KR102439767B1 - 초음파 영상 장치 및 초음파 영상 표시 방법 - Google Patents

초음파 영상 장치 및 초음파 영상 표시 방법 Download PDF

Info

Publication number
KR102439767B1
KR102439767B1 KR1020170072727A KR20170072727A KR102439767B1 KR 102439767 B1 KR102439767 B1 KR 102439767B1 KR 1020170072727 A KR1020170072727 A KR 1020170072727A KR 20170072727 A KR20170072727 A KR 20170072727A KR 102439767 B1 KR102439767 B1 KR 102439767B1
Authority
KR
South Korea
Prior art keywords
signal
spectral
doppler signal
spectral doppler
doppler
Prior art date
Application number
KR1020170072727A
Other languages
English (en)
Other versions
KR20180031559A (ko
Inventor
조개영
양은호
이우열
강진범
유양모
Original Assignee
삼성메디슨 주식회사
서강대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성메디슨 주식회사, 서강대학교 산학협력단 filed Critical 삼성메디슨 주식회사
Priority to US16/334,419 priority Critical patent/US20190209136A1/en
Priority to PCT/KR2017/009248 priority patent/WO2018056593A1/ko
Priority to EP17853307.1A priority patent/EP3517043B1/en
Publication of KR20180031559A publication Critical patent/KR20180031559A/ko
Application granted granted Critical
Publication of KR102439767B1 publication Critical patent/KR102439767B1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5207Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of raw data to produce diagnostic data, e.g. for generating an image
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/06Measuring blood flow
    • A61B8/065Measuring blood flow to determine blood output from the heart
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings
    • A61B8/0891Detecting organic movements or changes, e.g. tumours, cysts, swellings for diagnosis of blood vessels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4405Device being mounted on a trolley
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4477Constructional features of the ultrasonic, sonic or infrasonic diagnostic device using several separate ultrasound transducers or probes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/46Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient
    • A61B8/461Displaying means of special interest
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/48Diagnostic techniques
    • A61B8/488Diagnostic techniques involving Doppler signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/8979Combined Doppler and pulse-echo imaging systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52023Details of receivers
    • G01S7/52025Details of receivers for pulse systems
    • G01S7/52026Extracting wanted echo signals
    • G01S7/52028Extracting wanted echo signals using digital techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52077Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging with means for elimination of unwanted signals, e.g. noise or interference
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/06Measuring blood flow
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4427Device being portable or laptop-like
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4444Constructional features of the ultrasonic, sonic or infrasonic diagnostic device related to the probe
    • A61B8/4472Wireless probes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/46Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient
    • A61B8/461Displaying means of special interest
    • A61B8/463Displaying means of special interest characterised by displaying multiple images or images and diagnostic data on one display
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/46Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient
    • A61B8/461Displaying means of special interest
    • A61B8/464Displaying means of special interest involving a plurality of displays
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/46Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient
    • A61B8/467Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient characterised by special input means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5215Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data
    • A61B8/5223Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data for extracting a diagnostic or physiological parameter from medical diagnostic data
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5269Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving detection or reduction of artifacts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5269Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving detection or reduction of artifacts
    • A61B8/5276Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving detection or reduction of artifacts due to motion
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10132Ultrasound image

Abstract

대상체에 대해 샘플 볼륨에 대한 도플러 신호를 획득하고, 샘플 볼륨 상에 설정된 복수의 구간들 각각에서 도플러 신호에 대해 스펙트럴 분석(spectral analysis)을 수행하여, 복수의 구간들 각각에 대응되는 복수의 스펙트럴 도플러 신호들을 생성하고, 복수의 스펙트럴 도플러 신호들을 이용하여, 대상체에 대한 스펙트럴 도플러 신호의 잡음 신호를 모델링하고, 대상체에 대한 스펙트럴 도플러 신호 및 잡음 신호에 기초하여, 잡음이 제거된 대상체에 대한 스펙트럴 도플러 신호를 생성하는 프로세서; 및 잡음이 제거된 대상체에 대한 스펙트럴 도플러 신호를 표시하는 디스플레이부;를 포함하는, 초음파 영상 장치 및 초음파 영상 표시 방법을 제공한다.

Description

초음파 영상 장치 및 초음파 영상 표시 방법{Apparatus and method for displaying ultrasound image}
본 개시는 스펙트럴 도플러 신호를 생성하고 표시하는 초음파 영상 장치 및 초음파 영상 표시 방법에 관한 것이다.
초음파 영상 장치는 대상체 내부의 소정 부위에 대하여, 프로브(probe)를 이용하여 초음파 신호를 발생하고, 반사된 에코 신호의 정보를 이용하여 대상체 내부의 부위에 대한 영상을 얻을 수 있다. 특히, 초음파 영상 장치는 대상체 내부의 이물질 검출, 상해 측정 및 관찰 등 의학적 목적으로 사용될 수 있다. 이러한 초음파 영상 장치는 X선에 비하여 안정성이 높고, 실시간으로 디스플레이 가능하며, 방사능 피폭이 없어 안전하다는 장점이 있어서 다른 화상 진단 장치와 함께 널리 이용된다.
또한, 초음파 영상 장치는 대상체의 움직임을 나타내는 도플러 영상을 사용자에게 제공할 수도 있다. 즉, 컬러 도플러(color Doppler), 스펙트럴 도플러(spectral Doppler), 벡터 도플러(vector Doppler) 등 다양한 도플러 영상을 통해서 대상체의 움직임을 측정하고 출력할 수 있다.
스펙트럴 도플러 신호를 생성하고 표시하는 초음파 영상 장치 및 초음파 영상 표시 방법의 제공을 목적으로 한다.
제 1 측면에 따른 초음파 영상 장치는, 대상체에 대해 샘플 볼륨에 대한 도플러 신호를 획득하고, 샘플 볼륨 상에 설정된 복수의 구간들 각각에서 도플러 신호에 대해 스펙트럴 분석(spectral analysis)을 수행하여, 복수의 구간들 각각에 대응되는 복수의 스펙트럴 도플러 신호들을 생성하고, 복수의 스펙트럴 도플러 신호들을 이용하여, 대상체에 대한 스펙트럴 도플러 신호의 잡음 신호를 모델링하고, 대상체에 대한 스펙트럴 도플러 신호 및 잡음 신호에 기초하여, 잡음이 제거된 대상체에 대한 스펙트럴 도플러 신호를 생성하는 프로세서; 및 잡음이 제거된 대상체에 대한 스펙트럴 도플러 신호를 표시하는 디스플레이부;를 포함할 수 있다.
또한, 프로세서는, 복수의 구간들 중 대상체를 포함하는 구간에 대응되는 스펙트럴 도플러 신호를 대상체에 대한 스펙트럴 도플러 신호로 결정할 수 있다.
또한, 프로세서는, 대상체에 대한 스펙트럴 도플러 신호에 포함된 다른 대상체로부터의 초음파 반사 신호를 잡음 신호로 결정하고, 복수의 구간들 중 다른 대상체를 포함하는 구간에 대응되는 스펙트럴 도플러 신호를 이용하여 잡음 신호를 모델링할 수 있다.
또한, 대상체는 정맥에 해당하고, 다른 대상체는 동맥에 해당할 수 있다.
또한, 프로세서는, 대상체에 대한 스펙트럴 도플러 신호 및 잡음 신호 간의 감산 연산을 통해, 잡음이 제거된 대상체에 대한 스펙트럴 도플러 신호를 생성할 수 있다.
또한, 프로세서는, 복수의 구간들에 대응되게, 도플러 신호를 복수의 부분 도플러 신호들로 구분하고, 복수의 부분 도플러 신호들 각각에 대해 스펙트럴 분석(spectral analysis)을 수행하여, 복수의 스펙트럴 도플러 신호들을 생성할 수 있다.
또한, 대상체에 대해 설정된 샘플 볼륨을 지나는 펄스 도플러 선(pulsed doppler line)을 따라, 프로브가 초음파 신호를 송신하도록 제어하고, 샘플 볼륨 및 펄스 도플러 선 상의 적어도 하나의 볼륨으로부터 반사된 에코 신호를 수신하는 초음파 송수신부;를 더 포함하고, 프로세서는, 수신된 에코 신호로부터 샘플 볼륨에 대응되는 도플러 신호 및 적어도 하나의 볼륨에 대응되는 적어도 하나의 도플러 신호를 획득하고, 샘플 볼륨에 대응되는 도플러 신호 및 적어도 하나의 도플러 신호에 대해 스펙트럴 분석을 수행하여, 대상체에 대한 스펙트럴 도플러 신호 및 적어도 하나의 스펙트럴 도플러 신호를 생성하고, 적어도 하나의 스펙트럴 도플러 신호를 이용하여, 대상체에 대한 스펙트럴 도플러 신호의 잡음 신호를 모델링하고, 대상체에 대한 스펙트럴 도플러 신호 및 잡음 신호에 기초하여, 잡음이 제거된 대상체에 대한 스펙트럴 도플러 신호를 생성할 수 있다.
제 2 측면에 따른 초음파 영상 표시 방법은, 대상체에 대해 샘플 볼륨에 대한 도플러 신호를 획득하는 단계; 샘플 볼륨 상에 설정된 복수의 구간들 각각에서 도플러 신호에 대해 스펙트럴 분석(spectral analysis)을 수행하여, 복수의 구간들 각각에 대응되는 복수의 스펙트럴 도플러 신호들을 생성하는 단계; 복수의 스펙트럴 도플러 신호들을 이용하여, 대상체에 대한 스펙트럴 도플러 신호의 잡음 신호를 모델링하는 단계; 대상체에 대한 스펙트럴 도플러 신호 및 잡음 신호에 기초하여, 잡음이 제거된 대상체에 대한 스펙트럴 도플러 신호를 생성하는 단계; 및 잡음이 제거된 대상체에 대한 스펙트럴 도플러 신호를 표시하는 단계;를 포함할 수 있다.
제 3 측면에 따라, 초음파 영상 표시 방법을 구현하기 위한 프로그램이 기록된 컴퓨터로 판독 가능한 기록 매체가 제공된다.
도 1은 일 실시예에 따른 초음파 진단 장치의 구성을 도시한 블록도이다.
도 2의 (a) 내지 (c)는 일 실시예에 따른 초음파 진단 장치를 나타내는 도면들이다.
도 3은 일 실시예에 따른 초음파 영상 장치를 나타내는 블록도이다.
도 4는 초음파 영상 장치가 샘플 볼륨에 대한 스펙트럴 도플러 신호를 생성하는 실시예를 나타내는 도면이다.
도 5는 초음파 영상 장치가 샘플 볼륨에 대한 스펙트럴 도플러 신호를 생성하는 구체적인 실시예를 나타내는 도면이다.
도 6은 초음파 영상 장치가 샘플 볼륨에 대한 스펙트럴 도플러 신호를 생성하는 실시예를 나타내는 도면이다.
도 7은 일 실시예에 따라, 초음파 영상 장치가 초음파 영상을 표시하는 방법을 설명하는 도면이다.
도 8은 다른 실시예에 따른 초음파 영상 장치를 나타내는 블록도이다.
도 9는 초음파 영상 장치가 복수의 스펙트럴 도플러 신호들을 표시하는 실시예를 나타낸다.
도 10은 초음파 영상 장치가 복수의 스펙트럴 도플러 신호들을 하나의 영상으로 표시하는 실시예를 나타낸다.
도 11은 초음파 영상 장치가 복수의 스펙트럴 도플러 신호들을 표시하는 실시예를 나타낸다.
도 12는 초음파 영상 장치가 혈관 경직도에 대한 정보를 제공하는 실시예를 나타낸다.
도 13은 초음파 영상 장치가 복수의 스펙트럴 도플러 신호들을 표시하는 실시예를 나타낸다.
도 14은 일 실시예에 따라, 초음파 영상 장치가 초음파 영상을 표시하는 방법을 설명하는 도면이다.
도 15는 또 다른 실시예에 따른 초음파 영상 장치를 나타내는 블록도이다.
도 16은 초음파 영상 장치가 대상체에 대한 스펙트럴 도플러 신호를 생성하는 실시예를 나타낸다.
도 17은 초음파 영상 장치가 대상체에 대한 스펙트럴 도플러 신호를 생성하는 구체적인 실시예를 나타낸다.
도 18은 초음파 영상 장치가 대상체에 대한 스펙트럴 도플러 신호를 생성하는 다른 실시예를 나타낸다.
도 19는 일 실시예에 따라, 초음파 영상 장치가 초음파 영상을 표시하는 방법을 설명하는 도면이다.
본 명세서는 본 발명의 권리범위를 명확히 하고, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명을 실시할 수 있도록, 본 발명의 원리를 설명하고, 실시예들을 개시한다. 개시된 실시예들은 다양한 형태로 구현될 수 있다.
명세서 전체에 걸쳐 동일 참조 부호는 동일 구성요소를 지칭한다. 본 명세서가 실시예들의 모든 요소들을 설명하는 것은 아니며, 본 발명이 속하는 기술분야에서 일반적인 내용 또는 실시예들 간에 중복되는 내용은 생략한다. 명세서에서 사용되는 '부'(part, portion)라는 용어는 소프트웨어 또는 하드웨어로 구현될 수 있으며, 실시예들에 따라 복수의 '부'가 하나의 요소(unit, element)로 구현되거나, 하나의 '부'가 복수의 요소들을 포함하는 것도 가능하다. 이하 첨부된 도면들을 참고하여 본 발명의 작용 원리 및 실시예들에 대해 설명한다.
본 명세서에서 영상은 자기 공명 영상(MRI) 장치, 컴퓨터 단층 촬영(CT) 장치, 초음파 촬영 장치, 또는 엑스레이 촬영 장치 등의 의료 영상 장치에 의해 획득된 의료 영상을 포함할 수 있다.
본 명세서에서 '대상체(object)'는 촬영의 대상이 되는 것으로서, 사람, 동물, 또는 그 일부를 포함할 수 있다. 예를 들어, 대상체는 신체의 일부(장기, 혈관 또는 기관 등; organ) 또는 팬텀(phantom) 등을 포함할 수 있다.
명세서 전체에서 "초음파 영상"이란 대상체로 송신되고, 대상체로부터 반사된 초음파 신호에 근거하여 처리된 대상체(object)에 대한 영상을 의미한다.
이하에서는 도면을 참조하여 실시 예들을 상세히 설명한다.
도 1은 일 실시예에 따른 초음파 진단 장치(100)의 구성을 도시한 블록도이다.
일 실시예에 따른 초음파 진단 장치(100)는 프로브(20), 초음파 송수신부(110), 제어부(120), 영상 처리부(130), 디스플레이부(140), 저장부(150), 통신부(160), 및 입력부(170)를 포함할 수 있다.
초음파 진단 장치(100)는 카트형뿐만 아니라 휴대형으로도 구현될 수 있다. 휴대형 초음파 진단 장치의 예로는 프로브 및 어플리케이션을 포함하는 스마트 폰(smart phone), 랩탑 컴퓨터, PDA, 태블릿 PC 등이 있을 수 있으나, 이에 한정되지 않는다.
프로브(20)는 복수의 트랜스듀서들을 포함할 수 있다. 복수의 트랜스듀서들은 송신부(113)로부터 인가된 송신 신호에 따라 대상체(10)로 초음파 신호를 송출할 수 있다. 복수의 트랜스듀서들은 대상체(10)로부터 반사된 초음파 신호를 수신하여, 수신 신호를 형성할 수 있다. 또한, 프로브(20)는 초음파 진단 장치(100)와 일체형으로 구현되거나, 또는 초음파 진단 장치(100)와 유무선으로 연결되는 분리형으로 구현될수 있다. 또한, 초음파 진단 장치(100)는 구현 형태에 따라 하나 또는 복수의 프로브(20)를 구비할 수 있다.
제어부(120)는 프로브(20)에 포함되는 복수의 트랜스듀서들의 위치 및 집속점을 고려하여, 복수의 트랜스듀서들 각각에 인가될 송신 신호를 형성하도록 송신부(113)를 제어한다.
제어부(120)는 프로브(20)로부터 수신되는 수신 신호를 아날로그 디지털 변환하고, 복수의 트랜스듀서들의 위치 및 집속점을 고려하여, 디지털 변환된 수신 신호를 합산함으로써, 초음파 데이터를 생성하도록 수신부(115)를 제어 한다.
영상 처리부(130)는 초음파 수신부(115)에서 생성된 초음파 데이터를 이용하여, 초음파 영상을 생성한다. 한편, 초음파 영상은 A 모드(amplitude mode), B 모드(brightness mode) 및 M 모드(motion mode)에서 대상체를 스캔하여 획득된 그레이 스케일(gray scale)의 영상뿐만 아니라, 도플러 효과(doppler effect)를 이용하여 움직이는 대상체를 표현하는 도플러 영상일 수도 있다. 도플러 영상은, 혈액의 흐름을 나타내는 혈류 도플러 영상 (또는, 컬러 도플러 영상으로도 불림), 조직의 움직임을 나타내는 티슈 도플러 영상, 또는 대상체의 이동 속도를 파형으로 표시하는 스펙트럴 도플러 영상일 수 있다. 일 실시에 따라, 영상 처리부(130)는 초음파 데이터로부터 도플러 성분을 추출하고, 영상 생성부(1220)는 추출된 도플러 성분에 기초하여 대상체의 움직임을 컬러 또는 파형으로 표현하는 도플러 영상을 생성할 수 있다.
디스플레이부(140)는 생성된 초음파 영상 및 초음파 진단 장치(100)에서 처리되는 다양한 정보를 표시할 수 있다. 초음파 진단 장치(100)는 구현 형태에 따라 하나 또는 복수의 디스플레이부(140)를 포함할 수 있다. 또한, 디스플레이부(140)는 터치패널과 결합하여 터치 스크린으로 구현될 수 있다.
제어부(120)는 초음파 진단 장치(100)의 전반적인 동작 및 초음파 진단 장치(100)의 내부 구성 요소들 사이의 신호 흐름을 제어할 수 있다. 제어부(120)는 초음파 진단 장치(100)의 기능을 수행하기 위한 프로그램 또는 데이터를 저장하는 메모리, 및 프로그램 또는 데이터를 처리하는 프로세서를 포함할 수 있다. 또한, 제어부(120)는 입력부(170) 또는 외부 장치로부터 제어신호를 수신하여, 초음파 진단 장치(100)의 동작을 제어할 수 있다.
초음파 진단 장치(100)는 통신부(160)를 포함하며, 통신부(160)를 통해 외부 장치(예를 들면, 서버, 의료 장치, 휴대 장치(스마트폰, 태블릿 PC, 웨어러블 기기 등))와 연결할 수 있다.
통신부(160)는 외부 장치와 통신을 가능하게 하는 하나 이상의 구성 요소를 포함할 수 있으며, 예를 들어 근거리 통신 모듈, 유선 통신 모듈 및 무선 통신 모듈 중 적어도 하나를 포함할 수 있다.
통신부(160)가 외부 장치로부터 제어 신호 및 데이터를 수신하고, 수신된 제어 신호를 제어부(120)에 전달하여 제어부(120)로 하여금 수신된 제어 신호에 따라 초음파 진단 장치(100)를 제어하도록 하는 것도 가능하다.
또는, 제어부(120)가 통신부(160)를 통해 외부 장치에 제어 신호를 송신함으로써, 외부 장치를 제어부의 제어 신호에 따라 제어하는 것도 가능하다.
예를 들어 외부 장치는 통신부를 통해 수신된 제어부의 제어 신호에 따라 외부 장치의 데이터를 처리할 수 있다.
외부 장치에는 초음파 진단 장치(100)를 제어할 수 있는 프로그램이 설치될 수 있는 바, 이 프로그램은 제어부(120)의 동작의 일부 또는 전부를 수행하는 명령어를 포함할 수 있다.
프로그램은 외부 장치에 미리 설치될 수도 있고, 외부장치의 사용자가 어플리케이션을 제공하는 서버로부터 프로그램을 다운로드하여 설치하는 것도 가능하다. 어플리케이션을 제공하는 서버에는 해당 프로그램이 저장된 기록매체가 포함될 수 있다.
저장부(150)는 초음파 진단 장치(100)를 구동하고 제어하기 위한 다양한 데이터 또는 프로그램, 입/출력되는 초음파 데이터, 획득된 초음파 영상 등을 저장할 수 있다.
입력부(170)는, 초음파 진단 장치(100)를 제어하기 위한 사용자의 입력을 수신할 수 있다. 예를 들어, 사용자의 입력은 버튼, 키 패드, 마우스, 트랙볼, 조그 스위치, 놉(knop) 등을 조작하는 입력, 터치 패드나 터치 스크린을 터치하는 입력, 음성 입력, 모션 입력, 생체 정보 입력(예를 들어, 홍채 인식, 지문 인식 등) 등을 포함할 수 있으나 이에 한정되지 않는다.
일 실시예에 따른 초음파 진단 장치(100)의 예시는 도 2의 (a) 내지 (c)를 통해 후술된다.
도 2의 (a) 내지 (c)는 일 실시예에 따른 초음파 진단 장치를 나타내는 도면들이다.
도 2의 (a) 및 도 2의 (b)를 참조하면, 초음파 진단 장치(100a, 100b)는 메인 디스플레이부(121) 및 서브 디스플레이부(122)를 포함할 수 있다. 메인 디스플레이부(121) 및 서브 디스플레이부(122) 중 하나는 터치스크린으로 구현될 수 있다. 메인 디스플레이부(121) 및 서브 디스플레이부(122)는 초음파 영상 또는 초음파 진단 장치(100a, 100b)에서 처리되는 다양한 정보를 표시할 수 있다. 또한, 메인 디스플레이부(121) 및 서브 디스플레이부(122)는 터치 스크린으로 구현되고, GUI 를 제공함으로써, 사용자로부터 초음파 진단 장치((100a, 100b))를 제어하기 위한 데이터를 입력 받을 수 있다. 예를 들어, 메인 디스플레이부(121)는 초음파 영상을 표시하고, 서브 디스플레이부(122)는 초음파 영상의 표시를 제어하기 위한 컨트롤 패널을 GUI 형태로 표시할 수 있다. 서브 디스플레이부(122)는 GUI 형태로 표시된 컨트롤 패널을 통하여, 영상의 표시를 제어하기 위한 데이터를 입력 받을 수 있다. 초음파 진단 장치(100a, 100b)는 입력 받은 제어 데이터를 이용하여, 메인 디스플레이부(121)에 표시된 초음파 영상의 표시를 제어할 수 있다.
도 2의 (b)를 참조하면, 초음파 진단 장치(100b)는 메인 디스플레이부(121) 및 서브 디스플레이부(122) 이외에 컨트롤 패널(165)을 더 포함할 수 있다. 컨트롤 패널(165)은 버튼, 트랙볼, 조그 스위치, 놉(knop) 등을 포함할 수 있으며, 사용자로부터 초음파 진단 장치(100b)를 제어하기 위한 데이터를 입력 받을 수 있다. 예를 들어, 컨트롤 패널(165)은 TGC(Time Gain Compensation) 버튼(171), Freeze 버튼(172) 등을 포함할 수 있다. TGC 버튼(171)은, 초음파 영상의 깊이 별로 TGC 값을 설정하기 위한 버튼이다. 또한, 초음파 진단 장치(100b)는 초음파 영상을 스캔하는 도중에 Freeze 버튼(172) 입력이 감지되면, 해당 시점의 프레임 영상이 표시되는 상태를 유지시킬 수 있다.
한편, 컨트롤 패널(165)에 포함되는 버튼, 트랙볼, 조그 스위치, 놉(knop) 등은, 메인 디스플레이부(121) 또는 서브 디스플레이부(122)에 GUI로 제공될 수 있다.
도 2의 (c)를 참조하면, 초음파 진단 장치(100c)는 휴대형으로도 구현될 수 있다. 휴대형 초음파 진단 장치(100c)의 예로는,
프로브 및 어플리케이션을 포함하는 스마트 폰(smart phone), 랩탑 컴퓨터, PDA, 태블릿 PC 등이 있을 수 있으나, 이에 한정되지 않는다.
초음파 진단 장치(100c)는 프로브(20)와 본체(40)를 포함하며, 프로브(20)는 본체(40)의 일측에 유선 또는 무선으로 연결될 수 있다. 본체(40)는 터치 스크린(145)을 포함할 수 있다. 터치 스크린(145)은 초음파 영상, 초음파 진단 장치에서 처리되는 다양한 정보, 및 GUI 등을 표시할 수 있다.
도 3은 일 실시예에 따른 초음파 영상 장치를 나타내는 블록도이다.
초음파 영상 장치(1000)는 프로세서(1010) 및 디스플레이부(1020)를 포함할 수 있다. 일 실시예에 따라, 프로세서(1010)는 도 1의 영상 처리부(130) 및 제어부(120) 중 적어도 하나 또는 이들의 조합에 대응될 수 있으며, 디스플레이부(1020)는 도 1의 디스플레이부(140)에 대응될 수 있다.
도 3에 도시된 초음파 영상 장치(1000)는 본 실시예와 관련된 구성요소들만이 도시되어 있다. 따라서, 도 3에 도시된 구성요소들 외에 다른 범용적인 구성요소들이 더 포함될 수 있음을 본 실시예와 관련된 기술분야에서 통상의 지식을 가진 자라면 이해할 수 있다. 예를 들어, 초음파 영상 장치(1000)는 도 1의 프로브(20), 초음파 송수신부(110), 저장부(150), 통신부(160), 및 입력부(170) 중 적어도 하나를 포함할 수 있다.
프로세서(1010)는, 초음파 영상 장치(1000)의 전반의 동작을 제어하고, 데이터 및 신호를 처리한다. 프로세서(1010)는, 적어도 하나의 하드웨어 유닛으로 구성될 수 있다. 일 실시예에 따르면, 프로세서(1010)는, 영상 처리부(130)와 제어부(120)의 역할을 하는 별개의 하드웨어 유닛을 구비할 수 있다. 프로세서(1010)는, 메모리에 저장된 프로그램 코드를 실행하여 생성되는 하나 이상의 소프트웨어 모듈에 의해 동작할 수 있다.
프로세서(1010)는 샘플 볼륨에 대한 도플러 신호를 획득할 수 있다. 다시 말해, 프로세서(1010)는 대상체에 대해 설정된 샘플 볼륨에 대한 도플러 신호를 획득할 수 있다.
일 실시예에 따라, 초음파 영상 장치(1000)는 초음파 송수신부(110)를 포함할 수 있고, 초음파 송수신부(110)는 프로브가 소정의 펄스 반복 주파수(PRF, Pulse Repetition Frequency)에 따라 생성된 초음파 신호를 샘플 볼륨에 대해 송신하도록 제어할 수 있고, 샘플 볼륨으로부터 반사되는 에코 신호를 수신할 수 있다. 이어서, 프로세서(1010)는 수신된 에코 신호에 대해 도플러 성분을 추출하여 도플러 신호를 생성할 수 있다. 예를 들어, 프로세서(1010)는 수신된 에코 신호에 대해 직교 복조(quadrature demodulation)를 수행하여 복소수 기저대역의 초음파 신호를 도플러 신호로써 획득할 수 있다. 따라서, 프로세서(1010)는 PRF에 따른 주기마다 샘플 볼륨에 대한 도플러 신호를 획득할 수 있다. 또한, 프로세서(1010)는 샘플 볼륨에 대한 도플러 신호를 앙상블 개수(ensemble number)만큼 반복하여 획득할 수 있다.
다른 실시예에 따라, 프로세서(1010)는 초음파 영상 장치(1000)의 통신부(160)를 통해 외부 서버 또는 외부 장치로부터 샘플 볼륨에 대한 도플러 신호를 획득할 수 있다. 또 다른 실시예에 따라, 프로세서(1010)는 초음파 영상 장치(1000)의 저장부(150)로부터 기 저장된 샘플 볼륨에 대한 도플러 신호를 획득할 수 있다.
프로세서(1010)는 기 획득된 도플러 신호를 복수의 부분 도플러 신호들로 구분할 수 있다. 일 실시예에 따라, 프로세서(1010)는 초음파 신호를 송신하는 방향에 따라 샘플 볼륨을 복수의 구간들로 구분할 수 있고, 구분된 복수의 구간들에 대응되게 도플러 신호를 복수의 부분 도플러 신호들로 구분할 수 있다. 또한, 프로세서(1010)는 사용자 입력에 기초하여, 샘플 볼륨 상에 설정된 복수의 구간들의 개수 및 크기를 결정할 수 있고, 이에 따라 프로세서(1010)는 복수의 부분 도플러 신호들의 개수 및 크기를 결정할 수 있다.
또한, 프로세서(1010)는 PRF에 따른 주기마다 획득된 도플러 신호들 각각을 복수의 부분 도플러 신호들로 구분할 수 있고, 앙상블 개수만큼 반복하여 도플러 신호를 복수의 부분 도플러 신호들로 구분할 수 있다.
프로세서(1010)는 복수의 부분 도플러 신호들 각각에 대해 스펙트럴 분석(spectral analysis)을 수행하여, 복수의 스펙트럴 도플러 신호들을 생성할 수 있다. 스펙트럴 분석은, 시간 도메인의 도플러 신호를 주파수 도메인의 스펙트럼으로 추정(estimation)하는 과정을 의미하는 바, 일 예로, 시간 도메인의 도플러 신호를 주파수 도메인의 스펙트럴 도플러 신호로 변환하는 것을 의미할 수 있다. 일 실시예에 따라, 스펙트럴 분석에는 도플러 신호에 가중 누적(weighting accumulation)을 수행하는 과정 및 고속 퓨리에 변환(FFT, Fast Fourier Transformation)을 수행하는 과정이 포함될 수 있다. 따라서, 프로세서(1010)는 복수의 부분 도플러 신호들 각각에 대해 가중 누적 및 고속 퓨리에 변환을 수행하여, 복수의 스펙트럴 도플러 신호들을 생성할 수 있다.
프로세서(1010)는 복수의 스펙트럴 도플러 신호들로부터 샘플 볼륨에 대한 스펙트럴 도플러 신호를 생성할 수 있다. 일 실시예에 따라, 프로세서(1010)는 복수의 스펙트럴 도플러 신호들에 대해 가중 누적을 수행하여, 샘플 볼륨에 대한 스펙트럴 도플러 신호를 생성할 수 있다. 다른 실시예에 따라, 프로세서(1010)는 복수의 스펙트럴 도플러 신호들 중 유효한 적어도 하나의 스펙트럴 도플러를 결정하고, 결정된 적어도 하나의 스펙트럴 도플러 신호로부터 샘플 볼륨에 대한 스펙트럴 도플러 신호를 생성할 수 있다. 예를 들어, 프로세서(1010)는 복수의 스펙트럴 도플러 신호들 중 대상체를 나타내는 스펙트럴 도플러 신호들을 결정하여, 샘플 볼륨에 대한 스펙트럴 도플러 신호를 생성할 수 있다.
디스플레이부(1020)는 생성된 스펙트럴 도플러 신호를 표시할 수 있다.
도 4는 초음파 영상 장치가 샘플 볼륨에 대한 스펙트럴 도플러 신호를 생성하는 실시예를 나타내는 도면이다.
일 실시예에 따라, 디스플레이부(1020)는 대상체를 나타내는 B-모드의 초음파 영상(401)을 표시할 수 있다. 이어서, 사용자 입력에 기초하여, 프로세서(1010)는 대상체에 대해 샘플 볼륨을 설정할 수 있다. 예를 들어, 프로세서(1010)는 특정 혈관에 대해 샘플 볼륨을 설정할 수 있다.
프로세서(1010)는 샘플 볼륨에 대한 도플러 신호(410)를 획득할 수 있다.
이어서, 프로세서(1010)는 도플러 신호(410)를 복수의 부분 도플러 신호들(412, 414, 416)로 구분할 수 있다. 예를 들어, 프로세서(1010)는 초음파 신호를 송신하는 방향에 따라, 샘플 볼륨을 제 1 구간 내지 제 N 구간으로 구분할 수 있고, 샘플 볼륨 상에 설정된 제 1 구간 내지 제 N 구간에 대응되게 도플러 신호(410)를 복수의 부분 도플러 신호들(412, 414, 416)로 구분할 수 있다.
이어서, 프로세서(1010)는 복수의 부분 도플러 신호들(412, 414, 416) 각각에 대해 스펙트럴 분석을 수행하여 복수의 스펙트럴 도플러 신호들을 생성할 수 있다. 구체적으로, 프로세서(1010)는 부분 도플러 신호들(412, 414, 416)에 대해 가중 누적 및 고속 퓨리에 변환 등의 스펙트럴 분석을 수행하여, 제 1 스펙트럴 도플러 신호, 제 2 스펙트럴 도플러 신호 내지 제 N 스펙트럴 도플러 신호를 생성할 수 있다.
이어서, 프로세서(1010)는 복수의 스펙트럴 도플러 신호들로부터 샘플 볼륨에 대한 스펙트럴 도플러 신호를 생성할 수 있다. 일 실시예에 따라, 프로세서(1010)는 복수의 스펙트럴 도플러 신호들에 대해 가중 누적을 수행하여, 샘플 볼륨에 대한 스펙트럴 도플러 신호를 생성할 수 있다.
도 5는 초음파 영상 장치가 샘플 볼륨에 대한 스펙트럴 도플러 신호를 생성하는 구체적인 실시예를 나타내는 도면이다.
프로세서(1010)는 샘플 볼륨에 대한 도플러 신호를 복수의 부분 도플러 신호들로 구분할 수 있고, 복수의 부분 도플러 신호들 각각에 대해 스펙트럴 분석을 수행할 수 있다.
먼저, 프로세서(1010)는 복수의 부분 도플러 신호들 각각에 대해 가중 누적을 수행할 수 있다. 보다 구체적으로, 프로세서(1010)는 M개의 부분 도플러 신호들 중 m번째 부분 도플러 신호(510)에 대해 하기 수학식 1을 이용하여 가중 누적을 수행할 수 있다.
Figure 112017055237341-pat00001
수학식 1에서,
Figure 112017055237341-pat00002
의 시간 간격과 깊이 방향으로 N개의 샘플 데이터를 갖는 부분 도플러 신호(510)를 나타내고,
Figure 112017055237341-pat00003
은 가중 누적을 위한 창함수(window function)를 나타내고,
Figure 112017055237341-pat00004
은 가중 누적된 m번째 부분 도플러 신호를 나타낸다. 가중 누적을 위한 창함수
Figure 112017055237341-pat00005
는 일 실시예에 따라, 하기 수학식 2와 같은 해닝(hanning) 창함수가 될 수 있고, 다른 실시예에 따라, 삼각 창함수, 다니엘 창함수, 해밍 창함수 등이 될 수 있다.
Figure 112017055237341-pat00006
이어서, 프로세서(1010)는 가중 누적된 도플러 신호
Figure 112017055237341-pat00007
에 대해 하기 수학식 3을 이용하여 고속 퓨리에 변환(FFT)을 수행할 수 있다.
Figure 112017055237341-pat00008
수학식 3에서, 가중 누적된 도플러 신호
Figure 112017055237341-pat00009
Figure 112017055237341-pat00010
주기와 P개만큼 표본화된 시간 상의 데이터를 의미할 수 있다. 따라서, 프로세서(1010)는 M개의 부분 도플러 신호들 각각에 대해 상기 수학식 1 내지 3을 이용하여 가중 누적 및 고속 퓨리에 변환을 수행할 수 있다.
이어서, 프로세서(1010)는 퓨리에 변환된 도플러 신호
Figure 112017055237341-pat00011
에 대해 하기 수학식 4를 이용하여 절대값(ABS) 연산 및 로그 변환(LOG)을 수행하여, 스펙트럴 도플러 신호
Figure 112017055237341-pat00012
를 생성할 수 있다.
Figure 112017055237341-pat00013
이어서, 프로세서(1010)는 복수의 스펙트럴 도플러 신호
Figure 112017055237341-pat00014
내지
Figure 112017055237341-pat00015
을 하기 수학식 5를 이용하여 가중 누적하여 샘플 볼륨에 대한 스펙트럴 도플러 신호
Figure 112017055237341-pat00016
을 생성할 수 있다.
Figure 112017055237341-pat00017
수학식 5에서, 가중 누적을 위한 창함수
Figure 112017055237341-pat00018
는 일 실시예에 따라, 해닝 창함수, 삼각 창함수, 다니엘 창함수, 및 해밍 창함수 등이 될 수 있다.
도 6은 초음파 영상 장치가 샘플 볼륨에 대한 스펙트럴 도플러 신호를 생성하는 실시예를 나타내는 도면이다.
프로세서(1010)는 초음파 영상(601)에 설정된 샘플 볼륨에 대한 도플러 신호(610)를 획득할 수 있다. 이어서, 프로세서(1010)는 도플러 신호(610)를 부분 도플러 신호들(612,614,616,618)로 구분할 수 있다. 이어서, 프로세서(1010)는 부분 도플러 신호들(612,614,616,618) 각각에 대한 스펙트럴 분석을 수행하여, 스펙트럴 도플러 신호들(622,624,626,628)을 생성할 수 있다. 도 6에서는 일 예시로 4개의 부분 도플러 신호들, 및 4개의 스펙트럴 도플러 신호들로 도시되었지만 개수는 이에 제한되지 않는다.
이어서, 프로세서(1010)는 스펙트럴 도플러 신호들(622,624,626,628) 중 유효하다고 판단되는 스펙트럴 도플러 신호들(624,626)을 결정할 수 있다. 일 예에 따라, 프로세서(1010)는 스펙트럴 도플러 신호들(622,624,626,628) 중 잡음이 상대적으로 적게 포함되는 포함된 스펙트럴 도플러 신호들(624,626)을 유효한 스펙트럴 도플러 신호들로 결정할 수 있다. 다른 예에 따라, 샘플 볼륨이 특정 혈관에 대해 설정된 경우, 프로세서(1010)는 스펙트럴 도플러 신호들(622,624,626,628) 중 특정 혈관을 나타내는 스펙트럴 도플러 신호들(624,626)을 유효한 스펙트럴 도플러 신호들로 결정할 수 있다. 비록 샘플 볼륨이 특정 혈관에 대해 설정되었지만, 특정 혈관의 크기가 작거나 환자가 움직이는 경우, 샘플 볼륨의 일 구간에서는 특정 혈관을 포함하지 않을 수도 있기 때문이다.
이어서, 프로세서(1010)는 유효한 스펙트럴 도플러 신호들(624,626)을 이용하여 샘플 볼륨에 대한 스펙트럴 도플러 신호(630)를 생성할 수 있다. 일 실시예에 따라, 프로세서(1010)는 유효하다고 판단되는 스펙트럴 도플러 신호들(624,626)을 가중 누적하여 스펙트럴 도플러 신호(630)를 생성할 수 있다.
따라서, 초음파 영상 장치(1000)는 샘플 볼륨에 대한 도플러 신호를 복수의 부분 도플러 신호들로 구분하고, 구분된 복수의 부분 도플러 신호들에 대응되는 복수의 스펙트럴 도플러 신호들로부터 샘플 볼륨에 대한 스펙트럴 도플러 신호를 생성하는 바, 샘플 볼륨에 대한 스펙트럴 도플러 신호를 보다 고화질의 영상으로써 표시할 수 있다. 다시 말해, 초음파 영상 장치(100)는 도플러 신호에 대해 부분적으로 가중 누적 및 퓨리에 변환 등을 수행하여 샘플 볼륨에 대한 스펙트럼 도플러 신호를 표시하는 바, 스페클(speckle)에 의한 잡음이 제거되고 도플러 스펙트럼의 경계면이 명확해지는 영상을 표시할 수 있다.
또한, 초음파 영상 장치(1000)는 샘플 볼륨의 구간 별로 구분된 복수의 스펙트럴 도플러 신호들 중 유효한 스펙트럴 도플러 신호를 결정하여 샘플 볼륨에 대한 스펙트럴 도플러 신호를 생성하는 바, 보다 정확한 샘플 볼륨에 대한 스펙트럴 도플러 신호를 생성하고 표시할 수 있다.
도 7은 일 실시예에 따라, 초음파 영상 장치가 초음파 영상을 표시하는 방법을 설명하는 도면이다.
도 7에 도시된 방법은, 도 3의 초음파 영상 장치(1000)의 각 구성요소에 의해 수행될 수 있고, 중복되는 설명에 대해서는 생략한다.
단계 s710에서, 초음파 영상 장치(1000)는 샘플 볼륨에 대한 도플러 신호를 획득할 수 있다.
일 실시예에 따라, 초음파 영상 장치(1000)는 프로브가 소정의 펄스 반복 주파수(PRF, Pulse Repetition Frequency)에 따라 생성된 초음파 신호를 샘플 볼륨에 대해 송신하도록 제어할 수 있고, 샘플 볼륨으로부터 반사되는 에코 신호를 수신할 수 있다. 이어서, 초음파 영상 장치(1000)는 수신된 에코 신호에 대해 도플러 성분을 추출하여 도플러 신호를 생성할 수 있다.
다른 실시예에 따라, 초음파 영상 장치(1000)는 통신부를 통해 외부 서버 또는 외부 장치로부터 샘플 볼륨에 대한 도플러 신호를 획득할 수 있다. 또 다른 실시예에 따라, 초음파 영상 장치(1000)는 저장부에 기 저장된 샘플 볼륨에 대한 도플러 신호를 획득할 수 있다.
단계 s720에서, 초음파 영상 장치(1000)는 도플러 신호를 복수의 부분 도플러 신호들로 구분할 수 있다. 일 실시예에 따라, 초음파 영상 장치(1000)는 초음파 신호를 송신하는 방향에 따라 샘플 볼륨을 복수의 구간들로 구분할 수 있고, 구분된 복수의 구간들에 대응되게 도플러 신호를 복수의 부분 도플러 신호들로 구분할 수 있다. 또한, 초음파 영상 장치(1000)는 사용자 입력에 기초하여, 샘플 볼륨 상에 설정된 복수의 구간들의 개수 및 크기를 결정할 수 있고, 이에 따라 초음파 영상 장치(1000)는 복수의 부분 도플러 신호들의 개수 및 크기를 결정할 수 있다.
단계 s730에서, 초음파 영상 장치(1000)는 복수의 부분 도플러 신호들 각각에 대해 스펙트럴 분석(spectral analysis)을 수행하여 복수의 스펙트럴 도플러 신호들을 생성할 수 있다. 초음파 영상 장치(1000)는 복수의 부분 도플러 신호들 각각에 대해 가중 누적 및 고속 퓨리에 변환을 수행하여, 복수의 스펙트럴 도플러 신호들을 생성할 수 있다.
단계 s740에서, 초음파 영상 장치(1000)는 복수의 스펙트럴 도플러 신호들로부터 샘플 볼륨에 대한 스펙트럴 도플러 신호를 생성할 수 있다.
일 실시예에 따라, 초음파 영상 장치(1000)는 복수의 스펙트럴 도플러 신호들에 대해 가중 누적을 수행하여, 샘플 볼륨에 대한 스펙트럴 도플러 신호를 생성할 수 있다. 다른 실시예에 따라, 초음파 영상 장치(1000)는 복수의 스펙트럴 도플러 신호들 중 유효한 적어도 하나의 스펙트럴 도플러를 결정하고, 결정된 적어도 하나의 스펙트럴 도플러 신호로부터 샘플 볼륨에 대한 스펙트럴 도플러 신호를 생성할 수 있다.
단계 s750에서, 초음파 영상 장치(1000)는 샘플 볼륨에 대한 스펙트럴 도플러 신호를 표시할 수 있다.
도 8은 다른 실시예에 따른 초음파 영상 장치를 나타내는 블록도이다.
초음파 영상 장치(2000)는 프로세서(2010) 및 디스플레이부(2020)를 포함할 수 있다. 일 실시예에 따라, 프로세서(2010)는 도 1의 영상 처리부(130) 및 제어부(120) 중 적어도 하나 또는 이들의 조합에 대응될 수 있으며, 디스플레이부(2020)는 도 1의 디스플레이부(140)에 대응될 수 있다.
도 8에 도시된 초음파 영상 장치(1000)는 본 실시예와 관련된 구성요소들만이 도시되어 있다. 따라서, 도 9에 도시된 구성요소들 외에 다른 범용적인 구성요소들이 더 포함될 수 있음을 본 실시예와 관련된 기술분야에서 통상의 지식을 가진 자라면 이해할 수 있다. 예를 들어, 초음파 영상 장치(2000)는 도 1의 프로브(20), 초음파 송수신부(110), 저장부(150), 통신부(160), 및 입력부(170) 중 적어도 하나를 포함할 수 있다.
또한, 프로세서(2010)는 도 3의 프로세서(1010)에 대응될 수 있으며, 디스플레이부(2020)는 도 3의 디스플레이부(2020)에 대응될 수 있으므로, 중복되는 내용에 대해서는 설명을 생략하기로 한다.
프로세서(2010)는 샘플 볼륨에 대한 도플러 신호를 획득할 수 있다.
프로세서(2010)는, 샘플 볼륨 상에 설정된 복수의 구간들에 대응되게, 기 획득된 도플러 신호를 복수의 부분 도플러 신호들로 구분할 수 있다. 구체적으로, 프로세서(2010)는 초음파 신호를 송신하는 방향 또는 샘플 볼륨의 축 방향에 따라 샘플 볼륨을 복수의 구간들로 구분할 수 있고, 구분된 복수의 구간들에 대응되게 도플러 신호를 복수의 부분 도플러 신호들로 구분할 수 있다. 또한, 프로세서(2010)는 사용자 입력에 기초하여, 샘플 볼륨 상에 설정된 복수의 구간들의 개수 및 크기를 결정할 수 있고, 이에 따라 프로세서(2010)는 복수의 부분 도플러 신호들의 개수 및 크기를 결정할 수 있다.
프로세서(2010)는 복수의 부분 도플러 신호들 각각에 대해 스펙트럴 분석(spectral analysis)을 수행하여, 복수의 구간들 각각에 대응되는 복수의 스펙트럴 도플러 신호들을 생성할 수 있다. 일 실시예에 따라, 프로세서(2010)는 복수의 부분 도플러 신호들 각각에 대해 가중 누적 및 고속 퓨리에 변환을 수행하여, 복수의 스펙트럴 도플러 신호들을 생성할 수 있다.
일 실시예에 따라, 프로세서(2010)는, 샘플 볼륨이 혈관에 대해 설정된 경우, 샘플 볼륨에 설정된 복수의 구간들 각각에 대응되는 복수의 스펙트럴 도플러 신호를 통해, 복수의 구간들 각각에서의 혈류 특성을 제공할 수 있다. 예를 들어, 프로세서(2010)는, 복수의 구간들 각각에 대해, 혈류의 시간에 따른 주파수 변화 및 속도 변화를 사용자에게 제공할 수 있을 뿐만 아니라, 최대 속도, 평균 속도, 피크 기울기(peak gradient), 가속 시간(acceleration time), 감속 시간(deceleration time), 수축기 최대 혈류속도(Peak Systolic Velocity), 확장기 최소 혈류 속도(End Diastolic Velocity), 저항 인덱스(Resistive Index), 맥박 인덱스(Pulsatility Index) 등을 산출하여 사용자에게 제공할 수 있다.
디스플레이부(2020)는 생성된 복수의 스펙트럴 도플러 신호들을 표시할 수 있다.
또한, 일 실시예에 따라, 프로세서(2010)는 복수의 스펙트럴 도플러 신호들 각각에 대해 라인 트레이싱(line tracing)을 수행하여, 샘플 볼륨의 복수의 구간들 각각에 대응되는 복수의 스펙트럼 라인들을 생성할 수 있고, 디스플레이부(2020)는 복수의 스펙트럼 라인들을 표시할 수 있다. 라인 트레이싱은, 스펙트럴 도플러 신호가 나타내는 스펙트럼의 평균 속도 또는 피크 속도를 검출하여, 검출된 평균 속도 또는 피크 속도의 레벨을 트레이싱하는 기법을 의미한다.
도 9는 초음파 영상 장치가 복수의 스펙트럴 도플러 신호들을 표시하는 실시예를 나타낸다.
일 실시예에 따라, 프로세서(2010)는 B-모드의 초음파 영상(901)에 설정된 샘플 볼륨에 대한 도플러 신호(910)를 획득할 수 있다. 또한, 프로세서(2010)는 샘플 볼륨 상에 복수의 구간들을 설정할 수 있다. 구체적으로, 프로세서(2010)는 샘플 볼륨 상의 축 방향에 따라 복수의 구간들을 설정할 수 있다. 일 예로, 도 9에 도시되어 있듯이, 프로세서(2010)는 샘플 볼륨을 제 1 구간 내지 제 N 구간으로 구분할 수 있다. 예를 들어, 샘플 볼륨이 혈관에 대해 설정된 경우, 제 1 구간은 혈관 벽에 근접한 구간이 될 수 있으며, 제 N 구간은 반대쪽 혈관 벽에 근접한 구간이 될 수 있다.
이어서, 프로세서(2010)는 샘플 볼륨에 설정된 복수의 구간들에 대응되게, 도플러 신호(910)를 복수의 부분 도플러 신호들(912,914,916)로 구분할 수 있다. 구체적으로, 프로세서(2010)는 도플러 신호(910)를, 샘플 볼륨의 제 1 구간에 대응되는 부분 도플러 신호(912), 샘플 볼륨의 제 2 구간에 대응되는 부분 도플러 신호(914), 내지 샘플 볼륨의 제 N 구간에 대응되는 부분 도플러 신호(916)로 구분할 수 있다.
이어서, 프로세서(2010)는 복수의 부분 도플러 신호들(912,914,916) 각각에 대해 스펙트럴 분석을 수행하여, 복수의 구간들 각각에 대한 복수의 스펙트럴 도플러 신호들을 생성할 수 있다. 일 실시예에 따라, 프로세서(2010)는 복수의 부분 도플러 신호들(912,914,916) 각각에 대해 가중 누적 및 고속 퓨리에 변환을 수행하여, 복수의 스펙트럴 도플러 신호들을 생성할 수 있다. 예를 들어, 프로세서(2010)는 복수의 부분 도플러 신호들(912,914,916) 각각에 대해 도 5의 수학식 1 내지 수학식 4를 적용하여, 복수의 스펙트럴 도플러 신호들을 생성할 수 있다. 따라서, 프로세서(2010)는 샘플 볼륨의 제 1 구간에 대한 제 1 스펙트럴 도플러 신호를 생성할 수 있고, 샘플 볼륨의 제 2 구간에 대한 제 1 스펙트럴 도플러 신호를 생성할 수 있고, 샘플 볼륨의 제 N 구간에 대한 제 1 스펙트럴 도플러 신호를 생성할 수 있다.
이어서, 디스플레이부(2020)는 생성된 복수의 스펙트럴 도플러 신호들을 표시할 수 있다.
따라서, 초음파 영상 장치(2000)는 샘플 볼륨에 설정된 복수의 구간들 각각에 대한 스펙트럴 도플러 신호를 동시에 표시할 수 있는 바, 샘플 볼륨의 복수의 구간들에 대한 정보를 사용자에게 제공할 수 있다. 예를 들어, 초음파 영상 장치(2000)는 샘플 볼륨이 혈관에 설정된 경우, 혈관 내의 복수의 구간 별로 다양한 혈류 정보를 동시에 사용자에게 제공할 수 있다. 또한, 초음파 영상 장치(2000)는 PRF에 따른 주기마다 획득된 도플러 신호를 기초로, 샘플 볼륨의 구간 별로 스펙트럴 도플러 신호를 표시하는 바, 동시 시간 동안의 샘플 볼륨의 구간 별 정보를 제공할 수 있다.
도 10은 초음파 영상 장치가 복수의 스펙트럴 도플러 신호들을 하나의 영상으로 표시하는 실시예를 나타낸다.
일 실시예에 따라, 프로세서(2010)는 샘플 볼륨에 설정된 복수의 구간들 각각에 대응하는 복수의 스펙트럴 도플러 신호들을 중첩시킬 수 있다. 이어서, 디스플레이부(2020)는 중첩된 스펙트럴 도플러 신호들을 하나의 영상으로 표시할 수 있다.
또한, 일 실시예에 따라, 프로세서(2010)는 중첩된 복수의 스펙트럴 도플러 신호들 각각을 서로 다른 색상으로 매핑한 도플러 스펙트럼(1001)을 생성할 수 있다. 이어서, 디스플레이부(2020)는 도플러 스펙트럼(1001)을 표시할 수 있다. 다시 말해, 디스플레이부(2020)는 샘플 볼륨의 제 1 구간에 대응되는 스펙트럴 도플러 신호는 제 1 색상으로 표시하고, 샘플 볼륨의 제 2 구간에 대응되는 스펙트럴 도플러 신호는 제 2 색상으로 표시하고, 샘플 볼륨의 제 N 구간에 대응되는 스펙트럴 도플러 신호는 제 N 색상으로 표시할 수 있다.
도 11은 초음파 영상 장치가 복수의 스펙트럴 도플러 신호들을 표시하는 실시예를 나타낸다.
프로세서(2010)는 복수의 스펙트럴 도플러 신호들 각각에 대해 라인 트레이싱을 수행하여, 샘플 볼륨에 설정된 복수의 구간들 각각에 대응되는 복수의 스펙트럼 라인들을 생성할 수 있다. 구체적으로, 프로세서(2010)는 제 1 스펙트럴 도플러 신호에 대응되는 제 1 스펙트럼 라인, 제 2 스펙트럴 도플러 신호에 대응되는 제 2 스펙트럼 라인, 및 제 N 스펙트럴 도플러 신호에 대응되는 제 N 스펙트럼 라인을 생성할 수 있다.
따라서, 프로세서(2010)는 도 9와 같이 스펙트럼 전체를 나타내는 복수의 스펙트럴 도플러 신호들을 생성하고 표시할 뿐만 아니라, 도 11과 같이 복수의 스펙트럴 도플러 신호들의 스펙트럼 라인들을 생성하고 표시할 수 있다.
도 12는 초음파 영상 장치가 혈관 경직도에 대한 정보를 제공하는 실시예를 나타낸다.
프로세서(2010)는 일 실시예에 따라, 샘플 볼륨에 설정된 복수의 구간들 각각에 대응되는 복수의 스펙트럴 도플러 신호들의 스펙트럼 라인들을 중첩하여 하나의 영상으로 생성할 수 있다.
또한, 프로세서(2010)는 복수의 스펙트럴 도플러 신호들 또는 스펙트럼 라인들을 통해 샘플 볼륨의 복수의 구간들 각각에서의 수축기 최대 혈류속도(PSV, Peak Systolic Velocity)를 검출할 수 있다. 또한, 프로세서(2010)는 샘플 볼륨의 복수의 구간들 각각에서의 수축기 최대 혈류속도들 간의 차이를 검출할 수 있다.
예를 들어, 샘플 볼륨이 동맥에 대해 설정된 경우, 프로세서(2010)는 동맥의 구간 별로 스펙트럴 도플러 신호 또는 스펙트럼 라인을 생성할 수 있다. 다시 말해, 프로세서(2010)는 동맥의 벽 구간에서의 스펙트럴 도플러 신호 또는 스펙트럼 라인을 생성할 수 있고, 동맥의 중심 구간에서의 스펙트럴 도플러 신호 또는 스펙트럼 라인을 생성할 수 있다. 따라서, 프로세서(2010)는 동맥의 구간 별로 생성된 스펙트럴 도플러 신호 또는 스펙트럼 라인을 통해, 동맥의 구간들 각각에서의 PSV를 검출할 수 있고, 또한, 동맥의 구간들 각각에서의 PSV들 간의 차이를 검출할 수 있다.
도 12를 참조하면, 샘플 볼륨이 혈관에 대해 설정된 경우, 프로세서(2010)는 혈관의 구간 별로 스펙트럼 라인들을 생성하고, 디스플레이(2020)는 생성된 스펙트럼 라인들에 대한 영상(1210)을 표시할 수 있다. 또한, 프로세서(2010)는 혈관의 구간 별 스펙트럼 라인을 통해, 혈관의 구간 별 PSV를 검출할 수 있다. 또한, 프로세서(1020)는 혈관의 구간 별 PSV 중 최대값과 최소값의 차이인 △PSV를 검출할 수 있다. 예를 들어, △PSV는 혈관의 벽 근처 구간에서의 PSV와 혈관의 중심 구간에서의 PSV간의 차이가 될 수 있다.
프로세서(2010)는 △PSV를 통해 혈관의 경직도(wall stiffness)에 관한 정보를 생성할 수 있다. 혈관의 경우, 혈관의 경직도에 따라 혈관의 구간 별 혈류 속도의 차이가 생길 수 있다. 예를 들어, 혈관의 경직도가 커지면, 혈관 중심 구간에서의 혈류 속도와 혈관 벽 구간에서의 혈류 속도 간의 차이가 작아질 수 있고, 혈관의 경직도가 작아지면, 혈관 중심 구간에서의 혈류 속도와 혈관 벽 구간에서의 혈류 속도 간의 차이가 커질 수 있다. 따라서, 프로세서(1020)는 환자의 혈관에 대한 △PSV를 검출할 수 있고, △PSV를 통해 환자의 혈관 경직도를 평가할 수 있다.
일 실시예에 따라, 프로세서(2010)는 혈관의 경직도에 관한 정보로써 그래프(1220)를 생성할 수 있다. 구체적으로, 프로세서(2010)는 환자의 혈관에 샘플 볼륨을 설정하여, 혈관의 복수의 구간들 각각에 대응되는 복수의 스펙트럴 도플러 신호들을 생성할 수 있고, 복수의 스펙트럴 도플러 신호들을 통해 △PSV를 검출할 수 있다. 또한, 프로세서(2010)는 검출된 환자의 △PSV를 기 저장된 정상인의 △PSV와 비교하는 그래프(1220)를 생성할 수 있다. 따라서, 디스플레이부(2020)는 그래프(1220)를 표시하여, 환자의 혈관의 경직도와 정상인의 혈관의 경직도를 비교하는 정보를 환자에게 제공할 수 있다.
도 13은 초음파 영상 장치가 복수의 스펙트럴 도플러 신호들을 표시하는 실시예를 나타낸다.
프로세서(2010)는, 사용자 입력에 기초하여, B-모드의 초음파 영상(1310)에서, 혈관에 샘플 볼륨을 설정할 수 있다. 예를 들어, 프로세서(2010)는 신장(kidney) 내의 미세혈관에 샘플 볼륨을 설정할 수 있다.
이어서, 프로세서(2010)는 샘플 볼륨에 대한 도플러 신호를 획득할 수 있고, 샘플 볼륨의 제 1 내지 제 10 구간들에 대응되게, 획득된 도플러 신호를 제 1 내지 제 10 부분 도플러 신호들로 구분할 수 있다. 이어서, 프로세서(2010)는 제 1 내지 제 10 부분 도플러 신호들 각각에 대해 스펙트럴 분석을 수행하여, 샘플 볼륨의 제 1 내지 제 10 구간들 각각에 대응되는 스펙트럴 도플러 신호들을 생성할 수 있고, 디스플레이부(2020)는, 도 13에 도시된 바와 같이, 제 1 내지 제 10 구간들 각각에 대응되는 스펙트럴 도플러 신호들을 표시할 수 있다.
일 실시예에 따라, 초음파 영상 장치(2000)는 입력부(170)를 포함할 수 있고, 사용자는, 입력부(170)를 통해, 디스플레이부(2020)에 의해 표시되는 스펙트럴 도플러 신호들 중 적어도 하나의 스펙트럴 도플러 신호를 선택할 수 있다. 이어서, 디스플레이부(2020)는 선택된 적어도 하나의 스펙트럴 도플러 신호만을 표시할 수 있다. 예를 들어, 미세혈관을 포함하는 영역에 샘플 볼륨이 설정된 경우, 인체의 호흡 등과 같은 움직임으로 인해 미세혈관에 대한 스펙트럴 도플러 신호를 관찰하는 것이 어려울 수 있다. 따라서, 초음파 영상 장치(2000)는 샘플 볼륨의 제 1 내지 제 10 구간들 각각에 대해 스펙트럴 도플러 신호들을 사용자에게 제공할 수 있고, 사용자는 스펙트럴 도플러 신호들 중 미세 혈관을 가장 잘 나타내는 제 6 구간의 스펙트럴 도플러 신호 및 제 7 구간의 스펙트럴 도플러 신호를 선택할 수 있다. 또한, 일 실시예에 따라, 프로세서(2010)는 사용자에 의해 선택된 제 6 구간의 스펙트럴 도플러 신호 및 제 7 구간의 스펙트럴 도플러 신호를 가중 누적할 수 있고, 디스플레이부(2020)는 가중 누적된 스펙트럴 도플러 신호를 표시할 수 있다.
다른 실시예에 따라, 프로세서(2010)는 제 1 내지 제 10 구간들 각각에 대해 스펙트럴 도플러 신호들 중 유효한 적어도 하나의 스펙트럴 도플러 신호를 선택할 수 있다. 이어서, 디스플레이부(2020)는 선택된 유효한 적어도 하나의 스펙트럴 도플러 신호를 표시할 수 있다. 예를 들어, 혈관을 포함하는 영역에 샘플 볼륨이 설정된 경우, 프로세서(1020)는 제 1 내지 제 10 구간들 각각에 대해 스펙트럴 도플러 신호들 중에서는 혈관의 특성을 가장 잘 나타내는 스펙트럴 도플러 신호를 선택할 수 있다. 이 과정에서, 프로세서(1020)는 스펙트럴 도플러 신호들 중에서 잡음이 많이 포함된 스펙트럴 도플러 신호 또는 조직에서 초음파 신호가 반사된 스펙트럼이 나타나는 스펙트럴 도플러 신호를 제외시킬 수 있다.
도 14은 일 실시예에 따라, 초음파 영상 장치가 초음파 영상을 표시하는 방법을 설명하는 도면이다.
도 14에 도시된 방법은, 도 8의 초음파 영상 장치(2000)의 각 구성요소에 의해 수행될 수 있고, 중복되는 설명에 대해서는 생략한다.
단계 s1410에서, 초음파 영상 장치(2000)는, 샘플 볼륨에 대한 도플러 신호를 획득할 수 있다.
단계 s1420에서, 초음파 영상 장치(2000)는 샘플 볼륨 상에 설정된 복수의 구간들에 대응되게, 도플러 신호를 복수의 부분 도플러 신호들로 구분할 수 있다.
초음파 영상 장치(2000)는 초음파 신호를 송신하는 방향 또는 샘플 볼륨의 축 방향에 따라 샘플 볼륨을 복수의 구간들로 구분할 수 있고, 구분된 복수의 구간들에 대응되게 도플러 신호를 복수의 부분 도플러 신호들로 구분할 수 있다. 또한, 초음파 영상 장치(2000)는 사용자 입력에 기초하여, 샘플 볼륨 상에 설정된 복수의 구간들의 개수 및 크기를 결정할 수 있고, 이에 따라 초음파 영상 장치(2000)는 복수의 부분 도플러 신호들의 개수 및 크기를 결정할 수 있다.
단계 s1430에서, 초음파 영상 장치(2000)는 복수의 부분 도플러 신호들 각각에 대해 스펙트럴 분석(spectral analysis)을 수행하여, 복수의 구간들 각각에 대응되는 복수의 스펙트럴 도플러 신호들을 생성할 수 있다. 일 실시예에 따라, 초음파 영상 장치(2000)는 복수의 부분 도플러 신호들 각각에 대해 가중 누적 및 고속 퓨리에 변환을 수행하여, 복수의 스펙트럴 도플러 신호들을 생성할 수 있다.
단계 s1440에서, 초음파 영상 장치(2000)는 복수의 스펙트럴 도플러 신호들을 표시할 수 있다.
또한, 초음파 영상 장치(2000)는 복수의 스펙트럴 도플러 신호들 각각에 대해 라인 트레이싱(line tracing)을 수행하여, 샘플 볼륨의 복수의 구간들 각각에 대응되는 복수의 스펙트럼 라인들을 생성 및 표시할 수 있다.
또한, 초음파 영상 장치(2000)는 샘플 볼륨이 혈관에 대해 설정된 경우, 복수의 스펙트럴 도플러 신호들에 기초하여, 혈관의 경직도에 대한 정보를 생성 및 표시할 수 있다.
또한, 초음파 영상 장치(2000)는 샘플 볼륨이 대상체에 대해 설정된 경우, 복수의 스펙트럴 도플러 신호들 중 대상체를 나타내는 적어도 하나의 스펙트럴 도플러 신호를 선택할 수 있고, 선택된 적어도 하나의 스펙트럴 도플러 신호를 표시할 수 있다.
도 15는 또 다른 실시예에 따른 초음파 영상 장치를 나타내는 블록도이다.
초음파 영상 장치(3000)는 프로세서(3010) 및 디스플레이부(3020)를 포함할 수 있다. 일 실시예에 따라, 프로세서(3010)는 도 1의 영상 처리부(130) 및 제어부(120) 중 적어도 하나 또는 이들의 조합에 대응될 수 있으며, 디스플레이부(2020)는 도 1의 디스플레이부(140)에 대응될 수 있다.
도 15에 도시된 초음파 영상 장치(3000)는 본 실시예와 관련된 구성요소들만이 도시되어 있다. 따라서, 도 15에 도시된 구성요소들 외에 다른 범용적인 구성요소들이 더 포함될 수 있음을 본 실시예와 관련된 기술분야에서 통상의 지식을 가진 자라면 이해할 수 있다. 예를 들어, 초음파 영상 장치(3000)는 도 1의 프로브(20), 초음파 송수신부(110), 저장부(150), 통신부(160), 및 입력부(170) 중 적어도 하나를 포함할 수 있다.
또한, 프로세서(3010)는 도 3의 프로세서(1010) 및 도 8의 프로세서(2010)에 대응될 수 있으며, 디스플레이부(3020)는 도 3의 디스플레이부(1020) 및 도 8의 디스플레이부(2020)에 대응될 수 있으므로, 중복되는 내용에 대해서는 설명을 생략하기로 한다.
프로세서(3010)는 대상체에 대해 설정된 샘플 볼륨에 대한 도플러 신호를 획득할 수 있다. 샘플 볼륨은 대상체를 포함하는 영역에 대해 설정될 수 있다. 예를 들어, 샘플 볼륨은 특정 혈관을 포함하는 영역에 대해 설정될 수 있다. 또한, 프로세서(3010)는 샘플 볼륨 상에 복수의 구간들을 설정할 수 있다. 구체적으로, 프로세서(3010)는 샘플 볼륨 상의 축 방향에 따라 복수의 구간들을 설정할 수 있다.
프로세서(3010)는 샘플 볼륨 상에 설정된 복수의 구간들 각각에서 도플러 신호에 대해 스펙트럴 분석(spectral analysis)을 수행하여, 복수의 구간들 각각에 대응되는 복수의 스펙트럴 도플러 신호들을 생성할 수 있다. 일 실시예에 따라, 프로세서(3010)는 샘플 볼륨에 설정된 복수의 구간들에 대응되게, 도플러 신호를 복수의 부분 도플러 신호들로 구분할 수 있고, 복수의 스펙트럴 분석을 수행하여, 복수의 구간들 각각에 대한 복수의 스펙트럴 도플러 신호들을 생성할 수 있다. 일 실시예에 따라, 프로세서(3010)는 복수의 부분 도플러 신호들 각각에 대해 가중 누적 및 고속 퓨리에 변환을 수행하여, 복수의 스펙트럴 도플러 신호들을 생성할 수 있다. 예를 들어, 프로세서(3010)는 복수의 부분 도플러 신호들 각각에 대해 도 7의 수학식 1 내지 수학식 4를 적용하여, 복수의 스펙트럴 도플러 신호들을 생성할 수 있다.
프로세서(3010)는 복수의 스펙트럴 도플러 신호들을 이용하여, 대상체에 대한 스펙트럴 도플러 신호의 잡음(artifact) 신호를 모델링할 수 있다.
먼저, 프로세서(3010)는 복수의 스펙트럴 도플러 신호들로부터 대상체에 대한 스펙트럴 도플러 신호를 결정할 수 있다. 구체적으로, 일 실시예에 따라, 프로세서(3010)는 샘플 볼륨의 복수의 구간들 중 대상체를 포함하는 구간에 대응되는 스펙트럴 도플러 신호를 대상체에 대한 스펙트럴 도플러 신호로 결정할 수 있다. 다른 실시예에 따라, 프로세서(3010)는 샘플 볼륨의 복수의 구간들 중 대상체를 포함하는 둘 이상의 구간들에 대응되는 스펙트럴 도플러 신호들을 가중 합산 하여, 대상체에 대한 스펙트럴 도플러 신호를 생성할 수 있다.
다음으로, 프로세서(3010)는 대상체에 대한 스펙트럴 도플러 신호의 잡음 신호를 결정할 수 있다. 구체적으로, 대상체에 대한 스펙트럴 도플러 신호에서는 대상체를 나타내는 신호뿐만 아니라 다른 대상체로부터의 초음파 반사 신호가 포함될 수 있다. 다시 말해, 대상체에 대한 스펙트럴 도플러 신호는 대상체를 나타내는 신호와 다른 대상체로부터의 초음파 반사 신호가 중첩된 신호일 수 있다. 예를 들어, 대상체가 특정 혈관인 경우, 대상체에 대한 스펙트럴 도플러 신호는 특정 혈관을 나타내는 신호뿐만 아니라 다른 혈관 및 특정 조직으로부터의 초음파 반사 신호가 중첩된 신호일 수 있다. 따라서, 프로세서(3010)는 대상체에 대한 스펙트럴 도플러 신호에 포함된 다른 대상체로부터의 초음파 반사 신호를 잡음 신호로 결정할 수 있다.
다음으로, 프로세서(3010)는 잡음 신호를 모델링할 수 있다. 일 실시예에 따라, 프로세서(3010)는 복수의 스펙트럴 도플러 신호들 중 다른 대상체를 포함하는 구간에 대응되는 스펙트럴 도플러 신호를 이용하여 잡음 신호를 모델링할 수 있다. 일 예로, 복수의 스펙트럴 도플러 신호들 중 다른 대상체를 포함하는 구간이 하나인 경우, 프로세서(3010)는 다른 대상체를 포함하는 구간에 대응되는 스펙트럴 도플러 신호를 잡음 신호로 결정할 수 있다. 다른 예로, 복수의 스펙트럴 도플러 신호들 중 다른 대상체를 포함하는 구간이 둘 이상인 경우, 프로세서(3010)는 다른 대상체를 포함하는 구간들에 대응되는 스펙트럴 도플러 신호들을 가중 합산하여, 잡음 신호를 생성할 수 있다.
프로세서(3010)는 대상체에 대한 스펙트럴 도플러 신호 및 잡음 신호에 기초하여, 잡음이 제거된 대상체에 대한 스펙트럴 도플러 신호를 생성할 수 있다. 일 실시예에 따라, 프로세서(3010)는 대상체에 대한 스펙트럴 도플러 신호와 잡음 신호 간의 감산 연산을 수행하여, 잡음이 제거된 대상체에 대한 스펙트럴 도플러 신호를 생성할 수 있다. 다시 말해, 프로세서(3010) 대상체에 대한 스펙트럴 도플러 신호에서 잡음 신호를 차감하여, 대상체에 대한 스펙트럴 도플러 신호에서 대상체가 아닌 다른 대상체가 나타내는 신호를 제거할 수 있다.
디스플레이부(3020)는 잡음이 제거된 대상체에 대한 스펙트럴 도플러 신호를 표시할 수 있다.
도 16은 초음파 영상 장치가 대상체에 대한 스펙트럴 도플러 신호를 생성하는 실시예를 나타낸다.
프로세서(3010)는, B-모드의 초음파 영상(1601)에 설정된 샘플 볼륨에 대한 도플러 신호(1610)를 획득할 수 있다. 또한, 프로세서(3010)는 샘플 볼륨 상에 복수의 구간들을 설정할 수 있다.
프로세서(3010)는 샘플 볼륨에 설정된 복수의 구간들에 대응되게, 도플러 신호(1610)를 복수의 부분 도플러 신호들(1612,1614,1616)로 구분할 수 있다.
프로세서(3010)는 복수의 부분 도플러 신호들(1612,1614,1616) 각각에 대해 스펙트럴 분석을 수행하여, 복수의 구간들 각각에 대한 복수의 스펙트럴 도플러 신호들을 생성할 수 있다.
프로세서(3010)는 복수의 스펙트럴 도플러 신호들을 이용하여, 대상체에 대한 스펙트럴 도플러 신호의 잡음 신호를 모델링할 수 있다.
먼저, 프로세서(3010)는 샘플 볼륨의 복수의 구간들 중 대상체를 포함하는 구간에 대응되는 스펙트럴 도플러 신호를 대상체에 대한 스펙트럴 도플러 신호로 결정할 수 있다.
다음으로, 프로세서(3010)는 대상체에 대한 스펙트럴 도플러 신호의 잡음 신호를 결정할 수 있다. 프로세서(3010)는 대상체에 대한 스펙트럴 도플러 신호에 포함된 다른 대상체로부터의 초음파 반사 신호를 잡음 신호로 결정할 수 있다.
다음으로, 프로세서(3010)는 다른 대상체를 포함하는 구간에 대응되는 스펙트럴 도플러 신호를 잡음 신호로 결정할 수 있다.
프로세서(3010)는 대상체에 대한 스펙트럴 도플러 신호 및 잡음 신호에 기초하여, 잡음이 제거된 대상체에 대한 스펙트럴 도플러 신호를 생성할 수 있다.
도 17은 초음파 영상 장치가 대상체에 대한 스펙트럴 도플러 신호를 생성하는 구체적인 실시예를 나타낸다.
프로세서(3010)는 초음파 영상(1701)에 설정된 샘플 볼륨에 대한 도플러 신호(1710)를 획득할 수 있다. 샘플 볼륨은 정맥의 영역(1703) 및 동맥의 영역(1705)을 포함하도록 설정될 수 있다.
프로세서(3010)는 샘플 볼륨에 설정된 복수의 구간들에 대응되게, 도플러 신호(1710)를 복수의 부분 도플러 신호들(1712,1714,1716)로 구분할 수 있다. 이어서, 프로세서(3010)는 복수의 부분 도플러 신호들(1712,1714,1716) 각각에 대해 스펙트럴 분석을 수행하여, 복수의 구간들 각각에 대한 복수의 스펙트럴 도플러 신호들을 생성할 수 있다.
프로세서(3010)는 샘플 볼륨의 복수의 구간들 중 정맥을 포함하는 구간에 대응되는 스펙트럴 도플러 신호를 대상체에 대한 스펙트럴 도플러 신호(1720)로 결정할 수 있다. 대상체에 대한 스펙트럴 도플러 신호(1720)는 정맥을 나타내는 스펙트럴 도플러 신호, 및 동맥으로부터의 초음파 반사 신호가 중첩된 신호일 수 있다. 따라서, 프로세서(3010)는 동맥으로부터의 초음파 반사 신호를 대상체에 대한 스펙트럴 도플러 신호(1720)의 잡음 신호로 결정할 수 있다.
프로세서(3010)는 복수의 스펙트럴 도플러 신호들 중 동맥을 포함하는 구간에 대응되는 스펙트럴 도플러 신호를 잡음 신호(1730)로 결정할 수 있다.
프로세서(3010)는 대상체에 대한 스펙트럴 도플러 신호(1720) 및 잡음 신호(1730)에 기초하여, 잡음이 제거된 대상체에 대한 스펙트럴 도플러 신호(1740)를 생성할 수 있다. 다시 말해, 프로세서(3010)는 스펙트럴 도플러 신호(1720)에서 동맥으로부터의 초음파 반사 신호가 제거된 스펙트럴 도플러 신호(1740)를 생성할 수 있다.
다른 실시예에 따라, 도 17에 도시된 바와 달리, 프로세서(3010)는 샘플 볼륨의 복수의 구간들 중 동맥을 포함하는 구간에 대응되는 스펙트럴 도플러 신호를 대상체에 대한 스펙트럴 도플러 신호로 결정할 수 있고, 복수의 스펙트럴 도플러 신호들 중 정맥을 포함하는 구간에 대응되는 스펙트럴 도플러 신호를 잡음 신호로 결정할 수 있다. 다시 말해, 대상체에 대한 스펙트럴 도플러 신호는, 동맥을 나타내는 스펙트럴 도플러 신호뿐만 아니라, 정맥으로부터의 초음파 반사 신호가 포함될 수 있으므로, 정맥을 포함하는 구간에 대응되는 스펙트럴 도플러 신호를 잡음 신호로 결정할 수 있다. 따라서, 프로세서(3010)는 동맥에 대한 스펙트럴 도플러 신호에서 정맥으로부터의 초음파 반사 신호가 제거된 스펙트럴 도플러 신호를 생성할 수 있다.
도 18은 초음파 영상 장치가 대상체에 대한 스펙트럴 도플러 신호를 생성하는 다른 실시예를 나타낸다.
초음파 영상 장치(3000)는 초음파 송수신부(110)를 포함할 수 있다.
초음파 송수신부(110)는 대상체에 대해 설정된 샘플 볼륨을 지나는 펄스 도플러 선(1801)을 따라 초음파 신호를 송신할 수 있고, 샘플 볼륨 및 펄스 도플러 선 상의 적어도 하나의 볼륨으로부터 반사된 에코 신호를 수신할 수 있다. 프로세서(3010)는 수신된 에코 신호로부터 샘플 볼륨에 대응되는 도플러 신호(1810) 및 적어도 하나의 볼륨에 대응되는 적어도 하나의 도플러 신호(1820)를 획득할 수 있다.
프로세서(3010)는 샘플 볼륨에 대응되는 도플러 신호(1810)에 대해 스펙트럴 분석을 수행하여, 대상체에 대한 스펙트럴 도플러 신호를 생성할 수 있다. 또한, 프로세서(3010)는 적어도 하나의 볼륨에 대응되는 적어도 하나의 도플러 신호(1820)에 대해 스펙트럴 분석을 수행하여, 적어도 하나의 볼륨에 대응되는 적어도 하나의 스펙트럴 도플러 신호를 생성할 수 있다.
프로세서(3010)는 적어도 하나의 스펙트럴 도플러 신호를 이용하여, 대상체에 대한 스펙트럴 도플러 신호의 잡음 신호를 모델링할 수 있다. 프로세서(3010)는 대상체에 대한 스펙트럴 도플러 신호에 포함된 다른 대상체로부터의 초음파 반사 신호를 잡음 신호로 결정할 수 있다. 프로세서(3010)는 적어도 하나의 볼륨 중 다른 대상체를 포함하는 볼륨에 대응되는 스펙트럴 도플러 신호를 잡음 신호로 결정할 수 있다.
따라서, 프로세서(3010)는 대상체에 대한 스펙트럴 도플러 신호 및 잡음 신호에 기초하여, 잡음이 제거된 대상체에 대한 스펙트럴 도플러 신호를 생성할 수 있다.
도 19는 일 실시예에 따라, 초음파 영상 장치가 초음파 영상을 표시하는 방법을 설명하는 도면이다.
도 19에 도시된 방법은, 도 15의 초음파 영상 장치(3000)의 각 구성요소에 의해 수행될 수 있고, 중복되는 설명에 대해서는 생략한다.
단계 s1910에서, 초음파 영상 장치(3000)는 대상체에 대해 샘플 볼륨에 대한 도플러 신호를 획득할 수 있다. 또한, 초음파 영상 장치(3000)는 샘플 볼륨 상에 복수의 구간들을 설정할 수 있다.
단계 s1920에서, 초음파 영상 장치(3000)는 샘플 볼륨 상에 설정된 복수의 구간들 각각에서 도플러 신호에 대해 스펙트럴 분석(spectral analysis)을 수행하여, 복수의 구간들 각각에 대응되는 복수의 스펙트럴 도플러 신호들을 생성할 수 있다. 일 실시예에 따라, 초음파 영상 장치(3000)는 샘플 볼륨에 설정된 복수의 구간들에 대응되게, 도플러 신호를 복수의 부분 도플러 신호들로 구분할 수 있고, 복수의 스펙트럴 분석을 수행하여, 복수의 구간들 각각에 대한 복수의 스펙트럴 도플러 신호들을 생성할 수 있다. 일 실시예에 따라, 초음파 영상 장치(3000)는 복수의 부분 도플러 신호들 각각에 대해 가중 누적 및 고속 퓨리에 변환을 수행하여, 복수의 스펙트럴 도플러 신호들을 생성할 수 있다.
단계 s1930에서, 초음파 영상 장치(3000)는 복수의 스펙트럴 도플러 신호들을 이용하여, 대상체에 대한 스펙트럴 도플러 신호의 잡음 신호를 모델링할 수 있다.
초음파 영상 장치(3000)는 복수의 스펙트럴 도플러 신호들로부터 대상체에 대한 스펙트럴 도플러 신호를 결정할 수 있다. 초음파 영상 장치(3000)는 샘플 볼륨의 복수의 구간들 중 대상체를 포함하는 구간에 대응되는 스펙트럴 도플러 신호를 대상체에 대한 스펙트럴 도플러 신호로 결정할 수 있다.
초음파 영상 장치(3000)는 대상체에 대한 스펙트럴 도플러 신호의 잡음 신호를 결정할 수 있다. 초음파 영상 장치(3000)는 대상체에 대한 스펙트럴 도플러 신호에 포함된 다른 대상체로부터의 초음파 반사 신호를 잡음 신호로 결정할 수 있다. 초음파 영상 장치(3000)는 복수의 스펙트럴 도플러 신호들 중 다른 대상체를 포함하는 구간에 대응되는 스펙트럴 도플러 신호를 이용하여 잡음 신호를 모델링할 수 있다.
단계 s1940에서, 초음파 영상 장치(3000)는 대상체에 대한 스펙트럴 도플러 신호 및 잡음 신호에 기초하여, 잡음이 제거된 대상체에 대한 스펙트럴 도플러 신호를 생성할 수 있다. 초음파 영상 장치(3000)는 대상체에 대한 스펙트럴 도플러 신호와 잡음 신호 간의 감산 연산을 수행하여, 잡음이 제거된 대상체에 대한 스펙트럴 도플러 신호를 생성할 수 있다.
단계 s1950에서, 초음파 영상 장치(3000)는 잡음이 제거된 대상체에 대한 스펙트럴 도플러 신호를 표시할 수 있다.
한편, 개시된 실시예들은 컴퓨터에 의해 실행 가능한 명령어 및 데이터를 저장하는 컴퓨터로 읽을 수 있는 기록매체의 형태로 구현될 수 있다. 상기 명령어는 프로그램 코드의 형태로 저장될 수 있으며, 프로세서에 의해 실행되었을 때, 소정의 프로그램 모듈을 생성하여 소정의 동작을 수행할 수 있다. 또한, 상기 명령어는 프로세서에 의해 실행되었을 때, 개시된 실시예들의 소정의 동작들을 수행할 수 있다.
이상에서와 같이 첨부된 도면을 참조하여 개시된 실시예들을 설명하였다. 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고도, 개시된 실시예들과 다른 형태로 본 발명이 실시될 수 있음을 이해할 것이다. 개시된 실시예들은 예시적인 것이며, 한정적으로 해석되어서는 안 된다.

Claims (15)

  1. 대상체에 대해 샘플 볼륨에 대한 도플러 신호를 획득하고,
    상기 샘플 볼륨 상에 설정된 복수의 구간들 각각에서 상기 도플러 신호에 대해 스펙트럴 분석(spectral analysis)을 수행하여, 상기 복수의 구간들 각각에 대응되는 복수의 스펙트럴 도플러 신호들을 생성하고,
    상기 복수의 스펙트럴 도플러 신호들을 이용하여, 상기 대상체에 대한 스펙트럴 도플러 신호의 잡음 신호를 모델링하고,
    상기 대상체에 대한 스펙트럴 도플러 신호 및 상기 잡음 신호에 기초하여, 잡음이 제거된 상기 대상체에 대한 스펙트럴 도플러 신호를 생성하는 프로세서; 및
    상기 잡음이 제거된 대상체에 대한 스펙트럴 도플러 신호를 표시하는 디스플레이부;를 포함하는, 초음파 영상 장치.
  2. 제 1 항에 있어서,
    상기 프로세서는,
    상기 복수의 구간들 중 상기 대상체를 포함하는 구간에 대응되는 스펙트럴 도플러 신호를 상기 대상체에 대한 스펙트럴 도플러 신호로 결정하는, 초음파 영상 장치.
  3. 제 1 항에 있어서,
    상기 프로세서는,
    상기 대상체에 대한 스펙트럴 도플러 신호에 포함된 다른 대상체로부터의 초음파 반사 신호를 상기 잡음 신호로 결정하고, 상기 복수의 구간들 중 상기 다른 대상체를 포함하는 구간에 대응되는 스펙트럴 도플러 신호를 이용하여 상기 잡음 신호를 모델링하는, 초음파 영상 장치.
  4. 제 3 항에 있어서,
    상기 대상체는 정맥에 해당하고, 상기 다른 대상체는 동맥에 해당하는, 초음파 영상 장치.
  5. 제 1 항에 있어서,
    상기 프로세서는,
    상기 대상체에 대한 스펙트럴 도플러 신호 및 상기 잡음 신호 간의 감산 연산을 통해, 상기 잡음이 제거된 대상체에 대한 스펙트럴 도플러 신호를 생성하는, 초음파 영상 장치.
  6. 제 1 항에 있어서,
    상기 프로세서는,
    상기 복수의 구간들에 대응되게, 상기 도플러 신호를 복수의 부분 도플러 신호들로 구분하고, 상기 복수의 부분 도플러 신호들 각각에 대해 스펙트럴 분석(spectral analysis)을 수행하여, 상기 복수의 스펙트럴 도플러 신호들을 생성하는, 초음파 영상 장치.
  7. 제 1 항에 있어서,
    대상체에 대해 설정된 샘플 볼륨을 지나는 펄스 도플러 선(pulsed doppler line)을 따라, 프로브가 초음파 신호를 송신하도록 제어하고, 상기 샘플 볼륨 및 상기 펄스 도플러 선 상의 적어도 하나의 볼륨으로부터 반사된 에코 신호를 수신하는 초음파 송수신부;를 더 포함하고,
    상기 프로세서는,
    상기 수신된 에코 신호로부터 상기 샘플 볼륨에 대응되는 도플러 신호 및 상기 적어도 하나의 볼륨에 대응되는 적어도 하나의 도플러 신호를 획득하고,
    상기 샘플 볼륨에 대응되는 도플러 신호 및 상기 적어도 하나의 도플러 신호에 대해 스펙트럴 분석을 수행하여, 상기 대상체에 대한 스펙트럴 도플러 신호 및 적어도 하나의 스펙트럴 도플러 신호를 생성하고,
    상기 적어도 하나의 스펙트럴 도플러 신호를 이용하여, 상기 대상체에 대한 스펙트럴 도플러 신호의 잡음 신호를 모델링하고,
    상기 대상체에 대한 스펙트럴 도플러 신호 및 상기 잡음 신호에 기초하여, 잡음이 제거된 상기 대상체에 대한 스펙트럴 도플러 신호를 생성하는, 초음파 영상 장치.
  8. 대상체에 대해 샘플 볼륨에 대한 도플러 신호를 획득하는 단계;
    상기 샘플 볼륨 상에 설정된 복수의 구간들 각각에서 상기 도플러 신호에 대해 스펙트럴 분석(spectral analysis)을 수행하여, 상기 복수의 구간들 각각에 대응되는 복수의 스펙트럴 도플러 신호들을 생성하는 단계;
    상기 복수의 스펙트럴 도플러 신호들을 이용하여, 상기 대상체에 대한 스펙트럴 도플러 신호의 잡음 신호를 모델링하는 단계;
    상기 대상체에 대한 스펙트럴 도플러 신호 및 상기 잡음 신호에 기초하여, 잡음이 제거된 상기 대상체에 대한 스펙트럴 도플러 신호를 생성하는 단계; 및
    상기 잡음이 제거된 대상체에 대한 스펙트럴 도플러 신호를 표시하는 단계;를 포함하는, 초음파 영상 표시 방법.
  9. 제 8 항에 있어서,
    상기 모델링하는 단계는,
    상기 복수의 구간들 중 상기 대상체를 포함하는 구간에 대응되는 스펙트럴 도플러 신호를 상기 대상체에 대한 스펙트럴 도플러 신호로 결정하는 단계를 포함하는, 초음파 영상 표시 방법.
  10. 제 8 항에 있어서,
    상기 모델링하는 단계는,
    상기 대상체에 대한 스펙트럴 도플러 신호에 포함된 다른 대상체로부터의 초음파 반사 신호를 상기 잡음 신호로 결정하는 단계; 및
    상기 복수의 구간들 중 상기 다른 대상체를 포함하는 구간에 대응되는 스펙트럴 도플러 신호를 이용하여 상기 잡음 신호를 모델링하는 단계;를 포함하는, 초음파 영상 표시 방법.
  11. 제 10 항에 있어서,
    상기 대상체는 정맥에 해당하고, 상기 다른 대상체는 동맥에 해당하는, 초음파 영상 표시 방법.
  12. 제 8 항에 있어서,
    상기 잡음이 제거된 상기 대상체에 대한 스펙트럴 도플러 신호를 생성하는 단계는,
    상기 대상체에 대한 스펙트럴 도플러 신호 및 상기 잡음 신호 간의 감산 연산을 통해, 상기 잡음이 제거된 대상체에 대한 스펙트럴 도플러 신호를 생성하는, 초음파 영상 표시 방법.
  13. 제 8 항에 있어서,
    상기 복수의 스펙트럴 도플러 신호들을 생성하는 단계는,
    상기 복수의 구간들에 대응되게, 상기 도플러 신호를 복수의 부분 도플러 신호들로 구분하고, 상기 복수의 부분 도플러 신호들 각각에 대해 스펙트럴 분석(spectral analysis)을 수행하여, 상기 복수의 스펙트럴 도플러 신호들을 생성하는, 초음파 영상 표시 방법.
  14. 제 8 항에 있어서,
    대상체에 대해 설정된 샘플 볼륨을 지나는 펄스 도플러 선(pulsed doppler line)을 따라, 프로브가 초음파 신호를 송신하도록 제어하고, 상기 샘플 볼륨 및 상기 펄스 도플러 선 상의 적어도 하나의 볼륨으로부터 반사된 에코 신호를 수신하는 단계;
    상기 수신된 에코 신호로부터 상기 샘플 볼륨에 대응되는 도플러 신호 및 상기 적어도 하나의 볼륨에 대응되는 적어도 하나의 도플러 신호를 획득하는 단계;
    상기 샘플 볼륨에 대응되는 도플러 신호 및 상기 적어도 하나의 도플러 신호에 대해 스펙트럴 분석을 수행하여, 상기 대상체에 대한 스펙트럴 도플러 신호 및 적어도 하나의 스펙트럴 도플러 신호를 생성하는 단계;
    상기 적어도 하나의 스펙트럴 도플러 신호를 이용하여, 상기 대상체에 대한 스펙트럴 도플러 신호의 잡음 신호를 모델링하는 단계; 및
    상기 대상체에 대한 스펙트럴 도플러 신호 및 상기 잡음 신호에 기초하여, 잡음이 제거된 상기 대상체에 대한 스펙트럴 도플러 신호를 생성하는 단계;를 더 포함하는, 초음파 영상 표시 방법.
  15. 제 8 항 내지 제 14 항 중에 어느 한 항의 방법을 컴퓨터에서 실행시키기 위한 프로그램을 기록한 컴퓨터로 읽을 수 있는 기록매체.
KR1020170072727A 2016-09-20 2017-06-09 초음파 영상 장치 및 초음파 영상 표시 방법 KR102439767B1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/334,419 US20190209136A1 (en) 2016-09-20 2017-08-24 Ultrasonic imaging device and ultrasonic image display method
PCT/KR2017/009248 WO2018056593A1 (ko) 2016-09-20 2017-08-24 초음파 영상 장치 및 초음파 영상 표시 방법
EP17853307.1A EP3517043B1 (en) 2016-09-20 2017-08-24 Ultrasonic imaging device and ultrasonic image display method

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US201662396889P 2016-09-20 2016-09-20
US201662396910P 2016-09-20 2016-09-20
US201662396970P 2016-09-20 2016-09-20
US62/396,970 2016-09-20
US62/396,889 2016-09-20
US62/396,910 2016-09-20

Publications (2)

Publication Number Publication Date
KR20180031559A KR20180031559A (ko) 2018-03-28
KR102439767B1 true KR102439767B1 (ko) 2022-09-05

Family

ID=61901508

Family Applications (3)

Application Number Title Priority Date Filing Date
KR1020170072725A KR102447020B1 (ko) 2016-09-20 2017-06-09 초음파 영상 장치 및 초음파 영상 표시 방법
KR1020170072726A KR102439765B1 (ko) 2016-09-20 2017-06-09 초음파 영상 장치 및 초음파 영상 표시 방법
KR1020170072727A KR102439767B1 (ko) 2016-09-20 2017-06-09 초음파 영상 장치 및 초음파 영상 표시 방법

Family Applications Before (2)

Application Number Title Priority Date Filing Date
KR1020170072725A KR102447020B1 (ko) 2016-09-20 2017-06-09 초음파 영상 장치 및 초음파 영상 표시 방법
KR1020170072726A KR102439765B1 (ko) 2016-09-20 2017-06-09 초음파 영상 장치 및 초음파 영상 표시 방법

Country Status (3)

Country Link
US (1) US20190209136A1 (ko)
EP (1) EP3517043B1 (ko)
KR (3) KR102447020B1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102124609B1 (ko) * 2018-08-31 2020-06-18 한남대학교 산학협력단 초음파 영상장치의 혈관 패턴 추출 방법 및 장치
KR20220139182A (ko) * 2021-04-07 2022-10-14 삼성메디슨 주식회사 초음파 진단 장치, 이의 동작 방법, 및 러닝 알고리즘이 기록된 기록매체

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030163044A1 (en) 2002-02-28 2003-08-28 Andreas Heimdal Method and apparatus for spectral strain rate visualization
JP2006326291A (ja) 2005-05-26 2006-12-07 Medison Co Ltd 超音波スペクトル映像を処理する装置及び方法
JP2008511367A (ja) 2004-08-30 2008-04-17 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ ドップラ速度スペクトルにおける流速の調節可能トレース方法及び装置
US20100094152A1 (en) 2006-09-22 2010-04-15 John Semmlow System and method for acoustic detection of coronary artery disease
US20130172754A1 (en) 2011-12-28 2013-07-04 Samsung Medison Co., Ltd. Providing compound image of doppler spectrum images in ultrasound system

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3847124B2 (ja) 2001-09-17 2006-11-15 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー ドップラ信号処理方法および装置並びに超音波診断装置
JP4891590B2 (ja) 2004-10-18 2012-03-07 株式会社東芝 超音波ドプラ計測装置及びドプラ信号処理プログラム
CN100525713C (zh) 2005-06-10 2009-08-12 深圳迈瑞生物医疗电子股份有限公司 声谱图包络曲线提取方法
EP1798573A3 (en) * 2005-12-16 2009-09-09 Medison Co., Ltd. Ultrasound diagnostic system and method for displaying doppler spectrum images of multiple sample volumes
JP2009530010A (ja) * 2006-03-21 2009-08-27 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 心機能異常の分析のための心臓エコー検査装置及び方法
KR101014556B1 (ko) * 2007-12-05 2011-02-16 주식회사 메디슨 초음파 영상을 형성하는 초음파 시스템 및 방법
KR20100043686A (ko) * 2008-10-21 2010-04-29 주식회사 메디슨 윈도우를 제어하는 초음파 시스템
KR20120042601A (ko) * 2010-10-22 2012-05-03 삼성메디슨 주식회사 샘플볼륨의 위치를 설정하는 초음파 시스템 및 방법
JP5788229B2 (ja) * 2011-06-06 2015-09-30 株式会社東芝 超音波診断装置
US9084576B2 (en) * 2012-07-13 2015-07-21 Siemens Medical Solutions Usa, Inc. Automatic doppler gate positioning in spectral doppler ultrasound imaging
KR102351124B1 (ko) * 2014-11-07 2022-01-14 삼성메디슨 주식회사 혈관의 특징을 산출하는 방법 및 이를 위한 초음파 장치
KR102351127B1 (ko) * 2014-11-11 2022-01-14 삼성메디슨 주식회사 초음파 진단 방법 및 초음파 진단 장치
KR102462391B1 (ko) * 2015-01-29 2022-11-03 삼성메디슨 주식회사 초음파 장치 및 그 동작 방법
KR102387708B1 (ko) * 2015-01-30 2022-04-19 삼성메디슨 주식회사 향상된 hprf 도플러 영상을 위한 가이드를 제공하는 방법 및 초음파 시스템

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030163044A1 (en) 2002-02-28 2003-08-28 Andreas Heimdal Method and apparatus for spectral strain rate visualization
JP2008511367A (ja) 2004-08-30 2008-04-17 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ ドップラ速度スペクトルにおける流速の調節可能トレース方法及び装置
JP2006326291A (ja) 2005-05-26 2006-12-07 Medison Co Ltd 超音波スペクトル映像を処理する装置及び方法
US20100094152A1 (en) 2006-09-22 2010-04-15 John Semmlow System and method for acoustic detection of coronary artery disease
US20130172754A1 (en) 2011-12-28 2013-07-04 Samsung Medison Co., Ltd. Providing compound image of doppler spectrum images in ultrasound system

Also Published As

Publication number Publication date
KR20180031557A (ko) 2018-03-28
EP3517043A4 (en) 2020-06-10
US20190209136A1 (en) 2019-07-11
KR102447020B1 (ko) 2022-09-26
EP3517043A1 (en) 2019-07-31
KR102439765B1 (ko) 2022-09-05
EP3517043B1 (en) 2023-05-24
KR20180031559A (ko) 2018-03-28
KR20180031558A (ko) 2018-03-28

Similar Documents

Publication Publication Date Title
CN110381845B (zh) 具有用于导出成像数据和组织信息的神经网络的超声成像系统
US10228785B2 (en) Ultrasound diagnosis apparatus and method and computer-readable storage medium
EP3092952B1 (en) Method of displaying elastography image and ultrasound diagnosis apparatus performing the method
KR102185725B1 (ko) 초음파 영상 표시 방법 및 이를 위한 초음파 장치
US11564663B2 (en) Ultrasound imaging apparatus and control method thereof
US20230142143A1 (en) System and method for robust flow measurements in vessels
KR102439767B1 (ko) 초음파 영상 장치 및 초음파 영상 표시 방법
JP2024056928A (ja) 心臓の血流と組織の4d超高速ドップラー撮像及び定量化パラメータの取得を同時に行う方法並びに装置。
CN112494072A (zh) 定量医学诊断超声的肌肉收缩状态触发
CN111481234A (zh) 超声诊断设备及操作该超声诊断设备的方法
JP6181542B2 (ja) 超音波診断装置、医用画像診断装置および検査手順発生プログラム
US20210321974A1 (en) Quantitative analysis method for cardiac motion, and ultrasonic system
CN115279275A (zh) 超声诊断设备及其操作方法
CN113015490A (zh) 用于同时呈现多门多普勒信号的对应于不同解剖结构的多普勒信号的方法和系统
CN114098687B (zh) 用于超声运动模式的自动心率测量的方法和系统
EP3520703B1 (en) Ultrasound diagnosis apparatus and computer-readable recording medium storing a program for executing a method of operating same
Mendizabal Ruiz LUMEN SEGMENTATION IN INTRAVASCULAR ULTRASOUND DATA
KR20200017791A (ko) 초음파 진단 장치, 초음파 영상을 표시하는 방법, 및 컴퓨터 프로그램 제품
KR20190008055A (ko) 초음파 진단 장치 및 그 동작 방법
KR20160123210A (ko) 혈관의 경직도를 표시하는 초음파 시스템
KR20160086126A (ko) 초음파 진단 방법 및 장치

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant