KR102431783B1 - 광활성 형광체 프로브 및 이를 이용한 암세포 검출방법 - Google Patents

광활성 형광체 프로브 및 이를 이용한 암세포 검출방법 Download PDF

Info

Publication number
KR102431783B1
KR102431783B1 KR1020200038772A KR20200038772A KR102431783B1 KR 102431783 B1 KR102431783 B1 KR 102431783B1 KR 1020200038772 A KR1020200038772 A KR 1020200038772A KR 20200038772 A KR20200038772 A KR 20200038772A KR 102431783 B1 KR102431783 B1 KR 102431783B1
Authority
KR
South Korea
Prior art keywords
formula
methoxy
ethoxy
methyl
light
Prior art date
Application number
KR1020200038772A
Other languages
English (en)
Other versions
KR20210121661A (ko
Inventor
김해조
이원주
서현석
도재혁
권혁만
정선진
김상엽
박석안
조은아
Original Assignee
한국외국어대학교 연구산학협력단
재단법인 아산사회복지재단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국외국어대학교 연구산학협력단, 재단법인 아산사회복지재단 filed Critical 한국외국어대학교 연구산학협력단
Priority to KR1020200038772A priority Critical patent/KR102431783B1/ko
Publication of KR20210121661A publication Critical patent/KR20210121661A/ko
Application granted granted Critical
Publication of KR102431783B1 publication Critical patent/KR102431783B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • G01N33/57407Specifically defined cancers
    • G01N33/57411Specifically defined cancers of cervix
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/58Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances
    • G01N33/582Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances with fluorescent label
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Food Science & Technology (AREA)
  • Biochemistry (AREA)
  • Cell Biology (AREA)
  • Biotechnology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Microbiology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Hospice & Palliative Care (AREA)
  • Oncology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

본 발명은 광활성 형광체 검출방법에 관한 것으로서, 화학식 1로 표시되는 화합물을 포함하고, 여러 바이오 마커를 포함하고 있으며 실제 세포 실험에서 시공간적인 조작에 의한 암세포의 검출방법에 관한 내용을 포함한다.
상기와 같은 본 발명에 따르면, 생체 외(ex vivo) 혹은 생체 내(in vivo)에서 빛에 의해서 구조변형이 일어나 선택적으로 약물을 배출하는 광활성 조성물에 바이오마커를 도입하여 암을 진단하거나 미토콘드리아에 들어갈 수 있게 제조함으로써 암 세포의 진단과 항생제 (antibiotics) 또는 항암제 또는 억제제 (inhibitor) 와 같은 약물을 도입하여 특정 파장 영역의 빛에 의한 구조적 변형에 의해서만 약물 배출을 통한 암의 시공간적 치료에 유용하게 사용될 수 있는 효과가 있다.

Description

광활성 형광체 프로브 및 이를 이용한 암세포 검출방법 {Photoactive Phosphor Probe and Cancer Cell Detection Method Using the Same}
본 발명은 광활성 형광체 프로브에 관한 것으로서, 더욱 상세하게는 생체 외(ex vivo) 및 생체 내(in vivo)에서 특정 영역의 빛(740 nm, 365 nm)을 조사한 경우에만 선택적으로 약물이 배출되는 광활성 형광체 프로브 및 이를 이용한 암세포 검출방법에 관한 것이다.
광활성 형광체는 1광자 흡수 (one-photon absorption, OPA) 또는 2광자 흡수(two-photon absorption, TPA)를 사용하여 분자 또는 물질이 한 개 혹은 두 개의 광자를 동시에 흡수하여 흥분 상태 (excitation state)에 도달하는 원리이다. 2광자 흡수 형광체는 1광자 흡수 형광체의 절반에 해당하는 파장의 에너지를 받아 들뜬상태로 여기 되는 특성을 가진다. 이로 인해 선택적인 영역의 빛을 조사하면 구조 변화 및 결합이 끊기면서 약물이 배출되어 선택적인 치료가 가능하도록 한다. 자외선 (UV) 조사와 달리 근적외선 영역의 빛을 사용하는 TPA는 조직에 더 깊이 침투하고, 손상이 적으며 3차원 공간에서 정밀도의 증가로 원하는 위치에 집중적으로 조사할 수 있는 장점을 가지고 있다. 이러한 이유로 암 세포에 본 조성물을 주입하여 특정한 파장 영역의 빛 (740 nm, 365 nm)을 조사하는 것은 선택적인 악성 종양의 진단 및 치료에 많은 기여를 할 수 있을 것으로 기대되고 있다.
1. A. Shigenaga, J. Yamamoto, Y. Sumikawa, T. Furuta and A. Otaka, Tetrahedron Lett., 2010, 51, 2868. 2. H. M. Kim and B. R. Cho, Chem. Rev., 2015, 115, 5014.
본 발명의 목적은, 암의 치료에 이용되는 많은 화학요법의 단점인 비선택적 세포 공격을 극복하고자 함에 있다. 특정한 파장 영역대의 빛에 의해 작동하여 약물이 선택적으로 배출되는 다양한 광활성 유도체를 검출 센서 및 치료제로 활용하여 생체 외 또는 생체 내에서 악성 종양과 같은 질병의 진단 및 선택적인 치료가 가능하게 하는 검출방법을 제공함에 있다.
상기 목적을 달성하기 위하여, 본 발명의 일 형태는 하기 [화학식 1]로 표시되는 OPA 또는 TPA 구조체를 활용한 광활성 형광체 프로브를 제공한다.
[화학식 1]
Figure 112020033404134-pat00001
상기 [화학식1]에서, D (Drug)는 카바메이트 또는 카보네이트 또는 벤질 이써 형태로 연결된 다양한 antibiotics 및 inhibitors (억제제) 등을 포함하는 그룹일 수 있으며, 바람직하게는 하기의 [화학식 2] 또는 [화학식 3]과 같은 독소루비신 (Doxorubicin) 또는 [화학식 4]과 같은 파수딜 (Fasudil, Rho-kinase 억제제) 또는 [화학식 5]과 같은 Y-27632 (lac 억제제) 또는 캄토테신 (Camptothecin, CPT) 일 수 있다.
