KR102454041B1 - Delayed Fluorescence compound, and Organic light emitting diode device and Display device using the same - Google Patents
Delayed Fluorescence compound, and Organic light emitting diode device and Display device using the same Download PDFInfo
- Publication number
- KR102454041B1 KR102454041B1 KR1020150130953A KR20150130953A KR102454041B1 KR 102454041 B1 KR102454041 B1 KR 102454041B1 KR 1020150130953 A KR1020150130953 A KR 1020150130953A KR 20150130953 A KR20150130953 A KR 20150130953A KR 102454041 B1 KR102454041 B1 KR 102454041B1
- Authority
- KR
- South Korea
- Prior art keywords
- compound
- light emitting
- dopant
- organic light
- formula
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/06—Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D209/00—Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
- C07D209/56—Ring systems containing three or more rings
- C07D209/80—[b, c]- or [b, d]-condensed
- C07D209/82—Carbazoles; Hydrogenated carbazoles
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D403/00—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
- C07D403/02—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
- C07D403/04—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings directly linked by a ring-member-to-ring-member bond
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D403/00—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
- C07D403/14—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing three or more hetero rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D495/00—Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
- C07D495/02—Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
- C07D495/04—Ortho-condensed systems
-
- H01L51/50—
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/649—Aromatic compounds comprising a hetero atom
- H10K85/657—Polycyclic condensed heteroaromatic hydrocarbons
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/649—Aromatic compounds comprising a hetero atom
- H10K85/657—Polycyclic condensed heteroaromatic hydrocarbons
- H10K85/6572—Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1003—Carbocyclic compounds
- C09K2211/1011—Condensed systems
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1018—Heterocyclic compounds
- C09K2211/1025—Heterocyclic compounds characterised by ligands
- C09K2211/1029—Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1018—Heterocyclic compounds
- C09K2211/1025—Heterocyclic compounds characterised by ligands
- C09K2211/1029—Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
- C09K2211/1037—Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom with sulfur
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1018—Heterocyclic compounds
- C09K2211/1025—Heterocyclic compounds characterised by ligands
- C09K2211/1044—Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1018—Heterocyclic compounds
- C09K2211/1025—Heterocyclic compounds characterised by ligands
- C09K2211/1092—Heterocyclic compounds characterised by ligands containing sulfur as the only heteroatom
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Electroluminescent Light Sources (AREA)
- Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)
Abstract
본 발명은, 벤조[4,5]티에노[2,3-b]퀴녹살린 전자받개 모이어티의 벤젠링에 카바졸, 페닐카바졸, 아크리딘 또는 페닐아크리딘에서 선택되는 전자주개 모이어티가 결합되는 구조의 분자식을 갖는 지연 형광 화합물을 제공한다.The present invention provides an electron donor moiety selected from carbazole, phenylcarbazole, acridine or phenylacridine on the benzene ring of the benzo[4,5]thieno[2,3-b]quinoxaline electron acceptor moiety. Provided is a delayed fluorescence compound having a molecular formula of a structure to which T is bound.
Description
본 발명은 발광물질에 관한 것이다. 보다 구체적으로, 분자내 전하 이동(intramolecular charge transfer)에 의해 발광효율이 향상되는 지연 형광 화합물, 이를 포함하는 유기발광다이오드소자 및 표시장치에 관한 것이다.The present invention relates to a light emitting material. More specifically, it relates to a delayed fluorescent compound having improved luminous efficiency by intramolecular charge transfer, an organic light emitting diode device including the same, and a display device.
최근 표시장치의 대형화에 따라 공간 점유가 적은 평면표시소자의 요구가 증대되고 있는데, 이러한 평면표시소자 중 하나로서 유기발광다이오드(organic light emitting diode: OLED)라고도 불리는 유기발광다이오드소자의 기술이 빠른 속도로 발전하고 있다.Recently, as display devices have become larger, the demand for flat display devices that occupy less space is increasing. As one of these flat display devices, the technology of an organic light emitting diode (OLED), also called an organic light emitting diode (OLED), is rapidly increasing. is developing into
유기발광다이오드소자는 전자 주입 전극(음극)과 정공 주입 전극(양극) 사이에 형성된 발광물질층에 음극과 양극으로부터 전자와 정공이 주입되면 전자와 정공이 쌍을 이룬 후 소멸하면서 빛을 내는 소자이다. 플라스틱 같은 휠 수 있는(flexible) 투명 기판 위에도 소자를 형성할 수 있을 뿐 아니라, 낮은 전압에서 (10V이하) 구동이 가능하고, 또한 전력 소모가 비교적 적으며, 색감이 뛰어나다는 장점이 있다.The organic light emitting diode device emits light when electrons and holes are injected from the cathode and anode into the light emitting material layer formed between the electron injection electrode (cathode) and the hole injection electrode (anode), the electrons and holes are paired and then disappear. . The device can be formed on a flexible transparent substrate such as plastic, and it can be driven at a low voltage (10V or less), and has the advantage of relatively low power consumption and excellent color.
유기발광다이오드소자는, 기판 상부에 형성되며 양극인 제 1 전극, 상기 제 1 전극과 이격하며 마주하는 제 2 전극, 상기 제 1 전극과 상기 제 2 전극 사이에 위치하는 유기발광층을 포함한다.The organic light emitting diode device includes a first electrode formed on a substrate and serving as an anode, a second electrode spaced apart from and facing the first electrode, and an organic light emitting layer positioned between the first electrode and the second electrode.
발광효율을 향상시키기 위하여, 상기 유기발광층은 상기 제 1 전극에 순차 적층되는 정공주입층(hole injection layer, HIL), 정공수송층(hole transporting layer, HTL), 발광물질층(emitting material layer, EML), 전자수송층(electron transporting layer, ETL), 전자주입층(electron injection layer, EIL)을 포함할 수 있다.In order to improve luminous efficiency, the organic light emitting layer is a hole injection layer (HIL), a hole transport layer (HTL), a light emitting material layer (EML) sequentially stacked on the first electrode. , an electron transporting layer (ETL), and an electron injection layer (EIL).
양극인 제 1 전극으로부터 정공이 정공주입층, 정공수송층을 통해 발광물질층으로 이동되고, 음극인 제 2 전극으로부터 전자가 전자주입층, 전자수송층을 통해 발광물질층으로 이동된다.Holes from the first electrode as the anode move to the light emitting material layer through the hole injection layer and the hole transport layer, and electrons from the second electrode as the cathode move to the light emitting material layer through the electron injection layer and the electron transport layer.
상기 발광물질층으로 이동된 정공과 전자는 결합하여 엑시톤(exciton)을 형성하며 불안정한 에너지 상태로 여기 되었다가 안정한 에너지 상태로 돌아오며 빛을 방출하게 된다.The holes and electrons moved to the light emitting material layer combine to form excitons, and are excited to an unstable energy state and then return to a stable energy state to emit light.
발광물질층에 이용되는 발광물질의 외부양자효율(ηext)은 아래 식으로 얻어질 수 있다.The external quantum efficiency (η ext ) of the light emitting material used in the light emitting material layer can be obtained by the following equation.
ηext = ηint ×г × Φ × ηout - coupling η ext = η int ×г × Φ × η out - coupling
(여기서, ηint: 내부양자효율, г: charge balance factor, Φ: radiative quantum efficiency, ηout - coupling: out coupling efficiency)(here, η int : internal quantum efficiency, г: charge balance factor, Φ: radiative quantum efficiency, η out - coupling : out coupling efficiency)
Charge balance factor(г)는 exciton 을 형성하는 hole 과 electron 의 balance를 의미하며 일반적으로 100% 의 1:1 matching을 가정하여 '1'의 값을 가진다. Radiative quantum efficiency(Φ)는 실질적인 발광물질의 발광효율에 관여하는 값으로, host-dopant 시스템에서는 dopant의 형광 양자효율에 의존한다. Charge balance factor (г) means the balance between holes and electrons forming excitons, and generally has a value of '1' assuming 100% 1:1 matching. Radiative quantum efficiency (Φ) is a value related to the luminous efficiency of the actual luminescent material, and in the host-dopant system, it depends on the fluorescence quantum efficiency of the dopant.
내부양자효율(ηint)은 생성된 여기자(exciton)가 빛의 형태로 전환되는 비율로, 형광 물질의 경우 최대 0.25의 제한적인 값을 갖는다. 정공과 전자가 결합하여 여기자가 형성될 때, spin의 배열에 따라 단일항 여기자(singlet exciton)와 삼중항 여기자(triplet exciton)가 1:3 의 비율로 생성된다. 그러나, 형광 물질에서는 단일항 여기자만이 발광에 참여하고 나머지 75%의 삼중항 여기자는 발광에 참여하지 못하기 때문이다. The internal quantum efficiency (η int ) is the rate at which generated excitons are converted into the form of light, and in the case of a fluorescent material, it has a limiting value of up to 0.25. When holes and electrons combine to form excitons, singlet excitons and triplet excitons are generated in a ratio of 1:3 depending on the spin arrangement. However, in a fluorescent material, only singlet excitons participate in light emission and the remaining 75% of triplet excitons do not participate in light emission.
Out coupling efficiency(ηout - coupling)는 발광된 빛 중 외부로 추출되는 빛의 비율이다. 일반적으로 isotropic한 형태의 분자를 열증착하여 박막을 형성할 경우 개개의 발광분자는 일정한 방향성을 가지지 않고 무질서한 상태로 존재하게 된다. 이러한 무질서한 배열(random orientation) 상태에서의 out coupling efficiency는 일반적으로 0.2로 가정한다.Out coupling efficiency (η out - coupling ) is the ratio of the emitted light to the outside. In general, when an isotropic type molecule is thermally deposited to form a thin film, individual light emitting molecules do not have a certain direction and exist in a disordered state. It is generally assumed that the out-coupling efficiency in this random orientation state is 0.2.
따라서, 형광 물질을 이용한 유기발광다이오드소자의 최대 발광 효율은 약 5%이하가 된다. Accordingly, the maximum luminous efficiency of the organic light emitting diode device using the fluorescent material is about 5% or less.
이와 같이 형광 물질의 낮은 효율 문제를 극복하기 위해, 단일항 여기자와 삼중항 여기자 모두를 빛으로 전환 시키는 발광 메커니즘을 갖는 인광 물질이 개발되었다.In order to overcome the low efficiency problem of fluorescent materials, a phosphor having a light emitting mechanism that converts both singlet excitons and triplet excitons into light has been developed.
적색 및 녹색의 경우 높은 발광효율을 갖는 인광 물질이 개발되어 있으나, 청색의 경우 요구되는 발광효율 및 신뢰성을 만족하는 인광 물질이 개발되지 않고 있다.In the case of red and green, phosphorescent materials having high luminous efficiency have been developed, but in the case of blue, phosphorescent materials satisfying the required luminous efficiency and reliability have not been developed.
따라서, 신뢰성을 만족하는 형광 물질에서, 양자 효율을 증가시킴으로써 발광효율을 증가시킬 수 있는 물질의 개발이 요구되고 있다.Therefore, in a fluorescent material satisfying reliability, there is a need to develop a material capable of increasing luminous efficiency by increasing quantum efficiency.
본 발명은 형광 물질의 낮은 양자 효율 문제를 해결하고자 한다.The present invention aims to solve the problem of low quantum efficiency of fluorescent materials.
위와 같은 과제의 해결을 위해, 본 발명은, 벤조[4,5]티에노[2,3-b]퀴녹살린 전자받개 모이어티의 벤젠링에 전자주개 모이어티가 결합되는 구조의 분자식을 갖는 지연 형광 화합물을 제공한다.In order to solve the above problems, the present invention provides a delay having a molecular formula of a structure in which an electron donor moiety is bonded to the benzene ring of a benzo [4,5] thieno [2,3-b] quinoxaline electron acceptor moiety. Fluorescent compounds are provided.
상기 전자주개 모이어티는 카바졸, 페닐카바졸, 아크리딘 또는 페닐아크리딘에서 선택될 수 있다.The electron donor moiety may be selected from carbazole, phenylcarbazole, acridine or phenylacridine.
즉, 본 발명의 지연 형광 화합물은 하기 화학식을 표시되고, m 및 n은 0 내지 2의 정수이며 m 또는 n은 0이고, D1, D2 각각은 카바졸, 페닐카바졸, 아크리딘 또는 페닐아크리딘에서 선택될 수 있다.That is, the delayed fluorescent compound of the present invention is represented by the following formula, m and n are integers from 0 to 2, m or n is 0, and D1 and D2 are each of carbazole, phenylcarbazole, acridine or phenyla. may be selected from credin.
또한, 본 발명은, 유기 발광층이 전술한 지연 형광 화합물을 포함하는 유기발광다이오드소자 및 표시장치를 제공한다.In addition, the present invention provides an organic light emitting diode device and a display device in which the organic light emitting layer includes the above-described delayed fluorescent compound.
본 발명의 지연형광 화합물은, 벤조[4,5]티에노[2,3-b]퀴녹살린 전자받개(electron acceptor) 모이어티와 전자주개(electron donor) 모이어티가 결합되는 구조를 가지며, 분자 내에서 전하의 이동이 쉽게 일어나고 발광효율이 향상된다. 따라서, 본 발명의 지연 형광 화합물에서 삼중항 상태의 엑시톤이 발광에 이용되기 때문에, 지연 형광 화합물의 발광 효율이 향상된다.The delayed fluorescence compound of the present invention has a structure in which a benzo[4,5]thieno[2,3-b]quinoxaline electron acceptor moiety and an electron donor moiety are combined, and a molecule The movement of electric charge occurs easily and the luminous efficiency is improved. Therefore, in the delayed fluorescent compound of the present invention, since the exciton in the triplet state is used for light emission, the luminous efficiency of the delayed fluorescent compound is improved.
특히, 강한 전자 수용 특성을 갖는 벤조[4,5]티에노[2,3-B]퀴녹살린이 전자받개 모이어티로 이용되고 분자 내에 전자받개 모이어티와 전자주개 모이어티가 포함되어, 삼중항 상태 엑시톤의 이용 효율이 증가한다.In particular, benzo [4,5] thieno [2,3-B] quinoxaline with strong electron accepting properties is used as an electron acceptor moiety, and an electron acceptor moiety and an electron donor moiety are included in the molecule, so that the triplet The utilization efficiency of state excitons is increased.
또한, 카바졸 또는 아크리딘이 전자주개 모이어티로 이용되어 벤조[4,5]티에노[2,3-B]퀴녹살린과 큰 이면각을 형성하기 때문에, 발광층으로부터 발광되는 빛의 레드 쉬프트(red shift) 문제를 최소화할 수 있다.In addition, since carbazole or acridine is used as an electron donor moiety to form a large dihedral angle with benzo[4,5]thieno[2,3-B]quinoxaline, red shift of light emitted from the light emitting layer (red shift) problem can be minimized.
또한, 전자주개 모이어티와 전자받개 모이어티가 분자 내에서 결합되고 최고준위 점유 분자궤도(highest occupied molecular orbital, HOMO)와 최저준위 비점유 분자궤도(lowest unoccupied molecular orbital, LUMO)의 중첩이 감소됨으로써 전계 활성화 지연 형광(field activated delayed fluorescence) 착물이 형성되어 지연형광 화합물의 발광효율이 더욱 향상된다. In addition, the electron donor moiety and the electron acceptor moiety are combined in the molecule and the overlap of the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) is reduced. Since a field activated delayed fluorescence complex is formed, the luminous efficiency of the delayed fluorescence compound is further improved.
따라서, 본 발명의 지연 형광 화합물을 포함하는 유기발광다이오드소자 및 표시장치는 발광 효율이 향상되고 고품질의 영상을 구현할 수 있다.Accordingly, the organic light emitting diode device and the display device including the delayed fluorescent compound of the present invention can improve luminous efficiency and realize high-quality images.
도 1은 본 발명의 실시예에 따른 지연 형광 화합물의 발광 메커니즘을 설명하기 위한 도면이다.
도 2a 및 도 2b 각각은 본 발명에 따른 화합물1의 HOMO와 LUMO 분포를 보여주는 도면이다.
도 3a 및 도 3b 각각은 본 발명에 따른 화합물2의 HOMO와 LUMO 분포를 보여주는 도면이다.
도 4a 및 도 4b 각각은 본 발명에 따른 화합물3의 HOMO와 LUMO 분포를 보여주는 도면이다.
도 5a 및 도 5b 각각은 본 발명에 따른 화합물4의 HOMO와 LUMO 분포를 보여주는 도면이다.
도 6a 및 도 6b 각각은 본 발명에 따른 화합물5의 HOMO와 LUMO 분포를 보여주는 도면이다.
도 7a 및 도 7b 각각은 본 발명에 따른 화합물6의 HOMO와 LUMO 분포를 보여주는 도면이다.
도 8a 및 도 8b 각각은 본 발명에 따른 화합물7의 HOMO와 LUMO 분포를 보여주는 도면이다.
도 9a 및 도 9b 각각은 본 발명에 따른 화합물8의 HOMO와 LUMO 분포를 보여주는 도면이다.
도 10a 및 도 10b 각각은 본 발명에 따른 화합물9의 HOMO와 LUMO 분포를 보여주는 도면이다.
도 11a 및 도 11b 각각은 본 발명에 따른 화합물10의 HOMO와 LUMO 분포를 보여주는 도면이다.
도 12a 및 도 12b 각각은 비교 화합물1의 HOMO와 LUMO 분포를 보여주는 도면이다.
도 13a 및 도 13b 각각은 비교 화합물2의 HOMO와 LUMO 분포를 보여주는 도면이다.
도 14a 및 도 14b 각각은 비교 화합물3의 HOMO와 LUMO 분포를 보여주는 도면이다.
도 15a 및 도 15b 각각은 비교 화합물4의 HOMO와 LUMO 분포를 보여주는 도면이다.
도 16a 및 도 16b 각각은 비교 화합물4의 HOMO와 LUMO 분포를 보여주는 도면이다.
도 17a 및 도 17b 각각은 비교 화합물4의 HOMO와 LUMO 분포를 보여주는 도면이다.
도 18a 내지 도 18c는 본 발명의 실시예에 따른 지연 형광 화합물의 지연 형광 특성을 보여주는 그래프이다.
도 19는 본 발명의 실시예에 따른 유기발광다이오드소자의 개략적인 단면도이다.1 is a view for explaining a light emission mechanism of a delayed fluorescent compound according to an embodiment of the present invention.
2a and 2b are each a view showing the HOMO and LUMO distribution of
3a and 3b are each a view showing the HOMO and LUMO distribution of
4A and 4B are diagrams showing the HOMO and LUMO distributions of
5a and 5b are each a view showing the HOMO and LUMO distribution of
6A and 6B are views showing the HOMO and LUMO distributions of Compound 5 according to the present invention.
7a and 7b are each showing the HOMO and LUMO distribution of Compound 6 according to the present invention.
8A and 8B are diagrams showing the HOMO and LUMO distributions of Compound 7 according to the present invention.
9A and 9B are diagrams showing the HOMO and LUMO distributions of Compound 8 according to the present invention.
10A and 10B are diagrams showing the HOMO and LUMO distributions of Compound 9 according to the present invention.
11A and 11B are diagrams showing the HOMO and LUMO distributions of Compound 10 according to the present invention.
12A and 12B are diagrams showing the HOMO and LUMO distributions of
13A and 13B are diagrams showing the HOMO and LUMO distributions of
14A and 14B are diagrams showing HOMO and LUMO distributions of
15A and 15B are diagrams showing the HOMO and LUMO distributions of
16A and 16B are diagrams showing HOMO and LUMO distributions of
17A and 17B are diagrams showing HOMO and LUMO distributions of
18A to 18C are graphs showing delayed fluorescence characteristics of delayed fluorescent compounds according to an embodiment of the present invention.
19 is a schematic cross-sectional view of an organic light emitting diode device according to an embodiment of the present invention.
본 발명은, 벤조[4,5]티에노[2,3-b]퀴녹살린 전자받개 모이어티의 벤젠링에 카바졸, 페닐카바졸, 아크리딘 또는 페닐아크리딘에서 선택되는 전자주개 모이어티가 결합되는 구조의 분자식을 갖는 지연 형광 화합물을 제공한다.The present invention provides an electron donor moiety selected from carbazole, phenylcarbazole, acridine or phenylacridine on the benzene ring of the benzo[4,5]thieno[2,3-b]quinoxaline electron acceptor moiety. Provided is a delayed fluorescence compound having a molecular formula of a structure to which T is bound.
다른 관점에서, 본 발명은, 하기 화학식1로 표시되며, D1, D2 각각은 하기 화학식2에서 선택되고, m 및 n은 0 내지 2의 정수이며, m 또는 n 중 하나는 0이고, R1, R2 각각은 독립적으로 C1~C10의 알킬에서 선택되는 지연 형광 화합물을 제공한다.In another aspect, the present invention is represented by the following formula (1), each of D1 and D2 is selected from the following formula (2), m and n are integers from 0 to 2, one of m or n is 0, R1, R2 Each independently provides a delayed fluorescence compound selected from C1-C10 alkyl.
[화학식1][Formula 1]
[화학식2][Formula 2]
본 발명의 지연 형광 화합물은 하기 화합물 중 어느 하나일 수 있다. The delayed fluorescence compound of the present invention may be any one of the following compounds.
본 발명의 지연 형광 화합물에 있어서, 상기 지연 형광 화합물의 단일항 에너지와 삼중항 에너지의 차이는 0.3eV 이하일 수 있다.In the delayed fluorescent compound of the present invention, the difference between the singlet energy and the triplet energy of the delayed fluorescent compound may be 0.3 eV or less.
다른 관점에서, 본 발명은, 제 1 전극과, 상기 제 1 전극과 마주보는 제 2 전극과, 상기 제 1 및 제 2 전극 사이에 위치하는 유기 발광층을 포함하고, 상기 유기 발광층은, 벤조[4,5]티에노[2,3-b]퀴녹살린 전자받개 모이어티의 벤젠링에 카바졸, 페닐카바졸, 아크리딘 또는 페닐아크리딘에서 선택되는 전자주개 모이어티가 결합되는 구조의 분자식을 갖는 지연 형광 화합물을 포함하는 유기발광다이오드소자를 제공한다.In another aspect, the present invention includes a first electrode, a second electrode facing the first electrode, and an organic light emitting layer positioned between the first and second electrodes, wherein the organic light emitting layer comprises: ,5] a molecular formula of a structure in which an electron donor moiety selected from carbazole, phenylcarbazole, acridine or phenylacridine is bonded to the benzene ring of the thieno[2,3-b]quinoxaline electron acceptor moiety It provides an organic light emitting diode device comprising a delayed fluorescent compound having a.
다른 관점에서, 본 발명은, 제 1 전극과, 상기 제 1 전극과 마주보는 제 2 전극과, 상기 제 1 및 제 2 전극 사이에 위치하는 유기 발광층을 포함하고, 상기 유기 발광층은, 하기 화학식1로 표시되며, D1, D2 각각은 하기 화학식2에서 선택되고, m 및 n은 0 내지 2의 정수이며, m 또는 n 중 어느 하나는 0이고, R1, R2 각각은 독립적으로 C1~C10의 알킬에서 선택되는 지연 형광 화합물을 포함하는 유기발광다이오드소자를 제공한다.In another aspect, the present invention includes a first electrode, a second electrode facing the first electrode, and an organic light emitting layer positioned between the first and second electrodes, wherein the organic light emitting layer includes the following
[화학식1][Formula 1]
[화학식2][Formula 2]
본 발명의 유기발광다이오드소자에 있어서, 상기 지연 형광 화합물은 하기 화합물 중 어느 하나일 수 있다.In the organic light emitting diode device of the present invention, the delayed fluorescent compound may be any one of the following compounds.
본 발명의 유기발광다이오드소자에 있어서, 상기 지연 형광 화합물의 단일항 에너지와 삼중항 에너지의 차이는 0.3eV 이하일 수 있다.In the organic light emitting diode device of the present invention, the difference between the singlet energy and the triplet energy of the delayed fluorescent compound may be 0.3 eV or less.
본 발명의 유기발광다이오드소자에 있어서, 상기 지연 형광 화합물은 도펀트로 이용되고, 상기 유기 발광층은 호스트를 더 포함할 수 있다.In the organic light emitting diode device of the present invention, the delayed fluorescent compound is used as a dopant, and the organic light emitting layer may further include a host.
본 발명의 유기발광다이오드소자에 있어서, 상기 호스트의 최고준위 점유 분자궤도 레벨(HOMOHost)과 상기 도펀트의 최고준위 점유 분자궤도 레벨(HOMODopant) 차이(|HOMOHost-HOMODopant|) 또는 상기 호스트의 최저준위 비점유 분자궤도 레벨(LUMOHost)과 상기 도펀트의 최저준위 비점유 분자궤도 레벨(LUMODopant) 차이(|LUMOHost-LUMODopant|)는 0.5eV이하일 수 있다.In the organic light emitting diode device of the present invention, the difference between the highest occupied molecular orbital level of the host (HOMO Host ) and the highest occupied molecular orbital level of the dopant (HOMO Dopant ) (|HOMO Host -HOMO Dopant |) or the host The difference between the lowest unoccupied molecular orbital level (LUMO Host ) and the lowest unoccupied molecular orbital level (LUMO Dopant ) of the dopant (|LUMO Host -LUMO Dopant |) may be 0.5 eV or less.
본 발명의 유기발광다이오드소자에 있어서, 상기 지연 형광 화합물은 호스트로 이용되고, 상기 유기 발광층은 도펀트를 더 포함할 수 있다.In the organic light emitting diode device of the present invention, the delayed fluorescent compound is used as a host, and the organic light emitting layer may further include a dopant.
본 발명의 유기발광다이오드소자에 있어서, 상기 지연 형광 화합물은 제 1 도펀트로 이용되고, 상기 유기 발광층은 호스트 및 제 2 도펀트를 더 포함하며, 상기 제 1 도펀트의 제 1 삼중항 에너지는 상기 호스트의 제 2 삼중항 에너지보다 작고 상기 제 2 도펀트의 제 3 삼중항 에너지보다 클 수 있다.In the organic light emitting diode device of the present invention, the delayed fluorescent compound is used as a first dopant, and the organic light emitting layer further includes a host and a second dopant, and the first triplet energy of the first dopant is the first triplet energy of the host. It may be less than the second triplet energy and greater than the third triplet energy of the second dopant.
또 다른 관점에서, 본 발명은, 기판과, 상기 기판 상에 위치하는 전술한 유기발광다이오드소자와, 상기 유기발광다이오드소자를 덮는 인캡슐레이션 필름과, 상기 인캡슐레이션 필름 상의 커버 윈도우를 포함하는 표시장치를 제공한다.In another aspect, the present invention includes a substrate, the above-described organic light emitting diode device positioned on the substrate, an encapsulation film covering the organic light emitting diode device, and a cover window on the encapsulation film A display device is provided.
이하, 본 발명의 실시예에 따른 지연 형광 화합물의 구조 및 그 합성예와, 이를 이용한 유기발광다이오드소자에 대해 설명한다.Hereinafter, a structure of a delayed fluorescent compound according to an embodiment of the present invention, a synthesis example thereof, and an organic light emitting diode device using the same will be described.
본 발명의 실시예에 따른 지연 형광 화합물은, 벤조[4,5]티에노[2,3-b]퀴녹살린(benzo[4,5]thieno[2,3-b]quinoxaline) 전자받개(electron acceptor) 모이어티와 전자주개(electron donor) 모이어티가 결합되는 구조의 분자식을 가지며, 아래 화학식1로 표시된다.Delayed fluorescence compound according to an embodiment of the present invention, benzo [4,5] thieno [2,3-b] quinoxaline (benzo [4,5] thieno [2,3-b] quinoxaline) electron acceptor (electron) It has a molecular formula of a structure in which an acceptor) moiety and an electron donor moiety are bonded, and is represented by
[화학식1][Formula 1]
즉, 전자주개 모이어티인 D1, D2가 벤조[4,5]티에노[2,3-b]퀴녹살린의 벤젠 링에 결합되는 구조를 갖는다.That is, it has a structure in which electron donor moieties D1 and D2 are bonded to the benzene ring of benzo[4,5]thieno[2,3-b]quinoxaline.
이때, m 및 n은 0 내지 2의 정수이며, m 또는 n 중 어느 하나는 0이다. 즉, 아래 화학식2-1에서와 같이 벤조[4,5]티에노[2,3-b]퀴녹살린의 퀴녹살린 부분의 벤젠링 2,3번 위치에 전자주개 모이어티 D1이 결합된 구조를 갖거나, 아래 화학식2-2에서와 같이 벤조[4,5]티에노[2,3-b]퀴녹살린의 퀴녹살린 부분의 벤젠링 2번 위치에 전자주개 모이어티 D1이 결합된 구조를 가질 수 있다. 또한, 아래 화학식2-3에서와 같이 벤조[4,5]티에노[2,3-b]퀴녹살린의 벤조티오펜(benzothiophene) 부분의 벤젠링 2,3번 위치에 전자주개 모이어티 D2가 결합된 구조를 갖거나, 아래 화학식2-4에서와 같이 벤조[4,5]티에노[2,3-b]퀴녹살린의 벤조티오펜 부분의 벤젠링 2번 위치에 전자주개 모이어티 D2가 결합된 구조를 가질 수 있다.In this case, m and n are integers from 0 to 2, and either m or n is 0. That is, the structure in which the electron donor moiety D1 is bonded to the 2nd and 3rd positions of the benzene ring of the quinoxaline moiety of benzo[4,5]thieno[2,3-b]quinoxaline as shown in Formula 2-1 below. or have a structure in which the electron donor moiety D1 is bonded to the
[화학식2-1][Formula 2-1]
[화학식2-2][Formula 2-2]
[화학식2-3][Formula 2-3]
[화학식2-4][Formula 2-4]
상기 화학식1에서, 전자주개 모이어티인 D1, D2 각각은 카바졸(carbazole), 페닐카바졸(phenylcarbazole), 아크리딘(acridine) 또는 페닐아크리딘(phenylacridine)에서 선택된다. 예를 들어, 전자주개 모이어티인 D1, D2 각각은 하기 화학식3에 표시된 물질로부터 선택될 수 있다.In
[화학식3][Formula 3]
상기 화학식3에서, R1, R2 각각은 독립적으로 C1~C10의 알킬일 수 있다.In
이와 같은 지연 형광 화합물은, 벤조[4,5]티에노[2,3-b]퀴녹살린 전자받개 모이어티와 전자주개 모이어티가 결합되는 구조를 가지며, 분자 내에서 전하의 이동이 쉽게 일어나고 발광효율이 향상된다.Such delayed fluorescence compound has a structure in which a benzo[4,5]thieno[2,3-b]quinoxaline electron acceptor moiety and an electron donor moiety are combined, and the charge transfer occurs easily in the molecule and emits light. Efficiency is improved.
즉, 본 발명의 지연 형광 화합물은 전자주개 모이어티와 전자받개 모이어티를 모두 포함함으로써, 분자 내에서 전하의 이동이 쉽게 일어나고 발광 효율이 향상된다. 또한, 삼중항 상태의 엑시톤이 발광에 이용되기 때문에, 지연 형광 화합물의 발광 효율이 향상된다.That is, the delayed fluorescent compound of the present invention includes both an electron donor moiety and an electron acceptor moiety, so that charge transfer occurs easily in a molecule and luminous efficiency is improved. In addition, since the exciton in the triplet state is used for light emission, the luminous efficiency of the delayed fluorescent compound is improved.
특히, 강한 전자 수용 특성을 갖는 벤조[4,5]티에노[2,3-B]퀴녹살린이 전자받개 모이어티로 이용되고 분자 내에 전자받개 모이어티와 전자주개 모이어티가 포함되어, 삼중항 상태 엑시톤의 이용 효율이 증가한다. 또한, 카바졸 또는 아크리딘이 전자주개 모이어티로 이용되어 벤조[4,5]티에노[2,3-B]퀴녹살린과 큰 이면각을 형성하기 때문에, 발광층으로부터 발광되는 빛의 레드 쉬프트(red shift) 문제를 최소화할 수 있다.In particular, benzo [4,5] thieno [2,3-B] quinoxaline with strong electron accepting properties is used as an electron acceptor moiety, and an electron acceptor moiety and an electron donor moiety are included in the molecule, so that the triplet The utilization efficiency of state excitons is increased. In addition, since carbazole or acridine is used as an electron donor moiety to form a large dihedral angle with benzo[4,5]thieno[2,3-B]quinoxaline, red shift of light emitted from the light emitting layer (red shift) problem can be minimized.
또한, 전자주개 모이어티와 전자받개 모이어티가 분자 내에서 결합되고 최고준위 점유 분자궤도(highest occupied molecular orbital, HOMO)와 최저준위 비점유 분자궤도(lowest unoccupied molecular orbital, LUMO)의 중첩이 감소됨으로써 전계 활성화 착물이 형성되어 지연형광 화합물의 발광효율이 더욱 향상된다. In addition, the electron donor moiety and the electron acceptor moiety are combined in the molecule and the overlap of the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) is reduced. Since the field activation complex is formed, the luminous efficiency of the delayed fluorescent compound is further improved.
본 발명의 실시예에 따른 지연 형광 화합물의 발광 메커니즘을 설명하기 위한 도면인 도 1을 참조하면, 본 발명의 지연 형광 화합물에서는, 단일항 여기자와삼중항 여기자 모두가 발광에 참여하여 양자 효율이 향상된다.Referring to FIG. 1, which is a diagram for explaining the light emission mechanism of the delayed fluorescent compound according to an embodiment of the present invention, in the delayed fluorescent compound of the present invention, both singlet excitons and triplet excitons participate in light emission to improve quantum efficiency. do.
즉, 본 발명의 지연 형광 화합물은 전계(field)에 의해 삼중항 여기자가 활성화되어, 삼중항 여기자와 단일항 여기자가 중간 상태(intermediate state, I1)로 이동하고 바닥상태(ground state, S0)로 떨어지면서 발광하게 된다. 다시 말해, 단일항 상태(S1)와 삼중항 상태(T1)에서 중간 상태(I1)로 전이가 일어나고 (S1-> I1 <-T1), 단일항 여기자와 삼중항 여기자 모두가 발광에 참여함으로써, 발광 효율이 향상된다. 이를 FADF (filed activated delayed fluorescence) 화합물로 지칭한다.That is, in the delayed fluorescent compound of the present invention, triplet excitons are activated by an electric field, triplet excitons and singlet excitons move to an intermediate state (I 1 ), and the ground state (S 0 ) ) and emits light. In other words, a transition occurs from the singlet state (S 1 ) and the triplet state (T 1 ) to the intermediate state (I 1 ) (S 1 -> I 1 <-T 1 ), both singlet and triplet excitons. By participating in light emission, the light emission efficiency is improved. This is referred to as a FADF (filed activated delayed fluorescence) compound.
종래 형광 물질은 HOMO와 LUMO가 분자 전체에 퍼져 있기 때문에 단일항상태와 삼중항 상태 사이의 상호 전환이 불가능하다. (selection rule, 선택 규칙)In conventional fluorescent materials, interconversion between singlet and triplet states is impossible because HOMO and LUMO are spread throughout the molecule. (selection rule)
그러나, 본 발명에서와 같은 FADF 화합물에서는, 분자 내 HOMO와 LUMO 겹침이 적기 때문에, HOMO와 LUMO 사이의 상호작용이 작다. 따라서, 전자의 스핀 상태 변화가 다른 전자에 영향을 미치지 않게 되고, 선택 규칙을 따르지 않는 새로운 전하 이동 밴드(charge transfer band)가 형성된다.However, in the FADF compound as in the present invention, since the intramolecular HOMO and LUMO overlap is small, the interaction between HOMO and LUMO is small. Accordingly, the change in the spin state of an electron does not affect other electrons, and a new charge transfer band that does not follow the selection rule is formed.
또한, 전자받개 모이어티와 전자주개 모이어티가 분자 내에서 이격되어 있기 때문에, 분자 내 쌍극자 모멘트(dipole moment)가 분극된 형태로 존재하게 된다. 쌍극자 모멘트가 분극된 상태에서는 HOMO와 LUMO 간의 상호 작용이 작아지게 되어 선택 규칙을 따르지 않을 수 있다. 따라서, FADF 화합물에서는, 삼중항 상태(T1)와 단일항 상태(S1)에서 중간 상태(I1)으로 전이가 가능해지고, 삼중항 여기자가 발광에 참여하게 된다.In addition, since the electron acceptor moiety and the electron donor moiety are spaced apart from each other in the molecule, an intramolecular dipole moment exists in a polarized form. In a state where the dipole moment is polarized, the interaction between the HOMO and the LUMO becomes small and the selection rule may not be followed. Therefore, in the FADF compound, the transition from the triplet state (T 1 ) and the singlet state (S 1 ) to the intermediate state (I 1 ) is possible, and the triplet exciton participates in light emission.
유기발광다이오드소자가 구동되면, 전계에 의해 25%의 단일항 상태(S1) 여기자와 75%의 삼중항 상태(T1) 여기자가 중간 상태(I1)로 계간 전이를 일으키고 바닥 상태(S0)로 떨어지면서 발광이 일어나기 때문에 내부 양자 효율은 이론적으로 100%가 된다.When the organic light emitting diode device is driven, 25% of singlet state (S 1 ) excitons and 75% of triplet state (T 1 ) excitons cause a transition to the intermediate state (I 1 ) and the ground state (S) by an electric field. The internal quantum efficiency becomes 100% theoretically because luminescence occurs as it drops to 0 ).
예를 들어, 화학식1의 지연 형광 화합물은 하기 화학식4의 화합물 중 어느 하나일 수 있다. For example, the delayed fluorescence compound of
[화학식4][Formula 4]
본 발명의 지연 형광 화합물은, 전자받개 모이어티로서 벤조[4,5]티에노[2,3-b]퀴녹살린을 포함하며 카바졸(carbazole), 페닐카바졸(phenylcarbazole), 아크리딘(acridine) 또는 페닐아크리딘(phenylacridine)인 전자주개 모이어티를 포함하기 때문에, 삼중항 상태 엑시톤의 발광 효율이 증가하고 색감이 향상된다.The delayed fluorescence compound of the present invention contains benzo [4,5] thieno [2,3-b] quinoxaline as an electron accepting moiety, and includes carbazole, phenylcarbazole, acridine ( acridine) or phenylacridine (phenylacridine), since the electron donor moiety is included, the luminous efficiency of the triplet state exciton is increased and the color is improved.
도 2a 내지 도 17b는 상기 화학식4의 화합물1 내지 16의 HOMO, LUMO 분포를 보여주는 도면이며, 이들 화합물의 HOMO, LUMO, 밴드갭 에너지를 표1에 기재하였다.2a to 17b are diagrams showing the HOMO and LUMO distributions of
도 2a 내지 도 17b와 표1에서 보여지는 바와 같이, 본 발명의 지연 형광 화합물에서는, HOMO와 LUMO의 분리가 잘 일어나고 3.5eV 이상의 에너지 밴드갭을 갖는다. 따라서, 삼중항 상태 엑시톤이 발광에 참여하는 FADF 화합물이 되고, 딥 블루 빛을 발광하게 된다.As shown in FIGS. 2A to 17B and Table 1, in the delayed fluorescent compound of the present invention, HOMO and LUMO separation occurs well and has an energy bandgap of 3.5 eV or more. Accordingly, the triplet state exciton becomes a FADF compound that participates in light emission and emits deep blue light.
이하에서는, 본 발명에 실시예에 따른 지연 형광 화합물의 합성예를 설명한다.Hereinafter, a synthesis example of a delayed fluorescent compound according to an embodiment of the present invention will be described.
-합성예--Synthesis example-
1. 화합물1의 합성1. Synthesis of
(1) 화합물C의 합성(1) Synthesis of compound C
[반응식1-1][Scheme 1-1]
질소 환경 하(N2 purging)에서, 화합물A를 diethyl ether에 넣고 녹인 후, 0℃에서 1.2 당량의 화합물B(dissolved in MC)를 천천히 떨어뜨렸다. 상온에서 3시간 교반 후, 3당량의 alumimium chloride를 0℃에서 천천히 떨어뜨렸다. 12시간 동안 교반 후, HCl 1M 용액을 천천히 넣어 반응을 종료시키고 추출하였다. Hexane 을 이용한 숏-컬럼(short-column)을 통해 하얀 고체 상태의 화합물C를 얻었다. Under a nitrogen environment (N2 purging), compound A was dissolved in diethyl ether, and 1.2 equivalents of compound B (dissolved in MC) was slowly dropped at 0°C. After stirring at room temperature for 3 hours, 3 equivalents of alumimium chloride was slowly dropped at 0°C. After stirring for 12 hours, HCl 1M solution was slowly added to terminate the reaction and extraction was performed. Compound C in a white solid state was obtained through a short-column using hexane.
(2) 화합물E의 합성(2) Synthesis of compound E
[반응식1-2][Scheme 1-2]
질소 환경 하(N2 purging)에서, 화합물C, 1.5 당량의 화합물D를 acetic acid에 넣고 90℃에서 교반시켰다. 16시간 후 물을 넣어 반응을 종료시키고 추출하였다. MC와 hexane을 이용하여 침전시킴으로써, 하얀 고체 상태의 화합물E를 얻었다. Under a nitrogen environment (N2 purging), compound C and 1.5 equivalents of compound D were added to acetic acid and stirred at 90°C. After 16 hours, water was added to terminate the reaction and extraction was performed. By precipitation using MC and hexane, compound E in a white solid state was obtained.
(3) 화합물1의 합성(3) Synthesis of
[반응식1-3][Scheme 1-3]
질소 환경 하(N2 purging)에서, 화합물E, 1.2 당량의 화합물F, 1.0 당량의 CuI, 3.5 당량의 diaminocyclohexane, 4.0 당량의 potassium phosphate를 1,4-dioxane에 넣고 90℃ oil bath에서 교반시켰다. 14 시간 후 반응물에 물을 넣고 추출하였다. Hexane:MC(9:1)의 전계 용매를 이용한 컬럼을 통해 하얀 고체 상태의 화합물1을 얻었다. Under a nitrogen environment (N2 purging), Compound E, 1.2 equivalents of Compound F, 1.0 equivalent of CuI, 3.5 equivalents of diaminocyclohexane, and 4.0 equivalents of potassium phosphate were added to 1,4-dioxane and stirred in an oil bath at 90°C. After 14 hours, water was added to the reaction mixture, followed by extraction.
2. 화합물2의 합성2. Synthesis of
(1) 화합물H의 합성(1) Synthesis of compound H
[반응식2-1][Scheme 2-1]
질소 환경 하(N2 purging)에서, 화합물C, 1.5 당량의 화합물G를 acetic acid에 넣고 90℃에서 교반시켰다. 16시간 후 물을 넣어 반응을 종료시키고 추출하였다. MC와 hexane을 이용해 침전시킴으로써, 하얀 고체 상태의 화합물H를 얻었다. Under a nitrogen environment (N2 purging), compound C and 1.5 equivalents of compound G were added to acetic acid and stirred at 90°C. After 16 hours, water was added to terminate the reaction and extraction was performed. By precipitation using MC and hexane, compound H in a white solid state was obtained.
(2) 화합물2의 합성(2) Synthesis of
[반응식2-2][Scheme 2-2]
질소 환경 하(N2 purging)에서, 화합물H, 2.3 당량의 화합물F, 1.0 당량의 CuI, 3.5 당량의 diaminocyclohexane, 4.0 당량의 potassium phosphate를 1,4-dioxane에 넣고 90℃ oil bath에서 교반시켰다. 18 시간 후 반응물에 물을 넣고 추출하였다. Hexane:MC(3:1)의 전계 용매를 이용한 컬럼을 통해 하얀 고체 상태의 화합물2를 얻었다. Under nitrogen environment (N2 purging), Compound H, 2.3 equivalents of Compound F, 1.0 equivalent of CuI, 3.5 equivalents of diaminocyclohexane, and 4.0 equivalents of potassium phosphate were added to 1,4-dioxane and stirred in an oil bath at 90°C. After 18 hours, water was added to the reaction mixture and extracted.
3. 화합물3의 합성3. Synthesis of
[반응식3][Scheme 3]
질소 환경 하(N2 purging)에서, 화합물E, 1.3 당량의 화합물I, 0.05 당량의 Pd(0), 4.0 당량의 potassium carbonate를 toluene에 넣고 80℃ oil bath에서 교반시켰다. 12 시간 후 반응물에 물을 넣고 추출하였다. Hexane:MC (4:1)의 전계 용매를 이용한 컬럼을 통해 하얀 고체 상태의 화합물3을 얻었다. Under a nitrogen environment (N2 purging), Compound E, 1.3 equivalents of Compound I, 0.05 equivalents of Pd(0), and 4.0 equivalents of potassium carbonate were added to toluene and stirred in an oil bath at 80°C. After 12 hours, water was added to the reaction mixture and extracted.
4. 화합물4의 합성4. Synthesis of
[반응식4][Scheme 4]
질소 환경 하(N2 purging)에서, 화합물h, 2.3 당량의 화합물I, 0.05 당량의 Pd(0), 4.0 당량의 potassium carbonate를 toluene에 넣고 80℃ oil bath에서 교반시켰다. 16 시간 후 반응물에 물을 넣고 추출하였다. Hexane:EA(4:1)의 전계 용매를 이용한 컬럼을 통해 하얀 고체 상태의 화합물4를 얻었다.Under a nitrogen environment (N2 purging), compound h, 2.3 equivalents of compound I, 0.05 equivalents of Pd(0), and 4.0 equivalents of potassium carbonate were added to toluene and stirred in an oil bath at 80°C. After 16 hours, water was added to the reaction mixture, followed by extraction.
5. 화합물5의 합성5. Synthesis of compound 5
(1) 화합물K의 합성(1) Synthesis of compound K
[반응식5-1][Scheme 5-1]
질소 환경 하(N2 purging)에서, 화합물J를 diethyl ether에 넣고 녹인 후, 0℃에서 1.2 당량의 화합물B(dissolved in MC)를 천천히 떨어뜨렸다. 상온에서 3시간 교반 후, 3당량의 alumimium chloride를 0℃에서 천천히 떨어뜨렸다. 12시간 동안 교반 후, HCl 1M 용액을 천천히 넣어 반응을 종료 시키고 추출하였다. Hexane을 이용한 숏-컬럼을 통해 하얀 고체 상태의 화합물K를 얻었다. Under a nitrogen environment (N2 purging), compound J was dissolved in diethyl ether, and 1.2 equivalents of compound B (dissolved in MC) was slowly dropped at 0°C. After stirring at room temperature for 3 hours, 3 equivalents of alumimium chloride was slowly dropped at 0°C. After stirring for 12 hours, HCl 1M solution was slowly added to terminate the reaction and extraction was performed. Compound K in a white solid state was obtained through a short-column using hexane.
(2) 화합물M의 합성(2) Synthesis of compound M
[반응식5-2][Scheme 5-2]
질소 환경 하(N2 purging)에서, 화합물K, 1.5 당량의 화합물L을 acetic acid에 넣고 90℃에서 교반시켰다. 16시간 후 물을 넣어 반응을 종료시키고 추출하였다. MC와 hexane을 이용하여 침전시킴으로써, 하얀 고체 상태의 화합물M을 얻었다.Under a nitrogen environment (N2 purging), compound K and 1.5 equivalents of compound L were added to acetic acid and stirred at 90°C. After 16 hours, water was added to terminate the reaction and extraction was performed. By precipitation using MC and hexane, compound M in a white solid state was obtained.
(3) 화합물5의 합성(3) Synthesis of compound 5
[반응식5-3][Scheme 5-3]
질소 환경 하(N2 purging)에서, 화합물M, 1.2 당량의 화합물F, 1.0 당량의 CuI, 3.5 당량의 diaminocyclohexane, 4.0 당량의 potassium phosphate를 1,4-dioxane에 넣고 90℃ oil bath에서 교반시켰다. 12 시간 후 반응물에 물을 넣고 추출하였다. Hexane:MC(5:1)의 전계 용매를 이용한 컬럼을 통해 하얀 고체 상태의 화합물5를 얻었다.Under a nitrogen environment (N2 purging), compound M, 1.2 equivalents of compound F, 1.0 equivalents of CuI, 3.5 equivalents of diaminocyclohexane, and 4.0 equivalents of potassium phosphate were added to 1,4-dioxane and stirred in an oil bath at 90°C. After 12 hours, water was added to the reaction mixture and extracted. Compound 5 in a white solid state was obtained through a column using an electric field solvent of Hexane:MC (5:1).
6. 화합물6의 합성6. Synthesis of compound 6
(1) 화합물O의 합성(1) Synthesis of compound O
[반응식6-1][Scheme 6-1]
질소 환경 하(N2 purging)에서, 화합물N을 diethyl ether에 넣고 녹인 후, 0℃에서 1.2 당량의 화합물B(dissolved in MC)를 천천히 떨어뜨렸다. 상온에서 3시간 교반 후, 3당량의 alumimium chloride를 0℃에서 천천히 떨어뜨렸다. 12시간 동안 교반 후, HCl 1M 용액을 천천히 넣어 반응을 종료시키고 추출하였다. Hexane 을 이용한 숏-컬럼을 통해 하얀 고체 상태의 화합물O를 얻었다.Under a nitrogen environment (N2 purging), compound N was dissolved in diethyl ether, and 1.2 equivalents of compound B (dissolved in MC) was slowly dropped at 0°C. After stirring at room temperature for 3 hours, 3 equivalents of alumimium chloride was slowly dropped at 0°C. After stirring for 12 hours, HCl 1M solution was slowly added to terminate the reaction and extraction was performed. Compound O in a white solid state was obtained through a short-column using hexane.
(2) 화합물P의 합성(2) Synthesis of compound P
[반응식6-2][Scheme 6-2]
질소 환경 하(N2 purging)에서, 화합물O, 1.5 당량의 화합물L을 acetic acid에 넣고 90℃에서 교반시켰다. 16시간 후 물을 넣어 반응을 종료시키고 추출하였다. MC와 hexane을 이용하여 침전시킴으로써, 하얀 고체 상태의 화합물P를 얻었다.Under a nitrogen environment (N2 purging), compound O and 1.5 equivalents of compound L were added to acetic acid and stirred at 90°C. After 16 hours, water was added to terminate the reaction and extraction was performed. By precipitation using MC and hexane, compound P in a white solid state was obtained.
(3) 화합물6의 합성(3) Synthesis of compound 6
[반응식6-3][Scheme 6-3]
질소 환경 하(N2 purging)에서, 화합물P, 2.3 당량의 화합물F, 1.0 당량의 CuI, 3.5 당량의 diaminocyclohexane, 4.0 당량의 potassium phosphate를 1,4-dioxane에 넣고 90℃ oil bath에서 교반시켰다. 18 시간 후 반응물에 물을 넣고 추출하였다. Hexane:MC(3:2)의 전계 용매를 이용한 컬럼을 통해 하얀 고체 상태의 화합물6을 얻었다.Under nitrogen environment (N2 purging), compound P, 2.3 equivalents of compound F, 1.0 equivalents of CuI, 3.5 equivalents of diaminocyclohexane, and 4.0 equivalents of potassium phosphate were added to 1,4-dioxane and stirred in an oil bath at 90°C. After 18 hours, water was added to the reaction mixture and extracted. Compound 6 in a white solid state was obtained through a column using an electric field solvent of Hexane:MC (3:2).
7. 화합물7의 합성7. Synthesis of compound 7
[반응식7][Scheme 7]
질소 환경 하(N2 purging)에서, 화합물M, 1.3 당량의 화합물I, 0.05 당량의 Pd(0), 4.0 당량의 potassium carbonate를 toluene에 넣고 80℃ oil bath에서 교반시켰다. 13 시간 후 반응물에 물을 넣고 추출하였다. Hexane:MC (4:1)의 전계 용매를 이용한 컬럼을 통해 하얀 고체 상태의 화합물7을 얻었다.Under a nitrogen environment (N2 purging), compound M, 1.3 equivalents of compound I, 0.05 equivalents of Pd(0), and 4.0 equivalents of potassium carbonate were added to toluene and stirred in an oil bath at 80°C. After 13 hours, water was added to the reaction mixture, followed by extraction. Compound 7 in a white solid state was obtained through a column using an electric field solvent of Hexane:MC (4:1).
8. 화합물8의 합성8. Synthesis of compound 8
[반응식8][Scheme 8]
질소 환경 하(N2 purging)에서, 화합물P, 2.3 당량의 화합물I, 0.05 당량의 Pd(0), 4.0 당량의 potassium carbonate를 toluene에 넣고 80℃ oil bath에서 교반시켰다. 20 시간 후 반응물에 물을 넣고 추출하였다. Hexane:EA(3:1)의 전계 용매를 이용한 컬럼을 통해 하얀 고체 상태의 화합물8을 얻었다.Under a nitrogen environment (N2 purging), compound P, 2.3 equivalents of compound I, 0.05 equivalents of Pd(0), and 4.0 equivalents of potassium carbonate were added to toluene and stirred in an oil bath at 80°C. After 20 hours, water was added to the reaction mixture, followed by extraction. Compound 8 in a white solid state was obtained through a column using an electric field solvent of Hexane:EA (3:1).
9. 화합물9의 합성9. Synthesis of compound 9
(1) 화합물R의 합성(1) Synthesis of compound R
[반응식9-1][Scheme 9-1]
화합물Q(46.9 mmol)를 메탄올 용매에 혼합한 후 질소 분위기 하에 교반시켰다. 0℃에서 10 분간 추가로 교반한 뒤, thionyl chloride(21.2 mmol)를 천천히 떨어뜨렸다. 혼합 용액을 90℃에서 12 시간 이상 교반시켰다. 반응 종료 후 용매를 제거하고 증류수와 에틸아세테이트를 투입하여 추출하였다. 추출한 유기층에서 마그네슘설페이트를 이용하여 수분을 제거하였다. 남은 용매를 제거한 후, 헥산과 에틸아세테이트를 이용한 컬럼크로마토그래피를 통해 습식 정제함으로써, 짙은 노란색의 액체 상태 화합물R을 얻었다.Compound Q (46.9 mmol) was mixed in a methanol solvent and stirred under a nitrogen atmosphere. After further stirring at 0° C. for 10 minutes, thionyl chloride (21.2 mmol) was slowly added thereto. The mixed solution was stirred at 90° C. for at least 12 hours. After completion of the reaction, the solvent was removed and distilled water and ethyl acetate were added for extraction. Moisture was removed from the extracted organic layer using magnesium sulfate. After removing the remaining solvent, wet purification was performed through column chromatography using hexane and ethyl acetate to obtain a dark yellow liquid compound R.
(2) 화합물S의 합성(2) Synthesis of compound S
[반응식9-2][Scheme 9-2]
화합물R(38.1 mmol)를 질소 분위기에서 테트라하이드로퓨란 용매에 교반시킨 후, 메틸 마그네슘 브로마이드(4.6 당량)를 천천히 떨어뜨렸다. 실온에서 12시간 이상 교반하여 반응시켰다. 반응 종료 후, 증류수를 천천히 투입하고 에틸아세테이트를 이용하여 추출하였다. 유기층에서 마그네슘설페이트를 이용하여 수분을 제거하고, 남은 용매를 제거하였다. 렉산과 에틸아세테이트를 이용하여 컬럼크로마토그래피 습식정제함으로써, 노란색 액체 상태의 화합물S를 얻었다. Compound R (38.1 mmol) was stirred in a tetrahydrofuran solvent in a nitrogen atmosphere, and then methyl magnesium bromide (4.6 equivalents) was slowly added thereto. The reaction was stirred at room temperature for 12 hours or more. After completion of the reaction, distilled water was slowly added and extracted using ethyl acetate. Moisture was removed from the organic layer using magnesium sulfate, and the remaining solvent was removed. By wet purification by column chromatography using lexane and ethyl acetate, compound S in a yellow liquid state was obtained.
(3) 화합물T의 합성(3) Synthesis of compound T
[반응식9-3][Scheme 9-3]
화합물S(33.1 mmol)를 과량의 인산(160 ml) 용매와 실온에서 교반시켰다. 16시간 이상 교반 후 200-250 ml의 증류수를 천천히 투입하였다. 이후, 0.5-1 시간 교반하고 석출된 고체를 여과하였다. 여과된 고체를 수산화나트륨 수용액과 다이클로로메탄 용매를 이용하여 추출하고, 유기층에서 마그네슘설페이트를 이용하여 수분제거하였다. 남은 유기 용매를 제거하여 흰색 고체 상태의 화합물T를 얻었다. Compound S (33.1 mmol) was stirred with an excess of phosphoric acid (160 ml) solvent at room temperature. After stirring for at least 16 hours, 200-250 ml of distilled water was slowly added. Then, the mixture was stirred for 0.5-1 hour and the precipitated solid was filtered. The filtered solid was extracted using an aqueous sodium hydroxide solution and a dichloromethane solvent, and moisture was removed from the organic layer using magnesium sulfate. The remaining organic solvent was removed to obtain Compound T in a white solid state.
(4) 화합물9의 합성(4) Synthesis of compound 9
[반응식9-4][Scheme 9-4]
질소 환경 하(N2 purging)에서, 화합물E, 1.2 당량의 화합물T, 1.0 당량의 CuI, 3.5 당량의 diaminocyclohexane, 4.0 당량의 potassium phosphate를 1,4-dioxane에 넣고 90℃ oil bath에서 교반시켰다. 16 시간 후, 반응물에 물을 넣고 추출하였다. Hexane:MC(3:1)의 전계 용매를 이용한 컬럼을 통해 하얀 고체 상태의 화합물9를 얻었다. Under a nitrogen environment (N2 purging), compound E, 1.2 equivalents of compound T, 1.0 equivalents of CuI, 3.5 equivalents of diaminocyclohexane, and 4.0 equivalents of potassium phosphate were added to 1,4-dioxane and stirred in an oil bath at 90°C. After 16 hours, water was added to the reaction mixture, followed by extraction. Compound 9 in a white solid state was obtained through a column using an electric field solvent of Hexane:MC (3:1).
10. 화합물10의 합성10. Synthesis of compound 10
[반응식10][Scheme 10]
질소 환경 하(N2 purging)에서, 화합물H, 2.2 당량의 화합물T, 1.0 당량의 CuI, 3.5 당량의 diaminocyclohexane, 4.0 당량의 potassium phosphate를 1,4-dioxane에 넣고 90℃ oil bath에서 교반시켰다. 18 시간 후 반응물에 물을 넣고 추출하였다. Hexane:MC(1:1)의 전계 용매를 이용한 컬럼을 통해 하얀 고체 상태의 화합물10을 얻었다.Under a nitrogen environment (N2 purging), compound H, 2.2 equivalents of compound T, 1.0 equivalents of CuI, 3.5 equivalents of diaminocyclohexane, and 4.0 equivalents of potassium phosphate were added to 1,4-dioxane and stirred in an oil bath at 90°C. After 18 hours, water was added to the reaction mixture and extracted. Compound 10 in a white solid state was obtained through a column using an electric field solvent of Hexane:MC (1:1).
11. 화합물11의 합성11. Synthesis of compound 11
(1) 화합물V의 합성(1) Synthesis of compound V
[반응식11-1][Scheme 11-1]
질소 환경 하(N2 purging)에서, 화합물T, 0.8 당량의 화합물U, 1.0 당량의 CuI, 3.5 당량의 diaminocyclohexane, 4.0 당량의 potassium phosphate를 1,4-dioxane에 넣고 90℃ oil bath에서 교반시켰다. 11 시간 후 반응물에 물을 넣고 추출하였다. Hexane:MC(9:1)의 전계 용매를 이용한 컬럼을 통해 하얀 고체 상태의 화합물V를 얻었다.Under a nitrogen environment (N2 purging), compound T, 0.8 equivalents of compound U, 1.0 equivalents of CuI, 3.5 equivalents of diaminocyclohexane, and 4.0 equivalents of potassium phosphate were added to 1,4-dioxane and stirred in an oil bath at 90°C. After 11 hours, water was added to the reaction mixture and extracted. Compound V in a white solid state was obtained through a column using an electric field solvent of Hexane:MC (9:1).
(2) 화합물W의 합성(2) Synthesis of compound W
[반응식11-2][Scheme 11-2]
질소 환경 하(N2 purging)에서, 화합물V, 1.5 당량의 Bu-Li을 ether에 넣고 -78℃에서 교반시켰다. 4시간 반응 후, 1.2 당량의 triethyl borate를 넣고 -78℃에서 30분간 교반시켰다. Dry ice bath를 제거하여 반응 온도를 상온으로 올려주었다. 14시간 반응 후, HCl(in DI water) 30ml를 넣고 유기 용매를 제거하였다. 유기용매가 모두 제거된 후, 물에 침전된 고체를 여과함으로써 하얀 고체 상태의 화합물W를 얻었다.Under a nitrogen environment (N2 purging), compound V, 1.5 equivalents of Bu-Li was added to ether and stirred at -78°C. After 4 hours of reaction, 1.2 equivalents of triethyl borate was added and stirred at -78°C for 30 minutes. The dry ice bath was removed to raise the reaction temperature to room temperature. After 14 hours of reaction, 30 ml of HCl (in DI water) was added and the organic solvent was removed. After all organic solvents were removed, the solid precipitated in water was filtered to obtain Compound W in a white solid state.
(3) 화합물11의 합성(3) Synthesis of compound 11
[반응식11-3][Scheme 11-3]
질소 환경 하(N2 purging)에서, 화합물E, 1.3 당량의 화합물W, 0.05 당량의 Pd(0), 4.0 당량의 potassium carbonate를 toluene에 넣고 80℃ oil bath에서 교반시켰다. 11 시간 후 반응물에 물을 넣고 추출하였다. Hexane:MC (2:1)의 전계 용매를 이용한 컬럼을 통해 하얀 고체 상태의 화합물11을 얻었다. Under a nitrogen environment (N2 purging), Compound E, 1.3 equivalents of Compound W, 0.05 equivalents of Pd(0), and 4.0 equivalents of potassium carbonate were added to toluene and stirred in an oil bath at 80°C. After 11 hours, water was added to the reaction mixture and extracted. Compound 11 in a white solid state was obtained through a column using an electric field solvent of Hexane:MC (2:1).
12. 화합물12의 합성12. Synthesis of compound 12
[반응식12][Scheme 12]
질소 환경 하(N2 purging)에서, 화합물H, 2.3 당량의 화합물W, 0.05 당량의 Pd(0), 4.0 당량의 potassium carbonate를 toluene에 넣고 80℃ oil bath에서 교반시켰다. 16 시간 후 반응물에 물을 넣고 추출하였다. Hexane:EA(3:1)의 전계 용매를 이용한 컬럼을 통해 하얀 고체 상태의 화합물12를 얻었다. Under a nitrogen environment (N2 purging), Compound H, 2.3 equivalents of Compound W, 0.05 equivalents of Pd(0), and 4.0 equivalents of potassium carbonate were added to toluene and stirred in an oil bath at 80°C. After 16 hours, water was added to the reaction mixture, followed by extraction. Compound 12 in a white solid state was obtained through a column using an electric field solvent of Hexane:EA (3:1).
13. 화합물13의 합성13. Synthesis of compound 13
[반응식13][Scheme 13]
질소 환경 하(N2 purging)에서, 화합물M, 1.2 당량의 화합물T, 1.0 당량의 CuI, 3.5 당량의 diaminocyclohexane, 4.0 당량의 potassium phosphate를 1,4-dioxane에 넣고 90℃ oil bath에서 교반시켰다. 12 시간 후 반응물에 물을 넣고 추출하였다. Hexane:MC(4:1)의 전계 용매를 이용한 컬럼을 통해 하얀 고체 상태의 화합물13을 얻었다.Under nitrogen environment (N2 purging), compound M, 1.2 equivalents of compound T, 1.0 equivalents of CuI, 3.5 equivalents of diaminocyclohexane, and 4.0 equivalents of potassium phosphate were added to 1,4-dioxane and stirred in an oil bath at 90°C. After 12 hours, water was added to the reaction mixture and extracted. Compound 13 in a white solid state was obtained through a column using an electric field solvent of Hexane:MC (4:1).
14. 화합물14의 합성14. Synthesis of compound 14
[반응식14][Scheme 14]
질소 환경 하(N2 purging)에서, 화합물P, 2.3 당량의 화합물T, 1.0 당량의 CuI, 3.5 당량의 diaminocyclohexane, 4.0 당량의 potassium phosphate를 1,4-dioxane에 넣고 90℃ oil bath에서 교반시켰다. 18 시간 후 반응물에 물을 넣고 추출하였다. Hexane:MC(1:1)의 전계 용매를 이용한 컬럼을 통해 하얀 고체 상태의 화합물14를 얻었다.Under nitrogen environment (N2 purging), compound P, 2.3 equivalents of compound T, 1.0 equivalents of CuI, 3.5 equivalents of diaminocyclohexane, and 4.0 equivalents of potassium phosphate were added to 1,4-dioxane and stirred in an oil bath at 90°C. After 18 hours, water was added to the reaction mixture and extracted. Compound 14 in a white solid state was obtained through a column using an electric field solvent of Hexane:MC (1:1).
15. 화합물15의 합성15. Synthesis of compound 15
[반응식15][Scheme 15]
질소 환경 하(N2 purging)에서, 화합물M, 1.3 당량의 화합물W, 0.05 당량의 Pd(0), 4.0 당량의 potassium carbonate를 toluene에 넣고 80℃ oil bath에서 교반시켰다. 13 시간 후 반응물에 물을 넣고 추출하였다. Hexane:MC(3:1)의 전계 용매를 이용한 컬럼을 통해 하얀 고체 상태의 화합물15를 얻었다.Under a nitrogen environment (N2 purging), compound M, 1.3 equivalents of compound W, 0.05 equivalents of Pd(0), and 4.0 equivalents of potassium carbonate were added to toluene and stirred in an oil bath at 80°C. After 13 hours, water was added to the reaction mixture, followed by extraction. Compound 15 in a white solid state was obtained through a column using an electric field solvent of Hexane:MC (3:1).
16. 화합물16의 합성16. Synthesis of compound 16
[반응식16][Scheme 16]
질소 환경 하(N2 purging)에서, 화합물P, 2.3 당량의 화합물W, 0.05 당량의 Pd(0), 4.0 당량의 potassium carbonate를 toluene에 넣고 80℃ oil bath에서 교반시켰다. 20 시간 후 반응물에 물을 넣고 추출하였다. Hexane:EA(3:1)의 전계 용매를 이용한 컬럼을 통해 하얀 고체 상태의 화합물16을 얻었다.Under a nitrogen environment (N2 purging), compound P, 2.3 equivalents of compound W, 0.05 equivalents of Pd(0), and 4.0 equivalents of potassium carbonate were added to toluene and stirred in an oil bath at 80°C. After 20 hours, water was added to the reaction mixture, followed by extraction. Compound 16 in a white solid state was obtained through a column using an electric field solvent of Hexane:EA (3:1).
화합물1 내지 16의 질량분석 결과를 표2에 기재하였다.The mass spectrometry results of
Hamamatsu 사의 Quantarus tau 장비를 이용하여 O2 free 조건에서 하기 화학식5 화합물(Ref)과 상기 화합물1, 5(Com1, Com5)의 발광 특성을 측정하였고, 측정 결과를 표3 및 도 18a 및 도 18c에 기재하였다.Using Quantarus tau equipment manufactured by Hamamatsu, the luminescence properties of the following compound (Ref) and the
[화학식5][Formula 5]
표3과 도 18a에서 보여지는 바와 같이 상기 화학식5의 화합물(Ref)은 수백 nano-second (ns)의 지연형광 현상을 보이는 반면, 표3과 도 18b 및 도 18c에서 보여지는 바와 같이, 화합물1 및 화합물5(Com1, Com5)는 각각 수만 nano-second (ns)의 지연형광 현상을 보였다.As shown in Table 3 and Figure 18a, the compound (Ref) of Formula 5 showed delayed fluorescence of several hundred nano-seconds (ns), whereas as shown in Table 3 and Figures 18b and 18c,
전술한 바와 같이, 본 발명의 지연 형광 화합물은 전계 활성화(field activated)되어 단일항 상태(S1) 여기자와 삼중항 상태(T1) 여기자가 중간 상태(I1)으로 전이되고 이들 모두가 발광에 참여한다.As described above, the delayed fluorescent compound of the present invention is field activated so that singlet state (S 1 ) excitons and triplet state (T 1 ) excitons are transitioned to an intermediate state (I 1 ), and both of them emit light. participate in
이러한 전계 활성화 착물은, 한 분자 내에 전자주개 모이어티와 전자받개 모이어티를 동시에 가지고 있는 단분자 화합물이며, 분자 내에서 전자의 이동이 쉽게 일어나게 된다. 전계 활성화 착물은 특정 조건에서 전자주개 모이어티에서 전자가 전자받개 모이어티로 이동하여 분자 내에서 전하(charge)의 분리가 일어날 수 있다.Such an electric field activation complex is a monomolecular compound having an electron donor moiety and an electron acceptor moiety in one molecule at the same time, and the movement of electrons in the molecule occurs easily. In field-activated complexes, electrons are transferred from an electron donor moiety to an electron acceptor moiety under certain conditions, so that separation of charges can occur in a molecule.
전계 할성화 착물은 외부 환경에 의해 형성 되는데, 이는 다양한 용매를 이용한 용액 상태의 흡수 파장과 발광 파장을 비교해 봄으로써 쉽게 확인 할 수 있다. The electric field activation complex is formed by the external environment, which can be easily confirmed by comparing the absorption wavelength and the emission wavelength in a solution state using various solvents.
위의 식에서 Δν는 stock shift 값으로 νabs와 νfl은 각각 최대 흡수 파장과 최대 발광 파장의 파수 (wavenumber)이다. 또한 h는 플랭크 상수 (Planks constant)이고, c는 빛의 속도(velocity of light)이며, a는 onsager cavity radius이고, Δμ는 exicited state의 dipole moment와 ground state의 dipole moment의 차이 (Δμ = μe-μg)를 나타낸다. In the above equation, Δν is the stock shift value, and νabs and νfl are the wavenumbers of the maximum absorption wavelength and the maximum emission wavelength, respectively. Also, h is the Plank's constant, c is the velocity of light, a is the onsager cavity radius, and Δμ is the difference between the dipole moment of the excited state and the dipole moment of the ground state (Δμ = μ e -μ g ).
Δf는 용매의 방향성 편극도(orientational polarizability)를 나타내는 값으로 아래의 식과 같이 용매의 유전 상수(dielectric constant, ε)와 굴절률(refractive index, n)로 표현된다.Δf is a value indicating the orientational polarizability of the solvent, and is expressed by the dielectric constant (ε) and the refractive index (n) of the solvent as shown in the following equation.
전계 활성화 착물의 형성 여부는 다양한 용매를 이용한 용액 상태의 흡수 파장과 발광 파장을 비교해 봄으로써 확인할 수 있다. 이는 excitation되었을 때의 분극의 정도(dipole moment의 크기)가 주변의 극성에 의해 결정되기 때문이다.Whether or not the field activation complex is formed can be confirmed by comparing the absorption wavelength and the emission wavelength in a solution state using various solvents. This is because the degree of polarization (dipole moment magnitude) when excitation is determined by the surrounding polarity.
혼합 용매의 방향성 편극도, Δf는 각각 순수한 용매의 방향성 편극도 값들을 몰분율의 비율로 계산하여 사용할 수 있으며, 전계 활성화 착물의 형성 유무는 위의 식 (Lippert-Mataga equation)을 이용하여 Δf와 Δμ를 그렸을 때(ploting) 선형 관계가 나타나는지를 확인함으로써 판단할 수 있다.Directional polarization of the mixed solvent, Δf, can be used by calculating the directional polarization values of the pure solvent as a ratio of mole fraction, and the presence or absence of the formation of an electric field activation complex can be determined using the above equation (Lippert-Mataga equation) to determine Δf and Δμ It can be judged by checking whether a linear relationship appears when plotting .
즉, 용매의 방향성 편극도에 따라 전계 활성화 착물이 안정화가 되며 이 안정화 정도에 따라 발광 파장이 장파장으로 이동한다. 따라서, 전계 활성화 착물이 형성되면 Δf와 Δμ가 선형 그래프를 이루게 되고, 역으로 Δf와 Δμ가 선형 그래프를 이루면, 그 발광 재료는 전계 활성화 착물임을 알 수 있다.That is, the field-activated complex is stabilized according to the directional polarization degree of the solvent, and the emission wavelength shifts to a longer wavelength according to the stabilization degree. Accordingly, when the field-activated complex is formed, Δf and Δμ form a linear graph, and conversely, when Δf and Δμ form a linear graph, it can be seen that the light-emitting material is a field-activated complex.
본 발명의 지연 형광 화합물에서는, 25%의 단일항 상태 엑시톤과 75%의 삼중항 상태 엑시톤이 외부 환경, 예를 들어 유기발광다이오드소자 구동시 생성된 전자기장에 의해 단일항 상태와 삼중항 상태의 중간 상태로 계간 전이(intersystem crossing)를 일으키는 것으로 해석되고, 이러한 중간 상태에서 바닥 상태로 되면서 발광이 일어나기 때문에 양자 효율이 향상된다. 즉, 형광 물질에서 단일항 상태 엑시톤 뿐만 아니라 삼중항 상태 엑시톤도 발광에 참여함으로써, 발광 효율이 향상된다.In the delayed fluorescent compound of the present invention, 25% of singlet state excitons and 75% of triplet state excitons are intermediate between the singlet state and the triplet state by an external environment, for example, an electromagnetic field generated when an organic light emitting diode device is driven. It is interpreted as causing an intersystem crossing to the state, and the quantum efficiency is improved because light emission occurs as the intermediate state becomes the ground state. That is, in the fluorescent material, not only singlet state excitons but also triplet state excitons participate in light emission, so that luminous efficiency is improved.
이하, 상기한 본 발명의 지연 형광 화합물을 이용한 유기발광다이오드소자와 화학식5의 비교 화합물을 이용한 유기발광다이오드소자의 성능을 비교 설명한다. Hereinafter, the performance of the organic light emitting diode device using the delayed fluorescent compound of the present invention and the organic light emitting diode device using the comparative compound of Formula 5 will be described in comparison.
소자 제작device fabrication
ITO 기판의 발광 면적이 3 mm X 3 mm 크기가 되도록 패터닝한 후 세정하였다. 다음, 상기 기판을 진공 증착 챔버 내로 이송하였다. 베이스 압력이 약 10-6 ~ 10-7 Torr가 되도록 한 후 양극인 ITO 위에, i) 정공주입층 40Å(NPB(N,N'-di(naphthalen-1-yl)-N,N'-diphenyl-benzidine)), ii) 정공수송층 10Å (mCP(N,N'-Dicarbazolyl-3,5-benzene)), iii) 발광물질층 200Å (호스트(bis{2-[di(phenyl)phosphino]phenyl}ether oxide/도펀트 (12%)), iv) 전자수송층 300Å (1,3,5-tri(phenyl-2-benzimidazole)-benzene), v) 전자주입층 10Å (LiF), vi) 음극 (Al)을 순차 적층하였다. After patterning so that the emission area of the ITO substrate was 3
(1) 실험예1 (Ex1)(1) Experimental Example 1 (Ex1)
전술한 소자에서, 발광물질층의 도펀트로 화합물1을 이용하였다.In the above device,
(2) 실험예2 (Ex2)(2) Experimental Example 2 (Ex2)
전술한 소자에서, 발광물질층의 도펀트로 화합물2를 이용하였다.In the above device,
(3) 실험예3 (Ex3)(3) Experimental Example 3 (Ex3)
전술한 소자에서, 발광물질층의 도펀트로 화합물5를 이용하였다.In the device described above, compound 5 was used as a dopant in the light emitting material layer.
(4) 실험예4 (Ex4)(4) Experimental Example 4 (Ex4)
전술한 소자에서, 발광물질층의 도펀트로 화합물6을 이용하였다.In the device described above, compound 6 was used as a dopant in the light emitting material layer.
(5) 실험예5 (Ex5)(5) Experimental Example 5 (Ex5)
전술한 소자에서, 발광물질층의 도펀트로 화합물9를 이용하였다. In the device described above, compound 9 was used as a dopant in the light emitting material layer.
(6) 실험예6 (Ex6)(6) Experimental Example 6 (Ex6)
전술한 소자에서, 발광물질층의 도펀트로 화합물10을 이용하였다. In the device described above, compound 10 was used as a dopant of the light emitting material layer.
(7) 실험예7 (Ex7)(7) Experimental Example 7 (Ex7)
전술한 소자에서, 발광물질층의 도펀트로 화합물13을 이용하였다. In the device described above, compound 13 was used as a dopant in the light emitting material layer.
(8) 실험예8 (Ex8)(8) Experimental Example 8 (Ex8)
전술한 소자에서, 발광물질층의 도펀트로 화합물14를 이용하였다.In the device described above, compound 14 was used as a dopant of the light emitting material layer.
(9) 비교예 (Ref)(9) Comparative Example (Ref)
전술한 소자에서, 발광물질층의 도펀트로 상기 화학식5의 화합물(Ref)을 이용하였다.In the above-described device, the compound (Ref) of Formula 5 was used as a dopant of the light emitting material layer.
표4에서 보여지는 바와 같이, 본 발명의 지연 형광 화합물을 이용하는 소자에서, 색감(또는 색순도)과 발광 효율이 향상되었다. 즉, 카바졸을 전자주개 모이어티로 포함하는 화합물에서도 전자받개 모이어티에 따라 그 특성이 크게 변화하고, 본 발명에서와 같이 강한 전자 수용 특성을 갖는 벤조[4,5]티에노[2,3-b]퀴녹살린(benzo[4,5]thieno[2,3-b]quinoxaline)를 포함하는 경우 색감이 향상되며 특히 삼중항 엑시톤이 발광에 참여함으로써 발광효율이 크게 향상된다.As shown in Table 4, in the device using the delayed fluorescent compound of the present invention, color (or color purity) and luminous efficiency were improved. That is, even in a compound containing carbazole as an electron donor moiety, its properties vary greatly depending on the electron acceptor moiety, and as in the present invention, benzo [4,5] thieno [2,3- When b] quinoxaline (benzo [4,5] thieno [2,3-b] quinoxaline) is included, the color is improved and, in particular, the luminous efficiency is greatly improved as triplet excitons participate in luminescence.
상기한 지연 형광 화합물을 포함하여 이루어지는 유기발광다이오드소자에 대한 일 실시예를 도 19에 도시하였다.An example of an organic light emitting diode device including the delayed fluorescent compound is shown in FIG. 19 .
도시한 바와 같이, 유기발광다이오드소자는 기판(미도시) 상에 위치하는 발광다이오드(E)를 포함한다.As shown, the organic light emitting diode device includes a light emitting diode E positioned on a substrate (not shown).
상기 발광다이오드(E)는 양극 역할을 하는 제 1 전극(110), 음극 역할을 하는 제 2 전극(130) 및 상기 제 1 및 제 2 전극(110, 130) 사이에 형성되는 유기발광층(120)으로 이루어진다. The light emitting diode E includes a
한편, 도시하지 않았으나, 무기층과 유기층을 포함하고 상기 발광다이오드(E)를 덮는 인캡슐레이션 필름과, 상기 인캡슐레이션 필름 상의 커버 윈도우를 포함하여 표시장치를 이룰 수 있다. 이때, 상기 기판과 상기 커버 윈도우가 플렉서블 특성을 가져, 플렉서블 표시장치를 이룰 수 있다.Meanwhile, although not shown, a display device may be formed by including an encapsulation film including an inorganic layer and an organic layer and covering the light emitting diode E, and a cover window on the encapsulation film. In this case, the substrate and the cover window may have flexible characteristics, thereby forming a flexible display device.
상기 제 1 전극(110)은 일함수 값이 비교적 높은 물질, 예를 들어, 인듐-틴-옥사이드(ITO)로 이루어지며, 상기 제 2 전극(130)은 일함수 값이 비교적 낮은 물질, 예를 들어, 알루미늄(Al) 또는 알루미늄 합금(AlNd)으로 이루어진다. 또한, 상기 유기발광층(120)은 적색, 녹색, 청색의 유기발광패턴으로 이루어진다.The
상기 유기발광층(120)은 단일층 구조를 갖거나, 발광효율의 향상을 위해, 상기 유기발광층(120)은 다중층 구조를 가질 수 있다. 예를 들어, 제 1 전극(110)으로부터 순차적으로 정공주입층(hole injection layer; HIL) (121), 정공수송층(hole transporting layer; HTL) (122), 발광물질층(emitting material layer; EML) (123), 전자수송층(electron transporting layer, ETL)(124) 및 전자주입층(electron injection layer, EIL)(125)으로 이루어질 수 있다. The organic
여기서, 상기 정공주입층(121), 정공수송층(122), 발광물질층(123), 전자수송층(124) 및 전자주입층(125) 중 적어도 하나는 상기 화학식1로 표시되는 지연 형광 화합물을 포함하여 이루어질 수 있다. Here, at least one of the
예를 들어, 상기 발광물질층(123)이 상기 화학식1로 표시되는 지연 형광 화합물을 포함할 수 있다. 상기 발광물질층(123)은 본 발명의 지연 형광 화합물을 도펀트 물질로 포함하고, 호스트에 대하여 약 1~30wt%로 도핑될 수 있으며, 청색을 발광하게 된다.For example, the light emitting
상기 호스트의 최고준위 점유 분자궤도 레벨(HOMOHost)과 상기 도펀트의 최고준위 점유 분자궤도 레벨(HOMODopant) 차이(|HOMOHost-HOMODopant|) 또는 상기 호스트의 최저준위 비점유 분자궤도 레벨(LUMOHost)과 상기 도펀트의 최저준위 비점유 분자궤도 레벨(LUMODopant) 차이(|LUMOHost-LUMODopant|)는 0.5eV이하가 되도록 한다. 이에 따라, 호스트에서 도펀트로의 전하이동(charge transfer) 효율이 향상된다.The difference between the highest occupied molecular orbital level of the host (HOMO Host ) and the highest occupied molecular orbital level (HOMO Dopant ) of the dopant (|HOMO Host -HOMO Dopant |) or the lowest unoccupied molecular orbital level of the host (LUMO) Host ) and the lowest unoccupied molecular orbital level (LUMO Dopant ) of the dopant (|LUMO Host -LUMO Dopant |) is set to be 0.5 eV or less. Accordingly, the efficiency of charge transfer from the host to the dopant is improved.
예를 들어, 이와 같은 조건을 만족시키는 호스트로서, 하기 화학식6 중 어느 하나가 이용될 수 있다. (각각 Bis[2-(diphenylphosphino)phenyl]ether oxide (DPEPO), 2,8-bis(diphenylphosphoryl)dibenzothiophene (PPT), 2,8-di(9H-carbazol-9-yl)dibenzothiophene (DCzDBT), m-bis(carbazol-9-yl)biphenyl (m-CBP), Diphenyl-4-triphenylsilylphenyl-phosphine oxide (TPSO1), 9-(9-phenyl-9H-carbazol-6-yl)-9H-carbazole (CCP))For example, as a host satisfying such conditions, any one of the following Chemical Formula 6 may be used. (Bis[2-(diphenylphosphino)phenyl]ether oxide (DPEPO), 2,8-bis(diphenylphosphoryl)dibenzothiophene (PPT), 2,8-di(9H-carbazol-9-yl)dibenzothiophene (DCzDBT), respectively, m -bis(carbazol-9-yl)biphenyl (m-CBP), Diphenyl-4-triphenylsilylphenyl-phosphine oxide (TPSO1), 9-(9-phenyl-9H-carbazol-6-yl)-9H-carbazole (CCP) )
[화학식6][Formula 6]
이때, 상기 도펀트의 삼중항 에너지가 상기 호스트의 삼중항 에너지보다 작고, 도펀트의 단일항 에너지와 도펀트의 삼중항 에너지의 차이(ΔEST)는 0.3eV이하인 것을 특징으로 한다. ΔEST가 작을수록 발광효율이 증가하며, 본 발명의 지연 형광 화합물에서는, 도펀트의 단일항 에너지와 삼중항 에너지의 차이(ΔEST)가 비교적 큰 약 0.3eV가 되더라도 전계에 의해 단일항 상태(S1) 여기자와 삼중항 상태(T1) 여기자가 중간 상태(I1)로 전이 될 수 있다. (ΔEST≤0.3)In this case, the triplet energy of the dopant is smaller than the triplet energy of the host, and the difference (ΔE ST ) between the singlet energy of the dopant and the triplet energy of the dopant is 0.3 eV or less. As ΔE ST decreases, luminous efficiency increases, and in the delayed fluorescent compound of the present invention, even if the difference (ΔE ST ) between the singlet energy and the triplet energy of the dopant becomes about 0.3 eV, which is relatively large, the singlet state (S 1 ) Exciton and triplet state (T 1 ) An exciton can transition to an intermediate state (I 1 ). (ΔE ST ≤0.3)
한편, 상기 발광물질층(123)은 본 발명의 지연 형광 화합물을 호스트 물질로 포함하고, 호스트 물질에 대하여 약 1~30wt%로 도핑되는 도펀트를 포함할 수 있으며, 청색을 발광하게 된다. 우수한 특성의 청색 호스트의 개발이 충분하지 않기 때문에, 본 발명의 지연 형광 화합물을 호스트 물질로 이용함으로써 호스트 선택의 자유도를 높일 수 있다.Meanwhile, the light emitting
이때, 상기 도펀트의 삼중항 에너지가 본 발명의 지연 형광 화합물인 상기 호스트의 삼중항 에너지보다 작다.In this case, the triplet energy of the dopant is smaller than the triplet energy of the host, which is the delayed fluorescent compound of the present invention.
또한, 상기 발광물질층(123)은 본 발명의 지연 형광 화합물을 제 1 도펀트 물질로 포함하고 호스트 물질 및 제 2 도펀트 물질을 더 포함하며, 도핑된 상기 제 1 및 제 2 도펀트 물질의 합은 상기 호스트 물질에 대하여 약 1~30wt%로 도핑되어, 청색을 발광하게 된다. 상기 발광물질층(123)이 호스트 물질과 제 1 및 제 2 도펀트 물질을 포함함으로써, 발광 효율 및 색감이 더욱 향상된다.In addition, the light emitting
이때, 본 발명의 지연 형광 화합물인 제 1 도펀트의 삼중항 에너지는 상기 호스트의 삼중항 에너지보다 작고 제 2 도펀트의 삼중항 에너지보다 큰 것을 특징으로 한다. 또한, 이때, 제 1 도펀트의 단일항 에너지와 제 1 도펀트의 삼중항 에너지의 차이(ΔEST)는 0.3eV이하인 것을 특징으로 한다. ΔEST가 작을수록 발광효율이 증가하며, 본 발명의 지연 형광 화합물인 제 1 도펀트의 단일항 에너지와 삼중항 에너지의 차이(ΔEST)가 비교적 큰 약 0.3eV가 되더라도 전계에 의해 단일항 상태(S1) 여기자와 삼중항 상태(T1) 여기자가 중간 상태(I1)로 전이 될 수 있다. (ΔEST≤0.3)In this case, the triplet energy of the first dopant, which is the delayed fluorescent compound of the present invention, is smaller than the triplet energy of the host and greater than the triplet energy of the second dopant. Further, in this case, the difference (ΔE ST ) between the singlet energy of the first dopant and the triplet energy of the first dopant is 0.3 eV or less. As ΔE ST is smaller, the luminous efficiency increases, and even if the difference (ΔE ST ) between the singlet energy and the triplet energy of the first dopant, which is the delayed fluorescent compound of the present invention, becomes about 0.3 eV, which is relatively large, the singlet state ( S 1 ) Exciton and triplet state (T 1 ) An exciton can be transitioned to an intermediate state (I 1 ). (ΔE ST ≤0.3)
전술한 바와 같이, 본 발명의 지연 형광 화합물은, 전자주개(electron donor) 모이어티와 전자받개(electron acceptor) 모이어티를 모두 포함하고 강한 전자 수용 특성을 갖는 벤조[4,5]티에노[2,3-b]퀴녹살린이 전자받개 모이어티로 이용됨으로써, 발광효율이 향상된다. As described above, the delayed fluorescent compound of the present invention contains both an electron donor moiety and an electron acceptor moiety and has strong electron accepting properties of benzo[4,5]thieno[2] ,3-b] Since quinoxaline is used as an electron acceptor moiety, luminous efficiency is improved.
즉, 전자주개 모이어티에서 전자받개 모이어티로 쌍극자(dipole)가 형성되어 분자 내부의 쌍극자 모멘트(dipole moment)가 증가됨으로써, 발광효율이 향상되며, 특히 삼중항 엑시톤이 발광에 이용되기 때문에 발광 효율이 크게 향상된다.That is, a dipole is formed from the electron donor moiety to the electron acceptor moiety and the dipole moment inside the molecule is increased, so that the luminous efficiency is improved. This is greatly improved.
또한, 전자받개 모이어티와 전자받개 모이어티 사이의 이면각이 증가하여 딥블루 빛이 발광된다.In addition, the dihedral angle between the electron acceptor moiety and the electron acceptor moiety increases, so that deep blue light is emitted.
따라서, 본 발명의 지연 형광 화합물을 포함하는 유기발광다이오드소자는 발광 효율이 향상되고 고품질의 영상을 구현할 수 있다.Accordingly, the organic light emitting diode device including the delayed fluorescent compound of the present invention can improve luminous efficiency and realize high-quality images.
상기에서는 본 발명의 바람직한 실시예를 참조하여 설명하였지만, 해당 기술분야의 통상의 기술자는 하기의 특허청구범위에 기재된 본 발명의 기술적 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.Although the above has been described with reference to the preferred embodiment of the present invention, those skilled in the art can variously modify and change the present invention within the scope without departing from the spirit and scope of the present invention described in the claims below. You will understand that it can be done.
110: 제 1 전극 120: 유기발광층
121: 정공주입층 122: 정공수송층
123: 발광물질층 124: 전자수송층
125: 전자주입층 130: 제 2 전극
E: 유기발광다이오드110: first electrode 120: organic light emitting layer
121: hole injection layer 122: hole transport layer
123: light emitting material layer 124: electron transport layer
125: electron injection layer 130: second electrode
E: organic light emitting diode
Claims (13)
[화학식1]
[화학식2]
(상기 화학식2에서, R1, R2 각각은 독립적으로 C1~C10의 알킬에서 선택되고, 는 상기 화학식1에 대한 결합 위치이다.)
A delayed fluorescent compound represented by the following formula (1), wherein each of D1 and D2 is selected from the following formula (2), any one of m or n is 0, and the other one of m or n is 1 or 2.
[Formula 1]
[Formula 2]
(In Formula 2, each of R1 and R2 is independently selected from C1-C10 alkyl, is the bonding position for Formula 1 above.)
상기 지연 형광 화합물은 하기 화합물 중 어느 하나인 지연 형광 화합물.
3. The method of claim 2,
The delayed fluorescence compound is any one of the following compounds.
상기 지연 형광 화합물의 단일항 에너지와 삼중항 에너지의 차이는 0.3eV 이하인 지연 형광 화합물.
3. The method of claim 2,
The difference between the singlet energy and the triplet energy of the delayed fluorescent compound is 0.3 eV or less.
상기 제 1 전극과 마주보는 제 2 전극과;
상기 제 1 및 제 2 전극 사이에 위치하는 유기 발광층을 포함하고,
상기 유기 발광층은,
하기 화학식1로 표시되며, D1, D2 각각은 하기 화학식2에서 선택되고, m 또는 n 중 어느 하나는 0이며, m 또는 n 중 다른 하나는 1 또는 2인 지연 형광 화합물을 포함하는 유기발광다이오드소자.
[화학식1]
[화학식2]
(상기 화학식2에서, R1, R2 각각은 독립적으로 C1~C10의 알킬에서 선택되고, 는 상기 화학식1에 대한 결합 위치이다.)
a first electrode;
a second electrode facing the first electrode;
an organic light emitting layer positioned between the first and second electrodes;
The organic light emitting layer,
An organic light emitting diode device comprising a delayed fluorescent compound represented by the following Chemical Formula 1, wherein each of D1 and D2 is selected from the following Chemical Formula 2, any one of m or n is 0, and the other of m or n is 1 or 2 .
[Formula 1]
[Formula 2]
(In Formula 2, each of R1 and R2 is independently selected from C1-C10 alkyl, is the bonding position for Formula 1 above.)
상기 지연 형광 화합물은 하기 화합물 중 어느 하나인 유기발광다이오드소자.
7. The method of claim 6,
The delayed fluorescent compound is an organic light emitting diode device of any one of the following compounds.
상기 지연 형광 화합물의 단일항 에너지와 삼중항 에너지의 차이는 0.3eV 이하인 유기발광다이오드소자.
7. The method of claim 6,
The difference between singlet energy and triplet energy of the delayed fluorescent compound is 0.3 eV or less.
상기 지연 형광 화합물은 도펀트로 이용되고, 상기 유기 발광층은 호스트를 더 포함하는 유기발광다이오드소자.
7. The method of claim 6,
The delayed fluorescent compound is used as a dopant, and the organic light emitting layer further comprises a host.
상기 호스트의 최고준위 점유 분자궤도 레벨(HOMOHost)과 상기 도펀트의 최고준위 점유 분자궤도 레벨(HOMODopant) 차이(|HOMOHost-HOMODopant|) 또는 상기 호스트의 최저준위 비점유 분자궤도 레벨(LUMOHost)과 상기 도펀트의 최저준위 비점유 분자궤도 레벨(LUMODopant) 차이(|LUMOHost-LUMODopant|)는 0.5eV이하인 유기발광다이오드소자.
10. The method of claim 9,
The difference between the highest occupied molecular orbital level of the host (HOMO Host ) and the highest occupied molecular orbital level (HOMO Dopant ) of the dopant (|HOMO Host -HOMO Dopant |) or the lowest unoccupied molecular orbital level of the host (LUMO) Host ) and the lowest unoccupied molecular orbital level (LUMO Dopant ) of the dopant (|LUMO Host -LUMO Dopant |) is 0.5 eV or less.
상기 지연 형광 화합물은 호스트로 이용되고, 상기 유기 발광층은 도펀트를 더 포함하는 유기발광다이오드소자.
7. The method of claim 6,
The delayed fluorescent compound is used as a host, and the organic light emitting layer further comprises a dopant.
상기 지연 형광 화합물은 제 1 도펀트로 이용되고, 상기 유기 발광층은 호스트 및 제 2 도펀트를 더 포함하며,
상기 제 1 도펀트의 제 1 삼중항 에너지는 상기 호스트의 제 2 삼중항 에너지보다 작고 상기 제 2 도펀트의 제 3 삼중항 에너지보다 큰 유기발광다이오드소자.
7. The method of claim 6,
The delayed fluorescent compound is used as a first dopant, and the organic emission layer further includes a host and a second dopant,
The first triplet energy of the first dopant is smaller than the second triplet energy of the host and greater than the third triplet energy of the second dopant.
상기 기판 상에 위치하는 제 6 항 내지 제 12 항 중 어느 하나의 유기발광다이오드소자와;
상기 유기발광다이오드소자를 덮는 인캡슐레이션 필름과;
상기 인캡슐레이션 필름 상의 커버 윈도우를 포함하는 표시장치.a substrate;
The organic light emitting diode device of any one of claims 6 to 12 positioned on the substrate;
an encapsulation film covering the organic light emitting diode device;
and a cover window on the encapsulation film.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/954,892 US9806269B2 (en) | 2014-12-05 | 2015-11-30 | Delayed fluorescence compound, and organic light emitting diode and display device using the same |
JP2015236593A JP6114806B2 (en) | 2014-12-05 | 2015-12-03 | Delayed fluorescent compound, organic light-emitting diode element and display device including the same |
EP15197960.6A EP3029125B1 (en) | 2014-12-05 | 2015-12-04 | Delayed fluorescence compound, and organic light emitting diode and display device using the same |
CN201510883588.4A CN105670606B (en) | 2014-12-05 | 2015-12-04 | Delayed fluorescence compound, Organic Light Emitting Diode and display device using the delayed fluorescence compound |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020140174199 | 2014-12-05 | ||
KR20140174199 | 2014-12-05 |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20160068641A KR20160068641A (en) | 2016-06-15 |
KR102454041B1 true KR102454041B1 (en) | 2022-10-14 |
Family
ID=56135274
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020150130953A KR102454041B1 (en) | 2014-12-05 | 2015-09-16 | Delayed Fluorescence compound, and Organic light emitting diode device and Display device using the same |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR102454041B1 (en) |
CN (1) | CN105670606B (en) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11127905B2 (en) * | 2015-07-29 | 2021-09-21 | Universal Display Corporation | Organic electroluminescent materials and devices |
WO2018033820A1 (en) | 2016-08-17 | 2018-02-22 | Semiconductor Energy Laboratory Co., Ltd. | Organic compound, light-emitting element, light-emitting device, electronic device, and lighting device |
US10388887B2 (en) * | 2016-12-05 | 2019-08-20 | Feng-wen Yen | Delayed fluorescence compound for organic EL device and using the same |
US10224488B2 (en) * | 2016-12-27 | 2019-03-05 | Feng-wen Yen | Delayed fluorescence compound for organic EL device and using the same |
US20190031673A1 (en) * | 2017-07-27 | 2019-01-31 | Semiconductor Energy Laboratory Co., Ltd. | Organic Compound, Light-Emitting Element, Light-Emitting Device, Electronic Device, and Lighting Device |
US11462696B2 (en) | 2018-01-19 | 2022-10-04 | Semiconductor Energy Laboratory Co., Ltd. | Organic compound, light-emitting element, light-emitting device, electronic device, and lighting device |
JP7322068B2 (en) * | 2018-06-28 | 2023-08-07 | エスケー インコーポレイテッド | Compound, organic electroluminescence device, and display device |
KR102717925B1 (en) * | 2018-12-05 | 2024-10-15 | 엘지디스플레이 주식회사 | Organic light emitting diode and organic light emitting device having the diode |
CN111116554A (en) * | 2020-01-02 | 2020-05-08 | 深圳大学 | Dark blue electroluminescent compound and preparation method and application thereof |
KR102409438B1 (en) * | 2020-05-18 | 2022-06-15 | 주식회사 엘지화학 | Novel compound and organic light emitting device comprising the same |
KR20230080359A (en) * | 2021-11-29 | 2023-06-07 | 주식회사 엘지화학 | Novel compound and organic light emitting device comprising the same |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110303901A1 (en) | 2010-06-15 | 2011-12-15 | Chien-Hong Cheng | 6H-INDOLO[2,3-b]QUINOXALINE DERIVATIVES AND ORGANIC LIGHT EMITTING DIODE USING THE SAME |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BE524877A (en) * | 1952-12-10 | |||
CN100341977C (en) * | 2004-10-20 | 2007-10-10 | 中国科学院化学研究所 | Intramolecular charge transfer type red luminescent material and preparation and application thereof |
US9512136B2 (en) * | 2012-11-26 | 2016-12-06 | Universal Display Corporation | Organic electroluminescent materials and devices |
-
2015
- 2015-09-16 KR KR1020150130953A patent/KR102454041B1/en active IP Right Grant
- 2015-12-04 CN CN201510883588.4A patent/CN105670606B/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110303901A1 (en) | 2010-06-15 | 2011-12-15 | Chien-Hong Cheng | 6H-INDOLO[2,3-b]QUINOXALINE DERIVATIVES AND ORGANIC LIGHT EMITTING DIODE USING THE SAME |
Non-Patent Citations (1)
Title |
---|
Chem. Phys. Lett. Vol.325(5-6) pp.589-598 (2000) |
Also Published As
Publication number | Publication date |
---|---|
CN105670606A (en) | 2016-06-15 |
KR20160068641A (en) | 2016-06-15 |
CN105670606B (en) | 2018-11-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102454041B1 (en) | Delayed Fluorescence compound, and Organic light emitting diode device and Display device using the same | |
JP6114806B2 (en) | Delayed fluorescent compound, organic light-emitting diode element and display device including the same | |
JP6238317B2 (en) | Delayed fluorescent compound, organic light-emitting diode element and display device including the same | |
KR102454040B1 (en) | Delayed Fluorescence compound, and Organic light emitting diode device and Display device using the same | |
JP7412773B2 (en) | Compositions used in organic light emitting diodes | |
KR102440238B1 (en) | Space-through charge transfer compound, and Organic light emitting diode device and Display device using the same | |
WO2014128945A1 (en) | Organic light-emitting material and organic light-emitting element | |
TWI741087B (en) | High-molecular weight compound containing a substituted triarylamine structural unit | |
KR102519546B1 (en) | Delayed Fluorescence compound, and Organic light emitting diode device and Display device including the same | |
KR102634554B1 (en) | Space-through charge transfer compound, and Organic light emitting diode and Organic light emitting display device including the same | |
JP5481057B2 (en) | Organic electroluminescence device | |
JP6114805B2 (en) | Space charge transfer compound, organic light-emitting diode device including the same, and display device | |
KR102454042B1 (en) | Delayed Fluorescence compound, and Organic light emitting diode device and Display device using the same | |
KR102503744B1 (en) | Delayed fluorescence compound, and Organic light emitting diode device and Display device using the same | |
KR20200080883A (en) | Delayed fluorescence compound, and Organic light emitting diode and Organic light emitting display device including the same | |
KR102454043B1 (en) | Delayed Fluorescence compound, and Organic light emitting diode device and Display device using the same | |
KR102544403B1 (en) | Delayed Fluorescence compound, and Organic light emitting diode device and Display device using the same | |
KR102469690B1 (en) | Space-through charge transfer compound, and Organic light emitting diode device and Display device using the same | |
KR102534666B1 (en) | Organic compounds, organic light emitting diode and orgnic light emitting display device including the compounds | |
KR102454044B1 (en) | Delayed Fluorescence compound and Organic light emitting diode device and Display device using the same | |
KR102519545B1 (en) | Delayed Fluorescence compound, and Organic light emitting diode device and Display device including the same | |
KR102560868B1 (en) | Space-through charge transfer compound, and Organic light emitting diode and Organic light emitting display device including the same | |
KR102562976B1 (en) | Organic compounds, organic light emitting diode and orgnic light emitting display device including the compounds | |
KR102519548B1 (en) | Organic compounds, organic light emitting diode and orgnic light emitting display device including the compounds | |
TWI588132B (en) | Delayed fluorescence compound, and organic light emitting diode and display device using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right |