KR102450047B1 - Energy-saving Computer Room Air Conditioner - Google Patents

Energy-saving Computer Room Air Conditioner Download PDF

Info

Publication number
KR102450047B1
KR102450047B1 KR1020210092620A KR20210092620A KR102450047B1 KR 102450047 B1 KR102450047 B1 KR 102450047B1 KR 1020210092620 A KR1020210092620 A KR 1020210092620A KR 20210092620 A KR20210092620 A KR 20210092620A KR 102450047 B1 KR102450047 B1 KR 102450047B1
Authority
KR
South Korea
Prior art keywords
cooling water
temperature
cooling
pipe
coolant
Prior art date
Application number
KR1020210092620A
Other languages
Korean (ko)
Inventor
오용화
장보원
Original Assignee
(주)서우시스템즈
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)서우시스템즈 filed Critical (주)서우시스템즈
Priority to KR1020210092620A priority Critical patent/KR102450047B1/en
Application granted granted Critical
Publication of KR102450047B1 publication Critical patent/KR102450047B1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0007Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/20Casings or covers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/30Arrangement or mounting of heat-exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/1405Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification in which the humidity of the air is exclusively affected by contact with the evaporator of a closed-circuit cooling system or heat pump circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/04Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/02Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating liquids, e.g. brine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/20Casings or covers
    • F24F2013/205Mounting a ventilator fan therein
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Signal Processing (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Other Air-Conditioning Systems (AREA)

Abstract

The present invention relates to an energy-saving constant-temperature and constant-humidity air conditioning system, which is characterized by comprising: a cooling cycle unit (100) which is provided in a constant-temperature and constant-humidity space, has a compressor (110), a condenser (120), an evaporator (130), and a blowing fan (140), and uses a cooling cycle to circulate a refrigerant in order to cool the indoor air to a desired temperature; a coolant circulating unit (200) which is provided at one side of the cooling cycle unit (100) to allow the indoor air to come in contact with a coolant flowing coil (230) in which the coolant (W1) flows to cool the same to the desired temperature; an intermediary treatment water circulating unit (300) in which an intermediary treatment water, with the temperature changing according to seasons, is circulated; a heat exchanger (400) which allows the intermediary treatment water to exchange heat with the coolant of which the temperature has increased after being discharged from the coolant flowing coil (230) to reduce the temperature of the coolant; and a control unit (500) which adjusts the moving route of the coolant considering the difference between the temperature of the intermediary treatment water and the temperature of the coolant, and selectively controls the operation of the cooling cycle unit (100). Therefore, electricity consumption may be minimized.

Description

에너지 절감형 항온항습 공조시스템{Energy-saving Computer Room Air Conditioner}Energy-saving constant temperature and humidity air conditioning system {Energy-saving Computer Room Air Conditioner}

본 발명은 항온항습 공조시스템에 관한 것으로서, 보다 자세히는 “상수, 하수, 중수, 보일러용수, 빌딩냉각수 등 (이하 중간처리수라 한다)”의 계절별 온도차를 이용한 열교환을 통해 항온항습의 운전 에너지를 절감할 수 있는 에너지 절감형 항온항습 공조시스템에 관한 것이다. The present invention relates to a constant-temperature and constant-humidity air conditioning system, and in more detail, reducing the operating energy of constant-temperature and constant-humidity through heat exchange using the seasonal temperature difference of "water, sewage, heavy water, boiler water, building cooling water, etc. (hereinafter referred to as intermediate-treated water)" It relates to an energy-saving constant temperature and humidity air conditioning system.

일반적으로 공기 조화는 실내의 온도, 습도, 세균, 냄새, 기류 등의 조건을 그 장소의 사용 목적에 적합한 상태로 유지하여 주택, 호텔, 회관, 사무실, 전산실 및 각종 산업현장 등에서 생활하는 실내의 사람을 쾌적한 상태로 만드는 것을 목적으로 하는 것으로, 사람에게 쾌적한 공기상태는 기후 조건, 복장, 생활수준, 건강상태 등 여러 가지 조건에 의하여 영향을 받게 되므로 일정한 값이 있는 것은 아니나, 여름에는 온도 26∼28℃, 상대습도 약 50%, 겨울에는 온도 20∼22℃, 상대습도 약 40%를 목표로 하는 것이 보통이다.In general, air conditioning maintains indoor conditions such as temperature, humidity, bacteria, odor, and airflow in a state suitable for the purpose of use of the place. The purpose of making the air comfortable for people is that it does not have a certain value because it is affected by various conditions such as climatic conditions, clothes, living standards, and health conditions, but in summer the temperature is 26~28. ℃, relative humidity of about 50%, in winter, it is normal to aim for a temperature of 20-22℃ and a relative humidity of about 40%.

그러나 이와 같은 값은 절대적인 것은 아니며, 공장의 작업장, 창고, 실험실, 전산실 등의 장소가 그 기능을 충분히 달성하기 위해서는 거기서 생산되고 가공되며 저장 또는 시험되는 물건이나 해당 장소에서 운영 중인 각종 기기에 가장 알맞은 상태를 유지하도록 하여야 한다.However, these values are not absolute, and in order for places such as workshops, warehouses, laboratories, and computer rooms of factories to fully achieve their functions, the most suitable state should be maintained.

특히, 일정한 온습도를 요구하는 제품 처리과정이라든지, 전산실, 정밀 측정실, 엔진실험실, 반도체 공장의 클린룸 등은 일정한 설정온도(일례로, 22℃), 설정습도(일례로 50%)를 유지하기 위해 항온항습기가 사용되고 있다.In particular, in product processing processes that require constant temperature and humidity, computer rooms, precision measurement rooms, engine laboratories, and clean rooms of semiconductor factories, in order to maintain a constant set temperature (for example, 22℃) and set humidity (for example, 50%), A thermo-hygrostat is used.

도 1은 종래 항온항습기의 구조도를 도시하고 있다. 종래 항온항습기는 송풍기(10), 냉각기(20), 가습기(30), 히터(40)를 포함하는 것으로 구성된다. 한편, 냉각기(20)는 압축기(21), 응축기(22), 팽창변(23), 증발기(24)로 이루어지는 냉각 사이클을 형성하며, 히터(40)는 냉각 제습 운전의 수행 중 증발기(24)를 통해 과냉각된 공기를 요구되는 온도로 재가열하도록 증발기(24)의 후단에 배치된다.1 shows a structural diagram of a conventional thermo-hygrostat. A conventional thermo-hygrostat is configured to include a blower 10 , a cooler 20 , a humidifier 30 , and a heater 40 . On the other hand, the cooler 20 forms a cooling cycle consisting of the compressor 21, the condenser 22, the expansion valve 23, and the evaporator 24, and the heater 40 operates the evaporator 24 during the cooling and dehumidification operation. It is disposed at the rear end of the evaporator 24 to reheat the supercooled air to the required temperature through the evaporator.

이와 같은 종래의 항온항습기는 냉각운전과정에서 압축기(21)를 계속 구동하게 되므로 에너지 사용량이 많은 단점이 있으며, 히터(40)의 사용에 의한 전력사용이 증가하여 관리비용이 증가하는 단점이 있다. Such a conventional thermo-hygrostat continuously drives the compressor 21 during the cooling operation, so it consumes a lot of energy, and there is a disadvantage in that the use of the heater 40 increases power consumption, thereby increasing the management cost.

본 발명의 목적은 상술한 문제를 해결하기 위한 것으로, 계절에 따라 온도가 변화되는 중간처리수와 열교환기를 통해 항온항습기 운전을 위한 냉각수를 열교환함으로써 프리쿨링과 냉각사이클에 의한 쿨링, 프리쿨링과 냉각사이클을 함께 이용하는 하이브리드 쿨링 중 어느 하나로 공간의 온도에 따라 선택적으로 구동하여 항온항습 유지에 요구되는 전력사용량을 최소화할 수 있는 에너지절감형 항온항습 공조시스템을 제공하는 것이다. An object of the present invention is to solve the above-mentioned problem, by exchanging heat with intermediate-treated water whose temperature is changed according to the season and cooling water for constant temperature and humidity operation through a heat exchanger, cooling by pre-cooling and cooling cycle, pre-cooling and cooling It is to provide an energy-saving constant temperature and humidity air conditioning system that can minimize the power consumption required to maintain constant temperature and humidity by selectively driving according to the temperature of the space as any one of hybrid cooling that uses a cycle together.

또한, 본 발명의 다른 목적은, 종래 “수냉식 항온항습기 또는 수냉식 프리쿨링 항온항습기”에 반영되는 실외기인 냉각탑을 사용하지 않고 판형 열교환기를 설치하여 냉각탑 역할을 대체함으로써 항온항습시설 구축에 필요한 건설비용 저감 가능하며, 기존 냉각탑 설치 시 냉각탑 운영에 필요한 전력과 용수사용량을 대체함으로써 에너지절감과 용수 절감의 효과를 얻을 수 있는 시스템을 제공하는 것이다.In addition, another object of the present invention is to replace the role of a cooling tower by installing a plate heat exchanger without using a cooling tower, which is an outdoor unit, which is reflected in the conventional “water-cooled thermo-hygrostat or water-cooled pre-cooling thermo-hygrostat”, thereby reducing the construction cost required for building a constant temperature and humidity facility It is possible to provide a system that can achieve the effect of saving energy and water by replacing the power and water consumption required for cooling tower operation when installing the existing cooling tower.

또한, 본 발명의 또 다른 목적은, 중간처리수로 하수처리장 원수를 이용할 경우 열교환을 통해 하수의 온도가 상승시킴으로써 하수처리 과정에서 미생물 증식에 필요한 열을 부대적으로 얻을 수 있으므로 궁극적으로 하수처리장 에너지 절감을 유도할 수 있다. 또한 보일러 용수 등을 활용한 열교환 시에는 보일러 가동 시의 연료비용 절감을 유도할 수 있다. In addition, another object of the present invention is that when raw water from a sewage treatment plant is used as an intermediate treatment water, the temperature of the sewage is increased through heat exchange, so that heat necessary for the growth of microorganisms in the sewage treatment process can be obtained incidentally, so ultimately the energy of the sewage treatment plant can lead to savings. In addition, heat exchange using boiler water, etc. can induce fuel cost reduction during boiler operation.

본 발명의 상기 목적과 여러 가지 장점은 이 기술분야에 숙련된 사람들에 의해 본 발명의 바람직한 실시예로부터 더욱 명확하게 될 것이다.The above objects and various advantages of the present invention will become more apparent from preferred embodiments of the present invention by those skilled in the art.

본 발명의 목적은 에너지절감형 항온항습 공조시스템에 의해 달성될 수 있다. 본 발명의 항온항습 공조시스템은, 항온항습 장소 내부에 구비되며 압축기(110), 응축기(120), 증발기(130) 및 송풍팬(140)을 가지며 냉각사이클을 이용해 냉매를 순환시켜 실내공기를 희망온도로 냉각시키는 냉각사이클부(100)와; 상기 냉각사이클부(100)의 일측에 구비되며 실내공기를 냉각수(W1)가 유동하는 냉각수유동코일(230)과 접촉시켜 희망온도로 냉각시키는 냉각수순환부(200)와; 계절에 따라 온도가 변화되는 중간처리수가 순환되는 중간처리수순환부(300)와; 상기 중간처리수와 상기 냉각수유동코일(230)로부터 배출되는 온도가 상승된 냉각수를 열교환하여 상기 냉각수의 온도를 낮추는 열교환기(400)와; 상기 중간처리수의 온도와 냉각수의 온도 차이를 고려하여 냉각수의 이동경로를 조절하고, 상기 냉각사이클부(100)의 동작여부를 선택적으로 조절하는 제어부(500)를 포함하는 것을 특징으로 한다. An object of the present invention can be achieved by an energy-saving constant temperature and humidity air conditioning system. The constant temperature and humidity air conditioning system of the present invention is provided inside a constant temperature and humidity place and has a compressor 110 , a condenser 120 , an evaporator 130 , and a blowing fan 140 , and uses a cooling cycle to circulate the refrigerant to hope for indoor air. a cooling cycle unit 100 for cooling to a temperature; a cooling water circulation unit 200 provided on one side of the cooling cycle unit 100 and cooling the indoor air to a desired temperature by contacting the cooling water flow coil 230 through which the cooling water W1 flows; an intermediate treated water circulation unit 300 for circulating intermediate treated water whose temperature is changed according to seasons; a heat exchanger 400 for lowering the temperature of the cooling water by exchanging heat with the intermediate-treated water and the cooling water having an elevated temperature discharged from the cooling water flow coil 230; and a control unit 500 that adjusts the movement path of the cooling water in consideration of the temperature difference between the temperature of the intermediate treated water and the cooling water, and selectively controls whether or not the cooling cycle unit 100 operates.

일 실시예에 따르면, 상기 냉각사이클부(100)와 상기 냉각수순환부(200)는 실내공기유입구(11)와 공조공기배출구(13)가 각각 구비된 케이싱(10) 내부에 구비되며, 상기 냉각수유동코일(230)은 상기 실내공기유입구(11) 측에 배치되고, 상기 증발기(130)는 상기 냉각수유동코일(230)과 상기 공조공기배출구(13) 사이에 배치되고, 상기 공조공기배출구(13)에 상기 송풍팬(140)이 구비될 수 있다. According to an embodiment, the cooling cycle unit 100 and the cooling water circulation unit 200 are provided inside a casing 10 having an indoor air inlet 11 and an air conditioning air outlet 13, respectively, and the cooling water The flow coil 230 is disposed on the side of the indoor air inlet 11 , and the evaporator 130 is disposed between the coolant flow coil 230 and the air conditioning air outlet 13 , and the air conditioning air outlet 13 . ) may be provided with the blowing fan 140 .

일 실시예에 따르면, 상기 냉각수순환부(200)는, 상기 냉각수유동코일(230)과; 상기 열교환기(400)와 연결되어 상기 중간처리수(M1)와 열교환되어 냉각된 냉각수를 상기 냉각수유동코일(230)로 공급하는 냉각수유입관(210)과; 상기 냉각수유동코일(230)에서 실내공기와 열교환되어 온도가 상승된 냉각수가 배출되는 냉각수유출관(240)과; 상기 냉각수유출관(240)과 상기 열교환기(400)를 연결하는 냉각수배출관(245)과; 상기 냉각수유동코일(230)로 유입되기 직전의 냉각수유입관(210)과 상기 냉각수유출관(240)의 단부를 연결하는 유동코일 바이패스관(215)과; 상기 유동코일 바이패스관(215)과 상기 냉각수유출관(240)과 상기 냉각수배출관(245)이 합쳐지는 지점에 구비되어 상기 제어부(500)의 제어신호에 따라 냉각수의 배출경로를 조절하는 제1삼방밸브(250)와; 상기 냉각수배출관(245)으로부터 분기되어 냉각수를 상기 응축기(120)로 공급하는 응축기유입관(270)과; 상기 응축기(120)와 상기 냉각수배출관(245)을 연결하는 응축기배출관(275)을 포함할 수 있다. According to an embodiment, the coolant circulation unit 200 includes: the coolant flow coil 230; a cooling water inlet pipe 210 connected to the heat exchanger 400 to supply cooling water cooled by heat exchange with the intermediate treated water M1 to the cooling water flow coil 230; a cooling water outlet pipe 240 for discharging cooling water whose temperature is increased by heat exchange with indoor air in the cooling water flow coil 230; a cooling water discharge pipe 245 connecting the cooling water discharge pipe 240 and the heat exchanger 400; a flow coil bypass pipe 215 connecting an end of the coolant inlet pipe 210 and the coolant outlet pipe 240 just before being introduced into the coolant flow coil 230; The first flow coil bypass pipe 215, the coolant outlet pipe 240, and the coolant outlet pipe 245 are provided at a point where they merge to adjust the discharge path of the coolant according to the control signal of the controller 500. a three-way valve 250 and; a condenser inlet pipe 270 branching from the cooling water discharge pipe 245 and supplying cooling water to the condenser 120; A condenser discharge pipe 275 connecting the condenser 120 and the cooling water discharge pipe 245 may be included.

일 실시예에 따르면, 상기 응축기(120)는, 냉매가 유동되는 응축기냉매이동관(121)과; 상기 응축기냉매이동관(121)을 내부에 수용하며 상기 응축기유입관(270) 및 상기 응축기배출관(275)이 각각 결합되며, 상기 냉각수가 수용되며 상기 응축기냉매이동관(121)과 열교환되게 하는 응축기탱크(123)를 포함할 수 있다. According to an embodiment, the condenser 120 includes a condenser refrigerant pipe 121 through which a refrigerant flows; A condenser tank ( 123) may be included.

일 실시예에 따르면, 상기 중간처리수순환부(300)는, 중간처리수를 상기 열교환기(400)로 유입시키는 중간처리수유입관(310)과; 상기 열교환기(400)로부터 중간처리수를 배출하는 중간처리수배출관(320)을 포함하며, 상기 중간처리수는 상수, 하수, 중수, 보일러용수, 빌딩 냉각수 중 어느 하나일 수 있다. According to an embodiment, the intermediate treated water circulation unit 300 includes: an intermediate treated water inlet pipe 310 for introducing the intermediate treated water into the heat exchanger 400 ; It includes an intermediate treated water discharge pipe 320 for discharging intermediate treated water from the heat exchanger 400, and the intermediate treated water may be any one of tap water, sewage, heavy water, boiler water, and building cooling water.

