KR102435221B1 - 무선 통신 시스템에서 단말에 의해 수행되는 전송 전력 제어 방법 및 상기 방법을 이용하는 단말 - Google Patents
무선 통신 시스템에서 단말에 의해 수행되는 전송 전력 제어 방법 및 상기 방법을 이용하는 단말 Download PDFInfo
- Publication number
- KR102435221B1 KR102435221B1 KR1020177020472A KR20177020472A KR102435221B1 KR 102435221 B1 KR102435221 B1 KR 102435221B1 KR 1020177020472 A KR1020177020472 A KR 1020177020472A KR 20177020472 A KR20177020472 A KR 20177020472A KR 102435221 B1 KR102435221 B1 KR 102435221B1
- Authority
- KR
- South Korea
- Prior art keywords
- transmission
- subframe
- cell
- discovery
- terminal
- Prior art date
Links
- 230000005540 biological transmission Effects 0.000 title claims abstract description 515
- 238000004891 communication Methods 0.000 title claims abstract description 221
- 238000000034 method Methods 0.000 title claims abstract description 136
- 230000008054 signal transmission Effects 0.000 description 164
- 230000001960 triggered effect Effects 0.000 description 46
- 230000011664 signaling Effects 0.000 description 44
- 230000006870 function Effects 0.000 description 32
- 238000013468 resource allocation Methods 0.000 description 24
- 230000008569 process Effects 0.000 description 22
- 239000000969 carrier Substances 0.000 description 18
- 230000009467 reduction Effects 0.000 description 13
- 230000004044 response Effects 0.000 description 12
- 230000002776 aggregation Effects 0.000 description 8
- 238000004220 aggregation Methods 0.000 description 8
- 238000004364 calculation method Methods 0.000 description 8
- 238000007726 management method Methods 0.000 description 8
- 238000005259 measurement Methods 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- 230000003993 interaction Effects 0.000 description 6
- 238000013507 mapping Methods 0.000 description 6
- 230000005855 radiation Effects 0.000 description 5
- ORILYTVJVMAKLC-UHFFFAOYSA-N Adamantane Natural products C1C(C2)CC3CC1CC2C3 ORILYTVJVMAKLC-UHFFFAOYSA-N 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 238000012546 transfer Methods 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 230000010267 cellular communication Effects 0.000 description 3
- 230000009977 dual effect Effects 0.000 description 3
- 101150096310 SIB1 gene Proteins 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 238000010295 mobile communication Methods 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 108700026140 MAC combination Proteins 0.000 description 1
- 238000013475 authorization Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000006855 networking Effects 0.000 description 1
- 230000011218 segmentation Effects 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000012384 transportation and delivery Methods 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W4/00—Services specially adapted for wireless communication networks; Facilities therefor
- H04W4/70—Services for machine-to-machine communication [M2M] or machine type communication [MTC]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/04—TPC
- H04W52/38—TPC being performed in particular situations
- H04W52/383—TPC being performed in particular situations power control in peer-to-peer links
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/04—TPC
- H04W52/30—TPC using constraints in the total amount of available transmission power
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/0091—Signaling for the administration of the divided path
- H04L5/0092—Indication of how the channel is divided
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/04—TPC
- H04W52/30—TPC using constraints in the total amount of available transmission power
- H04W52/32—TPC of broadcast or control channels
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/04—TPC
- H04W52/30—TPC using constraints in the total amount of available transmission power
- H04W52/32—TPC of broadcast or control channels
- H04W52/322—Power control of broadcast channels
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/04—TPC
- H04W52/30—TPC using constraints in the total amount of available transmission power
- H04W52/32—TPC of broadcast or control channels
- H04W52/325—Power control of control or pilot channels
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/04—TPC
- H04W52/30—TPC using constraints in the total amount of available transmission power
- H04W52/34—TPC management, i.e. sharing limited amount of power among users or channels or data types, e.g. cell loading
- H04W52/346—TPC management, i.e. sharing limited amount of power among users or channels or data types, e.g. cell loading distributing total power among users or channels
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/04—TPC
- H04W52/30—TPC using constraints in the total amount of available transmission power
- H04W52/36—TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
- H04W52/367—Power values between minimum and maximum limits, e.g. dynamic range
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/04—TPC
- H04W52/38—TPC being performed in particular situations
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W76/00—Connection management
- H04W76/10—Connection setup
- H04W76/14—Direct-mode setup
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W8/00—Network data management
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W8/00—Network data management
- H04W8/005—Discovery of network devices, e.g. terminals
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W88/00—Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
- H04W88/02—Terminal devices
- H04W88/06—Terminal devices adapted for operation in multiple networks or having at least two operational modes, e.g. multi-mode terminals
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0032—Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W40/00—Communication routing or communication path finding
- H04W40/24—Connectivity information management, e.g. connectivity discovery or connectivity update
- H04W40/246—Connectivity information discovery
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Databases & Information Systems (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
무선 통신 시스템에서 단말에 의해 수행되는 전송 전력 제어 방법 및 상기 방법을 이용하는 단말을 제공한다. 상기 방법은 제1 반송파에서 수행되는 광역 네트워크(wide area network: WAN) 전송을 위한 제1 전송 전력과 제2 반송파에서 수행되는 D2D(device-to-device) 동작에 따른 전송을 위한 제2 전송 전력을 독립적으로 계산하고, 상기 제1 전송 전력 및 제2 전송 전력의 합이 상기 단말의 지원 가능한 최대 전력보다 큰 경우, 상기 제2 전송 전력을 감소시키는 것을 특징으로 한다.
Description
본 발명은 무선 통신에 관한 것으로서, 보다 상세하게는, 무선 통신 시스템에서 단말이 수행하는 전송 전력 제어 방법 및 상기 방법을 이용하는 단말에 관한 것이다.
ITU-R(International Telecommunication Union Radio communication sector)에서는 3세대 이후의 차세대 이동통신 시스템인 IMT(International Mobile Telecommunication)-Advanced의 표준화 작업을 진행하고 있다. IMT-Advanced는 정지 및 저속 이동 상태에서 1Gbps, 고속 이동 상태에서 100Mbps의 데이터 전송률로 IP(Internet Protocol)기반의 멀티미디어 서비스 지원을 목표로 한다.
3GPP(3rd Generation Partnership Project)는 IMT-Advanced의 요구 사항을 충족시키는 시스템 표준으로 OFDMA(Orthogonal Frequency Division Multiple Access)/SC-FDMA(Single Carrier-Frequency Division Multiple Access) 전송방식 기반인 LTE(Long Term Evolution)를 개선한 LTE-Advanced(LTE-A)를 준비하고 있다. LTE-A는 IMT-Advanced를 위한 유력한 후보 중의 하나이다.
한편, 최근 장치들 간 직접통신을 하는 D2D (Device-to-Device)기술에 대한 관심이 높아지고 있다. 특히, D2D는 공중 안전 네트워크(public safety network)을 위한 통신 기술로 주목 받고 있다. 상업적 통신 네트워크는 빠르게 LTE로 변화하고 있으나 기존 통신 규격과의 충돌 문제와 비용 측면에서 현재의 공중 안전 네트워크는 주로 2G 기술에 기반하고 있다. 이러한 기술 간극과 개선된 서비스에 대한 요구는 공중 안전 네트워크를 개선하고자 하는 노력으로 이어지고 있다.
공중 안전 네트워크는 상업적 통신 네트워크에 비해 높은 서비스 요구 조건(신뢰도 및 보안성)을 가지며 특히 셀룰러 통신의 커버리지가 미치지 않거나 이용 가능하지 않은 경우에도, 장치들 간의 직접 신호 송수신 즉, D2D 동작도 요구하고 있다.
D2D 동작은 근접한 기기들 간의 신호 송수신이라는 점에서 다양한 장점을 가질 수 있다. 예를 들어, D2D 단말은 높은 전송률 및 낮은 지연을 가지며 데이터 통신을 할 수 있다. 또한, D2D 동작은 기지국에 몰리는 트래픽을 분산시킬 수 있으며, D2D 단말이 중계기 역할을 한다면 기지국의 커버리지를 확장시키는 역할도 할 수 있다.
한편, 종래에는 단말이 D2D 동작과 WAN(wide area network) 동작을 어느 하나만 수행하는 것을 전제로 하였다. 여기서, WAN 동작이란 일반적인 셀룰러 통신을 의미한다. 반면, 장래의 단말은 D2D 동작과 WAN 동작을 서로 다른 반송파에서 동시에 수행하는 것도 지원할 수 있다.
이 경우, D2D 동작과 WAN 동작 중 어느 하나만을 수행함을 전제로 규정된 전송 전력 결정 방법을 그대로 적용하면, D2D 동작을 위한 전송 전력과 WAN 동작을 위한 전송 전력의 합이 단말이 지원할 수 있는 최대 전력보다 더 큰 결과가 나올 수도 있다. 따라서, D2D 동작과 WAN 동작을 서로 다른 반송파에서 동시에 수행할 수 있다는 것을 고려한 전송 전력 제어 방법 및 장치가 필요하다.
또한, D2D 동작에 의한 전송과 WAN 전송이 서로 다른 반송파의 서브프레임들에서 전송될 경우, 상기 서브프레임들이 상호 간에 시간적으로 정렬되지 않는 경우도 발생할 수 있다. 이 때, 어떤 방식으로 D2D 동작에 의한 전송과 WAN 전송에 대한 전송 전력을 결정할 것인지가 문제될 수 있다.
본 발명이 해결하고자 하는 기술적 과제는 단말에 의해 수행되는 전송 전력 제어 방법 및 상기 방법을 이용하는 단말을 제공하는 것이다.
일 측면에서, 무선 통신 시스템에서 단말에 의해 수행되는 전송 전력 제어 방법을 제공한다. 상기 방법은 제1 반송파에서 수행되는 광역 네트워크(wide area network: WAN) 전송을 위한 제1 전송 전력과 제2 반송파에서 수행되는 D2D(device-to-device) 동작에 따른 전송을 위한 제2 전송 전력을 독립적으로 계산하고, 상기 제1 전송 전력 및 제2 전송 전력의 합이 상기 단말의 지원 가능한 최대 전력보다 큰 경우, 상기 제2 전송 전력을 감소시키는 것을 특징으로 한다.
상기 WAN 전송과 상기 D2D 동작에 따른 전송은 동시에 수행될 수 있다.
상기 제1 반송파와 상기 제2 반송파는 서로 다른 주파수의 반송파들일 수 있다.
상기 단말이 지원 가능한 최대 전력은 상기 D2D 동작에 따른 전송을 상기 WAN 전송처럼 취급하여 계산될 수 있다.
상기 제2 전송 전력은 상기 D2D 동작에 따른 전송을, 상기 D2D 동작에 따른 전송에 사용되는 파라미터들과 동일한 파라미터들을 가지는 WAN 전송으로 간주하여 계산될 수 있다.
상기 단말이 지원 가능한 최대 전력은 상기 제1 반송파에서의 상기 WAN 전송 및 상기 제2 반송파에서의 WAN 전송으로 간주한 상기 D2D 동작에 따른 전송이 동시에 발생하였음을 가정하고 계산될 수 있다.
다른 측면에서 제공되는 무선 통신 시스템에서 단말에 의해 수행되는 전송 전력 제어 방법은 제1 셀의 제1 서브프레임에서 광역 네트워크(wide area network: WAN) 전송을 수행하고, 제2 셀의 제2 서브프레임에서 D2D(device-to-device) 동작에 따른 전송을 수행하되, 상기 제1 서브프레임과 상기 제2 서브프레임이 시간적으로 일부만 겹치는 경우, 상기 제1 셀의 상기 제1 서브프레임에 대해 결정되는 최대 출력 전력(PCMAX)에 기반하여, 상기 제1 서브프레임에서의 상기 WAN 전송 및 상기 제2 서브프레임에서의 상기 D2D 동작에 따른 전송에 대한 전송 전력을 결정하는 것을 특징으로 한다.
상기 제1 서브프레임은 상기 제2 서브프레임에 비해 시간적으로 앞서는 것일 수 있다.
상기 제1 서브프레임은 상기 제2 서브프레임에 비해 시간적으로 뒤지는 것일 수 있다.
상기 제1 셀 및 제2 셀은 서로 다른 주파수의 셀들일 수 있다.
또 다른 측면에서 제공되는 단말은, 무선 신호를 송신 및 수신하는 RF(Radio Frequency) 부 및 상기 RF부와 결합하여 동작하는 프로세서를 포함하되, 상기 프로세서는, 제1 반송파에서 수행되는 광역 네트워크(wide area network: WAN) 전송을 위한 제1 전송 전력과 제2 반송파에서 수행되는 D2D(device-to-device) 동작에 따른 전송을 위한 제2 전송 전력을 독립적으로 계산하고, 상기 제1 전송 전력 및 제2 전송 전력의 합이 상기 단말의 지원 가능한 최대 전력보다 큰 경우, 상기 제2 전송 전력을 감소시키는 것을 특징으로 한다.
또 다른 측면에서 제공되는 단말은, 무선 신호를 송신 및 수신하는 RF(Radio Frequency) 부 및 상기 RF부와 결합하여 동작하는 프로세서를 포함하되, 상기 프로세서는, 제1 셀의 제1 서브프레임에서 광역 네트워크(wide area network: WAN) 전송을 수행하고, 제2 셀의 제2 서브프레임에서 D2D(device-to-device) 동작에 따른 전송을 수행하되, 상기 제1 서브프레임과 상기 제2 서브프레임이 시간적으로 일부만 겹치는 경우, 상기 제1 셀의 상기 제1 서브프레임에 대해 결정되는 최대 출력 전력(PCMAX)에 기반하여, 상기 제1 서브프레임에서의 상기 WAN 전송 및 상기 제2 서브프레임에서의 상기 D2D 동작에 따른 전송에 대한 전송 전력을 결정하는 것을 특징으로 한다.
WAN 동작과 D2D 동작이 동시에 수행되더라도 단말이 지원할 수 있는 최대 전력 내에서 각각의 전송 전력이 결정되며, D2D 동작의 전송 전력이 WAN 동작의 전송 전력에 영향을 미치지 않게 할 수 있다.
도 1은 무선통신 시스템을 나타낸다.
도 2는 사용자 평면(user plane)에 대한 무선 프로토콜 구조(radio protocol architecture)를 나타낸 블록도이다.
도 3은 제어 평면(control plane)에 대한 무선 프로토콜 구조를 나타낸 블록도이다.
도 4는 ProSe를 위한 기준 구조를 나타낸다.
도 5는 D2D 동작을 수행하는 단말들과 셀 커버리지의 배치 예들을 나타낸다.
도 6은 D2D 발견 과정의 일 실시예이다.
도 7은 D2D 발견 과정의 다른 실시예이다.
도 8은 중계 기능을 제공하는 단말의 예를 나타낸다.
도 9는 전술한 '경우 (1)' 및 '경우 (2)'를 예시한다.
도 10은 본 발명의 일 실시예에 따른 단말의 발견 신호 전송 방법을 나타낸다.
도 11은 전술한 '예시#2-1'에 따른 단말의 D2D 신호에 대한 전송 전력 결정 방법을 나타낸다.
도 12는 동일 서브프레임에서 D2D 발견과 D2D 통신 모두를 위하여 (혹은 D2D 발견 (전송)과 D2D 통신 (전송)에 의해서 동시에) SSS/PSBCH가 트리거링된 경우, 전송 전력 결정 방법을 예시한다.
도 13은 '경우 (2)'의 일 예이다.
도 14는 '경우 (2)'에 대한 또 다른 변형 예이다.
도 15는 본 발명의 일 실시예에 따른 전력 제어 방법을 나타낸다.
도 16은 편의상 도 9의 부도면 (b)를 다시 나타낸 도면이다.
도 17은 D2D 신호의 전송과 WAN 상향링크 신호를 전송하는 타이밍을 나타내는 예이다.
도 18은 반송파 c의 서브프레임 k와 반송파 x의 서브프레임 i가 겹치는 것을 나타낸다.
도 19는 사이드링크 서브프레임이 복수의 상향링크 서브프레임들과 겹치는 경우를 예시한다.
도 20은 본 발명의 일 실시예에 따른 상향링크 전송 전력 결정 방법을 나타낸다.
도 21은 본 발명의 실시예가 구현되는 단말을 나타낸 블록도이다.
도 2는 사용자 평면(user plane)에 대한 무선 프로토콜 구조(radio protocol architecture)를 나타낸 블록도이다.
도 3은 제어 평면(control plane)에 대한 무선 프로토콜 구조를 나타낸 블록도이다.
도 4는 ProSe를 위한 기준 구조를 나타낸다.
도 5는 D2D 동작을 수행하는 단말들과 셀 커버리지의 배치 예들을 나타낸다.
도 6은 D2D 발견 과정의 일 실시예이다.
도 7은 D2D 발견 과정의 다른 실시예이다.
도 8은 중계 기능을 제공하는 단말의 예를 나타낸다.
도 9는 전술한 '경우 (1)' 및 '경우 (2)'를 예시한다.
도 10은 본 발명의 일 실시예에 따른 단말의 발견 신호 전송 방법을 나타낸다.
도 11은 전술한 '예시#2-1'에 따른 단말의 D2D 신호에 대한 전송 전력 결정 방법을 나타낸다.
도 12는 동일 서브프레임에서 D2D 발견과 D2D 통신 모두를 위하여 (혹은 D2D 발견 (전송)과 D2D 통신 (전송)에 의해서 동시에) SSS/PSBCH가 트리거링된 경우, 전송 전력 결정 방법을 예시한다.
도 13은 '경우 (2)'의 일 예이다.
도 14는 '경우 (2)'에 대한 또 다른 변형 예이다.
도 15는 본 발명의 일 실시예에 따른 전력 제어 방법을 나타낸다.
도 16은 편의상 도 9의 부도면 (b)를 다시 나타낸 도면이다.
도 17은 D2D 신호의 전송과 WAN 상향링크 신호를 전송하는 타이밍을 나타내는 예이다.
도 18은 반송파 c의 서브프레임 k와 반송파 x의 서브프레임 i가 겹치는 것을 나타낸다.
도 19는 사이드링크 서브프레임이 복수의 상향링크 서브프레임들과 겹치는 경우를 예시한다.
도 20은 본 발명의 일 실시예에 따른 상향링크 전송 전력 결정 방법을 나타낸다.
도 21은 본 발명의 실시예가 구현되는 단말을 나타낸 블록도이다.
도 1은 무선통신 시스템을 나타낸다.
무선통신 시스템은 예를 들어, E-UTRAN(Evolved-UMTS Terrestrial Radio Access Network), 또는 LTE(Long Term Evolution)/LTE-A 시스템이라 칭할 수 있다.
E-UTRAN은 단말(10; User Equipment, UE)에게 제어 평면(control plane)과 사용자 평면(user plane)을 제공하는 기지국(20; Base Station, BS)을 포함한다. 단말(10)은 고정되거나 이동성을 가질 수 있으며, MS(Mobile station), UT(User Terminal), SS(Subscriber Station), MT(mobile terminal), 무선기기(Wireless Device) 등 다른 용어로 불릴 수 있다. 기지국(20)은 단말(10)과 통신하는 고정된 지점(fixed station)을 말하며, eNB(evolved-NodeB), BTS(Base Transceiver System), 액세스 포인트(Access Point) 등 다른 용어로 불릴 수 있다.
기지국(20)들은 X2 인터페이스를 통하여 서로 연결될 수 있다. 기지국(20)은 S1 인터페이스를 통해 EPC(Evolved Packet Core, 30), 보다 상세하게는 S1-MME를 통해 MME(Mobility Management Entity)와 S1-U를 통해 S-GW(Serving Gateway)와 연결된다.
EPC(30)는 MME, S-GW 및 P-GW(Packet Data Network-Gateway)로 구성된다. MME는 단말의 접속 정보나 단말의 능력에 관한 정보를 가지고 있으며, 이러한 정보는 단말의 이동성 관리에 주로 사용된다. S-GW는 E-UTRAN을 종단점으로 갖는 게이트웨이이며, P-GW는 PDN을 종단점으로 갖는 게이트웨이이다.
단말과 네트워크 사이의 무선인터페이스 프로토콜 (Radio Interface Protocol)의 계층들은 통신시스템에서 널리 알려진 개방형 시스템간 상호접속 (Open System Interconnection; OSI) 기준 모델의 하위 3개 계층을 바탕으로 L1 (제1계층), L2 (제2계층), L3(제3계층)로 구분될 수 있는데, 이 중에서 제1계층에 속하는 물리계층은 물리채널(Physical Channel)을 이용한 정보전송서비스(Information Transfer Service)를 제공하며, 제 3계층에 위치하는 RRC(Radio Resource Control) 계층은 단말과 네트워크 간에 무선자원을 제어하는 역할을 수행한다. 이를 위해 RRC 계층은 단말과 기지국간 RRC 메시지를 교환한다.
도 2는 사용자 평면(user plane)에 대한 무선 프로토콜 구조(radio protocol architecture)를 나타낸 블록도이고, 도 3은 제어 평면(control plane)에 대한 무선 프로토콜 구조를 나타낸 블록도이다. 사용자 평면은 사용자 데이터 전송을 위한 프로토콜 스택(protocol stack)이고, 제어 평면은 제어신호 전송을 위한 프로토콜 스택이다.
도 2 및 3을 참조하면, 물리계층(PHY(physical) layer)은 물리채널(physical channel)을 이용하여 상위 계층에게 정보 전송 서비스(information transfer service)를 제공한다. 물리계층은 상위 계층인 MAC(Medium Access Control) 계층과는 전송채널(transport channel)을 통해 연결되어 있다. 전송채널을 통해 MAC 계층과 물리계층 사이로 데이터가 이동한다. 전송채널은 무선 인터페이스를 통해 데이터가 어떻게 어떤 특징으로 전송되는가에 따라 분류된다.
서로 다른 물리계층 사이, 즉 송신기와 수신기의 물리계층 사이는 물리채널을 통해 데이터가 이동한다. 상기 물리채널은 OFDM(Orthogonal Frequency Division Multiplexing) 방식으로 변조될 수 있고, 시간과 주파수를 무선자원으로 활용한다.
MAC 계층의 기능은 논리채널과 전송채널간의 맵핑 및 논리채널에 속하는 MAC SDU(service data unit)의 전송채널 상으로 물리채널로 제공되는 전송블록(transport block)으로의 다중화/역다중화를 포함한다. MAC 계층은 논리채널을 통해 RLC(Radio Link Control) 계층에게 서비스를 제공한다.
RLC 계층의 기능은 RLC SDU의 연결(concatenation), 분할(segmentation) 및 재결합(reassembly)를 포함한다. 무선베어러(Radio Bearer; RB)가 요구하는 다양한 QoS(Quality of Service)를 보장하기 위해, RLC 계층은 투명모드(Transparent Mode, TM), 비확인 모드(Unacknowledged Mode, UM) 및 확인모드(Acknowledged Mode, AM)의 세 가지의 동작모드를 제공한다. AM RLC는 ARQ(automatic repeat request)를 통해 오류 정정을 제공한다.
RRC(Radio Resource Control) 계층은 제어 평면에서만 정의된다. RRC 계층은 무선 베어러들의 설정(configuration), 재설정(re-configuration) 및 해제(release)와 관련되어 논리채널, 전송채널 및 물리채널들의 제어를 담당한다. RB는 단말과 네트워크간의 데이터 전달을 위해 제1 계층(PHY 계층) 및 제2 계층(MAC 계층, RLC 계층, PDCP 계층)에 의해 제공되는 논리적 경로를 의미한다.
사용자 평면에서의 PDCP(Packet Data Convergence Protocol) 계층의 기능은 사용자 데이터의 전달, 헤더 압축(header compression) 및 암호화(ciphering)를 포함한다. 제어 평면에서의 PDCP(Packet Data Convergence Protocol) 계층의 기능은 제어 평면 데이터의 전달 및 암호화/무결정 보호(integrity protection)를 포함한다.
RB가 설정된다는 것은 특정 서비스를 제공하기 위해 무선 프로토콜 계층 및 채널의 특성을 규정하고, 각각의 구체적인 파라미터 및 동작 방법을 설정하는 과정을 의미한다. RB는 다시 SRB(Signaling RB)와 DRB(Data RB) 두가지로 나누어 질 수 있다. SRB는 제어 평면에서 RRC 메시지를 전송하는 통로로 사용되며, DRB는 사용자 평면에서 사용자 데이터를 전송하는 통로로 사용된다.
단말의 RRC 계층과 E-UTRAN의 RRC 계층 사이에 RRC 연결(RRC Connection)이 확립되면, 단말은 RRC 연결(RRC connected) 상태에 있게 되고, 그렇지 못할 경우 RRC 아이들(RRC idle) 상태에 있게 된다.
네트워크에서 단말로 데이터를 전송하는 하향링크 전송채널로는 시스템정보를 전송하는 BCH(Broadcast Channel)과 그 이외에 사용자 트래픽이나 제어메시지를 전송하는 하향링크 SCH(Shared Channel)이 있다. 하향링크 멀티캐스트 또는 브로드캐스트 서비스의 트래픽 또는 제어메시지의 경우 하향링크 SCH를 통해 전송될 수도 있고, 또는 별도의 하향링크 MCH(Multicast Channel)을 통해 전송될 수도 있다. 한편, 단말에서 네트워크로 데이터를 전송하는 상향링크 전송채널로는 초기 제어메시지를 전송하는 RACH(Random Access Channel)와 그 이외에 사용자 트래픽이나 제어메시지를 전송하는 상향링크 SCH(Shared Channel)가 있다.
전송채널 상위에 있으며, 전송채널에 매핑되는 논리채널(Logical Channel)로는 BCCH(Broadcast Control Channel), PCCH(Paging Control Channel), CCCH(Common Control Channel), MCCH(Multicast Control Channel), MTCH(Multicast Traffic Channel) 등이 있다.
물리채널(Physical Channel)은 시간 영역에서 여러 개의 OFDM 심벌과 주파수 영역에서 여러 개의 부반송파(Sub-carrier)로 구성된다. 하나의 서브프레임(Sub-frame)은 시간 영역에서 복수의 OFDM 심벌(Symbol)들로 구성된다. 자원블록은 자원 할당 단위로, 복수의 OFDM 심벌들과 복수의 부반송파(sub-carrier)들로 구성된다. 또한 각 서브프레임은 PDCCH(Physical Downlink Control Channel) 즉, L1/L2 제어채널을 위해 해당 서브프레임의 특정 OFDM 심벌들(예, 첫번째 OFDM 심볼)의 특정 부반송파들을 이용할 수 있다. TTI(Transmission Time Interval)는 서브프레임 전송의 단위시간이다.
RRC 상태란 단말의 RRC 계층이 E-UTRAN의 RRC 계층과 논리적 연결(logical connection)이 되어 있는가 아닌가를 말하며, 연결되어 있는 경우는 RRC 연결 상태(RRC_CONNECTED), 연결되어 있지 않은 경우는 RRC 아이들 상태(RRC_IDLE)라고 부른다. RRC 연결 상태의 단말은 RRC 연결이 존재하기 때문에 E-UTRAN은 해당 단말의 존재를 셀 단위에서 파악할 수 있으며, 따라서 단말을 효과적으로 제어할 수 있다. 반면에 RRC 아이들 상태의 단말은 E-UTRAN이 파악할 수는 없으며, 셀 보다 더 큰 지역 단위인 트래킹 영역(Tracking Area) 단위로 CN(core network)이 관리한다. 즉, RRC 아이들 상태의 단말은 큰 지역 단위로 존재 여부만 파악되며, 음성이나 데이터와 같은 통상의 이동통신 서비스를 받기 위해서는 RRC 연결 상태로 이동해야 한다.
사용자가 단말의 전원을 맨 처음 켰을 때, 단말은 먼저 적절한 셀을 탐색한 후 해당 셀에서 RRC 아이들 상태에 머무른다. RRC 아이들 상태의 단말은 RRC 연결을 맺을 필요가 있을 때 비로소 RRC 연결 과정(RRC connection procedure)을 통해 E-UTRAN과 RRC 연결을 확립하고, RRC 연결 상태로 천이한다. RRC 아이들 상태에 있던 단말이 RRC 연결을 맺을 필요가 있는 경우는 여러 가지가 있는데, 예를 들어 사용자의 통화 시도 등의 이유로 상향 데이터 전송이 필요하다거나, 아니면 E-UTRAN으로부터 호출(paging) 메시지를 수신한 경우 이에 대한 응답 메시지 전송 등을 들 수 있다.
RRC 계층 상위에 위치하는 NAS(Non-Access Stratum) 계층은 연결관리(Session Management)와 이동성 관리(Mobility Management) 등의 기능을 수행한다.
NAS 계층에서 단말의 이동성을 관리하기 위하여 EMM-REGISTERED(EPS Mobility Management-REGISTERED) 및 EMM-DEREGISTERED 두 가지 상태가 정의되어 있으며, 이 두 상태는 단말과 MME에게 적용된다. 초기 단말은 EMM-DEREGISTERED 상태이며, 이 단말이 네트워크에 접속하기 위해서 초기 연결(Initial Attach) 절차를 통해서 해당 네트워크에 등록하는 과정을 수행한다. 상기 연결(Attach) 절차가 성공적으로 수행되면 단말 및 MME는 EMM-REGISTERED 상태가 된다.
단말과 EPC간 시그널링 연결(signaling connection)을 관리하기 위하여 ECM(EPS Connection Management)-IDLE 상태 및 ECM-CONNECTED 상태 두 가지 상태가 정의되어 있으며, 이 두 상태는 단말 및 MME에게 적용된다. ECM-IDLE 상태의 단말이 E-UTRAN과 RRC 연결을 맺으면 해당 단말은 ECM-CONNECTED 상태가 된다. ECM-IDLE 상태에 있는 MME는 E-UTRAN과 S1 연결(S1 connection)을 맺으면 ECM-CONNECTED 상태가 된다. 단말이 ECM-IDLE 상태에 있을 때에는 E-UTRAN은 단말의 배경(context) 정보를 가지고 있지 않다. 따라서 ECM-IDLE 상태의 단말은 네트워크의 명령을 받을 필요 없이 셀 선택(cell selection) 또는 셀 재선택(reselection)과 같은 단말 기반의 이동성 관련 절차를 수행한다. 반면 단말이 ECM-CONNECTED 상태에 있을 때에는 단말의 이동성은 네트워크의 명령에 의해서 관리된다. ECM-IDLE 상태에서 단말의 위치가 네트워크가 알고 있는 위치와 달라질 경우 단말은 트래킹 영역 갱신(Tracking Area Update) 절차를 통해 네트워크에 단말의 해당 위치를 알린다.
이제 D2D 동작에 대해 설명한다. 3GPP LTE-A에서는 D2D 동작과 관련한 서비스를 근접성 기반 서비스(Proximity based Services: ProSe)라 칭한다. 이하 ProSe는 D2D 동작과 동등한 개념이며 ProSe는 D2D 동작과 혼용될 수 있다. 이제, ProSe에 대해 기술한다.
ProSe에는 ProSe 직접 통신(communication)과 ProSe 직접 발견(direct discovery)이 있다. ProSe 직접 통신은 근접한 2 이상의 단말들 간에서 수행되는 통신을 말한다. 상기 단말들은 사용자 평면의 프로토콜을 이용하여 통신을 수행할 수 있다. ProSe 가능 단말(ProSe-enabled UE)은 ProSe의 요구 조건과 관련된 절차를 지원하는 단말을 의미한다. 특별한 다른 언급이 없으면 ProSe 가능 단말은 공용 안전 단말(public safety UE)와 비-공용 안전 단말(non-public safety UE)를 모두 포함한다. 공용 안전 단말은 공용 안전에 특화된 기능과 ProSe 과정을 모두 지원하는 단말이고, 비-공용 안전 단말은 ProSe 과정은 지원하나 공용 안전에 특화된 기능은 지원하지 않는 단말이다.
ProSe 직접 발견(ProSe direct discovery)은 ProSe 가능 단말이 인접한 다른 ProSe 가능 단말을 발견하기 위한 과정이며, 이 때 상기 2개의 ProSe 가능 단말들의 능력만을 사용한다. EPC 차원의 ProSe 발견(EPC-level ProSe discovery)은 EPC가 2개의 ProSe 가능 단말들의 근접 여부를 판단하고, 상기 2개의 ProSe 가능 단말들에게 그들의 근접을 알려주는 과정을 의미한다.
이하, 편의상 ProSe 직접 통신은 D2D 통신, ProSe 직접 발견은 D2D 발견이라 칭할 수 있다.
도 4는 ProSe를 위한 기준 구조를 나타낸다.
도 4를 참조하면, ProSe를 위한 기준 구조는 E-UTRAN, EPC, ProSe 응용 프로그램을 포함하는 복수의 단말들, ProSe 응용 서버(ProSe APP server), 및 ProSe 기능(ProSe function)을 포함한다.
EPC는 E-UTRAN 코어 네트워크 구조를 대표한다. EPC는 MME, S-GW, P-GW, 정책 및 과금 규칙(policy and charging rules function:PCRF), 가정 가입자 서버(home subscriber server:HSS)등을 포함할 수 있다.
ProSe 응용 서버는 응용 기능을 만들기 위한 ProSe 능력의 사용자이다. ProSe 응용 서버는 단말 내의 응용 프로그램과 통신할 수 있다. 단말 내의 응용 프로그램은 응요 기능을 만들기 위한 ProSe 능력을 사용할 수 있다.
ProSe 기능은 다음 중 적어도 하나를 포함할 수 있으나 반드시 이에 제한되는 것은 아니다.
- 제3자 응용 프로그램을 향한 기준점을 통한 인터워킹(Interworking via a reference point towards the 3rd party applications)
- 발견 및 직접 통신을 위한 인증 및 단말에 대한 설정(Authorization and configuration of the UE for discovery and direct communication)
- EPC 차원의 ProSe 발견의 기능(Enable the functionality of the EPC level ProSe discovery)
- ProSe 관련된 새로운 가입자 데이터 및 데이터 저장 조정, ProSe ID의 조정(ProSe related new subscriber data and handling of data storage, and also handling of ProSe identities)
- 보안 관련 기능(Security related functionality)
- 정책 관련 기능을 위하여 EPC를 향한 제어 제공(Provide control towards the EPC for policy related functionality)
- 과금을 위한 기능 제공(Provide functionality for charging (via or outside of EPC, e.g., offline charging))
이하에서는 ProSe를 위한 기준 구조에서 기준점과 기준 인터페이스를 설명한다.
- PC1: 단말 내의 ProSe 응용 프로그램과 ProSe 응용 서버 내의 ProSe 응용 프로그램 간의 기준 점이다. 이는 응용 차원에서 시그널링 요구 조건을 정의하기 위하여 사용된다.
- PC2: ProSe 응용 서버와 ProSe 기능 간의 기준점이다. 이는 ProSe 응용 서버와 ProSe 기능 간의 상호 작용을 정의하기 위하여 사용된다. ProSe 기능의 ProSe 데이터베이스의 응용 데이터 업데이트가 상기 상호 작용의 일 예가 될 수 있다.
- PC3: 단말과 ProSe 기능 간의 기준점이다. 단말과 ProSe 기능 간의 상호 작용을 정의하기 위하여 사용된다. ProSe 발견 및 통신을 위한 설정이 상기 상호 작용의 일 예가 될 수 있다.
- PC4: EPC와 ProSe 기능 간의 기준점이다. EPC와 ProSe 기능 간의 상호 작용을 정의하기 위하여 사용된다. 상기 상호 작용은 단말들 간에 1:1 통신을 위한 경로를 설정하는 때, 또는 실시간 세션 관리나 이동성 관리를 위한 ProSe 서비스 인증하는 때를 예시할 수 있다.
- PC5: 단말들 간에 발견 및 통신, 중계, 1:1 통신을 위해서 제어/사용자 평면을 사용하기 위한 기준점이다.
- PC6: 서로 다른 PLMN에 속한 사용자들 간에 ProSe 발견과 같은 기능을 사용하기 위한 기준점이다.
- SGi: 응용 데이터 및 응용 차원 제어 정보 교환을 위해 사용될 수 있다.
D2D 동작은 단말이 네트워크(셀)의 커버리지 내에서 서비스를 받는 경우나 네트워크의 커버리지를 벗어난 경우 모두에서 지원될 수 있다.
도 5는 D2D 동작을 수행하는 단말들과 셀 커버리지의 배치 예들을 나타낸다.
도 5 (a)를 참조하면, 단말 A, B는 모두 셀 커버리지 바깥에 위치할 수 있다. 도 5 (b)를 참조하면, 단말 A는 셀 커버리지 내에 위치하고, 단말 B는 셀 커버리지 바깥에 위치할 수 있다. 도 5 (c)를 참조하면, 단말 A, B는 모두 단일 셀 커버리지 내에 위치할 수 있다. 도 5 (d)를 참조하면, 단말 A는 제1 셀의 커버리지 내에 위치하고, 단말 B는 제2 셀의 커버리지 내에 위치할 수 있다.
D2D 동작은 도 5와 같이 다양한 위치에 있는 단말들 간에 수행될 수 있다.
<D2D 통신(ProSe 직접 통신)을 위한 무선 자원 할당>.
D2D 통신을 위한 자원 할당에는 다음 2가지 모드(mode)들 중 적어도 하나를 이용할 수 있다.
1. 모드 1
모드 1은 ProSe 직접 통신을 위한 자원을 기지국으로부터 스케줄링 받는 모드이다. 모드 1에 의하여 단말이 데이터를 전송하기 위해서는 RRC_CONNECTED 상태이여야 한다. 단말은 전송 자원을 기지국에게 요청하고, 기지국은 스케줄링 할당 및 데이터 전송을 위한 자원을 스케줄링한다. 단말은 기지국에게 스케줄링 요청을 전송하고, ProSe BSR(Buffer Status Report)를 전송할 수 있다. 기지국은 ProSe BSR에 기반하여, 상기 단말이 ProSe 직접 통신을 할 데이터를 가지고 있으며 이 전송을 위한 자원이 필요하다고 판단한다.
2. 모드 2
모드 2는 단말이 직접 자원을 선택하는 모드이다. 단말은 자원 풀(resource pool)에서 직접 ProSe 직접 통신을 위한 자원을 선택한다. 자원 풀은 네트워크에 의하여 설정되거나 미리 정해질 수 있다.
한편, 단말이 서빙 셀을 가지고 있는 경우 즉, 단말이 기지국과 RRC_CONNECTED 상태에 있거나 RRC_IDLE 상태로 특정 셀에 위치한 경우에는 상기 단말은 기지국의 커버리지 내에 있다고 간주된다.
단말이 커버리지 밖에 있다면 상기 모드 2만 적용될 수 있다. 만약, 단말이 커버리지 내에 있다면, 기지국의 설정에 따라 모드 1 또는 모드 2를 사용할 수 있다.
다른 예외적인 조건이 없다면 기지국이 설정한 때에만, 단말은 모드 1에서 모드 2로 또는 모드 2에서 모드 1로 모드를 변경할 수 있다.
<D2D 발견(ProSe 직접 발견: ProSe direct discovery)>
D2D 발견은 ProSe 가능 단말이 근접한 다른 ProSe 가능 단말을 발견하는데 사용되는 절차를 말하며 ProSe 직접 발견이라 칭할 수도 있다. ProSe 직접 발견에 사용되는 정보를 이하 발견 정보(discovery information)라 칭한다.
D2D 발견을 위해서는 PC 5 인터페이스가 사용될 수 있다. PC 5인터페이스는 MAC 계층, PHY 계층과 상위 계층인 ProSe Protocol 계층으로 구성된다. 상위 계층(ProSe Protocol)에서 발견 정보(discovery information)의 알림(announcement: 이하 어나운스먼트) 및 모니터링(monitoring)에 대한 허가를 다루며, 발견 정보의 내용은 AS(access stratum)에 대하여 투명(transparent)하다. ProSe Protocol은 어나운스먼트를 위하여 유효한 발견 정보만 AS에 전달되도록 한다. MAC 계층은 상위 계층(ProSe Protocol)로부터 발견 정보를 수신한다. IP 계층은 발견 정보 전송을 위하여 사용되지 않는다. MAC 계층은 상위 계층으로부터 받은 발견 정보를 어나운스하기 위하여 사용되는 자원을 결정한다. MAC 계층은 발견 정보를 나르는 MAC PDU(protocol data unit)를 만들어 물리 계층으로 보낸다. MAC 헤더는 추가되지 않는다.
발견 정보 어나운스먼트를 위하여 2가지 타입(type)의 자원 할당이 있다.
1. 타입 1
발견 정보의 어나운스먼트를 위한 자원들이 단말 특정적이지 않게 할당되는 방법으로, 기지국이 단말들에게 발견 정보 어나운스먼트를 위한 자원 풀 설정을 제공한다. 이 설정은 시스템 정보 블록(system information block: SIB)에 포함되어 브로드캐스트 방식으로 시그널링될 수 있다. 또는 상기 설정은 단말 특정적 RRC 메시지에 포함되어 제공될 수 있다. 또는 상기 설정은 RRC 메시지 외 다른 계층의 브로드캐스트 시그널링 또는 단말 특정정 시그널링이 될 수도 있다.
단말은 지시된 자원 풀로부터 스스로 자원을 선택하고 선택한 자원을 이용하여 발견 정보를 어나운스한다. 단말은 각 발견 주기(discovery period) 동안 임의로 선택한 자원을 통해 발견 정보를 어나운스할 수 있다.
2. 타입 2
발견 정보의 어나운스먼트를 위한 자원들이 단말 특정적으로 할당되는 방법이다. RRC_CONNECTED 상태에 있는 단말은 RRC 신호를 통해 기지국에게 발견 신호 어나운스먼트를 위한 자원을 요청할 수 있다. 기지국은 RRC 신호로 발견 신호 어나운스먼트를 위한 자원을 할당할 수 있다. 단말들에게 설정된 자원 풀 내에서 발견 신호 모니터링을 위한 자원이 할당될 수 있다.
RRC_IDLE 상태에 있는 단말에 대하여, 기지국은 1) 발견 신호 어나운스먼트를 위한 타입 1 자원 풀을 SIB로 알려줄 수 있다. ProSe 직접 발견이 허용된 단말들은 RRC_IDLE 상태에서 발견 정보 어나운스먼트를 위하여 타입 1 자원 풀을 이용한다. 또는 기지국은 2) SIB를 통해 상기 기지국이 ProSe 직접 발견은 지원함을 알리지만 발견 정보 어나운스먼트를 위한 자원은 제공하지 않을 수 있다. 이 경우, 단말은 발견 정보 어나운스먼트를 위해서는 RRC_CONNECTED 상태로 들어가야 한다.
RRC_CONNECTED 상태에 있는 단말에 대하여, 기지국은 RRC 신호를 통해 상기 단말이 발견 정보 어나운스먼트를 위하여 타입 1 자원 풀을 사용할 것인지 아니면 타입 2 자원을 사용할 것인지를 설정할 수 있다.
도 6은 D2D 발견 과정의 일 실시예이다.
도 6을 참조하면, 단말 A와 단말 B는 ProSe가 가능한 응용 프로그램(ProSe-enabled application)이 운용 되고 있으며, 상기 응용 프로그램에서 서로 간에 '친구'인 관계 즉, 서로 간에 D2D 통신을 허용할 수 있는 관계로 설정되어 있다고 가정하자. 이하에서 단말 B는 단말 A의 '친구'라고 표현할 수 있다. 상기 응용 프로그램은 예컨대, 소셜 네트워킹 프로그램일 수 있다. '3GPP Layers'는 3GPP에 의하여 규정된, ProSe 발견 서비스를 이용하기 위한 응용 프로그램의 기능들에 대응된다.
단말 A, B 간의 ProSe 직접 발견은 다음 과정을 거칠 수 있다.
1. 먼저, 단말 A는 응용 서버와 정규 응용 레이어 통신(regular application-Layer communication)을 수행한다. 이 통신은 응용 프로그램 인터페이스(Application programming interface : API)에 기반한다.
2. 단말 A의 ProSe 가능 응용 프로그램은 '친구'인 관계에 있는 응용 레이어 ID의 리스트를 수신한다. 상기 응용 레이어 ID는 보통 네트워크 접속 ID 형태일 수 있다. 예컨대, 단말 A의 응용 레이어 ID는 "adam@example.com"과 같은 형태일 수 있다.
3. 단말 A는 단말 A의 사용자를 위한 개인 표현 코드(private expressions codes), 상기 사용자의 친구를 위한 개인 표현 코드를 요청한다.
4. 3GPP layers는 ProSe 서버에게 표현 코드 요청을 전송한다.
5. ProSe 서버는 운영자 또는 제3자 응용 서버로부터 제공되는 응용 레이어 ID들을 개인 표현 코드들에 맵핑한다. 예를 들어, "adam@example.com"과 같은 응용 레이어 ID는 "GTER543$#2FSJ67DFSF"와 같은 개인 표현 코드에 맵핑될 수 있다.이 맵핑은 네트워크의 응용 서버로부터 받은 파라미터들(예컨대, 맵핑 알고리듬, 키 값 등)에 기반하여 수행될 수 있다.
6. ProSe 서버는 도출된 표현 코드들을 3GPP layers에게 응답한다. 3GPP layers는 요청된 응용 레이어 ID에 대한 표현 코드들이 성공적으로 수신되었음을 ProSe 가능 응용 프로그램에게 알린다. 그리고, 응용 레이어 ID와 표현 코드들 간의 맵핑 테이블을 생성한다.
7. ProSe 가능 응용 프로그램은 3GPP layers에게 발견 절차를 시작하도록 요청한다. 즉, 제공된 '친구'들 중 하나가 단말 A의 근처에 있고 직접 통신이 가능할 때 발견을 시도하도록 한다. 3GPP layers는 단말 A의 개인 표현 코드(즉, 상기 예에서 "adam@example.com"의 개인 표현 코드인 "GTER543$#2FSJ67DFSF")를 알린다(announce). 이를 이하에서 '어나운스'라 칭한다. 해당 응용 프로그램의 응용 레이어 ID와 개인 표현 코드 간의 맵핑은, 이러한 맵핑관계를 미리 수신한 '친구'들만 알 수 있고 그 맵핑을 수행할 수 있다.
8. 단말 B는 단말 A와 동일한 ProSe 가능 응용 프로그램을 운용 중이고, 전술한 3 내지 6 단계를 실행했다고 가정하자. 단말 B에 있는 3GPP layers는 ProSe 발견을 실행할 수 있다.
9. 단말 B가 단말 A로부터 전술한 어나운스를 수신하면, 단말 B는 상기 어나운스에 포함된 개인 표현 코드가 자신이 알고 있는 것인지 및 응용 레이어 ID와 맵핑되는지 여부를 판단한다. 8 단계에서 설명하였듯이, 단말 B 역시 3 내지 6 단계를 실행하였으므로, 단말 A에 대한 개인 표현 코드, 개인 표현 코드와 응용 레이어 ID와의 맵핑, 해당 응용 프로그램이 무엇인지를 알고 있다. 따라서, 단말 B는 단말 A의 어나운스로부터 단말 A를 발견할 수 있다. 단말 B 내에서 3GPP layers는 ProSe 가능 응용 프로그램에게 "adam@example.com"를 발견하였음을 알린다.
도 6에서는 단말 A, B와 ProSe 서버, 응용 서버 등을 모두 고려하여 발견 절차를 설명하였다. 단말 A, B 간의 동작 측면에 국한하여 보면, 단말 A는 어나운스라고 불리는 신호를 전송(이 과정을 어나운스먼트라 칭할 수 있음)하고, 단말 B는 상기 어나운스를 수신하여 단말 A를 발견한다. 즉, 각 단말에서 행해지는 동작들 중 다른 단말과 직접적으로 관련된 동작은 한 가지 단계뿐이라는 측면에서, 도 6의 발견 과정은 단일 단계 발견 절차라 칭할 수도 있다.
도 7은 D2D 발견 과정의 다른 실시예이다.
도 7에서, 단말 1 내지 4는 특정 GCSE(group communication system enablers) 그룹에 포함된 단말들이라고 하자. 단말 1은 발견자(discoverer)이고, 단말 2, 3, 4는 발견되는 자(discoveree)라고 가정하자. 단말 5는 발견 과정과 무관한 단말이다.
단말 1 및 단말 2-4는 발견 과정에서 다음 동작을 수행할 수 있다.
먼저, 단말 1은 상기 GCSE 그룹에 포함된 임의의 단말이 주위에 있는지 발견하기 위하여 타겟 발견 요청 메시지(targeted discovery request message, 이하 발견 요청 메시지 또는 M1으로 약칭할 수 있다)를 브로드캐스트한다. 타겟 발견 요청 메시지에는 상기 특정 GCSE 그룹의 고유한 응용 프로그램 그룹 ID 또는 레이어-2 그룹 ID를 포함할 수 있다. 또한, 타겟 발견 요청 메시지에는 단말 1의 고유한 ID 즉, 응용 프로그램 개인 ID를 포함할 수 있다. 타겟 발견 요청 메시지는 단말 2, 3, 4 및 5에 의하여 수신될 수 있다.
단말 5는 아무런 응답 메시지를 전송하지 않는다. 반면, 상기 GCSE 그룹에 포함된 단말 2, 3, 4는 상기 타겟 발견 요청 메시지에 대한 응답으로 타겟 발견 응답 메시지(Targeted discovery response message, 이하 발견 응답 메시지 또는 M2로 약칭할 수 있다)를 전송한다. 타겟 발견 응답 메시지에는 이 메시지를 전송하는 단말의 고유한 응용 프로그램 개인 ID가 포함될 수 있다.
도 7에서 설명한 ProSe 발견 과정에서 단말들 간의 동작을 살펴보면, 발견자(단말 1)는 타겟 발견 요청 메시지를 전송하고, 이에 대한 응답인 타겟 발견 응답 메시지를 수신한다. 또한, 발견되는 자(예를 들어, 단말 2)도 타겟 발견 요청 메시지를 수신하면 이에 대한 응답으로 타겟 발견 응답 메시지를 전송한다. 따라서, 각 단말은 2 단계의 동작을 수행한다. 이러한 측면에서 도 7의 ProSe 발견 과정은 2단계 발견 절차라 칭할 수 있다.
상기 도 7에서 설명한 발견 절차에 더하여, 만약 단말 1(발견자)이 타겟 발견 응답 메시지에 대한 응답으로 발견 확인 메시지(discovery confirm message, 이하 M3로 약칭할 수 있다)를 전송한다면 이는 3단계 발견 절차라 칭할 수 있다.
한편, D2D 동작을 지원하는 단말은 다른 네트워크 노드(예컨대, 다른 단말이나 기지국)에게 중계 기능(relay functionality)을 제공할 수 있다.
도 8은 중계 기능을 제공하는 단말의 예를 나타낸다.
도 8을 참조하면, 단말 2(153)가 기지국(151)과 단말 1(152) 사이에서 중계기 역할을 한다. 즉, 단말 2(153)은, 네트워크의 커버리지(154) 바깥에 위치하고 있는 단말 1(152)과 상기 네트워크(151) 간에서 중계를 하고 있는 네트워크 노드라 할 수 있다. 단말 1, 2(152, 153) 간에는 D2D 동작이 수행될 수 있고, 단말 2(153)과 네트워크(151) 간에는 기존의 셀룰러 통신(또는 WAN(wide area network) 통신)이 수행될 수 있다. 도 8에서, 단말 1(152)은 네트워크 커버리지 바깥에 위치하고 있으므로, 단말 2(153)가 중계 기능을 제공하지 않으면 네트워크(151)과 통신을 수행할 수 없다.
이제 본 발명에 대해 설명한다.
본 발명에서는 D2D 동작을 수행하는 단말(이러한 단말을 이하에서 "D2D 단말"이라 칭할 수도 있다)이 D2D 신호를 전송할 때의 전송 전력(TRANSMISSION POWER)을 효율적으로 결정하는 방법을 제안한다. 여기서, D2D 동작에는 D2D 발견과 D2D 통신이 있을 수 있다. 이에 대해서는 전술한 바 있다. D2D 통신은 단말이 다른 단말과 직접 무선 채널을 이용하여 데이터를 주고 받는 통신을 수행하는 것을 의미하며, D2D 발견과는 구분되어 사용될 수 있다. 이하에서, D2D 발견은 단순히 발견이라고 칭할 수도 있다. 단말은 일반적으로 사용자가 사용하는 단말을 의미하지만, 기지국과 같은 네트워크 장비가 단말 사이의 통신 방식에 따라서 신호를 송/수신하는 경우에는 상기 네트워크 장비 역시 일종의 단말로 간주될 수 있다.
먼저, 본 명세서에서 사용되는 약자들을 설명한다.
(1) PSBCH (Physical Sidelink Broadcast CHannel): 물리 사이드링크 브로드캐스트 채널.
(2) PSCCH (Physical Sidelink Control CHannel): 물리 사이드링크 제어 채널.
(3) PSDCH (Physical Sidelink Discovery CHannel): 물리 사이드링크 발견 채널.
(4) PSSCH (Physical Sidelink Shared CHannel): 물리 사이드링크 공유 채널.
(5) SSS (Sidelink Synchronization Signal): 사이드링크 동기화 신호. SSS는 SLSS라고 표현할 수도 있다. SSS에는 PSSS와 SSSS가 있을 수 있다. A. PSSS (Primary Sidelink Synchronization Signal): 프라이머리 사이드링크 동기화 신호, B. SSSS (Secondary Sidelink Synchronization Signal): 세컨더리 사이드링크 동기화 신호.
이하에서는 설명의 편의를 위해 3GPP LTE/LTE-A 시스템을 기반으로 제안 방식을 설명한다. 하지만, 제안 방식이 적용되는 시스템의 범위는 3GPP LTE/LTE-A 시스템 외에 다른 시스템으로도 확장 가능하다.
단말이 D2D 동작을 수행하는 서브프레임에서의 PSSCH/PSCCH/PSDCH/PSSS/SSSS와 관련한 전송 전력은 다음과 같이 계산할 수 있다.
1) PSSCH 전력 제어
사이드링크 전송 모드 1 및 PSCCH 주기 i에 있어서, 만약, PSCCH 주기 i에 대한 사이드링크 그랜트의 TPC 필드가 0으로 설정되면, PPSSCH=PCMAX,PSSCH로 주어진다. 만약, PSCCH 주기 i에 대한 사이드링크 그랜트의 TPC 필드가 1으로 설정되면, PPSSCH는 다음 식과 같이 주어진다.
[식 1]
상기 식에서, PCMAX,PSSCH는 PSSCH가 전송되는 사이드링크 서브프레임에 대응하는 상향링크 서브프레임에 대해 단말에 의하여 결정되는 PCMAX,c 값이다. MPSSCH는 자원 블록의 개수로 표현되는 PSSCH 자원 할당의 대역이다. PL은 경로 손실 값을 나타낸다. PO_PSSCH,1 및 αPSSCH,1은 상위 계층 파라미터들에 의해 제공되는 값이다.
사이드링크 전송 모드 2에 대해, PPSSCH는 다음 식과 같이 주어진다.
[식 2]
상기 식에서 PCMAX,PSSCH는 PSSCH가 전송되는 사이드링크 서브프레임에 대응하는 상향링크 서브프레임에 대해 단말에 의하여 결정되는 PCMAX,c 값이다. MPSSCH는 자원 블록의 개수로 표현되는 PSSCH 자원 할당의 대역이다. PL은 경로 손실 값을 나타낸다. PO_PSSCH,2 및 αPSSCH,2은 상위 계층 파라미터들에 의해 제공되는 값이다.
2) PSCCH 전력 제어
사이드링크 전송 모드 1 및 PSCCH 주기 i에 있어서, 만약, PSCCH 주기 i에 대한 사이드링크 그랜트의 TPC 필드가 0으로 설정되면, PPSCCH=PCMAX,PSCCH로 주어진다. 만약, PSCCH 주기 i에 대한 사이드링크 그랜트의 TPC 필드가 1으로 설정되면, PPSCCH는 다음 식과 같이 주어진다.
[식 3]
상기 식에서 PCMAX,PSCCH는 PSCCH가 전송되는 사이드링크 서브프레임에 대응하는 상향링크 서브프레임에 대해 단말에 의하여 결정되는 PCMAX,c 값이다. MPSCCH는 1이고, PL은 경로 손실 값을 나타낸다. PO_PSCCH,1 및 αPSCCH,1은 상위 계층 파라미터들에 의해 제공되는 값이다.
사이드링크 전송 모드 2에 대해, PPSCCH는 다음 식과 같이 주어진다.
[식 4]
상기 식에서 PCMAX,PSCCH는 상위 계층에 의하여 설정된(또는 PSCCH가 전송되는 사이드링크 서브프레임에 대응하는 상향링크 서브프레임에 대해 단말에 의하여 결정되는) PCMAX,c 값이다. MPSCCH는 1이고, PL은 경로 손실 값을 나타낸다. PO_PSCCH,2 및 αPSCCH,2은 상위 계층 파라미터들에 의해 제공되는 값이다.
3) PSDCH 전력 제어
사이드링크 발견(discovery)에 대해, PPSDCH는 다음 식과 같이 주어진다.
[식 5]
상기 식에서, PCMAX,PSDCH는 PSDCH가 전송되는 사이드링크 서브프레임에 대응하는 상향링크 서브프레임에 대해 단말에 의하여 결정되는 PCMAX,c 값이다. MPSDCH는 2이고, PL은 경로 손실 값을 나타낸다. PO_PSDCH,1 및 αPSDCH,1은 상위 계층 파라미터들에 의해 제공되는 값이다.
4) 사이드링크 동기화 신호(SSS) 전력 제어
사이드링크에서 프라이머리 동기화 신호(PSSS) 및 세컨더리 동기화 신호(SSSS)를 전송하는데 사용되는 전송 전력을 PPSSS라고 하면, 단말에게 사이드링크 전송 모드 1이 설정되고, PSCCH 주기 i에서 사이드링크 동기화 신호를 전송하며, PSCCH 주기 i에 대한 사이드링크 그랜트에서의 TPC 필드가 0으로 설정되면, PPSSS = PCMAX,PSSS로 주어진다. 그렇지 않으면, PPSSS 는 다음 식과 같이 주어진다.
[식 6]
상기 식에서, PCMAX,PSSS는 사이드링크 동기화 신호(SSS)가 전송되는 사이드링크 서브프레임에 대응하는 상향링크 서브프레임에 대해 단말에 의하여 결정되는 PCMAX,c 값이다. PO_PSSS 및 αPSSS은 상위 계층 파라미터들에 의해 제공되는 값이며 대응하는 사이드링크 동기화 신호 자원 설정에 연관된다.
한편, 광역 네트워크(WAN)의 상향링크 서브프레임(즉, LTE/LTE-A와 같은 광역 네트워크에서의 상향링크 전송에 사용되는 상향링크 서브프레임)에서의 상향링크 신호 전송 전력 결정에 이용되는 PCMAX, PCMAX,c 값들은 다음과 정의되거나 또는 계산될 수 있다.
단말은 서빙 셀 c에 대해 설정된 최대 출력 전력(configured maximum output power)인 PCMAX,c를 일정 범위 내에서 스스로 설정하는 것이 허용된다. PCMAX,c는 다음 식과 같이 특정 범위 내에서 설정될 수 있다.
[식 7]
상기 식에서, PCMAX,L,c 및 PCMAX,H,c는 다음 식과 같이 주어진다.
[식 8]
상기 식에서, PEMAX,c는 서빙 셀 c에 대한 정보 요소(Information Element)인 IE P-Max에 의하여 제공되는 값이다. 상기 IE P-Max는 RRC 메시지에 포함될 수 있다. PPowerClass는 허용 오차(tolerance)를 고려하지 않은 최대 단말 전력(Maximum UE power)이다. MPRc는 서빙 셀 c에 대한 최대 전력 감소(Maximum Power Reduction)값을 나타내고, A-MPRc는 서빙 셀 c에 대한 추가적 최대 전력 감소(Additional Maximum Power Reduction) 값을 나타낸다. ΔTIB,c는 서빙 셀 c에 대한 추가적 허용 오차를 나타낸다. ΔTC,c는 1.5 dB 또는 0 dB이다. P-MPRc는 허용된 최대 출력 전력 감소(allowed maximum output power reduction)이다. MIN {A, B}는 A, B 중에서 작은 것을 나타낸다.
각 서브프레임에 대해, 서빙 셀 c에 대한 PCMAX,L,c는 슬롯 별로 계산되고, 서브프레임 내 2개의 슬롯들 각각에서 계산된 PCMAX,L,c들 중에서 최소값(minimum)이 그 서브프레임 전체에 적용된다. 단말은 어떤 시간 구간에서도 PPowerClass를 초과하지 않는다.
한편, 측정된 '설정된 최대 출력 전력'을 PUMAX,c라 하면, PUMAX,c는 다음과 같은 범위 내에 있게 된다.
[식 9]
상기 식에서, MAX {A, B}는 A, B 중에서 큰 것을 나타내며, T(PCMAX,c)는 다음 표에 의하여 정의될 수 있다.
변조(modulation), 채널 대역(channel bandwidth)에 따라 최대 출력 전력(maximum output power)에 대한 허용된 최대 전력 감소(Maximum Power Reduction: MPR)가 다음 표와 같이 정해질 수 있다.
네트워크는 단말에게 추가적인 ACLR(Adjacent Channel Leakage power Ratio) 및 스펙트럼 방사(spectrum emission) 요건(requirement)을 시그널링하여, 특정 배치 시나리오에서 추가적으로 만족해야 하는 요건을 알려줄 수 있다. ACLR은 할당된 채널 주파수의 중심에서 필터링된 평균 전력과 인접한 채널 주파수의 중심에서 필터링된 평균 전력의 비를 나타낸다. 이러한 추가적인 요건을 만족시키기 위해, 추가적인 최대 전력 감소(Additional Maximum Power Reduction: A-MPR)이 허용될 수 있다.
상향링크에 복수의 반송파들을 집성하여 사용하는 상향링크 반송파 집성에서, 상기 복수의 반송파들 중에 포함된 서빙 셀 c에 대한 최대 출력 전력(Maximum Output power)인 PCMAX,c 및 상기 복수의 반송파들 전체에 대한 최대 출력 전력인 PCMAX를 설정하는 것이 단말에게 허용된다.
대역들 간(inter-band)의 상향링크 반송파 집성에서 PCMAX 는 다음 식과 같이 일정 범위 내에서 정해질 수 있다.
[식 10]
상기 식에서, PCMAX_L 및 PCMAX_H 는 다음 식과 같이 결정될 수 있다.
[식 11]
상기 식에서, pEMAX,c는 서빙 셀 c에 대해 IE P-Max에 의해 주어진 PEMAX,c의 선형 값(linear value)이다.
PPowerClass는 허용 오차(tolerance)를 고려하지 않은 최대 단말 전력(Maximum UE power)이며, pPowerClass는 PPowerClass의 선형 값이다. mprc, a-mprc는 MPRc 및 A-MPRc의 선형 값이다. pmprc는 P-MPRc의 선형 값이다. ΔtC,c 는 ΔTC,c의 선형 값이며, 1.41 또는 0이다. ΔtIB,c 는 ΔTIB,c의 선형 값이다.
한편, 대역 내(intra-band) 상향링크 반송파 집성에서 PCMAX_L 및 PCMAX_H 는 다음 식과 같이 정해질 수 있다.
[식 12]
상기 식에서, pEMAX,c는 서빙 셀 c에 대해 IE P-Max에 의해 주어진 PEMAX,c의 선형 값(linear value)이다. PPowerClass는 허용 오차(tolerance)를 고려하지 않은 최대 단말 전력(Maximum UE power)이다. MPR는 최대 전력 감소(Maximum Power Reduction)값을 나타내고, A-MPR는 추가적 최대 전력 감소(Additional Maximum Power Reduction) 값을 나타낸다. ΔTIB,c는 서빙 셀 c에 대한 추가적 허용 오차를 나타낸다. ΔTC 는 ΔTC,c중에서 가장 높은 값이고, ΔTC,c는 1.5 dB 또는 0 dB이다. P-MPR는 단말을 위한 전력 관리 항(term)이다.
각 서브프레임에 대해, PCMAX,L는 슬롯 별로 계산되고, 서브프레임 내 2개의 슬롯들 각각에서 계산된 PCMAX,L들 중에서 최소값(minimum)이 그 서브프레임 전체에 적용된다. 단말은 어떤 시간 구간에서도 PPowerClass를 초과하지 않는다.
단말에게 복수의 TAG(Timing Advance Group)가 설정되고, 서브프레임 i에서 하나의 TAG에 속하는 임의의 서빙 셀을 위해 단말이 전송을 할 경우에 서브프레임 i+1에서 다른 TAG에 속하는 다른 서빙 셀을 위한 전송의 첫번째 심벌 일부가 겹친다면, 단말은 서브프레임 i, i+1에 대한 PCMAX_L의 최소값을 상기 겹치는 부분에 적용할 수 있다. 단말은 어떤 시간 구간에서도 PPowerClass를 초과하지 않는다.
대역 내(intra-band) 연속적인 반송파 집성에 대해 MPR은 다음과 같이 주어질 수 있다.
단말이 2개의 서로 다른 셀들에 연결되어 있는 상태를 나타내는 이중 접속(dual connectivity) 상태에서 전송 전력을 결정하는 예에 대해 설명한다.
셀 그룹 i(i=1,2)의 서빙 셀 c에 대한 최대 출력 전력(maximum output power)을 PCMAX,c,i라 하자. 이 경우, PCMAX,c,i는 다음 식과 같은 범위 내에서 설정될 수 있다.
[식 13]
한편, 단말의 총 최대 출력 전력(PCMAX)은 다음과 같이 결정된다.
[식 14]
단말에게 이중 접속(dual connectivity)이 설정되면, 하나의 셀 그룹에 대한 서브프레임들과 다른 셀 그룹에 대한 서브프레임들이 겹칠 수 있다.
셀 그룹들의 상향링크 서빙 셀들 간에서 동시에 전송이 발생하면, PCMAX_L과 PCMAX_H는 대역 간(inter-band) 반송파 집성과 유사하게 결정된다.
단말에게 이중 접속이 설정되고, 제1 셀 그룹의 제1 서빙 셀에 대한 서브프레임 p에서의 전송과 제2 셀 그룹의 제2 서빙 셀에 대한 서브프레임 q+1에서의 전송이 일부 겹치게 되면(서브프레임 q+1의 첫번째 심벌의 일부에서 겹칠 수 있음), 단말은 서브프레임들의 쌍(p,q), (p+1,q+1) 간에서, 가장 작은 PCMAX_L을 상기 겹치는 부분에 적용할 수 있다. 단말은 어떤 시간 구간에서도 PPowerClass를 초과하지 않는다.
이제, D2D 신호를 전송하는 서브프레임(이하 D2D SF으로 나타낼 수 있다)에서, D2D 신호 전송에 관련된 전송 전력을 결정/할당하는데 사용될 수 있는 방법들에 대해 설명한다. 하기 방법들은 하나의 D2D SF 내에서 D2D 신호 전송 전력은 일정해야 하며, 서로 다른 반송파 상의 동일 시점 또는 일부 겹치는 시점에서 전송되는 광역 네트워크 상향링크 신호 전송 전력 결정에 영향을 미치지 않는 것으로 해석될 수 있다. 즉, 전력 할당 관점에서 광역 네트워크(WAN) 상향링크 신호가 D2D 신호보다 우선 순위가 높은 것으로 해석할 수 있다.
특정 시점에서 전송되는 D2D 신호는 다음 규칙을 기반으로 전송 전력을 결정할 수 있다. 이하에서는 설명의 편의를 위해서, 아래의 경우들을 가정한다.
'경우 (1)' (CASE (1))은, 셀#A 상의 D2D 신호 전송 서브프레임(이를 "D2D TX SF"라 칭할 수 있음) 관련 시간 동기가, 셀#B 상의 광역 네트워크(WAN) 상향링크 신호를 전송하는 서브프레임(이를 "WAN UL TX SF"라 칭할 수 있음) 관련 시간 동기와 일치하는 경우를 나타낸다.
'경우 (2)'(CASE (2))는 셀#A 상의 D2D 신호 전송 서브프레임 관련 시간 동기가 셀#B 상의 광역 네트워크 상향링크 신호 전송 서브프레임 관련 시간 동기와 일치하지 않는 경우를 나타낸다. 일치하지 않는 정도는 사전에 정의된 또는 시그널링된 임계값 내일 수 있다. 또한, 또한, 일례로, '경우 (2)'는 셀#A와 셀#B가 상이한 TAG(TIMING ADVANCE GROUP)에 속함으로써, 셀#A의 D2D 신호 전송 서브프레임인 서브프레임#Q와 셀#B의 WAN 상향링크 신호 전송 서브프레임인 서브프레임#(P+1)이 일부 겹치는 경우로 해석될 수 있다.
도 9는 전술한 '경우 (1)' 및 '경우 (2)'를 예시한다.
도 9의 부도면 (a)를 참조하면, 셀#A의 서브프레임#Q(SF#Q)와 셀#B의 서브프레임#P(SF#P)가 시간적으로 정렬되어 있다. 즉, 셀#A의 서브프레임#Q(SF#Q)와 셀#B의 서브프레임#P(SF#P)의 시간 동기가 일치한다.
도 9의 부도면 (b)를 참조하면, 셀#A의 서브프레임#Q(SF#Q)와 셀#B의 서브프레임#P(SF#P)가 시간적으로 정렬되어 있지 않다. 도 9의 부도면 (a)와 달리, 셀#A의 서브프레임#Q(SF#Q)와 셀#B의 서브프레임#P+1(SF#P+1)이 일부 겹치고 있다.
본 발명의 제안 방식들은 다른 경우들, 예를 들어, 셀#A 상의 D2D 신호 전송 서브프레임인 서브프레임#Q(또는 D2D 셀/반송파)가 셀#B 상의 WAN 신호 전송 서브프레임인 서브프레임#P(혹은 WAN 상향링크 셀(반송파)) 보다 시간 영역 상에서 선행(LEAD)하는 경우, 그리고/혹은 셀#B 상의 WAN 상향링크 전송 서브프레임인 서브프레임#P(혹은 WAN 상향링크 셀/반송파)이 셀#A 상의 D2D 신호 전송 서브프레임인 서브프레임#Q (혹은 D2D 셀(반송파)) 보다 시간 영역 상에서 선행하는 경우에서도 확장 적용이 가능하다.
이하, 설명의 편의를 위해서, 셀#A의 서브프레임 인덱스 'Q (/(Q+1))'는 'K (혹은 (K+1)) (/(K+1))'로 가정될 수 있고, 셀#B의 서브프레임 인덱스 'P (/(P+1))'는 'K (혹은 (K+1)) (/(K+1))'로 가정될 수 도 있다.
또한, 본 발명의 제안 방식들은 실제로 발견 신호가 전송되는 시점 그리고/혹은 D2D 통신(D2D COMMUNICATION)에 의한 신호 전송 시점에서만 한정적으로 적용될 수 도 있다.
[제안 방법#1] 셀#C의 서브프레임#N에서 D2D 동작을 수행하려는 단말이 발견 신호의 전송 동작을 수행할 때, 셀#C와 관련한 'discMaxTxPower-r12' 에 의하여 지시되는 최대 전송 전력(MAXIMUM (DISCOVERY) TX POWER) 값을 PEMAX,C 파라미터에 대입하여, 발견 신호 전송 전력 결정 시에 이용되는 PCMAX,C(N) (그리고/혹은 PCMAX(N)) 값을 계산할 수 있다.
여기서, 상기 'discMaxTxPower-r12'는 특정 레인지(range) 클래스로 설정된 단말이 발견 신호(ProSe direct discovery)를 전송할 때 최대 전송 전력을 계산하기 위해 사용되는 파라미터이며, 해당 셀의 커버리지 내에서 발견 신호를 전송할 때 특정 레인지(range) 클래스로 설정된 단말이 넘어서는 안되는 최대 전송 전력을 나타낼 수 있다.
도 10은 본 발명의 일 실시예에 따른 단말의 발견 신호 전송 방법을 나타낸다.
도 10을 참조하면, 단말 #1은 네트워크로부터 발견 신호 전송을 위한 전력정보('discMaxTxPower')를 수신한다(S101). 네트워크는 예를 들어, 단말 #1의 서빙 셀일 수 있으며, 단말 #1은 상기 서빙 셀의 커버리지 내에 있을 수 있다. 상기 전력 정보(discMaxTxPower)는 D2D 통신(communication)을 위한 전력 정보를 수신하는 시스템 정보 블록(system information block)이 아닌 다른 시스템 정보 블록을 통해 수신될 수 있다. 예를 들어, D2D 통신을 위한 전력 정보(P-Max)는 SIB 1을 통해 수신되고, 상기 전력 정보(discMaxTxPower)는 SIB 19를 통해 수신될 수 있다.
다음 표는 발견 신호 전송을 위한 전력정보('discMaxTxPower')의 일 예이다.
상기 표에서 discMaxTxPower-r12는 복수 개로 제공될 수 있으며, 이 때 첫번째 것은 레인지 클래스가 짧은(short) 단말에 대한 것이고, 두번째 것은 레인지 클래스가 중간(medium)인 단말, 세번째 것은 레인지 클래스가 긴(long) 단말에 대한 것일 수 있다. 단말은 레인지 클래스(range class)가 설정되고, 상기 레인지 클래스는 단거리(short), 중간거리(medium), 긴거리(long) 중에서 어느 하나를 지시할 수 있다. 이 때, 상기 전력 정보(discMaxTxPower)는 상기 단말에게 설정된 레인지 클래스에 따라 D2D 발견 신호를 전송할 때 초과해서는 안되는 최대 전송 전력(maximum transmit power)를 지시할 수 있다.
단말 #1은 발견 신호 전송을 위한 전력정보에 기반하여 발견 신호 전송을 위한 전송 전력을 결정한다(S102).
예를 들어, 다음 식과 같이 서빙 셀 c에서의 발견 신호 전송을 위한 최대 출력 전력(PCMAX,c) 을 결정할 수 있다.
[식 15]
상기 식에서, PCMAX,L,c 및 PCMAX,H,c는 다음 식과 같이 주어진다.
[식 16]
상기 식에서, PEMAX,c는 서빙 셀 c에 대한 정보 요소(Information Element)인 IE P-Max가 아니라, 전술한 발견 신호 전송을 위한 전력정보('discMaxTxPower')에 의하여 제공되는 값이다. 상기 'discMaxTxPower'는 RRC 신호로 제공될 수 있다. PPowerClass는 허용 오차(tolerance)를 고려하지 않은 최대 단말 전력(Maximum UE power)이다. MPRc는 서빙 셀 c에 대한 최대 전력 감소(Maximum Power Reduction)값을 나타내고, A-MPRc는 서빙 셀 c에 대한 추가적 최대 전력 감소(Additional Maximum Power Reduction) 값을 나타낸다. ΔTIB,c는 서빙 셀 c에 대한 추가적 허용 오차를 나타낸다. ΔTC,c는 1.5 dB 또는 0 dB이다. ΔTProSe 는 0.1 dB일 수 있다. P-MPRc는 허용된 최대 출력 전력 감소(allowed maximum output power reduction)이다.
식 16에 의하여 결정된 최대 출력 전력(PCMAX,c)에 기반하여, 발견 신호 전송에 사용되는 전송 전력 PPSDCH는 다음 식과 같이 결정될 수 있다.
[식 17]
상기 식에서, PCMAX,PSDCH는 PSDCH가 전송되는 사이드링크 서브프레임에 대응하는 상향링크 서브프레임에 대해 단말에 의하여 결정되는 PCMAX,c 값인데, 이 때, PCMAX,c 값이 상기 식 15, 16에 의하여 결정될 수 있다. MPSDCH는 2이고, PL은 경로 손실 값을 나타낸다. PO_PSDCH,1 및 αPSDCH,1은 상위 계층 파라미터들에 의해 제공되는 값이다.
단말 #1은 결정된 전송 전력(PPSDCH)으로 발견 신호를 전송한다(S103). 예를 들어, 단말 #2가 단말 #1에 인접하여 있다면, 단말 #1이 전송한 발견 신호를 수신할 수 있다.
상기 방법에 의하면, 서빙 셀은 단말 #1이 발견 신호를 전송하는데 사용할 전송 전력과 서빙 셀로 상향링크 전송을 수행하는데 사용할 전송 전력을 서로 다르게 설정할 수 있다. 왜냐하면, 기존 정보 요소(IE) P-Max 대신 'discMaxTxPower'를 이용하여 PEMAX,c 를 알려줄 수 있기 때문이다. 따라서, 셀 커버리지 내에서 발견 신호를 전송하는 단말의 전송 전력을 적절히 조절하여 셀 커버리지 내 간섭을 조정할 수 있다. 또한, 단말의 레인지 클래스를 고려하여 발견 신호 전송을 위한 전송 전력을 결정할 수 있으므로 불필요한 전력 낭비도 방지할 수 있다.
또는 셀#C의 서브프레임#N에서 D2D 동작을 수행하려는 단말이 발견 신호의 전송 동작을 수행할 때, 사전에 정의된 시그널(예를 들어, SIB 1)을 통해 수신되는 WAN 상향링크 통신 관련 셀#C의 P-Max 파라미터에 해당되는 최대 전송 전력(MAXIMUM (COMMUNICATION) TX POWER 값)을 PEMAX,C 파라미터에 대입하여, 발견 신호 전송 전력 결정 시에 이용되는 PCMAX,C(N) (그리고/혹은 PCMAX(N)) 값을 계산할 수도 있다.
즉, D2D 발견 신호 전송을 위한 전송 전력(PPSDCH)은 서빙 셀 c에서의 최대 출력 전력(PCMAX,c) 또는 PCMAX에 기반하여 결정될 수 있다. 이 때, 서빙 셀 c에서의 최대 출력 전력(PCMAX,c) 또는 PCMAX는 네트워크에 의하여 설정되는 전력 값(PEMAX,C)에 기반하여 결정되는데, 상기 네트워크에 의하여 설정되는 전력 값(PEMAX,C)은 상기 D2D 발견 신호 전송을 위한 전력 정보(discMaxTxPower) 또는 D2D 통신(communication)을 위한 전력 정보(P-Max)에 의해 결정될 수 있는 것이다.
또 다른 일례로, 특정 셀#C의 서브프레임#N 시점 상에서, 셀 커버리지 내(이를 IN-COVERAGE: "INC"로 칭할 수 있다)에 있는 단말이 D2D 통신에 따른 신호 전송 동작을 수행할 때, PEMAX,C 파라미터에 (사전에 정의된 시그널 (SIB 1)을 통해 수신되는) WAN 상향링크 통신 관련 셀#C의 P-Max 파라미터에 해당되는 최대 전송 전력(MAXIMUM (COMMUNICATION) TX POWER) 값을 대입하여, D2D 통신에 따른 신호의 전송전력 결정 시에 이용되는 PCMAX,C(N) (그리고/혹은 PCMAX(N)) 값을 계산할 수 있다.
또 다른 일례로, 반송파 #C 상에서 셀 커버리지 바깥(이를 OUT-OF-COVERAGE: "OOC"라 칭할 수 있음)에 있는 단말이 D2D 통신의 전송 동작을 수행할 때, PEMAX,C 파라미터에 (사전에 정의된 시그널을 통해 수신되는) 반송파#C 관련 미리 설정된 P-Max 파라미터에 해당되는 최대 전송 전력(MAXIMUM (COMMUNICATION) TX POWER) 값을 대입하여, D2D 통신 전송 전력 결정 시에 이용되는 PCMAX,C(N) (그리고/혹은 PCMAX(N)) 값을 계산할 수 있다.
또 다른 일례로, 특정 셀#C의 서브프레임#N(SF#N) 시점 상에서, 단말이 발견 신호 전송 동작을 수행할 때, PEMAX,C 파라미터에 사전에 정의된 함수를 통해서 도출되는 값을 대입하여, 발견 신호 전송 전력 결정 시에 이용되는 PCMAX,C(N) (그리고/혹은 PCMAX(N)) 값을 계산할 수 있다.
상기 함수는 MIN {(사전에 정의된 시그널 (SIB 1)을 통해 수신되는) WAN 상향링크 통신 관련 셀#C의 P-Max 파라미터에 해당되는 (D2D 통신에 사용되는) 최대 전송 전력(MAXIMUM (COMMUNICATION) TX POWER) 값, PPowerClass 값, discMaxTxPower-r12 파라미터에 해당되는 (발견 신호 전송에 사용되는) 최대 전송 전력(MAXIMUM (DISCOVERY) TX POWER)값}일 수 있다. 또는 상기 함수는 MIN {(사전에 정의된 시그널 (SIB 1)을 통해 수신되는) WAN 상향링크 통신 관련 셀#C의 P-Max 파라미터에 해당되는 (D2D 통신에 사용되는) 최대 전송 전력(MAXIMUM (COMMUNICATION) TX POWER) 값, PPowerClass 값}로 정의될 수도 있다.
일례로, 특정 셀#C의 서브프레임#N 시점 상에서, 셀 커버리지 내의 단말이 D2D 통신 전송 동작(또는 셀 커버리지 바깥의 단말이 D2D 통신 전송 동작)을 수행할 때, PEMAX,C 파라미터에 상기 함수의 결과 값(또는 (사전에 정의된 시그널 (SIB 19)을 통해 수신되는) 셀#C 관련 discMaxTxPower-r12 파라미터에 해당되는 최대 전송 전력 값)을 대입하여, D2D 통신 전송 전력 결정 시에 이용되는 PCMAX,C(N) (그리고/혹은 PCMAX(N)) 값을 계산할 수 있다.
상기 [제안 방법#1]은 발견(discovery)과 D2D 통신이 모두 가능한 단말, 또는 발견신호 전송과 D2D 통신 전송을 동시에 수행하고 있거나, 상위 계층 시그널링을 통해 발견과 D2D 통신이 모두 설정된 단말, 또는 발견만 가능(발견 전송만을 수행하고 있거나 혹은 상위 계층 시그널링을 통해 발견만 설정된) 단말, 또는 D2D 통신만 가능한(또는 D2D 통신 전송만을 수행하고 있거나 혹은 상위 계층 시그널링을 통해 D2D 통신만 설정된) 단말에게만 한정적으로 적용될 수도 있다.
[제안 방법#2] 제안 방법 #2는 D2D 발견(D2D discovery, 이하 단순히 발견이라고 칭할 수 있음) 관련하여 PSSS (그리고/혹은 PSBCH)를 전송할 때 전송 전력을 결정하는 방법, 그리고/혹은 D2D 통신(D2D COMMUNICATION) 관련하여 PSSS (그리고/혹은 PSBCH)를 전송할 때 전송 전력을 결정하는 방법에 대한 것이다. 아래의 일부 혹은 모든 규칙을 기반으로 D2D 발견 그리고/혹은 D2D 통신과 관련한 (혹은 D2D 발견 그리고/혹은 D2D 통신에 의해 (동시) 트리거링된) PSSS 및/또는 PSBCH 전송 시, 전송 전력을 결정할 수 있다.
아래의 규칙들은 발견(discovery)과 D2D 통신이 모두 가능한 단말, 또는 발견신호 전송과 D2D 통신 전송을 동시에 수행하고 있거나, 상위 계층 시그널링을 통해 발견과 D2D 통신이 모두 설정된 단말, 또는 발견만 가능(혹은 발견 전송만을 수행하고 있거나 혹은 상위 계층 시그널링을 통해 발견만 설정된) 단말, 또는 D2D 통신만 가능한(또는 D2D 통신 전송만을 수행하고 있거나 혹은 상위 계층 시그널링을 통해 D2D 통신만 설정된) 단말에게만 한정적으로 적용될 수도 있다.
또한, 아래의 규칙들은 발견과 D2D 통신을 모두 설정하거나(혹은 지원 가능한) 네트워크(혹은 셀) 상의 D2D를 지원하는 단말에게만 한정적으로 적용될 수도 있다.
또한, 일례로, 아래의 규칙들에서 발견과 D2D 통신이 모두 가능한(혹은 발견 전송과 D2D 통신 전송을 동시에 수행하고 있거나 혹은 상위 계층 시그널링을 통해 발견과 D2D 통신이 설정된) 단말 (혹은 발견만 지원 가능하거나 (혹은 발견 전송 만을 수행하고 있는 혹은 상위 계층 시그널링을 통해 발견 만이 설정된) 단말 혹은 D2D 통신만 가능하거나 (혹은 D2D 통신 전송 만을 수행하고 있는 혹은 상위 계층 시그널링을 통해 D2D 통신 만이 설정된) 단말)이 전송하는 (발견 그리고/혹은 D2D 통신 관련 혹은 발견 그리고/혹은 D2D 통신에 의해 (동시에) 트리거링된) PSSS (그리고/혹은 PSBCH)의 전송 전력은, 1) SIB 19 그리고/혹은 SIB 18의 존재 (혹은 디코딩 가능) 여부, 2) D2D 통신의 'syncConfig' 그리고/혹은 발견의 'syncConfig'의 존재 (혹은 디코딩 가능) 여부에 따라, MIN {최대 D2D 통신 전송 전력 값, 최대 발견 전송 전력 값} (혹은 MAX {최대 D2D 통신 전송 전력 값, 최대 발견 전송 전력 값 } 혹은 최대 D2D 통신 전송 전력 값 혹은 최대 발견 전송 전력 값)을 PEMAX,C 파라미터에 대입하여, (발견 그리고/혹은 D2D 통신 전송 관련 혹은 발견 그리고/혹은 D2D 통신에 의해 (동시에) 트리거링된) PSSS (그리고/혹은 PSBCH)의 전송 전력 결정 시에 이용되는 PCMAX,C(N) (그리고/혹은 PCMAX(N)) 값을 계산할 수 있다.
(예시#2-1) 발견과 D2D 통신이 모두 가능한(혹은 발견 전송과 D2D 통신 전송을 동시에 수행하고 있거나 혹은 상위 계층 시그널링을 통해 발견과 D2D 통신이 설정된) 단말 (혹은 발견만 지원 가능하거나 (혹은 발견 전송 만을 수행하고 있는 혹은 상위 계층 시그널링을 통해 발견 만이 설정된) 단말 혹은 D2D 통신만 가능하거나 (혹은 D2D 통신 전송 만을 수행하고 있는 혹은 상위 계층 시그널링을 통해 D2D 통신 만이 설정된) 단말)이 셀 커버리지 내에 있다고 가정하자. 상기 단말은 MIN {최대 D2D 통신 전송 전력 값, 최대 발견 전송 전력 값} 또는 MAX {최대 D2D 통신 전송 전력 값, 최대 발견 전송 전력 값}의 결과 값을 PEMAX,C 파라미터에 대입하여, 발견과 D2D 통신 전송 관련 (혹은 발견 그리고/혹은 D2D 통신에 의해 (동시에) 트리거링된) PSSS (그리고/혹은 PSBCH) 의 전송 전력 결정 시에 이용되는 PCMAX,C(N) (그리고/혹은 PCMAX(N)) 값을 계산할 수 있다.
여기서, 일례로, 최대 D2D 통신 전송 전력 값은 사전에 정의된 시그널(예를 들어, SIB 1)을 통해 수신되는 WAN 상향링크 통신 관련 셀#C의 P-Max 파라미터에 해당되는 최대 (D2D 통신)전송 전력 값으로 정의될 수 있다.
또한, 최대 발견 전송 전력 값은 사전에 정의된 시그널 (예를 들어, SIB 19)을 통해 수신되는 셀#C 관련 'discMaxTxPower-r12' 파라미터에 해당되는 최대(발견) 전송 전력 값으로 정의될 수 있다.
또한, 일례로, 셀 커버리지 내에 있는 발견과 D2D 통신이 모두 가능한(혹은 발견 전송과 D2D 통신 전송을 동시에 수행하고 있거나 혹은 상위 계층 시그널링을 통해 발견과 D2D 통신이 설정된) 단말 (혹은 발견만 지원 가능하거나 (혹은 발견 전송 만을 수행하고 있는 혹은 상위 계층 시그널링을 통해 발견 만이 설정된) 단말 혹은 D2D 통신만 가능하거나 (혹은 D2D 통신 전송 만을 수행하고 있는 혹은 상위 계층 시그널링을 통해 D2D 통신 만이 설정된) 단말)은 (상기 설명한) 최대 D2D 통신 전송 전력 값(혹은 최대 발견 전송 전력 값)을 PEMAX,C 파라미터 에 대입하여, 발견과 D2D 통신 전송 관련 (혹은 발견 그리고/혹은 D2D 통신에 의해 (동시에) 트리거링된) PSSS (그리고/혹은 PSBCH)의 전송 전력을 결정할 때 이용되는 PCMAX,C(N) (그리고/혹은 PCMAX(N)) 값을 계산할 수 있다.
또한, 일례로, 발견만 지원(/수행) 가능한 (혹은 발견 전송 만을 수행하고 있는 혹은 상위 계층 시그널링을 통해 발견 만이 설정된) 단말이 셀 커버리지 내에 있는 경우, 상기 단말은 최대 발견 전송 전력 값 (혹은 최대 D2D 통신 전송 전력 값)을 PEMAX,C 파라미터에 대입하여, 발견 전송 관련 (혹은 발견에 의해 트리거링된) PSSS (그리고/혹은 PSBCH)의 전송 전력 결정 시에 이용되는 PCMAX,C(N) (그리고/혹은 PCMAX(N)) 값을 계산할 수 있다.
또한, 일례로, 발견과 D2D 통신이 모두 가능한(혹은 발견 전송과 D2D 통신 전송을 동시에 수행하고 있거나 혹은 상위 계층 시그널링을 통해 발견과 D2D 통신이 설정된) 단말 (혹은 발견만 지원 가능하거나 (혹은 발견 전송 만을 수행하고 있는 혹은 상위 계층 시그널링을 통해 발견 만이 설정된) 단말 혹은 D2D 통신만 가능하거나 (혹은 D2D 통신 전송 만을 수행하고 있는 혹은 상위 계층 시그널링을 통해 D2D 통신 만이 설정된) 단말)이 셀 커버리지 바깥에 있는 경우, 상기 단말은 최대 D2D 통신 전송 전력 값 (혹은 최대 발견 전송 전력 값 혹은 MIN {최대 D2D 통신 전송 전력 값, 최대 발견 전송 전력 값} 혹은 MAX {최대 D2D 통신 전송 전력 값, 최대 발견 전송 전력 값})을 PEMAX,C 파라미터에 대입하여, D2D 통신 전송 관련 (혹은 D2D 통신에 의해 트리거링된) PSSS (그리고/혹은 PSBCH)의 전송 전력 결정 시에 이용되는 PCMAX,C(N) (그리고/혹은 PCMAX(N)) 값을 계산할 수 있다.
일례로, (예시#2-1)은 발견과 D2D 통신이 모두 가능한 (혹은 발견 전송과 D2D 통신 전송을 동시에 수행하고 있거나 또는 상위 계층 시그널링을 통해 발견과 D2D 통신이 설정된) 단말 (혹은 발견만 가능하거나 (혹은 발견 전송 만을 수행하고 있는 혹은 상위 계층 시그널링을 통해 발견 만이 설정된) 단말 혹은 D2D 통신만 가능하거나 (혹은 D2D 통신 전송 만을 수행하고 있는 혹은 상위 계층 시그널링을 통해 D2D 통신 만이 설정된) 단말)에게만 한정적으로 적용되도록 설정될 수 도 있다.
또한, 일례로, (예시#2-1)은 발견 그리고/혹은 D2D 통신 가능 여부에 상관없이, SIB 19 (그리고/혹은 SIB 18)을 수신 (혹은 디코딩)하도록 함으로써 지원될 수 가 있다.
또한, 일례로, (예시#2-1)에서 발견과 D2D 통신이 모두 가능한(혹은 발견 전송과 D2D 통신 전송을 동시에 수행하고 있는 혹은 상위 계층 시그널링을 통해 발견과 D2D 통신이 설정된) 단말이 셀 커버리지 내에 있다고 할지라도, 만약 발견 동작 (혹은 발견 전송)만이 수행된다면(혹은 (상위 계층 시그널을 통해) 설정된다면), 최대 발견 전송 전력 값 (혹은 최대 D2D 통신 전송 전력 값)을 PEMAX,C에 대입하여, 발견 전송 관련 (혹은 발견에 의해 트리거링된) PSSS (그리고/혹은 PSBCH)의 전송 전력 결정 시에 이용되는 PCMAX,C(N) (그리고/혹은 PCMAX(N)) 값을 계산할 수 있다.
도 11은 전술한 '예시#2-1'에 따른 단말의 D2D 신호에 대한 전송 전력 결정 방법을 나타낸다.
도 11을 참조하면, 서빙 셀에 연관된 단말에 대해, D2D 통신을 위하여 SSS/PSBCH가 트리거링(triggering)되었는지 여부를 판단한다(S110).
만약, D2D 통신을 위하여 SSS/PSBCH가 트리거링되었다면 (이는 D2D 통신만을 위하여 SSS/PSBCH가 트리거링된 경우와 D2D 통신과 D2D 발견 모두를 위하여 SSS/PSBCH가 트리거링된 경우를 포함할 수 있음), D2D 통신에 적용되는 전송 전력 파라미터(P-Max)에 기반하여 SSS/PSBCH에 대한 전송 전력을 결정한다(S111). SSS 즉, 사이드 링크 동기화 신호에는 PSSS 그리고/혹은 SSSS가 있을 수 있다. PSSS, SSSS에 대한 전송 전력은 동일하게 결정될 수도 있고 서로 다르게 결정될 수도 있다. PSSS에 대한 전송 전력과 PSBCH에 대한 전송 전력은 동일하게 결정될 수 있다. 일례로, 상기 P-Max는 SIB 1에 포함되어 단말에게 제공될 수 있다. 일례로, 단말은 P-Max에 의하여 제공되는 값을 PEMAX,c로 사용하여 PCMAX,PSBCH 를 계산할 수 있다.
단말은 상기 결정된 SSS/PSBCH에 대한 전송 전력으로 SSS/PSBCH를 전송한다(S112).
한편, 서빙 셀에 연관된 단말에 대해, D2D 통신을 위하여 SSS/PSBCH가 트리거링되지 않았다면 (이는, D2D 발견 (전송)에 의해서(만) (혹은 D2D 발견 (전송)을 위해서(만)) SSS/PSBCH가 트리거링된 경우일 수 있음), 단말은 D2D 발견에 적용되는 전송 전력 파라미터(discMaxTxPower)에 기반하여 SSS/PSBCH에 대한 전송 전력을 결정한다(S113). SSS 즉, 사이드 링크 동기화 신호에는 PSSS 그리고/혹은 SSSS가 있을 수 있다. PSSS, SSSS에 대한 전송 전력은 동일하게 결정될 수도 있고 서로 다르게 결정될 수도 있다. PSSS에 대한 전송 전력과 PSBCH에 대한 전송 전력은 동일하게 결정될 수 있다. 일례로, 상기 discMaxTxPower는 SIB 19를 통해 제공될 수도 있다.
단말은 결정된 SSS/PSBCH에 대한 전송 전력으로 SSS/PBSCH를 전송한다(S114).
SSS(SLSS) 및 PSBCH를 위한 전송 전력은 (SSS(SLSS) 및 PSBCH가) D2D 발견(만)을 위해 트리거링되었는지 (혹은 D2D 발견 전송에 의해서(만) 트리거링되었는지) 아니면 D2D 통신을 위해 트리거링되었는지 (예를 들어, SSS(SLSS) 및 PSBCH 전송이 D2D 통신과 D2D 발견에 의해 동시에 트리거링된 경우도 포함할 수 있음)에 따라 그 값이 각각 결정될 수 있다. 즉, SSS 및 PSBCH를 위한 전송 전력(예를 들어, PPSSS, PPSBCH)은 서빙 셀 c에서의 최대 출력 전력(PCMAX,c) 또는 PCMAX에 기반하여 결정될 수 있다. 이 때, 서빙 셀 c에서의 최대 출력 전력(PCMAX,c) 또는 PCMAX는 네트워크에 의하여 설정되는 전력 값(PEMAX,C)에 기반하여 결정될 수 있으며, 상기 네트워크에 의하여 설정되는 전력 값(PEMAX,C)은 상기 D2D 발견 신호 전송을 위한 전력 정보(discMaxTxPower) 또는 D2D 통신(communication)을 위한 전력 정보(P-Max)에 의해 결정될 수 있는 것이다.
전술한 바와 같이, SSS/PSBCH는 D2D 발견을 위해 (혹은 D2D 발견 (전송)에 의해서) 트리거링될 수도 있고, D2D 통신을 위해 (혹은 D2D 통신 (전송)에 의해서) 트리거링될 수도 있다. 그런데, 만약, (사전에 SSS/PSBCH 전송 용도로 설정된(/시그널링된)) 동일 서브프레임 상에서 D2D 발견과 D2D 통신 모두를 위하여 (혹은 D2D 발견 (전송)과 D2D 통신 (전송)에 의해서 동시에) 트리거링된다면, SSS/PSBCH의 전송을 위한 전송 전력을 어떻게 결정할 것인지가 문제될 수 있다.
도 12는 동일 서브프레임에서 D2D 발견과 D2D 통신 모두를 위하여 (혹은 D2D 발견 (전송)과 D2D 통신 (전송)에 의해서 동시에) SSS/PSBCH가 트리거링된 경우, 전송 전력 결정 방법을 예시한다.
도 12를 참조하면, 첫번째 서브프레임(121)에서는 D2D 발견(만)을 위해 (혹은 D2D 발견 (전송)(만)에 의해) 트리거링된 SSS/PSBCH가 전송되고 있으며, 이때는 discMaxTxPower에 기반하여 결정된 전송 전력으로 SSS/PSBCH가 전송된다. 두번째 서브프레임(122)에서는 D2D 통신(만)을 위해 (혹은 D2D 통신 (전송)(만)에 의해) 트리거링된 SSS/PSBCH가 전송되고 있으며, 이때는 P-Max에 기반하여 결정된 전송 전력으로 SSS/PSBCH가 전송된다.
그런데, (사전에 SSS/PSBCH 전송 용도로 설정된(/시그널링된)) 특정 서브프레임(123) 상에서는 D2D 발견과 D2D 통신 모두를 위하여 (혹은 D2D 발견 (전송)과 D2D 통신 (전송)에 의해서 동시에) SSS/PSBCH가 트리거링될 수 있다. 이 때, SSS/PSBCH는 P-Max에 기반하여 결정된 전송 전력으로 전송된다. 즉, D2D 통신(만)을 위해 (혹은 D2D 통신 (전송)(만)에 의해) 트리거링된 SSS/PSBCH 전송 전력 결정시(122)에 이용되는 P-Max에 기반하여 최종 전송 전력 값을 도출하게 되는 것이다. 이러한 결론은 도 11에 의하여서도 도출되는 것이지만, 도 12에서 보다 명확하게 나타내고 있다. 도 12에서 각 서브프레임들(121, 122, 123)의 상호간의 시간 관계는 단지 예시를 위한 것이다.
(예시#2-2) 특정 셀#C의 서브프레임#N(SF#N) 시점 상에서, 단말이 발견 전송 동작을 수행할 때, 아래의 수식들 식 18-25 중 일부 혹은 모든 수식에 따라 도출된 전송 전력 값을 발견 동작의 PSSS (그리고/혹은 PSBCH) 전송에 적용할 수 있다.
여기서, 사전에 정의된 시그널 (SIB 1)을 통해 수신되는 WAN 상향링크 통신 관련 셀#C의 P-Max 파라미터에 해당되는 최대 (통신) 전송 전력 값을 PEMAX,C 파라미터에 대입하여 계산된, 발견 동작의 PSSS (그리고/혹은 PSBCH) 전송 관련 PCMAX,C(N) (그리고/혹은 PCMAX(N)) 값을 각각 "PCMAXC_DIS", "PCMAX_DIS"라 칭한다.
또한, 사전에 정의된 시그널 (SIB 19)을 통해 수신되는 셀#C 관련 discMaxTxPower-r12 파라미터에 해당되는 최대 (발견) 전송 전력 값을 "MAX_DIS"로 명명한다.
또한, (예시#2-2)는 발견과 D2D 통신이 모두 가능한 (혹은 발견 전송과 D2D 통신 전송을 동시에 수행하고 있거나 또는 상위 계층 시그널링을 통해 발견과 D2D 통신이 설정된) 단말 (혹은 발견만 가능하거나 (혹은 발견 전송 만을 수행하고 있는 혹은 상위 계층 시그널링을 통해 발견 만이 설정된) 단말 혹은 D2D 통신만 가능하거나 (혹은 D2D 통신 전송 만을 수행하고 있는 혹은 상위 계층 시그널링을 통해 D2D 통신 만이 설정된) 단말)에게만 한정적으로 적용되도록 설정될 수 도 있다.
[식 18]
[식 19]
[식 20]
[식 21]
[식 22]
[식 23]
[식 24]
[식 25]
[제안 방법#3] 특정 셀#C의 서브프레임#N 시점 상에서 전송되는 D2D 신호의 전송 전력 결정 시에 이용되는 PCMAX,C(N) (그리고/혹은 PCMAX(N)) 파라미터는, 사전에 정의되거나(혹은 시그널링된) 광역 네트워크(WAN)의 상향링크 신호가 D2D 신호의 전송 관련 자원 할당 개수/위치 그리고/혹은 변조 방식(MODULATION)에 따라 (동일하게) 전송되는 경우를 가정하여, 계산될 수 있다.
여기서, 일례로, 해당 WAN 상향링크 신호는 PUSCH로 설정될 수 있다. 이러한 방법의 적용은, D2D 신호 전송 관련 MPRC (혹은 MPR) 그리고/혹은 A-MPRC (혹은 A-MPR)이 (추가적으로) 정의되는 것으로도 해석 가능하다.
또한, 일례로, [제안 방법#3]은 단일 상향링크 셀이 설정된 경우 그리고/혹은 다중 상향링크 셀들이 반송파 집성(CA) 기법으로 설정되고 셀#C의 D2D 신호를 전송하는 서브프레임#N과 (일부 혹은 전부) 겹치는 다른 셀 상에서 WAN 상향링크 전송이 존재하지 않는 (혹은 수행되지 않는) 경우에만 한정적으로 적용될 수 있다.
[제안 방법#4] 특정 셀#C의 서브프레임#N(SF#N)에서 전송되는 WAN 상향링크 신호에 대한 전송 전력 결정 시에 이용되는 PCMAX(N) (그리고/혹은 PCMAX,C(N)) 파라미터는, 상기 서브프레임#N과 겹치는 다른 셀 상의 (일부 혹은 전부) 서브프레임에 D2D 신호 전송이 존재하지 않는다는 가정 하에 계산되도록 규칙이 정의될 수 있다.
구체적인 일례로, 전술한 '경우 (1)'에 해당 규칙이 적용될 경우, 비록 셀#A의 서브프레임#Q와 셀#B의 서브프레임#P에서 각각 D2D 신호 전송, WAN 상향링크 신호 전송이 수행되어야 한다고(혹은 스케줄링되었다고) 할지라도, 셀#B의 서브프레임#P 상에서 전송되는 WAN 상향링크 신호의 전송 전력 결정 시에 이용되는 PCMAX(P) (그리고/혹은 PCMAX,B(P)) 파라미터는, 셀#A의 서브프레임#Q에서 D2D 신호 전송이 존재하지 않는다는 가정 하에서 계산될 수 있다.
또 다른 일례로, 전술한 '경우 (2)'에 해당 규칙이 적용될 경우, 비록 셀#A의 서브프레임#Q와 셀#B의 서브프레임#P, 셀#B의 서브프레임#(P+1)에서 각각 D2D 신호 전송, WAN 상향링크 신호 전송, WAN 상향링크 신호 전송이 수행되어야 한다고 (혹은 스케줄링되었다고) 할지라도, 셀#B의 서브프레임#P와 셀#B의 서브프레임#(P+1) 상에서 각각 전송되는 WAN 상향링크 신호의 전송 전력 결정 시에 이용되는 PCMAX(P) (그리고/혹은 PCMAX,B(P)), PCMAX(P+1) (그리고/혹은 PCMAX,B(P+1)) 파라미터는, 셀#A의 서브프레임#Q에서 D2D 신호 전송이 존재하지 않는다는 가정 하에서 계산될 수 있다.
이러한 방법의 적용을 통해, D2D 신호의 전송 전력이 WAN 상향링크 신호의 전송 전력 결정에 영향을 미치지 않게 된다.
또 다른 일례로, 특정 셀#C의 서브프레임#N에서 전송되는 WAN 상향링크 신호의 전송 전력 결정 시에 이용되는 PCMAX(N) (그리고/혹은 PCMAX,C(N)) 파라미터는, 만약 상기 서브프레임#N과 일부 또는 전부가 겹치는 다른 셀 상의 서브프레임에서 D2D 신호 전송이 존재한다면, (셀#C 서브프레임#N에서의 WAN 상향링크 신호 전송 뿐만 아니라) 사전에 정의된 (혹은 시그널링된) WAN 상향링크 신호가 D2D 신호 전송 관련한 자원 할당 개수/위치 그리고/혹은 변조 방식에 따라 (함께) 전송된다고 가정한 후 계산될 수 있다.
여기서, WAN 상향링크 신호가 전송되는 셀#C 서브프레임#N과 (일부 혹은 전부) 겹치는 다른 셀#X 상의 서브프레임에서 D2D 신호가 전송될 때, 상기 D2D 신호에 대한 전송 전력 결정 시에 이용되는 PCMAX(N) (그리고/혹은 PCMAX,X(N)) 파라미터는, 셀#C 서브프레임#N에서의 WAN 상향링크 신호 전송과 사전에 정의된 (혹은 시그널링된) WAN 상향링크 신호가 D2D 신호 전송과 관련된 자원 할당 개수/위치 그리고/혹은 변조 방식에 따라 (셀#X에서) (함께) 전송된다고 가정한 후, 계산될 수 도 있다.
구체적인 일례로, '경우 (1)'에 해당 규칙이 적용될 경우, 만약 셀#A의 서브프레임#Q와 셀#B의 서브프레임#P에서 각각 D2D 신호 전송, WAN 상향링크 신호 전송이 수행되어야(혹은 스케줄링되었다고) 한다면, 셀#B 서브프레임#P에서의 WAN 상향링크 신호의 전송 전력 결정 시에 이용되는 PCMAX(P) (그리고/혹은 PCMAX,B(P)) 파라미터는, (셀#B 서브프레임#P에서의 WAN 상향링크 신호 전송 뿐만 아니라) 사전에 정의된 (혹은 시그널링된) WAN 상향링크 신호가 D2D 신호 전송에 관련된 자원 할당 개수/위치/변조 방식에 따라 셀#A 서브프레임#Q에서 (함께) 전송된다고 가정된 후 계산될 수 있다.
이러한 방법이 적용될 경우, D2D 신호의 전송 전력은 WAN 상향링크 신호의 전송 전력 결정에 영향을 미치게 된다.
또한, 일례로, [제안 방법#4]는 대역 내(INTRA-BAND) 연속적 반송파 집성(연속적 자원 할당 방식 및/또는 비연속적 자원 할당 방식을 사용할 수 있음) 및/또는 대역 내 비연속적 반송파 집성(2개의 상향링크 반송파를 사용할 수 있음)에만 한정적으로 적용될 수 있다.
[제안 방법#5] 특정 셀#C의 서브프레임#N에서 전송되는 D2D 신호의 전송 전력은 아래의 일부 혹은 모든 규칙에 따라 계산될 수 있다.
아래의 규칙들을 통해 도출되는 D2D_TXP(Q) 그리고/혹은 D2D_TXP(Q+1)은 MIN {D2D_TXP(Q), discMaxTxPower-r12 파라미터에 해당되는 최대 (발견) 전송 전력 값} (혹은 MAX {D2D_TXP(Q), discMaxTxPower-r12 파라미터에 해당되는 최대 (발견) 전송 전력 값}) 그리고/혹은 MIN {D2D_TXP(Q+1), discMaxTxPower-r12 파라미터에 해당되는 최대 (발견) 전송 전력 값} (혹은 MAX {D2D_TXP(Q+1), discMaxTxPower-r12 파라미터에 해당되는 최대 (발견) 전송 전력 값})의 연산을 통해, 최종 결정되도록 규칙이 정의될 수 도 있다.
(예시#5-1) '경우 (1)'에 대해, 일례로, 만약 셀#A의 서브프레임#Q와 셀#B의 서브프레임#P 상에서 각각 D2D 신호 전송, WAN 상향링크 신호 전송이 (동시에) 수행되어야 한다면, 아래의 규칙에 따라, 셀#A 서브프레임#Q에서의 D2D 신호의 전송 전력이 결정될 수 있다.
1) 다른 셀 상의 (일부 혹은 전부) 겹치는 시점(서브프레임)에서, D2D 신호 전송이 없다는 가정 하에서 계산된 (셀#B 서브프레임#P에서의) WAN 상향링크 신호 전송 관련한 PCMAX(P) ("PCMAX_WO(P)") (혹은 PCMAX_L(P) ("PCMAXL_WO(P)")) 혹은 PCMAX,B(P)에 기반하여 셀#A 서브프레임#Q에서의 D2D 신호의 전송 전력이 결정될 수 있다.
만약 개루프(OPEN-LOOP)/페루프(CLOSED-LOOP) 전력 제어 (OLPC/CLPC) 파라미터에 의해 결정된 셀#B 서브프레임#P에서의 WAN 상향링크 신호 전송 전력을 "WAN_CONP(P)"로 가정한다면, 해당 시점에서의 최종적인 WAN 상향링크 신호 전송 전력(이를"WAN_TXP(P)"라 하자)는 MIN {PCMAX_WO(P), MIN {PCMAX,B(P), WAN_CONP(P)}}로 결정될 수 있다.
2) 셀#B 서브프레임#P에서의 WAN 상향링크 신호 전송 뿐만 아니라, 사전에 정의된 (혹은 시그널링된) WAN 상향링크 신호가 D2D 신호 전송에 관련된 자원 할당 개수/위치/변조 방식에 따라 함께 전송된다고 가정한 후에, 계산된 (셀#A 서브프레임 #Q에서의) D2D 신호 전송 관련 PCMAX(Q(/P)) (이를"PCMAX_DW(Q(/P))"라 하자) (혹은 PCMAX_L(Q(/P)) ("PCMAXL_DW(Q(/P))")) 혹은 PCMAX,A(Q(/P)) 에 기반하여 셀#A 서브프레임#Q에서의 D2D 신호의 전송 전력이 결정될 수 있다.
여기서, 이러한 규칙은 (셀#B 서브프레임#P에서의) WAN 상향링크 신호 전송이 (셀#A 서브프레임#Q에서의) D2D 신호의 전송 전력(예컨대, PCMAX_DW(P(/Q)) (혹은 PCMAXL_DW(P(/Q)))) 계산을 위한 기준으로 해석될 수 도 있다.
일례로, 만약 개루프 전력제어(OLPC) 파라미터에 의해 결정된 셀#A 서브프레임#Q에서의 D2D 신호의 전송 전력을 "D2D_CONP(Q)"로 가정한다면, 해당 시점에서의 최종적인 D2D 신호의 전송 전력(이를 "D2D_TXP(Q)"라 하자)는 MIN {(PCMAX_DW(Q(/P)) - WAN_TXP(P)), MIN {PCMAX,A(Q), D2D_CONP(Q)}}로 결정될 수 있다. 이러한 방식이 적용될 경우, 일례로, WAN_TXP(P)는 D2D_TXP(Q)에 영향을 받지 않는 것으로 해석될 수 있다. 또한, 일례로, 상기 수식에서, D2D_TXP(Q) 결정 관련 PCMAX_DW(Q(/P))는 PPowerClass 혹은 MIN {PEMAX,A, PPowerClass}로 대체될 수 있다.
일례로, 만약 D2D_TXP(Q)가 WAN 상향링크 신호/D2D 신호의 동시 전송 상황에서의 사전에 정의된 (혹은 시그널링된) 방사 요건(EMISSION REQUIREMENT)를 만족시키지 못한다면, 상기 방사 요건이 만족될 때까지, D2D_TXP(Q)를 우선적으로 낮추도록 규칙이 정의될 수 있다.
또 다른 일례로, 이러한 문제를 해결하기 위해서, 사전에 정의된 (혹은 시그널링된) 전력 오프셋 값이 (최종) D2D_TXP(Q)에 추가적으로 적용되도록 규칙이 정의될 수 도 있다. 또 다른 일례로, 만약 D2D_TXP(Q)가 WAN 상향링크 신호/D2D 신호 의 동시 전송 상황에서의 사전에 정의된 (혹은 시그널링된) 방사 요건(EMISSION REQUIREMENT)을 만족시키지 못한다면, 해당 D2D 신호 전송이 생략되도록 규칙이 정의될 수 도 있다.
(예시#5-2) '경우 (1)'의 경우, 일례로, 만약 셀#A의 서브프레임#Q에서 D2D 신호 전송이 수행되고 셀#B의 서브프레임#P에서 WAN 상향링크 신호 전송이 수행되지 않는다면, 아래의 규칙에 따라, 셀#A 서브프레임#Q에서의 D2D 신호의 전송 전력이 결정되도록 규칙이 정의될 수 가 있다.
1) 사전에 정의된 (혹은 시그널링된) WAN 상향링크 신호가 D2D 신호 전송에 관련된 자원 할당 개수/위치/변조 방식에 따라 전송된다고 가정한 후에, 계산된 (셀#A 서브프레임#Q에서의) D2D 신호 전송 관련 PCMAX(Q) ("PCMAX_OD(Q)") (혹은 PCMAX_L(Q) ("PCMAXL_OD(Q)")) 혹은 PCMAX,A(Q)에 기반하여 셀#A 서브프레임#Q에서의 D2D 신호의 전송 전력이 결정될 수 있다.
일례로, 만약 개루프 전력제어(OLPC) 파라미터에 의해 결정된 셀#A 서브프레임#Q에서의 D2D 신호의 전송 전력을 "D2D_CONP(Q)"로 가정한다면, 해당 시점에서의 최종적인 D2D 신호의 전송 전력(이를"D2D_TXP(Q)"라 하자)는 MIN {PCMAX_OD(Q), MIN {PCMAX,A(Q), D2D_CONP(Q)}}로 결정될 수 있다.
또한, 일례로, 상기 수식에서, D2D_TXP(Q) 결정 관련 PCMAX_OD(Q)는 PPowerClass 혹은 MIN {PEMAX,A, PPowerClass}로 대체될 수 도 있다.
(예시#5-3) '경우 (1)'에 대해, 만약 셀#A의 서브프레임#Q과 셀#B의 서브프레임#P 상에 각각 D2D 신호 전송, WAN 상향링크 신호 전송이 (동시에) 수행되어야 한다면, 아래의 규칙에 따라, 셀#A 서브프레임#Q에서의 D2D 신호의 전송 전력을 결정할 수 있다.
셀#B 서브프레임#P에서의 WAN 상향링크 신호 전송 뿐만 아니라, 사전에 정의된 (혹은 시그널링된) WAN 상향링크 신호가 D2D 신호 전송에 관련된 자원 할당 개수/위치/변조 방식에 따라 함께 전송된다고 가정한 후에, 계산된 (셀#A 서브프레임#Q에서의) D2D 신호 전송 관련 PCMAX,A(Q), (셀#B 서브프레임#P에서의) WAN 상향링크 신호 전송 관련 PCMAX,B(P), D2D 신호 전송/WAN 상향링크 신호 전송 관련 PCMAX(Q(/P)) ("PCMAX_DW(Q(/P))") (혹은 PCMAX_L(Q(/P)) ("PCMAXL_DW(Q(/P))"))에 기반하여 셀#A 서브프레임#Q에서의 D2D 신호의 전송 전력을 결정할 수 있다.
여기서, 일례로, 이러한 규칙은 (셀#B 서브프레임#P에서의) WAN 상향링크 신호 전송이 (셀#A 서브프레임#Q에서의) D2D 신호의 전송 전력(e.g., PCMAX_DW(P(/Q)) (혹은 PCMAXL_DW(P(/Q)))) 계산을 위한 기준으로 해석될 수 도 있다.
일례로, 만약 개루프 전력제어(OLPC) 파라미터에 의해 결정된 셀#A 서브프레임#Q에서의 D2D 신호의 전송 전력을 "D2D_CONP(Q)"로 가정하고, 개루프 전력제어(OLPC)/페루프 전력제어(CLPC) 파라미터에 의해 결정된 셀#B 서브프레임#P에서의 WAN 상향링크 신호의 전송 전력을 "WAN_CONP(P)"로 가정한다면, 셀#B 서브프레임#P에서의 최종적인 WAN 상향링크 신호의 전송 전력("WAN_TXP(P)")은 MIN {PCMAX_DW(P(/Q)), MIN {PCMAX,B(P), WAN_CONP(P)}}로 결정되고, 셀#A 서브프레임#Q에서의 최종적인 D2D 신호의 전송 전력("D2D_TXP(Q)")은 MIN {(PCMAX_DW(Q(/P)) - WAN_TXP(P)), MIN {PCMAX,A(Q), D2D_CONP(Q)}}로 결정될 수 있다.
이러한 방식이 적용될 경우, 일례로, WAN_TXP(P)가 D2D_TXP(Q)로부터 영향을 받는 것으로 해석될 수 있다. 또한, 일례로, 상기 수식에서, D2D_TXP(Q) 결정 관련 PCMAX_DW(Q(/P))는 PPowerClass 혹은 MIN {PEMAX,A, PPowerClass}로 대체될 수 있다.
일례로, 만약 D2D_TXP(Q)가 WAN 상향링크 신호/D2D 신호의 동시 전송 상황에서의 사전에 정의된 (혹은 시그널링된) 방사 요건(EMISSION REQUIREMENT)을 만족시키지 못한다면, 방사 요건이 만족될 때까지, D2D_TXP(Q)를 우선적으로 낮출 수 있다. 또 다른 일례로, 이러한 문제를 해결하기 위해서, 사전에 정의된 (혹은 시그널링된) 전력 오프셋 값이 (최종) D2D_TXP(Q)에 추가적으로 적용될 수 있다. 또 다른 일례로, 만약 D2D_TXP(Q)가 WAN 상향링크 신호/D2D 신호의 동시 전송 상황에서의 사전에 정의된 (혹은 시그널링된) 방사 요건을 만족시키지 못한다면, 해당 D2D 신호 전송이 생략되도록 규칙이 정의될 수 있다.
(예시#5-4) 경우 (1)의 경우, 일례로, 만약 셀#A의 서브프레임#Q과 셀#B의 서브프레임#P 상에 각각 D2D 신호 전송, WAN 상향링크 신호 전송이 (동시에) 수행되어야 한다면, 아래의 규칙에 따라, 셀#A 서브프레임#Q에서의 D2D 신호의 전송 전력을 결정할 수 있다.
다른 CELL(S) 상의 (일부 혹은 전부) 겹치는 서브프레임(시점)에서, D2D 신호 전송이 없다는 가정 하에서 계산된 (셀#B 서브프레임#P에서의) WAN 상향링크 신호 전송에 관련된 PCMAX(P) ("PCMAX_WO(P)") (혹은 PCMAX_L(P) ("PCMAXL_WO(P)")) 혹은 PCMAX,B(P)에 기반하여 셀#A 서브프레임#Q에서의 D2D 신호의 전송 전력을 결정할 수 있다.
일례로, 만약 개루프 전력제어/페루프 전력제어 파라미터에 의해 결정된 셀#B 서브프레임#P에서의 WAN 상향링크 신호의 전송 전력을 "WAN_CONP(P)"로 가정한다면, 해당 시점에서의 최종적인 WAN 상향링크 신호의 전송 전력("WAN_TXP(P)")는 MIN {PCMAX_WO(P), MIN {PCMAX,B(P), WAN_CONP(P)}}로 결정될 수 있다.
셀#B 서브프레임#P에서의 WAN 상향링크 신호 전송 뿐만 아니라, 사전에 정의된 (혹은 시그널링된) WAN 상향링크 신호가 D2D 신호의 전송에 관련된 자원 할당 개수/위치/변조 방식에 따라 함께 전송된다고 가정한 후에, 계산된 (셀#A 서브프레임#Q에서의) D2D 신호 전송에 관련된 PCMAX(Q(/P)) ("PCMAX_DW(Q(/P))") (혹은 PCMAX_L(Q(/P)) ("PCMAXL_DW(Q(/P))")) 혹은 PCMAX,A(Q(/P)) 에 기반하여 셀#A 서브프레임#Q에서의 D2D 신호의 전송 전력을 결정할 수 있다.
이러한 규칙은 (셀#B 서브프레임#P에서의) WAN 상향링크 신호 전송이 (셀#A 서브프레임#Q에서의) D2D 신호의 전송 전력(e.g., PCMAX_DW(P(/Q)) (혹은 PCMAXL_DW(P(/Q)))) 계산을 위한 기준으로 해석될 수 도 있다.
만약 개루프 전력제어 파라미터에 의해 결정된 셀#A 서브프레임#Q에서의 D2D 신호의 전송 전력을 "D2D_CONP(Q)"로 가정한다면, 해당 시점에서의 최종적인 D2D 신호의 전송 전력("D2D_TXP(Q)")는 MIN {(NEW_VAL - WAN_TXP(P)), MIN {PCMAX,A(Q), D2D_CONP(Q)}}로 결정될 수 있다. 여기서, 일례로, NEW VAL은 MIN {PCMAXL_WO(P), PCMAXL_DW(Q(/P))} (혹은 MAX {PCMAXL_WO(P), PCMAXL_DW(Q(/P))} 혹은 MIN {PCMAX_WO(P), PCMAX_DW(Q(/P))} 혹은 MAX {PCMAX_WO(P), PCMAX_DW(Q(/P))} 혹은 PCMAXL_WO(P) 혹은 PCMAXL_DW(Q(/P)))로 결정될 수 있다. 또한, 일례로, 상기 수식에서, D2D_TXP(Q) 결정 관련 NEW_VAL은 PPowerClass 혹은 MIN {PEMAX,A, PPowerClass}로 대체될 수 도 있다.
일례로, 만약 D2D_TXP(Q)가 WAN 상향링크 신호/D2D 신호의 동시 전송 상황에서의 사전에 정의된 (혹은 시그널링된) 방사 요건(EMISSION REQUIREMENT)을 만족시키지 못한다면, 방사 요건이 만족될 때까지, D2D_TXP(Q)를 우선적으로 낮추도록 규칙을 정의할 수 있다. 또 다른 일례로, 이러한 문제를 해결하기 위해서, 사전에 정의된 (혹은 시그널링된) 전력 오프셋 값이 (최종) D2D_TXP(Q)에 추가적으로 적용되도록 규칙이 정의될 수 도 있다. 또 다른 일례로, 만약 D2D_TXP(Q)가 WAN 상향링크 신호/D2D 신호의 동시 전송 상황에서의 사전에 정의된 (혹은 시그널링된) 방사 요건을 만족시키지 못한다면, 해당 D2D 신호 전송이 생략되도록 규칙이 정의될 수 도 있다.
도 13은 경우 (2)의 일 예이다.
도 13을 참조하면, 셀#A의 서브프레임#Q와 셀#B의 서브프레임#P는 시간적 동기가 맞지 않는 상태이며, D2D 신호를 전송하는 셀#A의 서브프레임#Q이 WAN 상향링크 신호를 전송하는 셀#B의 서브프레임#P, (P+1)와 일부씩 겹치는 상황이다.
(예시#5-5) 전술한 '경우 (2)' 또는 도 13과 같은 '경우 (2)'에 대한 변형 예와 같은 상황을 전제로 하여, 만약 셀#A의 서브프레임#Q, 셀#B의 서브프레임#P, 셀#B의 서브프레임#(P+1) 상에 각각 D2D 신호 전송, WAN 상향링크 신호 전송, WAN 상향링크 신호 전송이 (동시에) 수행되어야 한다면, 아래의 규칙에 따라, 셀#A 서브프레임#Q에서의 D2D 신호에 대한 전송 전력을 결정할 수 있다.
여기서, 일례로, (예시#5-5)는 WAN 상향링크 셀(반송파)이 D2D 셀(반송파)보다 선행(LEAD)하는 경우로 해석될 수 있다. 또한, 일례로, 도 13에서 셀#A의 서브프레임 인덱스 'Q'는 'K'로 가정되고, 셀#B의 서브프레임 인덱스 'P (/(P+1))'는 'K (/(K+1))'로 가정될 수 도 있다.
다른 CELL(S) 상의 (일부 혹은 전부) 겹치는 시점(들)에서, D2D 신호 전송이 없다는 가정 하에서 계산된, 셀#B 서브프레임#P에서의 WAN 상향링크 신호 전송 관련 PCMAX(P) ("PCMAX_WO(P)") (혹은 PCMAX_L(P) ("PCMAXL_WO(P)")) 혹은 PCMAX,B(P), 셀#B 서브프레임#(P+1)에서의 WAN 상향링크 신호 전송 관련 PCMAX(P+1) ("PCMAX_WO(P+1)") (혹은 PCMAX_L(P+1) ("PCMAXL_WO(P+1)")) 혹은 PCMAX,B(P+1)에 기반하여 셀#A 서브프레임#Q에서의 D2D 신호에 대한 전송 전력을 결정할 수 있다.
일례로, 만약 개루프 전력제어/페루프 전력제어 파라미터에 의해 결정된 셀 #B 서브프레임#P에서의 WAN 상향링크 신호의 전송 전력을 "WAN_CONP(P)"로 가정하고 셀#B 서브프레임#(P+1)에서의 WAN 상향링크 신호의 전송 전력을 "WAN_CONP(P+1)"로 가정한다면, 셀#B 서브프레임#P에서의 최종적인 WAN 상향링크 신호의 전송 전력("WAN_TXP(P)")는 MIN {PCMAX_WO(P), MIN {PCMAX,B(P), WAN_CONP(P)}}로 결정되고, 셀#B 서브프레임#(P+1)에서의 최종적인 WAN 상향링크 신호의 전송 전력("WAN_TXP(P+1)")는 MIN {PCMAX_WO(P+1), MIN {PCMAX,B(P+1), WAN_CONP(P+1)}}로 결정될 수 있다.
셀#B 서브프레임#P에서의 WAN 상향링크 신호 전송이 D2D 신호 전송에 관련된 자원 할당 개수/위치/변조 방식에 따라 셀#A 서브프레임#Q에서 전송되는 사전에 정의된 (혹은 시그널링된) WAN 상향링크 신호와 일부 겹치는 상황을 가정한 후에, 계산된 (셀#A 서브프레임#Q에서의) D2D 신호 전송 관련 PCMAX(P, Q) ("PCMAX_DW(P, Q)") (혹은 PCMAX_L(P, Q) ("PCMAXL_DW(P, Q)")) 혹은 PCMAX,A(P, Q)에 기반하여 셀#A 서브프레임#Q에서의 D2D 신호에 대한 전송 전력을 결정할 수 있다.
여기서, 일례로, 이러한 규칙은 (셀#B 서브프레임#P에서의) WAN 상향링크 신호 전송이 (셀#A 서브프레임#Q에서의) D2D 신호의 전송 전력(e.g., PCMAX_DW(P, Q) (혹은 PCMAXL_DW(P, Q))) 계산을 위한 기준으로 해석될 수 있다.
셀#B 서브프레임#(P+1)에서의 WAN 상향링크 신호 전송이 D2D 신호 전송에 관련된 자원 할당 개수/위치/변조 방식에 따라 셀#A 서브프레임#Q에서 전송되는 사전에 정의된 (혹은 시그널링된) WAN 상향링크 신호와 일부 겹치는 상황을 가정한 후에, 계산된 (셀#A 서브프레임#Q에서의) D2D 신호 전송에 관련된 PCMAX(Q, (P+1)) ("PCMAX_DW(Q, (P+1))") (혹은 PCMAX_L(Q, (P+1)) ("PCMAXL_DW(Q, (P+1))")) 혹은 PCMAX,A(Q, (P+1))에 기반하여 셀#A 서브프레임#Q에서의 D2D 신호에 대한 전송 전력을 결정할 수 있다.
여기서, 일례로, 이러한 규칙은 (셀#B 서브프레임#(P+1)에서의) WAN 상향링크 신호 전송이 (셀#A 서브프레임#Q에서의) D2D 신호의 전송 전력(e.g., PCMAX_DW(Q, (P+1)) (혹은 PCMAXL_DW(Q, (P+1)))) 계산을 위한 기준으로 해석될 수 도 있다.
일례로, PCMAX,A(P, Q)와 PCMAX,A(Q, (P+1))는 동일한 값을 가질 수 있다.
일례로, 만약 개루프 전력제어 파라미터에 의해 결정된 셀#A 서브프레임#Q에서의 D2D 신호의 전송 전력을 "D2D_CONP(Q)"로 가정한다면, 해당 시점에서의 최종적인 D2D 신호의 전송 전력("D2D_TXP(Q)")는 MIN {(NEW_VAL - MAX_WANVAL), MIN {PCMAX,A(Q, Q), D2D_CONP(Q)}}로 결정될 수 있다.
여기서, 일례로, NEW VAL은 MIN {PCMAXL_DW(P, Q), PCMAXL_DW(Q, (P+1))} (혹은 MAX {PCMAXL_DW(P, Q), PCMAXL_DW(Q, (P+1))} 혹은 MIN {PCMAX_DW(P, Q), PCMAX_DW(Q, (P+1))} 혹은 MAX {PCMAX_DW(P, Q), PCMAX_DW(Q, (P+1))} 혹은 PCMAXL_DW(P, Q) 혹은 PCMAXL_DW(Q, (P+1)) 혹은 PCMAX_DW(P, Q) 혹은 PCMAX_DW(Q, (P+1)))로 결정될 수 있다.
또한, 일례로, MAX_WANVAL은 MAX {WAN_TXP(P), WAN_TXP(P+1)}로 결정될 수 있다. 또한, 일례로, 상기 수식에서, D2D_TXP(Q) 결정 관련 NEW_VAL은 PPowerClass 혹은 MIN {PEMAX,A, PPowerClass}로 대체될 수 도 있다.
일례로, 만약 D2D_TXP(Q)가 WAN 상향링크 신호/D2D 신호의 동시 전송 상황에서의 사전에 정의된 (혹은 시그널링된) 방사 요건(EMISSION REQUIREMENT)를 만족시키지 못한다면, 방사 요건이 만족될 때까지, D2D_TXP(Q)를 우선적으로 낮추도록 규칙이 정의될 수 가 있다.
또 다른 일례로, 이러한 문제를 해결하기 위해서, 사전에 정의된 (혹은 시그널링된) 전력 오프셋 값이 (최종) D2D_TXP(Q)에 추가적으로 적용되도록 규칙이 정의될 수 도 있다.
또 다른 일례로, 만약 D2D_TXP(Q)가 WAN 상향링크 신호/D2D 신호의 동시 전송 상황에서의 사전에 정의된 (혹은 시그널링된) 방사 요건을 만족시키지 못한다면, 해당 D2D 신호의 전송을 생략하도록 규칙이 정의될 수 도 있다.
도 14는 '경우 (2)'에 대한 또 다른 변형 예이다.
도 14를 참조하면, 셀#A의 서브프레임#Q와 셀#B의 서브프레임#P는 시간적 동기가 맞지 않는 상태이며, D2D 신호를 전송하는 셀#A의 서브프레임#Q와 셀#B의 서브프레임#P가 일부 겹치는 상황이다.
(예시#5-6) 전술한 '경우 (2)' 또는 도 14에서 예시한 경우 (2)에 대한 변형 예에 대해, 일례로, 만약 셀#A의 서브프레임#Q, 셀#B의 서브프레임#P 상에 각각 D2D 신호 전송, WAN 상향링크 신호 전송이 (동시에) 수행되어야 한다면, 아래의 규칙에 따라, 셀#A 서브프레임#Q에서의 D2D 신호에 대한 전송 전력을 결정할 수 있다.
여기서, 일례로, (예시#5-6)은 D2D 셀(반송파)이 WAN 상향링크 셀(반송파)보다 선행(LEAD)하는 경우 (혹은 WAN 상향링크 셀(반송파)이 D2D 셀(반송파)보다 선행하는 경우)로 해석될 수 도 있다. 또한, 일례로, 도 14에서 셀#A의 서브프레임 인덱스 'Q'는 'K'로 가정되고, 셀#B의 서브프레임 인덱스 'P'는 '(K+1) (혹은 'K')'로 가정될 수 도 있다.
다른 셀 상의 (일부 혹은 전부) 겹치는 시점(서브프레임)에서, D2D 신호 전송이 없다는 가정 하에서 계산된, 셀#B 서브프레임#P에서의 WAN 상향링크 신호 전송에 관련된 PCMAX(P) ("PCMAX_WO(P)") (혹은 PCMAX_L(P) ("PCMAXL_WO(P)")) 혹은 PCMAX,B(P)에 기반하여 셀#A 서브프레임#Q에서의 D2D 신호에 대한 전송 전력을 결정할 수 있다.
일례로, 만약 개루프 전력제어/페루프 전력제어 파라미터에 의해 결정된 셀 #B 서브프레임#P에서의 WAN 상향링크 신호의 전송 전력을 "WAN_CONP(P)"로 가정한다면, 셀#B 서브프레임#P에서의 최종적인 WAN 상향링크 신호의 전송 전력("WAN_TXP(P)")는 MIN {PCMAX_WO(P), MIN {PCMAX,B(P), WAN_CONP(P)}}로 결정될 수 있다.
셀#B 서브프레임#P에서의 WAN 상향링크 신호 전송이, D2D 신호 전송과 관련된 자원 할당 개수/위치/변조 방식에 따라 셀#A 서브프레임#Q에서 전송되는 (사전에 정의되거나 시그널링된) WAN 상향링크 신호와 일부 겹치는 상황을 가정한 후에, 계산된 (셀#A 서브프레임#Q에서의) D2D 신호 전송에 관련된 PCMAX(Q, P) ("PCMAX_DW(Q, P)") (혹은 PCMAX_L(Q, P) ("PCMAXL_DW(Q, P)")) 혹은 PCMAX,A(Q, P)에 기반하여 셀#A 서브프레임#Q에서의 D2D 신호에 대한 전송 전력을 결정할 수 있다.
여기서, 일례로, 이러한 규칙은 (셀#B 서브프레임#P에서의) WAN 상향링크 신호 전송이 (셀#A 서브프레임#Q에서의) D2D 신호의 전송 전력(e.g., PCMAX_DW(Q, P) (혹은 PCMAXL_DW(Q, P))) 계산을 위한 기준으로 해석될 수 도 있다.
일례로, 만약 개루프 전력제어 파라미터에 의해 결정된 셀#A 서브프레임#Q에서의 D2D 신호의 전송 전력을 "D2D_CONP(Q)"로 가정한다면, 해당 시점에서의 최종적인 D2D 신호의 전송 전력("D2D_TXP(Q)")는 MIN {(NEW_VAL - MAX_WANVAL), MIN {PCMAX,A(Q, P), D2D_CONP(Q)}}로 결정될 수 있다.
여기서, 일례로, NEW VAL은 MIN {PCMAXL_WO(P), PCMAXL_DW(Q, P)} (혹은 MAX {PCMAXL_WO(P), PCMAXL_DW(Q, P)} 혹은 MIN {PCMAX_WO(P), PCMAX_DW(Q, P)} 혹은 MAX {PCMAX_WO(P), PCMAX_DW(Q, P)} 혹은 PCMAXL_WO(P) 혹은 PCMAXL_DW(Q, P) 혹은 PCMAX_WO(P) 혹은 PCMAX_DW(Q, P))로 결정될 수 있다.
또한, 일례로, MAX_WANVAL은 WAN_TXP(P)로 결정될 수 있다. 또한, 일례로, 상기 수식에서, D2D_TXP(Q) 결정 관련 NEW_VAL은 PPowerClass 혹은 MIN {PEMAX,A, PPowerClass}로 대체될 수 도 있다.
일례로, 만약 D2D_TXP(Q)가 WAN 상향링크 신호/D2D 신호의 동시 전송 상황에서의 사전에 정의된 (혹은 시그널링된) 방사 요건을 만족시키지 못한다면, 방사 요건이 만족될 때까지, D2D_TXP(Q)를 우선적으로 낮추도록 규칙이 정의될 수 가 있다. 또 다른 일례로, 이러한 문제를 해결하기 위해서, 사전에 정의된 (혹은 시그널링된) 전력 오프셋 값이 (최종) D2D_TXP(Q)에 추가적으로 적용되도록 규칙이 정의될 수 도 있다. 또 다른 일례로, 만약 D2D_TXP(Q)가 WAN 상향링크 신호/D2D 신호의 동시 전송 상황에서의 사전에 정의된 (혹은 시그널링된) 방사 요건을 만족시키지 못한다면, 해당 D2D 신호의 전송이 생략되도록 규칙이 정의될 수 도 있다.
도 15는 본 발명의 일 실시예에 따른 전력 제어 방법을 나타낸다.
도 15를 참조하면, 단말은 제1 셀(제1 반송파)의 제1 서브프레임, 제2 셀(제2 반송파)의 제2 서브프레임에 적용할 전송 전력을 결정한다(S151).
단말은 제1 셀의 제1 서브프레임에서 WAN 전송을 수행하고(S152), 제2 셀의 제2 서브프레임에서 D2D 동작에 따른 전송을 수행한다(S153).
이 때, 상기 제1 서브프레임과 상기 제2 서브프레임이 시간적으로 일부만 겹치는 경우, 상기 제1 셀의 상기 제1 서브프레임에 대해 결정되는 최대 출력 전력(PCMAX)에 기반하여, 상기 제1 서브프레임에서의 상기 WAN 전송 및 상기 제2 서브프레임에서의 상기 D2D 동작에 따른 전송에 대한 전송 전력을 결정할 수 있다. 즉, WAN 상향링크 셀(반송파) (혹은 WAN 상향링크 신호를 전송하는 서브프레임)가 (다른 셀(반송파)에서 수행되는) D2D 동작에 따른 전송 및 WAN 상향링크 전송에 관련된 PCMAX (그리고/혹은 PCMAX_L 그리고/혹은 PCMAX_H)를 계산하는데 기준(REFERENCE)이 될 수 있다.
상기 방법에서, 도 13과 같이 제1 서브프레임이 제2 서브프레임에 비해 시간적으로 앞서거나, 도 14와 같이 제1 서브프레임이 제2 서브프레임에 비해 시간적으로 뒤지는 상태일 수 있다. 상기 제1 셀 및 제2 셀은 서로 다른 주파수의 셀들일 수 있다. 제1,2셀은 차례로 제1,2 반송파로 표현될 수도 있다.
도 16는 편의 상 도 9의 부도면 (b)를 다시 나타낸 도면이다.
도 16를 참조하면, 셀#A의 서브프레임#Q(SF#Q), 서브프레임#Q+1(SF#Q+1)와 셀#B의 서브프레임#P(SF#P), 서브프레임#P+1(SF#P+1)가 시간적으로 정렬되어 있지 않다. 셀#A의 서브프레임#Q(SF#Q)와 셀#B의 서브프레임#P+1(SF#P+1)이 일부 겹치고 있으며, 셀#B의 서브프레임들이 셀#A의 서브프레임들에 비해 시간적으로 앞서있는 상황이다. 도 16는 '경우 (2)'를 나타낸다.
(예시#5-7) 도 16의 '경우 (2)'에 대해, 일례로, 만약 셀#A의 서브프레임#Q, 셀#A의 서브프레임#(Q+1), 셀#B의 서브프레임#P, 셀#B의 서브프레임#(P+1) 상에 각각 D2D 신호 전송, D2D 신호 전송, WAN 상향링크 신호 전송, WAN 상향링크 신호 전송이 (동시에) 수행되어야 한다면, 아래의 규칙에 따라, 셀#A 서브프레임#Q에서의 D2D 신호의 전송 전력, 셀#A 서브프레임#(Q+1)에서의 D2D 신호의 전송 전력이 결정되도록 규칙이 정의될 수 가 있다.
여기서, 일례로, (예시#5-7)는 WAN 상향링크 셀(반송파)이 D2D 셀(반송파)보다 선행 (LEAD)하는 경우로 해석될 수 도 있다. 또한, 일례로, 도 16에서 셀#A의 서브프레임 인덱스 'Q (/(Q+1))'는 'K (/(K+1))'로 가정되고, 셀#B의 서브프레임 인덱스 'P (/(P+1))'는 'K (/(K+1))'로 가정될 수 도 있다.
다른 셀 상의 (일부 혹은 전부) 겹치는 시점(서브프레임)에서, D2D 신호 전송이 없다는 가정 하에서 계산된, 셀#B 서브프레임#P에서의 WAN 상향링크 신호 전송에 관련된 PCMAX(P) ("PCMAX_WO(P)") (혹은 PCMAX_L(P) ("PCMAXL_WO(P)")) 혹은 PCMAX,B(P), 셀#B 서브프레임#(P+1)에서의 WAN 상향링크 신호 전송 관련 PCMAX(P+1) ("PCMAX_WO(P+1)") (혹은 PCMAX_L(P+1) ("PCMAXL_WO(P+1)")) 혹은 PCMAX,B(P+1)에 기반하여 셀#A 서브프레임#Q에서의 D2D 신호의 전송 전력, 셀#A 서브프레임#(Q+1)에서의 D2D 신호의 전송 전력이 결정될 수 있다.
일례로, 만약 개루프 전력제어/페루프 전력제어 파라미터에 의해 결정된 셀#B 서브프레임#P에서의 WAN 상향링크 신호의 전송 전력을 "WAN_CONP(P)"로 가정하고 셀#B 서브프레임#(P+1)에서의 WAN 상향링크 신호의 전송 전력을 "WAN_CONP(P+1)"로 가정한다면, 셀#B 서브프레임#P에서의 최종적인 WAN 상향링크 신호의 전송 전력("WAN_TXP(P)")는 MIN {PCMAX_WO(P), MIN {PCMAX,B(P), WAN_CONP(P)}}로 결정되고, 셀#B 서브프레임#(P+1)에서의 최종적인 WAN 상향링크 신호의 전송 전력 ("WAN_TXP(P+1)")는 MIN {PCMAX_WO(P+1), MIN {PCMAX,B(P+1), WAN_CONP(P+1)}}로 결정될 수 있다.
셀#B 서브프레임#P에서의 WAN 상향링크 신호의 전송이 D2D 신호 전송에 관련된 자원 할당 개수/위치/변조 방식에 따라 셀#A 서브프레임#Q에서 전송되는 사전에 정의된 (혹은 시그널링된) WAN 상향링크 신호와 일부 겹치는 상황을 가정한 후에, 계산된 (셀#A 서브프레임#Q에서의) D2D 신호 전송에 관련된 PCMAX(P, Q) ("PCMAX_DW(P, Q)") (혹은 PCMAX_L(P, Q) ("PCMAXL_DW(P, Q)")) 혹은 PCMAX,A(P, Q)에 기반하여 셀#A 서브프레임#Q에서의 D2D 신호의 전송 전력, 셀#A 서브프레임 #(Q+1)에서의 D2D 신호 전송 전력이 결정되도록 규칙이 정해질 수 있다.
여기서, 일례로, 이러한 규칙은 (셀#B 서브프레임#P에서의) WAN 상향링크 신호 전송이 (셀#A 서브프레임#Q에서의) D2D 신호의 전송 전력(e.g., PCMAX_DW(P, Q) (혹은 PCMAXL_DW(P, Q))) 계산을 위한 기준으로 해석될 수 도 있다.
셀#B 서브프레임#(P+1)에서의 WAN 상향링크 신호 전송이 (D2D 신호 전송에 관련된 자원 할당 개수/위치/변조 방식에 따라) 셀#A 서브프레임#Q에서 전송되는 사전에 정의된 (혹은 시그널링된) WAN 상향링크 신호와 일부 겹치는 상황을 가정한 후에, 계산된 (셀#A 서브프레임#Q에서의) D2D 신호 전송에 관련된 PCMAX(Q, (P+1)) ("PCMAX_DW(Q, (P+1))") (혹은 PCMAX_L(Q, (P+1)) ("PCMAXL_DW(Q, (P+1))")) 혹은 PCMAX,A(Q, (P+1))에 기반하여 셀#A 서브프레임#Q에서의 D2D 신호의 전송 전력, 셀#A 서브프레임#(Q+1)에서의 D2D 신호의 전송 전력을 결정하도록 규칙이 정의될 수 있다.
여기서, 일례로, 이러한 규칙은 (셀#B 서브프레임#(P+1)에서의) WAN 상향링크 신호 전송이 (셀#A 서브프레임#Q에서의) D2D 신호의 전송 전력(e.g., PCMAX_DW(Q, (P+1)) (혹은 PCMAXL_DW(Q, (P+1)))) 계산을 위한 기준으로 해석될 수 도 있다.
셀#B 서브프레임#(P+1)에서의 WAN 상향링크 신호 전송이 (D2D 신호 전송에 관련된 자원 할당 개수/위치/변조 방식에 따라) 셀#A 서브프레임#(Q+1)에서 전송되는 사전에 정의된 (혹은 시그널링된) WAN 상향링크 신호와 일부 겹치는 상황을 가정한 후에, 계산된 (셀#A 서브프레임#(Q+1)에서의) D2D 신호의 전송에 관련된 PCMAX((P+1), (Q+1)) ("PCMAX_DW((P+1), (Q+1))") (혹은 PCMAX_L((P+1), (Q+1)) ("PCMAXL_DW((P+1), (Q+1))")) 혹은 PCMAX,A((P+1), (Q+1))에 기반하여 셀#A 서브프레임#Q에서의 D2D 신호의 전송 전력, 셀#A 서브프레임#(Q+1)에서의 D2D 신호의 전송 전력이 결정되도록 규칙이 정의될 수 있다. 여기서, 일례로, 이러한 규칙은 (셀#B 서브프레임#(P+1)에서의) WAN 상향링크 신호 전송이 (셀#A 서브프레임#(Q+1)에서의) D2D 신호의 전송 전력(e.g., PCMAX_DW((P+1), (Q+1)) (혹은 PCMAXL_DW((P+1), (Q+1)))) 계산을 위한 기준으로 해석될 수 도 있다.
일례로, PCMAX,A(P, Q)와 PCMAX,A(Q, (P+1))는 동일한 값을 가질 수 있다.
일례로, 만약 개루프 전력제어 파라미터에 의해 결정된 셀#A 서브프레임#Q에서의 D2D 신호 전송 전력을 "D2D_CONP(Q)"로 가정한다면, 해당 시점에서의 최종적인 D2D 신호 전송 전력("D2D_TXP(Q)")는 MIN {(NEW_VAL - MAX_WANVAL), MIN {PCMAX,A(Q, Q), D2D_CONP(Q)}}로 결정될 수 있다. 여기서, 일례로, NEW VAL은 MIN {PCMAXL_DW(P, Q), PCMAXL_DW(Q, (P+1))} (혹은 MAX {PCMAXL_DW(P, Q), PCMAXL_DW(Q, (P+1))} 혹은 MIN {PCMAX_DW(P, Q), PCMAX_DW(Q, (P+1))} 혹은 MAX {PCMAX_DW(P, Q), PCMAX_DW(Q, (P+1))} 혹은 PCMAXL_DW(P, Q) 혹은 PCMAXL_DW(Q, (P+1)) 혹은 PCMAX_DW(P, Q) 혹은 PCMAX_DW(Q, (P+1)))로 결정될 수 있다. 또한, 일례로, MAX_WANVAL은 MAX {WAN_TXP(P), WAN_TXP(P+1)}로 결정될 수 있다. 또한, 일례로, 상기 수식에서, D2D_TXP(Q) 결정 관련 NEW_VAL은 PPowerClass 혹은 MIN {PEMAX,A, PPowerClass}로 대체될 수 도 있다.
일례로, 만약 개루프 전력제어 파라미터에 의해 결정된 셀#A 서브프레임#(Q+1)에서의 D2D 신호 전송 전력을 "D2D_CONP(Q+1)"로 가정한다면, 해당 시점에서의 최종적인 D2D 신호의 전송 전력("D2D_TXP(Q+1)")는 MIN {(NEW_VAL - MAX_WANVAL), MIN {PCMAX,A((Q+1), (Q+1)), D2D_CONP(Q+1)}}로 결정될 수 있다. 여기서, 일례로, NEW VAL은 MIN {PCMAXL_WO(P+1), PCMAXL_DW((P+1), (Q+1))} (혹은 MAX {PCMAXL_WO(P+1), PCMAXL_DW((P+1), (Q+1))} 혹은 MIN {PCMAX_WO(P+1), PCMAX_DW((P+1), (Q+1))} 혹은 MAX {PCMAX_WO(P+1), PCMAX_DW((P+1), (Q+1))} 혹은 PCMAXL_WO(P+1) 혹은 PCMAXL_DW((P+1), (Q+1)) 혹은 PCMAX_WO(P+1) 혹은 PCMAX_DW((P+1), (Q+1)))로 결정될 수 있다. 또한, 일례로, MAX_WANVAL은 WAN_TXP(P+1)로 결정될 수 있다. 또한, 일례로, 상기 수식에서, D2D_TXP(Q+1) 결정 관련 NEW_VAL은 PPowerClass 혹은 MIN {PEMAX,A, PPowerClass}로 대체될 수 도 있다.
또 다른 일례로, 만약 개루프 전력제어 파라미터에 의해 결정된 셀#A 서브프레임#Q에서의 D2D 신호 전송 전력을 "D2D_CONP(Q)"로 가정한다면, 해당 시점에서의 최종적인 D2D 신호 전송 전력("D2D_TXP(Q)")는 MIN {(NEW_VAL - MAX_WANVAL), MIN {PCMAX,A(Q, Q), D2D_CONP(Q)}}로 결정될 수 있다. 여기서, 일례로, NEW VAL은 MIN {PCMAXL_DW(P, Q), MIN {PCMAXL_DW(Q, (P+1)), PCMAXL_DW((P+1), (Q+1))}} (혹은 MAX {PCMAXL_DW(P, Q), MIN {PCMAXL_DW(Q, (P+1)), PCMAXL_DW((P+1), (Q+1))}} 혹은 MIN {PCMAX_DW(P, Q), MIN {PCMAX_DW(Q, (P+1)), PCMAX_DW((P+1), (Q+1))}} 혹은 MAX {PCMAX_DW(P, Q), MIN {PCMAX_DW(Q, (P+1)), PCMAX_DW((P+1), (Q+1))}} 혹은 PCMAXL_DW(P, Q) 혹은 MIN {PCMAXL_DW(Q, (P+1)), PCMAXL_DW((P+1), (Q+1))} 혹은 PCMAX_DW(P, Q) 혹은 MIN {PCMAX_DW(Q, (P+1)), PCMAX_DW((P+1), (Q+1))}로 결정될 수 있다. 또한, 일례로, MAX_WANVAL은 MAX {WAN_TXP(P), WAN_TXP(P+1)}로 결정될 수 있다. 또한, 일례로, 상기 수식에서, D2D_TXP(Q) 결정 관련 NEW_VAL은 PPowerClass 혹은 MIN {PEMAX,A, PPowerClass}로 대체될 수 도 있다.
또 다른 일례로, 만약 개루프 전력제어 파라미터에 의해 결정된 셀#A 서브프레임#(Q+1)에서의 D2D 신호의 전송 전력을 "D2D_CONP(Q+1)"로 가정한다면, 해당 시점에서의 최종적인 D2D 신호의 전송 전력("D2D_TXP(Q+1)")는 MIN {(NEW_VAL - MAX_WANVAL), MIN {PCMAX,A((Q+1), (Q+1)), D2D_CONP(Q+1)}}로 결정될 수 있다. 여기서, 일례로, NEW VAL은 MIN {MIN {PCMAXL_WO(P+1), PCMAXL_DW(Q, (P+1))}, PCMAXL_DW((P+1), (Q+1))} (혹은 MAX {MIN {PCMAXL_WO(P+1), PCMAXL_DW(Q, (P+1))}, PCMAXL_DW((P+1), (Q+1))} 혹은 MIN {MIN {PCMAX_WO(P+1), PCMAX_DW(Q, (P+1))}, PCMAX_DW((P+1), (Q+1))} 혹은 MAX {MIN {PCMAX_WO(P+1), PCMAX_DW(Q, (P+1))}, PCMAX_DW((P+1), (Q+1))} 혹은 MIN {PCMAXL_WO(P+1), PCMAXL_DW(Q, (P+1))} 혹은 PCMAXL_DW((P+1), (Q+1)) 혹은 MIN {PCMAX_WO(P+1), PCMAX_DW(Q, (P+1))} 혹은 PCMAX_DW((P+1), (Q+1))로 결정될 수 있다. 또한, 일례로, MAX_WANVAL은 WAN_TXP(P+1)로 결정될 수 있다. 또한, 일례로, 상기 수식에서, D2D_TXP(Q+1) 결정 관련 NEW_VAL은 PPowerClass 혹은 MIN {PEMAX,A, PPowerClass}로 대체될 수 도 있다.
일례로, 만약 D2D_TXP(Q), D2D_TXP(Q+1)가 WAN 상향링크 신호/D2D 신호의 동시 전송 상황에서의 사전에 정의된 (혹은 시그널링된) 방사 요건을 만족시키지 못한다면, 방사 요건이 만족될 때까지, D2D_TXP(Q), D2D_TXP(Q+1)를 우선적으로 낮추도록 규칙이 정의될 수 가 있다. 또 다른 일례로, 이러한 문제를 해결하기 위해서, 사전에 정의된 (혹은 시그널링된) 전력 오프셋 값이 (최종) D2D_TXP(Q) 그리고/혹은 D2D_TXP(Q+1)에 추가적으로 적용되도록 규칙이 정의될 수 도 있다. 또 다른 일례로, 만약 D2D_TXP(Q), D2D_TXP(Q+1)가 WAN 상향링크 신호/D2D 신호의 동시 전송 상황에서의 사전에 정의된 (혹은 시그널링된) 방사 요건을 만족시키지 못한다면, 해당 D2D 신호 전송이 생략되도록 규칙이 정의될 수 도 있다.
도 17은 D2D 신호의 전송과 WAN 상향링크 신호를 전송하는 타이밍을 나타내는 예이다.
도 17을 참조하면, 셀#A의 서브프레임Q+1(SF#Q+1)와 셀#B의 서브프레임 #P+1(SF#P+1)가 시간적으로 정렬되어 있지 않다. 셀#A의 서브프레임#Q(SF#Q), 서브프레임#Q+1에서는 D2D 신호 전송이 수행되고, 셀#B의 서브프레임#P+1(SF#P+1)에서는 WAN 상향링크 신호의 전송이 수행되는 상황이다.
(예시#5-8) '경우 (2)' 또는 도 17과 같은 타이밍에 있어서, 일례로, 만약 셀#A의 서브프레임#Q, 셀#A의 서브프레임#(Q+1), 셀#B의 서브프레임#(P+1) 상에 차례로 D2D 신호 전송, D2D 신호 전송, WAN 상향링크 신호 전송이 수행되어야 한다면, 아래의 규칙에 따라, 셀#A 서브프레임#Q에서의 D2D 신호의 전송 전력, 셀#A 서브프레임#(Q+1)에서의 D2D 신호의 전송 전력이 결정되도록 정할 수 있다.
여기서, 일례로, (예시#5-8)은 WAN 상향링크 셀(반송파)이 D2D 셀(반송파)보다 선행(LEAD)하는 경우로 해석될 수 도 있다. 또한, 일례로, 도 17에서 셀#A의 SF 인덱스 'Q (/(Q+1))'는 'K (/(K+1))'로 가정되고, 셀#B의 SF 인덱스 '(P+1)'는 '(K+1)'로 가정될 수 도 있다.
다른 셀 상의 (일부 혹은 전부) 겹치는 시점(서브프레임)에서, D2D 신호 전송이 없다는 가정 하에서 계산된, 셀#B 서브프레임#(P+1)에서의 WAN 상향링크 신호 전송에 관련된 PCMAX(P+1)("PCMAX_WO(P+1)") (혹은 PCMAX_L(P+1) ("PCMAXL_WO(P+1)")) 혹은 PCMAX,B(P+1)에 기반하여 셀#A 서브프레임#Q에서의 D2D 신호의 전송 전력, 셀#A 서브프레임#(Q+1)에서의 D2D 신호의 전송 전력을 결정할 수 있다.
일례로, 만약 개루프 전력 제어/페루프 전력 제어 파라미터에 의해 결정된 셀#B 서브프레임#(P+1)에서의 WAN 상향링크 신호의 전송 전력을 "WAN_CONP(P+1)"로 가정한다면, 셀#B 서브프레임#(P+1)에서의 최종적인 WAN 상향링크 신호의 전송 전력("WAN_TXP(P+1)")는 MIN {PCMAX_WO(P+1), MIN {PCMAX,B(P+1), WAN_CONP(P+1)}}로 결정될 수 있다.
셀#B 서브프레임#(P+1)에서의 WAN 상향링크 신호 전송이 (D2D 신호 전송에 관련된 자원 할당 개수/위치/변조 방식에 따라) 셀#A 서브프레임#Q에서 전송되는 사전에 정의된 (혹은 시그널링된) WAN 상향링크 신호와 일부 겹치는 상황을 가정한 후에, 계산된 (셀#A 서브프레임#Q에서의) D2D 신호 전송에 관련한 PCMAX(Q, (P+1)) ("PCMAX_DW(Q, (P+1))") (혹은 PCMAX_L(Q, (P+1)) ("PCMAXL_DW(Q, (P+1))")) 혹은 PCMAX,A(Q, (P+1))에 기반하여 셀#A 서브프레임#Q에서의 D2D 신호의 전송 전력, 셀#A 서브프레임#(Q+1)에서의 D2D 신호의 전송 전력을 결정할 수 있다. 이러한 규칙은 (셀#B 서브프레임#(P+1)에서의) WAN 상향링크 신호 전송이 (셀#A 서브프레임#Q에서의) D2D 신호의 전송 전력(e.g., PCMAX_DW(Q, (P+1)) (혹은 PCMAXL_DW(Q, (P+1)))) 계산을 위한 기준으로 해석될 수 도 있다.
셀#B 서브프레임#(P+1)에서의 WAN 상향링크 신호 전송이 D2D 신호 전송에 관련된 자원 할당 개수/위치/변조 방식에 따라 셀#A 서브프레임#(Q+1)에서 전송되는 사전에 정의된 (혹은 시그널링된) WAN 상향링크 신호와 일부 겹치는 상황을 가정한 후에, 계산된 (셀#A 서브프레임#(Q+1)에서의) D2D 신호 전송에 관련한 PCMAX((P+1), (Q+1)) ("PCMAX_DW((P+1), (Q+1))") (혹은 PCMAX_L((P+1), (Q+1)) ("PCMAXL_DW((P+1), (Q+1))")) 혹은 PCMAX,A((P+1), (Q+1))에 기반하여 셀#A 서브프레임#Q에서의 D2D 신호의 전송 전력, 셀#A 서브프레임#(Q+1)에서의 D2D 신호의 전송 전력을 결정할 수 있다. 여기서, 일례로, 이러한 규칙은 (셀#B 서브프레임#(P+1)에서의) WAN 상향링크 신호 전송이 (셀#A 서브프레임#(Q+1)에서의) D2D 신호의 전송 전력(e.g., PCMAX_DW((P+1), (Q+1)) (혹은 PCMAXL_DW((P+1), (Q+1)))) 계산을 위한 기준으로 해석될 수 있다.
일례로, 만약 개루프 전력 제어 파라미터에 의해 결정된 셀#A 서브프레임#Q에서의 D2D 신호의 전송 전력을 "D2D_CONP(Q)"로 가정한다면, 해당 시점에서의 최종적인 D2D 신호의 전송 전력("D2D_TXP(Q)")는 MIN {(NEW_VAL - MAX_WANVAL), MIN {PCMAX,A(Q, (P+1)), D2D_CONP(Q)}}로 결정될 수 있다. 여기서, 일례로, NEW VAL은 MIN {PCMAXL_WO(P+1), PCMAXL_DW(Q, (P+1))} (혹은 MAX {PCMAXL_WO(P+1), PCMAXL_DW(Q, (P+1))} 혹은 MIN {PCMAX_WO(P+1), PCMAX_DW(Q, (P+1))} 혹은 MAX {PCMAX_WO(P+1), PCMAX_DW(Q, (P+1))} 혹은 PCMAXL_WO(P+1) 혹은 PCMAXL_DW(Q, (P+1)) 혹은 PCMAX_WO(P+1) 혹은 PCMAX_DW(Q, (P+1))로 결정될 수 있다. 또한, 일례로, MAX_WANVAL은 WAN_TXP(P+1)로 결정될 수 있다. 또한, 일례로, 상기 수식에서, D2D_TXP(Q) 결정 관련 NEW_VAL은 PPowerClass 혹은 MIN {PEMAX,A, PPowerClass}로 대체될 수 도 있다.
일례로, 만약 개루프 전력 제어 파라미터에 의해 결정된 셀#A 서브프레임#(Q+1)에서의 D2D 신호의 전송 전력을 "D2D_CONP(Q+1)"로 가정한다면, 해당 시점에서의 최종적인 D2D 신호의 전송 전력("D2D_TXP(Q+1)")는 MIN {(NEW_VAL - MAX_WANVAL), MIN {PCMAX,A((P+1), (Q+1)), D2D_CONP(Q+1)}}로 결정될 수 있다. 여기서, 일례로, NEW VAL은 MIN {PCMAXL_WO(P+1), PCMAXL_DW((P+1), (Q+1))} (혹은 MAX {PCMAXL_WO(P+1), PCMAXL_DW((P+1), (Q+1))} 혹은 MIN {PCMAX_WO(P+1), PCMAX_DW((P+1), (Q+1))} 혹은 MAX {PCMAX_WO(P+1), PCMAX_DW((P+1), (Q+1))} 혹은 PCMAXL_WO(P+1) 혹은 PCMAXL_DW((P+1), (Q+1)) 혹은 PCMAX_WO(P+1) 혹은 PCMAX_DW((P+1), (Q+1)))로 결정될 수 있다. 또한, 일례로, MAX_WANVAL은 WAN_TXP(P+1)로 결정될 수 있다. 또한, 일례로, 상기 수식에서, D2D_TXP(Q+1) 결정 관련 NEW_VAL은 PPowerClass 혹은 MIN {PEMAX,A, PPowerClass}로 대체될 수 도 있다.
일례로, 만약 D2D_TXP(Q), D2D_TXP(Q+1)가 WAN 상향링크 신호/D2D 신호의 동시 전송 상황에서의 사전에 정의된 (혹은 시그널링된) 방사 조건을 만족시키지 못한다면, 방사 조건이 만족될 때까지, D2D_TXP(Q), D2D_TXP(Q+1)를 우선적으로 낮추도록 규칙이 정의될 수 가 있다. 또 다른 일례로, 이러한 문제를 해결하기 위해서, 사전에 정의된 (혹은 시그널링된) 전력 오프셋 값이 (최종) D2D_TXP(Q) 그리고/혹은 D2D_TXP(Q+1)에 추가적으로 적용되도록 규칙이 정의될 수 도 있다. 또 다른 일례로, 만약 D2D_TXP(Q), D2D_TXP(Q+1)가 WAN 상향링크 신호/D2D 신호의 동시 전송 상황에서의 사전에 정의된 (혹은 시그널링된) 방사 조건을 만족시키지 못한다면, 해당 D2D 신호 전송이 생략되도록 규칙이 정의될 수 도 있다.
일례로, 아래 일부 혹은 모든 방법의 적용을 통해서, D2D 신호의 전송 전력이 도출/결정되도록 규칙이 정의될 수 가 있다.
아래의 규칙들은 발견(discovery)과 D2D 통신이 모두 가능한 단말, 또는 발견신호 전송과 D2D 통신 전송을 동시에 수행하고 있거나, 상위 계층 시그널링을 통해 발견과 D2D 통신이 모두 설정된 단말, 또는 발견만 가능(발견 전송만을 수행하고 있거나 혹은 상위 계층 시그널링을 통해 발견만 설정된) 단말, 또는 D2D 통신만 가능한(또는 D2D 통신 전송만을 수행하고 있거나 혹은 상위 계층 시그널링을 통해 D2D 통신만 설정된) 단말에게만 한정적으로 적용될 수도 있다.
또한, 일례로, 아래의 규칙들에서 발견과 D2D 통신이 모두 가능한(혹은 발견 전송과 D2D 통신 전송을 동시에 수행하고 있거나 혹은 상위 계층 시그널링을 통해 발견과 D2D 통신이 설정된) 단말 (혹은 발견만 지원 가능하거나 (혹은 발견 전송 만을 수행하고 있는 혹은 상위 계층 시그널링을 통해 발견 만이 설정된) 단말 혹은 D2D 통신만 가능하거나 (혹은 D2D 통신 전송 만을 수행하고 있는 혹은 상위 계층 시그널링을 통해 D2D 통신 만이 설정된) 단말이 전송하는 (발견 그리고/혹은 D2D 통신 관련) PSSS (그리고/혹은 PSBCH)의 전송 전력은, 1) SIB 19 그리고/혹은 SIB 18의 존재 (혹은 디코딩 가능) 여부, 2) D2D 통신의 'syncConfig' 그리고/혹은 발견의 'syncConfig'의 존재 (혹은 디코딩 가능) 여부에 따라, MIN {최대 D2D 통신 전송 전력 값, 최대 발견 전송 전력 값} (혹은 MAX {최대 D2D 통신 전송 전력 값, 최대 발견 전송 전력 값 } 혹은 최대 D2D 통신 전송 전력 값 혹은 최대 발견 전송 전력 값)을 PEMAX,C 파라미터에 대입하여, (발견 그리고/혹은 D2D 통신 전송 관련) PSSS (그리고/혹은 PSBCH)의 전송 전력 결정 시에 이용되는 PCMAX,C(N) (그리고/혹은 PCMAX(N)) 값을 계산할 수 있다.
이하에서는, 서로 다른 반송파에서 WAN에 따른 상향링크 전송과 D2D 전송(사이드링크 전송)을 수행할 경우, D2D 전송 전력으로 인해 WAN에 따른 상향링크 전송의 전송 전력에 영향을 미치는 것을 방지하기 위한 방법에 대해 설명한다.
현재, 사이드링크(sidelink) 채널 및 사이드링크 신호의 전송 전력(transmission power)은 개루프 전력 제어에 기반한 출력 값과 최대 전력 간에서 더 작은 값으로 결정된다. 예를 들어, 모드 2에 따른 PSSCH에 대한 전송 전력은 다음 식과 같이 결정될 수 있다.
[식 26]
상기 식에서, PCMAX,PSSCH는 PSSCH가 전송되는 사이드링크 서브프레임에 대응하는 상향링크 서브프레임에 대해 단말에 의하여 결정되는 PCMAX,c 값이다. MPSSCH는 자원 블록의 개수로 표현된 PSSCH 자원 할당의 대역이고, PL은 경로 손실 값을 나타낸다.
여기서, PCMAX,c는 다양한 파라미터들을 이용하여 결정되는데, 상기 파라미터들 중 하나가 PEMAX이다. PEMAX는 SIB1에서 정의하고 있는 정보 요소인 P-Max에 의하여 주어지는 값이다.
한편, D2D 전송을 위한 최대 전력의 설정을 위한 파라미터들이 논의되고 있다. 예를 들어, 상기 파라미터에는 'discMaxTxPower', 'maxTxPower'등이 있다. 'discMaxTxPower'는 발견을 위한'ProseDiscTxPowerInfo'라는 정보 요소(IE)에 포함될 수 있고, 'maxTxPower'는 셀 커버리지 바깥에서의 D2D 통신을 위한 'ProsePreconfiguration'이라는 정보 요소에 포함될 수 있다.
단말이 사이드링크 전송 전력을 결정하는 과정을 완결하기 위해서는 각 사이드링크 채널/신호에 대한 PCMAX,c를 정의하는 것이 필요하다.
이를 위한 한 가지 방법은 설정 가능한 파라미터인 PEMAX를 해당 사이드링크 전송에 관련된 파라미터 값으로 주는 것이다.
전술한 바와 같이, PSDCH를 위한 PCMAX,c를 계산할 때, 'discMaxTxPower'에 의하여 지시되는 값이 PEMAX 값으로 설정된다. 또한, 셀 커버리지 바깥의 PSCCH,PSSCH를 위한 PCMAX,c를 계산할 때, 'maxTxPower'에 의하여 지시되는 값이 PEMAX 값으로 설정된다. 셀 커버리지 내의 D2D 통신을 위한 설정은 없는 상태이며 현존하는 파라미터인 P-Max가 재사용된다.
한편, SLSS, PSBCH의 최대 전력을 어떻게 결정할 것인지가 문제된다. 이 용도를 위하여 설정될 수 있는 특정 파라미터가 없으므로, 다른 사이드링크 채널에 사용되는 파라미터들이 재사용되는 것이 필요할 수 있다.
여기서, SLSS/PSBCH의 전송을 유발한 사이드링크 채널에 사용되는 파라미터들과 상기 SLSS/PSBCH 전송에 대한 파라미터는 동일하게 사용하는 것이 바람직하다. 왜냐하면, SLSS/PSBCH의 커버리지는 SLSS/PSBCH를 유발한 사이드링크 채널의 커버리지와 유사할 것이기 때문이다.
동일 파라미터를 사용하지 않는다면, SLSS/PSBCH와 이를 유발한 사이드링크 채널의 커버리지가 서로 달라지게 될 것이다. 예를 들어, SLSS/PSBCH가 항상 SIB1에 포함된 P-Max를 이용한다면, 발견 만을 지원하는 네트워크가 셀 간 간섭을 고려하여 PUSCH의 최대 전력을 제한하기를 원할 경우 SLSS의 커버리지가 발견의 제한요소(bottleneck)가 될 것이다.
한편, 서브프레임 내에서의 SLSS/PSBCH 전송은, 셀 커버리지 내의 단말이 D2D 통신 및 발견을 모두 전송할 경우, D2D 통신 및 발견에 의하여 동시에 유발(triggering)될 수 있다. 이 때, 다음 2가지 방법들이 고려될 수 있다.
1. 첫째 방법은 'discMaxTxPower'와 'P-Max' 간에서 최대 값을 취하는 것이다. 이 방법은 SLSS/PSBCH가 D2D 발견 및 D2D 통신 모두의 커버리지를 망라(cover)할 수 있다는 장점이 있다. 그러나, 이 방법은 특정 단말이 발견 신호를 전송하는 발견 자원 풀에 관련된 SLSS 서브프레임에서 PSBCH를 위한 최대 전력 파라미터를 변경시킬 수 있으므로 S-RSRP가 변동하는 문제가 있다.
이하의 논의는 서브프레임 단위로 SLSS 트리거링 조건이 변경되는 것을 가정한다. 예를 들어, 제1 서브프레임에서는 D2D 통신 및 발견 모두에 의하여 SLSS 전송이 트리거링되고, 제2 서브프레임에서는 D2D 통신에 의해서만 SLSS 전송이 트리거링될 수 있다. 예를 들어, 발견 신호 전송을 위한 자원 풀(resource pool)의 첫번째 서브프레임이면서 D2D 통신 전송을 위한 PSCCH (Physical Sidelink Control Channel) 주기에 포함되는 서브프레임이 상기 제1 서브프레임이 될 수 있다. 그리고, D2D 통신 만에 의해(D2D 통신만을 위해) 40ms 후에 SLSS가 트리거링될 수 있는데 이 때의 서브프레임이 상기 제2 서브프레임이 될 수 있다.
2. 두번째 방법은 P-Max 값을 취하는 것이다. 이 방법에 의하면, S-RSRP 변동을 피할 수 있는 장점이 있다.
3. 세번째 방법은 'discMaxTxPower' 값을 취하는 것이다.
PSDCH와 SLSS/PSBCH의 커버리지 간의 차이점이 발생하는 문제를 해결하기 위해 네트워크는 D2D 통신의 커버리지 및 PUSCH의 최대 전력을 고려하여 P-Max 값을 증가시킴으로써 문제를 해결할 수 있다.
사이드링크 전송의 최대 전력을 PCMAX,c라고 하면, PEMAX를 다음과 같이 설정함으로써 얻을 수 있다.
여기서, D2D 통신을 위해 트리거링되었다는 것은 특정 서브프레임에서의 SLSS/PSBCH 전송이 다음 경우에 의하여 트리거링된 것을 의미한다.
1) 단말이 D2D 통신을 할 수 있고, 기지국이 전용 신호를 통해 상기 단말에게 SLSS/PSBCH 전송을 지시한 경우, 2) 서빙 셀의 RSRP가 SLSS/PSBCH 전송을 위해 설정된 문턱치보다 낮고 SLSS/PSBCH 전송을 위한 서브프레임들에 포함된 PSCCH 주기에서 PSCCH 또는 PSSCH를 전송하는 경우.
한편, 다중 반송파 운용에서 전력 제한이 발생하면, 사이드링크 서브프레임에서 D2D 전송 전력은 일정한 전력 수준으로 줄여서 WAN 상향링크 전송 전력에 영향을 미치지 않게 할 수 있다. 단말은 각 채널의 전송 전력을 계산하여 합한 결과가 지원할 수 있는 최대 전력을 초과할 경우 D2D 전송 전력을 줄일 수 있다.
D2D 전송이 하나의 반송파에서만 발생하는 경우를 고려해 보자.
이하에서, 는 반송파 c를 제외한 반송파들에서 상향링크 서브프레임 i에서의 상향링크 전송 전력의 합(sum)이다. 상기 상향링크 전송 전력 합은 기존 WAN 상향링크 전력 제어에 따라 수행할 수 있다. 이는 반송파 c에서의 사이드링크 전송을 고려하지 않고 계산된다.
여기서, 일례로, 반송파#C (즉, 사이드링크 전송이 수행되는 반송파)를 제외한 (WAN 상향링크 전송이 수행되는) 나머지 반송파들 중에, 특정 반송파 #X의 서브프레임 i 상에서 PUSCH 전송(즉, P_PUSCH의 전송 전력으로 수행됨)와 SRS 전송 (즉, P_SRS의 전송 전력으로 수행됨)가 동시에 수행될(혹은 설정될) 경우, 를 계산할 때 해당 반송파#X의 서브프레임 i에서의 WAN 상향링크 전송 전력은 P_PUSCH와 P_SRS 중의 최대값(혹은 최소값)으로 간주(혹은 가정)되도록 규칙이 정의될 수 도 있다.
또 다른 일례로, 반송파#C (즉, 사이드링크 전송이 수행되는 반송파)를 제외한 (WAN 상향링크 전송이 수행되는) 나머지 반송파들 중에, 특정 반송파#Y의 서브프레임 i 상에서 PUCCH 전송(즉, P_PUCCH의 전송 전력으로 수행됨)와 SRS 전송 (즉, P_SRS의 전송 전력으로 수행됨)가 동시에 수행될 (혹은 설정될) 경우, 를 계산할 때 해당 반송파#Y의 서브프레임 i에서의 WAN 상향링크 전송 전력은 P_PUCCH와 P_SRS 중의 최대값 (혹은 최소값)으로 간주 (혹은 가정)되도록 규칙이 정의될 수 도 있다.
여기서, 일례로, 반송파#Y의 서브프레임 i 상에서 PUCCH와 SRS의 동시 전송은 (반송파#Y에) HARQ-ACK과 SRS의 동시 전송이 설정된 경우 (혹은 짧은 PUCCH 포맷(SHORTENED PUCCH FORMAT)이 설정된 경우)로 해석될 수 도 있다.
는 반송파 c의 서브프레임 k에서의 사이드링크 전송에 사용할 수 있는 전력을 나타낸다. 이 때, 다른 반송파의 상향링크 서브프레임 i가 상기 서브프레임 k와 시간적으로 겹친다는 것을 전제로 한다.
도 18은 반송파 c의 서브프레임 k와 반송파 x의 서브프레임 i가 겹치는 것을 나타낸다.
도 18을 참조하면, 서로 다른 반송파인 반송파 c, 반송파 x의 서브프레임 k와 서브프레임 i가 시간적으로 겹치고 있다. 서브프레임 k에서는 사이드링크 전송 즉, D2D 동작에 따른 신호 전송이 수행되고, 서브프레임 i에서는 WAN 상향링크 전송이 수행된다.
도 18과 같은 상황에서, 가 단말이 지원할 수 있는 최대 전력인 보다 작다면, 각 반송파에서의 전송이 서로 영향을 미치지 않고 추가적인 전력 감소는 불필요하다. 여기서, 는 WAN 상향링크 전송과 사이드링크 전송이 동시에 수행된다는 것을 고려하여 계산되어야 하며, 이 때, 사이드링크 전송은 대역 조합/변조/자원 등의 파라미터가 PUSCH 전송과 동일함을 전제로 하여야 한다.
[식 27]
상기 식에서 w(k,i)는 스케일링 팩터(scaling factor)이며 0부터 1까지의 값들 중 선택될 수 있다.
도 19은 사이드링크 서브프레임이 복수의 상향링크 서브프레임들과 겹치는 경우를 예시한다.
도 19을 참조하면, 반송파 c의 서브프레임 k는 반송파 x의 서브프레임 i, i+1과 일부분씩 시간적으로 겹치고 있다. 서브프레임 k에서는 사이드링크 전송이 수행되고, 서브프레임 i, i+1에서는 WAN 상향링크 전송이 수행된다.
이러한 경우, 일정한 사이드링크 전송 전력을 실현하기 위해서, 단말은 사이드링크 서브프레임 k와 겹치는 모든 상향링크 서브프레임들(즉, 서브프레임 i, i+1)에 대한 를 계산한 후 그 중에서 가장 작은 것을 취한다. 즉, 최종적인 사이드링크 전송 전력은 다음 식과 같이 주어진다.
[식 28]
이제, 도 18, 19과 같이 서로 다른 반송파에서 사이드링크 전송(D2D 동작에 따른 전송)과 WAN 상향링크 전송이 시간적으로 서로 겹치는 경우에 전송 전력 결정 방법에 대해 설명한다.
도 20은 본 발명의 일 실시예에 따른 상향링크 전송 전력 결정 방법을 나타낸다.
도 20을 참조하면, 단말은 각 반송파에서의 전송 전력을 독립적으로 계산한다(S191). 예를 들어, 사이드링크 전송을 수행하는 반송파 C에 대해 전송 전력을 계산하고, WAN 상향링크 전송을 수행하는 반송파 X에 대해 전송 전력을 계산한다.
단말은 독립적으로 계산된 각 반송파의 전송 전력의 합이 지원 가능한 최대 전력보다 큰 경우, 사이드링크 전송 전력을 감소시킨다(S192). 여기서, 사이드링크 전송을, 다른 반송파에서의 WAN 상향링크 전송과 같이 취급(예를 들어, 사이드링크 전송에 관련된 파라미터들이 WAN 상향링크 전송에 적용되었다고 가정)하여 상기 지원 가능한 최대 전력을 계산 (예를 들어, 반송파 C와 반송파 X 상에 WAN 상향링크 전송들이 동시에 발생된 기존 상황과 동일하게 간주(/해석)할 수 있음) 할 수 있다. 다시 말해, 상기 지원 가능한 최대 전력은 사이드링크 전송을 WAN 상향링크 전송으로 간주하여 계산되는데, 이 때 상기 WAN 상향링크 전송에는 상기 사이드링크 전송과 동일한 파라미터들이 사용됨을 가정한다는 것이다.
예를 들어, 제1 반송파에서 수행되는 WAN 전송을 위한 전송 전력을 제1 전송 전력이라 하고, 제2 반송파에서 수행되는 D2D 동작에 따른 전송을 위한 전송 전력을 제2 전송 전력이라 하면, 상기 제1,2 전송 전력을 독립적으로 계산하고, 제1 전송 전력 및 제2 전송 전력의 합이 상기 단말의 지원 가능한 최대 전력보다 큰 경우, 상기 제2 전송 전력을 감소시키는 것이다.
이 때, 상기 WAN 전송과 상기 D2D 동작에 따른 전송은 동시에 수행되며, 상기 제1 반송파와 상기 제2 반송파는 서로 다른 주파수의 반송파들이다.
또한, 상기 단말이 지원 가능한 최대 전력은 상기 D2D 동작에 따른 전송을 상기 WAN 전송처럼 취급하여 계산 (예를 들어, 제1 반송파와 제 2반송파 상에 WAN 상향링크 전송들이 동시에 발생된 기존 상황과 동일하게 간주(/해석)할 수 있음) 될 수 있다.
예를 들어, 사이드링크 전송 관련 파라미터들이 동일하게 WAN 상향링크 전송에 적용되었다고 가정하여 제2 전송 전력을 계산한 후, 해당 제2 전송 전력과 제1 전송 전력을 기반으로 (혹은 이용하여) 상기 단말이 지원 가능한 최대 전력을 계산할 수 있다.
즉, 도 20의 방법에 의하면, 사이드링크 전송에 할당되는 전송 전력은, 지원 가능한 최대 전력에서 WAN 상향링크 전송에 먼저 전력을 할당한 후의 나머지보다 클 수 없다. 이러한 방법에 의하면, 일례로, 사이드링크 전송 전력의 할당은 WAN 상향링크 전송에 영향을 미치지 않게 된다.
이하에서는 (비-서빙 반송파/주파수에서의) D2D 통신을 위한 (비-서빙 반송파/주파수 상에서의) 셀 선택과 셀 재선택 동작 그리고/혹은 PLMN 내(INTRA-PLMN)/PLMN 간(INTER-PLMN) 상황 하에서의 교차 풀 설정(CROSS-POOL CONFIGURATION) 동작에 대해 설명한다.
다음 설명하는 요건은 RRC 아이들 상태 및 RRC 연결 상태인 단말에게 적용될 수 있다. 단말이 비-서빙 주파수에서 D2D 통신을 수행하고자 하는 경우, 셀 선택 및 주파수 내(intra-frequency) 재선택 목적을 위해 상기 비-서빙 주파수에 대한 측정을 수행한다. 만약, 단말이 D2D 통신을 수행하도록 설정된 상기 주파수에서 S-기준(criterion)을 만족하는 적어도 하나의 셀을 검출한 경우, 상기 단말은 D2D 통신과 관련하여 상기 주파수에서 셀 커버리지 내에 있다고 간주한다. 만약, 상기 주파수에서 S-기준을 만족하는 어떤 셀도 검출하지 못하면 D2D 통신과 관련하여 셀 커버리지 바깥에 있다고 간주한다.
D2D 통신을 위한 비-서빙 주파수에서 셀을 선택하면, 단말은 상기 주파수에서 D2D 통신을 위한 더 나은 셀을 선택하기 위한 주파수 내 재선택 과정을 수행할 수있다. 이 때, D2D 통신을 위해 선택된 셀에서 브로드캐스트하는 재선택 관련 파라미터들에 따라 상기 재선택 과정을 수행할 수 있다.
D2D 통신을 위해 미리 설정된 반송파가 가장 높은 셀 재선택 우선 순위를 가진다고 간주할 수 있다.
만약, D2D 통신을 위해 설정된 주파수가 서빙 주파수라면, 단말은 D2D 통신을 위한 상기 주파수의 서빙 셀을 이용한다.
PLMN 내에서는, RRC 신호를 통해 다른 반송파에서 발견 신호를 전송하도록 설정하는 것이 허용될 수 있다. RRD 신호는 프라이머리 주파수가 아닌 주파수에 대해 타입 1 또는 타입 2 발견 설정을 설정하는데 사용될 수 있다.
PLMN 간에서는, 상위 계층에 의하여 발견 신호 전송을 위한 PLMN 간 인증이 제어되는지 여부에 대한 SA2 지침이 필요하다.
만약, 네트워크가 PLMN간 정보를 가지고 있다면, 상기 네트워크는 PLMN 내 경우와 유사하게 단말을 설정할 수 있다. PLMN 간 협력이 항상 가능한 것은 아니다. 협력되지 않는 PLMN 간에서는 단말은 사용한 전송/수신 자원을 알기 위해 해당 반송파 주파수의 SIB19를 읽을 수 있다.
D2D 동작을 수행하는 주파수에 기지국이 전혀 없는 경우에는 셀 커버리지 바깥에서의 D2D 발견 동작이 지원될 수 있다.
이하에서, 특정 D2D 신호를 전송하는 단말의 프라이머리 주파수가 아닌 주파수/반송파(비-프라이머리 주파수/반송파라 칭함) (그리고/혹은 비-서빙 반송파/주파수)를 "NP_FRQ"로 명명한다. "NP_FRQ"상에서 D2D 채널/신호 전송 동작을 수행할 때, D2D 전송 전력을 효율적으로 설정하는 방법을 제안한다.
여기서, D2D 신호를 전송하는 단말의 프라이머리 반송파/주파수 (그리고/혹은 서빙 반송파/주파수)를 "PR_FRQ"로 명명한다. NP_FRQ는 PR_FRQ와 PLMN 간(혹은 PLMN 내) 그리고/혹은 주파수 간(혹은 주파수 내) (그리고/혹은 인접한 주파수(혹은 동일 주파수)의 관계를 가질 수 가 있다.
[제안 방법#6] NP_FRQ 상의 비-서빙 셀 관련 경로 손실(PL) 추정은 다양한 이유로 PR_FRQ 상의 서빙 셀 관련 경로 손실 추정에 비해 부정확할 수 가 있다. 왜냐하면, (1) 특정 시간 구간 내에 얻을 수 있는 NP_FRQ 상의 비-서빙 셀 관련 측정 샘플 수가 PR_FRQ 상의 서빙 셀 관련 측정 샘플 수에 비해 상대적으로 적을 수 있기 때문이다. 여기서, 일례로, 빠르게 이동하는 단말의 D2D 신호 전송의 경우, 상대적으로 적게 얻은 NP_FRQ 비-서빙 셀 관련 측정 샘플 조차도 부정확할 수 있기 때문에, 사전에 정의된 (혹은 시그널링된) 측정 요건을 만족시키기 위해서는 더 많은 시간 (및 측정 샘플)이 요구될 수 있다. 또한, (2) NP_FRQ에서의 D2D 채널/신호 전송 동작 관련 전력을 결정하는 경로 손실 추정이 NP_FRQ 비-서빙 셀이 아닌 사전에 정의된 (혹은 시그널링된) 다른 (반송파/주파수 상의) 셀로 정의될 수 있기 때문이다.
일례로, 부정확한 NP_FRQ 비-서빙 셀 관련 경로 손실 추정은 정확하지 않은 NP_FRQ 상의 D2D 채널/신호 전송 전력 결정으로 이어지게 되고, 이는 비-서빙 셀 (그리고/혹은 서빙 셀 (e.g., NP_FRQ와 PR_FRQ가 인접 주파수의 관계를 가질 경우))의 WAN (UL(/DL)) 통신 (그리고/혹은 D2D 통신)에 바람직하지 않은 간섭을 주게 되거나 (e.g., NP_FRQ D2D 전송 전력이 과도하게 높게 결정된 경우) 혹은 NP_FRQ 상의 D2D 채널/신호 전송 성능을 저하 (e.g., NP_FRQ D2D 전송 전력이 과도하게 낮게 결정된 경우) 시킬 수 있다.
이러한 문제를 완화시키기 위해서, NP_FRQ D2D 채널/신호 전송 동작을 수행하는 단말로 하여금, 아래의 (일부 혹은 모든) 규칙을 따르도록 설정할 수 있다.
여기서, D2D 채널/신호 전송 관련 전력 제어 파라미터는 개루프/페루프 전력제어 파라미터 그리고/혹은 최대 (허용) D2D 전송 전력으로 해석될 수 있다.
(규칙#6-1) PR_FRQ 상의 서빙 셀이 NP_FRQ D2D 채널/신호 전송 관련 전력 제어 파라미터(i.e., "NPPCPARA_SV"로 명명)를 시그널링 (혹은 설정)한 경우, D2D 신호를 전송하는 단말은 NP_FRQ 비-서빙 셀로부터 (사전에 정의된 시그널 수신 (e.g., SIB)을 통해) 획득한 (NP_FRQ D2D 채널/신호 전송 관련) 전력 제어 파라미터(i.e., "NPPCPARA_NS"로 명명)을 무시하고, NPPCPARA_SV 기반으로 NP_FRQ D2D 채널/신호 전송 전력을 결정할 수 있다.
여기서, 일례로, PR_FRQ 상의 서빙 셀이 NPPCPARA_SV를 시그널링 (혹은 설정)해주지 않은 경우에는 상기 단말로 하여금, (NP_FRQ 비-서빙 셀로부터 (사전에 정의된 시그널 수신을 통해) 획득한) NPPCPARA_NS 기반으로 NP_FRQ D2D 채널/신호전송 전력을 결정할 수 있다.
PR_FRQ 관련 D2D 채널/신호 자원 풀 정보 그리고/혹은 D2D 채널/신호 전송 전력 정보 (혹은 PR_FRQ와 주파수 내(혹은 PLMN 내) 관계에 있는 반송파(혹은 주파수) 상의 D2D 채널/신호 자원 풀 정보 그리고/혹은 D2D 채널/신호 전송 전력 정보)를 알려주는 채널 (e.g., SIB)과 NP_FRQ 관련 D2D 채널/신호 자원 풀 정보 그리고/혹은 D2D 채널/신호 전송 전력 정보 (혹은 PR_FRQ와 주파수 간 (혹은 PLMN 간) 관계에 있는 반송파(혹은 주파수) 상의 D2D 채널/신호 자원 풀 정보 그리고/혹은 D2D 채널/신호 전송 전력 정보)를 알려주는 채널 (e.g., SIB)은 독립적으로 (혹은 상이하게) 정의될 수 도 있다.
(규칙#6-2) NP_FRQ 비-서빙 셀이 사전에 정의된 채널(/시그널) (e.g., SIB)을 통해서 두 개 (용도)의 전력 제어 파라미터를 시그널링해주는데, 하나 (i.e., "SV_PARA"로 명명)는 자신을 서빙 셀(혹은 주파수 내)로 경로 손실 측정하는 단말이 사용하도록 하고, 다른 하나(i.e., "NS_PARA"로 명명)는 자신을 비-서빙 셀(혹은 주파수 간)로 경로 측정하는 단말이 사용하도록 할 수 있다.
여기서, 또 다른 일례로, NP_FRQ 비-서빙 셀은 사전에 정의된 채널(/시그널) (e.g., SIB)을 통해서, SV_PARA와 (전력 제어 파라미터) 오프셋 (i.e., 자신을 비-서빙 셀 (혹은 주파수 간)로 경로 손실 측정하는 단말은 SV_PARA에 해당 (전력 제어 파라미터) 오프셋을 적용하여 최종 NP_FRQ D2D 전송 전력을 결정하게 됨)을 시그널 (혹은 NS_PARA와 (전력 제어 파라미터) 오프셋 (i.e., 자신을 서빙 셀(혹은 주파수 내)로 경로 손실 측정하는 단말은 NS_PARA에 해당 (전력 제어 파라미터) 오프셋을 적용하여 최종 NP_FRQ D2D 전송 전력을 결정하게 됨)을 시그널)해줄 수 도 있다.
또 다른 일례로, PR_FRQ 상의 서빙 셀 (혹은 NP_FRQ 상의 비-서빙 셀)은 자신과 연결을 가지고 있는 (혹은 자신의 커버리지 내에 있는) 단말에게, PLMN 간 반송파(주파수) (혹은 주파수 간) 상의 D2D 채널/신호 전송 수행 시, 상대적으로 적은 전송 전력(그리고/혹은 D2D 전송 가능성)을 적용하도록, (사전에 정의된 시그널링을 통해) 설정해줄 수 있다. 이는 일종의 페널티로 해석할 수 있다.
또한, 일례로, PR_FRQ 상의 서빙 셀(혹은 NP_FRQ 상의 비-서빙 셀)은 PLMN 간 (혹은 주파수 간) 셀과 연결을 가지고 있는 (혹은 PLMN 간 (혹은 주파수 간) 셀의 커버리지 내에 있는) 단말이 자신의 (PLMN 내) 반송파/주파수 (혹은 주파수 내/반송파 상에서 D2D 채널/신호 전송 동작을 수행하려고 할 때, (사전에 정의된 시그널링을 통해) 상대적으로 적은 전송 전력(그리고/혹은 D2D 전송 확률)을 적용하도록 설정해줄 수 도 있다. 이는 일종의 페널티로 해석할 수 있다.
이하에서는 셀 커버리지에 부분적으로 포함되는 경우 또는 셀 커버리지 바깥의 경우에서 PSDCH 전송 및 PSDCH 관련 SLSS 전송 방법에 대해 설명한다.
LTE-A Rel-13에 의하여 동작하는 단말을 Rel-13 단말이라 하자. Rel-13 단말은 SLSS를 전송할 때 다음 2가지 동작들(동작 1, 동작 2) 중 어느 하나에 따라 타입 1 발견 신호를 전송한다.
동작 1: Rel-12와 동일한 동작으로, 단말은 각 발견 주기에서 Rel-12 동작에 따라 결정되는 서브프레임 n에서 SLSS를 전송한다.
동작 2: 단말은 각 발견 주기에서 매 40ms 마다 SLSS를 전송한다. 실제적인 SLSS 전송은 WAN 우선 순위와 같은 Rel-12 조건들에 달려 있다. 단말은 SLSS를 전송하는 서브프레임에서 PSBCH도 전송한다. 이 때, Rel-13에 따른 D2D 통신을 수행하는 단말을 위한 PSBCH와 동일한 내용(content)를 사용할 수 있다.
셀 커버리지 바깥의 Rel-13 단말이 타입 1 공용 안전(public safety: PS) 발견 신호를 전송함에 있어서 SLSS를 전송할 때 전술할 동작 2를 따른다.
셀 커버리지 내의 Rel-13 단말이 발견 신호를 전송함에 있어서 SLSS를 전송할 때, 공용 안전이 아닌 용도의 발견 신호를 전송할 경우 동작 1을 따른다. 반면, 공용 안전 용도의 발견 신호를 전송할 경우, 기지국은 동작 1 또는 동작 2를 설정할 수 있으며 단말은 이에 따른다.
공용 안전 용도의 발견 신호 전송에 참여하고 동작 2를 사용하는 단말은 SLSS를 매 40ms마다 전송한다. 이 때, 단말은 상위 계층으로부터 주어진, 주어진 반송파에서 전송할 발견 메시지가 있는 한 계속하여 SLSS를 전송할 수 있다.
공용 안전 용도의 발견 신호 전송에 참여하고 동작 2를 사용하는 단말은 Rel-12에 따른 D2D 통신에서 사용되는 PSBCH를 재사용할 수 있다. 즉, 동일한 내용을 포함할 수 있다. 동작 1을 사용하는 단말은 PSBCH를 전송하지 않는다.
셀 커버리지 바깥의 단말에 대한 PSCCH/PSSCH 전송 및 PSCCH/PSSCH 관련 SLSS 전송에 대한 파라미터들은 사전에 정의된 시그널(예를 들어, SIB)을 통해서 설정될 수 있다.
다음 표는 사이드링크에 대한 미리 설정된 파라미터들의 예를 나타낸다.
상기 표에서, 'carrierFreq'는 사이드링크 동작을 위한 반송파 주파수를 지시한다. FDD의 경우, 이는 상향링크 주파수를 나타내며, 대응하는 하향링크 주파수는 디폴트(default) 전송-수신 주파수 구분(TX-RX frequency separation)에 의해 정해질 수 있다.
'preconfigComm'은 개별적 자원 풀들의 개수의 리스트를 지시한다. D2D 통신을 위한 신호 송수신에 사용될 수 있다.
'syncRefDiffHyst'는 상대적 비교를 이용하여 동기화를 위한 기준 단말을 평가할 때 사용되는 이력(hysteresis)이다. 'syncRefMinHyst'는 절대적 비교를 이용하여 동기화를 위한 기준 단말을 평가할 때 사용되는 이력이다.
일례로, 셀 커버리지 바깥에 있는 단말의 PSDCH 전송과 관련된 최대 전송 전력 값 (예를 들어, PCMAX,PSDCH) (그리고/혹은 해당 PSDCH와 연동된 SLSS 전송 관련 최대 전송 전력 값(예를 들어, PCMAX,PSBCH, PCMAX,SSSS))은, 셀 커버리지 바깥에 있는 단말의 PSCCH (그리고/혹은 PSSCH) 전송과 관련된 최대 전송 전력 값(예컨대, PCMAX,PSCCH, PCMAX,PSSCH) (그리고/혹은 해당 PSCCH (그리고/혹은 PSSCH)와 연동된 SLSS 전송 관련 최대 전송 전력 값(예를 들어, PCMAX,PSBCH, PCMAX,SSSS))과 독립적으로 (혹은 상이하게) 설정되도록 규칙이 정의될 수 있다.
여기서, 일례로, 이러한 규칙은 셀 커버리지 바깥에 있는 단말의 PSDCH 전송 (그리고/혹은 해당 PSDCH와 연동된 SLSS 전송)에 대한 파라미터들이, 상기 단말의 PSCCH(그리고/혹은 PSSCH) 전송 (그리고/혹은 해당 PSCCH (그리고/혹은 PSSCH)와 연동된 SLSS 전송)에 대한 파라미터들과 독립적인 (혹은 상이한) 시그널링 (e.g., SIB)을 통해서 설정되는 경우에만 한정적으로 적용될 수 도 있다.
여기서, 일례로, 상기 제안 규칙에서 "최대 전송 전력 값"은 "개루프 전력 제어 파라미터(OPEN-LOOP POWER CONTROL PARAMETER) 값 (예컨대, PO, alpha)"로 확장 해석될 수 있다.
또 다른 일례로, 셀 커버리지 내의 단말의 공용 안전(PUBLIC SAFTY: PS) PSDCH 전송과 관련된 최대 전송 전력 값 (예컨대, PCMAX,PSDCH) (그리고/혹은 해당 공용 안전 PSDCH와 연동된 SLSS의 전송과 관련된 최대 전송 전력 값(예컨대, PCMAX,PSBCH, PCMAX,SSSS))은, 셀 커버리지 내의 단말의 비-공용 안전(non-PS) PSDCH 전송과 관련된 최대 전송 전력 값(예컨대, PCMAX,PSDCH) (그리고/혹은 해당 비-공용 안전 PSDCH와 연동된 SLSS 전송과 관련된 최대 전송 전력 값(예를 들어, PCMAX,PSBCH, PCMAX,SSSS))과 독립적으로 (혹은 상이하게) 설정되도록 규칙이 정의될 수 도 있다. 즉, 발견 종류에 따라서 최대 전송 전력 값이 달라지는 것으로 해석 가능하다.
상기 제안 규칙에서 "최대 전송 전력 값"은 "개루프 전력 제어 파라미터(OPEN-LOOP POWER CONTROL PARAMETER) 값 (예를 들어, PO, alpha)"로 확장 해석될 수 도 있다.
또 다른 일례로, 중계 PSDCH 전송과 관련된 최대 전송 전력 값(예컨대, PCMAX,PSDCH) (그리고/혹은 해당 중계 PSDCH와 연동된 SLSS 전송과 관련된 최대 전송 전력 값(예컨대, PCMAX,PSBCH, PCMAX,SSSS))은, 비-중계 PSDCH(혹은 비-공용 안전 PSDCH 혹은 그룹에 속하는 멤버 PSDCH) 전송과 관련된 최대 전송 전력 값(예컨대, PCMAX,PSDCH) (그리고/혹은 해당 비-중계 PSDCH(혹은 비-공용 안전 PSDCH 혹은 그룹에속하는 멤버 PSDCH)와 연동된 SLSS 전송과 관련된 최대 전송 전력 값(예를 들어, PCMAX,PSBCH, PCMAX,SSSS))과 독립적으로 (혹은 상이하게) 설정되도록 규칙이 정의될 수 도 있다. 즉, 발견 종류에 따라서 최대 전송 전력 값이 달라지는 것으로 해석 가능한다.
상기 제안 규칙에서 "최대 전송 전력 값"은 "개루프 전력 제어 파라미터 값 (예컨대, PO, alpha)"로 확장 해석될 수 있다.
또 다른 일례로, D2D 동작을 수행하는 단말로 하여금, 셀 커버리지 내에 있을 때는 기지국으로부터 시그널링(e.g., SIB 또는 전용 RRC 신호)된 PSDCH 최대 전송 전력(그리고/혹은 (해당 PSDCH와 연동된) SLSS 최대 전송 전력)를 셀 커버리지 내의 PSDCH (그리고/혹은 (해당 PSDCH와 연동된) SLSS)에 적용하되, 셀 커버리지 바깥에 있을 때는, 사전에 정의된 시그널링(e.g., SIB) 상에 최대 전송 전력 관련 필드가 없다면 (사전에 정의된 (혹은 시그널링된)) 가장 큰 타겟 레인지에 해당하는 최대 전송 전력 값을 셀 커버리지 바깥의 PSDCH (그리고/혹은 (해당 PSDCH와 연동된) SLSS)에 적용한다. 반면에 사전에 정의된 시그널링(e.g., SIB) 상에 최대 전송 전력 관련 필드가 있으면, 해당 값을 셀 커버리지 바깥의 PSDCH (그리고/혹은 (해당 PSDCH와 연동된) SLSS)에 적용하도록 규칙이 정의될 수 도 있다.
또 다른 일례로, D2D 동작을 수행하는 단말로 하여금, 서로 다른 종류의 발견 (혹은 PSDCH) 전송들로부터 트리거링된 SLSS 전송들이 동일 시점에 겹치는 경우, 아래의 일부 (혹은 모든) 우선 순위 규칙에 따라, 해당 SLSS 전송의 최대 전송 전력이 결정되도록 설정될 수 도 있다.
여기서, 일례로, 하기 일부 (혹은 모든) 규칙은 셀 커버리지 내에서 D2D 동작을 수행하는 단말 (그리고/혹은 셀 커버리지 바깥에서 D2D 동작을 수행하는 단말 그리고/혹은 중계 역할을 위한 D2D 동작을 수행하는 단말 그리고/혹은 이격된 단말)에게만 한정적으로 적용될 수 도 있다.
또한, 일례로, 서로 다른 종류의 발견 (혹은 PSDCH) 전송들로부터 트리거링된 SLSS 전송들이 동일 시점에 겹치지 않는 경우에는 각각의 연동된 사전에 설정된 (혹은 시그널링된) 발견 최대 전송 전력 값을 따르도록 정의될 수 가 있다.
또한, 일례로, 아래 우선 순위 규칙들 중에 어느 것을 적용할지를 기지국이 단말에게 사전에 정의된 시그널링 (e.g., SIB(RRC 아이들 상태의 단말, 셀 커버리지 바깥의 단말), 전용 신호(RRC 연결 상태의 단말))을 통해서 알려주도록 설정될 수 도 있다. 본 제안 방법에서 "SLSS"는 일례로, PSBCH (그리고/혹은 PSSS (그리고/혹은 SSSS))로 해석될 수 가 있다.
(예시#1) 공용 안전 발견 신호의 전송을 위해 트리거링된 SLSS의 전송과 비-공용 안잔 발견 신호의 전송을 위해 트리거링된 SLSS의 전송이 동일 시점에 겹치는 경우, 해당 SLSS의 최대 전송 전력은 사전에 설정되거나 또는 시그널링된 공용 안전 발견 신호에 대한 최대 전송 전력(혹은 비-공용 안전 발견 신호에 대한 최대 전송 전력을 따르도록 규칙이 정의될 수 있다.
(예시#2) 중계 동작을 위한 발견을 위해 트리거링된 SLSS 전송과 비-중계 동작을 위한 발견을 위해 트리거링된 SLSS 전송이 동일 시점에 겹치는 경우, 해당 SLSS의 최대 전송 전력은 사전에 설정되거나 또는 시그널링된 중계 동작을 위한 발견에 대한 최대 전송 전력(혹은 비-중계 동작을 위한 발견에 대한 최대 전송 전력)를 따르도록 규칙이 정의될 수 있다. 또 다른 일례로, 중계 동작을 위한 발견을 위해 트리거링된 SLSS 전송과 그룹 멤버(혹은 비-공용 안전) 발견을 위해 트리거링된 SLSS 전송이 동일 시점에 겹치는 경우, 해당 SLSS의 최대 전송 전력은 사전에 설정되거나 혹은 시그널링된 중계 동작을 위한 발견의 최대 전송 전력(혹은 그룹 멤버 (혹은 비-공용 안전) 발견의 최대 전송 전력)를 따르도록 규칙이 정의될 수 가 있다.
또 다른 일례로, D2D 동작을 수행하는 단말로 하여금, 발견 (혹은 PSDCH) 전송으로부터 트리거링된 SLSS 전송과 D2D 통신 (혹은 PSCCH (그리고/혹은 PSSCH)) 전송으로부터 트리거링된 SLSS 전송이 동일 시점에 겹치는 경우, 아래의 일부 (혹은 모든) 우선 순위 규칙에 따라, 해당 SLSS 전송의 최대 전송 전력이 결정되도록 설정될 수 도 있다.
여기서, 일례로, 하기 일부 (혹은 모든) 규칙은 셀 커버리지 내에서 D2D 동작을 수행하는 단말(그리고/혹은 셀 커버리지 바깥에서 D2D 동작을 수행하는 단말 그리고/혹은 중계 역할을 위해 D2D 동작을 수행하는 단말 그리고/혹은 이격된 단말)에게만 한정적으로 적용될 수 도 있다.
또한, D2D 동작을 수행하는 단말로 하여금, 발견 (혹은 PSDCH) 전송으로부터 트리거링된 SLSS 전송과 D2D 통신 (혹은 PSCCH (그리고/혹은 PSSCH)) 전송으로부터 트리거링된 SLSS 전송이 동일 시점에 겹치지 않는 경우에는, 각각의 연동된 사전에 설정된 (혹은 시그널링된) (발견/D2D 통신) 최대 전송 전력 값을 따르도록 정의될 수 있다.
또한, 일례로, 아래 우선 순위 규칙들 중에 어느 것을 적용할지를 기지국이 다말에게 설정할 수 있다. 이 때, 기지국은 정의된 시그널링을 사용할 수 있는데, RRC 아이들 단말, 셀 커버리지 바깥의 단말을 위해서는 SIB, RRC 연결 상태인 단말에 대해서는 전용 신호를 사용할 수 있다. 본 제안 방법에서 "SLSS" 단어는 일례로, PSBCH (그리고/혹은 PSSS (그리고/혹은 SSSS))로 해석될 수 가 있다.
(예시#3) (공용 안전(혹은 비-공용 안전) 혹은 중계 혹은 그룹 멤버) 발견에 의하여 트리거링된 SLSS 전송과 D2D 통신을 위해 트리거링된 SLSS 전송이 동일 시점에 겹치는 경우, 해당 SLSS의 최대 전송 전력은 사전에 설정된 (혹은 시그널링된) (공용 안전 (혹은 비-공용 안전) 혹은 중계 혹은 그룹 멤버) 발견 최대 전송 전력(혹은 D2D 통신 최대 전송 전력)를 따르도록 규칙이 정의될 수 가 있다.
상기 설명한 제안 방식에 대한 일례들 또한 본 발명의 구현 방법들 중 하나로 포함될 수 있으므로, 일종의 제안 방식들로 간주될 수 있음은 명백하다. 또한, 상기 설명한 제안 방식들은 독립적으로 구현될 수 도 있지만, 일부 제안 방식들의 조합 (혹은 병합) 형태로 구현될 수 있다.
상기 설명한 제안 방식들은 FDD 시스템 (그리고/혹은 TDD 시스템) 환경 하에서만 한정적으로 적용되도록 규칙이 정의될 수 도 있다. 상기 설명한 제안 방식들은 모드 2 D2D 통신 그리고/혹은 타입 1 발견 (그리고/혹은 모드 1 D2D 통신 그리고/혹은 타입 2 발견)에만 한정적으로 적용되도록 규칙이 정의될 수 도 있다.
또한, 상기 설명한 제안 방식들은 셀 커버리지 내에서 D2D 동작을 수행하는 단말 (그리고/혹은 셀 커버리지 바깥에서 D2D 동작을 수행하는 단말) (그리고/혹은 RRC 연결 상태에서 D2D 동작을 수행하는 단말 (그리고/혹은 RRC 아이들 상태에서 D2D 동작을 수행하는 단말))에게만 한정적으로 적용되도록 규칙이 정의될 수 도 있다. 상기 설명한 제안 방식들은 D2D 발견 (송신(/수신)) 동작만을 수행하는 D2D 단말(그리고/혹은 D2D 통신 (송신(/수신)) 동작만을 수행하는 D2D 단말)에게만 한정적으로 적용되도록 규칙이 정의될 수 도 있다.
상기 설명한 제안 방식들은 D2D 발견 만이 지원(설정)된 시나리오 (그리고/혹은 D2D 통신만이 지원(설정)된 시나리오)에서만 한정적으로 적용되도록 규칙이 정의될 수 도 있다.
상기 설명한 제안 방식들은 주파수 간(INTER-FREQUENCY) 상의 다른 (상향링크) 반송파에서의 D2D 발견 신호 수신 동작을 수행하는 경우 (그리고/혹은 PLMN 간(INTER-PLMN) 기반의 다른 PLMN의 (상향링크) 반송파에서의 D2D 발견 신호 수신 동작을 수행하는 경우)에서만 한정적으로 적용되도록 규칙이 정의될 수 도 있다.
또한, 일례로, 상기 설명한 제안 방식들은 단말이 D2D 통신 및 D2D 발견 신호를 모두 전송할 때, 하나의 서브프레임에서 전송되는 SLSS/PSBCH가 D2D 통신 및 D2D 발견에 의해 동시에 트리거링되는 경우(혹은 시점)에만 한정적으로 적용되도록 규칙이 정의될 수 도 있다.
도 21은 본 발명의 실시예가 구현되는 단말을 나타낸 블록도이다.
도 21을 참조하면, 단말(1100)은 프로세서(1110), 메모리(1120) 및 RF부(radio frequency unit, 1130)을 포함한다. 프로세서(1110)는 제안된 기능, 과정 및/또는 방법을 구현한다. 예를 들어, 프로세서(1110)는 제1 반송파에서 수행되는 광역 네트워크(wide area network: WAN) 전송을 위한 제1 전송 전력과 제2 반송파에서 수행되는 D2D(device-to-device) 동작에 따른 전송을 위한 제2 전송 전력을 독립적으로 계산하고, 상기 제1 전송 전력 및 제2 전송 전력의 합이 상기 단말의 지원 가능한 최대 전력보다 큰 경우, 상기 제2 전송 전력을 감소시킬 수 있다. 또한, 프로세서(1110)는 제1 셀의 제1 서브프레임에서 광역 네트워크(wide area network: WAN) 전송을 수행하고, 제2 셀의 제2 서브프레임에서 D2D(device-to-device) 동작에 따른 전송을 수행하되, 상기 제1 서브프레임과 상기 제2 서브프레임이 시간적으로 일부만 겹치는 경우, 상기 제1 셀의 상기 제1 서브프레임에 대해 결정되는 최대 출력 전력(PCMAX)에 기반하여, 상기 제1 서브프레임에서의 상기 WAN 전송 및 상기 제2 서브프레임에서의 상기 D2D 동작에 따른 전송에 대한 전송 전력을 결정할 수 있다.
RF부(1130)은 프로세서(1110)와 연결되어 무선 신호를 송신 및 수신한다.
프로세서는 ASIC(application-specific integrated circuit), 다른 칩셋, 논리 회로 및/또는 데이터 처리 장치를 포함할 수 있다. 메모리는 ROM(read-only memory), RAM(random access memory), 플래쉬 메모리, 메모리 카드, 저장 매체 및/또는 다른 저장 장치를 포함할 수 있다. RF부는 무선 신호를 처리하기 위한 베이스밴드 회로를 포함할 수 있다. 실시예가 소프트웨어로 구현될 때, 상술한 기법은 상술한 기능을 수행하는 모듈(과정, 기능 등)로 구현될 수 있다. 모듈은 메모리에 저장되고, 프로세서에 의해 실행될 수 있다. 메모리는 프로세서 내부 또는 외부에 있을 수 있고, 잘 알려진 다양한 수단으로 프로세서와 연결될 수 있다.
Claims (12)
- 무선 통신 시스템에서 단말에 의해 수행되는 전송 전력 제어 방법에 있어서,
제1 반송파의 제1 서브프레임에서 광역 네트워크(wide area network: WAN) 전송을 수행하고, 및
제2 반송파의 제2 서브프레임에서 사이드링크 전송을 수행하되,
상기 WAN 전송은 네트워크로의 전송이고, 상기 사이드링크 전송은 다른 단말로의 전송이며,
상기 제1 서브프레임과 상기 제2 서브프레임이 시간적으로 겹치는 경우, 상기 제1 서브프레임에서의 상기 WAN 전송 및 상기 제2 서브프레임에서의 상기 사이드링크 전송 둘 다에 대한 최대 출력 전력은, 상기 제1 반송파의 상기 제1 서브프레임에 대한 최대 출력 전력에 기반하여 결정되는 것을 특징으로 하는 방법. - 제 1 항에 있어서, 상기 제1 서브프레임은 상기 제2 서브프레임에 비해 시간적으로 앞서는 것을 특징으로 하는 방법.
- 제 1 항에 있어서, 상기 제1 서브프레임은 상기 제2 서브프레임에 비해 시간적으로 뒤지는 것을 특징으로 하는 방법.
- 제 1 항에 있어서, 상기 제1 반송파 및 상기 제2 반송파는 주파수 영역에서 서로 다른 것을 특징으로 하는 방법.
- 단말은,
무선 신호를 송신 및 수신하는 RF(Radio Frequency) 부; 및
상기 RF부와 결합하여 동작하는 프로세서;를 포함하되, 상기 프로세서는,
제1 반송파의 제1 서브프레임에서 광역 네트워크(wide area network: WAN) 전송을 수행하고, 및
제2 반송파의 제2 서브프레임에서 사이드링크 전송을 수행하되,
상기 WAN 전송은 네트워크로의 전송이고, 상기 사이드링크 전송은 다른 단말로의 전송이며,
상기 제1 서브프레임과 상기 제2 서브프레임이 시간적으로 겹치는 경우, 상기 제1 서브프레임에서의 상기 WAN 전송 및 상기 제2 서브프레임에서의 상기 사이드링크 전송 둘 다에 대한 최대 출력 전력은, 상기 제1 반송파의 상기 제1 서브프레임에 대한 최대 출력 전력에 기반하여 결정되는 것을 특징으로 하는 단말. - 제 5 항에 있어서, 상기 제1 서브프레임은 상기 제2 서브프레임에 비해 시간적으로 앞서는 것을 특징으로 하는 단말.
- 제 5 항에 있어서, 상기 제1 서브프레임은 상기 제2 서브프레임에 비해 시간적으로 뒤지는 것을 특징으로 하는 단말.
- 제 5 항에 있어서, 상기 제1 반송파 및 상기 제2 반송파는 주파수 영역에서 서로 다른 것을 특징으로 하는 단말.
- 삭제
- 삭제
- 삭제
- 삭제
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020227028512A KR102491678B1 (ko) | 2015-01-27 | 2016-01-27 | 무선 통신 시스템에서 단말에 의해 수행되는 전송 전력 제어 방법 및 상기 방법을 이용하는 단말 |
Applications Claiming Priority (11)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201562108529P | 2015-01-27 | 2015-01-27 | |
US62/108,529 | 2015-01-27 | ||
US201562109635P | 2015-01-30 | 2015-01-30 | |
US62/109,635 | 2015-01-30 | ||
US201562114005P | 2015-02-09 | 2015-02-09 | |
US62/114,005 | 2015-02-09 | ||
US201562165952P | 2015-05-23 | 2015-05-23 | |
US62/165,952 | 2015-05-23 | ||
US201562169544P | 2015-06-01 | 2015-06-01 | |
US62/169,544 | 2015-06-01 | ||
PCT/KR2016/000867 WO2016122203A1 (ko) | 2015-01-27 | 2016-01-27 | 무선 통신 시스템에서 단말에 의해 수행되는 전송 전력 제어 방법 및 상기 방법을 이용하는 단말 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020227028512A Division KR102491678B1 (ko) | 2015-01-27 | 2016-01-27 | 무선 통신 시스템에서 단말에 의해 수행되는 전송 전력 제어 방법 및 상기 방법을 이용하는 단말 |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20170109229A KR20170109229A (ko) | 2017-09-28 |
KR102435221B1 true KR102435221B1 (ko) | 2022-08-23 |
Family
ID=56543741
Family Applications (6)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020247002258A KR20240029766A (ko) | 2015-01-27 | 2016-01-27 | 무선 통신 시스템에서 단말에 의해 수행되는 전송 전력 제어 방법 및 상기 방법을 이용하는 단말 |
KR1020177018603A KR101975583B1 (ko) | 2015-01-27 | 2016-01-27 | 무선 통신 시스템에서 단말에 의해 수행되는 d2d 발견 신호 전송 방법 및 상기 방법을 이용하는 단말 |
KR1020227028512A KR102491678B1 (ko) | 2015-01-27 | 2016-01-27 | 무선 통신 시스템에서 단말에 의해 수행되는 전송 전력 제어 방법 및 상기 방법을 이용하는 단말 |
KR1020247029495A KR20240136460A (ko) | 2015-01-27 | 2016-01-27 | 무선 통신 시스템에서 단말에 의해 수행되는 전송 전력 제어 방법 및 상기 방법을 이용하는 단말 |
KR1020177020472A KR102435221B1 (ko) | 2015-01-27 | 2016-01-27 | 무선 통신 시스템에서 단말에 의해 수행되는 전송 전력 제어 방법 및 상기 방법을 이용하는 단말 |
KR1020237002266A KR102629597B1 (ko) | 2015-01-27 | 2016-01-27 | 무선 통신 시스템에서 단말에 의해 수행되는 전송 전력 제어 방법 및 상기 방법을 이용하는 단말 |
Family Applications Before (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020247002258A KR20240029766A (ko) | 2015-01-27 | 2016-01-27 | 무선 통신 시스템에서 단말에 의해 수행되는 전송 전력 제어 방법 및 상기 방법을 이용하는 단말 |
KR1020177018603A KR101975583B1 (ko) | 2015-01-27 | 2016-01-27 | 무선 통신 시스템에서 단말에 의해 수행되는 d2d 발견 신호 전송 방법 및 상기 방법을 이용하는 단말 |
KR1020227028512A KR102491678B1 (ko) | 2015-01-27 | 2016-01-27 | 무선 통신 시스템에서 단말에 의해 수행되는 전송 전력 제어 방법 및 상기 방법을 이용하는 단말 |
KR1020247029495A KR20240136460A (ko) | 2015-01-27 | 2016-01-27 | 무선 통신 시스템에서 단말에 의해 수행되는 전송 전력 제어 방법 및 상기 방법을 이용하는 단말 |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020237002266A KR102629597B1 (ko) | 2015-01-27 | 2016-01-27 | 무선 통신 시스템에서 단말에 의해 수행되는 전송 전력 제어 방법 및 상기 방법을 이용하는 단말 |
Country Status (7)
Country | Link |
---|---|
US (6) | US10231193B2 (ko) |
EP (4) | EP3253135B1 (ko) |
JP (1) | JP6392462B2 (ko) |
KR (6) | KR20240029766A (ko) |
CN (2) | CN107211263B (ko) |
TW (1) | TWI596975B (ko) |
WO (2) | WO2016122202A2 (ko) |
Families Citing this family (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111885552B (zh) * | 2014-12-02 | 2024-08-16 | 索尼公司 | 电子设备、无线通信方法、存储介质和无线通信系统 |
KR20240029766A (ko) | 2015-01-27 | 2024-03-06 | 로즈데일 다이나믹스 엘엘씨 | 무선 통신 시스템에서 단말에 의해 수행되는 전송 전력 제어 방법 및 상기 방법을 이용하는 단말 |
US10034322B2 (en) * | 2015-02-06 | 2018-07-24 | Samsung Electronics Co., Ltd. | Method and apparatus for transmitting and receiving signal in communication system supporting device to device scheme |
EP3281473B1 (en) * | 2015-04-06 | 2022-01-05 | Samsung Electronics Co., Ltd. | Apparatus and method for transmitting and receiving device to device discovery message in wireless communication system supporting device to device scheme |
US10616864B2 (en) * | 2015-08-07 | 2020-04-07 | Sharp Kabushiki Kaisha | Allocating resources for wireless sidelink direct communications |
CN109479189B (zh) * | 2016-07-21 | 2022-04-05 | 三星电子株式会社 | 设备到设备(d2d)通信中通过侧链路发现用户设备(ue)的系统和方法 |
CN107666701B (zh) * | 2016-07-31 | 2020-07-31 | 上海朗帛通信技术有限公司 | 一种无线传输的ue和基站中的方法和装置 |
WO2018044212A1 (en) * | 2016-08-30 | 2018-03-08 | Telefonaktiebolaget Lm Ericsson (Publ) | Cellular service improvement and extension by user equipment |
CN109804679A (zh) | 2016-10-13 | 2019-05-24 | Lg电子株式会社 | 在无线通信系统中由终端执行的侧链路同步信号发送方法以及使用该方法的终端 |
US10873938B2 (en) * | 2017-10-09 | 2020-12-22 | Qualcomm Incorporated | Rate matching for broadcast channels |
US10708865B2 (en) | 2017-11-17 | 2020-07-07 | Qualcomm Incorporated | Techniques for power control using carrier aggregation in wireless communications |
WO2019104485A1 (zh) * | 2017-11-28 | 2019-06-06 | Oppo广东移动通信有限公司 | 分配功率的方法和设备 |
WO2019127284A1 (zh) * | 2017-12-28 | 2019-07-04 | Oppo广东移动通信有限公司 | 冲突解决的方法和终端设备 |
WO2019140576A1 (zh) * | 2018-01-17 | 2019-07-25 | Oppo广东移动通信有限公司 | 一种车联网系统的功率分配方法和装置 |
CN111466139B (zh) * | 2018-02-06 | 2023-04-11 | Oppo广东移动通信有限公司 | 用户设备及其无线通信方法 |
CN110167127B (zh) * | 2018-02-13 | 2021-02-12 | 华为技术有限公司 | 通信方法和装置 |
KR102298009B1 (ko) * | 2018-03-30 | 2021-09-06 | 주식회사 케이티 | 상향링크 데이터 채널을 전송하는 방법 및 장치 |
ES2945808T3 (es) * | 2018-08-03 | 2023-07-07 | Asustek Comp Inc | Procedimiento y aparato para manejar la transmisión de enlace lateral en un sistema de comunicación inalámbrica |
KR102464909B1 (ko) | 2018-09-27 | 2022-11-08 | 삼성전자주식회사 | 무선 통신 시스템에서 송신전력 제어 방법 및 장치 |
CN111148201B (zh) * | 2018-11-02 | 2021-12-28 | 华为技术有限公司 | 数据传输方法和设备 |
CN111436110A (zh) * | 2019-01-11 | 2020-07-21 | 华为技术有限公司 | 侧链路功率控制方法及终端 |
EP3909315A4 (en) * | 2019-02-13 | 2022-03-16 | Samsung Electronics Co., Ltd. | METHOD AND DEVICE FOR CONTROLLING THE TRANSMISSION POWER OF A USER EQUIPMENT IN A WIRELESS COMMUNICATION SYSTEM |
AU2019429551A1 (en) * | 2019-02-15 | 2021-09-16 | Guangdong Oppo Mobile Telecommunications Corp., Ltd. | Method and apparatus for wireless communication |
US20220086767A1 (en) * | 2019-04-08 | 2022-03-17 | Apple Inc. | Nr v2x sidelink structures for pscch cover enhancement |
CN111953455B (zh) * | 2019-05-14 | 2021-11-23 | 上海朗帛通信技术有限公司 | 一种被用于无线通信的节点中的方法和装置 |
US11197249B2 (en) * | 2019-07-29 | 2021-12-07 | Qualcomm Incorporated | Transmit-power control mode selection |
US11622336B2 (en) * | 2019-08-08 | 2023-04-04 | Qualcomm Incorporated | Sidelink transmit power control command signaling |
WO2021026928A1 (zh) * | 2019-08-15 | 2021-02-18 | Oppo广东移动通信有限公司 | 无线通信的方法和设备 |
EP3993516A4 (en) * | 2019-08-15 | 2022-07-13 | Huawei Technologies Co., Ltd. | METHOD, APPARATUS, AND COMMUNICATION DEVICE |
US11683793B2 (en) | 2020-06-11 | 2023-06-20 | Qualcomm Incorporated | Sidelink power control using shared resources |
US11690024B2 (en) * | 2021-01-27 | 2023-06-27 | Qualcomm Incorporated | Configuring client device regulation modes for sidelink communications |
WO2022211542A1 (en) * | 2021-04-02 | 2022-10-06 | Lg Electronics Inc. | Transmission power control |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130324182A1 (en) * | 2012-05-31 | 2013-12-05 | Interdigital Patent Holdings, Inc. | Device-to-device (d2d) cross link power control |
WO2014021612A2 (ko) * | 2012-08-01 | 2014-02-06 | 엘지전자 주식회사 | 무선 통신 시스템에서 상향링크 송신 전력을 설정하는 방법 및 장치 |
Family Cites Families (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8839362B2 (en) * | 2006-07-31 | 2014-09-16 | Motorola Mobility Llc | Method and apparatus for managing transmit power for device-to-device communication |
US8331965B2 (en) | 2009-06-12 | 2012-12-11 | Qualcomm Incorporated | Methods and apparatus for controlling resource use in a wireless communications system |
US8660028B2 (en) | 2011-03-28 | 2014-02-25 | Qualcomm Incorporated | Methods and apparatus for relaying peer discovery information in WWAN |
JP5609759B2 (ja) | 2011-04-27 | 2014-10-22 | パナソニック株式会社 | 基地局装置および通信制御方法 |
GB2498713A (en) * | 2012-01-18 | 2013-07-31 | Renesas Mobile Corp | Power control for transmission of a discovery signal for a specific communication mode |
EP3512293A3 (en) | 2012-04-27 | 2019-10-02 | Interdigital Patent Holdings, Inc. | Apparatus and method for resource allocation for device-to-device (d2d) communication |
CN103384161B (zh) * | 2012-05-02 | 2018-02-06 | 华为技术有限公司 | Mimo无线通信系统、传输方法和装置 |
US9084203B2 (en) | 2012-05-21 | 2015-07-14 | Qualcomm Incorporated | Methods and apparatus for providing transmit power control for devices engaged in D2D communications |
US20140064147A1 (en) * | 2012-08-29 | 2014-03-06 | Qualcomm Incorporated | Methods and apparatus for wan enabled peer discovery |
US9247508B2 (en) * | 2012-09-28 | 2016-01-26 | Sharp Kabushiki Kaisha | Transmission power control for signals used by user equipment terminals for device-to-device services |
US9185697B2 (en) * | 2012-12-27 | 2015-11-10 | Google Technology Holdings LLC | Method and apparatus for device-to-device communication |
TWI641283B (zh) * | 2013-01-16 | 2018-11-11 | 內數位專利控股公司 | 與裝置對裝置(d2d)訊號發送相關聯的方法及無線傳輸/接收裝置 |
EP2768262B1 (en) * | 2013-02-15 | 2018-07-25 | Samsung Electronics Co., Ltd. | Method and apparatus for power control and multiplexing for device to device communication in wireless cellular communication system |
CN103997727B (zh) * | 2013-02-18 | 2019-08-30 | 中兴通讯股份有限公司 | 一种设备发现方法和装置 |
WO2014163335A1 (ko) * | 2013-04-01 | 2014-10-09 | 엘지전자 주식회사 | 무선 통신 시스템에서 d2d(device-to-device) 통신을 위한 멀티미디어 방송/멀티캐스트 서비스 방법 및 이를 위한 장치 |
GB2512590B (en) | 2013-04-02 | 2015-02-25 | Broadcom Corp | Method, apparatus and computer program for configuring device communications |
US9781639B2 (en) | 2013-04-03 | 2017-10-03 | Google Technology Holdings LLC | Methods and devices for cell discovery |
KR102009745B1 (ko) * | 2013-04-05 | 2019-08-13 | 삼성전자주식회사 | 무선 네트워크에서의 디바이스간 직접 통신장치 및 방법 |
KR102170987B1 (ko) | 2013-04-09 | 2020-10-29 | 삼성전자 주식회사 | 무선 통신 시스템에서 단말 대 단말 통신을 위한 신호 송수신 방법 및 장치 |
CN104813732A (zh) | 2013-04-28 | 2015-07-29 | 华为终端有限公司 | 通信控制方法、用户设备、网络服务器和系统 |
WO2014180518A1 (en) * | 2013-05-08 | 2014-11-13 | Telefonaktiebolaget L M Ericsson (Publ) | Improved handling of simultaneous network communication transmission and d2d communication transmission |
GB2514602B (en) | 2013-05-30 | 2015-10-07 | Broadcom Corp | Method, apparatus and computer program for scheduling device-to-device signals |
CN104244265B (zh) * | 2013-06-13 | 2018-01-09 | 北京邮电大学 | 多天线场景下d2d通信与蜂窝通信共存的通信方法及系统 |
WO2014200307A1 (en) * | 2013-06-13 | 2014-12-18 | Samsung Electronics Co., Ltd. | Method and apparatus for allocating resources for d2d communication |
KR20150007753A (ko) | 2013-07-12 | 2015-01-21 | 삼성전자주식회사 | 무선 셀룰라 통신 시스템에서 기지국 간 단말의 단말 대 단말 발견 신호 전송 방법 및 장치 |
CN103354161B (zh) | 2013-08-02 | 2015-12-23 | 国网新疆电力公司电力科学研究院 | 高压互感器 |
KR101770929B1 (ko) | 2013-08-19 | 2017-08-23 | 블랙베리 리미티드 | 오프 상태를 가진 무선 액세스 네트워크 노드 |
US9603109B2 (en) | 2013-09-11 | 2017-03-21 | Qualcomm Incorporated | Using short range discovery to predict the AGC setting for long range discovery |
US20150078297A1 (en) | 2013-09-17 | 2015-03-19 | Industrial Technology Research Institute | Method of resource allocation for device to device communication, user equipment using the same and base station using the same |
KR101918830B1 (ko) | 2014-01-29 | 2018-11-14 | 인터디지탈 패튼 홀딩스, 인크 | 디바이스 대 디바이스 검색 또는 통신을 위한 리소스 선택 |
US9560574B2 (en) | 2014-01-31 | 2017-01-31 | Intel IP Corporation | User equipment and method for transmit power control for D2D tranmissions |
US10091736B2 (en) | 2014-04-18 | 2018-10-02 | Kt Corporation | Method of controlling uplink signal transmission power and apparatus thereof |
EP2966919A1 (en) | 2014-07-11 | 2016-01-13 | Innovative Sonic Corporation | Method and apparatus for implementing device-to-device (d2d) service power control in a wireless communication system |
KR20240029766A (ko) | 2015-01-27 | 2024-03-06 | 로즈데일 다이나믹스 엘엘씨 | 무선 통신 시스템에서 단말에 의해 수행되는 전송 전력 제어 방법 및 상기 방법을 이용하는 단말 |
-
2016
- 2016-01-27 KR KR1020247002258A patent/KR20240029766A/ko active Search and Examination
- 2016-01-27 CN CN201680007256.2A patent/CN107211263B/zh active Active
- 2016-01-27 CN CN201680007283.XA patent/CN107211377B/zh active Active
- 2016-01-27 JP JP2017539010A patent/JP6392462B2/ja active Active
- 2016-01-27 US US15/546,516 patent/US10231193B2/en active Active
- 2016-01-27 KR KR1020177018603A patent/KR101975583B1/ko active IP Right Grant
- 2016-01-27 US US15/546,536 patent/US10349360B2/en active Active
- 2016-01-27 EP EP16743681.5A patent/EP3253135B1/en active Active
- 2016-01-27 EP EP20178969.0A patent/EP3735052B1/en active Active
- 2016-01-27 KR KR1020227028512A patent/KR102491678B1/ko active IP Right Grant
- 2016-01-27 KR KR1020247029495A patent/KR20240136460A/ko active Search and Examination
- 2016-01-27 EP EP23176092.7A patent/EP4271057A1/en active Pending
- 2016-01-27 EP EP16743680.7A patent/EP3253138B1/en active Active
- 2016-01-27 TW TW105102547A patent/TWI596975B/zh active
- 2016-01-27 WO PCT/KR2016/000863 patent/WO2016122202A2/ko active Application Filing
- 2016-01-27 KR KR1020177020472A patent/KR102435221B1/ko active IP Right Grant
- 2016-01-27 KR KR1020237002266A patent/KR102629597B1/ko active IP Right Grant
- 2016-01-27 WO PCT/KR2016/000867 patent/WO2016122203A1/ko active Application Filing
-
2019
- 2019-01-08 US US16/242,901 patent/US10542501B2/en active Active
- 2019-04-29 US US16/397,676 patent/US10764837B2/en active Active
-
2020
- 2020-01-07 US US16/736,115 patent/US10869281B2/en active Active
- 2020-07-31 US US16/945,187 patent/US10986588B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130324182A1 (en) * | 2012-05-31 | 2013-12-05 | Interdigital Patent Holdings, Inc. | Device-to-device (d2d) cross link power control |
WO2014021612A2 (ko) * | 2012-08-01 | 2014-02-06 | 엘지전자 주식회사 | 무선 통신 시스템에서 상향링크 송신 전력을 설정하는 방법 및 장치 |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102435221B1 (ko) | 무선 통신 시스템에서 단말에 의해 수행되는 전송 전력 제어 방법 및 상기 방법을 이용하는 단말 | |
KR102247049B1 (ko) | 무선 통신 시스템에서 하향링크 제어 정보 전송 방법 및 상기 방법을 이용하는 장치 | |
US10412612B2 (en) | Method for terminal executing V2X communication to determine transmission power in wireless communication system and terminal utilizing the method | |
US10530627B2 (en) | Method for performing D2D operation in wireless communication system, and terminal using same | |
US10506649B2 (en) | Method, carried out by terminal, for transmitting PSBCH in wireless communication system and terminal utilizing the method | |
US10375657B2 (en) | Method for transmitting a buffer status reporting for LTE-WLAN aggregation system and a device therefor | |
EP4456617A2 (en) | Method for transmitting d2d discovery signal by terminal in wireless communication system and terminal using same method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant |