KR102443110B1 - Additive for enhaced heat-conductivity and preparation method of sheet of heat sink containing thereof - Google Patents

Additive for enhaced heat-conductivity and preparation method of sheet of heat sink containing thereof Download PDF

Info

Publication number
KR102443110B1
KR102443110B1 KR1020220084083A KR20220084083A KR102443110B1 KR 102443110 B1 KR102443110 B1 KR 102443110B1 KR 1020220084083 A KR1020220084083 A KR 1020220084083A KR 20220084083 A KR20220084083 A KR 20220084083A KR 102443110 B1 KR102443110 B1 KR 102443110B1
Authority
KR
South Korea
Prior art keywords
heat dissipation
pss
heat
dissipation sheet
mixing
Prior art date
Application number
KR1020220084083A
Other languages
Korean (ko)
Inventor
김성현
Original Assignee
주식회사 코솔러스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 코솔러스 filed Critical 주식회사 코솔러스
Priority to KR1020220084083A priority Critical patent/KR102443110B1/en
Application granted granted Critical
Publication of KR102443110B1 publication Critical patent/KR102443110B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/10Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing sonic or ultrasonic vibrations
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/25Diamond
    • C01B32/28After-treatment, e.g. purification, irradiation, separation or recovery
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/44Carbon
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/12Treatment with organosilicon compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/06Multi-walled nanotubes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Geology (AREA)
  • Health & Medical Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Toxicology (AREA)
  • General Health & Medical Sciences (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

The purpose of the present invention is to improve the thermal conductivity of a heat dissipation sheet by using nanodiamond (ND) having a modified surface. A heat dissipation additive comprising surface-modified nanodiamonds with a silane coupling agent is used to manufacture the heat dissipation sheet with excellent thermal conductivity in order to effectively dissipate heat from LED devices for automobiles. Therefore, a covalent bond between nanodiamonds and carbon nanotubes included in the heat dissipation sheet was effectively formed, and improved thermal conductivity was exhibited.

Description

열전도도 개선용 첨가제 및 이를 포함하는 방열시트의 제조 방법{Additive for enhaced heat-conductivity and preparation method of sheet of heat sink containing thereof}An additive for improving thermal conductivity and a method for manufacturing a heat dissipation sheet including the same

이건 발명은 표면이 개질된 나노다이아몬드(Nanodiamond, ND)를 사용하여 방열 시트의 열전도도를 개선하기 위한 것으로, 자동차용 LED 소자 등에서 방열이 효과적으로 이루어지도록, 실레인 커플링제로 표면 개질된 나노다이아몬드를 포함하는 방열 첨가제를 사용함으로써 열전도도가 우수한 방열 시트를 제조하는 방법에 관한 것이다.This invention is to improve the thermal conductivity of a heat dissipation sheet using nanodiamond (ND) with a modified surface. It relates to a method of manufacturing a heat dissipation sheet having excellent thermal conductivity by using a heat dissipation additive comprising.

나노사이즈의 미세한 물질은, 벌크 상태에서는 발현할 수 없는 새로운 특성을 갖는 것이 알려져 있다. 예를 들어, 나노다이아몬드 입자(=나노사이즈의 다이아몬드 입자)는 기계적 강도, 고굴절률, 열전도성, 절연성, 산화 방지성, 수지 등의 결정화를 촉진하는 작용 등을 갖는다.It is known that nano-sized fine substances have new properties that cannot be expressed in a bulk state. For example, nanodiamond particles (=nano-sized diamond particles) have mechanical strength, high refractive index, thermal conductivity, insulation, antioxidant properties, and an action of accelerating crystallization of resins and the like.

한편 에너지 사용량을 줄이고 온실가스를 감축하기 위해서 저공해 친환경 제품으로서 발광다이오드(LED)를 차량용 전조등과 후미등을 포함한 각종 조명등으로 사용하는 경우가 증가하고 있다. 이에 따라 산업계에서는 고효율, 고집적, 고기능, 경박단소화 등을 고려하여 LED를 부품, 모듈(module), 세트(set) 등으로 설계하고 있으며, 다양한 구조와 형태로 고성능의 LED 조명을 설계함에 따라, 종래의 설계 기술에서 발생하는 열보다 더 많은 열이 방출되는 경우가 빈번하게 발생하고 있으며, 이러한 열에 의해서 시스템 등의 성능 저하 등과 같은 문제 등이 발생하는 경우가 발생하고 있다. 따라서 관련 산업계에서는 발생하는 열적인 문제(방열, 열확산, 열분산, 열수집, 열전달 등)을 효율적으로 처리하기 위한 연구가 지속되고 있다.Meanwhile, in order to reduce energy consumption and reduce greenhouse gas, the use of light emitting diodes (LEDs) as low-pollution eco-friendly products as various lighting lights including vehicle headlights and tail lights is increasing. Accordingly, the industry is designing LEDs as parts, modules, and sets in consideration of high efficiency, high integration, high functionality, light, thin, and compact. A case in which more heat is emitted than the heat generated in the conventional design technology occurs frequently, and problems such as degradation of performance of the system and the like occur due to such heat. Therefore, research to efficiently deal with thermal problems (heat dissipation, heat diffusion, heat dissipation, heat collection, heat transfer, etc.) that occur in the related industry continues.

특히, LED는 화합물 반도체로서 사용 온도가 높아지면 원자들의 열진동으로 전자의 흐름이 방해를 받아 조도가 떨어지는 현상이 일어나고, 온도가 더욱 높아지게 되면 반도체의 확산층의 확산이 일어나 급격한 조도 저하와 사용 수명이 급격히 짧아지게 된다. 따라서 LED의 고유한 장점인 고효율 장수명 특성을 보장하기 위해서는 LED 방열 기술이 필수적으로 요구되며, 이로 인해 고효율 방열 모듈의 개발을 위한 핵심 기술의 개발이 필요하다.In particular, as a compound semiconductor, when the operating temperature of LEDs increases, the flow of electrons is disturbed by thermal vibration of atoms and the illuminance decreases. becomes abruptly shortened. Therefore, LED heat dissipation technology is essential to ensure high efficiency and long lifespan characteristics, which are unique advantages of LEDs.

이를 위해 LED 조명 혼은 광원을 포함하는 제품에 방열 코팅층을 포함하는 여러 예가 제안되어 왔고, 이러한 방열 코팅층을 형성하기 위한 방열 코팅 조성물 내에 나노다아아몬드(ND)를 사용하는 예가 여러 특허문헌들에 의해 공지되어 있으나(하기 특허문헌 1 내지 4 참조), 충분한 방열 효과를 부여하는 데 여전히 한계가 존재한다..For this purpose, LED lighting horns have been proposed several examples including a heat dissipation coating layer in a product including a light source, and examples of using nanodiamonds (ND) in a heat dissipation coating composition for forming such a heat dissipation coating layer are described by several patent documents. Although known (see Patent Documents 1 to 4 below), there is still a limit to imparting a sufficient heat dissipation effect.

대한민국 등록특허 제10-1689693호Republic of Korea Patent No. 10-1689693 대한민국 등록특허 제10-1851576호Republic of Korea Patent No. 10-1851576 대한민국 등록특허 제10-2314224호Republic of Korea Patent Registration No. 10-2314224 대한민국 등록특허 제10-2374330호Republic of Korea Patent No. 10-2374330

이건 발명은 자동차용 LED 소자 등에서 방열이 효과적으로 이루어질 수 있는 방열시트를 제공하기 위한 것으로, 표면이 개질된 나노다이아몬드(Nanodiamond, ND)를 첨가제로 사용하여 카본 나노 튜브와 공유 결합을 효과적으로 형성시킴으로써, 열 전도도가 우수한 방열시트의 제조 방법을 제공하고자 한다.This invention is to provide a heat dissipation sheet that can effectively dissipate heat from an LED device for automobiles, etc. By effectively forming a covalent bond with carbon nanotubes using nanodiamond (ND) with a modified surface as an additive, heat An object of the present invention is to provide a method for manufacturing a heat dissipation sheet having excellent conductivity.

이건 발명의 일 실시 형태에 따른 방열 첨가제는, 실란 커플링제로 표면 개질된 나노다이아몬드를 포함할 수 있다.The heat dissipation additive according to an embodiment of the present invention may include nanodiamonds surface-modified with a silane coupling agent.

이때 사용되는 실레인 커플링제는, 3-Glycidoxypropyltrimethoxysilane인 것이 바람직하고, 표면 개질은 나노다이아몬드 100중량부를 기준으로, 실레인 커플링제 1200~2000중량부를 혼합한 후, 질소 버블링을 수행한 후 약 70~90도에서 약 11~13 시간 동안 반응이 수행되는 것이 더욱 바람직하다.The silane coupling agent used at this time is preferably 3-Glycidoxypropyltrimethoxysilane, and the surface modification is about 70 parts by weight of the silane coupling agent, based on 100 parts by weight of nanodiamond, after mixing 1200 to 2000 parts by weight of the silane coupling agent, followed by nitrogen bubbling. More preferably, the reaction is carried out at ˜90 degrees for about 11 to 13 hours.

이건 발명의 다른 실시 형태로, 방열 시트의 제조 방법을 등 수 있는데, 앞서 살펴본 방열 첨가제와 PSS(polystyrene sulfonate)로 처리된 카본나노튜브 수용액을 혼합하는 1차 혼합단계; 약 1~2시간 동안 초음파 처리를 통해 균일한 혼합을 유도하는 2차 혼합단계; 2차 혼합단계를 거친 후, 진공 여과 장치를 통해 필름 형태를 얻는 성형단계; 및 100~200도의 온도에서 약 1~2시간 동안 열처리하는 열처리 단계;를 포함할 수 있다.This is another embodiment of the invention, there may be a method for manufacturing a heat dissipation sheet, a first mixing step of mixing the above-described heat dissipation additive and PSS (polystyrene sulfonate)-treated carbon nanotube aqueous solution; a second mixing step of inducing uniform mixing through ultrasonication for about 1 to 2 hours; After the secondary mixing step, a molding step of obtaining a film shape through a vacuum filtration device; and a heat treatment step of heat-treating at a temperature of 100 to 200 degrees for about 1 to 2 hours.

이때 사용되는 카본나노튜브는 멀티월 카본나노튜브(MWCNT)인 것이 바람직하고, 상기 PSS로 처리된 카본나노튜브 수용액은, 15~25wt%의 PSS 수용액에 카본나노튜브를 혼합한 후, 약 2~4시간 동안 초음파 처리한 후, 원심분리를 통해 얻어진 80vol%의 상층액인 이며, 상기 첨가제는, PSS로 처리된 카본나노튜브 수용액의 고형분 대비 10~20wt%의 범위로 혼합되는 것이 바람직하다.The carbon nanotube used at this time is preferably a multi-wall carbon nanotube (MWCNT), and the carbon nanotube aqueous solution treated with PSS is after mixing the carbon nanotube with 15-25 wt% of PSS aqueous solution, and then about 2~ After ultrasonic treatment for 4 hours, 80 vol% of the supernatant obtained through centrifugation is , and the additive is preferably mixed in the range of 10 to 20 wt% relative to the solid content of the PSS-treated carbon nanotube aqueous solution.

이건 발명의 또 다른 실시 형태로는, 이러한 방법으로 제조된 방열 시트를 포함하는 방열 시트를 들 수 있다.Another embodiment of the present invention may include a heat radiation sheet including a heat radiation sheet manufactured by this method.

이건 발명의 일 실시 형태에 따라 실레인 커플링제로 표면 개질된 나노다이아몬드를 방열 첨가제를 사용하여 제조된 카본 나노튜브를 포함하는 방열 시트는, 나노다이아몬드와 카본 나노튜브 사이의 공유 결합이 효과적으로 형성되어, 향상된 열전도도 특성을 갖게된다.According to an embodiment of the present invention, in a heat dissipation sheet including carbon nanotubes prepared by using a heat dissipation additive for nanodiamonds surface-modified with a silane coupling agent, covalent bonds between the nanodiamonds and carbon nanotubes are effectively formed. , will have improved thermal conductivity properties.

도 1은, 방열시트에 사용되는 방열 첨가제의 기능을 도식적으로 나타낸 것으로 (a)는 개질되지 않은 나노다이아몬드를 사용한 경우이고, (b)는 개질된 나노다이아몬드를 사용한 경우이다.
도 2는 나노다이아몬드의 표면 개질 과정을 도식적으로 나타낸 것이다.
도 3은 이건 발명에 따른 표면 개질된 나노다이아몬드의 FT-IR 분석 결과이다.
도 4는 나노다이아몬드의 표면 개질에 사용되는 실레인 커플링제의 중량비에 따른 라만 스펙트로스코피 분석결과이다.
도 5는 나노다이아몬드와 실레인 커플링제의 중량비의 변화에 따른 특정 라만 스펙트로스코피 피크의 강도 비(intensity ratio)를 도시한 결과이다.
도 6은 방열 첨가제의 양에 따른 열전도도를 측정한 결과이다.
1 schematically shows the function of a heat dissipation additive used in a heat dissipation sheet, (a) is a case in which unmodified nanodiamonds are used, and (b) is a case in which modified nanodiamonds are used.
Figure 2 schematically shows the surface modification process of the nanodiamond.
3 is an FT-IR analysis result of the surface-modified nanodiamond according to the present invention.
4 is a Raman spectroscopy analysis result according to a weight ratio of a silane coupling agent used for surface modification of nanodiamonds.
5 is a result showing the intensity ratio of a specific Raman spectroscopy peak according to a change in the weight ratio of the nanodiamond and the silane coupling agent.
6 is a result of measuring the thermal conductivity according to the amount of the heat dissipation additive.

이하에서는 이건 발명을 설명함에 있어서 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략될 수 있다.Hereinafter, when it is determined that a detailed description of a known function or configuration related to the present invention may unnecessarily obscure the gist of the invention, the detailed description thereof may be omitted.

이건 발명의 개념에 따른 실시예는 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있으므로 특정 실시예 들을 도면에 예시하고 아건 명세서 또는 출원에 상세하게 설명하고자 한다. 그러나 이는 이건 발명의 개념에 따른 실시 예를 특정한 개시 형태에 대해 한정하려는 것이 아니며, 이건 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.Since the embodiment according to the concept of the invention can have various changes and can have various forms, specific embodiments are illustrated in the drawings and described in detail in the Argon specification or application. However, this is not intended to limit the embodiment according to the concept of the invention to a specific disclosed form, it should be understood to include all changes, equivalents or substitutes included in the spirit and scope of the invention.

이건 명세서에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 이건 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. The terms used in this specification are only used to describe specific embodiments, and are not intended to limit the invention. The singular expression includes the plural expression unless the context clearly dictates otherwise.

이건 명세서에서, "포함하다" 또는 "갖는다" 등의 용어는 설시된 특징, 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.In this specification, terms such as "comprises" or "having" are intended to designate that the specified feature, number, step, operation, component, part, or a combination thereof exists, and includes one or more other features or numbers. , it is to be understood that it does not preclude the possibility of the presence or addition of steps, operations, components, parts, or combinations thereof.

도 1의 (a)와 (b)는 각각 종래의 기술과 이건 발명의 차이점을 도식적으로 나타낸 것으로, 방열시트의 제조에 사용되는 방열 조성물에 포함되는 이건 발명의 일 실시 형태에 따른 첨가제의 기능을 간략한 도면으로 비교한 것이다.1 (a) and (b) schematically show the difference between the prior art and the present invention, respectively, and the function of the additive according to an embodiment of the present invention included in the heat dissipation composition used for the manufacture of the heat dissipation sheet It is compared with a simplified drawing.

도 1(a)에는 표면 개질 과정을 거치지 않은 나노다이아몬드(ND)를 방열 첨가제로 사용하여, PSS로 처리된 카본나노튜브(MWCNTs/PSS)와 혼합하여 방열시트를 제조한 경우, 열전도가 이루어지는 과정이 도식적으로 제시되어 있다.In FIG. 1(a), when a heat dissipation sheet is manufactured by using nanodiamonds (ND) that have not undergone surface modification as a heat dissipation additive and mixing them with PSS-treated carbon nanotubes (MWCNTs/PSS), the process of heat conduction This is presented schematically.

ND의 표면이 개질되지 않았기 때문에 ND와 MWCNTs 표면의 PSS와 공유결합이 형성되지 않아(비공유 결합), 열전도가 원활하고 효과적으로 수행되지 못하게 된다.Because the surface of the ND was not modified, covalent bonds were not formed with PSS on the surfaces of ND and MWCNTs (non-covalent bonds), so heat conduction was not performed smoothly and effectively.

반면 도 1(b)에 제시된 것처럼, 표면 개질된 ND를 PSS로 처리된 카본나노튜브(MWCNTs/PSS)와 혼합하여 방열시트를 제조할 경우에는, ND의 표면이 반응성이 우수한 실레인 커플링제로 개질되어 있어, ND와 MWCNTs 표면의 PSS와 공유결합이 쉽게 형성되고,열전도가 원활하고 효과적으로 이루어지게 된다.On the other hand, as shown in FIG. 1(b), when a heat dissipation sheet is prepared by mixing the surface-modified ND with PSS-treated carbon nanotubes (MWCNTs/PSS), the surface of the ND is a silane coupling agent with excellent reactivity. Because it is modified, PSS and covalent bonds on the surface of ND and MWCNTs are easily formed, and heat conduction is performed smoothly and effectively.

즉, 이건 발명에서 발명자들은, Epoxy기를 포함하는 실레인 커플링제로 표면 개질된 ND를 방열 첨가제로 사용하여, PSS(polystyrene sulfonate)처리를 통해 수분산 된 카본 나노튜브, 바람직하게는 다중벽 카본 나노튜브(MWCNT)와 혼합시캬 방열시트를 형성함으로써, 도 2에 제시된 것처럼, 개질된 ND 표면과 카본 나노튜브 표면의 사이의 가교반응(cross-linking)에 따른 공유결합을 형성함으로써, 방열 시트의 열전도 특성과 효율을 향상시킬 수 있었다.That is, in the present invention, the inventors used ND surface-modified with a silane coupling agent containing an epoxy group as a heat dissipation additive, and dispersed in water through PSS (polystyrene sulfonate) treatment, preferably multi-walled carbon nanotubes. By mixing the tube (MWCNT) and forming the heat dissipation sheet, as shown in FIG. 2 , a covalent bond according to cross-linking between the modified ND surface and the carbon nanotube surface is formed. It was possible to improve the heat conduction characteristics and efficiency.

이건 발명의 다른 실시 형태로, 실레인 커플링제로 표면 개질된 나노다이아몬드를 포함하는 방열 첨가제와 PSS(polystyrene sulfonate)로 처리된 카본나노튜브 수용액을 혼합하는 1차 혼합단계, 약 1~2시간 동안 초음파 처리를 통해 균일한 혼합을 유도하는 2차 혼합단계, 2차 혼합단계를 거친 후, 진공 여과 장치를 통해 필름 형태를 얻는 성형단계 및 100~200℃의 온도에서 약 1~2시간 동안 열처리하는 열처리 단계를 포함하는 방열시트의 제조 방법을 들 수 있다.This is another embodiment of the invention, the first mixing step of mixing the carbon nanotube aqueous solution treated with PSS (polystyrene sulfonate) with the heat dissipation additive containing the nanodiamond surface-modified with the silane coupling agent, for about 1 to 2 hours A second mixing step of inducing uniform mixing through ultrasonic treatment, a molding step to obtain a film shape through a vacuum filtration device after passing through the second mixing step, and heat treatment at a temperature of 100 to 200 ° C for about 1 to 2 hours A method of manufacturing a heat dissipation sheet including a heat treatment step may be mentioned.

상기 표면 개질에 사용되는 실레인 커플링제는, 3-Glycidoxypropyltrimethoxysilane인 것이 바람직하며, 나노다이아몬드 100중량부를 기준으로, 실레인 커플링제 1200~2000중량부를 혼합한 후, 질소 버블링 과정을 거친 후, 약 70~90℃에서 약 11~13 시간 동안 반응이 수행되는 표면 개질 과정을 거치는 것이 더욱 바람직하다.The silane coupling agent used for the surface modification is preferably 3-Glycidoxypropyltrimethoxysilane, based on 100 parts by weight of the nanodiamond, 1200 to 2000 parts by weight of the silane coupling agent is mixed, and then after going through a nitrogen bubbling process, about It is more preferable to undergo a surface modification process in which the reaction is performed at 70 to 90° C. for about 11 to 13 hours.

상기 카본나노튜브는 멀티월 카본나노튜브(MWCNT)가 사용될 수 있다.As the carbon nanotube, a multi-wall carbon nanotube (MWCNT) may be used.

PSS로 처리된 카본나노튜브 수용액은, 15~25wt%의 PSS 수용액에 카본나노튜브를 혼합한 후, 약 2~4시간 동안 초음파 처리한 후, 원심분리를 통해 얻어진 80vol%의 상층액을 사용하는 것이 바람직하고, PSS로 처리된 카본나노튜브 수용액과 혼합되는 방열 첨가제인 개질된 나노다이아몬드는, PSS로 처리된 카본나노튜브 수용액의 고형분 대비 10~20wt%의 범위로 혼합되는 것이 더욱 바람직하다.The carbon nanotube aqueous solution treated with PSS is obtained by mixing the carbon nanotubes with 15 to 25 wt% of PSS aqueous solution, ultrasonicating for about 2 to 4 hours, and then centrifuging 80 vol% of the supernatant. Preferably, the modified nanodiamond, which is a heat dissipation additive, mixed with the aqueous carbon nanotube solution treated with PSS is more preferably mixed in the range of 10 to 20 wt% relative to the solid content of the aqueous carbon nanotube solution treated with PSS.

이하에서는 이건 발명의 구체적인 실시예를 통해 좀 더 구체적으로 설명하고자 한다.Hereinafter, this will be described in more detail through specific examples of the invention.

[실험예 1] 표면 개질된 ND의 제조[Experimental Example 1] Preparation of surface-modified ND

나노다아아몬드(ND; Dnd004, 에스더블유케미컬즈) 100mg에 실레린 커플링제인 GOPS(3-Glycidoxypropyltrimethoxysilane)를 하기 다양한 중량비로 혼합한 후, 용제인 톨루엔 내에서 질소(N2) 버블링하여 고르게 혼합한 후, 80℃ 에서 약 12시간 동안 반응을 진행하였다. 반응 이후, 진공여과 장치로 필터링 과정을 수행하여 얻은 filterate 를 에탄올(EtOH)로 수차례 충분히 wahsing하였다.Nanodiamond (ND; Dnd004, S.W Chemicals) 100mg was mixed with 3-Glycidoxypropyltrimethoxysilane (GOPS), a silerin coupling agent, in various weight ratios as follows, and then mixed evenly by bubbling nitrogen (N 2 ) in toluene, a solvent. After that, the reaction was carried out at 80° C. for about 12 hours. After the reaction, the filterate obtained by performing the filtering process with a vacuum filtration device was sufficiently washed several times with ethanol (EtOH).

이렇게 표면 개질된 ND와 표면 개질 전의 ND에 대하여 FT-IR을 사용하여 측정한 결과는 도 3에 제시하였다. 상기 도 3의 결과에서 확인되듯이, 표면 개질된 ND 시료에서는, 개질되지 않은 ND에서 관찰되지 않았던 epoxy 의 C-O stretching, Si-O-Si stretching 및 C-H stretching을 확인 할 수 있었으며, 이는 실험예 1의 ND 개질 반응을 통해, 효과적으로 ND의 표면이 개질되었음을 의미한다.The results of measurements using FT-IR for the ND surface-modified and the ND before the surface modification are shown in FIG. 3 . As confirmed in the results of FIG. 3, in the surface-modified ND sample, C-O stretching, Si-O-Si stretching, and C-H stretching of the epoxy, which were not observed in the unmodified ND, could be confirmed, which was the result of Experimental Example 1. Through the ND modification reaction, it means that the surface of ND was effectively modified.

또한, ND의 표면 개질 과정에서 최적의 개질 조건을 파악하기 위해, 100mg의 ND를 기준으로 다양한 중량비(1:0, 1:4, 1:12. 1:20, 1:50)의 GOPS를 혼합한 후, 앞서 설명한 ND 개질 반응을 수행하였으며, 각각의 결과물(개질된 ND)에 대하여 Raman spectrum을 관찰하였다(도 4 참조). In addition, in order to identify the optimal modification conditions in the surface modification process of ND, GOPS of various weight ratios (1:0, 1:4, 1:12. 1:20, 1:50) was mixed based on 100 mg of ND. After that, the ND reforming reaction described above was performed, and Raman spectrum was observed for each product (modified ND) (see FIG. 4 ).

상기 도 4(a)에서 확인된 1320 cm-1(ND 에 해당)에서의 피크 강도와 2900 cm-1(GOPS의 aliphatic carbon의 C-H stretching에 해당)에서의 피크 강도를 비교하여 유효하게 ND의 표면 개질에 사용된 GOPS의 결합량을 추산하였으며(도 5 참조), ND와 GOPS가 1: 12 내지 20의 중량비로 혼합될 경우, 유효하게 ND의 표면 개질에 사용되는 GOPS의 비율이 가장 높은 것을 알 수 있다.By comparing the peak intensity at 1320 cm -1 (corresponding to ND) and the peak intensity at 2900 cm -1 (corresponding to CH stretching of aliphatic carbon of GOPS) confirmed in FIG. 4(a), the surface of ND effectively The binding amount of GOPS used for modification was estimated (see Fig. 5), and when ND and GOPS were mixed in a weight ratio of 1: 12 to 20, it was found that the ratio of GOPS effectively used for surface modification of ND was the highest. can

이러한 ND의 표면 개질 과정의 최적 조건은 개질된 ND의 TGA 분석을 통해서도 확인될 수 있다. 하기 표 1의 TGA 분석 결과에서 확인되듯이, ND에 대한 GOPS의 중량비가 1:12인 경우, ND 표면에 가장 많은 GOPS가 결합되어 있음을 알 수 있다.The optimal conditions for the surface modification process of these NDs can also be confirmed through TGA analysis of the modified NDs. As can be seen from the TGA analysis results of Table 1 below, when the weight ratio of GOPS to ND is 1:12, it can be seen that the most GOPS is bound to the ND surface.

ND : GOPS 의 혼합비(중량비)ND: GOPS mixing ratio (weight ratio) 1:41:4 1:121:12 1:501:50 결합량(wt%)Binding amount (wt%) 16.116.1 22.722.7 14.114.1

[실험예 2] PSS 처리된 카본 나노튜브(MWCNTs) 용액(MWCNTs/PSS)의 제조[Experimental Example 2] Preparation of PSS-treated carbon nanotubes (MWCNTs) solution (MWCNTs/PSS)

PSS(polystyrene sulfonate) 1g을 초순수 혹은 증류수 50ml에 녹인 후, MWCNTs 를 첨가하여 tip 타입의 초음파 분쇄기(sonicator)로 3 시간 동안 처리한 후, 원심분리기를 사용하여 4,000rpm에서 30분 동안 원심분리한 후 80 vol%의 상층액 용액만을 사용하였다.After dissolving 1 g of PSS (polystyrene sulfonate) in 50 ml of ultrapure or distilled water, MWCNTs were added and treated with a tip-type sonicator for 3 hours, followed by centrifugation at 4,000 rpm for 30 minutes using a centrifuge. Only 80 vol% of the supernatant solution was used.

[실험예 3] ND-GOPS와 PSS의 가교 반응[Experimental Example 3] Cross-linking reaction between ND-GOPS and PSS

실험예 2에서 제조된 MWCNTs/PSS 용액에, 실험예 1에서 제조된 GOPS로 개질된 나노다이아몬드(ND-GOPS)를 혼합하였다. 이후, 균일한 혼합 조성물을 제조하기 위해 수조 타입의 초음파 분쇄기(bath sonicator)를 사용하여 약 60분 동안 혼합을 추가로 진행한 후, 진공 여과 장치를 사용하여 필름 형태의 시편을 제조하였다. 이렇게 제조된 필름을 150℃에서 1 시간 열처리하여 수분 제거 및 열경화를 유도하여 GOPS로 개질된 ND와 PSS 처리된 MWCNTs와의 가교 반응을 수행하였다.In the MWCNTs/PSS solution prepared in Experimental Example 2, the GOPS-modified nanodiamonds (ND-GOPS) prepared in Experimental Example 1 were mixed. Thereafter, mixing was further performed for about 60 minutes using a bath sonicator to prepare a uniform mixture composition, and then a film-shaped specimen was prepared using a vacuum filtration device. The thus-prepared film was heat-treated at 150° C. for 1 hour to induce moisture removal and thermal curing, thereby performing a cross-linking reaction between GOPS-modified ND and PSS-treated MWCNTs.

이때 사용된 ND-GOPS는, 앞선 실험예 1의 표 1에서 가장 높은 결합량을 보였던 ND : GOPS가 1: 12의 혼합비를 통해 개질된 것을 사용하였으며, 실험예 2에서 제조된 MWCNT/PSS 고형분 대비 ND-GOPS의 중랑비를 변화시켜 가면서 ND-GOPS와 PSS의 가교 반응을 수행하였다.In this case, the ND-GOPS used was modified through a mixing ratio of 1: 12 in ND: GOPS, which showed the highest binding amount in Table 1 of Experimental Example 1 above, compared to the MWCNT/PSS solid content prepared in Experimental Example 2 The crosslinking reaction between ND-GOPS and PSS was performed while changing the ND-GOPS ratio.

[실험예 4] 열전도도의 측정[Experimental Example 4] Measurement of thermal conductivity

실험예 3에서 제조된 ND-GOPS와 PSS의 가교 반응이 수행된 시편(시편 2, 도 1(b) 참조)과, 비교를 위해 표면 개질이 수행되지 않은 ND(neat ND)와 PSS 처리된 카본 나노튜브(MWCNTs) 용액(MWCNTs/PSS)을 사용하여 실험예 3과 동일한 방법으로 제조된 시편(시편 1, 도 1(a) 참조)을 제조 하였다. 이에 추가로 PSS 처리된 카본 나노튜브(MWCNTs) 용액(MWCNTs/PSS)에 neat ND와 GOPS를 단순히 혼합하여 필름 시편(시편 3)을 제조하였다. 이때 실험예 2에서 제조된 MWCNT/PSS 고형분 대비 ND-GOPS(혹은 ND)의 중랑비를 0에서 30wt%까지 변화시켜 가면서 제조된 시편 1, 2, 3에 대하여 각각 열전도도를 구하였고(LFA 467, NETZSCH), 그 결과를 도 6에 정리하였다. For comparison with the specimen on which the crosslinking reaction of ND-GOPS and PSS prepared in Experimental Example 3 was performed (see Specimen 2, Fig. 1(b)), and for comparison, ND (neat ND) and PSS-treated carbon without surface modification A specimen prepared in the same manner as in Experimental Example 3 (Specimen 1, see FIG. 1(a)) was prepared using a nanotube (MWCNTs) solution (MWCNTs/PSS). In addition, neat ND and GOPS were simply mixed in a PSS-treated carbon nanotube (MWCNTs) solution (MWCNTs/PSS) to prepare a film specimen (Specimen 3). At this time, the thermal conductivity was obtained for each of specimens 1, 2, and 3 prepared by changing the mid-flow ratio of ND-GOPS (or ND) to MWCNT/PSS solid content prepared in Experimental Example 2 from 0 to 30 wt% (LFA 467). , NETZSCH), and the results are summarized in FIG. 6 .

통상적으로 열전도도는 아래의 식 1과 같이, 열확산율과 밀도 및 비열의 곱으로 얻어지는데, 각각의 시료의 열확산율을 측정하고, 무게와 부피로 산출된 밀도 및 DSC를 활용한 사파이어법으로 측정된 비열을 곱하여 각 시료의 열전전도 값을 확인하였다.In general, thermal conductivity is obtained as the product of thermal diffusivity, density, and specific heat as shown in Equation 1 below. The thermal diffusivity of each sample is measured, and the density calculated from weight and volume and the sapphire method using DSC are used. The thermal conductivity value of each sample was confirmed by multiplying the specific heat.

표면 개질되지 않은 ND를 사용한 시편 1과 3에 비해, 표면 개질된 ND가 사용된 시편 2의 경우 약 20wt%의 표면 개질된 ND 첨가제가 사용될 경우 최대 2.14 W/mK의 최대 열전도도 값을 나타냄을 확인할 수 있다.Compared to Specimens 1 and 3 using non-surface-modified ND, Specimen 2 with surface-modified ND exhibited a maximum thermal conductivity value of up to 2.14 W/mK when about 20 wt% of surface-modified ND additive was used. can be checked

이건 발명은 상술한 특정의 실시예 및 설명에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 누구든지 다양한 변형 실시가 가능하며, 그와 같은 변형은 이건 발명의 보호 범위 내에 있게 된다.This invention is not limited to the specific embodiments and descriptions described above, and without departing from the gist of the present invention claimed in the claims, anyone with ordinary skill in the art to which the invention pertains can implement various modifications and such modifications shall fall within the protection scope of the invention.

Claims (7)

실레인 커플링제로 표면 개질된 나노다이아몬드를 포함하는 방열 첨가제와 PSS(polystyrene sulfonate)로 처리된 카본나노튜브 수용액을 혼합하는 1차 혼합단계;
1~2시간 동안 초음파 처리를 통해 균일한 혼합을 유도하는 2차 혼합단계;
2차 혼합단계를 거친 후, 진공 여과 장치를 통해 필름 형태를 얻는 성형단계; 및
100~200도의 온도에서 1~2시간 동안 열처리하는 열처리 단계;를 포함하는, 방열시트의 제조 방법.
A first mixing step of mixing an aqueous solution of carbon nanotubes treated with a heat dissipation additive containing nanodiamonds surface-modified with a silane coupling agent and PSS (polystyrene sulfonate);
a second mixing step of inducing uniform mixing through ultrasonication for 1 to 2 hours;
After the secondary mixing step, a molding step of obtaining a film shape through a vacuum filtration device; and
A heat treatment step of heat-treating at a temperature of 100 to 200 degrees for 1 to 2 hours; Containing, a method of manufacturing a heat dissipation sheet.
제1항에 있어서,
상기 실레인 커플링제는, 3-Glycidoxypropyltrimethoxysilane인 것을 특징으로 하는, 방열시트의 제조 방법.
According to claim 1,
The silane coupling agent, characterized in that 3-Glycidoxypropyltrimethoxysilane, a method of manufacturing a heat dissipation sheet.
제1항에 있어서,
나노다이아몬드의 표면 개질은, 나노다이아몬드 100중량부를 기준으로, 실레인 커플링제 1200~2000중량부를 혼합한 후, 질소 버블링 후, 70~90도에서 11~13 시간 동안 반응이 수행되는 것을 특징으로 하는, 방열시트의 제조 방법.
According to claim 1,
Surface modification of nanodiamonds, based on 100 parts by weight of nanodiamonds, after mixing 1200 to 2000 parts by weight of a silane coupling agent, and after nitrogen bubbling, the reaction is performed at 70 to 90 degrees for 11 to 13 hours, characterized in that A method of manufacturing a heat dissipation sheet.
제1항에 있어서,
상기 카본나노튜브는, 멀티월 카본나노튜브(MWCNT)인 것을 특징으로 하는, 방열 시트의 제조 방법.
According to claim 1,
The carbon nanotube, characterized in that the multi-wall carbon nanotube (MWCNT), a method of manufacturing a heat dissipation sheet.
제1항에 있어서,
상기 PSS로 처리된 카본나노튜브 수용액은, 15~25wt%의 PSS 수용액에 카본나노튜브를 혼합한 후, 2~4시간 동안 초음파 처리한 후, 원심분리를 통해 얻어진 80vol%의 상층액인 것을 특징으로 하는, 방열 시트의 제조 방법.
According to claim 1,
The carbon nanotube aqueous solution treated with PSS is an 80 vol% supernatant obtained through centrifugation after mixing the carbon nanotubes with 15-25 wt% PSS aqueous solution, ultrasonicating for 2-4 hours, and centrifuging A method for manufacturing a heat dissipation sheet.
제1항에 있어서,
상기 방열 첨가제는, PSS로 처리된 카본나노튜브 수용액의 고형분 대비 10~20wt%의 범위로 혼합되는 것을 특징으로 하는, 방열 시트의 제조 방법.
According to claim 1,
The heat dissipation additive, characterized in that mixed in the range of 10 to 20 wt% of the solid content of the carbon nanotube aqueous solution treated with PSS, a method of manufacturing a heat dissipation sheet.
제1항 내지 제6항 중 어느 한 항에 따른 제조 방법으로 제조된 방열 시트.
A heat dissipation sheet manufactured by the manufacturing method according to any one of claims 1 to 6.
KR1020220084083A 2022-07-08 2022-07-08 Additive for enhaced heat-conductivity and preparation method of sheet of heat sink containing thereof KR102443110B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020220084083A KR102443110B1 (en) 2022-07-08 2022-07-08 Additive for enhaced heat-conductivity and preparation method of sheet of heat sink containing thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020220084083A KR102443110B1 (en) 2022-07-08 2022-07-08 Additive for enhaced heat-conductivity and preparation method of sheet of heat sink containing thereof

Publications (1)

Publication Number Publication Date
KR102443110B1 true KR102443110B1 (en) 2022-09-14

Family

ID=83279337

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020220084083A KR102443110B1 (en) 2022-07-08 2022-07-08 Additive for enhaced heat-conductivity and preparation method of sheet of heat sink containing thereof

Country Status (1)

Country Link
KR (1) KR102443110B1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101689693B1 (en) 2016-04-05 2016-12-26 주식회사 젬 Lighting Lamp Improved Radiant Heat Function
KR101851576B1 (en) 2016-05-20 2018-04-26 주식회사 젬 Led medi-lighting system
WO2019146453A1 (en) * 2018-01-29 2019-08-01 株式会社ダイセル Nanodiamond particle dispersion
KR102314224B1 (en) 2021-04-06 2021-10-19 주식회사 젬 LED lighting
KR102374330B1 (en) 2021-08-25 2022-03-16 주식회사 젬 LED lamp with special heat dissipation function with added nano material and electromagnetic wave absorption function

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101689693B1 (en) 2016-04-05 2016-12-26 주식회사 젬 Lighting Lamp Improved Radiant Heat Function
KR101851576B1 (en) 2016-05-20 2018-04-26 주식회사 젬 Led medi-lighting system
WO2019146453A1 (en) * 2018-01-29 2019-08-01 株式会社ダイセル Nanodiamond particle dispersion
KR102314224B1 (en) 2021-04-06 2021-10-19 주식회사 젬 LED lighting
KR102374330B1 (en) 2021-08-25 2022-03-16 주식회사 젬 LED lamp with special heat dissipation function with added nano material and electromagnetic wave absorption function

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Alexandra Shakun 외, "Influence of Surface Modified Nanodiamonds on Dielectric and Mechanical Properties of Silicone Composites", Polymers 2019. 1부.* *

Similar Documents

Publication Publication Date Title
Liu et al. Novel functionalized BN nanosheets/epoxy composites with advanced thermal conductivity and mechanical properties
US20150221409A1 (en) Graphene Composite Fiber and Method for Manufacturing the Same
US20140356277A1 (en) Production of graphene using electromagnetic radiation
Anithambigai et al. Study on thermal performance of high power LED employing aluminum filled epoxy composite as thermal interface material
US9631067B2 (en) Carbon fiber composite coated with silicon carbide and production method for same
KR101605707B1 (en) Boron-Nitride Quantum Dots synthesis by thermal defect engineering
US20210147740A1 (en) Polymer composites with highly tunable thermal and mechanical properties and methods of manufacture
CN108299791B (en) Resin composition, article made from the resin composition, and method for producing the same
Sun et al. Preparation and properties of transparent zinc oxide/silicone nanocomposites for the packaging of high‐power light‐emitting diodes
KR102243846B1 (en) Method for manufacturing multiple structure and high-heat radiation parts by controling packing density of carbon material, and multiple structure and high-heat radiation parts by manufactured thereof
Kim et al. Preparation and characterization of polyimide/carbon-nanotube composites
KR102111551B1 (en) Material for radiating Heat and Method of forming the same
KR102443110B1 (en) Additive for enhaced heat-conductivity and preparation method of sheet of heat sink containing thereof
JPH02263847A (en) Thermally conductive ceramic/polymer composite
Dai et al. Radiation synthesis of polysilane‐modified graphene oxide for improving thermal conductivity and mechanical properties of silicone rubber
KR101675292B1 (en) Composite material with high thermal conductive
Permal et al. Controlled High Filler Loading of Functionalized Al 2 O 3-Filled Epoxy Composites for LED Thermal Management
KR101976079B1 (en) A method for manufacturing a heat-radiating material composition having improved heat stability and water resistance
JP2010153538A (en) Heat dissipation material and method of manufacturing the same
Vasin et al. Evolution from UV emission of phenyl groups to visible emission of pyrolytic nanocarbons dispersed in fumed silica: Alternative insight into photoluminescence of carbon nanodots
KR101898234B1 (en) Resin composition, article prepared by using the same and method of preparing the same
Sangermano et al. Electrically insulating polymeric nanocomposites with enhanced thermal conductivity by visible‐light curing of epoxy–boron nitride nanotube formulations
KR101977125B1 (en) method for fabricating PCB using carbon-based materal for LED lighting
JP2012188305A (en) Infrared-absorbing heat-conductive member
CN115465844A (en) Preparation method of white light emitting boron nitride quantum dots

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant