KR102445685B1 - Method of pre-oxidation of strip steel in a reaction chamber arranged in a furnace chamber - Google Patents

Method of pre-oxidation of strip steel in a reaction chamber arranged in a furnace chamber Download PDF

Info

Publication number
KR102445685B1
KR102445685B1 KR1020207017134A KR20207017134A KR102445685B1 KR 102445685 B1 KR102445685 B1 KR 102445685B1 KR 1020207017134 A KR1020207017134 A KR 1020207017134A KR 20207017134 A KR20207017134 A KR 20207017134A KR 102445685 B1 KR102445685 B1 KR 102445685B1
Authority
KR
South Korea
Prior art keywords
reaction chamber
strip
oxidation
gas
strip steel
Prior art date
Application number
KR1020207017134A
Other languages
Korean (ko)
Other versions
KR20200087817A (en
Inventor
프랭크 마슐러
루츠 퀴멜
장 피에르 크뤼츤
Original Assignee
에스엠에스 그룹 게엠베하
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에스엠에스 그룹 게엠베하 filed Critical 에스엠에스 그룹 게엠베하
Publication of KR20200087817A publication Critical patent/KR20200087817A/en
Application granted granted Critical
Publication of KR102445685B1 publication Critical patent/KR102445685B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • C21D1/76Adjusting the composition of the atmosphere
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/10Oxidising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • C21D1/767Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material with forced gas circulation; Reheating thereof
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0257Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment with diffusion of elements, e.g. decarburising, nitriding
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0447Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
    • C21D8/0457Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment with diffusion of elements, e.g. decarburising, nitriding
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • C21D9/48Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals deep-drawing sheets
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • C21D9/561Continuous furnaces for strip or wire with a controlled atmosphere or vacuum
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • C23C2/0222Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating in a reactive atmosphere, e.g. oxidising or reducing atmosphere
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/50Controlling or regulating the coating processes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/80After-treatment

Abstract

본 발명은, 고강도 스트립 강의 사전 산화 방법에 있어서, 노 챔버 내에 배치된 반응 챔버 내에서 고강도 스트립 강의 사전 산화를 위한 향상된 방법에 관한 것이다. 반응 챔버는 스트립 유입구 및 스트립 유출구에서 노 챔버와 반응 챔버 간의 가스 교환을 방지하도록 밀폐되며, 그리고 반응 챔버 내에서 산화 대기를 형성하는 가스가 유입되고 이와 동시에 가스는 반응 챔버 안쪽에서 지속적으로 순환된다.The present invention relates to an improved method for pre-oxidation of high-strength strip steel, in a method for pre-oxidation of high-strength strip steel, in a reaction chamber arranged within a furnace chamber. The reaction chamber is sealed to prevent gas exchange between the furnace chamber and the reaction chamber at the strip inlet and the strip outlet, and a gas forming an oxidizing atmosphere is introduced into the reaction chamber while the gas is continuously circulated inside the reaction chamber.

Description

노 챔버 내에 배치된 반응 챔버 내에서 스트립 강의 사전 산화 방법Method of pre-oxidation of strip steel in a reaction chamber arranged in a furnace chamber

본 발명은, 결과적으로 곧바로 이어지는 용융 침지 코팅을 위해 적합한, 코팅될 스트립 강의 표면 특성들을 설정하기 위해, 노 챔버(furnace chamber) 내에 배치된 반응 챔버(reaction chamber) 내에서 산화 민감성 스트립 강의 사전 산화를 위한 향상된 방법에 관한 것이다.The present invention results in pre-oxidation of oxidation-sensitive strip steel in a reaction chamber arranged within a furnace chamber in order to establish the surface properties of the strip steel to be coated, which are suitable for the subsequent hot dip coating. An improved method for

통상적인 고강도 스트립 강들은 합금 원소들로서 망간, 규소 및/또는 알루미늄을 함유한다. 용융 침지 코팅 전에 가능한 재결정화 어닐링 동안, 상기 합금 원소들은 스트립 표면 쪽으로 확산된다. 이런 합금 원소들은 매우 산소 친화성이기 때문에, 상기 합금 원소들은, 스트립 표면 상에, 또는 스트립 내 얕은 깊이에 위치되는 점에 한해, 거의 불가피하게 산화된다. 그러나 이 경우, 기본 재료인 철은 산화되지 않는다. 이런 현상은 선택적 산화로서도 지칭된다. 그러나 표면 상에서 선택적 산화를 통해 형성되는 망간, 규소 및/또는 알루미늄 산화물은 용융된 코팅 금속(예: 아연)을 이용한 스트립 표면의 습윤성을 저하시키며, 그 결과로 베어 스폿(bare spot), 내지 스트립 표면과 코팅층의 불충분한 점착이 야기된다. 고강도 강 상에서 코팅 문제의 경우 합금 조성이 결정적으로 중요하며, 특히 표면 상에서 비환원성 산화물을 형성하는 경향이 결정적으로 중요하다.Conventional high strength strip steels contain manganese, silicon and/or aluminum as alloying elements. During possible recrystallization annealing before hot dip coating, the alloying elements diffuse towards the strip surface. Because these alloying elements are very oxygen-friendly, they are almost inevitably oxidized, provided that they are located on the surface of the strip or at a shallow depth in the strip. However, in this case, the basic material iron is not oxidized. This phenomenon is also referred to as selective oxidation. However, manganese, silicon and/or aluminum oxides formed through selective oxidation on the surface reduce the wettability of the strip surface with the molten coating metal (eg zinc), resulting in bare spots, or even the strip surface. and insufficient adhesion of the coating layer. For coating issues on high strength steels, the alloy composition is of decisive importance, especially the tendency to form non-reducing oxides on the surface.

이는 예컨대 하기 강 품질들에 관계된다.This relates, for example, to the following steel qualities.

Figure 112020061210703-pct00001
Figure 112020061210703-pct00001

스트립 표면 상에서 코팅층의 점착을 향상시키기 위해, DE 102 004 059 566에는, 스트립이 사전 산화되는 방법이 기술되어 있다. 상기 독일 공보에 기술되는 방법은 하기와 같이 요약될 수 있다.In order to improve the adhesion of the coating layer on the strip surface, DE 102 004 059 566 describes a method in which the strip is pre-oxidized. The method described in the above German publication can be summarized as follows.

1. 650℃ 내지 750℃까지의 온도에서 2 내지 3% 수소 비율을 포함하는 환원 대기(reducing atmosphere) 하에서 스트립의 가열;1. heating of the strip under a reducing atmosphere comprising a hydrogen ratio of 2-3% at a temperature from 650°C to 750°C;

2. 0.01 내지 1% 산소 비율을 포함하는 대기를 갖는 반응 챔버 내에서 가능한 한 순철(pure iron)로 구성되는 스트립 표면의 산화. 이 경우, 사전에 형성된 합금 산화물을 덮는 철 산화물층이 형성된다. 처리 기간은 1 내지 10초이어야 하고 형성된 산화물층의 두께는 300㎚이어야 한다;2. Oxidation of the surface of the strip consisting of as pure iron as possible in a reaction chamber with an atmosphere comprising a proportion of 0.01 to 1% oxygen. In this case, an iron oxide layer covering the previously formed alloy oxide is formed. The treatment period should be 1 to 10 seconds and the thickness of the oxide layer formed should be 300 nm;

3. 최대 900℃까지의 온도에서 2 내지 8% 수소 비율을 포함하는 환원 대기 하에서 스트립 강의 어닐링. 이 경우, 철 산화물층은 다시 순철로 환원되며, 그 다음 상기 순철 상에는 코팅 금속이 충분하고 확실하게 점착된다.3. Annealing of strip steel under a reducing atmosphere containing 2 to 8% hydrogen at temperatures up to 900°C. In this case, the iron oxide layer is reduced back to pure iron, and the coating metal is then sufficiently and reliably adhered onto the pure iron.

이 경우, 내부에 강한 산화 대기(oxidizing atmosphere)를 포함하는 반응 챔버는 수소를 함유한 환원 대기를 포함하는 연속로의 노 챔버 내에 위치된다. 반응 챔버의 스트립 유입구 및 스트립 유출구는 최대한 가스 교환이 방지되도록 밀폐되어야 한다. 노에서부터 반응 챔버 내로의 가스 오버플로(gas overflow)는, 스며드는 수소가 산화를 위해 요구되는 산소를 적어도 부분적으로 소모하여, 스트립 표면 상에서 달성하고자 하는 산화물층의 특정을 저하시키게 한다. 이런 문제는, 반응 챔버 내의 산소 함량이 적어질수록 심해진다. 그 반대로, 반응 챔버에서부터 노 내로의 가스 오버플로(gas overflow)는, 노 내에 보다 더 높은 수분 함량(이슬점)을 야기하며, 그리고 그렇게 하여 산화 전위(oxidation potential)도 증가시킨다. 이는 특히 산소 친화성 합금 원소들이 비율이 보다 더 높은 최고 강도 강들에 대해 불리하다.In this case, a reaction chamber containing a strong oxidizing atmosphere therein is located in a furnace chamber of a continuous furnace containing a reducing atmosphere containing hydrogen. The strip inlet and strip outlet of the reaction chamber should be sealed to prevent gas exchange as much as possible. A gas overflow from the furnace into the reaction chamber causes the seeping hydrogen to at least partially consume the oxygen required for oxidation, reducing the specificity of the oxide layer to be achieved on the strip surface. This problem is exacerbated as the oxygen content in the reaction chamber decreases. Conversely, gas overflow from the reaction chamber into the furnace results in a higher water content (dew point) in the furnace, and thus also increases the oxidation potential. This is particularly disadvantageous for the highest strength steels in which the oxygen affinity alloying elements are higher in proportion.

실험 결과, 의도되는 산화물층의 설정을 위해 스트립 온도가 공정 제어를 위해 결정적인 매개변수이었다. 상기 스트립 온도는 바람직하게는 650과 750℃ 사이이다. 이 경우, 산소 함량 > 1% 및 처리 시간 > 1s인 점에 한해, 형성된 산화물층의 두께에 미치는 그들의 영향은 무시할 정도로 적다. 산소 함량이 2 내지 5%의 범위인 경우, 민감하지 않은 공정이 출발점이 될 수 있다.As a result of the experiments, the strip temperature was a critical parameter for process control for the intended setting of the oxide layer. The strip temperature is preferably between 650 and 750°C. In this case, their influence on the thickness of the oxide layer formed is negligible, provided that the oxygen content > 1% and the treatment time > 1 s. When the oxygen content is in the range of 2 to 5%, an insensitive process can be a starting point.

그러므로 본 발명의 과제는, 용융 침지 코팅 전 재결정화 어닐링 동안 노 챔버 안쪽의 반응 챔버 내에서 고강도 스트립 강의 사전 산화를 위한 향상된 방법을 제공하는 것에 있다.It is therefore an object of the present invention to provide an improved method for pre-oxidation of high-strength strip steel in a reaction chamber inside a furnace chamber during recrystallization annealing before hot dip coating.

본 발명의 교시에 따라서, 상기 과제는, 청구항 제1항에 명시된 특징들을 통해 해결되며, 특히 반응 챔버가 스트립 유입구 및 스트립 유출구에서 노 챔버와 반응 챔버 간의 가스 교환을 방지하도록 밀폐되고, 반응 챔버 내에 산화 대기를 형성하는 가스가 유입되며, 반응 챔버 안쪽에서 가스는 폐쇄된 회로 내에서 지속적으로 순환되되, 가스의 조성이 폐루프 모드로 제어되면서 누출 및 소모를 통한 손실들이 보상되는 것을 통해 해결된다.
산화 가스는, 대기의 우수한 균질성을 달성하기 위해, 상기 반응 챔버에서부터 배기되고 냉각되어 팬으로 공급되고 신선 공기로 농후화되며, 그리고 다시 상기 반응 챔버 내로 이송된다.
스트립 표면 상에서 층류 경계층 효과들을 방지하기 위해, 상기 반응 챔버에 할당된 적어도 하나의 노즐 시스템을 통해 조절되는 방식으로 균일하게 가스가 캐리어 가스로서의 질소에 의해 스트립 강의 표면으로 공급된다.
결과적으로 상기 노 챔버에서부터 상기 반응 챔버 내로 스며드는 수소에 대한 충분히 큰 버퍼를 달성하기 위해, 상기 반응 챔버 내에서 대기의 산소 함량은 최소 1.5 내지 최대 5 부피 퍼센트에서 유지된다.
상기 반응 챔버에는 부피 변화의 보상을 위해 배출구가 할당된다.
According to the teaching of the present invention, the above object is solved through the features specified in claim 1 , in particular wherein the reaction chamber is sealed to prevent gas exchange between the furnace chamber and the reaction chamber at the strip inlet and the strip outlet, and A gas forming an oxidizing atmosphere is introduced, and the gas is continuously circulated in a closed circuit inside the reaction chamber, while the composition of the gas is controlled in a closed-loop mode, and losses through leakage and consumption are compensated.
Oxidizing gas is evacuated from the reaction chamber, cooled, fed to a fan, enriched with fresh air, and conveyed back into the reaction chamber to achieve good atmospheric homogeneity.
In order to prevent laminar flow boundary layer effects on the strip surface, a gas is uniformly supplied to the surface of the strip steel by means of nitrogen as carrier gas in a controlled manner via at least one nozzle system assigned to the reaction chamber.
As a result, the oxygen content of the atmosphere in the reaction chamber is maintained at a minimum of 1.5 and a maximum of 5 volume percent in order to achieve a sufficiently large buffer for hydrogen permeating from the furnace chamber into the reaction chamber.
The reaction chamber is assigned an outlet for the compensation of volume changes.

이런 방식으로, 스트립 표면 상에 매우 균일하게 형성되는 산화물층을 생성할 수 있으며, 그럼으로써 뒤이은 용융 침지 코팅에서 베어 스폿은 방지되게 되고, 그렇게 최종 제품의 품질은 향상되고 불량은 감소되게 된다.In this way, it is possible to produce an oxide layer that is formed very uniformly on the strip surface, thereby preventing bare spots in the subsequent melt dip coating, thus improving the quality of the final product and reducing defects.

반응 챔버는 기본적으로 노 챔버를 향해, 그리고 특히 스트립 유입구 및 스트립 유출구에서 가스 교환을 방지하도록 밀폐된다.The reaction chamber is essentially sealed to prevent gas exchange towards the furnace chamber and in particular at the strip inlet and strip outlet.

대기는 지속적으로 순환된다. 가스는 반응 챔버에서부터 배기되고 냉각되어 팬(fan)으로 공급되고 신선 공기로 농후화되며, 그리고 다시 챔버 내로 이송된다. 그에 따라, 대기의 우수한 균질성이 달성된다.The atmosphere is constantly circulating. Gas is evacuated from the reaction chamber, cooled, fed to a fan, enriched with fresh air, and conveyed back into the chamber. Thereby, good homogeneity of the atmosphere is achieved.

또 다른 의도되는 효과는, 노즐 시스템들(적어도 하나의 노즐 시스템)을 통해 조절되는 방식으로 균일하게 가스가 캐리어 가스로서의 질소에 의해 높은 운동 에너지 밀도로 스트립 표면으로 공급된다는 점에 있다. 이는, 층류 경계층 효과들을 방지하기 위해 필요하다.Another intended effect is that the gas is supplied to the strip surface with a high kinetic energy density by means of nitrogen as carrier gas uniformly in a controlled manner via nozzle systems (at least one nozzle system). This is necessary to avoid laminar boundary layer effects.

스며드는 수소에 대한 충분한 버퍼(buffer)를 달성하기 위해, 반응 챔버 내에서 대기의 산소 함량은 최소 1.5 내지 최대 5 부피퍼센트이다.To achieve a sufficient buffer for permeating hydrogen, the oxygen content of the atmosphere in the reaction chamber is at least 1.5 to at most 5 volume percent.

부피 변화의 보상을 위해, 반응 챔버는 배출구를 보유한다. 바람직하게 상기 배출구는, 반응 챔버의 내압이 주변 노 대기의 압력과 일치하도록 폐루프 모드로 제어되어 불가피한 누출을 통한 가스 교환이 최소가 되도록 유지된다.For compensation of volume changes, the reaction chamber has an outlet. Preferably, the outlet is controlled in a closed loop mode so that the internal pressure of the reaction chamber matches the pressure of the surrounding furnace atmosphere, so that gas exchange through unavoidable leaks is kept to a minimum.

상기 조치를 통해, 용이하게 통제될 수 있는 산화 공정이 달성되며, 그리고 반응 챔버를 에워싸는 노 대기의 저하는 방지된다.Through the above measures, an easily controllable oxidation process is achieved and the deterioration of the furnace atmosphere surrounding the reaction chamber is prevented.

산화 민감성 강은 Mn > 0.5%, Al > 0.2%, Si > 0.1%, Cr > 0.3%와 같은 합금 성분들 중에서 선택된 적어도 하나의 성분을 함유할 수 있다. 바람직하게는, 산화 민감성 강은 Mn > 0.5%, Al > 0.2%, Si > 0.1%, Cr > 0.3%, 잔부의 철 및 불가피한 불순물을 함유할 수 있다.The oxidation-sensitive steel may contain at least one component selected from alloy components such as Mn>0.5%, Al>0.2%, Si>0.1%, Cr>0.3%. Preferably, the oxidation-sensitive steel may contain Mn>0.5%, Al>0.2%, Si>0.1%, Cr>0.3%, balance iron and unavoidable impurities.

Claims (7)

노 챔버 내에 배치된 반응 챔버 내에서 산화 민감성 스트립 강의 사전 산화를 위한 방법에 있어서, 상기 반응 챔버는 스트립 유입구 및 스트립 유출구에서 상기 노 챔버와 상기 반응 챔버 간의 가스 교환을 방지하도록 밀폐되고, 상기 반응 챔버 내에서 산화 대기를 형성하는 가스가 유입되며, 상기 반응 챔버 안쪽에서 가스는 폐쇄된 회로 내에서 지속적으로 순환되되, 가스의 조성이 폐루프 모드로 제어되면서 누출 및 소모를 통한 손실들이 보상되고,
상기 반응 챔버에는 부피 변화의 보상을 위해 배출구가 할당되며, 배출구는 반응 챔버의 내압이 주변 노 대기의 압력과 일치하도록 폐루프 모드로 제어되어 불가피한 누출을 통한 가스 교환이 최소로 유지되는 것을 특징으로 하는 스트립 강의 사전 산화 방법.
A method for pre-oxidation of oxidation-sensitive strip steel in a reaction chamber disposed within a furnace chamber, wherein the reaction chamber is sealed to prevent gas exchange between the furnace chamber and the reaction chamber at a strip inlet and a strip outlet, the reaction chamber A gas forming an oxidizing atmosphere is introduced in the reaction chamber, and the gas is continuously circulated in a closed circuit inside the reaction chamber, and losses through leakage and consumption are compensated while the composition of the gas is controlled in a closed loop mode,
The reaction chamber is assigned an outlet to compensate for volume change, and the outlet is controlled in a closed-loop mode so that the internal pressure of the reaction chamber matches the pressure of the surrounding furnace atmosphere, so that gas exchange through unavoidable leakage is kept to a minimum. pre-oxidation method of strip steel.
제1항에 있어서, 산화 가스는, 대기의 균질성을 달성하기 위해, 상기 반응 챔버에서부터 배기되고 냉각되어 팬으로 공급되고 신선 공기로 농후화되며, 그리고 다시 상기 반응 챔버 내로 이송되는 것을 특징으로 하는 스트립 강의 사전 산화 방법.The strip of claim 1 , wherein the oxidizing gas is evacuated from the reaction chamber, cooled, fed to a fan, enriched with fresh air, and conveyed back into the reaction chamber to achieve atmospheric homogeneity. Method of pre-oxidation of steel. 제2항에 있어서, 스트립 표면 상에서 층류 경계층 효과들을 방지하기 위해,
상기 반응 챔버에 할당된 적어도 하나의 노즐 시스템을 통해 조절되는 방식으로 균일하게 가스가 캐리어 가스로서의 질소에 의해 스트립 강의 표면으로 공급되는 것을 특징으로 하는 스트립 강의 사전 산화 방법.
3. The method of claim 2, wherein to prevent laminar flow boundary layer effects on the strip surface,
A method for pre-oxidation of strip steel, characterized in that the gas is supplied to the surface of the strip steel by means of nitrogen as carrier gas uniformly in a controlled manner through at least one nozzle system assigned to the reaction chamber.
제3항에 있어서, 결과적으로 상기 노 챔버에서부터 상기 반응 챔버 내로 스며드는 수소에 대한 큰 버퍼를 달성하기 위해, 상기 반응 챔버 내에서 대기의 산소 함량은 최소 1.5 내지 최대 5 부피 퍼센트에서 유지되는 것을 특징으로 하는 스트립 강의 사전 산화 방법.4. The method of claim 3, characterized in that the oxygen content of the atmosphere in the reaction chamber is maintained at a minimum of 1.5 and a maximum of 5 volume percent in order to achieve a large buffer for hydrogen permeating from the furnace chamber into the reaction chamber as a result. pre-oxidation method of strip steel. 삭제delete 삭제delete 삭제delete
KR1020207017134A 2017-11-17 2018-11-06 Method of pre-oxidation of strip steel in a reaction chamber arranged in a furnace chamber KR102445685B1 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE102017220583 2017-11-17
DE102017220583.0 2017-11-17
DE102018107435.2A DE102018107435A1 (en) 2017-11-17 2018-03-28 Process for the pre-oxidation of strip steel in a reaction chamber arranged in a furnace chamber
DE102018107435.2 2018-03-28
PCT/EP2018/080242 WO2019096616A1 (en) 2017-11-17 2018-11-06 Method for the preoxidation of strip steel in a reaction chamber arranged in a furnace chamber

Publications (2)

Publication Number Publication Date
KR20200087817A KR20200087817A (en) 2020-07-21
KR102445685B1 true KR102445685B1 (en) 2022-09-21

Family

ID=66336350

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020207017134A KR102445685B1 (en) 2017-11-17 2018-11-06 Method of pre-oxidation of strip steel in a reaction chamber arranged in a furnace chamber

Country Status (8)

Country Link
EP (1) EP3710605B1 (en)
KR (1) KR102445685B1 (en)
CN (1) CN111356775B (en)
DE (1) DE102018107435A1 (en)
ES (1) ES2942672T3 (en)
FI (1) FI3710605T3 (en)
PL (1) PL3710605T3 (en)
WO (1) WO2019096616A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3816319B1 (en) * 2019-10-29 2022-09-14 Salzgitter Flachstahl GmbH Method for producing a high strength steel strip with improved adhesion of zinc-based hot dip coatings
CN114855108A (en) * 2022-05-24 2022-08-05 山东钢铁集团日照有限公司 Control method for surface plating leakage and zinc ash defects of high-aluminum-silicon-manganese galvanized dual-phase steel

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016177590A1 (en) * 2015-05-07 2016-11-10 Cockerill Maintenance & Ingenierie S.A. Method and device for reaction control

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004059566B3 (en) 2004-12-09 2006-08-03 Thyssenkrupp Steel Ag Process for hot dip coating a strip of high strength steel
ES2425916T3 (en) * 2010-11-30 2013-10-18 Tata Steel Uk Limited Method for galvanizing a steel strip in a hot-dip galvanizing line for continuous tempering
DE102011050243A1 (en) * 2011-05-10 2012-11-15 Thyssenkrupp Steel Europe Ag Apparatus and method for the continuous treatment of a flat steel product
DE102011051731B4 (en) * 2011-07-11 2013-01-24 Thyssenkrupp Steel Europe Ag Process for the preparation of a flat steel product provided by hot dip coating with a metallic protective layer
EP3170913A1 (en) * 2015-11-20 2017-05-24 Cockerill Maintenance & Ingenierie S.A. Method and device for reaction control
CN107532270B (en) * 2015-04-22 2019-08-20 考克利尔维修工程 Method and device for reaction controlling

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016177590A1 (en) * 2015-05-07 2016-11-10 Cockerill Maintenance & Ingenierie S.A. Method and device for reaction control

Also Published As

Publication number Publication date
EP3710605A1 (en) 2020-09-23
FI3710605T3 (en) 2023-04-12
EP3710605B1 (en) 2023-01-25
CN111356775A (en) 2020-06-30
DE102018107435A1 (en) 2019-05-23
CN111356775B (en) 2022-04-26
PL3710605T3 (en) 2023-03-20
ES2942672T3 (en) 2023-06-05
KR20200087817A (en) 2020-07-21
WO2019096616A1 (en) 2019-05-23

Similar Documents

Publication Publication Date Title
KR101303337B1 (en) Method for hot dip coating a strip of heavy-duty steel
KR101940250B1 (en) Method for producing a flat steel product which is provided with a metallic protective layer by means of hot dip coating
KR101011897B1 (en) Method of continous annealing/hot-dipping of steel sheet containing silicon and apparatus for continuous annealing/hot-dipping
RU2426815C2 (en) Procedure for continuous annealing and preparing strip of high strength steel for its zinc plating by immersion with heating
AU2015349052B2 (en) Method for producing a nitrided packaging steel
JP2009531538A5 (en)
JP5796142B2 (en) Hot dipping method for steel sheet
US10697053B2 (en) Method for manufacturing black plated steel sheet, apparatus for manufacturing black plated steel sheet, and system for manufacturing black plated steel sheet
TWI458832B (en) Production method of hot- rolled steel sheet and production method of hot dip galvanized steel sheet
JP2008523243A5 (en)
RU2647419C2 (en) Method of sheet steel annealing
KR102445685B1 (en) Method of pre-oxidation of strip steel in a reaction chamber arranged in a furnace chamber
JP2013142198A (en) Method for producing hot-dip galvanized steel sheet having excellent plating wettability and pickup resistance
JP2018516312A (en) Method and apparatus for reaction control
JP4168667B2 (en) In-line annealing furnace for continuous hot dip galvanizing
US2459161A (en) Metal coating
JP2000290762A (en) Production of hot dip metal coated steel sheet
JPH05271891A (en) Manufacture of high strength galvanized steel sheet
US20230193442A1 (en) Method for the preoxidation of strip steel in a reaction chamber arranged in a furnace chamber
JP2006206956A (en) Manufacturing method of aluminum-plated steel sheet for enamel
RU2403315C2 (en) Method for coating of flat rolled steel from high-strength steel

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
X701 Decision to grant (after re-examination)