일 실시예에 따르면, 상기 열교환기(400)는, 상기 냉각수배출관(245) 및 상기 냉각수유입관(210)과 양단이 각각 연결된 내부냉각수이동관(410)과; 내부에 상기 내부냉각수이동관(410)이 수용되며, 양단이 상기 중간처리수유입관(310) 및 중간처리수배출관(320)과 각각 연결되는 외부처리수이동관(420)을 포함할 수 있다. According to an embodiment, the heat exchanger 400 includes: an internal coolant transfer pipe 410 connected at both ends to the coolant outlet pipe 245 and the coolant inlet pipe 210; The internal coolant transfer pipe 410 is accommodated therein, and both ends may include an external treated water transfer pipe 420 that is respectively connected to the intermediate treated water inlet pipe 310 and the intermediate treated water outlet pipe 320 .

본 발명에 따른 항온항습 공조시스템은 열교환기를 통해 동절기에는 중간처리수와 냉각수를 냉각한 후 항온항습기 내부의 냉각수유동코일에서 실내공기와 열교환하여 프리쿨링방식으로 동작할 수 있다. The constant temperature and humidity air conditioning system according to the present invention can be operated in a pre-cooling manner by cooling intermediate treated water and cooling water in winter through a heat exchanger, and then exchanging heat with indoor air in a cooling water flow coil inside the constant temperature and humidity unit.

또한, 본 발명의 항온항습 공조시스템은 간절기에는 냉각수를 이용한 열교환과 냉매사이클에 의한 열교환을 동시에 이용하여 실내공기를 냉각할 수 있다. In addition, the constant temperature and humidity air conditioning system of the present invention can cool indoor air by simultaneously using heat exchange using cooling water and heat exchange by a refrigerant cycle in the changing season.

또한, 하절기에는 냉각수는 사용하지 않고 냉매사이클만 사용하여 실내공기를 냉각할 수 있다. In addition, in summer, the indoor air can be cooled by using only the refrigerant cycle without using the cooling water.

이에 의해 본 발명의 항온항습 공조시스템은 공간의 항온항습에 요구되는 전기에너지를 절감할 수 있다. Accordingly, the constant temperature and humidity air conditioning system of the present invention can reduce the electrical energy required for the constant temperature and humidity of the space.

또한, 종래 실외기로 냉각탑을 이용하는 프리쿨링 수냉식 공조 방식 대비 낮은 PUE(전력효율지수)을 달성할 수 있다. In addition, it is possible to achieve a lower PUE (Power Efficiency Index) compared to the pre-cooling water-cooled air conditioning method using a cooling tower as a conventional outdoor unit.

또한, 실외기로 냉각탑을 설치하지 않음에 따라 최근 부각되는 WUE(Water Usage Efficiency) 관점에서 별도의 물 사용량이 없는 장점이 있다. In addition, there is an advantage in that there is no separate water consumption from the viewpoint of Water Usage Efficiency (WUE), which is recently highlighted as a cooling tower is not installed as an outdoor unit.

또한, 구성 단순화로 유지관리가 용이하고, 규모 확장이 용이한 장점이 있다. In addition, there are advantages of easy maintenance and easy scale expansion due to the simplified configuration.

또한, 중간처리수로 하수처리장의 하수를 사용할 경우 열교환과정에서 하수의 온도가 상승하며 이는 하수처리장 미생물 처리공정에서 미생물 증식에 필요한 열을 추가 동력 없이 얻음에 따라 하수처리장의 에너지 비용을 절감할 수 있는 장점이 있다. In addition, when sewage from a sewage treatment plant is used as an intermediate treatment, the temperature of the sewage rises during the heat exchange process. there are advantages to

또한, 중간처리수로 보일러용수를 사용할 경우 열교환 과정에서 보일러용수 온도를 상승시킴으로써 보일러 가동에 소모되는 에너지비용(LNG 등)을 절감할 수 있는 장점이 있다.In addition, when boiler water is used as intermediate treatment water, there is an advantage in that energy costs (LNG, etc.) consumed in boiler operation can be reduced by increasing the temperature of boiler water in the heat exchange process.

도 1은 종래 항온항습기의 구성을 개략적으로 도시한 개략도,
도 2는 본 발명에 따른 항온항습 공조시스템의 동절기 동작구성을 도시한 개략도,
도 3은 본 발명에 따른 항온항습 공조시스템의 간절기 동작구성을 도시한 개략도,
도 4는 본 발명에 따른 항온항습 공조시스템의 하절기 동작구성을 도시한 개략도,
도 5는 본 발명에 따른 항온항습 공조시스템의 응축기의 구성을 도시한 개략도,
도 6은 본 발명에 따른 항온항습 공조시스템의 열교환기의 구성을 도시한 도면이다.
1 is a schematic diagram schematically showing the configuration of a conventional thermo-hygrostat;
2 is a schematic diagram showing the winter operation configuration of the constant temperature and humidity air conditioning system according to the present invention;
3 is a schematic diagram showing the configuration of operation in different seasons of the constant temperature and humidity air conditioning system according to the present invention;
4 is a schematic diagram showing the summer operation configuration of the constant temperature and humidity air conditioning system according to the present invention;
5 is a schematic diagram showing the configuration of a condenser of a constant temperature and humidity air conditioning system according to the present invention;
6 is a diagram showing the configuration of a heat exchanger of the constant temperature and humidity air conditioning system according to the present invention.

본 발명을 충분히 이해하기 위해서 본 발명의 바람직한 실시예를 첨부 도면을 참조하여 설명한다. 본 발명의 실시예는 여러 가지 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 상세히 설명하는 실시예로 한정되는 것으로 해석되어서는 안 된다. 본 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되어 지는 것이다. 따라서 도면에서의 요소의 형상 등은 보다 명확한 설명을 강조하기 위해서 과장되어 표현될 수 있다. 각 도면에서 동일한 부재는 동일한 참조부호로 도시한 경우가 있음을 유의하여야 한다. 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 공지 기능 및 구성에 대한 상세한 기술은 생략된다.In order to fully understand the present invention, preferred embodiments of the present invention will be described with reference to the accompanying drawings. Embodiments of the present invention may be modified in various forms, and the scope of the present invention should not be construed as being limited to the embodiments described in detail below. This example is provided to more completely explain the present invention to those of ordinary skill in the art. Accordingly, the shape of elements in the drawings may be exaggerated to emphasize a clearer description. It should be noted that the same members in each drawing are sometimes shown with the same reference numerals. Detailed descriptions of well-known functions and configurations determined to unnecessarily obscure the gist of the present invention will be omitted.

도 2는 본 발명에 따른 항온항습 공조시스템(1)이 동절기에 동작되는 구성을 개략적으로 도시한 예시도이고, 도 3은 항온항습 공조시스템(1)이 간절기에 동작되는 구성을 개략적으로 도시한 예시도이고, 도 4는 항온항습 공조시스템(1)이 하절기에 동작되는 구성을 개략적으로 도시한 예시도이다. 2 is an exemplary diagram schematically illustrating a configuration in which the constant temperature and humidity air conditioning system 1 according to the present invention is operated in winter, and FIG. It is an exemplary view, and FIG. 4 is an exemplary diagram schematically illustrating a configuration in which the constant temperature and humidity air conditioning system 1 is operated in summer.

도시된 바와 같이 본 발명에 따른 항온항습 공조시스템(1)은 냉각사이클에 의해 냉매(C)를 순환하여 온도가 상승된 실내공기의 온도를 낮춰주는 냉각사이클부(100)와, 냉각사이클부(100)의 일측에 구비되어 냉각수(W1)를 순환하여 온도가 상승된 실내공기의 온도를 낮춰주는 냉각수순환부(200)와, 계절에 따라 수온이 변하는 중간처리수(M1)를 순환하는 중간처리수순환부(300)와, 냉각수순환부(200)와 중간처리수순환부(300) 사이에 구비되어 실내공기와의 접촉에 의해 온도가 상승된 열교환 냉각수(W2)와 중간처리수(M1)를 서로 열교환시켜 냉각수(W1)의 온도를 낮추는 열교환기(400)를 포함한다. As shown, the constant temperature and humidity air conditioning system 1 according to the present invention includes a cooling cycle unit 100 that circulates a refrigerant C by a cooling cycle to lower the temperature of indoor air having an elevated temperature, and a cooling cycle unit ( 100) provided on one side of the cooling water circulating unit 200 to circulate the cooling water W1 to lower the temperature of the indoor air whose temperature has risen, and an intermediate treatment for circulating the intermediate treated water M1 whose water temperature changes according to the season The water circulation unit 300, the heat exchange cooling water W2 and the intermediate treatment water M1 provided between the cooling water circulation unit 200 and the intermediate treatment water circulation unit 300, the temperature of which is increased by contact with the indoor air, is exchanged with each other. and a heat exchanger 400 for lowering the temperature of the cooling water W1 by heat exchange.

또한, 항온항습 공조시스템(1)은 중간처리수(M1)와 냉각수(W1)의 온도에 따라 냉각사이클부(100)를 사용하지 않고 냉각수(W1)만으로 실내공기(A)를 냉각하는 프리쿨링, 냉각사이클부(100)와 냉각수(W1)를 동시에 사용하여 실내공기(A)를 냉각하는 하이브리드 쿨링, 냉각사이클부(100)만 사용하여 실내공기(A)를 냉각하는 냉각사이클 쿨링 중 어느 하나로 동작되도록 전체 동작을 제어하는 제어부(500)를 포함한다. In addition, the constant temperature and humidity air conditioning system 1 is a pre-cooling that cools the indoor air (A) only with the cooling water (W1) without using the cooling cycle unit (100) according to the temperature of the intermediate treated water (M1) and the cooling water (W1). , hybrid cooling that uses the cooling cycle unit 100 and the cooling water W1 at the same time to cool the indoor air (A), and cooling cycle cooling that uses only the cooling cycle unit 100 to cool the indoor air (A). and a control unit 500 for controlling the entire operation to be operated.

여기서, 항온항습이 유지되어야할 장소(B)의 내부에는 케이싱(10)이 구비되고, 케이싱(10)에는 온도가 상승된 실내공기(A)가 유입되는 실내공기유입구(11)와, 냉각수순환부(200) 또는 냉각사이클부(100)와 접촉되며 온도가 하강된 공조공기(A1,A2)를 외부로 배출하는 공조공기배출구(13)가 각각 형성된다. Here, a casing 10 is provided inside the place (B) where constant temperature and humidity is to be maintained, and the indoor air inlet 11 through which the indoor air (A) with an elevated temperature is introduced into the casing 10, and cooling water circulation The air conditioning air outlet 13 for discharging the air conditioning air A1 and A2 having a lowered temperature in contact with the unit 200 or the cooling cycle unit 100 to the outside is formed, respectively.

상세한 설명에 사용되는 실내공기(A)는 항온항습이 유지되는 장소(B)의 내부에서 케이싱(10) 내부로 유입되는 온도가 상승된 공기를 말하고, 공조공기(A1,A2)는 항온항습 공조시스템(1)과 접촉되며 온도가 하강되어 케이싱(10) 외부로 배출되는 공기를 말한다. The indoor air (A) used in the detailed description refers to the air with an increased temperature flowing into the casing 10 from the inside of the place (B) where constant temperature and humidity is maintained, and the air conditioning air (A1, A2) is constant temperature and humidity air conditioning. It is in contact with the system (1) and the temperature is lowered refers to the air discharged to the outside of the casing (10).

냉각수(W1)는 열교환기(400)에서 중간처리수(M1)와 열교환에 의해 온도가 하강되어 냉각수유동코일(230)에서 실내공기(A)와 열교환되는 물을 말하며, 열교환 냉각수(W2)는 냉각수유동코일(230)에서 실내공기(A)와 열교환되며 온도가 상승된 물을 말한다. The cooling water W1 refers to water whose temperature is lowered by heat exchange with the intermediate treated water M1 in the heat exchanger 400 and heat exchanged with the indoor air A in the cooling water flow coil 230, and the heat exchange cooling water W2 is It refers to water whose temperature is increased by exchanging heat with the indoor air (A) in the cooling water flow coil 230 .

중간처리수(M1)는 계절에 따라 온도가 변화되는 상수, 하수, 중수, 보일러용수, 빌딩 냉각수 중 어느 하나를 말한다. Intermediate treatment water (M1) refers to any one of water, sewage, heavy water, boiler water, and building cooling water whose temperature changes depending on the season.

냉각사이클부(100)는 압축기(110), 응축기(120), 증발기(130)가 냉매이동관(150)에 의해 연결되어 냉매(C)를 순환시킨다. 냉동사이클은 증발기(130)에서 증발한 저온저압의 기체냉매를 고압의 가스냉매로 압축하는 압축기(110)와, 압축기(110)에서 압축된 고압의 기체냉매를 냉각수와 열교환하여 기채냉매의 고온의 열을 방출시켜 응축액화시키는 응축기(120)와, 응축기(120)에서 응축액화된 고온고압의 액체냉매를 교축작용에 의해 저온저압의 액냉매로 온도와 압력을 강화시키는 팽창밸브(미도시)와, 팽창밸브(미도시)를 통과하여 저온저압으로 감압된 액체냉매를 유입하여 실내공기와 열교환시키는 증발기(130)를 포함한다. In the cooling cycle unit 100 , the compressor 110 , the condenser 120 , and the evaporator 130 are connected by a refrigerant pipe 150 to circulate the refrigerant C. In the refrigeration cycle, the compressor 110 compresses the low-temperature and low-pressure gas refrigerant evaporated in the evaporator 130 into the high-pressure gas refrigerant, and the high-pressure gas refrigerant compressed in the compressor 110 exchanges heat with cooling water to increase the high temperature of the gas refrigerant. An expansion valve (not shown) for strengthening the temperature and pressure of the liquid refrigerant of high temperature and high pressure condensed in the condenser 120 into a liquid refrigerant of low temperature and low pressure by throttling action, and and an evaporator 130 for heat-exchanging indoor air by introducing a liquid refrigerant decompressed to a low temperature and low pressure through an expansion valve (not shown).

냉각수순환부(200)는 케이싱(10)의 실내공기유입구(11) 측에 구비되어 냉각수(W1)와 실내공기(A)가 열교환되게 하는 냉각수유동코일(230)과, 열교환기(400)와 냉각수유동코일(230)을 연결하여 냉각수유동코일(230)로 냉각수(W1)를 공급하는 냉각수유입관(210)과, 냉각수유동코일(230)과 열교환기(400)를 연결하며 실내공기(A)와 열교환에 의해 온도가 상승된 열교환 냉각수(W2)를 열교환기(400)로 배출시키는 냉각수배출관(245)을 포함한다. The cooling water circulation unit 200 is provided at the indoor air inlet 11 side of the casing 10 and includes a cooling water flow coil 230 for heat exchange between the cooling water W1 and the indoor air A, and a heat exchanger 400 and The cooling water inlet pipe 210 for supplying the cooling water W1 to the cooling water flow coil 230 by connecting the cooling water flow coil 230, and the cooling water flow coil 230 and the heat exchanger 400 are connected and the indoor air (A) ) and a cooling water discharge pipe 245 for discharging the heat exchange cooling water W2 whose temperature is increased by heat exchange to the heat exchanger 400 .

여기서, 케이싱(10)의 실내공기유입구(11)에는 냉각수유동코일(230)이 배치되고, 공조공기배출구(13)에는 송풍팬(140)이 배치된다. 냉각수유동코일(230)과 송풍팬(140) 사이에는 증발기(130)가 구비된다. Here, the cooling water flow coil 230 is disposed at the indoor air inlet 11 of the casing 10 , and the blowing fan 140 is disposed at the air conditioning air outlet 13 . An evaporator 130 is provided between the cooling water flow coil 230 and the blowing fan 140 .

실내에서 온도가 상승된 실내공기(A)는 실내공기유입구(11)로 유입되고, 냉각수유동코일(230)과 접촉되며 열교환되고 온도가 하강된다. 실내공기(A)는 냉각사이클부(100)의 동작여부에 따라 냉각수유동코일(230)만 접촉한 상태로 희망하는 온도로 하강된 후 송풍팬(140)을 통해 외부로 배출되거나, 냉각수유동코일(230)과 증발기(130)를 순차적으로 접촉한 후 희망하는 온도로 하강된 후 송풍팬(140)을 통해 외부로 배출될 수 있다. 이 각각의 과정에 대해서는 이후에 보다 자세히 설명한다. The indoor air (A), whose temperature has risen in the room, is introduced into the indoor air inlet (11), is in contact with the cooling water flow coil (230), heats up, and the temperature is lowered. The indoor air (A) is lowered to a desired temperature with only the cooling water flow coil 230 in contact depending on whether the cooling cycle unit 100 operates, and then discharged to the outside through the blower fan 140 or the cooling water flow coil. After the 230 and the evaporator 130 are sequentially brought into contact, the temperature is lowered to a desired temperature, and then the evaporator 130 may be discharged to the outside through the blower fan 140 . Each of these processes will be described in more detail later.

냉각수유입관(210)은 열교환기(400)와 냉각수유동코일(230)을 연결하여 중간처리수(M1)와 열교환에 의해 온도가 낮아진 냉각수(W1)를 냉각수유동코일(230)로 공급한다. 냉각수유입관(210)이 경로상에는 냉각수(W1)가 순환되게 동력을 형성하는 냉각수순환펌프(220)와, 냉각수유입관(210)을 통해 이동되는 냉각수(W1)의 온도를 측정하는 냉각수온도센서(211)가 구비된다. The coolant inlet pipe 210 connects the heat exchanger 400 and the coolant flow coil 230 to supply the coolant W1 whose temperature is lowered by heat exchange with the intermediate treated water M1 to the coolant flow coil 230 . A cooling water circulation pump 220 that forms power to circulate the cooling water W1 on the path of the cooling water inlet pipe 210 and a cooling water temperature sensor that measures the temperature of the cooling water W1 moving through the cooling water inlet pipe 210 (211) is provided.

냉각수유동코일(230)의 후단에는 냉각수유출관(240)이 연결되고, 냉각수유출관(240)은 냉각수배출관(245)과 연결된다. 냉각수유출관(240)과 냉각수배출관(245) 사이에는 냉각수유입관(210)과 연결되는 유동코일 바이패스관(215)이 연결된다. A cooling water outlet pipe 240 is connected to the rear end of the cooling water flow coil 230 , and the cooling water outlet pipe 240 is connected to the cooling water discharge pipe 245 . A flow coil bypass pipe 215 connected to the coolant inlet pipe 210 is connected between the coolant outlet pipe 240 and the coolant outlet pipe 245 .

냉각수유출관(240)과 유동코일 바이패스관(215) 및 냉각수배출관(245)이 만나는 지점에는 제1삼방밸브(250)가 구비되어 냉각수(W1)의 배출경로를 조절한다. 제어부(500)에 의한 제1삼방밸브(250)의 선택적 개폐에 의해 열전달 냉각수(W1)는 도 2에 도시된 바와 같이 냉각수유출관(240)으로부터 냉각수배출관(245)으로 이동되거나, 도 4에 도시된 바와 같이 냉각수유입관(210)에서 냉각수배출관(245)으로 이동될 수 있다. A first three-way valve 250 is provided at a point where the coolant outlet pipe 240 meets the flow coil bypass pipe 215 and the coolant outlet pipe 245 to control the discharge path of the coolant W1. By selective opening and closing of the first three-way valve 250 by the control unit 500, the heat transfer coolant W1 is moved from the coolant outlet pipe 240 to the coolant outlet pipe 245 as shown in FIG. 2, or in FIG. As shown, it may move from the coolant inlet pipe 210 to the coolant outlet pipe 245 .

한편, 냉각수배출관(245)의 경로상에는 제2삼방밸브(260)가 구비된다. 제2삼방밸브(260)에는 냉각수배출관(245)으로부터 분기되어 응축기(120)를 연결하는 응축기유입관(270)이 결합된다. Meanwhile, a second three-way valve 260 is provided on the path of the cooling water discharge pipe 245 . A condenser inlet pipe 270 branching from the cooling water discharge pipe 245 and connecting the condenser 120 is coupled to the second three-way valve 260 .

제2삼방밸브(260)는 제어부(500)의 제어에 의해 선택적으로 개폐되며, 도 2에 도시된 바와 같이 냉각수(W1)가 냉각수배출관(245)을 따라 이동되게 하거나, 도 3에 도시된 바와 같이 냉각수(W1)가 응축기유입관(270)을 통해 응축기(120)를 경유한 후 냉각수배출관(245)으로 이동되게 한다. The second three-way valve 260 is selectively opened and closed under the control of the control unit 500, and allows the cooling water W1 to move along the cooling water discharge pipe 245 as shown in FIG. 2, or as shown in FIG. Similarly, the cooling water W1 passes through the condenser 120 through the condenser inlet pipe 270 and then moves to the cooling water discharge pipe 245 .

도 5는 응축기(120)의 구성을 개략적으로 도시한 개략도이다. 도시된 바와 같이 응축기(120)는 냉매(C)가 이동되는 응축기냉매이동관(121)과, 응축기냉매이동관(121)을 감싸게 구비되며 내부에 냉각수(W1)가 저장되는 응축기탱크(123)가 구비된다. 5 is a schematic diagram schematically illustrating the configuration of the condenser 120 . As shown, the condenser 120 is provided to surround the condenser refrigerant pipe 121 through which the refrigerant (C) moves, and the condenser refrigerant pipe 121, and the coolant (W1) is stored therein. A condenser tank 123 is provided. do.

응축기유입관(270)은 응축기탱크(123)와 연결되어 응축기탱크(123)로 열교환 냉각수(W2)를 공급한다. 열교환 냉각수(W2)는 응축기탱크(123) 내부에서 응축기냉매이동관(121)과 열교환된 후, 응축기배출관(275)을 통해 배출된다. 응축기배출관(275)은 냉각수배출관(245)과 합쳐진다. The condenser inlet pipe 270 is connected to the condenser tank 123 to supply the heat exchange cooling water W2 to the condenser tank 123 . The heat exchange cooling water W2 exchanges heat with the condenser refrigerant pipe 121 in the condenser tank 123 , and then is discharged through the condenser discharge pipe 275 . The condenser discharge pipe 275 is combined with the cooling water discharge pipe 245 .

중간처리수(M1)는 중간처리수저장조(330)로부터 열교환기(400)로 중간처리수(M1)를 공급하는 중간처리수유입관(310)과, 열교환기(400)에서 냉각수(W1)와 열교환되며 온도가 상승된 열교환 중간처리수(M2)를 중간처리수저장조(330)로 배출하는 중간처리수배출관(320)을 포함한다. The intermediate treated water M1 includes an intermediate treated water inlet pipe 310 for supplying the intermediate treated water M1 from the intermediate treated water storage tank 330 to the heat exchanger 400 , and cooling water W1 in the heat exchanger 400 and and an intermediate treated water discharge pipe 320 for discharging the heat exchange intermediately treated water M2, which is heat exchanged and whose temperature is increased, to the intermediate treated water storage tank 330 .

중간처리수유입관(310)의 경로상에는 중간처리수(M1)가 순환되게 동력을 제공하는 중간처리수순환펌프(313)와, 중간처리수(M1)의 온도를 측정하는 중간처리수온도센서(311)가 구비된다. On the path of the intermediate treated water inlet pipe 310, an intermediate treated water circulation pump 313 that provides power to circulate the intermediate treated water M1, and an intermediate treated water temperature sensor that measures the temperature of the intermediate treated water M1 ( 311) is provided.

열교환기(400)는 서로 온도차가 나는 열교환 냉각수(W2)와 중간처리수(M1)를 열교환하여 냉각수(W1)의 온도를 실내공기(A)를 냉각하는데 필요한 온도까지 떨어뜨린다. 도 6은 열교환기(400)의 일례를 도시한 도면이다. The heat exchanger 400 heats the heat exchange cooling water W2 and the intermediate treated water M1 having a temperature difference with each other to lower the temperature of the cooling water W1 to a temperature required to cool the indoor air A. 6 is a diagram illustrating an example of the heat exchanger 400 .

도 6의 (a)와 (b)에 도시된 바와 같이 열교환기(400)는 내부냉각수이동관(410)과 외부처리수이동관(420)이 서로 중첩되게 배치되어 열교환이 이루어진다. 내부냉각수이동관(410)의 양단(411,413)은 각각 냉각수유입관(210) 및 냉각수배출관(245)이 연결되고, 외부처리수이동관(420)은 양단(421,423)이 각각 중간처리수유입관(310)과 중간처리수배출관(320)이 연결된다. As shown in (a) and (b) of FIG. 6 , in the heat exchanger 400 , an internal coolant pipe 410 and an external treated water pipe 420 are disposed to overlap each other to perform heat exchange. The both ends 411 and 413 of the internal coolant pipe 410 are connected to the coolant inlet pipe 210 and the coolant outlet pipe 245, respectively, and the external treated water pipe 420 has both ends 421 and 423 of the intermediate treated water inlet pipe 310, respectively. And the intermediate treated water discharge pipe 320 is connected.

도 6의 (a)에 확대도시된 바와 같이 중간처리수(M1)가 내부냉각수이동관(410)의 외부를 감싸 중간처리수(M1)와 냉각수(W1)의 열교환이 이루어진다. 6A , the intermediate treated water M1 surrounds the outside of the internal coolant pipe 410 to exchange heat between the intermediate treated water M1 and the cooling water W1.

제어부(500)는 중간처리수온도센서(311)에서 감지된 중간처리수(M1)의 현재온도와 냉각수온도센서(211)에서 감지된 냉각수(W1)의 현재온도를 기준으로 냉각수(W1)의 이동경로를 조절하고, 냉각사이클부(100)이 동작여부를 제어한다. The control unit 500 controls the temperature of the cooling water W1 based on the current temperature of the intermediate treatment water M1 detected by the intermediate treatment water temperature sensor 311 and the current temperature of the cooling water W1 detected by the cooling water temperature sensor 211 . It adjusts the movement path and controls whether the cooling cycle unit 100 operates.

제어부(500)는 중간처리수(M1)의 온도가 낮은 동절기에는 도 2에 도시된 바와 같이 냉각사이클부(100)를 동작하지 않고 실내공기(A)를 냉각수(W1)와의 열교환만으로 냉각하는 프리쿨링이 수행되게 한다. In the winter season when the temperature of the intermediate treated water M1 is low, the control unit 500 does not operate the cooling cycle unit 100 as shown in FIG. 2 and cools the indoor air A only through heat exchange with the cooling water W1. Let cooling be performed.

또한, 제어부(500)는 중간처리수(M1)의 온도가 높은 하절기에는 도 4에 도시된 바와 같이 냉각사이클부(100)만 사용하여 실내공기(A)를 냉각하는 냉각사이클 쿨링이 수행되게 한다. In addition, the control unit 500 performs cooling cycle cooling for cooling the indoor air A using only the cooling cycle unit 100 as shown in FIG. 4 in the summer season when the temperature of the intermediate treated water M1 is high. .

중간처리수(M1)의 온도가 냉각수(W1)만으로 실내공기(A)를 냉각하기에 부족한 간절기일 때는 냉각수(W1)를 이용한 실내공기(A) 냉각과, 냉각사이클을 이용한 냉각을 동시에 이용하는 하이브리드 쿨링이 수행되게 한다. When the temperature of the intermediate treated water (M1) is insufficient to cool the indoor air (A) with only the cooling water (W1), a hybrid that uses cooling water (W1) for indoor air (A) cooling and cooling using a cooling cycle at the same time Let cooling be performed.

도 2에 도시된 바와 같이 동절기에는 중간처리수(M1)의 온도가 낮으므로 냉각수(W1)는 열교환기(400)에서 열교환 후 온도가 충분히 낮아진다. 이에 냉각수(W1)는 냉각수유입관(210)을 통해 냉각수유동코일(230)로 이동되고, 냉각수유동코일(230)에서 실내공기(A)와 열교환된다. As shown in FIG. 2 , since the temperature of the intermediate treated water M1 is low in winter, the temperature of the cooling water W1 is sufficiently lowered after heat exchange in the heat exchanger 400 . Accordingly, the cooling water W1 moves to the cooling water flow coil 230 through the cooling water inlet pipe 210 and exchanges heat with the indoor air A in the cooling water flow coil 230 .

제1온도(T1)를 갖는 실내공기(A)는 냉각수유동코일(230)을 거치며 열교환되어 항온항습에서 요구되는 제2온도(T2)를 갖는 1차공조공기(A1)로 냉각되어 송풍팬(140)을 통해 실내로 배출된다. The indoor air (A) having the first temperature (T1) is heat-exchanged through the cooling water flow coil (230), cooled with the primary air conditioning air (A1) having the second temperature (T2) required for constant temperature and constant humidity, and a blower fan ( 140) is discharged into the room.

냉각수유동코일(230)에서 실내공기(A)와 열교환하며 온도가 상승된 열교환 냉각수(W2)는 냉각수유출관(240)을 따라 이동되고, 제1삼방밸브(250)는 냉각수배출관(245)으로 열교환 냉각수(W2)가 배출되게 제어부(500)에 의해 개폐조작된다. In the cooling water flow coil 230, the heat exchange cooling water W2, whose temperature is increased by exchanging heat with the indoor air A, is moved along the cooling water outlet pipe 240, and the first three-way valve 250 is connected to the cooling water outlet pipe 245. The opening and closing operation is performed by the control unit 500 so that the heat exchange cooling water W2 is discharged.

이에 의해 열교환 냉각수(W2)는 냉각수배출관(245)을 통해 열교환기(400)의 내부냉각수이동관(410)으로 이동되고, 중간처리수(M1)와 열교환 후 다시 냉각수유입관(210)으로 이동되며 순환경로로 순환되고 프리쿨링이 수행된다. As a result, the heat exchange cooling water W2 is moved to the internal cooling water transfer pipe 410 of the heat exchanger 400 through the cooling water discharge pipe 245, and after heat exchange with the intermediate treated water M1, it is moved to the cooling water inlet pipe 210 again. It is circulated in a circulation path and pre-cooling is performed.

한편, 도 3에 도시된 바와 같이 간절기의 경우 중간처리수(M1)의 온도가 냉각수(W1)를 냉각하기에 충분하지 않다. 이에 따라 냉각수유입관(210)을 통해 냉각수유동코일(230)로 냉각수(W1)가 이동되고 실내공기(A)와 열교환된다. On the other hand, as shown in FIG. 3 , in the case of the changing season, the temperature of the intermediate treated water M1 is not sufficient to cool the cooling water W1. Accordingly, the cooling water W1 is moved to the cooling water flow coil 230 through the cooling water inlet pipe 210 and exchanged heat with the indoor air A.

1차공조공기(A1)는 냉각수유동코일(230)에서 열교환된 후 항온항습에서 요구되는 제2온도(T2) 보다 높은 제3온도(T3>T2)로 냉각된다. The primary air conditioning air (A1) is cooled to a third temperature (T3>T2) higher than the second temperature (T2) required for constant temperature and humidity after heat exchange in the cooling water flow coil (230).

제어부(500)는 1차공조공기(A1)의 추가 냉각을 위해 냉각사이클부(100)를 구동한다. 압축기(110)가 동작되며 냉매가 순환되고, 증발기(130)에서 1차공조공기(A1)가 열교환되며 제2온도(T2)를 갖는 2차공조공기(A2)로 냉각된다. 2차공조공기(A2)는 송풍팬(140)을 통해 실내로 배출된다. The control unit 500 drives the cooling cycle unit 100 for additional cooling of the primary air conditioning air A1. The compressor 110 is operated, the refrigerant is circulated, and the primary air conditioning air A1 is heat exchanged in the evaporator 130 and cooled by the secondary air conditioning air A2 having a second temperature T2. The secondary air conditioning air (A2) is discharged into the room through the blowing fan (140).

냉각수유출관(240)으로 배출된 열교환 냉각수(W2)는 냉각수배출관(245)을 따라 이동되고, 제2삼방밸브(260)의 경로전환에 의해 응축기유입관(270)으로 유입된다. 열교환 냉각수(W2)는 응축기탱크(123)로 유입된 후 응축기냉매이동관(121)과 열교환되며 온도가 상승된다.The heat exchange cooling water W2 discharged to the cooling water outlet pipe 240 is moved along the cooling water discharge pipe 245 , and is introduced into the condenser inlet pipe 270 by path switching of the second three-way valve 260 . The heat exchange cooling water W2 flows into the condenser tank 123 and heat exchanges with the condenser refrigerant pipe 121 to increase the temperature.

응축기(120)에서 열교환되며 온도가 상승된 열교환 냉각수(W2)는 냉각수배출관(245)을 통해 열교환기(400)의 내부냉각수이동관(410)으로 공급되고 중간처리수(M1)와 열교환 후 동일한 하이브리드 쿨링 경로를 따라 순환된다. The heat exchange coolant W2, which is heat exchanged in the condenser 120 and whose temperature is increased, is supplied to the internal coolant transfer pipe 410 of the heat exchanger 400 through the coolant discharge pipe 245, and after heat exchange with the intermediate treated water M1, the same hybrid It circulates along the cooling path.

한편, 중간처리수(M1)의 온도가 냉각수(W1)의 온도가 차이가 없거나 더 높은 하절기의 경우 도 4에 도시된 바와 같이 열교환기(400)에서 열교환된 냉각수(W1)는 냉각수유입관(210)으로 이동되고, 제1삼방밸브(250)의 경로조절에 의해 냉각수유동코일(230)로 유입되지 못하고 유동코일 바이패스관(215)을 통해 냉각수배출관(245)으로 배출된다. 그리고 다시 열교환기(400)로 유입된다. On the other hand, in the case of the summer season when the temperature of the intermediate treated water M1 has no difference or is higher than the temperature of the cooling water W1, the cooling water W1 heat-exchanged in the heat exchanger 400 as shown in FIG. 210), and is not introduced into the cooling water flow coil 230 by the path control of the first three-way valve 250 and is discharged to the cooling water discharge pipe 245 through the flow coil bypass pipe 215. And it flows into the heat exchanger 400 again.

이 때, 냉각사이클부(100)는 냉매를 순환하고, 실내공기(A)는 증발기(130)에서 열교환을 통해 희망하는 항온온도(T2)로 냉각되어 배출된다. At this time, the cooling cycle unit 100 circulates the refrigerant, and the indoor air A is cooled to a desired constant temperature T2 through heat exchange in the evaporator 130 and discharged.

이상에서 살펴본 바와 같이 본 발명에 따른 항온항습 공조시스템은 동절기에는 중간처리수와 냉각수를 냉각한 후 냉각수유동코일에서 실내공기와 열교환하여 프리쿨링방식으로 동작할 수 있다. As described above, the constant temperature and humidity air conditioning system according to the present invention can be operated in a pre-cooling manner by cooling the intermediate treated water and cooling water in the winter season and then exchanging heat with the indoor air in the cooling water flow coil.

또한, 본 발명의 항온항습 공조시스템은 간절기에는 냉각수를 이용한 열교환과 냉매사이클에 의한 열교환을 동시에 이용하여 실내공기를 냉각할 수 있다. In addition, the constant temperature and humidity air conditioning system of the present invention can cool indoor air by simultaneously using heat exchange using cooling water and heat exchange by a refrigerant cycle in the changing season.

또한, 하절기에는 냉각수는 사용하지 않고 냉매사이클만 사용하여 실내공기를 냉각할 수 있다. In addition, in summer, the indoor air can be cooled by using only the refrigerant cycle without using the cooling water.

이에 의해 본 발명의 항온항습 공조시스템은 공간의 항온항습에 요구되는 전기에너지를 절감할 수 있다. Accordingly, the constant temperature and humidity air conditioning system of the present invention can reduce the electrical energy required for the constant temperature and humidity of the space.

또한, 종래 프리쿨링 수냉식 공조 방식 대비 낮은 PUE(전력효율지수)을 달성할 수 있다. In addition, it is possible to achieve a lower PUE (Power Efficiency Index) compared to the conventional pre-cooling water-cooled air conditioning method.

또한, 종래 프리쿨링 수냉식 공조방식에 적용되는 실외기를 사용하지 않고 열교환기로 대체함으로써 최근 부각되는 WUE(Water Usage Efficiency) 관점에서 별도의 물 사용량이 없는 장점이 있다. In addition, there is an advantage in that there is no separate water consumption in terms of WUE (Water Usage Efficiency), which has recently been highlighted by replacing the outdoor unit with a heat exchanger instead of using the outdoor unit applied to the conventional precooling water cooling air conditioning system.

또한, 구성 단순화로 유지관리가 용이하고 규모 확장이 용이한 장점이 있다. In addition, there are advantages of easy maintenance and easy scale expansion due to simplified configuration.

또한, 중간처리수로 하수처리장의 하수를 사용할 경우 미생물 증식에 필요한 열을 추가 동력 없이 열교환기에서의 열교환에 의해 얻을 수 있는 장점이 있다. In addition, when using sewage from a sewage treatment plant as an intermediate treatment, there is an advantage in that heat required for microbial growth can be obtained by heat exchange in a heat exchanger without additional power.

이상에서 설명된 본 발명의 항온항습 공조시스템의 실시예는 예시적인 것에 불과하며, 본 발명이 속한 기술분야의 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시예가 가능하다는 점을 잘 알 수 있을 것이다. 그러므로 본 발명은 상기의 상세한 설명에서 언급되는 형태로만 한정되는 것은 아님을 잘 이해할 수 있을 것이다. 따라서 본 발명의 진정한 기술적 보호 범위는 첨부된 특허청구범위의 기술적 사상에 의해 정해져야 할 것이다. 또한, 본 발명은 첨부된 청구범위에 의해 정의되는 본 발명의 정신과 그 범위 내에 있는 모든 변형물과 균등물 및 대체물을 포함하는 것으로 이해되어야 한다.The embodiments of the constant temperature and humidity air conditioning system of the present invention described above are merely exemplary, and those of ordinary skill in the art to which the present invention pertains will appreciate that various modifications and equivalent other embodiments are possible therefrom. you will know Therefore, it will be well understood that the present invention is not limited to the forms recited in the above detailed description. Therefore, the true technical protection scope of the present invention should be determined by the technical spirit of the appended claims. It is also to be understood that the present invention includes all modifications, equivalents and substitutions falling within the spirit and scope of the invention as defined by the appended claims.

1 : 항온항습 공조시스템 10 : 케이싱
11 : 실내공기유입구 13 : 공조공기배출구
100 : 냉각사이클부 110 : 압축기
120 : 응축기 121 : 응축기냉매이동관
123 : 응축기탱크 130 : 증발기
140 : 송풍팬 200 : 냉각수순환부
210 : 냉각수유입관 211 : 냉각수온도센서
215 : 유동코일 바이패스관 220 : 냉각수순환펌프
230 : 냉각수유동코일 240 : 냉각수유출관
245 : 냉각수배출관 250 : 제1삼방밸브
260 : 제2삼방밸브 270 : 응축기유입관
275 : 응축기배출관 300 : 중간처리수순환부
310 : 중간처리수유입관 311 : 중간처리수온도센서
313 : 중간처리수순환펌프 320 : 중간처리수배출관
330 : 중간처리수저장조 400 : 열교환기
410 : 내부냉각수이동관 420 : 외부처리수이동관
500 : 제어부
A : 실내공기
A1 : 1차공조공기
A2 : 2차공조공기
B : 항온항습장소
C : 냉매
M1 : 중간처리수
M2 : 열교환 중간처리수
W1 : 냉각수
W2 : 열교환 냉각수
1: constant temperature and humidity air conditioning system 10: casing
11: Indoor air inlet 13: Air conditioning air outlet
100: cooling cycle unit 110: compressor
120: condenser 121: condenser refrigerant transfer pipe
123: condenser tank 130: evaporator
140: blowing fan 200: cooling water circulation unit
210: coolant inlet pipe 211: coolant temperature sensor
215: fluid coil bypass pipe 220: coolant circulation pump
230: cooling water flow coil 240: cooling water outlet pipe
245: cooling water discharge pipe 250: first three-way valve
260: second three-way valve 270: condenser inlet pipe
275: condenser discharge pipe 300: intermediate treated water circulation unit
310: intermediate treated water inlet pipe 311: intermediate treated water temperature sensor
313: intermediate treated water circulation pump 320: intermediate treated water discharge pipe
330: intermediate treated water storage tank 400: heat exchanger
410: internal cooling water transfer pipe 420: external treated water transfer pipe
500: control unit
A: Indoor air
A1 : Primary air conditioning air
A2 : Secondary air conditioning air
B : constant temperature and humidity place
C: refrigerant
M1: Intermediate treatment water
M2: heat exchange intermediate treatment water
W1 : coolant
W2: heat exchange coolant

Claims (6)

항온항습 장소 내부에 구비되며 압축기(110), 응축기(120), 증발기(130) 및 송풍팬(140)을 가지며 냉각사이클을 이용해 냉매를 순환시켜 실내공기를 희망온도로 냉각시키는 냉각사이클부(100)와;
상기 냉각사이클부(100)의 일측에 구비되며 실내공기를 냉각수(W1)가 유동하는 냉각수유동코일(230)과 접촉시켜 희망온도로 냉각시키는 냉각수순환부(200)와;
계절에 따라 온도가 변화되는 중간처리수가 순환되는 중간처리수순환부(300)와;
상기 중간처리수와 상기 냉각수유동코일(230)로부터 배출되는 온도가 상승된 냉각수를 열교환하여 상기 냉각수의 온도를 낮추는 열교환기(400)와;
상기 중간처리수의 온도와 냉각수의 온도 차이를 고려하여 냉각수의 이동경로를 조절하고, 상기 냉각사이클부(100)의 동작여부를 선택적으로 조절하는 제어부(500)를 포함하되,
상기 냉각수순환부(200)는,
상기 냉각수유동코일(230)과;
상기 열교환기(400)와 연결되어 상기 중간처리수(M1)와 열교환되어 냉각된 냉각수를 상기 냉각수유동코일(230)로 공급하는 냉각수유입관(210)과;
상기 냉각수유동코일(230)에서 실내공기와 열교환되어 온도가 상승된 냉각수가 배출되는 냉각수유출관(240)과;
상기 냉각수유출관(240)과 상기 열교환기(400)를 연결하는 냉각수배출관(245)과;
상기 냉각수유동코일(230)로 유입되기 직전의 냉각수유입관(210)과 상기 냉각수유출관(240)의 단부를 연결하는 유동코일 바이패스관(215)과;
상기 유동코일 바이패스관(215)과 상기 냉각수유출관(240)과 상기 냉각수배출관(245)이 합쳐지는 지점에 구비되어 상기 제어부(500)의 제어신호에 따라 냉각수의 배출경로를 조절하는 제1삼방밸브(250)와;
상기 냉각수배출관(245)으로부터 분기되어 냉각수를 상기 응축기(120)로 공급하는 응축기유입관(270)과;
상기 냉각수배출관(245)의 경로상에 상기 응축기유입관(270)이 결합된 지점에 구비되어 상기 제어부(500)의 제어신호에 따라 냉각수의 배출경로를 조절하는 제2삼방밸브(260)와;
상기 응축기(120)와 상기 냉각수배출관(245)을 연결하는 응축기배출관(275)과;
상기 냉각수유입관(210) 내 냉각수의 온도를 측정하는 냉각수온도센서(211)를 포함하고,
상기 응축기(120)는,
냉매가 유동되는 응축기냉매이동관(121)과;
상기 응축기냉매이동관(121)을 내부에 수용하며 상기 응축기유입관(270) 및
상기 응축기배출관(275)이 각각 결합되며, 상기 냉각수가 수용되며 상기 응축기냉매이동관(121)과 열교환되게 하는 응축기탱크(123)를 포함하고,
상기 중간처리수순환부(300)는,
중간처리수를 상기 열교환기(400)로 유입시키는 중간처리수유입관(310)과;
상기 열교환기(400)로부터 중간처리수를 배출하는 중간처리수배출관(320)과;
상기 중간처리수유입관(310) 내 중간처리수의 온도를 측정하는 중간처리수온도센서(311)를 포함하며,
상기 중간처리수는, 상수, 하수, 중수, 보일러용수, 빌딩 냉각수 중 어느 하나이고,
상기 열교환기(400)는 판형으로, 상기 냉각수배출관(245) 및 상기 냉각수유입관(210)과 양단이 각각 연결된 내부냉각수이동관(410)과; 내부에 상기 내부냉각수이동관(410)이 수용되며, 양단이 상기 중간처리수유입관(310) 및 중간처리수배출관(320)과 각각 연결되는 외부처리수이동관(420)을 포함하여,
상기 제어부(500)는 상기 중간처리수온도센서(311) 및 냉각수온도센서(211)의 온도정보를 고려하여 냉각수순환부 및 중간처리수순환부의 사용여부를 결정하는 것을 특징으로 하는 에너지절감형 항온항습 공조시스템.
A cooling cycle unit 100 provided inside a constant temperature and humidity place and having a compressor 110 , a condenser 120 , an evaporator 130 and a blowing fan 140 , and circulates the refrigerant using a cooling cycle to cool the indoor air to a desired temperature. )Wow;
a cooling water circulation unit 200 provided on one side of the cooling cycle unit 100 and cooling the indoor air to a desired temperature by contacting the cooling water flow coil 230 through which the cooling water W1 flows;
an intermediate treated water circulation unit 300 for circulating intermediate treated water whose temperature is changed according to seasons;
a heat exchanger 400 for lowering the temperature of the cooling water by exchanging heat with the intermediate-treated water and the cooling water having an elevated temperature discharged from the cooling water flow coil 230;
and a control unit 500 which adjusts the movement path of the cooling water in consideration of the temperature difference between the temperature of the intermediate treated water and the cooling water, and selectively controls whether the cooling cycle unit 100 operates,
The cooling water circulation unit 200,
the cooling water flow coil 230;
a cooling water inlet pipe 210 connected to the heat exchanger 400 to supply cooling water cooled by heat exchange with the intermediate treated water M1 to the cooling water flow coil 230;
a cooling water outlet pipe 240 for discharging cooling water whose temperature is increased by heat exchange with indoor air in the cooling water flow coil 230;
a cooling water discharge pipe 245 connecting the cooling water discharge pipe 240 and the heat exchanger 400;
a flow coil bypass pipe 215 connecting an end of the coolant inlet pipe 210 and the coolant outlet pipe 240 just before being introduced into the coolant flow coil 230;
The first flow coil bypass pipe 215, the coolant outlet pipe 240, and the coolant outlet pipe 245 are provided at a point where they merge to adjust the discharge path of the coolant according to the control signal of the controller 500. a three-way valve 250 and;
a condenser inlet pipe 270 branching from the cooling water discharge pipe 245 and supplying cooling water to the condenser 120;
a second three-way valve 260 provided on the path of the cooling water discharge pipe 245 at a point where the condenser inlet pipe 270 is coupled to adjust the cooling water discharge path according to a control signal from the control unit 500;
a condenser discharge pipe 275 connecting the condenser 120 and the cooling water discharge pipe 245;
and a cooling water temperature sensor 211 for measuring the temperature of the cooling water in the cooling water inlet pipe 210,
The condenser 120 is
a condenser refrigerant pipe 121 through which the refrigerant flows;
The condenser refrigerant transfer tube 121 is accommodated therein, and the condenser inlet tube 270 and
and a condenser tank 123 to which the condenser discharge pipe 275 is coupled, the cooling water is accommodated, and heat exchange with the condenser refrigerant pipe 121,
The intermediate treated water circulation unit 300,
an intermediate treated water inlet pipe 310 for introducing intermediate treated water into the heat exchanger 400;
an intermediate treated water discharge pipe 320 for discharging intermediate treated water from the heat exchanger 400;
and an intermediate treated water temperature sensor 311 for measuring the temperature of the intermediate treated water in the intermediate treated water inlet pipe 310,
The intermediate treated water is any one of tap water, sewage, heavy water, boiler water, and building cooling water,
The heat exchanger 400 has a plate shape , and includes: an internal coolant transfer pipe 410 connected at both ends to the coolant outlet pipe 245 and the coolant inlet pipe 210; The internal coolant transfer pipe 410 is accommodated therein, and both ends include an external treated water transfer pipe 420 connected to the intermediate treated water inlet pipe 310 and the intermediate treated water outlet pipe 320, respectively,
The control unit 500 considers the temperature information of the intermediate treated water temperature sensor 311 and the cooling water temperature sensor 211 to determine whether to use the cooling water circulation unit and the intermediate treated water circulation unit. humidity air conditioning system.
제1항에 있어서,
상기 냉각사이클부(100)와 상기 냉각수순환부(200)는 실내공기유입구(11)와 공조공기배출구(13)가 각각 구비된 케이싱(10) 내부에 구비되며,
상기 냉각수유동코일(230)은 상기 실내공기유입구(11) 측에 배치되고,
상기 증발기(130)는 상기 냉각수유동코일(230)과 상기 공조공기배출구(13) 사이에 배치되고,
상기 공조공기배출구(13)에 상기 송풍팬(140)이 구비되는 것을 특징으로 하는 에너지절감형 항온항습 공조시스템.
According to claim 1,
The cooling cycle unit 100 and the cooling water circulation unit 200 are provided inside the casing 10 each having an indoor air inlet 11 and an air conditioning air outlet 13,
The cooling water flow coil 230 is disposed on the indoor air inlet 11 side,
The evaporator 130 is disposed between the cooling water flow coil 230 and the air conditioning air outlet 13,
The energy-saving constant temperature and humidity air conditioning system, characterized in that the blowing fan (140) is provided at the air conditioning air outlet (13).
삭제delete 삭제delete 삭제delete 삭제delete
KR1020210092620A 2021-07-15 2021-07-15 Energy-saving Computer Room Air Conditioner KR102450047B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020210092620A KR102450047B1 (en) 2021-07-15 2021-07-15 Energy-saving Computer Room Air Conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020210092620A KR102450047B1 (en) 2021-07-15 2021-07-15 Energy-saving Computer Room Air Conditioner

Publications (1)

Publication Number Publication Date
KR102450047B1 true KR102450047B1 (en) 2022-10-04

Family

ID=83600323

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210092620A KR102450047B1 (en) 2021-07-15 2021-07-15 Energy-saving Computer Room Air Conditioner

Country Status (1)

Country Link
KR (1) KR102450047B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116412605A (en) * 2023-03-17 2023-07-11 通威微电子有限公司 Cooling system and cooling method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090082566A (en) * 2008-01-28 2009-07-31 송제민 Air Control System of The Building
KR100933515B1 (en) * 2009-06-05 2009-12-23 주식회사 에이알 Energy saving thermo-hygrostat using coolants in cooling tower and its controlling method thereof
KR20170016665A (en) * 2015-08-04 2017-02-14 (주)티원엔지니어링 Air conditioning system for maintaining constant temperature and humidity

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090082566A (en) * 2008-01-28 2009-07-31 송제민 Air Control System of The Building
KR100933515B1 (en) * 2009-06-05 2009-12-23 주식회사 에이알 Energy saving thermo-hygrostat using coolants in cooling tower and its controlling method thereof
KR20170016665A (en) * 2015-08-04 2017-02-14 (주)티원엔지니어링 Air conditioning system for maintaining constant temperature and humidity

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116412605A (en) * 2023-03-17 2023-07-11 通威微电子有限公司 Cooling system and cooling method
CN116412605B (en) * 2023-03-17 2024-01-05 通威微电子有限公司 Cooling system and cooling method

Similar Documents

Publication Publication Date Title
KR101727561B1 (en) Energy-saving industrial air-conditioner and the operation method
KR100869971B1 (en) Freeze, refrigeration and warm water accumulation system using heatpump
US10101043B2 (en) HVAC system and method of operation
KR100876185B1 (en) Energy-saving type thermo-hygrostat, its current thermo-cooling method and cooling/dehumidifying method thereof
JP4706836B2 (en) Cooling system
KR101517563B1 (en) Thermo-hygrostat with two heat exchanger and its control method
KR102450047B1 (en) Energy-saving Computer Room Air Conditioner
JP2022548502A (en) Microchiller-based heating, ventilation and air conditioning systems
KR100430238B1 (en) High Temperature Quick boiling Heat Pump Unit for Producing Hot Water
KR101687650B1 (en) Air conditioner using heat pump
CN104566720A (en) Precision machine room air condition compressor fluorine pump refrigerating cycle system
CN214250050U (en) Heat recovery air conditioning system
CN206514574U (en) A kind of data center's refrigeration system
KR20220115839A (en) Electricity-saving air conditioner to reduce power consumption
KR101562744B1 (en) Air handling system interworking with ventilation unit
KR101844581B1 (en) Heat source integrated air conditioner
KR102393637B1 (en) Hybrid type chiller and heater using water as a heat transfer medium
KR102257544B1 (en) Energy enhanced air-conditioning system and control method thereof
KR100901726B1 (en) Heat pump type thermo - hygrostat have a cooling and heating apparatus
CN204190602U (en) The comprehensive heat-exchange system in a kind of converter valve for DC transmission engineering and the valve Room
CN108895710B (en) Refrigerating and heating system with coupling fuel gas heating function
KR101308028B1 (en) Thermal energy sharing system for multi buildings
JP3439004B2 (en) Air conditioning system, air conditioner and air conditioning method
CN110986202A (en) Device for dehumidifying working medium direct expansion floor heating and cooling air pipe machine with accurate control
CN110822614A (en) Fresh air system and control method thereof

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant