KR102454865B1 - 무기계 급결재와 무시멘트를 이용한 지반차수 및 보강용 친환경 그라우트재 조성물 - Google Patents

무기계 급결재와 무시멘트를 이용한 지반차수 및 보강용 친환경 그라우트재 조성물 Download PDF

Info

Publication number
KR102454865B1
KR102454865B1 KR1020220019747A KR20220019747A KR102454865B1 KR 102454865 B1 KR102454865 B1 KR 102454865B1 KR 1020220019747 A KR1020220019747 A KR 1020220019747A KR 20220019747 A KR20220019747 A KR 20220019747A KR 102454865 B1 KR102454865 B1 KR 102454865B1
Authority
KR
South Korea
Prior art keywords
weight
cement
eco
ground
material composition
Prior art date
Application number
KR1020220019747A
Other languages
English (en)
Inventor
차경섭
김선주
강신주
이선우
Original Assignee
(주)대우건설
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)대우건설 filed Critical (주)대우건설
Priority to KR1020220019747A priority Critical patent/KR102454865B1/ko
Application granted granted Critical
Publication of KR102454865B1 publication Critical patent/KR102454865B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K17/00Soil-conditioning materials or soil-stabilising materials
    • C09K17/02Soil-conditioning materials or soil-stabilising materials containing inorganic compounds only
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B22/00Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
    • C04B22/06Oxides, Hydroxides
    • C04B22/062Oxides, Hydroxides of the alkali or alkaline-earth metals
    • C04B22/064Oxides, Hydroxides of the alkali or alkaline-earth metals of the alkaline-earth metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B22/00Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
    • C04B22/08Acids or salts thereof
    • C04B22/10Acids or salts thereof containing carbon in the anion
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B22/00Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
    • C04B22/08Acids or salts thereof
    • C04B22/12Acids or salts thereof containing halogen in the anion
    • C04B22/126Fluorine compounds, e.g. silico-fluorine compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B22/00Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
    • C04B22/08Acids or salts thereof
    • C04B22/14Acids or salts thereof containing sulfur in the anion, e.g. sulfides
    • C04B22/142Sulfates
    • C04B22/143Calcium-sulfate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B22/00Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
    • C04B22/08Acids or salts thereof
    • C04B22/14Acids or salts thereof containing sulfur in the anion, e.g. sulfides
    • C04B22/142Sulfates
    • C04B22/148Aluminium-sulfate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/04Carboxylic acids; Salts, anhydrides or esters thereof
    • C04B24/06Carboxylic acids; Salts, anhydrides or esters thereof containing hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/006Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing mineral polymers, e.g. geopolymers of the Davidovits type
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/06Aluminous cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/06Aluminous cements
    • C04B28/065Calcium aluminosulfate cements, e.g. cements hydrating into ettringite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/20Retarders
    • C04B2103/22Set retarders
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Soil Sciences (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

본 발명은 지반 차수용 친환경 그라우트 조성물에 관한 것으로, 상세하게는 기존에 사용되던 물유리를 완전배제함으로서 지하수에 의한 알칼리 용출 문제점을 사전에 차단하고, 환경 문제의 소지가 있는 보통 포틀랜드 시멘트를 사용하지 않고 고로슬래그 미분말 및 초임계 유동층 플라이애시와 같은 산업부산물을 사용하는 무시멘트를 사용함으로서 지반내 지하수에 의한 용탈현상과 환경오염 문제를 해결할 수 있도록 하는 무기계 급결재와 무시멘트를 이용한 지반 차수용 친환경 그라우트 조성물에 관한 것이다.

Description

무기계 급결재와 무시멘트를 이용한 지반차수 및 보강용 친환경 그라우트재 조성물{ECO-FRIENDLY GROUT MATERIAL COMPOSITION FOR WATER-IMPERMEABLE REINFORCEMENT OF GROUND USING INORGANIC ACCELERATOR AND ZERO-CEMENT BINER}
본 발명은 지반 차수용 친환경 그라우트 조성물에 관한 것으로, 상세하게는 기존에 사용되던 물유리를 완전히 배제함으로서 지하수에 의한 알칼리 용출 문제를 사전에 차단하고, 환경 문제의 소지가 있는 보통 포틀랜드 시멘트를 사용하지 않고 고로슬래그 미분말 및 초임계 유동층 플라이애시와 같은 산업부산물을 사용하는 무시멘트를 사용함으로서 지반내 지하수에 의한 용탈현상과 환경오염 문제를 해결할 수 있도록 하는 무기계 급결재와 무시멘트를 이용한 지반 차수용 친환경 그라우트 조성물에 관한 것이다.
일반적으로 지반에는 지하수 및 하천 유출수, 침투수, 우수 등 다양한 물이 존재한다. 이러한 지반내 물은 지하구조물 및 시설에 존재하는 균열에 침투하여 내부 철근 부식 및 균열을 확대시켜 내구성을 저하시키거나, 균열을 통해 누수가 발생하는 문제를 유발한다. 이를 방지하기 위하여 토목공사를 하는데 있어서 지반보강 및 지반 차수가 시행되고 있다.
연약지반에 대한 보강, 차수공법은 다양한데 토사 및 암반 틈새 등에 그라우트를 주입관을 통해 주입 분사시켜 대상 지반을 고결시키는 방법을 그라우팅(Grouting) 공법이라고 한다.
그라우팅 공법은 그라우트의 고결로 지내력을 향상시키고, 투수 계수를 감소시켜 차수성을 확보하며, 토지 압축성을 감소시키고 시공시 발생되는 소음 및 진동을 감소시켜 공기를 단축시키는 용도로 토목 현장에서 사용되는 공법이다. 이러한 그라우팅 공법은 그 효과를 인정받아 지반의 보강 및 차수 기초파일 형성, 연약지반의 개량, 구조물 보강, 터널 보강, 댐이나 저수지 보강 및 차수등 다양한 용도로 널리 이용되고 있다.
국내에서 가장 일반적인 그라우트 공법은 약액계인 LW(Labiles Wasserglass) 공법, SGR(Space Grouting Rocket System) 공법, 현탁액계의 포틀랜드시멘트 밀크 (milk) 주입공법이 경제성면에서 우수한 것으로 평가되어 많은 시공이 이루어지고 있다.
LW 공법은 1.5샷(shot) 주입방식의 대표적인 공법으로 물유리(규산소다)와 시멘트 밀크를 혼합 주입하는 방식이다. 주로 자갈층, 모래층에 전면 침투가 가능하며, 연약한 점성토 및 실트층에 주입되어 침하 방지 또는 지반 강화 등을 목적으로 사용된다. LW 공법은 가격이 저렴하고 주입공정이 용이하나, 완결/급결형을 통한 복합주입 방식이 불가능하고 물유리의 알칼리 용출에 의한 강도 저하 및 환경오염이 발생한다는 단점을 갖고 있다.
SGR 공법은 2.0샷 주입방식의 대표적인 공법으로 물유리와 급결제, 시멘트 등의 혼합 현탁액을 사용하는 방식이다. 3조식 방식의 교반장치를 사용함으로써, 급결성과 완결성 주입재의 연속적인 복합주입이 가능하며 지반 차수에 용이하다. 주로 점성토, 사질토 지반에 모두 주입이 가능하며, 연약지반을 개량하는데 적용된다. 그러나 물유리를 사용하는 경우 혼입된 시멘트의 수화반응이 억제되어 장기강도 발현이 어렵고, 시간이 경과할수록 물유리 용탈현상이 초래되어 압축강도 저하 및 재료분리 현상이 발생하여 장기적인 지반 차수 성능발현에 부적합하다는 단점을 갖고 있다.
상기 이러한 그라우팅 공법 외에 대다수 공법들은 물유리와 보통 포틀랜드시멘트를 사용한 그라우트 공법이다. 여기서 보통 포틀랜드시멘트는 6가크롬 용출 가능성이 있으며, 강알칼리성을 나타내기 때문에 토양 및 지하수 오염의 원천이 될 수 있다. 또한 보통 포틀랜드시멘트는 1톤을 생산하는데 0.9톤의 이산화탄소를 발생되는데, 국내 시멘트 생산량 약 5,000만톤으로서 해마다 약 4,500만톤의 다량의 이산화탄소가 배출되는 상황으로 2050년 탄소중립을 실현하기 위해서도 시멘트를 대체 할 수 있는 새로운 개념의 결합재가 개발되어야 하는 상황이다.
이와 같은 상황을 고려하여, 최근 들어 고로슬래그 미분말, 플라이애시와 같은 산업부산물과 알칼리 활성화제 등을 적절히 배합하여 무시멘트를 제조하고 이를 콘크리트 분야에 다양하게 적용하고 있다. 이러한 변화의 분위기에 발맞추어 그라우팅 분야에서도 무시멘트를 이용한 그라우팅 재료의 연구 개발이 이루어지고 있다.
일례로, 대한민국 등록특허공보 제10-1631476호에 개시된 바와 같은 "그라우팅 약액 조성물 제조방법", 대한민국 등록특허공보 제10-1764645호에 개시된 바와 같은 "고로슬래그를 주성분으로 하는 약액조성물용 복합재 및 이를 이용한 친환경 무시멘트 그라우팅 약액조성물"과 같은 기술이 제안되어 있다.
그러나, 이러한 무시멘트를 이용한 그라우팅 약액조성물들은 산업부산물인 고로슬래그 미분말, 플라이애시를 이용한다는 측면에서 환경부하를 감소시키는 친환경적인 장점이 있지만, 급결재로서 여전히 물유리 등을 사용하고 있어, 알칼리 용탈의 가능성이 존재하고, 그라우트재가 지하수에 용출될 경우, 높은 pH로 인해 주변 지하수를 오염시킬 수 있는 문제를 여전히 안고 있다.
따라서 무시멘트를 이용하면서도 알카리 용탈이 발생하지 않고, 낮은 pH를 유지할 수 있는 친환경 무시멘트 그라우트재 조성물의 개발이 절실히 요구되고 있다.
대한민국 등록특허공보 제10-1631476호 대한민국 등록특허공보 제10-1764645호
본 발명은 상기와 같은 요구에 부응하기 위한 것으로, 기존에 사용되던 물유리를 완전히 배제함으로서 지하수에 의한 알칼리 용출 문제점을 사전에 차단하고, 환경 문제의 소지가 있는 보통 포틀랜드시멘트를 사용하지 않고, 분말형 무기계 급결재와, 산업부산물인 고로슬래그 미분말, 플라이애시 등으로 이루어진 무시멘트를 사용함으로서, 지반내 지하수에 의한 용탈현상과 환경오염문제를 해결할 수 있도록 하는 무기계 급결재와 무시멘트를 이용한 지반차수 및 보강용 친환경 그라우트재 조성물을 제공하는데 그 목적이 있다.
상기와 같은 목적을 달성하기 위한 본 발명의 특징은,
무기계 급결재 현탁액과 무시멘트 현탁액이 각각 별도로 제조된 후, 무기계 급결재 현탁액과 무시멘트 현탁액이 시공대상 지반에 동시에 주입되면서 혼합되는 2액형 친환경 그라우트재 조성물에 있어서, 무기계 급결재 현탁액 40~60중량%와 무시멘트 현탁액 40~60중량%가 지반내 주입과 동시에 혼합되면서 그라우트재 조성물을 형성하되, 상기 무기계 급결재 현탁액은 칼슘설포알루미네이트 25~45중량%, 칼슘알루미네이트 30~55중량%, 황산반토 10~20중량%, 강도증진제 1~4중량%, 응결지연제 0.1~1중량%가 혼합되어 조성된 분말제제 15~35중량%와 물 65~85중량%가 혼합되어 조성되고, 상기 무시멘트 현탁액은 고로슬래그 미분말 35~60중량%, 초임계 유동층 보일러 플라이애시 25~50중량%, 수산화칼슘(Ca(OH)2) 1~10중량%, 천연무수석고 5~10중량%, 염화나트륨(NaCl) 1~5중량%가 혼합되어 조성된 무시멘트 30~55중량%와 물 45~70중량%가 혼합되어 조성되는 것을 특징으로 한다.
여기에서, 상기 칼슘설포알루미네이트는 1350℃에서 소성되어 얻어지는 클링커를 블레인 비표면적 3,000~8,000㎠/g되도록 미분쇄한 것으로 산화칼슘(CaO) 40.0~41.5중량%, 산화알루미늄(Al2O3) 35.0~37.0중량%, 삼산화황(SO3) 9.0~11.0중량%, 이산화규소(SiO2) 6.0~7.0중량%, 산화철(Fe2O3) 1.5~2.5중량%, 산화마그네슘(MgO) 1.5~2.5중량%, 이산화타이타늄(TiO2) 1.0~2.0중량%으로 구성된다.
여기에서 또한, 상기 칼슘알루미네이트는 석회석과 보오크사이트를 원료로 하여 전기로 등에 의해 용융시켜 얻어진 것을 블레인 비표면적 3,000~8,000㎠/g되도록 미분쇄한 것으로 산화칼슘(CaO) 35.0~45.0중량%, 산화알루미늄(Al2O3) 35.0~45.0중량%, 삼산화황(SO3) 9.0~11.0중량%, 이산화규소(SiO2) 5.0~6.0중량%, 산화철(Fe2O3) 2.0~3.0중량%, 산화마그네슘(MgO) 2.0~3.0중량%, 이산화타이타늄(TiO2) 2.0~3.0중량%으로 구성된다.
여기에서 또, 상기 황산반토는 화학식 Al2(SO4)3을 이루는 화합물로 산화알루미늄(Al2O3)이 17중량% 미만 함유된다.
여기에서 또, 상기 강도증진제는 알칼리금속탄산염으로서, 탄산리튬, 탄산나트륨 및 탄산칼륨중 선택된 어느 하나이다.
여기에서 또, 상기 응결지연제는 유기산으로서 구연산, 글루콘산 및 주석산중 선택된 어느 하나이다.
여기에서 또, 상기 고로슬래그 미분말은 고로에서 선철을 제조하는 공정에서 부산물로 발생되는 고온 용융상태의 슬래그에 물을 분사하여 급냉시킨 고로수쇄슬래그를 블레인 비표면적 6,000~8,000㎠/g되도록 미분쇄한 것으로 재령 91일에서 활성도지수가 105 이상이다.
여기에서 또, 상기 초임계 유동층 보일러 플라이애시는 시멘트를 대체하는 결합재로, 초임계 상태에서 보일러를 가동하는 초임계 유동층 보일러에서 부산물로 발생되는 것을 블레인 비표면적 3,000~8,000㎠/g으로 미분쇄한 것으로, 산화칼슘(CaO) 20중량% 미만, 산화철(Fe2O3) 13중량% 미만, 삼산화황(SO3) 8중량% 미만으로 함유된다.
상기와 같이 구성되는 본 발명인 무기계 급결재와 무시멘트를 이용한 지반차수 및 보강용 친환경 그라우트재 조성물에 따르면, 여러 가지 문제를 발생시키는 물유리를 완전GL 배제하고, 환경문제의 소지가 있는 보통 포틀랜드시멘트를 사용하지 않고, 분말형 무기계 급결재와 산업부산물인 고로슬래그 미분말, 초임계 유동층 보일러 플라이애시 등으로 이루어진 무시멘트를 사용함으로서, 지반내 지하수에 의한 알칼리 용탈현상과 환경오염문제를 해결할 수 있다.
또한, 본 발명에 따르면 겔타임 조절이 용이하며, 용탈성, 경화 후 강도 및 내구성 등 그라우트 조성물의 기본 특성에 대한 유의한 변동을 수반하지 않으며, 무시멘트 현탁액의 재료분리를 억제함과 동시에 산업부산물을 활용하고, 고강도, 고내구성을 발현함으로 안정적인 지반차수 및 보강이 가능하다.
도 1은 본 발명의 실험예에 따라 비교예 3의 경과시간에 따른 pH 변화를 나타낸 그래프이다.
도 2는 본 발명의 실험예에 따라 비교예 3의 경과시간에 따른 pH 변화를 나타낸 그래프이다.
도 3은 본 발명의 실험예에 따라 비교예 3의 경과시간에 따른 TDS 변화를 나타낸 그래프이다.
도 4는 본 발명의 실험예에 따라 실시예 2의 경과시간에 따른 pH 변화를 나타낸 그래프이다.
도 5는 본 발명의 실험예에 따라 실시예 2의 경과시간에 따른 pH 변화를 나타낸 그래프이다.
도 6은 본 발명의 실험예에 따라 실시예 2의 경과시간에 따른 TDS 변화를 나타낸 그래프이다.
도 7은 본 발명의 실험예에 따라 실시예 2의 어독성 시험 후 시험 수조의 상태를 나타낸 사진이다.
이하, 본 발명에 따른 무기계 급결재와 무시멘트를 이용한 지반차수 및 보강용 친환경 그라우트재 조성물을 첨부된 도면을 참조하여 상세하게 설명하면 다음과 같다.
하기에서 본 발명을 설명함에 있어, 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략할 것이다. 그리고 후술되는 용어들은 본 발명에서의 기능을 고려하여 정의된 용어들로서 이는 사용자, 운용자의 의도 또는 관례 등에 따라 달라질 수 있다. 그러므로 그 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다.
본 발명에 따른 무기계 급결재와 무시멘트를 이용한 지반차수 및 보강용 친환경 그라우트재 조성물은 무기계 급결재 현탁액과 무시멘트 현탁액이 각각 별도로 제조된 후 이들 무기계 급결재 현탁액과 무시멘트 현탁액이 시공대상지반에 동시에 혼합되면서 주입되는 2액형 그라우트 조성물로서 무기계 급결재 현탁액 40~60중량%와 무시멘트 현탁액 40~60중량%가 지반내에서 동시에 혼합되면서 주입되는 그라우트 조성물을 구성하게 된다.
무기계 급결재 현탁액은 칼슘설포알루미네이트 25~45중량%, 칼슘알루미네이트 30~55중량%, 황산반토 10~20중량%, 강도증진제 1~4중량%, 응결지연제 0.1~1중량%으로 구성된 분말제제와 물이 혼합되어 조성되며, 건비빔된 분말제제 분말제제 15~35중량%와 물 65~85중량%가 혼합되어 혼합되어 무기계 급결재 현탁액을 구성하게 된다.
무기계 급결재 현탁액의 분말제제중 칼슘설포알루미네이트와 칼슘알루미네이트는 그라우트 조성물의 주입 후 경화시 완전한 수화경화체를 형성함으로서 초기 및 장기 용탈이 효과적으로 억제될 수 있으며, 이로 인해 용탈로 인한 지하수 오염이 방지될 뿐만 아니라 온전한 지중고화체의 내구성 및 수명을 확보할 수 있다.
칼슘설포알루미네이트는 1350℃에서 소성되어 얻어지는 클링커를 블레인 비표면적 3,000~8,000㎠/g되도록 미분쇄한 것으로 산화칼슘(CaO) 40.0~41.5중량%, 산화알루미늄(Al2O3) 35.0~37.0중량%, 삼산화황(SO3) 9.0~11.0중량%, 이산화규소(SiO2) 6.0~7.0중량%, 산화철(Fe2O3) 1.5~2.5중량%, 산화마그네슘(MgO) 1.5~2.5중량%, 이산화타이타늄(TiO2) 1.0~2.0중량%으로 구성된다. 칼슘설포알루미네이트의 분말도는 침투성의 측면에서 3,000㎠/g 이상이 좋으며, 6,000㎠/g 이상이면 더욱 좋다. 3,000㎠/g 미만이면 침투성이 나빠질 우려가 있다.
특히 산화알루미늄(Al2O3) 35.0~37.0중량%인 칼슘설포알루미네이트에 함유되어 있는 아윈 광물(3CaO·3Al2O3·CaSO4)과 무시멘트를 구성하고 있는 무수석고 및 수산화칼슘 성분들은 물과 혼합시 반응성이 매우 높아 활발하게 수화반응을 일으키므로, 에트링자이트(3CaO·Al2O3·3CaSO4 ·32H2O) 수화물을 생성시키는 반응이 수십초에서 수분내에 빠르게 진행하게 된다.
[에트링자이트의 생성반응]
3CaO·3Al2O3·CaSO4 + 6CaOH2 +8CaSO4 → 3(3CaO·Al2O3·3CaO4·32H2O)
이러한 에트링자이트의 급속한 생성반응은 친환경 그라우트재의 빠른 겔화에 기여하며, 동시에 팽창효과를 나타내어 경화시 발생되는 수축현상을 보상함으로써, 지반내 그라우트 조성물의 밀실한 충전을 도모할 수 있다.
칼슘알루미네이트는 석회석과 보오크사이트를 원료로 하여 전기로 등에 의해 용융시켜 얻어진 것을 블레인 비표면적 3,000~8,000㎠/g되도록 미분쇄한 것으로 산화칼슘(CaO) 35.0~45.0중량%, 산화알루미늄(Al2O3) 35.0~45.0중량%, 삼산화황(SO3) 9.0~11.0중량%, 이산화규소(SiO2) 5.0~6.0중량%, 산화철(Fe2O3) 2.0~3.0중량%, 산화마그네슘(MgO) 2.0~3.0중량%, 이산화타이타늄(TiO2) 2.0~3.0중량%으로 구성된다. 칼슘알루미네이트의 분말도는 침투성의 측면에서 3,000㎠/g 이상이 좋으며, 6,000㎠/g 이상이면 더욱 좋다. 3,000㎠/g 미만이면 침투성이 나빠질 우려가 있다. 칼슘알루미네이트는 우수한 급결효과를 발휘하여 초기 그라우트재 조성물의 경화작용 및 초기 강도발현을 촉진하게 된다.
황산반토는 화학식 Al2(SO4)3을 이루는 화합물로서 무기계 급결재 현탁액 제조시 혼합되는 물에 빠르게 용해되어 초기에 많은 알루미늄 이온(Al+3), 삼산화황(SO3) 이온을 공급해 줌으로서 다량의 에트링자이트를 생성하게 되어 친환경 그라우트재의 겔타임을 단축시켜 주는 역할을 한다. 황산반토는 10중량% 미만이면 초기 급결력이 약해 겔타임의 단축이 미미하고, 20중량% 이상이면, 무기계 급결재 현탁액의 작업성이 나빠져 지반으로의 주입성이 저하하게 된다.
강도증진제는 알칼리금속탄산염으로서 탄산리튬, 탄산나트륨 및 탄산칼륨중 선택된 어느 하나를 선택할 수 있고, 겔화 이후의 초기 및 장기강도가 높은 측면에서 탄산칼륨이 적당하다. 1중량% 미만은 강도 증진효과가 적으며, 5중량% 이상이면 무기계 급결재 현탁액의 작업성이 나빠져 지반으로의 주입성이 저하하게 된다.
응결지연제는 필요한 겔화 시간을 조절하기 위해 사용하는 것으로, 응결지연제는 유기산으로서 구연산, 글루콘산 및 주석산중 하나로 선택할 수 있다. 이들 중에서 겔화 시간을 광범위하게 조정 가능하다는 측면에서 주석산을 사용하는 것이 좋다. 0.1중량% 미만이면 겔화 시간의 조정 효과가 미미하고, 1중량% 이상이면 겔화 시간이 너무 늦어지게 되고, 강도발현 또한 저하하게 된다.
한편, 무시멘트 현탁액은 보통 포틀랜드시멘트의 사용을 배제하고 산업부산물인 고로슬래그 미분말, 초임계 유동층 보일러 플라이애시를 적극 사용하기 때문에 이산화탄소 배출을 줄이고, 독성 물질 또는 환경오염 요인을 줄이기 위해 개발된 것이다.
무시멘트 현탁액은 고로슬래그 미분말 35~60중량%, 초임계 유동층 보일러 플라이애시 25~50중량%, 수산화칼슘(Ca(OH)2) 1~10중량%, 천연무수석고 5~10중량%, 염화나트륨(NaCl) 1~5중량%가 혼합되어 조성된 무시멘트 30~55중량%와 물 45~70중량%가 혼합되어 조성된다.
고로슬래그미분말은 고로에서 선철을 제조하는 공정에서 부산물로 발생되는 고온 용융상태의 슬래그에 물을 분사하여 급냉시킨 고로슬래그를 블레인 비표면적 6,000~8,000㎠/g되도록 미분쇄한 것으로 경제성을 확보하면서 초기에 적절한 반응이 가능하도록 한다. 또한 재령 91일에서 활성도지수가 105 이상인 것을 사용하는 것이 바람직하다. 고로슬래그 미분말은 35중량% 미만이면 대체효과 및 강도증진 효과가 미미하고 60중량% 이상이면 경제성이 떨어진다.
초임계 유동층 보일러 플라이애시는 시멘트를 대체하는 결합재로, 초임계 상태에서 보일러를 가동하는 초임계 유동층 보일러에서 배출되는 플라이애시이다. 여기서 초임계 유동층 보일러는 물이 증기로 변환되는 임계조건(225.5㎏/㎠ 증기압, 374℃ 증기온도)으로 가하여 발전하는 보일러가 된다. 일반적인 플라이애시는 석탄화력발전소에서 석탄과 공기를 주입하여 1,200~1500℃의 연소공정에서 배출되는 플라이애시이고, 순환 유동층 보일러 플라이애시는 순환 유동층 보일러에서 석회와 공기를 동시에 주입하여 지속적으로 열을 순환시키면서 석탄을 완전연소(760~950℃)하는 공정을 통해 배출되는 플라이애시이고, 초임계 유동층 보일러 플라이애시는 초임계 유동층 보일러에서 공기대신 산소를 주입하여 초임계상태에서 석탄을 연소하는 공정을 통해 배출되는 플라이애시이다. 이들 플라이애시들은 석탄을 연료로 하는 발전설비에서 배출되는 플라이애시라는 점은 동일하나, 발전설비의 구체적인 처리방식이 달라 플라이애시의 화학성분과 물리적인 특성이 아래의 표 1과 같이 차이가 있으며, 특히 산화칼슘(CaO) 20중량% 미만, 산화철(Fe2O3) 13중량% 미만, 삼산화황(SO3) 8중량% 미만으로 함유되는 것이 특징이다. 여기서 산화칼슘(CaO)과 삼산화황(SO3)은 무기계 급결재 현탁액의 칼슘설포알루미네이트 및 칼슘알루미네이트와 반응하여 에트링자이트 수화물을 생성하여 초기강도 증진에 기여한다.
Figure 112022017025384-pat00001
초임계 유동층 보일러 플라이애시는 블레인 비표면적 3,000~8,000㎠/g으로 미분쇄한 것으로, 25~50중량%를 사용하는 것이 바람직하다. 25중량% 미만이면 그라우트재 초기 강도 발현이 미미하고, 경제성이 떨어지며, 50중량% 이상이면 경제성은 높아지나, 그라우트재의 겔화 시간이 짧아지고, 장기강도 확보에 어려움이 나타난다.
수산화칼슘(Ca(OH)2)은 반응성의 이산화규소(SiO2)와의 포졸란 반응에 의해 강도 및 내구성이 우수한 C-S-H겔을 형성함으로서, 그라우트재의 강도 및 내구성 향상에 기여한다. 1중량% 미만이면 겔화 시간의 제어가 어려우며, 10중량% 이상이면 겔화 시간이 짤아지고 겔 형성 직후 강도발현성을 저하시켜 성능발현을 어렵게 한다.
천연무수석고는 고로슬래그 미분말과 마찬가지로 경제성 확보와 초기 적절한 반응성을 위해 블레인 비표면적 6,000~8,000㎠/g되도록 미분쇄한다. 이러한 천연무수석고는 5~10중량%를 사용하는데 5중량% 미만이면 고로슬래그 미분말의 자극효과가 부족하여 초기강도 발현이 부진하고, 10중량% 이상이면 체적안정성의 저하가 발생할 우려가 있다.
염화나트륨(NaCl)은 초기 및 장기 강도향상에 기여하며, 1~5중량%를 사용하는 것이 바람직한데, 1중량% 미만이면 강도향상이 미미하고, 5중량% 이상이면 오히려 장기강도가 저하될 우려가 있다.
이하에서는 실시예에 의거하여 본 발명을 상세히 살펴본다. 다만 아래의 실시예는 본 발명을 예시하기 위한 것일 뿐이며, 본 발명의 범위가 이로써 한정되는 것은 아니다.
표 2는 통상의 물유리를 급결재로 사용하는 그라우팅 공법의 재료를 비교예로 본 발명의 그라우트재를 실시예로 하여 배합비를 나타낸 것이다.
Figure 112022017025384-pat00002
표 2에서 AC1, AC2, AC3 : 본 발명 무기계 급결재, OPC : 보통 포틀랜드 시멘트, MC : 시판 마이크로 시멘트, AD : 시판 완결형 급결재, ZC1, ZC2 : 본 발명 무시멘트이다.
《비교예 1》
물 250㎏에 규산소다 3호 350㎏을 첨가한 후 혼합하여 A액을 제조하고, 물 433㎏에 1종 보통 포틀랜드시멘트 215㎏을 첨가한 후 혼합하여 B액을 제조하였다. A액과 B액을 혼합하여 겔화시킨 후 겔화 시간과 5㎝×5㎝×5㎝ 크기의 공시체를 제작하고, 이를 23℃에서 양생하여 재령 3, 7, 28일에서 호모겔 강도를 측정하였다.
《비교예 2》
물 250㎏에 규산소다 3호 350㎏을 첨가한 후 혼합하여 A액을 제조하고, 물 433㎏에 시판 마이크로시멘트 200㎏을 첨가한 후 혼합하여 B액을 제조하였다. A액과 B액을 혼합하여 겔화시킨 후 겔화 시간과 5㎝×5㎝×5㎝ 크기의 공시체를 제작하고, 이를 23℃에서 양생하여 재령 3, 7, 28일에서 호모겔 강도를 측정하였다.
《비교예 3》
물 250㎏에 규산소다 3호 350㎏을 첨가한 후 혼합하여 A액을 제조하고, 물 420㎏에 1종 보통 포틀랜드시멘트 200㎏과 시판 완결급결제(AD1) 24㎏을 첨가한 후 혼합하여, B액을 제조하였다. A액과 B액을 혼합하여 겔화시킨 후 겔화 시간과 5㎝×5㎝×5㎝ 크기의 공시체를 제작하고, 이를 23℃에서 양생하여 재령 3, 7, 28일에서 호모겔강도를 측정하였다.
《실시예 1》
칼슘설포알루미네이트 25중량%, 칼슘알루미네이트 55중량%, 황산반토 16.7중량%, 탄산칼륨 3중량%, 주석산 0.3중량%를 균질하게 혼합하여 제조한 무기질계 급결재(AC1) 75㎏을 물 474㎏에 첨가한 후 혼합하여 A액을 제조하고, 물 417㎏에 시판 마이크로시멘트 210㎏을 첨가한 후 혼합하여, B액을 제조하였다. A액과 B액을 혼합하여 겔화시킨 후 겔화 시간을 측정하고 5㎝×5㎝×5㎝ 크기의 공시체를 제작하고, 이를 23℃에서 양생하여 재령 3, 7, 28일에서 호모겔 강도를 측정하였다.
《실시예 2》
칼슘설포알루미네이트 25중량%, 칼슘알루미네이트 55중량%, 황산반토 16.7중량%, 탄산칼륨 3중량%, 주석산 0.3중량%를 균질하게 혼합한 무기질계 급결재(AC1) 75㎏을 물 474㎏에 첨가한 후 혼합하여 A액을 제조하고, 고로슬래그미분말 50중량%, 초임계 유동층 보일러 플라이애시 32중량%, 수산화칼슘 8중량%, 천연무수석고 7중량%, 염화나트륨 3중량%를 균질하게 혼합한 무시멘트(ZC1) 250㎏을 첨가한 후 혼합하여, B액을 제조하였다. A액과 B액을 혼합하여 겔화 시킨 후 겔화 시간과 5㎝×5㎝×5㎝ 크기의 공시체를 제작하고, 이를 23℃에서 양생하여 재령 3, 7, 28일에서 호모겔 강도를 측정하였다.
《실시예 3》
칼슘설포알루미네이트 25중량%, 칼슘알루미네이트 55중량%, 황산반토 16.7중량%, 탄산칼륨 3중량%, 주석산 0.3중량%를 균질하게 혼합한 무기질계 급결재(AC1) 150㎏을 물 448㎏에 첨가한 후 혼합하여 A액을 제조하고, 고로슬래그미분말 50중량%, 초임계 유동층 보일러 플라이애시 32중량%, 수산화칼슘 8중량%, 천연무수석고 7중량%, 염화나트륨 3중량%를 균질하게 혼합한 무시멘트(ZC1) 250㎏을 첨가한 후 혼합하여, B액을 제조하였다. A액과 B액을 혼합하여 겔화시킨 후 겔화 시간을 측정하고 5㎝×5㎝×5㎝ 크기의 공시체를 제작하고, 이를 23℃에서 양생하여 재령 3, 7, 28일에서 호모겔 강도를 측정하였다.
《실시예 4》
칼슘설포알루미네이트 35중량%, 칼슘알루미네이트 47중량%, 황산반토 14.7중량%, 탄산칼륨 3중량%, 주석산 0.3중량%를 균질하게 혼합한 무기질계 급결재(AC2) 75㎏을 물 448㎏에 첨가한 후 혼합하여 A액을 제조하고, 고로슬래그미분말 50중량%, 초임계 유동층 보일러 플라이애시 32중량%, 수산화칼슘 8중량%, 천연무수석고 7중량%, 염화나트륨 3중량%를 균질하게 혼합한 무시멘트(ZC1) 250㎏을 첨가한 후 혼합하여, B액을 제조하였다. A액과 B액을 혼합하여 겔화시킨 후 겔화 시간을 측정하고 5㎝×5㎝×5㎝ 크기의 공시체를 제작하고, 이를 23℃에서 양생하여 재령 3, 7, 28일에서 호모겔 강도를 측정하였다.
《실시예 5》
칼슘설포알루미네이트 35중량%, 칼슘알루미네이트 47중량%, 황산반토 14.7중량%, 탄산칼륨 3중량%, 주석산 0.3중량%를 균질하게 혼합한 무기질계 급결재(AC2) 75㎏을 물 448㎏에 첨가한 후 혼합하여 A액을 제조하고, 고로슬래그미분말 42중량%, 초임계 유동층 보일러 플라이애시 42중량%, 수산화칼슘 8중량%, 천연무수석고 5중량%, 염화나트륨 3중량%를 균질하게 혼합한 무시멘트(ZC2) 250㎏을 첨가한 후 혼합하여, B액을 제조하였다. A액과 B액을 혼합하여 겔화시킨 후 겔화 시간을 측정하고 5㎝×5㎝×5㎝ 크기의 공시체를 제작하고, 이를 23℃에서 양생하여 재령 3, 7, 28일에서 호모겔 강도를 측정하였다.
《실시예 6》
칼슘설포알루미네이트 45중량%, 칼슘알루미네이트 39중량%, 황산반토 12.7중량%, 탄산칼륨 3중량%, 주석산 0.3중량%를 균질하게 혼합한 무기질계 급결재(AC3) 75㎏을 물 448㎏에 첨가한 후 혼합하여 A액을 제조하고, 고로슬래그미분말 42중량%, 초임계 유동층 보일러 플라이애시 42중량%, 수산화칼슘 8중량%, 천연무수석고 5중량%, 염화나트륨 3중량%를 균질하게 혼합한 무시멘트(ZC2) 250㎏을 첨가한 후 혼합하여, B액을 제조하였다. A액과 B액을 혼합하여 겔화시킨 후 겔화 시간을 측정하고 5㎝×5㎝×5㎝ 크기의 공시체를 제작하고, 이를 23℃에서 양생하여 재령 3, 7, 28일에서 호모겔 강도를 측정하였다.
《시험결과》
아래 표 3에 상기 비교예들 및 실시예들에 대한 겔타임과 재령별 호모겔 압축강도를 측정한 결과를 나타내었다.
Figure 112022017025384-pat00003
비교예 1은 규산소다를 사용하는 일반적인 LW 공법으로, 겔화 시간은 70~80초 이며, 7일까지도 호모겔 강도가 매우 낮은 수준임을 알 수 있다.
비교예 2는 블레인 비표면적 6,000~8,000㎠/g 수준의 마이크로시멘트를 규산소다 약액으로 겔화시킨 것으로서 성분비를 조절함으로서 겔화 시간을 조절할 수 있으며, 호모겔의 강도는 일반적인 LW 공법에 비해 높게 발현됨을 알 수 있다.
비교예 3은 완결형 급결재를 사용한 예로서 LW 공법에 비해서는 약간 높은 호모겔 강도를 나타내는데, 마이크로시멘트를 사용한 비교예 3보다는 낮은 호모겔 강도를 나타내며, 알칼리 용탈현상이 심하게 나타나며, 체적안정성이 매우 떨어지는 것을 확인하였다.
실시예 1은 본 발명의 무기계 급결재를 비교예 2의 규산소다를 사용한 경우와 비교하기 위한 것으로, 본 발명의 무기계 급결재가 겔화 시간은 유사하게 나타나며, 호모겔 강도는 더 우수한 것을 확인하였다.
실시예 2~6는 본 발명의 무기계 급결재 및 무시멘트를 같이 사용할 경우, 기존에 규산소다를 사용하는 비교예 1~3에 비하여 겔화 시간은 약간 느린 것을 확인할 수 있지만, 우수한 호모겔 강도를 발현하고 있음을 알 수 있었고, 알칼리 용탈현상이 발생하지 않아, 체적안정성이 매우 우수한 것을 확인하였다.
지금까지 많은 약액주입공법들의 적용에 있어서 차수성이나 고결성 등 지반의 공학적인 특성 향상에만 관심을 기울인 나머지 환경오염에 관한 문제에 대해서는 소홀했던 측면이 있다. 규산소다를 사용하는 대부분의 그라우트 공법의 경우, 알칼리 성분이 용탈되는 현상이 발생한다.
이로 인한 알칼리 용탈은 지중의 지하수나 하천으로 흘러 들어가 환경오염을 유발할 수 있다.
본 발명에서는 약액주입에 의한 환경오염의 정도 및 친환경성을 평가하기 위해 『어류에 의한 급성 독시험(KS I 3217:2008)』의 규정을 바탕으로 시험방법을 설정하였으며, 약액이라는 특수한 성질을 반영하기 위하여 KS 규정중 일부를 삭제, 보완하여 시험을 실시하였다.
어독성 시험을 위해 기존 규산소다를 사용하는 비교예 3의 경우와 본 발명의 실시예 2 배합에 대하여 4㎝×4㎝×16㎝ 각주형 공시체를 3개 제작하여, 다음날 탈형한 후, 가로 40㎝, 세로 30㎝, 높이 30㎝ (부피 36ℓ)의 유리제 시험수조에 공시어로서 제브라 다니오 10마리를 집어 넣은 후 96시간까지 pH 변화, TDS 변화, 공시어의 생존율을 측정하였다.
pH는 수소이온농도의 지수로서 pH가 7이상이면 알칼리성이라고 나타낸다. 물고기의 경우 pH 변화에 영향을 많이 받는데, 강알칼리 환경에 노출되면 아가미와 지느러미 등이 파괴되는 알칼리 혈증 등으로 인해 죽게 된다.
TDS(Total Dissolved Solid)는 물의 수질을 평가할 수 있는 지표로서, 물속에 녹아있는 가용성 염류(칼슘, 마그네슘 이온 등), 이온성 유기물질(암모늄, 아세트산 나트륨 등), 중금속 이온(크롬, 납, 구리, 아연 등)을 검출하여 값으로 나타내 준다. 일반적으로 수질을 평가시 TDS 값이 100~300 일반 순도, 300~600 약간 오염, 600~1,000 오염수, 1,000 이상이면 식수로 부적합하다고 알려져 있다.
규산소다를 사용하는 비교예 3의 경우, pH 변화는 표 4와 같다.
Figure 112022017025384-pat00004
최초 pH는 7.83으로 측정되었으며, 일반적인 수돗물의 경우에는 상태에 따라 pH 7.5~8.2의 값을 나타낸다. 비교예 3의 경우, 도 1과 같이 초기부터 규산소다의 용탈현상으로 인해 급격한 pH의 상승이 나타났으며, 1시간에 거의 pH 10에 근접하는 강알칼리성을 보였다. 이후 pH는 지속적으로 상승하여 46시간 후 최대값인 pH 11을 기록한 후 점차 감소되는 현상을 나타내었다. 이러한 급격한 pH 상승의 원인은 규산소다의 알칼리 용탈로 인한 것과 B액에 사용된 시멘트 성분중 강알카리성을 나타내는 수산화칼슘(Ca(OH)2) 성분이 지속적으로 용출되기 때문이다.
경과시간에 따른 TDS(Total Dissolved Solid) 변화를 도 2에 나타내었다. TDS란 물에 녹아있는 총용존 고형물량으로서, 물에 균일하게 녹은, 즉 용해된 유기물이나 무기물의 총량을 의미한다. 즉 경과시간에 따라 TDS 값이 상승한다는 것은 SGR 공시체로부터 나트륨(Na), 규소(Si)와 같은 무기질 이온이 계속 용출되어 TDS 값을 상승시킨다고 판단되어지며, 35시간 이후 부터는 측정기의 측정한계인 999를 넘어버려 더 이상의 측정이 어려웠다. 이는 공시체로부터 나온 여러 물질들로 인해 시험수조내의 수질이 매우 오염되어있다는 것을 나타낸다.
경과시간에 따른 공시어의 치사율의 변화를 도 3에 나타내었다. 도 1에 나타난 것과 같이 초기에 급격한 pH 상승으로 인해 공시어들은 강알칼리 환경에 처하게 된다. 이러한 강알칼리 환경은 공시어의 아가미와 지느러미 조직을 망가뜨리게 되고 이를 알칼리 혈증이라고 한다. 이러한 강알카리 환경에서 이상현상을 보이는 공시어들은 15시간 경과 이후부터 한 마리씩 죽었으며, 24시간에 이르러서는 전부 죽게되어 치사율 100%를 나타내었다.
본 발명의 실시예 2의 경우, 경과시간에 따른 pH 변화를 표 5 및 도 4에 나타내었다.
Figure 112022017025384-pat00005
최초 pH는 8.07로 측정되었으며, 시험을 시작한 초기부터 완만한 pH의 상승이 나타났으며, 1시간에 pH 8.88 까지 상승하였다. 이후 pH는 지속적으로 완만하게 상승하여 15시간 후 최대값인 pH 9.7을 기록한 후 점차 감소되어 시험이 종료되는 96시간에는 pH 8.4까지 떨어져 약알카리성을 나타내었다.
이러한 결과는 무시멘트의 경우, 시멘트와 달리 고로슬래그 미분말과 유동층 플라이애시 등 산업부산물을 주성분으로 하고 있어 시멘트에 비해 알카리성이 낮기 때문이다. 또한 잠재수경성을 가지는 고로슬래그 미분말이나 포졸란 반응을 일으키는 유동층 플라이애시의 경화 메카니즘이 pH를 상승시키는 주요 요인인 시멘트의 수화반응에 의해 생성되는 수산화칼슘(Ca(OH)2)과는 큰 연관성이 없기 때문에 시간이 지남에 따라 pH가 감소되면서 8.5 이하로 안정화되기 때문이다.
경과시간에 따른 TDS(Total Dissolved Solid) 변화를 도 5에 나타내었다. TDS 값의 변화가 매우 적은 것으로 보아, 알칼리 용출과 같은 현상은 일어나지 않는 다는 것을 확인 할 수 있었으며, 매우 안정화되어 있고 수질의 변화가 거의 없음을 알 수 있다.
경과시간에 따른 공시어의 치사율의 변화를 그림 6에 나타내었다. 시험을 시작한지 96시간이 경과할 때까지 죽은 공시어가 없어 치사율은 0%를 나타내었다.
도 7과 같이 시험이 끝난 96시간 이후에도 공시어의 움직임은 정상적이였으며, 어독성 시험이 공시어의 생태환경을 바꾸지 않았음을 알 수 있다. 이로 인해 본 발명의 그라우트재가 친환경적인 것으로 판단할 수 있다.
본 발명은 다양하게 변형될 수 있고 여러 가지 형태를 취할 수 있으며 상기 발명의 상세한 설명에서는 그에 따른 특별한 실시 예에 대해서만 기술하였다. 하지만 본 발명은 상세한 설명에서 언급되는 특별한 형태로 한정되는 것이 아닌 것으로 이해되어야 하며, 오히려 첨부된 청구범위에 의해 정의되는 본 발명의 정신과 범위 내에 있는 모든 변형물과 균등물 및 대체물을 포함하는 것으로 이해되어야 한다.

Claims (8)

  1. 무기계 급결재 현탁액과 무시멘트 현탁액이 각각 별도로 제조된 후, 무기계 급결재 현탁액과 무시멘트 현탁액이 시공대상 지반에 동시에 주입되면서 혼합되는 2액형 친환경 그라우트재 조성물에 있어서,
    무기계 급결재 현탁액 40~60중량%와 무시멘트 현탁액 40~60중량%가 지반내 주입과 동시에 혼합되면서 그라우트재 조성물을 형성하되,
    상기 무기계 급결재 현탁액은 칼슘설포알루미네이트 25~45중량%, 칼슘알루미네이트 30~55중량%, 황산반토 10~20중량%, 강도증진제 1~4중량%, 응결지연제 0.1~1중량%가 혼합되어 조성된 분말제제 15~35중량%와 물 65~85중량%가 혼합되어 조성되고,
    상기 무시멘트 현탁액은 고로슬래그 미분말 35~60중량%, 초임계 유동층 보일러 플라이애시 25~50중량%, 수산화칼슘(Ca(OH)2) 1~10중량%, 천연무수석고 5~10중량%, 염화나트륨(NaCl) 1~5중량%가 혼합되어 조성된 무시멘트 30~55중량%와 물 45~70중량%가 혼합되어 조성되는 것을 특징으로 하는 무기계 급결재와 무시멘트를 이용한 지반차수 및 보강용 친환경 그라우트재 조성물.
  2. 제 1 항에 있어서,
    상기 칼슘설포알루미네이트는,
    1350℃에서 소성되어 얻어지는 클링커를 블레인 비표면적 3,000~8,000㎠/g되도록 미분쇄한 것으로 산화칼슘(CaO) 40.0~41.5중량%, 산화알루미늄(Al2O3) 35.0~37.0중량%, 삼산화황(SO3) 9.0~11.0중량%, 이산화규소(SiO2) 6.0~7.0중량%, 산화철(Fe2O3) 1.5~2.5중량%, 산화마그네슘(MgO) 1.5~2.5중량%, 이산화타이타늄(TiO2) 1.0~2.0중량%으로 구성되는 것을 특징으로 하는 무기계 급결재와 무시멘트를 이용한 지반차수 및 보강용 친환경 그라우트재 조성물.
  3. 제 1 항에 있어서,
    상기 칼슘알루미네이트는,
    석회석과 보오크사이트를 원료로 하여 전기로 등에 의해 용융시켜 얻어진 것을 블레인 비표면적 3,000~8,000㎠/g되도록 미분쇄한 것으로 산화칼슘(CaO) 35.0~45.0중량%, 산화알루미늄(Al2O3) 35.0~45.0중량%, 삼산화황(SO3) 9.0~11.0중량%, 이산화규소(SiO2) 5.0~6.0중량%, 산화철(Fe2O3) 2.0~3.0중량%, 산화마그네슘(MgO) 2.0~3.0중량%, 이산화타이타늄(TiO2) 2.0~3.0중량%으로 구성되는 것을 특징으로 하는 무기계 급결재와 무시멘트를 이용한 지반차수 및 보강용 친환경 그라우트재 조성물.
  4. 제 1 항에 있어서,
    상기 황산반토는,
    화학식 Al2(SO4)3을 이루는 화합물로 산화알루미늄(Al2O3)이 17중량% 미만 함유되는 것을 특징으로 하는 무기계 급결재와 무시멘트를 이용한 지반차수 및 보강용 친환경 그라우트재 조성물.
  5. 제 1 항에 있어서,
    상기 강도증진제는,
    알칼리금속탄산염으로서, 탄산리튬, 탄산나트륨 및 탄산칼륨중 선택된 어느 하나인 것을 특징으로 하는 무기계 급결재와 무시멘트를 이용한 지반차수 및 보강용 친환경 그라우트재 조성물.
  6. 제 1 항에 있어서,
    상기 응결지연제는,
    유기산으로서 구연산, 글루콘산 및 주석산중 선택된 어느 하나인 것을 특징으로 하는 무기계 급결재와 무시멘트를 이용한 지반차수 및 보강용 친환경 그라우트재 조성물.
  7. 제 1 항에 있어서,
    상기 고로슬래그 미분말은,
    고로에서 선철을 제조하는 공정에서 부산물로 발생되는 고온 용융상태의 슬래그에 물을 분사하여 급냉시킨 고로수쇄슬래그를 블레인 비표면적 6,000~8,000㎠/g되도록 미분쇄한 것으로 재령 91일에서 활성도지수가 105 이상인 것을 특징으로 하는 무기계 급결재와 무시멘트를 이용한 지반차수 및 보강용 친환경 그라우트재 조성물.
  8. 제 1 항에 있어서,
    상기 초임계 유동층 보일러 플라이애시는,
    시멘트를 대체하는 결합재로, 초임계 상태에서 보일러를 가동하는 초임계 유동층 보일러에서 부산물로 발생되는 것을 블레인 비표면적 3,000~8,000㎠/g으로 미분쇄한 것으로, 산화칼슘(CaO) 20중량% 미만, 산화철(Fe2O3) 13중량% 미만, 삼산화황(SO3) 8중량% 미만으로 함유되는 것을 특징으로 하는 무기계 급결재와 무시멘트를 이용한 지반차수 및 보강용 친환경 그라우트재 조성물.
KR1020220019747A 2022-02-15 2022-02-15 무기계 급결재와 무시멘트를 이용한 지반차수 및 보강용 친환경 그라우트재 조성물 KR102454865B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020220019747A KR102454865B1 (ko) 2022-02-15 2022-02-15 무기계 급결재와 무시멘트를 이용한 지반차수 및 보강용 친환경 그라우트재 조성물

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020220019747A KR102454865B1 (ko) 2022-02-15 2022-02-15 무기계 급결재와 무시멘트를 이용한 지반차수 및 보강용 친환경 그라우트재 조성물

Publications (1)

Publication Number Publication Date
KR102454865B1 true KR102454865B1 (ko) 2022-10-18

Family

ID=83803956

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020220019747A KR102454865B1 (ko) 2022-02-15 2022-02-15 무기계 급결재와 무시멘트를 이용한 지반차수 및 보강용 친환경 그라우트재 조성물

Country Status (1)

Country Link
KR (1) KR102454865B1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102561125B1 (ko) * 2022-12-29 2023-10-20 주식회사 위드엠텍 지하구조물의 연속굴착 세그먼트용 탄소저감형 고내구성 콘크리트
KR102561131B1 (ko) * 2022-12-29 2023-10-23 주식회사 위드엠텍 지하구조물의 연속굴착 세그먼트용 고강도 결합재 조성물과 이를 이용한 연속굴착 세그먼트용 고강도 수밀 콘크리트

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101442668B1 (ko) * 2014-03-31 2014-11-04 주식회사 이에스피소재 시멘트계 지수재 조성물 및 이를 이용한 지수공법
KR101581905B1 (ko) * 2015-11-02 2016-01-04 김건우 콘크리트용 친환경 무시멘트 초속경 결합재 조성물 및 그 조성물이 함유된 초속경 콘크리트 조성물
KR101631476B1 (ko) 2014-08-13 2016-06-20 주식회사 지안산업 그라우팅 약액 조성물 제조방법
KR101709239B1 (ko) * 2016-06-03 2017-02-23 (주)대우건설 산업부산물을 이용한 지반 차수용 친환경 무기계 그라우트 조성물
KR101764645B1 (ko) 2016-11-16 2017-08-14 (주)지성이씨에스 고로슬래그를 주성분으로 하는 그라우팅 약액조성물용 복합재 및 이를 이용한 친환경 무시멘트 그라우팅 약액조성물
KR102209772B1 (ko) * 2020-01-03 2021-01-28 주식회사 대우건설 겔타임 조절이 용이한 시멘트 광물계 친환경 그라우트 조성물
KR102211957B1 (ko) * 2020-09-24 2021-02-04 주식회사 위드엠텍 가소성 그라우트 약액 조성물과 이를 이용한 가소성 그라우팅 공법
KR102255382B1 (ko) * 2020-11-13 2021-05-21 김진성 친환경 그라우팅 약액 제조방법 및 이를 이용한 그라우팅 시공방법

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101442668B1 (ko) * 2014-03-31 2014-11-04 주식회사 이에스피소재 시멘트계 지수재 조성물 및 이를 이용한 지수공법
KR101631476B1 (ko) 2014-08-13 2016-06-20 주식회사 지안산업 그라우팅 약액 조성물 제조방법
KR101581905B1 (ko) * 2015-11-02 2016-01-04 김건우 콘크리트용 친환경 무시멘트 초속경 결합재 조성물 및 그 조성물이 함유된 초속경 콘크리트 조성물
KR101709239B1 (ko) * 2016-06-03 2017-02-23 (주)대우건설 산업부산물을 이용한 지반 차수용 친환경 무기계 그라우트 조성물
KR101764645B1 (ko) 2016-11-16 2017-08-14 (주)지성이씨에스 고로슬래그를 주성분으로 하는 그라우팅 약액조성물용 복합재 및 이를 이용한 친환경 무시멘트 그라우팅 약액조성물
KR102209772B1 (ko) * 2020-01-03 2021-01-28 주식회사 대우건설 겔타임 조절이 용이한 시멘트 광물계 친환경 그라우트 조성물
KR102211957B1 (ko) * 2020-09-24 2021-02-04 주식회사 위드엠텍 가소성 그라우트 약액 조성물과 이를 이용한 가소성 그라우팅 공법
KR102255382B1 (ko) * 2020-11-13 2021-05-21 김진성 친환경 그라우팅 약액 제조방법 및 이를 이용한 그라우팅 시공방법

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102561125B1 (ko) * 2022-12-29 2023-10-20 주식회사 위드엠텍 지하구조물의 연속굴착 세그먼트용 탄소저감형 고내구성 콘크리트
KR102561131B1 (ko) * 2022-12-29 2023-10-23 주식회사 위드엠텍 지하구조물의 연속굴착 세그먼트용 고강도 결합재 조성물과 이를 이용한 연속굴착 세그먼트용 고강도 수밀 콘크리트

Similar Documents

Publication Publication Date Title
Cheah et al. Recent advances in slag-based binder and chemical activators derived from industrial by-products–A review
Hooton Canadian use of ground granulated blast-furnace slag as a supplementary cementing material for enhanced performance of concrete
KR102454865B1 (ko) 무기계 급결재와 무시멘트를 이용한 지반차수 및 보강용 친환경 그라우트재 조성물
KR100876222B1 (ko) 연약지반 개량용 기능성 고화재
KR102133152B1 (ko) 비산재 및/또는 그 밖의 분진과 고로슬래그 미분말을 이용한 연약지반 토목용 고화제 및 그 제조 방법
KR100813862B1 (ko) 석회계 고화재 및 이를 이용한 하천제방 보수 및 보강공법
JP2012171855A (ja) セメントを用いない硬化組成物
KR102133153B1 (ko) 비산재 및/또는 그 밖의 분진과 고로슬래그 미분말을 주원료로 하는 연약지반 토질개량용 고화제 및 그 제조 방법
Ban et al. Properties and microstructure of lime kiln dust activated slag-fly ash mortar
KR101550220B1 (ko) 분말 구체방수제, 이의 제조방법 및 이를 이용한 시공방법
KR100761195B1 (ko) 건설오니를 이용한 고화안정화 고화제 조성물 및 그제조방법
Islam et al. Strength behavior of concrete using slag with cement in sea water environment
KR102457167B1 (ko) 친환경 지반주입 보강 그라우트 조성물 및 이를 이용한 시공방법
KR102269372B1 (ko) 고내구성 해중 콘크리트 앵커 제조방법
JP2007153714A (ja) セメント混和材及びセメント組成物
Tran et al. A state-of-the-art review on the utilization of new green binders in the production of controlled low-strength materials
JPH08311446A (ja) 土質改良用固化材
KR100587178B1 (ko) 다목적 시멘트 혼화재 및 이를 이용한 시멘트 경화체의제조방법
KR101636277B1 (ko) 경소백운석을 활용한 말뚝 주입재 조성물
KR20100000098A (ko) 지반고결재 및 이를 이용한 지반개량공법
KR100979180B1 (ko) 급결형 마이크로시멘트 조성물
JP2010100473A (ja) セメント混和材及びセメント組成物
KR100519605B1 (ko) 내산성 단면복구 모르타르의 제조방법 및 조성물
SK284619B6 (sk) Samotvrdnúca suspenzia na tesniace steny, spôsob vytvárania tesniacej steny a použitie vysokopecnej trosky na suspenziu
KR101564382B1 (ko) 콤팩션 그라우팅 공법용 친환경 모르타르 조성물

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant