KR102440540B1 - Method of Hybrid Starter and Generator for Improving Fuel Efficiency and Echo Vehicle Thereof - Google Patents

Method of Hybrid Starter and Generator for Improving Fuel Efficiency and Echo Vehicle Thereof Download PDF

Info

Publication number
KR102440540B1
KR102440540B1 KR1020160168664A KR20160168664A KR102440540B1 KR 102440540 B1 KR102440540 B1 KR 102440540B1 KR 1020160168664 A KR1020160168664 A KR 1020160168664A KR 20160168664 A KR20160168664 A KR 20160168664A KR 102440540 B1 KR102440540 B1 KR 102440540B1
Authority
KR
South Korea
Prior art keywords
hsg
torque
regenerative
output
engine
Prior art date
Application number
KR1020160168664A
Other languages
Korean (ko)
Other versions
KR20180067189A (en
Inventor
윤길영
김영운
장용성
Original Assignee
현대자동차주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 현대자동차주식회사 filed Critical 현대자동차주식회사
Priority to KR1020160168664A priority Critical patent/KR102440540B1/en
Priority to US15/827,393 priority patent/US10457270B2/en
Publication of KR20180067189A publication Critical patent/KR20180067189A/en
Application granted granted Critical
Publication of KR102440540B1 publication Critical patent/KR102440540B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/13Controlling the power contribution of each of the prime movers to meet required power demand in order to stay within battery power input or output limits; in order to prevent overcharging or battery depletion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/13Controlling the power contribution of each of the prime movers to meet required power demand in order to stay within battery power input or output limits; in order to prevent overcharging or battery depletion
    • B60W20/14Controlling the power contribution of each of the prime movers to meet required power demand in order to stay within battery power input or output limits; in order to prevent overcharging or battery depletion in conjunction with braking regeneration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2009Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2054Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed by controlling transmissions or clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/15Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with additional electric power supply
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/20Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
    • B60L53/24Using the vehicle's propulsion converter for charging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/18Controlling the braking effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/24Conjoint control of vehicle sub-units of different type or different function including control of energy storage means
    • B60W10/26Conjoint control of vehicle sub-units of different type or different function including control of energy storage means for electrical energy, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/02Ensuring safety in case of control system failures, e.g. by diagnosing, circumventing or fixing failures
    • B60W50/038Limiting the input power, torque or speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/441Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/443Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • B60W2510/0638Engine speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/08Electric propulsion units
    • B60W2510/081Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/08Electric propulsion units
    • B60W2510/083Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2530/00Input parameters relating to vehicle conditions or values, not covered by groups B60W2510/00 or B60W2520/00
    • B60W2530/13Mileage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/92Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Abstract

본 발명의 환경차량에 적용된 하이브리드 시동 발전기 제어 방법은 컨트롤러(10)에 의해 엔진아이들(Eng idle)의 시작시점에서 약 1초 동안 엔진 RPM이 HSG(3)의 회생토크출력으로 전환되어 배터리(7)를 충전시켜주는 전기회생토크출력제어와 1초 이후 약 5초까지 엔진 RPM을 HSG(3)의 회생토크출력으로 전환하여 배터리(7)의 충전을 지속시켜주는 후기회생토크출력제어로 이루어진 HSG 회생모드, HSG(3)의 토크 제한 후 HSG(3)의 출력제한으로 이어지는 HSG 구동모드로 구분된 HSG 토크-출력제한제어가 수행됨으로써 HSG(3)의 회생토크출력제어에서 엔진 아이들 개시 후 마찰손실로 버려지던 엔진 에너지를 배터리(7)의 충전에 사용하여 추가 연비개선 효과가 얻어지는 특징을 갖는다.In the hybrid starter generator control method applied to the environmental vehicle of the present invention, the engine RPM is converted to the regenerative torque output of the HSG 3 for about 1 second at the start time of the engine idle by the controller 10, and the battery 7 ), and the late regenerative torque output control to keep the battery 7 charged by converting the engine RPM to the regenerative torque output of the HSG (3) for about 5 seconds after 1 second. HSG torque-output limit control divided into regenerative mode, HSG drive mode followed by output limit of HSG (3) after torque limit of HSG (3) is performed, so that friction after starting engine idling in regenerative torque output control of HSG (3) The engine energy, which was wasted as a loss, is used to charge the battery 7 to obtain an additional fuel efficiency improvement effect.

Description

연비 개선을 위한 하이브리드 시동 발전기 제어 방법 및 환경 차량{Method of Hybrid Starter and Generator for Improving Fuel Efficiency and Echo Vehicle Thereof}Method of Hybrid Starter and Generator for Improving Fuel Efficiency and Echo Vehicle Thereof

본 발명은 하이브리드 시동 발전기에 관한 것으로, 특히 마찰손실로 소모되는 엔진에너지를 감소시켜 연비 개선율이 더욱 커지는 하이브리드 시동 발전기 제어 방법 및 환경 차량에 관한 것이다.The present invention relates to a hybrid starter generator, and more particularly, to a hybrid starter generator control method and an environmental vehicle, in which the fuel efficiency improvement rate is further increased by reducing engine energy consumed by friction loss.

일반적으로 PHEV(Plug-in Hybrid Electronic Vehicle)를 포함한 하이브리드 차량(Hybrid Electronic Vehicle, 이하 HEV)과 같은 환경차량에 대한 규제법규는 엔진과 함께 주행 동력을 발생시키는 구동 모터에 대한 모터 규제법규를 포함한다.In general, regulatory regulations on environmental vehicles such as Hybrid Electronic Vehicles (HEVs) including Plug-in Hybrid Electronic Vehicles (PHEVs) include motor regulation laws on driving motors that generate driving power together with engines. .

상기 모터 규제법규는 모터 최대출력을 규정하는 정미 축 출력 법규를 포함한다.The motor regulation law includes a net shaft output law that stipulates the maximum motor output.

그러므로 HEV에 적용되어 구동모터와 별도로 엔진으로 회전되는 하이브리드 시동 발전기(Hybrid Starter & Generator, 이하 HSG)도 모터 규제법규의 영향으로 최대 출력이 제한되도록 제어된다. 여기서 상기 HSG는 엔진시동 및 주행 중 고전압 배터리 충전, 엔진이나 모터 부하량에 따른 발전량 조절등을 구현한다.Therefore, the Hybrid Starter & Generator (HSG), which is applied to HEVs and rotates with the engine separately from the driving motor, is also controlled so that the maximum output is limited under the influence of motor regulation laws. Here, the HSG implements high-voltage battery charging during engine start and driving, and control of power generation according to engine or motor load.

이하 MTPA는 단위 전류당 최대 토크를 의미하는 "Maximum Torque PerAmpere,"의 영문 약자로서, MTPA 곡선으로 표현되어 약계자 제어(field weakening 또는 flux weakening)에 적용된다. 상기 약계자제어는 전동기의 허용 단자전압 도달 후 속도 증가에 따른 역기전력 증가 현상과 전기자 전류 감소에 따른 토크 감소 현상에서 계자자속의 약화로 역기전력을 감소시켜 증가되는 전기자 전류로 토크를 증가시키는 방식이다.Hereinafter, MTPA is an English abbreviation of “Maximum Torque PerAmpere,” meaning maximum torque per unit current, and is expressed as an MTPA curve and applied to field weakening or flux weakening. The field-weakening control is a method of increasing the torque by increasing the armature current by reducing the counter-electromotive force due to the weakening of the field magnetic flux in the counter-EMF increase according to the speed increase and the torque decrease according to the decrease in the armature current after reaching the allowable terminal voltage of the motor.

구체적으로 HEV에서 구현되는 HSG 제어는 MTPA 영역을 정토크로 제한하고 반면 MTPA 영역 이후를 정출력으로 제한함으로써 HSG의 최대출력제한을 토크 및 파워 제한으로 구현하는 방식이다. 이때 최대출력제한은 정미 축 출력 법규의 영향으로 HSG 사양대비 최대 2% 이내에서 이루어진다.Specifically, the HSG control implemented in the HEV limits the MTPA area to constant torque, while limiting the MTPA area to constant power after the MTPA area, so that the maximum output limit of the HSG is implemented as a torque and power limitation. At this time, the maximum output limit is made within 2% of the HSG specification due to the influence of the net shaft output law.

상기와 같이 HSG의 토크와 출력을 동시에 제한하는 방식은 토크-출력제한방식으로 칭하고, 구동모터를 제어하는 모터제어기(Motor Control Unit)가 차량제어기(Hybrid Control Unit)와 연계되어 수행된다. 상기 토크-출력제한방식의 실제적인 로직은 HSG 구동모드와 HSG 회생모드로 구분된다.As described above, the method of simultaneously limiting the torque and the output of the HSG is referred to as a torque-output limiting method, and a motor control unit for controlling the driving motor is performed in connection with a vehicle controller (hybrid control unit). The actual logic of the torque-output limiting method is divided into an HSG driving mode and an HSG regenerative mode.

일례로, 토크-출력제한방식중 HSG 구동모드는 엔진 시동 후 약 2,100rpm까지 토크제한을 하고, 그 이후는 출력제한으로 전환되는 방식이다. 반면 토크-출력제한방식중 HSG 회생모드는 엔진시동 후 영 토크 제어 상태를 유지하다 엔진 아이들(Engine Idle)에 이어진 엔진정지(Engine Off)에 따른 RPM 감소 상태에서 엔진 에너지가 HSG의 회생토크로 인가되는 방식이며, 약 5초 동안 수행하여 준다.For example, among the torque-output limiting methods, the HSG driving mode limits the torque up to about 2,100 rpm after starting the engine, and then switches to the output limit. On the other hand, in the HSG regenerative mode among the torque-output limiting methods, the zero torque control state is maintained after the engine is started. This method is performed, and it is performed for about 5 seconds.

그러므로 상기 토크-출력제한방식은 HSG에 의한 엔진정지에 도달되기 전 감소되는 엔진 에너지를 연비개선에 이용할 수 있다. Therefore, in the torque-output limiting method, the engine energy that is reduced before the engine stop by the HSG is reached can be used for fuel efficiency improvement.

일본 특개2014-101048(2014.06.05)Japanese Patent Application Publication 2014-101048 (2014.06.05)

하지만 상기 토크-출력제한방식은 HSG 회생모드 구현 시 엔진 특성이 최대한 반영되지 못하는 방식이다.However, the torque-output limiting method is a method in which engine characteristics are not reflected as much as possible when implementing the HSG regenerative mode.

일례로, 엔진 RPM은 엔진 아이들 시점의 고 RPM에서 엔진 정지시점에 도달되는 저 RPM에 이은 엔진정지 시점의 0 RPM으로 진행되나 토크-출력제한방식은 엔진시동 후 영 토크 제어 상태에서 저 RPM 이후 HSG의 회생토크 출력을 제어한다. 그 결과 HSG는 초기 회생 토크 출력을 제한한 상태에서 서서히 증가시켜준 후 일정하게 유지되다 감소되고, 배터리 충전은 제한된 초기 회생 토크 출력을 제외한 엔진 에너지로 이루어진다.For example, the engine RPM proceeds from high RPM at the time of engine idling to 0 RPM at the time of engine stop following the low RPM reached at the time of engine stop. control the regenerative torque output of As a result, the HSG is gradually increased in a state in which the initial regenerative torque output is limited, then maintained constant and then decreased, and battery charging is made with engine energy excluding the limited initial regenerative torque output.

그러므로 동작과 정지를 반복하는 엔진특성에서 엔진에너지의 마찰손실 축소는 추가적인 연비개선을 가능하게 하지만 현 토크-출력제한방식은 초기 회생 토크 출력이 제한됨으로써 추가적인 연비개선을 불가능하게 한다.Therefore, reducing the friction loss of engine energy in the engine characteristic that repeats operation and stop makes it possible to further improve fuel efficiency, but the current torque-output limiting method restricts the initial regenerative torque output, making it impossible to further improve fuel efficiency.

이에 상기와 같은 점을 감안한 본 발명은 엔진 구동 후 엔진 아이들에 이은 엔진 정지까지 이루어지는 HSG 회생토크출력이 엔진 아이들 개시시점 엔진 RPM을 적용한 회생토크출력과 엔진아이들 후 엔진정지까지 엔진RPM을 적용한 후기회생토크출력으로 구분됨으로써 엔진 아이들 개시 후 마찰손실로 버려지던 엔진 에너지 사용으로 추가적인 연비개선이 이루어지고, 특히 HSG의 회생토크출력을 위한 엔진 에너지 흡수가 최대전류보다 작은 최대토크 미만에서 이루어짐으로써 내구나 성능 저하도 이어지지 않는 하이브리드 시동 발전기 제어 방법 및 환경 차량의 제공에 목적이 있다.Accordingly, the present invention in consideration of the above points is that the HSG regenerative torque output from engine operation to engine idling followed by engine stop is regenerative torque output applying engine RPM at the start of engine idling, and late regenerative applying engine RPM until engine stop after engine idling. By dividing by torque output, additional fuel efficiency is improved by using engine energy that was wasted due to friction loss after starting engine idling. An object of the present invention is to provide a hybrid starter generator control method that does not lead to deterioration and an environmental vehicle.

상기와 같은 목적을 달성하기 위한 본 발명의 하이브리드 시동 발전기 제어 방법은 엔진 가동 후 컨트롤러에 의한 HSG의 영 토크 제어 상태에서 엔진 RPM이 엔진 아이들로 검출되어 HSG 구동모드와 HSG 회생모드로 구분되는 단계, 상기 HSG 회생모드 진입에서 상기 엔진 아이들의 검출시점에서 초기화된 타이머가 카운트되는 단계, 상기 HSG의 최대토크보다 작은 HSG 매핑전기최대토크를 회생토크출력으로 하여 상기 HSG가 회전되는 단계, 상기 HSG의 회전에 의한 상기 회생토크출력제어가 상기 초기설정시간동안 유지되어 상기 배터리를 충전시켜주는 단계, 상기 초기설정시간 경과 후 상기 HSG의 최대토크보다 작은 HSG 매핑후기최대토크를 후기회생토크출력으로 하여 상기 HSG가 회전되는 단계, 상기 HSG의 회전에 의한 상기 후기회생토크출력제어가 상기 후기설정시간동안 유지되어 상기 배터리를 충전시켜주는 단계, 상기 HSG 구동모드진입에서 토크제한이 이루어지는 엔진 RPM 이후 출력제한이 이루어지는 단계로 수행되는 것을 특징으로 한다.The hybrid starter generator control method of the present invention for achieving the above object includes the steps of dividing the engine RPM into an HSG driving mode and an HSG regenerative mode by detecting the engine RPM in a zero torque control state of the HSG by a controller after the engine is started, Counting the timer initialized at the time of detection of engine idle in the HSG regenerative mode entry, rotating the HSG using an HSG mapping electric maximum torque smaller than the maximum torque of the HSG as a regenerative torque output, rotation of the HSG maintaining the regenerative torque output control for the initial set time to charge the battery, and after the initial set time has elapsed, the HSG mapping late maximum torque that is smaller than the maximum torque of the HSG is used as the late regenerative torque output. is rotated, the late regenerative torque output control by the rotation of the HSG is maintained for the later set time to charge the battery, and the output is limited after the engine RPM where the torque is limited when entering the HSG driving mode It is characterized in that it is carried out in stages.

바람직한 실시예로서, 상기 회생토크출력은, 상기 HSG 매핑전기최대토크가 상기 HSG의 발전량 부하를 제어하는 HCU의 HCU 요구토크와 비교 판단되는 단계, 상기 HSG 매핑전기최대토크가 상기 HCU 요구토크보다 큰 경우 구동모터를 제어하는 MCU의 MCU 요구토크를 상기 HCU 요구토크로 하여 상기 회생토크출력이 결정되는 단계, 상기 HSG 매핑전기최대토크가 상기 HCU 요구토크보다 작은 경우 구동모터를 제어하는 MCU의 MCU 요구토크를 상기 HSG 매핑전기최대토크로 하여 상기 회생토크출력이 결정되는 단계로 구분된다. 상기 HSG 매핑후기최대토크는 상기 HSG의 현재속도에서 HSG 토크-속도선도로 산출되어 후기회생토크 맵에 매핑되어진다.In a preferred embodiment, the regenerative torque output is determined by comparing the HSG mapping electrical maximum torque with the HCU demand torque of the HCU that controls the power generation load of the HSG, the HSG mapping electrical maximum torque being greater than the HCU demand torque When the regenerative torque output is determined by using the MCU required torque of the MCU for controlling the driving motor as the HCU required torque, when the HSG mapping electric maximum torque is less than the HCU required torque, the MCU request of the MCU controlling the driving motor It is divided into a step in which the regenerative torque output is determined by using the torque as the electric maximum torque of the HSG mapping. The maximum torque after the HSG mapping is calculated as an HSG torque-speed diagram from the current speed of the HSG and mapped to the late regenerative torque map.

바람직한 실시예로서, 상기 후기회생토크출력은, 상기 HSG 매핑후기최대토크가 상기 HSG의 발전량 부하를 제어하는 HCU의 HCU 요구토크와 비교 판단되는 단계, 상기 HSG 매핑후기최대토크가 상기 HCU 요구토크보다 큰 경우 구동모터를 제어하는 MCU의 MCU 요구토크를 상기 HCU 요구토크로 하여 상기 후기회생토크출력이 결정되는 단계, 상기 HSG 매핑후기최대토크가 상기 HCU 요구토크보다 작은 경우 구동모터를 제어하는 MCU의 MCU 요구토크를 상기 HSG 매핑전기최대토크로 하여 상기 후기회생토크출력이 결정되는 단계로 구분된다.In a preferred embodiment, the late regenerative torque output is determined by comparing the HSG mapping late maximum torque with the HCU demand torque of the HCU that controls the generation load of the HSG, wherein the HSG mapping later maximum torque is greater than the HCU demand torque The step of determining the late regenerative torque output by using the MCU required torque of the MCU for controlling the driving motor as the HCU demand torque when it is large It is divided into a step in which the output of the late regenerative torque is determined by using the MCU required torque as the HSG mapping electrical maximum torque.

그리고 상기와 같은 목적을 달성하기 위한 본 발명의 환경차량은 엔진아이들의 시작시점에서 초기설정시간동안 엔진 RPM이 HSG의 회생토크출력으로 전환되어 배터리를 충전시켜주는 회생토크출력제어 및 상기 초기설정시간 후 이어지는 후기설정시간동안 엔진 RPM을 상기 HSG의 상기 회생토크출력으로 전환하여 상기 배터리의 충전을 지속시켜주는 후기회생토크출력제어로 연속되는 HSG 회생모드, 토크 제한 후 출력제한으로 이어지는 HSG 구동모드로 구분된 HSG 토크-출력제한제어가 수행되는 컨트롤러; 엔진과 연결되고, 상기 컨트롤러로 제어되어 토크-출력제한이 이루어지는 HSG;가 포함된 것을 특징으로 한다.And in the environmental vehicle of the present invention for achieving the above object, the engine RPM is converted to the regenerative torque output of HSG during the initial set time at the start of engine idle to charge the battery and the regenerative torque output control and the initial set time HSG regenerative mode, which is continuous with late regenerative torque output control that maintains charging of the battery by converting engine RPM to the regenerative torque output of the HSG for the subsequent late set time, and HSG driving mode that leads to output limit after torque limit a controller to which the differentiated HSG torque-output limit control is performed; It is characterized in that it includes; an HSG connected to the engine and controlled by the controller to limit torque-output.

바람직한 실시예로서, 상기 컨트롤러는 HSG 토크-속도 선도로 상기 HSG의 사양최대토크보다 작은 최대토크가 HSG 매핑전기최대토크로 매핑된 전기회생토크 맵과 HSG 매핑후기최대토크(T_map5)로 매핑된 후기회생토크 맵을 구비하고, 상기 전기회생토크 맵은 엔진 아이들 후 엔진 꺼짐 시 상기 HSG 매핑전기최대토크로 배터리를 1초 동안 충전시켜 주고, 상기 후기회생토크 맵은 상기 HSG 매핑후기최대토크로 상기 배터리를 1초 이후 5초까지 충전시켜준다.As a preferred embodiment, the controller includes an electric regenerative torque map in which the maximum torque smaller than the specified maximum torque of the HSG is mapped to the HSG mapping electric maximum torque in the HSG torque-speed diagram and the HSG mapping later mapped to the maximum torque (T_map5) A regenerative torque map is provided, wherein the electric regenerative torque map charges the battery with the HSG mapping electric maximum torque for 1 second when the engine is turned off after engine idling, and the late regenerative torque map is the HSG mapping late maximum torque for the battery Charges from 1 second to 5 seconds.

바람직한 실시예로서, 상기 컨트롤러는 상기 엔진과 클러치로 연결 및 분리되는 구동모터를 제어하는 MCU이고, 상기 MCU는 상기 HSG의 발전량 부하를 제어하는 HCU와 연계된다.In a preferred embodiment, the controller is an MCU that controls a driving motor that is connected and disconnected from the engine and the clutch, and the MCU is linked with an HCU that controls the power generation load of the HSG.

이러한 본 발명의 환경 차량은 HSG의 토크-출력제한방식을 토크제한 후 출력제한이 이루어지는 HSG 구동모드와 함께 전기와 후기의 두 단계로 구분된 회생토크출력으로 구분된 HSG 회생모드로 구현함으로써 다음과 같은 장점 및 효과를 구현한다.The environmental vehicle of the present invention implements the HSG torque-output limiting method as an HSG regenerative mode divided into the regenerative torque output divided into two stages, the first and the latter, along with the HSG driving mode in which the output is limited after the torque is limited. The same advantages and effects are realized.

첫째, 전기를 담당하는 회생토크출력이 상대적으로 고 RPM을 갖는 아이들 초기 상태에서 이루어짐으로써 마찰손실로 버려지던 엔진에너지가 배터리 충전에 사용되고, 배터리 충전만큼 추가적인 연비개선이 이루어진다. 둘째, 제한된 초기 회생 토크 출력에 해당되는 아이들 초기의 고 RPM을 이용함으로써 회생토크출력 범위를 약 2,000RPM에서 약 4,000RPM으로 확장할 수 있다. 셋째, 약 4,000RPM에서 발생되는 HSG 토크가 최대전류보다 작은 최대토크 미만이므로 HSG 사양 초과로 인한 전기적 성능 및 내구 저하를 가져오지 않는다. 넷째, 전기를 담당하는 회생토크출력이 엔진 구동 후 엔진 정지로 이어지는 엔진 아이들 시 상대적으로 고 RPM을 갖는 아이들 초기 상태에서 약1초 이내로 짧게 적용됨으로써 지속 사용이 가능하다. 다섯째, 약 5초의 회생토크출력 중 약 1초의 전기를 담당하는 회생토크출력 후 4초의 후기회생토크출력이 지속됨으로써 더욱 효율적인 연비 개선과 함께 HSG 내구성 확보도 가능하다. 여섯째, 전후기로 구분된 HSG 제어맵이 기반되어 HSG 회생토크출력이 이루어 짐으로써 기존 환경차량에서 H/W(hardware) 추가에 따른 원가상승 없는 추가적인 연비 개선과 함께 성능 향상이 가능하다.First, since the regenerative torque output responsible for electricity is made in the initial state of idle with a relatively high RPM, engine energy that was wasted as friction loss is used to charge the battery, and additional fuel economy is improved as much as the battery is charged. Second, the range of regenerative torque output can be extended from about 2,000 RPM to about 4,000 RPM by using the high RPM of the initial idle, which corresponds to the limited initial regenerative torque output. Third, since the HSG torque generated at about 4,000RPM is less than the maximum torque that is smaller than the maximum current, it does not cause deterioration in electrical performance and durability due to exceeding the HSG specification. Fourth, continuous use is possible as the regenerative torque output responsible for electricity is briefly applied within about 1 second in the initial state of idling with a relatively high RPM during engine idling leading to engine stop after engine operation. Fifth, among the regenerative torque output of about 5 seconds, after the regenerative torque output responsible for about 1 second of electricity, the late regenerative torque output of 4 seconds continues, so that it is possible to secure more efficient fuel efficiency and secure HSG durability. Sixth, the HSG regenerative torque output is made based on the HSG control map divided into the front and rear, so that it is possible to improve performance with additional fuel efficiency without cost increase due to the addition of H/W (hardware) in existing environment vehicles.

도 1은 본 발명에 따른 연비 개선을 위한 하이브리드 시동 발전기 제어 방법 의 순서도이고, 도 2는 본 발명에 따른 하이브리드 시동 발전기 제어로 추가적인 연비 개선이 이루어지는 환경 차량의 예이며, 도 3은 본 발명에 따른 환경차량이 하이브리드 시동 발전기 제어의 전기와 후기의 두 단계로 구분된 HSG 회생모드 중 전기를 담당하는 회생토크출력으로 제어되는 상태이고, 도 4는 본 발명에 따른 환경차량이 하이브리드 시동 발전기 제어의 전기와 후기의 두 단계로 구분된 HSG 회생모드 중 후기를 담당하는 회생토크출력으로 제어되는 상태이며, 도 5는 본 발명에 따른 전후기로 구분된 회생토크출력이 가져오는 HSG 회생모드 구현 효과의 예이고, 도 6은 본 발명에 따른 환경차량이 하이브리드 시동 발전기 제어의 HSG 구동모드 선도의 예이다.1 is a flowchart of a method for controlling a hybrid starter generator for improving fuel efficiency according to the present invention, FIG. 2 is an example of an environmental vehicle in which additional fuel efficiency is improved by controlling a hybrid starter generator according to the present invention, and FIG. The environmental vehicle is a state controlled by the regenerative torque output responsible for electricity in the HSG regenerative mode divided into two stages of the electric and the latter stage of the hybrid starter generator control, and FIG. 4 is the electric vehicle of the hybrid starter generator control according to the present invention It is a state controlled by the regenerative torque output responsible for the latter part of the HSG regenerative mode divided into two stages, and FIG. 5 is an example of the HSG regenerative mode implementation effect brought by the regenerative torque output divided into the front and rear stages according to the present invention. , Figure 6 is an example of the HSG drive mode diagram of the hybrid starter generator control of the environmental vehicle according to the present invention.

이하 본 발명의 실시 예를 첨부된 예시도면을 참조로 상세히 설명하며, 이러한 실시 예는 일례로서 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 여러 가지 상이한 형태로 구현될 수 있으므로, 여기에서 설명하는 실시 예에 한정되지 않는다.Hereinafter, an embodiment of the present invention will be described in detail with reference to the accompanying illustrative drawings, and since such an embodiment may be implemented in various different forms by those of ordinary skill in the art to which the present invention pertains, it will be described herein It is not limited to the embodiment.

도 1을 참조하면, HSG 제어 방법은 HSG 구동모드와 HSG 회생모드로 구분된 HSG의 토크-출력제한방식을 적용하되 상기 HSG 회생모드는 전기와 후기의 두 단계로 구분되고, 전기를 담당하는 회생토크출력 후 후기를 담당하는 회생토크출력이 이루어지는 방식으로 약 5초 동안 수행됨에 그 특징이 있다. 여기서 전기를 담당하는 회생토크출력은 회생토크출력으로 후기를 담당하는 회생토크출력을 후기 회생토크출력으로 정의된다. 그 결과 HSG의 토크-출력제한방식은 HSG에 대해 최대전류보다 작은 최대토크 미만으로 사양범위를 충족하면서 약 4,000rpm으로 상승된 출력 포텐셜로 엔진 에너지의 마찰손실을 줄일 수 있어 그 만큼 추가적인 연비개선이 이루어질 수 있다.Referring to FIG. 1 , the HSG control method applies the torque-output limiting method of HSG divided into the HSG driving mode and the HSG regenerative mode, but the HSG regenerative mode is divided into two stages, the former and the latter, and the regeneration responsible for electricity It is characterized in that it is performed for about 5 seconds in such a way that the regenerative torque output responsible for the latter stage is performed after the torque output. Here, the regenerative torque output responsible for electricity is regenerative torque output, and the regenerative torque output responsible for the latter period is defined as the late regenerative torque output. As a result, the torque-output limiting method of HSG satisfies the specification range with less than the maximum torque that is smaller than the maximum current for HSG, and the friction loss of engine energy can be reduced with the output potential raised to about 4,000 rpm. can be done

도 2를 참조하면, 환경차량(1)은 엔진(2), HSG(Hybrid Starter & Generator)(3), 구동모터(5), 클러치(6), 배터리(7), 통합인버터(8), 동력전달장치(9), MCU(Motor Control Unit)(10), HCU(Hybrid Control Unit)(20) 및 HSG 회생토크 맵을 포함한다.Referring to FIG. 2 , the environmental vehicle 1 includes an engine 2, a Hybrid Starter & Generator (HSG) 3, a driving motor 5, a clutch 6, a battery 7, an integrated inverter 8, It includes a power transmission unit 9, a motor control unit (MCU) 10, a hybrid control unit (HCU) 20 and an HSG regenerative torque map.

구체적으로 상기 엔진(2)과 구동모터(5)는 환경차량(1)의 동력원이다. 상기 엔진(2)은 내연기관이며, 엔진(2)의 동력은 클러치(6)를 매개로 구동모터(5)로 전달된다. 상기 HSG(3)는 엔진(2)의 시동 및 주행 중 배터리(7)의 충전 및 엔진(2)이나 구동모터(5)의 부하량에 따른 발전량 조절등을 구현한다. 상기 구동모터(5)는 배터리(7)로 구동되는 전기모터이고, 동력전달장치(9)로 동력을 전달한다. 상기 클러치(6)는 엔진(2)과 구동모터(5)를 연결 및 분리한다. 상기 배터리(7)는 고전압 배터리로서 통합인버터(8)와 연계되어 구동모터(5)로 전류를 공급하고 HSG(3)로 SOC(State Of Charge)의 충전이 이루어진다. 상기 동력전달장치(9)는 구동모터(5)의 출력을 차륜으로 전달한다.Specifically, the engine 2 and the driving motor 5 are power sources of the environment vehicle 1 . The engine 2 is an internal combustion engine, and the power of the engine 2 is transmitted to the driving motor 5 via the clutch 6 . The HSG (3) implements the charging of the battery (7) and control of the amount of power generation according to the load of the engine (2) or the driving motor (5) during starting and driving of the engine (2). The driving motor 5 is an electric motor driven by a battery 7 , and transmits power to the power transmission device 9 . The clutch 6 connects and disconnects the engine 2 and the drive motor 5 . The battery 7 is a high voltage battery and is connected to the integrated inverter 8 to supply current to the driving motor 5 and to charge the SOC (State Of Charge) to the HSG 3 . The power transmission device 9 transmits the output of the driving motor 5 to the wheels.

구체적으로 상기 MCU(10)와 상기 HCU(20)는 환경차량(1)을 제어하는 제어기로서, 상기 MCU(10)는 HSG(3)와 구동모터(5)를 제어하며, 상기 HCU(20)는 MCU(10)와 연계괴어 HSG(3)와 배터리(7)를 제어 및 관리하는 상위제어기로서, VCU(Vehicle Control Unit)일 수 있다.Specifically, the MCU 10 and the HCU 20 are controllers for controlling the environment vehicle 1 , and the MCU 10 controls the HSG 3 and the driving motor 5 , and the HCU 20 . is a higher level controller that controls and manages the HSG 3 and the battery 7 in connection with the MCU 10 , and may be a Vehicle Control Unit (VCU).

구체적으로 상기 HSG 회생토크 맵은 MCU(10)의 구동토크 맵과 전기 회생토크 맵(10-1) 및 후기 회생토크 맵(10-2)으로 구분된다. 상기 구동토크 맵은 HSG 구동모드에 적용되고, 상기 전기회생토크 맵(10-1)은 약 5초의 회생토크 시간 중 회생토크시작부터 1초 미만 동안에 적용되며, 상기 후기회생토크 맵(10-2)은 약 5초의 회생토크 시간 중 1초 이상부터 회생토크종료 시간인 5초 동안에 적용된다.Specifically, the HSG regenerative torque map is divided into a driving torque map of the MCU 10 , an electric regenerative torque map 10-1, and a late regenerative torque map 10-2. The driving torque map is applied to the HSG driving mode, and the electric regenerative torque map 10-1 is applied for less than 1 second from the start of the regenerative torque during the regenerative torque time of about 5 seconds, and the late regenerative torque map 10-2 ) is applied from 1 second or more of the regenerative torque time of about 5 seconds to 5 seconds, the regenerative torque end time.

이하 도 1의 HSG 제어 방법을 통한 연비 개선을 HSG 토크-출력제한제어로 하여 도 3 내지 도 6을 참조로 상세히 설명한다. 이 경우 제어주체는 HCU(20)와 연계되고 HSG 회생토크 맵을 갖춘 MCU(10)로서 컨트롤러로 설명된다. 제어 대상은 엔진(2) 및 배터리(7)와 연계된 HSG(3)이다.Hereinafter, fuel efficiency improvement through the HSG control method of FIG. 1 will be described in detail with reference to FIGS. 3 to 6 as HSG torque-output limit control. In this case, the control subject is described as a controller as an MCU 10 connected with the HCU 20 and equipped with an HSG regenerative torque map. The control object is the HSG 3 associated with the engine 2 and the battery 7 .

컨트롤러는 엔진(2)이 HSG(30)로 시동되는 IG-On 상태(S10)를 검출하면, 타이머 초기화(S20)를 수행함으로써 HSG 토크-출력제한제어로 진입한다. 여기서 상기 타이머 초기화는 전기회생토크 맵(10-1)의 적용을 위한 시간 카운트로 0(영)으로 세팅되어 1초를 초과하지 않는 시간동안 카운트되며 이를 수행하는 타이머는 Timer1로 명명되고, 클락 소자적용이나 소프트웨어적으로 처리될 수 있다. 그 결과 컨트롤러는 HSG 토크-출력제한제어로 진입된다.When the controller detects the IG-On state S10 in which the engine 2 is started with the HSG 30, it enters the HSG torque-output limit control by performing a timer initialization S20. Here, the timer initialization is set to 0 (zero) as a time count for application of the electric regenerative torque map 10-1 and counted for a time not exceeding 1 second. It can be applied or processed by software. As a result, the controller enters the HSG torque-output limit control.

이어 HSG 토크-출력제한제어로 진입한 컨트롤러는 HSG 구동상태 판단(S30)으로 S100의 HSG 구동모드와 S40의 HSG 회생모드를 구분한다. 이를 위해 상기 컨트롤러는 IG-On에 따른 엔진(2)의 시동 후 HSG(3)의 영 토크 제어 상태에서 엔진 아이들(Engine Idle)을 HSG 회생모드 진입으로 한다. 또는 상기 컨트롤러는 IG-Off 검출 또는 MCU(10)나 HCU(20)의 요구토크를 적용할 수 있다. 일례로, IG-Off는 엔진정지이고, 요구토크는 MCU(10)의 요구토크를 T_mcu로 하고 HCU(20)의 요구토크를 T_hcu로 하여 이들 각각이 HSG 구동모드에서 요구하는 값보다 작은 경우를 조건으로 할 수 있다.Next, the controller entering the HSG torque-output limit control divides the HSG driving mode of S100 and the HSG regenerative mode of S40 by determining the HSG driving state (S30). To this end, the controller makes the engine idle (Engine Idle) into the HSG regeneration mode in the zero torque control state of the HSG (3) after starting the engine (2) according to IG-On. Alternatively, the controller may apply the IG-Off detection or the requested torque of the MCU 10 or the HCU 20 . As an example, IG-Off is engine stop, and the required torque is T_mcu as the requested torque of the MCU 10 and T_hcu as the requested torque of the HCU 20. can be conditional.

S40의 HSG 회생모드는 컨트롤러에 의해 S60 내지 S64의 전기회생토크출력제어와 S70 내지 S74의 후기회생토크출력제어로 구분되어 수행된다. 이 경우 상기 전기회생토크출력제어는 전기를 담당하는 회생토크출력을 위한 회생토크출력제어이고, 상기 후기회생토크출력제어는 후기를 담당하는 회생토크출력을 위한 후기회생토크출력제어이다, 그러므로 회생토크출력은 회생토크출력제어 후 후기회생토크출력제어가 이어져 수행된다.The HSG regenerative mode of S40 is divided into the electric regenerative torque output control of S60 to S64 and the late regenerative torque output control of S70 to S74 by the controller. In this case, the electric regenerative torque output control is a regenerative torque output control for the regenerative torque output responsible for electricity, and the late regenerative torque output control is a late-stage regenerative torque output control for the regenerative torque output responsible for the latter period, therefore the regenerative torque The output is performed after the regenerative torque output control followed by the late regenerative torque output control.

상기 회생토크출력제어는 S60의 전기 회생토크 출력 활성화 단계, S61의 요구토크 판단 단계, S62와 S63의 MCU 출력토크 단계, S64의 타이머 카운트 개시 단계로 구분된다.The regenerative torque output control is divided into an electric regenerative torque output activation step of S60, a required torque determination step of S61, an MCU output torque step of S62 and S63, and a timer count start step of S64.

도 3을 참조하면, 컨트롤러로 작용하는 MCU(10)는 전기 회생토크 맵(10-1)을 map1(즉, 1초맵)로 하여 활성화(Wake-up)시키고, map1에 설정된 HSG 매핑토크 중 엔진(2)의 현재속도(즉, 엔진 RPM)에서의 HSG(3)의 HSG 매핑토크를 매칭한 후 매칭 값을 T_map1로 설정하여 S60의 전기회생출력토크 활성화 단계를 수행한다. 이 경우 상기 T_map1은 HSG 매핑전기최대토크로 정의되고, HSG(30)의 현재속도에서의 1초맵 최대 토크로서 HSG(3)의 토크(Nm)-속도(rpm)의 선도에서 획득되며, HSG(3)의 사양에서 제공하는 HSG 최대토크보다 작은 값으로 정의된다.Referring to FIG. 3 , the MCU 10 acting as a controller uses the electric regenerative torque map 10-1 as map1 (ie, 1 second map) to activate (Wake-up), and the engine among the HSG mapping torques set in map1 After matching the HSG mapping torque of the HSG 3 at the current speed (ie, engine RPM) of (2), the matching value is set to T_map1, and the electric regenerative output torque activation step of S60 is performed. In this case, the T_map1 is defined as the HSG mapping electric maximum torque, and is obtained from the diagram of the torque (Nm)-speed (rpm) of the HSG (3) as the 1-second map maximum torque at the current speed of the HSG (30), and the HSG ( It is defined as a value smaller than the maximum HSG torque provided in the specification of 3).

이어, 상기 MCU(10)는 HCU(20)에서 엔진RPM 변화에 따른 HCU 요구토크를 제공 받고, 상기 HCU 요구토크를 T_hcu1로 하여 T_map1과 매칭된 엔진(2)의 현재속도에서의 HCU 요구토크로 정의한 후 T_map1과 비교 판단 하여 S61 단계를 수행한다. 이 경우 T_hcu1과 T_map1의 비교판단은 하기 관계식을 이용한다.Next, the MCU 10 receives the HCU demand torque according to the engine RPM change from the HCU 20, and sets the HCU demand torque as T_hcu1 to the HCU demand torque at the current speed of the engine 2 matched with T_map1. After defining, it compares with T_map1 and performs step S61. In this case, the following relational expression is used to determine the comparison between T_hcu1 and T_map1.

map1 최대토크 : T_hcu1 < T_map1, 여기서 "<"은 두 값의 크기를 나타낸 부등호로서, "T_hcu1 < T_map1"은 현재속도에서의 1초맵 최대 토크가 현재속도에서의 HCU 요구토크 이상임을 의미한다.map1 maximum torque: T_hcu1 < T_map1, where "<" is an inequality sign indicating the magnitude of the two values, and "T_hcu1 < T_map1" means that the maximum torque of 1 second map at the current speed is greater than the HCU required torque at the current speed.

그 결과 상기 MCU(10)는 T_map1이 T_hcu1 이상인 경우 T_map1을 T_hcu1로 하고, 상기 T_hcu1를 MCU(10)의 출력토크인 T_mcu1로 하여 출력(S62)하고, 상기 T_mcu1에 의한 HSG(3)의 제어가 설정시간동안 유지되도록 S64의 타이머 카운트 단계를 수행한다. 반면 상기 MCU(10)는 T_hcu1가 T_map1 이상인 경우 T_map1을 MCU(10)의 출력토크인 T_mcu1로 하여 출력(S63)하고, 상기 T_mcu1에 의한 HSG(3)의 제어가 설정시간동안 유지되도록 S64의 타이머 카운트 단계를 수행한다. 이 경우 S64의 타이머 카운트는 "Timer1 = t1(초)로 설정되고, 상기 t1(초)은 전기회생출력토크 활성화를 위한 설정시간으로서 약 1초로 설정된다. 그러므로 상기 타이머 카운트는 1초 전까지 이루어진다. 또한 상기 t1(초)은 전기설정시간으로 정의된다.As a result, when T_map1 is equal to or greater than T_hcu1, the MCU 10 outputs T_map1 as T_hcu1 and T_hcu1 as T_mcu1 which is the output torque of the MCU 10 (S62), and the control of the HSG 3 by the T_mcu1 is The timer count step of S64 is performed so as to be maintained for the set time. On the other hand, when T_hcu1 is equal to or greater than T_map1, the MCU 10 outputs (S63) T_map1 as the output torque of the MCU 10, T_mcu1. Perform a count step. In this case, the timer count of S64 is set to "Timer1 = t1 (sec), and t1 (sec) is set to about 1 second as a set time for activating the electric regenerative output torque. Therefore, the timer count is made up to 1 second. In addition, the t1 (seconds) is defined as an electric setting time.

특히 상기 회생출력토크제어는 HSG(3)의 최대토크인 T_map1보다 작은 T_hcu1나 T_mcu1을 이용함으로써 HSG의 회생토크출력을 위한 엔진 에너지 흡수가 최대전류보다 작은 최대토크 미만에서 이루어짐으로써 내구나 성능 저하를 발생시키지 않는다.In particular, the regenerative output torque control uses T_hcu1 or T_mcu1 that is smaller than T_map1, which is the maximum torque of the HSG (3), so that the engine energy absorption for the regenerative torque output of the HSG is made less than the maximum torque smaller than the maximum current, thereby reducing durability or performance. does not cause

이어 컨트롤러는 타이머 카운트 완료 후 S70의 후기회생토크출력제어로 진입한다. 상기 후기회생토크출력제어는 S70의 후기 회생토크 출력 활성화 단계, S71의 요구토크 판단 단계, S72와 S73의 MCU 출력토크 단계, S74의 타이머 카운트 개시 단계로 구분된다.Then, the controller enters the late regenerative torque output control of S70 after the timer count is completed. The late regenerative torque output control is divided into a late regenerative torque output activation step in S70, a required torque determination step in S71, an MCU output torque step in S72 and S73, and a timer count start step in S74.

도 4를 참조하면, 컨트롤러로 작용하는 MCU(10)는 후기 회생토크 맵(10-2)을 map5(즉, 5초맵)로 하여 활성화(Wake-up)시키고, map5에 설정된 HSG 매핑토크 중 엔진(2)의 현재속도(즉, 엔진 RPM)에서의 HSG(3)의 HSG 매핑토크를 매칭한 후 매칭 값을 T_map5로 설정하여 S60의 후기회생출력토크 활성화 단계를 수행한다. 이 경우 상기 T_map5는 HSG 매핑후기최대토크로 정의되고, HSG(30)의 현재속도에서의 5초맵 최대 토크로서 HSG(3)의 토크(Nm)-속도(rpm)의 선도에서 획득되며, HSG(3)의 사양에서 제공하는 HSG 최대토크보다 작은 값으로 정의된다.Referring to FIG. 4 , the MCU 10 acting as a controller activates (Wake-up) the late regenerative torque map 10-2 as map5 (ie, a 5-second map), and the engine among the HSG mapping torques set in map5. After matching the HSG mapping torque of the HSG 3 at the current speed (ie, engine RPM) of (2), the matching value is set to T_map5 to perform the step of activating the late regenerative output torque of S60. In this case, the T_map5 is defined as the maximum torque after HSG mapping, and is obtained from the diagram of the torque (Nm)-speed (rpm) of the HSG (3) as the 5-second map maximum torque at the current speed of the HSG (30). It is defined as a value smaller than the maximum HSG torque provided in the specification of 3).

후기설정 최대토크로 정의되고, HSG(3)의 현재속도에서의 5초맵 최대 토크로서 HSG(3)의 토크(Nm)-속도(rpm)의 선도에서 획득된다.It is defined as the later set maximum torque, and is obtained from the diagram of the torque (Nm)-speed (rpm) of the HSG (3) as the 5-second map maximum torque at the current speed of the HSG (3).

이어 상기 MCU(10)는 HCU(20)에서 엔진RPM 변화에 따른 HCU 요구토크를 제공 받고, 상기 HCU 요구토크를 T_hcu5로 하여 T_map5와 매칭된 엔진(2)의 현재속도에서의 HCU 요구토크로 정의한 후 T_map5와 비교 판단 하여 S71 단계를 수행한다. 이 경우 T_hcu5와 T_map5의 비교판단은 하기 관계식을 이용한다.Next, the MCU 10 receives the HCU demand torque according to the engine RPM change from the HCU 20, and defines the HCU demand torque at the current speed of the engine 2 matched with T_map5 by setting the HCU demand torque as T_hcu5. After judging by comparison with T_map5, step S71 is performed. In this case, the following relational expression is used to determine the comparison between T_hcu5 and T_map5.

map5 최대토크 : T_hcu5 < T_map5, 여기서 "<"은 두 값의 크기를 나타낸 부등호로서, "T_hcu5 < T_map5"는 현재속도에서의 5초맵 최대 토크가 현재속도에서의 HCU 요구토크 이상임을 의미한다.map5 maximum torque: T_hcu5 < T_map5, where "<" is an inequality sign indicating the magnitude of the two values, and "T_hcu5 < T_map5" means that the maximum torque of the 5-second map at the current speed is greater than the HCU required torque at the current speed.

그 결과 상기 MCU(10)는 T_map5가 T_hcu5 이상인 경우 T_map5를 T_hcu5로 하고, 상기 T_hcu5를 MCU(10)의 출력토크인 T_mcu5로 하여 출력(S72)하고, 상기 T_mcu5에 의한 HSG(3)의 제어가 설정시간동안 유지되도록 S74의 타이머 카운트 단계를 수행한다. 반면 상기 MCU(10)는 T_hcu5가 T_map1 이상인 경우 T_map5를 MCU(10)의 출력토크인 T_mcu5로 하여 출력(S73)하고, 상기 T_mcu5에 의한 HSG(3)의 제어가 설정시간동안 유지되도록 S64의 타이머 카운트 단계를 수행한다. 이 경우 S74의 타이머 카운트는 "Timer1 = t5(초)로 설정되고, 상기 t1(초)은 후기회생출력토크 활성화를 위한 설정시간으로서 약 5초로 설정된다. 그러므로 상기 타이머 카운트는 1초부터 5초까지 약 4초 동안 이루어진다. 또한 상기 t5(초)는 후기설정시간으로 정의된다.As a result, when T_map5 is T_hcu5 or more, the MCU 10 sets T_map5 to T_hcu5 and T_hcu5 to T_mcu5 which is the output torque of the MCU 10 and outputs (S72), and the control of the HSG 3 by the T_mcu5 is The timer count step of S74 is performed so that it is maintained for the set time. On the other hand, when T_hcu5 is equal to or greater than T_map1, the MCU 10 outputs T_map5 as T_mcu5 which is the output torque of the MCU 10 (S73), and a timer of S64 so that the control of the HSG 3 by the T_mcu5 is maintained for a set time. Perform a count step. In this case, the timer count of S74 is set to "Timer1 = t5 (seconds), and t1 (seconds) is set to about 5 seconds as a set time for activating the late regenerative output torque. Therefore, the timer count is from 1 second to 5 seconds up to about 4 seconds, and t5 (seconds) is defined as the later setting time.

특히 상기 후기회생출력토크제어는 HSG(3)의 최대토크인 T_map5보다 작은 T_hcu5나 T_mcu5를 이용함으로써 HSG의 회생토크출력을 위한 엔진 에너지 흡수가 최대전류보다 작은 최대토크 미만에서 이루어짐으로써 내구나 성능 저하를 발생시키지 않는다.In particular, the late regenerative output torque control uses T_hcu5 or T_mcu5 smaller than T_map5, which is the maximum torque of the HSG 3, so that the engine energy absorption for the regenerative torque output of the HSG is made less than the maximum torque smaller than the maximum current, thereby reducing durability or performance. does not cause

도 5의 HSG 토크-속도선도를 참조하면, 전기를 담당하여 약 1초 동안 이루어지는 회생토크출력제어와 후기를 담당하여 1초 이후 약 4초 동안 이루어지는 후기회생토크출력제어로 얻어지는 추가 연비 개선 효과의 예를 알 수 있다.Referring to the HSG torque-speed diagram of FIG. 5, the additional fuel economy improvement effect obtained by the regenerative torque output control performed for about 1 second in charge of electricity and the late regenerative torque output control performed for about 4 seconds after 1 second in charge of the latter period example can be seen.

도시된 바와 같이, HSG 토크-속도선도는 엔진(2)의 시동 후 HSG(3)를 영 토크 제어하다가 엔진(2)이 엔진아이들(Eng idle) 상태 후 엔진정지(eng off)하는 과정을 나타낸다. 이러한 엔진 상태에서 약 1초 동안 이루어지는 회생토크출력제어는 엔진아이들(Eng idle)시점의 HSG(3)의 고속(즉, 고 HSG RPM)에서부터 회생토크를 인가하고, 이어지는 후기회생토크출력제어는 엔진아이들(Eng idle)에 이어진 1초 시점의 HSG(3)의 저속(즉, 고 HSG RPM 대비 저 HSG RPM)부터 엔진정지(eng off)시점까지 회생토크를 인가함으로써 엔진아이들(Eng idle) 시점부터 엔진정지(eng off)까지 엔진 에너지를 이용함을 알 수 있다. 그 결과 HSG(3)의 회생토크출력은 엔진 아이들 개시 후 마찰손실로 버려지던 엔진 에너지 사용으로 추가적인 연비개선이 이루어짐을 알 있다. 이 경우 엔진 아이들 개시 시점의 고속은 실험을 통해 약 4,000RPM의 엔진회전수로 측정되었다.As shown, the HSG torque-speed diagram shows a process in which the HSG 3 is controlled to zero torque after the engine 2 is started, and then the engine 2 is in an engine idle state and then the engine is stopped (eng off). . In this engine state, the regenerative torque output control performed for about 1 second applies the regenerative torque from the high speed (ie, high HSG RPM) of the HSG 3 at the time of engine idle, and the subsequent late regenerative torque output control is performed by the engine. By applying the regenerative torque from the low speed of the HSG 3 (ie, low HSG RPM compared to high HSG RPM) to the time of engine stop (eng off) at 1 second following engine idle, from the time of engine idle It can be seen that the engine energy is used until the engine is stopped (eng off). As a result, it can be seen that the regenerative torque output of the HSG (3) is further improved in fuel efficiency by using the engine energy that was wasted due to friction loss after starting the engine idle. In this case, the high speed at the start of the engine idling was measured at the engine speed of about 4,000 RPM through the experiment.

그리고 컨트롤러에 의한 S100의 HSG 구동모드는 S110의 토크제한과 S120의 출력제한을 구분된다. 도 6의 HSG 토크-속도선도를 참조하면, 상기 토크제한은 엔진 시동 후 엔진 RPM이 약 2,100rpm에 도달될 때 까지 HSG(3)의 토크 제한이 이루어지고, 상기 출력제한은 엔진 RPM이 약 2,100rpm에 도달한 이 후 HSG(3)의 출력 제한이 이루어짐을 예시한다. 그러므로 상기 HSG 구동모드는 통상적인 기존 방식과 동일하게 구현된다.And the HSG driving mode of S100 by the controller is divided into torque limit of S110 and output limit of S120. Referring to the HSG torque-speed diagram of FIG. 6 , the torque limit is the torque limit of the HSG 3 until the engine RPM reaches about 2,100 rpm after starting the engine, and the output limit is the engine RPM is about 2,100 It illustrates that the output limit of the HSG (3) is made after the rpm is reached. Therefore, the HSG driving mode is implemented in the same manner as the conventional conventional method.

한편 컨트롤러는 엔진 정지 시 도 1의 연비 개선을 위한 하이브리드 시동 발전기 제어 방법을 초기화하고, IG-On에 의한 엔진 가동 시 초기화 상태에서 다시 활성화된다.Meanwhile, the controller initializes the hybrid starter generator control method for improving fuel efficiency of FIG. 1 when the engine is stopped, and is activated again in the initialized state when the engine is started by IG-On.

전술된 바와 같이, 본 실시예에 따른 환경차량의 하이브리드 시동 발전기 제어 방법은 컨트롤러(10)에 의해 엔진아이들(Eng idle)의 시작시점에서 약 1초 동안 엔진 RPM이 HSG(3)의 회생토크출력으로 전환되어 배터리(7)를 충전시켜주는 회생토크출력제어와 1초 이후 약 5초까지 엔진 RPM을 HSG(3)의 회생토크출력으로 전환하여 배터리(7)의 충전을 지속시켜주는 후기회생토크출력제어로 이루어진 HSG 회생모드, HSG(3)의 토크 제한 후 HSG(3)의 출력제한으로 이어지는 HSG 구동모드로 구분된 HSG 토크-출력제한제어가 수행된다. 그 결과 HSG(3)의 회생토크출력제어가 엔진아이들 개시 후 마찰손실로 버려지던 엔진 에너지를 배터리(7)의 충전에 사용하여 추가 연비개선 효과가 얻어진다.As described above, in the method for controlling the hybrid starter generator of the environmental vehicle according to the present embodiment, the engine RPM is the regenerative torque output of the HSG 3 for about 1 second from the start time of the engine idle by the controller 10 . Regenerative torque output control to charge the battery (7) by switching to regenerative torque output control, and late regenerative torque to keep charging of the battery (7) by converting the engine RPM to the regenerative torque output of the HSG (3) from 1 second to about 5 seconds HSG torque-output limit control divided into HSG regenerative mode consisting of output control and HSG driving mode leading to output limit of HSG (3) after torque limit of HSG (3) is performed. As a result, the regenerative torque output control of the HSG (3) uses the engine energy, which was wasted as friction loss after starting the engine idle, for charging the battery (7), thereby obtaining an additional fuel efficiency improvement effect.

1 : 환경 차량 2 : 엔진
3 : HSG(Hybrid Starter & Generator)
5 : 구동모터 6 : 클러치
7 : 배터리 8 : 통합인버터
9 : 동력전달장치
10 : MCU(Motor Control Unit)
10-1 : 전기회생토크 맵 10-2 : 후기회생토크 맵
20 : HCU(Hybrid Control Unit)
1: environmental vehicle 2: engine
3: HSG (Hybrid Starter & Generator)
5: drive motor 6: clutch
7: battery 8: integrated inverter
9: power transmission device
10: MCU (Motor Control Unit)
10-1: Electric regenerative torque map 10-2: Late regenerative torque map
20: HCU (Hybrid Control Unit)

Claims (15)

컨트롤러에 의한 HSG(Hybrid Starter & Generator)의 토크-출력제한이 HSG 구동모드와 HSG 회생모드로 구분되고; 상기 HSG 회생모드는 엔진아이들(Eng idle)의 시작시점에서 초기설정시간동안 엔진 RPM이 상기 HSG의 회생토크출력으로 전환되어 배터리를 충전시켜주는 회생토크출력제어, 상기 초기설정시간 후 이어지는 후기설정시간동안 엔진 RPM을 상기 HSG의 상기 회생토크출력으로 전환하여 상기 배터리의 충전을 지속시켜주는 후기회생토크출력제어로 구분되는
것을 특징으로 하는 하이브리드 시동 발전기 제어 방법.
Torque-output limitation of HSG (Hybrid Starter & Generator) by the controller is divided into HSG driving mode and HSG regenerative mode; The HSG regenerative mode is a regenerative torque output control in which the engine RPM is converted to the regenerative torque output of the HSG for an initial set time at the start of engine idle to charge the battery, and a later set time following the initial set time It is divided into a late regenerative torque output control that converts the engine RPM to the regenerative torque output of the HSG while continuing to charge the battery.
Hybrid starter generator control method, characterized in that.
청구항 1에 있어서, 상기 초기설정시간과 상기 후기설정시간은 5초 이하인 것을 특징으로 하는 하이브리드 시동 발전기 제어 방법.
The method according to claim 1, wherein the initial setting time and the late setting time are 5 seconds or less.
청구항 1에 있어서, 상기 HSG 회생모드는, 엔진 가동 후 상기 HSG의 영 토크 제어 상태에서 상기 엔진 RPM이 엔진 아이들(Engine Idle)로 검출되는 단계, 상기 엔진 아이들의 검출시점에서 초기화된 타이머가 카운트되는 단계, 상기 HSG의 최대토크보다 작은 HSG 매핑전기최대토크를 회생토크출력으로 하여 상기 HSG가 회전되는 단계, 상기 HSG의 회전에 의한 상기 회생토크출력제어가 상기 초기설정시간동안 유지되어 상기 배터리를 충전시켜주는 단계, 상기 초기설정시간 경과 후 상기 HSG의 최대토크보다 작은 HSG 매핑후기최대토크를 후기회생토크출력으로 하여 상기 HSG가 회전되는 단계, 상기 HSG의 회전에 의한 상기 후기회생토크출력제어가 상기 후기설정시간동안 유지되어 상기 배터리를 충전시켜주는 단계
로 수행되는 것을 특징으로 하는 하이브리드 시동 발전기 제어 방법.
The method according to claim 1, wherein the HSG regenerative mode is the step of detecting the engine RPM as engine idle in the zero torque control state of the HSG after engine operation, and a timer initialized at the detection time of the engine idle is counted. step, rotating the HSG using the HSG mapping electric maximum torque smaller than the maximum torque of the HSG as a regenerative torque output, the regenerative torque output control by the rotation of the HSG is maintained for the initial set time to charge the battery After the initial setting time has elapsed, the HSG mapping late maximum torque that is smaller than the maximum torque of the HSG is used as the late regenerative torque output to rotate the HSG, and the late regenerative torque output control by the rotation of the HSG is the Maintaining for a later set time to charge the battery
Hybrid starter generator control method, characterized in that performed as.
청구항 3에 있어서, 상기 HSG 매핑전기최대토크는 상기 HSG의 현재속도에서 HSG 토크-속도선도로 산출되어 전기회생토크 맵에 매핑되어진 것을 특징으로 하는 하이브리드 시동 발전기 제어 방법.
The method according to claim 3, wherein the HSG mapping electric maximum torque is calculated as an HSG torque-speed diagram from the current speed of the HSG and mapped to an electric regenerative torque map.
청구항 3에 있어서, 상기 초기설정시간은 1초 미만인 것을 특징으로 하는 하이브리드 시동 발전기 제어 방법.
The method according to claim 3, wherein the initial setting time is less than 1 second.
청구항 3에 있어서, 상기 회생토크출력은, 상기 HSG 매핑전기최대토크가 상기 HSG의 발전량 부하를 제어하는 HCU(Hybrid Control Unit)의 HCU 요구토크와 비교 판단되는 단계, 상기 HSG 매핑전기최대토크가 상기 HCU 요구토크보다 큰 경우 구동모터를 제어하는 MCU(Motor Control Unit)의 MCU 요구토크를 상기 HCU 요구토크로 하여 상기 회생토크출력이 결정되는 단계, 상기 HSG 매핑전기최대토크가 상기 HCU 요구토크보다 작은 경우 구동모터를 제어하는 MCU의 MCU 요구토크를 상기 HSG 매핑전기최대토크로 하여 상기 회생토크출력이 결정되는 단계,
로 구분되는 것을 특징으로 하는 하이브리드 시동 발전기 제어 방법.
The method according to claim 3, wherein the regenerative torque output is determined by comparing the HSG mapping electrical maximum torque with the HCU demand torque of an HCU (Hybrid Control Unit) that controls the power generation load of the HSG, and the HSG mapping electrical maximum torque is the The step of determining the regenerative torque output by using the MCU required torque of a motor control unit (MCU) for controlling the driving motor as the HCU required torque when it is greater than the HCU required torque, wherein the HSG mapping electric maximum torque is smaller than the HCU required torque determining the regenerative torque output by using the MCU required torque of the MCU for controlling the driving motor as the HSG mapping electrical maximum torque,
A hybrid starter generator control method, characterized in that it is divided into.
청구항 3에 있어서, 상기 HSG 매핑후기최대토크는 상기 HSG의 현재속도에서 HSG 토크-속도선도로 산출되어 후기회생토크 맵에 매핑되어진 것을 특징으로 하는 하이브리드 시동 발전기 제어 방법.
The method according to claim 3, wherein the HSG mapping late maximum torque is calculated as an HSG torque-speed diagram from the current speed of the HSG and mapped to a late regenerative torque map.
청구항 3에 있어서, 상기 후기설정시간은 1초 이후 5초까지인 것을 특징으로 하는 하이브리드 시동 발전기 제어 방법.
The hybrid starter generator control method according to claim 3, wherein the late setting time is from 1 second to 5 seconds.
청구항 3에 있어서, 상기 후기회생토크출력은, 상기 HSG 매핑후기최대토크가 상기 HSG의 발전량 부하를 제어하는 HCU(Hybrid Control Unit)의 HCU 요구토크와 비교 판단되는 단계, 상기 HSG 매핑후기최대토크가 상기 HCU 요구토크보다 큰 경우 구동모터를 제어하는 MCU(Motor Control Unit)의 MCU 요구토크를 상기 HCU 요구토크로 하여 상기 후기회생토크출력이 결정되는 단계, 상기 HSG 매핑후기최대토크가 상기 HCU 요구토크보다 작은 경우 구동모터를 제어하는 MCU(Motor Control Unit)의 MCU 요구토크를 상기 HSG 매핑전기최대토크로 하여 상기 후기회생토크출력이 결정되는 단계,
로 구분되는 것을 특징으로 하는 하이브리드 시동 발전기 제어 방법.
The method according to claim 3, wherein the late regenerative torque output is determined by comparing the maximum torque after the HSG mapping with the HCU demand torque of a hybrid control unit (HCU) that controls the generation load of the HSG, the maximum torque after the HSG mapping is determining the late regenerative torque output by using an MCU demanded torque of a motor control unit (MCU) for controlling a driving motor as the HCU demanded torque when it is greater than the HCU demanded torque, wherein the HSG mapping later maximum torque is the HCU demanded torque determining the late regenerative torque output by using the MCU required torque of an MCU (Motor Control Unit) for controlling the driving motor as the HSG mapping electric maximum torque when it is less than;
A hybrid starter generator control method, characterized in that it is divided into.
청구항 1에 있어서, 상기 HSG 구동모드는 상기 HSG에 대한 토크제한 후 출력제한이 이루어지는 것을 특징으로 하는 하이브리드 시동 발전기 제어 방법.
The method according to claim 1, wherein the HSG driving mode is a hybrid starter generator control method, characterized in that the output limit is made after the torque limit for the HSG.
청구항 1 내지 청구항 10 중 어느 한 항에 의한 하이브리드 시동 발전기 제어 방법이 수행되는 컨트롤러;
엔진과 연결되고, 상기 컨트롤러로 제어되어 토크-출력제한이 이루어지는 HSG(Hybrid Starter & Generator);
가 포함된 것을 특징으로 하는 환경차량.
A controller on which the hybrid starter generator control method according to any one of claims 1 to 10 is performed;
a hybrid starter & generator (HSG) connected to the engine and controlled by the controller to limit torque-output;
Environmental vehicle, characterized in that it is included.
청구항 11에 있어서, 상기 컨트롤러는 상기 HSG의 사양최대토크보다 작은 최대토크가 HSG 매핑전기최대토크로 매핑된 전기회생토크 맵과 HSG 매핑후기최대토크로 매핑된 후기회생토크 맵을 구비하는 것을 특징으로 하는 환경차량.
The method according to claim 11, wherein the controller comprises an electrical regenerative torque map in which a maximum torque smaller than the specified maximum torque of the HSG is mapped to an HSG mapping electrical maximum torque and a late regenerative torque map mapped to an HSG mapping later maximum torque. environmental vehicle.
청구항 12에 있어서, 상기 HSG 매핑전기최대토크와 상기 HSG 매핑후기최대토크의 각각은 상기 HSG의 토크-속도 선도로 매칭되는 것을 특징으로 하는 환경차량.
The environmental vehicle according to claim 12, wherein each of the maximum torque before the HSG mapping and the maximum torque after the HSG mapping is matched with a torque-speed diagram of the HSG.
청구항 13에 있어서, 상기 HSG 매핑전기최대토크는 엔진 아이들 시점에서 배터리의 1초 동안 충전에 적용되고, 상기 HSG 매핑후기최대토크는 상기 배터리의 1초 이후 5초까지 충전에 적용되는 것을 특징으로 하는 환경차량.
The method according to claim 13, wherein the HSG mapping electric maximum torque is applied to charging for 1 second of the battery at the time of engine idling, and the HSG mapping later maximum torque is applied to charging the battery from 1 second to 5 seconds after 1 second. environmental vehicle.
청구항 11에 있어서, 상기 컨트롤러는 상기 엔진과 클러치로 연결 및 분리되는 구동모터를 제어하는 MCU(Motor Control Unit)이고, 상기 MCU는 상기 HSG의 발전량 부하를 제어하는 HCU(Hybrid Control Unit)와 연계되는 것을 특징으로 하는 환경차량.The method according to claim 11, wherein the controller is an MCU (Motor Control Unit) that controls a driving motor connected and separated from the engine and the clutch, and the MCU is linked to a HCU (Hybrid Control Unit) that controls the power generation load of the HSG Environmental vehicle, characterized in that.
KR1020160168664A 2016-12-12 2016-12-12 Method of Hybrid Starter and Generator for Improving Fuel Efficiency and Echo Vehicle Thereof KR102440540B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020160168664A KR102440540B1 (en) 2016-12-12 2016-12-12 Method of Hybrid Starter and Generator for Improving Fuel Efficiency and Echo Vehicle Thereof
US15/827,393 US10457270B2 (en) 2016-12-12 2017-11-30 Method for controlling hybrid starter and generator for improving fuel efficiency and eco-friendly vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020160168664A KR102440540B1 (en) 2016-12-12 2016-12-12 Method of Hybrid Starter and Generator for Improving Fuel Efficiency and Echo Vehicle Thereof

Publications (2)

Publication Number Publication Date
KR20180067189A KR20180067189A (en) 2018-06-20
KR102440540B1 true KR102440540B1 (en) 2022-09-06

Family

ID=62487687

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160168664A KR102440540B1 (en) 2016-12-12 2016-12-12 Method of Hybrid Starter and Generator for Improving Fuel Efficiency and Echo Vehicle Thereof

Country Status (2)

Country Link
US (1) US10457270B2 (en)
KR (1) KR102440540B1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190092180A1 (en) * 2017-09-27 2019-03-28 Zhengmao Zhu Method of operating an electric vehicle charging and traction system
KR102370944B1 (en) * 2017-12-12 2022-03-07 현대자동차주식회사 Method for preventing takeoff of motor velocity for hybrid electric vehicle
US10836273B2 (en) 2018-06-22 2020-11-17 Hummingbirdev Adaptive electric vehicle charging based on grid monitoring
US10836275B2 (en) 2018-06-22 2020-11-17 Hummingbirdev Adaptive electric vehicle charging based on grid monitoring
CN111301182B (en) * 2018-12-12 2022-08-19 上海汽车集团股份有限公司 Charging control method and device and electronic equipment
CN111824116A (en) * 2020-03-26 2020-10-27 同济大学 Hybrid power engine torque coordination module and coordination method
CN112389272B (en) * 2020-10-12 2022-12-13 浙江吉利控股集团有限公司 Energy management method and device for plug-in hybrid electric vehicle

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000320367A (en) 1999-05-12 2000-11-21 Nissan Motor Co Ltd Automatic stop and restart device for engine
JP2001057708A (en) 1999-08-10 2001-02-27 Honda Motor Co Ltd Method and apparatus for controlling power generating amount of hybrid vehicle
JP2004044522A (en) 2002-07-15 2004-02-12 Honda Motor Co Ltd Starter for internal combustion engine
KR101339264B1 (en) 2012-11-23 2013-12-09 기아자동차 주식회사 Method and system for controlling charge and discharge for a hybrid electric vehicle

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3045650B2 (en) 1994-11-04 2000-05-29 株式会社エクォス・リサーチ Transmission for vehicles
JP3296162B2 (en) 1995-11-06 2002-06-24 日産自動車株式会社 Control device for hybrid vehicle
US7449891B2 (en) * 2003-10-14 2008-11-11 General Motors Corporation Managing service life of a battery
JP4081765B2 (en) 2004-01-07 2008-04-30 スズキ株式会社 Control device for hybrid vehicle
JP2014101048A (en) 2012-11-21 2014-06-05 Aisin Seiki Co Ltd Regenerative control unit of hybrid vehicle
JP6315622B2 (en) * 2016-03-04 2018-04-25 本田技研工業株式会社 vehicle
US10036359B2 (en) * 2016-05-19 2018-07-31 GM Global Technology Operations LLC Hybrid vehicle engine starter control systems and methods

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000320367A (en) 1999-05-12 2000-11-21 Nissan Motor Co Ltd Automatic stop and restart device for engine
JP2001057708A (en) 1999-08-10 2001-02-27 Honda Motor Co Ltd Method and apparatus for controlling power generating amount of hybrid vehicle
JP2004044522A (en) 2002-07-15 2004-02-12 Honda Motor Co Ltd Starter for internal combustion engine
KR101339264B1 (en) 2012-11-23 2013-12-09 기아자동차 주식회사 Method and system for controlling charge and discharge for a hybrid electric vehicle

Also Published As

Publication number Publication date
KR20180067189A (en) 2018-06-20
US20180162358A1 (en) 2018-06-14
US10457270B2 (en) 2019-10-29

Similar Documents

Publication Publication Date Title
KR102440540B1 (en) Method of Hybrid Starter and Generator for Improving Fuel Efficiency and Echo Vehicle Thereof
KR101722869B1 (en) Hybrid electric vehicle control system and method
CN104816720B (en) Automatic engine start power source selection
US20100155162A1 (en) Cooling system, vehicle equipped with the cooling system, and method for controlling the cooling system
KR102348115B1 (en) Method for starting engine for hybrid electric vehicle
WO2012046324A1 (en) Power train, and power train control method and control device
CN107585158A (en) Vehicle and its control method
US9067588B2 (en) Vehicle and vehicle control method
US10189477B2 (en) Hybrid vehicle
US6516253B2 (en) Engine ready detection using crankshaft speed feedback
CN107487317A (en) Moment of torsion distribution method and device for parallel hybrid vehicles
JP2015200201A (en) Controller of vehicle
US10166870B2 (en) Hybrid vehicle and control method for hybrid vehicle
US9102323B2 (en) Hybrid vehicle having brake function
CN113459763B (en) Hybrid vehicle and control method and control device for starting air conditioner in parking state of hybrid vehicle
KR101343453B1 (en) Control method for engine-generator and series-type hybrid combat maneuver equipment using the same
US10814862B2 (en) Hybrid vehicle
US9221458B1 (en) Engine start control from a high-power EV mode
US9434378B2 (en) System and method for improving the vehicle feel, fuel efficiency and performance of a hybrid vehicle
CN104169153B (en) The speed management method of motor vehicle driven by mixed power
US20180162348A1 (en) System and method of controlling motor for vehicle
JPH09322311A (en) Power output device
Zhang et al. Permanent magnetic synchronous motor and drives applied on a mid-size hybrid electric car
CN104169150B (en) The cutting-off method of the motor of motor vehicle driven by mixed power
WO2015159724A1 (en) Engine torque assist device and torque assist method using isg

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant