S 1 ) excitons and triplet state (T 1 ) excitons may transition to an intermediate state (I 1 ). (ΔE ST ≤0.3)

예를 들어, 이와 같은 조건을 만족시키는 호스트로서, 하기 화학식8 중 어느 하나가 이용될 수 있다. (각각 Bis[2-(diphenylphosphino)phenyl]ether oxide (DPEPO), 2,8-bis(diphenylphosphoryl)dibenzothiophene (PPT), 2,8-di(9H-carbazol-9-yl)dibenzothiophene (DCzDBT), m-bis(carbazol-9-yl)biphenyl (m-CBP), Diphenyl-4-triphenylsilylphenyl-phosphine oxide (TPSO1), 9-(9-phenyl-9H-carbazol-6-yl)-9H-carbazole (CCP))For example, as a host that satisfies these conditions, any one of Formula 8 below may be used. (Bis[2-(diphenylphosphino)phenyl]ether oxide (DPEPO), 2,8-bis(diphenylphosphoryl)dibenzothiophene (PPT), 2,8-di(9H-carbazol-9-yl)dibenzothiophene (DCzDBT), m respectively -bis(carbazol-9-yl)biphenyl (m-CBP), diphenyl-4-triphenylsilylphenyl-phosphine oxide (TPSO1), 9-(9-phenyl-9H-carbazol-6-yl)-9H-carbazole (CCP) )

[화학식8][Formula 8]

Figure 112015099843733-pat00039
Figure 112015099843733-pat00040
Figure 112015099843733-pat00039
Figure 112015099843733-pat00040

Figure 112015099843733-pat00041
Figure 112015099843733-pat00042
Figure 112015099843733-pat00041
Figure 112015099843733-pat00042

Figure 112015099843733-pat00043
Figure 112015099843733-pat00044
Figure 112015099843733-pat00043
Figure 112015099843733-pat00044

한편, 상기 발광물질층(123)은 본 발명의 공간 전하 이동 화합물을 호스트 물질로 포함하고, 호스트 물질에 대하여 약 1~30wt%로 도핑되는 도펀트를 포함할 수 있으며, 청색을 발광하게 된다. 우수한 특성의 청색 호스트의 개발이 충분하지 않기 때문에, 본 발명의 공간 전하 이동 화합물을 호스트 물질로 이용함으로써 호스트 선택의 자유도를 높일 수 있다.Meanwhile, the light emitting material layer 123 may include the space charge transfer compound of the present invention as a host material and a dopant doped in an amount of about 1 to 30 wt% with respect to the host material, and emit blue light. Since development of a blue host with excellent properties is not sufficient, the degree of freedom in host selection can be increased by using the space charge transfer compound of the present invention as a host material.

이때, 상기 도펀트의 삼중항 에너지가 본 발명의 공간 전하 이동 화합물인 상기 호스트의 삼중항 에너지보다 작다.At this time, the triplet energy of the dopant is smaller than the triplet energy of the host, which is the space charge transfer compound of the present invention.

또한, 상기 발광물질층(123)은 본 발명의 공간 전하 이동 화합물을 제 1 도펀트 물질로 포함하고 호스트 물질 및 제 2 도펀트 물질을 더 포함하며, 도핑된 상기 제 1 및 제 2 도펀트 물질의 합은 상기 호스트 물질에 대하여 약 1~30wt%로 도핑되어, 청색을 발광하게 된다. 상기 발광물질층(123)이 호스트 물질과 제 1 및 제 2 도펀트 물질을 포함함으로써, 발광 효율 및 색감이 더욱 향상된다.In addition, the light emitting material layer 123 includes the space charge transfer compound of the present invention as a first dopant material and further includes a host material and a second dopant material, and the sum of the doped first and second dopant materials is It is doped at about 1 to 30 wt% with respect to the host material, thereby emitting blue light. Since the light emitting material layer 123 includes a host material and first and second dopant materials, light emitting efficiency and color are further improved.

이때, 본 발명의 공간 전하 이동 화합물인 제 1 도펀트의 삼중항 에너지는 상기 호스트의 삼중항 에너지보다 작고 제 2 도펀트의 삼중항 에너지보다 큰 것을 특징으로 한다. 또한, 이때, 제 1 도펀트의 단일항 에너지와 제 1 도펀트의 삼중항 에너지의 차이(ΔEST)는 0.3eV이하인 것을 특징으로 한다. ΔEST가 작을수록 발광효율이 증가하며, 본 발명의 공간 전하 이동 화합물인 제 1 도펀트의 단일항 에너지와 삼중항 에너지의 차이(ΔEST)가 비교적 큰 약 0.3eV가 되더라도 전계에 의해 단일항 상태(S1) 여기자와 삼중항 상태(T1) 여기자가 중간 상태(I1)로 전이 될 수 있다. (ΔEST≤0.3)At this time, the triplet energy of the first dopant, which is the space charge transfer compound of the present invention, is smaller than the triplet energy of the host and greater than the triplet energy of the second dopant. Also, at this time, the difference between the singlet energy of the first dopant and the triplet energy of the first dopant (ΔE ST ) is 0.3 eV or less. The smaller ΔE ST is, the higher the luminous efficiency is, and even if the difference between singlet energy and triplet energy (ΔE ST ) of the first dopant, which is the space charge transfer compound of the present invention, is relatively large, about 0.3 eV, it is in a singlet state by an electric field. (S 1 ) excitons and triplet state (T 1 ) excitons may transition to an intermediate state (I 1 ). (ΔE ST ≤0.3)

전술한 바와 같이, 본 발명의 공간 전하 이동 화합물에서는, 전자주개 모이어티와 전자받개 모이어티가 분자 내에서 결합되고 최고준위 점유 분자궤도(highest occupied molecular orbital, HOMO)와 최저준위 비점유 분자궤도(lowest unoccupied molecular orbital, LUMO)의 중첩이 감소됨으로써 전하 이동(charge transfer) 착물이 형성되어, 화합물의 발광효율이 향상된다. 즉, 본 발명의 공간 전하 이동 화합물에서는, 삼중항 상태의 엑시톤이 발광에 이용되기 때문에, 발광 효율이 향상된다.As described above, in the space charge transfer compound of the present invention, the electron donor moiety and the electron acceptor moiety are bound in a molecule, and the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital ( The overlapping of the lowest unoccupied molecular orbital (LUMO) is reduced to form a charge transfer complex, thereby improving the luminous efficiency of the compound. That is, in the space charge transfer compound of the present invention, since excitons in the triplet state are used for light emission, the light emission efficiency is improved.

또한, 전자주개(electron donor) 모이어티와 전자받개(electron acceptor) 모이어티가 파라사이클로판 코어에 결합됨으로써 전자주개 모이어티와 전자받개 모이어티 사이 간격이 최소화된다. 따라서, 전자주개 모이어티와 전자받개 모이어티 사이 공간을 통해 전하의 이동이 직접적으로 이루어지기 때문에, 분자의 결합 오비탈(bonding orbital)을 통해 전하가 이동하는 전하 이동 착물(charge transfer complex)에 비해 컨쥬게이션 길이(conjugation length)가 짧아지고 화합물로부터 방출되는 빛의 레드 쉬프트 문제가 방지된다. 즉, 딥 블루(deep blue) 발광 특성의 청색 화합물을 제공할 수 있다.In addition, since the electron donor moiety and the electron acceptor moiety are coupled to the paracyclophane core, the distance between the electron donor moiety and the electron acceptor moiety is minimized. Therefore, since the transfer of charge is directly performed through the space between the electron donor moiety and the electron acceptor moiety, compared to a charge transfer complex in which charge moves through a bonding orbital of a molecule, a conjugate The conjugation length is shortened and the problem of red shift of light emitted from the compound is avoided. That is, it is possible to provide a blue compound having deep blue emission characteristics.

따라서, 본 발명의 공간 전하 이동 화합물을 포함하는 유기발광다이오드소자의 발광 효율이 향상되며 고품질의 영상을 구현할 수 있다.Accordingly, the light emitting efficiency of the organic light emitting diode device including the space charge transfer compound of the present invention is improved and high quality images can be realized.

상기에서는 본 발명의 바람직한 실시예를 참조하여 설명하였지만, 해당 기술분야의 통상의 기술자는 하기의 특허청구범위에 기재된 본 발명의 기술적 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.Although the above has been described with reference to preferred embodiments of the present invention, those skilled in the art can variously modify and change the present invention within the scope not departing from the technical spirit and scope of the present invention described in the claims below. You will understand that it can be done.

110: 제 1 전극 120: 유기발광층
121: 정공주입층 122: 정공수송층
123: 발광물질층 124: 전자수송층
125: 전자주입층 130: 제 2 전극
E: 유기발광다이오드
110: first electrode 120: organic light emitting layer
121: hole injection layer 122: hole transport layer
123: light emitting material layer 124: electron transport layer
125: electron injection layer 130: second electrode
E: organic light emitting diode

Claims (12)

삭제delete 하기 화학식1로 표시되며, D는 하기 화학식2에서 선택되고, A는 하기 화학식3에서 선택되며, L1, L2 각각은 독립적으로 비치환된 벤젠에서 선택되고, n1, n2 각각은 0 또는 1인 공간 전하 이동 화합물.
[화학식1]
Figure 112022082623515-pat00045

[화학식2]
Figure 112022082623515-pat00046

[화학식3]
Figure 112022082623515-pat00047

Represented by Formula 1 below, D is selected from Formula 2, A is selected from Formula 3, L1 and L2 are each independently selected from unsubstituted benzene, and each of n1 and n2 is 0 or 1. charge transfer compounds.
[Formula 1]
Figure 112022082623515-pat00045

[Formula 2]
Figure 112022082623515-pat00046

[Formula 3]
Figure 112022082623515-pat00047

제 2 항에 있어서,
상기 공간 전하 이동 화합물의 단일항 에너지와 삼중항 에너지의 차이는 0.3eV 이하인 공간 전하 이동 화합물.

According to claim 2,
A difference between singlet energy and triplet energy of the space charge transfer compound is 0.3 eV or less.

삭제delete 제 1 전극과;
상기 제 1 전극과 마주보는 제 2 전극과;
상기 제 1 및 제 2 전극 사이에 위치하는 유기 발광층을 포함하고,
상기 유기 발광층은,
하기 화학식1로 표시되며, D는 하기 화학식2에서 선택되고, A는 하기 화학식3에서 선택되며, L1, L2 각각은 독립적으로 비치환된 벤젠에서 선택되고, n1, n2 각각은 0 또는 1인 공간 전하 이동 화합물을 포함하는 유기발광다이오드소자.
[화학식1]
Figure 112022082623515-pat00048

[화학식2]
Figure 112022082623515-pat00049

[화학식3]
Figure 112022082623515-pat00050


a first electrode;
a second electrode facing the first electrode;
An organic light emitting layer positioned between the first and second electrodes;
The organic light emitting layer,
Represented by Formula 1 below, D is selected from Formula 2, A is selected from Formula 3, L1 and L2 are each independently selected from unsubstituted benzene, and each of n1 and n2 is 0 or 1. An organic light emitting diode device comprising a charge transfer compound.
[Formula 1]
Figure 112022082623515-pat00048

[Formula 2]
Figure 112022082623515-pat00049

[Formula 3]
Figure 112022082623515-pat00050


제 5 항에 있어서,
상기 공간 전하 이동 화합물의 단일항 에너지와 삼중항 에너지의 차이는 0.3eV 이하인 유기발광다이오드소자.
According to claim 5,
An organic light emitting diode device in which a difference between singlet energy and triplet energy of the space charge transfer compound is 0.3 eV or less.
제 5 항에 있어서,
상기 공간 전하 이동 화합물은 도펀트로 이용되고, 상기 유기 발광층은 호스트를 더 포함하는 유기발광다이오드소자.
According to claim 5,
The space charge transfer compound is used as a dopant, and the organic light emitting layer further comprises a host.
제 7 항에 있어서,
상기 호스트의 최고준위 점유 분자궤도 레벨(HOMOHost)과 상기 도펀트의 최고준위 점유 분자궤도 레벨(HOMODopant) 차이(|HOMOHost-HOMODopant|) 또는 상기 호스트의 최저준위 비점유 분자궤도 레벨(LUMOHost)과 상기 도펀트의 최저준위 비점유 분자궤도 레벨(LUMODopant) 차이(|LUMOHost- LUMODopant|)는 0.5eV이하인 유기발광다이오드소자.
According to claim 7,
The difference between the highest level occupied molecular orbital level of the host (HOMO Host ) and the highest level occupied molecular orbital level of the dopant (HOMO Dopant ) (|HOMO Host -HOMO Dopant |) or the lowest level unoccupied molecular orbital level of the host (LUMO Host ) and the lowest unoccupied molecular orbital level (LUMO Dopant ) of the dopant (|LUMO Host - LUMO Dopant |) is less than 0.5eV organic light emitting diode device.
제 5 항에 있어서,
상기 공간 전하 이동 화합물은 호스트로 이용되고, 상기 유기 발광층은 도펀트를 더 포함하는 유기발광다이오드소자.
According to claim 5,
The space charge transfer compound is used as a host, and the organic light emitting layer further comprises a dopant.
제 5 항에 있어서,
상기 공간 전하 이동 화합물은 제 1 도펀트로 이용되고, 상기 유기 발광층은 호스트 및 제 2 도펀트를 더 포함하며,
상기 제 1 도펀트의 제 1 삼중항 에너지는 상기 호스트의 제 2 삼중항 에너지보다 작고 상기 제 2 도펀트의 제 3 삼중항 에너지보다 큰 유기발광다이오드소자.
According to claim 5,
The space charge transfer compound is used as a first dopant, and the organic emission layer further includes a host and a second dopant;
A first triplet energy of the first dopant is less than a second triplet energy of the host and greater than a third triplet energy of the second dopant.
제 5 항에 있어서,
상기 유기 발광층은 정공주입층과, 정공수송층과, 발광물질층과, 전자수송층과 전자주입층을 포함하고,
상기 정공주입층과, 상기 정공수송층과, 상기 발광물질층과, 상기 전자수송층과 상기 전자주입층 중 적어도 하나가 상기 공간 전하 이동 화합물을 포함하는 유기발광다이오드소자.
According to claim 5,
The organic light emitting layer includes a hole injection layer, a hole transport layer, a light emitting material layer, an electron transport layer and an electron injection layer,
At least one of the hole injection layer, the hole transport layer, the light emitting material layer, the electron transport layer and the electron injection layer includes the space charge transfer compound.
기판과;
상기 기판 상에 위치하는 제 5 항의 유기발광다이오드소자와;
상기 유기발광다이오드소자를 덮는 인캡슐레이션 필름과;
상기 인캡슐레이션 필름 상의 커버 윈도우를 포함하는 표시장치.
a substrate;
an organic light emitting diode element of claim 5 positioned on the substrate;
an encapsulation film covering the organic light emitting diode device;
A display device including a cover window on the encapsulation film.
KR1020150144199A 2014-12-05 2015-10-15 Space-through charge transfer compound, and Organic light emitting diode device and Display device using the same KR102469690B1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US14/954,840 US10056556B2 (en) 2014-12-05 2015-11-30 Space-through charge transfer compound, and organic light emitting diode and display device using the same
TW104140144A TWI646085B (en) 2014-12-05 2015-12-01 Space charge transfer compound, organic light emitting diode using the same, and display device
JP2015235442A JP6114805B2 (en) 2014-12-05 2015-12-02 Space charge transfer compound, organic light-emitting diode device including the same, and display device
CN201510881852.0A CN105669577B (en) 2014-12-05 2015-12-03 Space charge transfer compounds and the Organic Light Emitting Diode and display device for using it
EP15197969.7A EP3029753B1 (en) 2014-12-05 2015-12-04 Space-through charge transfer compound, and organic light emitting diode and display device using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020140173911 2014-12-05
KR20140173911 2014-12-05

Publications (2)

Publication Number Publication Date
KR20160068645A KR20160068645A (en) 2016-06-15
KR102469690B1 true KR102469690B1 (en) 2022-11-23

Family

ID=56135277

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020150144199A KR102469690B1 (en) 2014-12-05 2015-10-15 Space-through charge transfer compound, and Organic light emitting diode device and Display device using the same

Country Status (3)

Country Link
KR (1) KR102469690B1 (en)
CN (1) CN105669577B (en)
TW (1) TWI646085B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102634554B1 (en) * 2018-06-12 2024-02-06 엘지디스플레이 주식회사 Space-through charge transfer compound, and Organic light emitting diode and Organic light emitting display device including the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008177559A (en) 2007-12-21 2008-07-31 Konica Minolta Holdings Inc Organic electroluminescent device and display unit

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010283003A (en) * 2009-06-02 2010-12-16 Konica Minolta Holdings Inc Organic photoelectric conversion element, solar battery using the same, and photosensor array
DE102010033777A1 (en) * 2010-08-09 2012-02-09 Merck Patent Gmbh Polymers with carbazole structural units

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008177559A (en) 2007-12-21 2008-07-31 Konica Minolta Holdings Inc Organic electroluminescent device and display unit

Also Published As

Publication number Publication date
CN105669577B (en) 2019-04-09
TWI646085B (en) 2019-01-01
KR20160068645A (en) 2016-06-15
TW201623253A (en) 2016-07-01
CN105669577A (en) 2016-06-15

Similar Documents

Publication Publication Date Title
JP7119270B2 (en) COMPOUND FOR ORGANIC ELECTRICAL DEVICE, ORGANIC ELECTRONIC DEVICE USING THE SAME, AND ELECTRONIC DEVICE THEREOF
JP6238317B2 (en) Delayed fluorescent compound, organic light-emitting diode element and display device including the same
KR102454041B1 (en) Delayed Fluorescence compound, and Organic light emitting diode device and Display device using the same
KR102454040B1 (en) Delayed Fluorescence compound, and Organic light emitting diode device and Display device using the same
KR102440238B1 (en) Space-through charge transfer compound, and Organic light emitting diode device and Display device using the same
JP4628435B2 (en) Organic electroluminescence device
KR102519546B1 (en) Delayed Fluorescence compound, and Organic light emitting diode device and Display device including the same
KR102634554B1 (en) Space-through charge transfer compound, and Organic light emitting diode and Organic light emitting display device including the same
JP6114805B2 (en) Space charge transfer compound, organic light-emitting diode device including the same, and display device
KR20220131901A (en) Pyromethene boron complex, light emitting device containing same, display device and lighting device
KR102503744B1 (en) Delayed fluorescence compound, and Organic light emitting diode device and Display device using the same
JP2018070537A (en) Triazine compound, and production method, production intermediate, and use thereof
KR102469690B1 (en) Space-through charge transfer compound, and Organic light emitting diode device and Display device using the same
KR102454042B1 (en) Delayed Fluorescence compound, and Organic light emitting diode device and Display device using the same
KR102544403B1 (en) Delayed Fluorescence compound, and Organic light emitting diode device and Display device using the same
KR102454043B1 (en) Delayed Fluorescence compound, and Organic light emitting diode device and Display device using the same
KR102656995B1 (en) Delayed fluorescence compound, and Organic light emitting diode and Organic light emitting display device including the same
KR101427241B1 (en) 1,1&#39;-binaphthyl-4,4&#39;-diamine derivatives for luminescence of organic electroluminescent device and organic electroluminescent device using them
KR102519545B1 (en) Delayed Fluorescence compound, and Organic light emitting diode device and Display device including the same
CN112786795A (en) Organic electroluminescent device and aromatic compound for organic electroluminescent device
KR20150029340A (en) Ortho-substituted Benzene Derivatives and Organic Light Emitting Devices Comprising The Same
KR102454044B1 (en) Delayed Fluorescence compound and Organic light emitting diode device and Display device using the same
KR102560868B1 (en) Space-through charge transfer compound, and Organic light emitting diode and Organic light emitting display device including the same
TWI588132B (en) Delayed fluorescence compound, and organic light emitting diode and display device using the same
CN113809251A (en) Organic electroluminescent device and amine compound for organic electroluminescent device

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right