[화학식 2]
Figure 112020033404134-pat00002
[화학식 3]
Figure 112020033404134-pat00003
<화학식 4>
Figure 112020033404134-pat00004
<화학식 5>
Figure 112020033404134-pat00005
상기 [화학식1]에서, BM (Biomarker)은 선형 또는 비선형의 C1 내지 C20의 알킬기, 선형 또는 비선형의 C1 내지 C20의 알킬기를 갖는 케톤기, 선형 또는 비선형의 C1 내지 C20의 알코올기, 선형 또는 비선형의 C1 내지 C20의 알킬기를 갖는 에스테르기, C5 내지 C24의 치환 또는 비치환된 아릴기, C6 내지 C24의 아릴알킬기 또는 비선형의 C4 내지 C18의 알킬기를 갖는 아실기 그룹중 선택된 어느하나와 결합된 Biomarker일 수 있으며, 바람직하게는 (CH2)2O(CH2)2OAcGlu, (CH2)2O(CH2)2OGlu, (CH2)2O(CH2)2PPh3, Glucose, Galactose, 트라이페닐포스핀 (TPP, mitochondria marker), 모르폴린 (Morpholine, endosome marker), 엽산 (Folic acid), 바이오틴 (Biotin) 중 선택된 어느 하나 일 수 있다.
본 발명의 다른 한 일형태는 광활성 형광체 프로브 제조방법을 제공한다.
상기 광활성 형광체 프로브 제조방법은 (a) 극성 용매 하에서, 다이에틸 아조다이카복실레이트 (Diethyl azodicarboxylate, DEAD)와 트라이페닐포스핀 (Triphenylphosphine, PPh3), 인돌륨 (1-(2-hydroxyethyl)-2,3,3-trimethyl-3H-indol-1-ium bromide) 으로 하기 [화학식2]로 표시되는 화합물을 제조하는 단계, (b) 극성 용매 하에서, 4-나이트로페닐 클로로포메이트 (4-Nitrophenyl Chloroformate)와 N,N-다이아이소프로필에틸아민 (N,N-Diisopropylethylamine, DIPEA)에 독소루비신 염산염 (Doxorubicin hydrochloride, Dox-HCl) 혹은 파수딜 (Fasudil, Rho-kinase 억제제) 혹은 Y-27632 (lac 억제제)으로 하기 [화학식3] 내지 [화학식5]로 표시되는 화합물을 제조하는 단계를 포함하여 [화학식1]로 표시되는 화합물을 제조하는 단계를 포함할 수 있다.
[화학식 2]
Figure 112020033404134-pat00006
[화학식 3]
Figure 112020033404134-pat00007
[화학식 4]
Figure 112020033404134-pat00008
[화학식 5]
Figure 112020033404134-pat00009
상기와 같은 본 발명에 따르면, 생체 외(ex vivo) 혹은 생체 내(in vivo)에서 빛에 의해 작동하는 광활성 형광체 프로브를 활용함으로써, 바이오마커를 통한 암세포의 검출, 약물의 방출로 암세포의 치료 등에 적용할 수 있다. 기존의 화학요법의 단점을 극복하여 시공간적(spatiotemporal)으로 조작이 가능하기 때문에 선택적 암 진단 및 치료용 탐침으로서 유용하게 사용될 수 있는 효과를 기대 할 수 있다.
도 1은 실시예 1 내지 실시예 4에 빛을 조사하여 주었을 때의 구조 변화에 따른 UV, 형광 데이터 변화를 분석한 결과로, 도 1의 A와 B는 실시예 3 화합물에 740 nm의 빛을 조사해 주었을 때 구조변화에 따른 UV-Vis 스펙트럼과 형광 스펙트럼에서 관찰되는 데이터 변화를 분석한 결과이며, 도 1의 C는 실시예 2 화합물에 740 nm의 빛을 조사해 주었을 때 구조변화에 따른 형광 스펙트럼에서 관찰되는 데이터 변화를 분석한 결과이고, 도 1의 D는 실시예 1 화합물에 740 nm의 빛을 조사해 주었을 때 구조변화에 따른 형광 스펙트럼에서 관찰되는 데이터 변화를 분석한 결과입니다. 또한 도 1의 E는 실시예 4 화합물에 365 nm의 빛을 조사해 주었을 때 구조변화에 따른 UV-Vis 스펙트럼에서 관찰되는 데이터 변화를 분석한 결과이다.
도 2은 실시예 1 화합물의 헬라 세포에서 마이토콘드리아 표시자인 Rhodamine 123 과의 표지 실험 및 빛의 조사에 따른 세포 사진을 공초점 레이저현미경으로 얻은 것이다.
도 3은 실시예 1 화합물의 헬라 세포에서 빛을 조사하여 주었을 때 혹은 조사하지 않은 대조군의 사진을 공초점 레이저현미경으로 얻은 것이다.
도 4은 실시예 1 화합물의 헬라 세포 내의 마이토콘드리아의 활성을 통해 빛을 조사하여 주었을 때 혹은 조사하지 않은 대조군에서 간접적으로 측정한 결과이다.
도 5는 실시예 2 화합물의 SCC7 세포 내의 마이토콘드리아의 활성을 통해 빛을 조사하여 주었을 때 혹은 조사하지 않은 대조군에서 간접적으로 측정한 결과이다.
이하, 본 발명을 상세히 설명한다.
본 발명은 하기 [화학식 1]로 표시되는 OPA 혹은 TPA 의 구조체를 활용한 광활성 형광체 프로브에 관한 내용이다.
[화학식 1]
Figure 112020033404134-pat00010
상기 [화학식1]에서, D (Drug)는 카바메이트 또는 카보네이트 또는 벤질 이써 형태로 연결된 다양한 antibiotics 및 inhibitors (억제제) 등을 포함하는 그룹일 수 있으며, 바람직하게는 [화학식 2] 또는 [화학식 3]과 같은 독소루비신 (Doxorubicin) 또는 [화학식 4]과 같은 파수딜 (Fasudil, Rho-kinase 억제제) 또는 [화학식 5]과 같은 Y-27632 (lac 억제제) 또는 캄토테신 (Camptothecin, CPT)일 수 있다.
상기 [화학식1]에서, BM (Biomarker)은 선형 또는 비선형의 C1 내지 C20의 알킬기, 선형 또는 비선형의 C1 내지 C20의 알킬기를 갖는 케톤기, 선형 또는 비선형의 C1 내지 C20의 알코올기, 선형 또는 비선형의 C1 내지 C20의 알킬기를 갖는 에스테르기,C5 내지 C24의 치환 또는 비치환된 아릴기, C6 내지 C24의 아릴알킬기 또는 비선형의 C4 내지 C18의 알킬기를 갖는 아실기 그룹과 결합된 다양한 생체 내 마커를 포함하는 그룹일 수 있으며, 바람직하게는 (CH2)2O(CH2)2OAcGlu 또는 (CH2)2O(CH2)2OGlu 또는 (CH2)2O(CH2)2PPh3 또는 Glucose 또는 Galactose 또는 트라이페닐포스핀 (TPP, mitochondria marker) 또는 모르폴린 (Morpholine, endosome marker) 또는 엽산 (Folic acid) 또는 바이오틴 (Biotin) 일 수 있다.
[화학식 2]
Figure 112020033404134-pat00011
[화학식 3]
Figure 112020033404134-pat00012
[화학식 4]
Figure 112020033404134-pat00013
[화학식 5]
Figure 112020033404134-pat00014
상기 [화학식 1]은 (2R,3R,4S,5S,6R)-2-(2-(2-(4-((4-((E)-2-(9,9-다이메틸-2,3,9,9a-테트라하이드로옥사졸[3,2-a]인돌-9a-일)바이닐)페녹시)메틸)-2-메톡시-5-나이트로페녹시)에톡시)에톡시)-6-(하이드록시메틸)테트라하이드로-2H-파이렌-3,4,5-트라이올, 5-메톡시-2-나이트로-4-(2-(2-(((2R,3R,4S,5S,6R)-3,4,5-트라이하이드록시-6-(하이드록시메틸)테트라하이드로-2H-파이렌-2-일)옥시)에톡시)에톡시)벤질, ((2S,3S,4S,6R)-3-하이드록시-2-메틸-6-(((1S,3S)-3,5,12-트라이하이드록시-3-(2-하이드록시아세틸)-10-메톡시-6,11-다이옥소-1,2,3,4,6,11-헥사하이드로테트라센-1-일)옥시)테트라하이드로-2H-파이렌-4-일)카바메이트, (2-(2-(4-(((((2S,3S,4S,6R)-3-하이드록시-2-메틸-6-(((1S,3S)-3,5,12-트라이하이드록시-3-(2-하이드록시아세틸)-10-메톡시-6,11-다이옥소-1,2,3,4,6,11-헥사하이드로테트라센-1-일)옥시)테트라하이드로-2H-파이렌-4-일)카바모일)옥시)메틸)-2-메톡시-5-나이트로페녹시)에톡시)에틸)트라이페닐포스포늄 브로마이드, 4,5-다이메톡시-2-나이트로벤질 4-(아이소퀴놀린-5-일설포닐)-1,4-다이아제페인-1-카복실레이트, 및 4,5-다이메톡시-2-나이트로벤질 ((R)-1-((1r,4R)-1-메틸-4-(피리딘-4-일카바모일)싸이클로헥실)에틸)카바메이트로 이루어진 군에서 선택된 어느 하나일 수 있다.
상기 [화학식1]로 표시되는 화합물은 빛에 의해 노리쉬 타입 2 (Norrish type 2)인 하기 [반응식1]의 과정으로 구조적 변화를 거쳐 형광체(약물)가 방출되어 UV-Vis 혹은 형광 스펙트럼의 비율척도 (ratiometric) 혹은 턴 온 (Turn-on) 변화할 수 있다.
상기 [화학식2]로 표시되는 화합물은 [반응식 2] 과정으로 구조적 변화를 거쳐 형광체(약물)가 방출되어 UV 혹은 형광이 비율척도 (ratiometric) 혹은 턴 온 (Turn-on) 변화할 수 있다. 도 1의 A에서 740 nm의 빛을 조사했을 때 419 nm의 흡수 파장이 감소하면서 515 nm의 흡수 파장이 증가하는 변화가 관찰된다. 419nm 의 흡수 파장 대비 515 nm의 흡수 파장의 시간에 따른 흡수량이 비율척도적으로 증가한다. 도 1의 B에서 740 nm의 빛을 조사했을 때 560 nm의 방출 파장을 보이며 기존 형광 대비 약 10배 이상의 턴온 (Turn-on) 변화가 관찰된다.
상기 [화학식3] 내지 [화학식5]로 표시되는 화합물은 [반응식 3]의 과정을 통해 형광체(약물)가 방출되어 UV 혹은 형광이 비율척도 (ratiometric) 혹은 턴 온 (Turn-on) 변화할 수 있다. 도 1의 C 와 D에서 370 nm 의 빛을 조사했을 때 595 nm의 방출 파장 증가하는 턴온 (Turn-on) 변화가 관찰된다. 도 1의 E에서 365 nm 의 빛을 조사했을 때 355nm 의 흡수 파장 대비 264 nm의 흡수 파장의 시간에 따른 흡수량이 비율척도적으로 증가한다.
[반응식1]
Figure 112020033404134-pat00015
[반응식2]
Figure 112020033404134-pat00016
[반응식3]
Figure 112020033404134-pat00017
본 발명의 화학식 1 내지 5의 화합물은 각각 상기 [반응식1] 내지 [반응식3]을 거쳐 나이트로 작용기가 활성화되고, 연쇄반응으로 벤질 이써 (ether) 혹은 카바메이트 (carbamate) 혹은 카보네이트 (carbonate) 작용기가 끊어져 일어난 구조 변화에 의해 턴 온 되는 형광 변화를 유도하게 된다.
본 발명은 하기와 같은 광활성 형광체 화합물의 제조방법을 제공한다.
(a) 극성 용매 하에서, 다이에틸 아조다이카복실레이트 (Diethyl azodicarboxylate, DEAD)와 트라이페닐포스핀 (Triphenylphosphine, PPh3), 인돌륨 (1-(2-hydroxyethyl)-2,3,3-trimethyl-3H-indol-1-ium bromide) 으로 하기 [화학식2]로 표시되는 화합물을 제조하는 단계 및
(b) 극성 용매 하에서, 4-나이트로페닐 클로로포메이트 (4-Nitrophenyl Chloroformate)와 N,N-다이아이소프로필에틸아민 (N,N-Diisopropylethylamine, DIPEA)에 독소루비신 염산염 (Doxorubicin hydrochloride, Dox-HCl) 혹은 파수딜 (Fasudil, Rho-kinase 억제제) 혹은 Y-27632 (lac 억제제)으로 하기 [화학식3] 내지 [화학식5]로 표시되는 화합물을 제조하는 단계를 포함하여 [화학식1]로 표시되는 화합물을 제조하는 단계를 포함할 수 있다.
[화학식 2]
Figure 112020033404134-pat00018
[화학식 3]
Figure 112020033404134-pat00019
[화학식 4]
Figure 112020033404134-pat00020
[화학식 5]
Figure 112020033404134-pat00021
상기 [화학식3] 으로 표시되는 화합물은 항생제로 사용되는 독소로비신 (Doxorubicin) 을 포함하는 구조로 [반응식3]에 의해 독소로비신으로 배출되어 암 세포를 죽이는 약물 (antibiotics) 일 수 있다. 상기 [화학식4] 내지 [화학식 5]로 표시되는 화합물은 억제제로 사용되는 파수딜 (Fasudil, Rho-kinase 억제제) 혹은 Y-27632 (lac 억제제)를 포함하는 구조로 [반응식3]에 의해 억제제가 배출되어 억제제 (inhibitor) 일 수 있다.
상기 극성용매는 아세토나이트릴 (acetonitrile), 클로로포름, 테트라하이드로퓨란 (Tetrahydrofuran, THF), 디클로로메탄 (Dichloromethane), 다이메틸포름아마이드 (Dimethylformamide, DMF) 아이소프로필 알코올, 메탄올 및 에탄올로 이루어진 군에서 선택된 하나 이상일 수 있다.
본 발명은 상기한 광활성 형광체 화합물을 이용한 암세포 검출방법을 제공한다.
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로서, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지는 않는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.
실시예 1. (2-(2-(4-(((((2S,3S,4S,6R)-3-하이드록시-2-메틸-6-(((1S,3S)-3,5,12-트라이하이드록시-3-(2-하이드록시아세틸)-10-메톡시-6,11-다이옥소-1,2,3,4,6,11-헥사하이드로테트라센-1-일)옥시)테트라하이드로-2H-파이렌-4-일)카바모일)옥시)메틸)-2-메톡시-5-나이트로페녹시)에톡시)에틸)트라이페닐포스포늄 브로마이드의 제조
Figure 112020033404134-pat00022
둥근바닥 플라스크에서 중간화합물 (2-(2-(4-(((((2S,3S,4S,6R)-3-하이드록시-2-메틸-6-(((1S,3S)-3,5,12-트라이하이드록시-3-(2-하이드록시아세틸)-10-메톡시-6,11-다이옥소-1,2,3,4,6,11-헥사하이드로테트라센-1-일)옥시)테트라하이드로-2H-파이렌-4-일)카바모일)옥시)메틸)-2-메톡시-5-나이트로페녹시)에톡시)에틸 46 mg, 트라이페닐포스핀 39 mg, 소듐아이오다이드 0.8 mg 을 아세토나이트릴 2 mL와 에틸아세테이트 1 mL를 가하여 상온에서 용해 시키고 85 oC 에서 24 시간 반응시켰다. TLC로 출발물질이 사라지는 것을 확인한 후 감압 농축하였다. 얻어진 농축물을 컬럼 크로마토그래피(용리액: 디클로로메탄/메탄올 = 10/1, v/v)로 정제하여 (2-(2-(4-(((((2S,3S,4S,6R)-3-하이드록시-2-메틸-6-(((1S,3S)-3,5,12-트라이하이드록시-3-(2-하이드록시아세틸)-10-메톡시-6,11-다이옥소-1,2,3,4,6,11-헥사하이드로테트라센-1-일)옥시)테트라하이드로-2H-파이렌-4-일)카바모일)옥시)메틸)-2-메톡시-5-나이트로페녹시)에톡시)에틸)트라이페닐포스포늄 브로마이드를 제조하였다.
수율: 67 %
1H NMR ((CD3)2SO, 400MHz): δ 14.05 (s, 1H), 13.27 (s, 1H), 7.91 (d, J = 4.3 Hz, 3H), 7.85 - 7.72 (m, 12H), 7.68-7.61 (m, 9H), 7.47 (s, 1H), 7.24 (d, J = 8.1 Hz, 1H), 7.19 (s, 1H), 5.46 (s, 1H), 5.31 (d, J = 9.9 Hz, 2H), 5.26 (s, 1H), 4.96 (t, J = 4.1 Hz1H), 4.87 (t, J = 5.9 Hz, 1H), 4.80 (d, J = 6.1 Hz, 1H), 4.57 (d, J = 5.9 Hz, 2H), 4.01 - 3.79 (m, 13H), 3.78 - 3.66 (m, 3H), 3.47 (d, J = 29.5 Hz, 5H), 2.97 (d, J = 5.0 Hz, 2H), 2.25 - 2.07 (m, 2H), 1.89 (td, J = 9.6, J = 2.5 Hz, 1H), 1.52 (d, J = 8.0 Hz, 1H), 1.14 (d, J = 6.5 Hz, 4H).
13C NMR ((CD3)2SO, 100 MHz): δ 214.3, 186.8, 186.7, 161.1,156.5, 155.4, 154.9, 153.7, 146.9, 139.2, 136.6, 135.9, 134.9, 134.5, 134.1, 130.2, 130.1, 128.7, 120.2, 120.1, 119.9, 119.0, 111.1, 110.1, 108.9, 100.9, 100.6, 75.4, 70.2, 69.0, 64.2, 62.7, 57.2, 56.8, 56.5, 47.9, 47.6, 37.0, 32.6, 30.5, 30.3, 22.9, 17.6, 17.4.
MS (FAB+,DMSO and Glycerol) : calcd. For [M]+ 1101.3422 found 1101.3428.
실시예 2. 5-메톡시-2-나이트로-4-(2-(2-(((2R,3R,4S,5S,6R)-3,4,5-트라이하이드록시-6-(하이드록시메틸)테트라하이드로-2H-파이렌-2-일)옥시)에톡시)에톡시)벤질 ((2S,3S,4S,6R)-3-하이드록시-2-메틸-6-(((1S,3S)-3,5,12-트라이하이드록시-3-(2-하이드록시아세틸)-10-메톡시-6,11-다이옥소-1,2,3,4,6,11-헥사하이드로테트라센-1-일)옥시)테트라하이드로-2H-파이렌-4-일)카바메이트의 제조
Figure 112020033404134-pat00023
둥근바닥 플라스크에 중간화합물 (2R,3R,4S,5R,6R)-2-(아세톡시메틸)-6-(2-(2-(4-(((((2S,3S,4S,6R)-3-하이드록시-2-메틸-6-(((1S,3S)-3,5,12-트라이하이드록시-3-(2-하이드록시아세틸)-10-메톡시-6,11-다이옥소-1,2,3,4,6,11-헥사하이드로테트라센-1-일)옥시)테트라하이드로-2H-파이렌-4-일)카바모일)옥시)메틸)-2-메톡시-5-나이트로펜옥시)에톡시)에톡시)테트라하이드로-2H-파이렌-3,4,5-트라일트라이아세테이트 119 mg을 넣고 디클로로메탄/메탄올 (1:4) 15 mL에 용해시킨뒤 소듐메톡사이드 16 mg을 상온에서 넣어준 뒤 2시간 동안 반응시켰다. 출발물질이 사라지는 것을 TLC로 확인 후 감압 농축하였다. 얻어진 농축물을 컬럼 크로마토그래피(용리액: 다이클로로메테인/메탄올= 10/1.5, v/v)로 정제하여 5-메톡시-2-나이트로-4-(2-(2-(((2R,3R,4S,5S,6R)-3,4,5-트라이하이드록시-6-(하이드록시메틸)테트라하이드로-2H-파이렌-2-일)옥시)에톡시)에톡시) 벤질((2S,3S,4S,6R)-3-하이드록시-2-메틸-6-(((1S,3S)-3,5,12-트라이하이드록시-3-(2-하이드록시아세틸)-10-메톡시-6,11-다이옥소-1,2,3,4,6,11-헥사하이드로테트라센-1-일)옥시)테트라하이드로-2H-파이렌-4-일)카바메이트을 제조하였다.
수율: 40 %
1H NMR ((CD3)2SO, 400 MHz): δ 14.03 (s, 1H), 13.26 (s, 1H), 7.91 (s, 1H), 7.90 (s, 1H), 7.70 (s, 1H), 7.65 (t, J = 4.8 Hz, 1H), 7.24-7.20 (m, 2H), 5.46 (s, 1H), 5.28 (d, J = 4.3 Hz, 2H), 5.24 (d, J = 2.4 Hz, 1H), 4.98 (d, J = 4.9 Hz, 1H), 4.95 (t, J = 4.8 Hz, 1H), 4.92 (d, J = 4.7 Hz, 1H), 4.89 (d, J = 4.9 Hz, 1H), 4.85 (t, J = 5.9 Hz, 1H), 4.79 (d, J = 5.8 Hz, 1H), 4.58 (d, J = 5.9 Hz, 2H), 4.49 (t, J = 5.9 Hz, 1H), 4.21-4.14 (m, 4H), 3.99 (s, 3H), 3.95-3.85 (m, 4H), 3.80 - 3.70 (m, 3H), 3.69 - 3.56 (m, 5H), 3.48 - 3.40 (m, 2H), 3.15 - 2.90 (m, 6H), 2.25 - 2.09 (m, 2H), 1.89 (td J = 11.2, 5 Hz, 1H), 1.51 (dd, J = 8.3, 4 Hz, 1H), 1.14 (d, J = 6.4 Hz, 3H).
13C NMR ((CD3)2SO, 100 MHz): δ 214.3, 186.8, 186.7, 161.2, 156.5, 155.4, 154.9, 154.0, 147.2, 139.4, 136.6, 135.9, 135.0, 134.5, 128.6, 120.3, 120.1, 119.4, 111.1, 111.00, 110.98, 109.6, 103.4, 100.8, 77.3, 77.2, 75.4, 73.8, 70.5, 70.26, 70.25, 69.1, 68.9, 68.5, 68.3, 67.2, 64.2, 62.7, 61.5, 57.0, 56.8, 47.6, 37.0, 32.5, 30.3, 17.5.
MS (FAB+,m-NBA and Glycerol) : calcd. For [M]- 1018.3067 found 1018.3068.
실시예 3. (2R,3R,4S,5S,6R)-2-(2-(2-(4-((4-((E)-2-(9,9-다이메틸-2,3,9,9a-테트라하이드로옥사졸[3,2-a]인돌-9a-일)바이닐)페녹시)메틸)-2-메톡시-5-나이트로페녹시)에톡시)에톡시)-6-(하이드록시메틸)테트라하이드로-2H-파이렌-3,4,5-트라이올의 제조
Figure 112020033404134-pat00024
둥근바닥 플라스크에 중간화합물 (2R,3R,4S,5R,6R)-2-(아세토메틸)-6-(2-(2-(4-((4-((E)-2-(9,9-다이메틸-2,3,9,9a-테트라하이드로옥사졸[3,2-a]인돌-9a-릴)바이닐)펜옥시)메틸)-2-메톡시-5-나이트로펜옥시)에톡시)에톡시)테트라하이드로-2H-파이렌-3,4,5-트라일 트라이아세테이트 23 mg을 넣고 메탄올 lmL에 용해시킨뒤 물에 용해시킨 소듐메톡사이드 7.5 μL를 상온에서 넣어준 뒤 20 분 동안 반응시켰다. TLC로 확인 결과 출발물질이 사라졌을 때 감압 농축하였다. 얻어진 농축물을 컬럼 크로마토그래피(용리액: 다이클로로메테인/메탄올= 10/1, v/v)로 정제하여 (2R,3R,4S,5S,6R)-2-(2-(2-(4-((4-((E)-2-(9,9-다이메틸-2,3,9,9a-테트라하이드로옥사졸[3,2-a]인돌-9a-일)바이닐)페녹시)메틸)-2-메톡시-5-나이트로페녹시)에톡시)에톡시)-6-(하이드록시메틸)테트라하이드로-2H-파이렌-3,4,5-트라이올을 제조하였다.
수율: 87 %
1H NMR (CD3OD, 400MHz): δ 7.83 (s, 1H), 7.43 (d, J = 8.8, 2H), 7.35 (s, 1H), 7.15 (td, J = 7.6, 1.2, 1H), 7.09 (dd, J = 7.6, 1.2, 1H), 7.01 (d, J = 8.8, 2H), 6.96 (td, J = 7.2, 0.8, 1H), 6.87-6.81 (m, 2H), 6.19 (d, J = 16.0, 1H), 5.46 (s, 2H), 4.33 (d, J = 7.6, 1H), 4.25 (t, J = 4.4, 2H), 4.07-4.04 (m, 1H), 3.94-3.91 (m, 5H), 3.88 (dd, J = 11.6, 2.0, 1H), 3.82-3.73 (m, 5H), 3.70-3.65 (m 1H), 3.56 (q, J = 7.6, 1H), 3.47-3.36 (m, 2H), 3.30-3.27 (m, 2H), 3.21 (t, J = 8.8, 1H), 1.42 (s, 3H), 1.15 (s, 3H).
13C NMR (CD3OD, 100 MHz): δ 158.11, 154.24, 150.46, 147.26, 139.72, 139.25, 131.66, 129.96, 128.83, 128.74, 127.80, 127.21, 123.66, 121.93, 121.49, 114.74, 114.32, 111.91, 110.04, 109.88, 109.73, 103.06, 76.56, 73.70, 70.34, 70.22, 69.20, 68.80, 68.36, 66.79, 63.14, 61.40, 55.49, 49.57, 48.47, 27.47, 19.38.
MS (FAB+,Glycerol) : calcd. For [M+H]+ 739.3078 found 739.3085.
실시예 4. 4,5-다이메톡시-2-나이트로벤질-4-(아이소퀴놀린-5-일설포닐)-1,4-다이아제페인-1-카복실레이트의 제조
Figure 112020033404134-pat00025
둥근바닥 플라스크에 (4,5-다이메톡시-2-나이트로페닐)메탄올 426 mg, N,N-다이아이소프로필에틸아민 (N,N-Diisopropylethylamine, DIPEA) 1.05 mL 을 다이클로로메테인 (DCM) 4 mL를 가하여 0 oC 에서 용해시키고, 30 분 반응시켰다. 이후 4-나이트로페닐 클로로포메이트 484 mg 을 다이클로로메테인 (DCM) 2 mL를 가하여 상온에서 용해시킨 후 3시간 동안 상온에서 반응시켰다. TLC로 확인 결과 출발물질이 사라졌을 때 감압 농축하여 활성화된 카보네이트를 제조하였다. 이후 파수딜 (Fasudil) 98 mg 과 N,N-다이아이소프로필에틸아민 52 μL을 다이클로로메테인 (DCM) 0.5 mL 를 가하여 0 oC 에서 용해시키고, 활성화된 카보네이트 114 mg 을 다이클로로메테인 (DCM) 0.3 mL 를 가하여 0 oC 에서 넣어주고 6 시간 반응시켰다. TLC로 확인 결과 출발물질이 사라졌을 때 감압 농축하였다. 얻어진 농축물을 컬럼 크로마토그래피(용리액: 디클로로메탄/메탄올 = 10/1, v/v)로 정제하여 4,5-다이메톡시-2-나이트로벤질4-(아이소퀴놀린-5-일설포닐)-1,4-다이아제페인-1-카복실레이트을 제조하였다.
수율: 98 %
1H NMR (CDCl3, 400MHz): δ 9.37 (s, 1H), 8.71 (d, J = 6.4 Hz, 1H), 8.40 (d, J = 6.0 Hz, 1H), 8.33 (d, J = 7.6 Hz, 1H), 8.25 (d, J = 8.4 Hz, 1H), 7.75-7.67 (m, 2H), 6.97 (s, 1H), 5.46 (s, 2H), 3.98 (s, 3H), 3.97 (s, 3H), 3.70-3.60 (m, 4H), 3.51-3.40 (m, 4H), 2.05-1.94 (m, 2H).
실시예5. 4,5-다이메톡시-2-나이트로벤질((R)-1-((1R,4R)-1-메틸-4-(피리딘-4-일카바모일)싸이클로헥실)에틸)카바메이트의 제조
Figure 112020033404134-pat00026
둥근바닥 플라스크에 (4,5-다이메톡시-2-나이트로페닐)메탄올 426 mg, N,N-다이아이소프로필에틸아민 (N,N-Diisopropylethylamine, DIPEA) 1.05 mL 을 다이클로로메테인 (DCM) 4 mL를 가하여 0 oC 에서 용해시키고, 30 분 반응시켰다. 이후 4-나이트로페닐 클로로포메이트 484 mg 을 다이클로로메테인 (DCM) 2 mL를 가하여 상온에서 용해시킨 후 3시간 동안 상온에서 반응시켰다. TLC로 확인 결과 출발물질이 사라졌을 때 감압 농축하여 활성화된 카보네이트를 제조하였다. 이후 Y-27632 96 mg 과 N,N-다이아이소프로필에틸아민 52 μL을 다이메틸포름아마이드 (DMF) 0.5 mL 를 가하여 0 oC 에서 용해시키고, 활성화된 카보네이트 114 mg 을 다이메틸포름아마이드 (DMF) 0.3 mL 를 가하여 0 oC 에서 넣어주고 34 oC 에서 8 시간 반응시켰다. TLC로 확인 결과 출발물질이 사라졌을 때 감압 농축하였다. 얻어진 농축물을 컬럼 크로마토그래피(용리액: 디클로로메탄/메탄올 = 10/1, v/v)로 정제하여 4,5-다이메톡시-2-나이트로벤질((R)-1-((1R,4R)-1-메틸-4-(피리딘-4-일카바모일)싸이클로헥실)에틸)카바메이트를 제조하였다.
수율: 35 %
1H NMR (CDCl3, 400MHz): δ 8.50 (d, J = 6.4 Hz, 2H), 7.73 (s, 1H), 7.58 (s, 1H), 7.53 (d, J = 6.4 Hz, 2H), 7.01 (s, 1H), 5.55-5.46 (m, 2H), 4.74 (d, J = 9.2 Hz, 1H), 4.00 (s, 3H), 3.98 (s, 3H), 3.68-3.59 (m, 1H), 2.27-2.17 (m, 1H), 2.10-1.86 (m, 5H), 1.45-1.33 (m, 2H), 1.18 (d, J = 6.8 Hz, 3H), 1.16-1.6 (m, 2H).
시험예 1. 생체 외 빛 조사에 따른 UV , Flu 데이터 변화관찰
실시예 3에서 얻어진 화합물 10μmol를 다이메틸설폭사이드 1 mL에 용해시켜 10 mM이 되도록 준비하였다. 이 중 4μL를 PBS 완충용액(pH 7.4, 1X) 2mL에 혼합하여 실시예 3의 화합물이 20μM의 농도가 되도록 준비하였다. 이후, 740 nm의 빛을 조사하여 UV 비저블 스펙트로포토미터(UV-Visible Spectrophotometer)와 형광 스펙트로미터(Fluorescence Spectrometer)를 사용하여 24시간 동안 UV와 Flu 데이터의 변화를 관찰하였다. (도 1A, 도 1B)
실시예 1과 실시예 2에서 얻어진 화합물도 동일한 방법으로 수행하여 각각의 농도가 10μM, 20μM 가 되도록 준비하여 365 nm의 빛을 조사하여 형광 스펙트로미터(Fluorescence Spectrometer)로 24 시간 동안의 Flu 데이터의 변화를 관찰하였다. (도 1C, 도 1D)
실시예 4에서 얻어진 화합물도 동일한 방법으로 수행하여 농도가 20 μM 가 되도록 준비하여 365 nm의 빛을 조사하여 UV 스펙트로미터로 6 시간 동안의 UV 데이터의 변화를 관찰하였다. (도 1E)
도 1A 내지 도 1E을 참조하면 12 시간 혹은 6 시간 만에 빛에 의한 구조 변형이 거의 종결되어 형광 변화가 포화되는 것을 확인할 수 있었다. 따라서 실시예 1 내지 4에 의해 제조되는 화합물은 빛에 의해 작동하는 광활성 형광체 조성물로 사용될 수 있음을 확인하였다.
시험예 2. 실시예 1 화합물의 세포 내에서 바이오마커 작동 실험
Figure 112020033404134-pat00027
[실시예 1]
바이오마커로서 마이토콘드리아를 추적 할 수 있는 트라이페닐 포스핀 작용기를 도입한 화합물인 실시예 1을 준비하여 진행하였다. 자궁경부암에서 유래된 헬라 (HeLa) 세포의 마이토콘드리아의 형광을 공초점레이저현미경을 사용하여 관찰하였다. 위에 4개의 세포 사진은 빛을 조사하기 전의, 아래의 사진4개는 빛을 15분 동안 조사한 뒤 의 사진이다. 왼쪽에서부터 Bright field 사진, Rhodamine 123 5μM을 처린한 사진, 실시예 1의 화합물을 처리한 사진, 그리고 마지막으로 3개의 사진을 겹친 사진이다. 위의 사진들은 빛을 조사하기 전의 사진은 분자구조에 의한 형광 감소 및 도입한 바이오마커에 의해 정상적으로 마이토콘드리아를 추적을 관찰 하였으며, 세포의 사진이 정상적인 것을 관찰하였다. 반면 아래의 사진들은 특정한 영역대 파장의 빛을 15분 동안 조사 한 뒤 세포사진을 관찰하였을 때 조사하기 전보다 세포의 사진이 비정상적인 것을 확인하였으며, 약물의 방출에 의한 세포사멸에 의해 마이토 콘드리아의 모양 또한 비정상적인 것을 관찰 하였다. 본 시험예를 토대로 실시예 1의 화합물이 목적대로 정상적으로 마이토콘드리아를 추적하며, 빛에 작동으로 인한 약물 방출이 세포 사멸을 유발하는 것을 관찰하였다 (도 2).
시험예 3. 실시예 1 화합물의 세포 내의 정밀 작동 실험
바이오마커로서 마이토콘드리아를 추적 할 수 있는 트라이페닐 포스핀 작용기를 도입한 화합물인 실시예 1을 준비하여 진행하였다. 자궁경부암에서 유래된 헬라 (HeLa) 세포의 마이토콘드리아의 형광을 공초점 레이저현미경을 사용하여 관찰하였다. 왼쪽의 그림부터 첫 번째는 미토콘드리아를 추적하는 Rhodamine 123 5μM을 처리한 것이고 두번째 그림은 화학식1로 표시되는 표제 화합물 3에 바이오 마커로서 트라이페닐 포스핀 작용기를 도입한 화합물을 5μM 를 헬라세포에 처리한 후 빛을 쬐여준 후 하루 지난 사진이고, 세 번째 사진은 같은 조건에서 3일이 지난 후의 사진이고, 맨 오른쪽 그림은 같은 조건에서 빛을 조사하지 않은 세포의 3일이 지난 후의 사진이다. 사진으로 보았을 때 첫 번째 사진에 비해 왼쪽에서 3번째 사진의 세포의 모양이 뚜렷하게 보인다. 이와 대조군으로 4번째 사진과 비교하였을 때 빛에 의한 약물의 방출을 확인 할 수 있다 (도 3).
시험예 4. 실시예 1 화합물의 세포 독성 실험
화학식 1로 표시되는 표제화합물 3에 바이오마커로서 트라이페닐 포스핀 작용기를 도입한 화합물인 실시예 1을 준비하여 진행하였다. 자궁경부암에서 유래된 헬라 (HeLa) 세포의 마이토콘드리아의 세포 증식 및 사멸도 평가를 진행하였다. 왼쪽의 막대 그래프들은 특정한 영역대의 빛을 조사하지 않았을 때와 빛을 조사한 후 3일이 지난 세포의 세포 증식 및 사멸도 평가를 나타낸 자료이다. 왼쪽의 막대 그래프인 대조군은 빛을 조사하지 않았을 경우 세포의 사멸이 일어나지 않는 반면 화학식 1로 표시되는 표제 화합물 3 에 바이오 마커로 트라이페닐 포스핀 작용기를 도입한 화합물인 실시예 1은 세포 사멸이 일어나는 것을 관찰하였다. 이 실험을 통해 실제 암세포 내에서 빛의 조사에 의한 약물 방출로 인하여 세포 사멸이 일어나는 것을 간접적으로 확인하였다 (도 4).
시험예 5. 실시예 2 화합물의 세포 독성 확인
Figure 112020033404134-pat00028
[실시예 2]
쥐의 편평세포암종에서 유래된 SCC7 세포에서 마이토콘드리아의 세포 증식 및 사멸도 평가를 진행하였다. 막대 그래프들의 좌측의 y 축은 세포의 생존력을 x 축은 약물의 농도를 나타내고 있으며 좌측의 그래프는 SCC7 세포주에서 실험을 한 자료이다. 각 막대그래프 묶음에서 왼쪽에 있는 것은 실시예2의 약물을 처리하고 빛을 조사하지 않았을 때의 세포 활성을 나타내는 것이고, 가운데는 실시예2의 약물을 처리하고, 빛을 조사한 후 2일이 지난 세포 활성을 나타내는 것이며 오른쪽은 방출되는 약물인 독소루비신(doxorubicin)을 처리한 대조군의 세포 활성을 나타내는 자료이다. 독소루비신을 단독으로 처리하였을 때, 약물의 농도가 높아짐에 따라 세포 독성으로 인한 세포 사멸이 더욱 강력해지는 것을 관찰하였다. 반면, 대조군으로 빛을 조사하지 않은 실시예 2의 화합물의 경우 처리한 약물의 농도가 증가함에도 세포의 사멸이 일어나지 않는 것을 관찰하였다. 본 실험을 통하여 빛의 조사에 의한 약물 방출이 세포 사멸에 결정적인 역할을 한다는 것을 확인 할 수 있다 (도 5).

Claims (5)

  1. (1) 하기 [화학식 1]로 표시되는 1광자 흡수(one-photon absorption, OPA) 또는 2광자 흡수(two-photon absorption, TPA) 구조체를 포함하는 광활성 형광체 화합물을 준비하는 단계;
    [화학식 1]
    Figure 112022034233418-pat00039

    (2) 상기 화합물을 헬라세포에 처리하는 단계;
    (3) 상기 헬라세포에 빛을 740 nm 또는 365 nm의 파장으로 조사하는 단계; 및
    (4) 상기 헬라세포의 마이토콘드리아를 관찰하는 단계;를 포함하며,
    상기 [화학식 1]은 (2R,3R,4S,5S,6R)-2-(2-(2-(4-((4-((E)-2-(9,9-다이메틸-2,3,9,9a-테트라하이드로옥사졸[3,2-a]인돌-9a-일)바이닐)페녹시)메틸)-2-메톡시-5-나이트로페녹시)에톡시)에톡시)-6-(하이드록시메틸)테트라하이드로-2H-파이렌-3,4,5-트라이올, 5-메톡시-2-나이트로-4-(2-(2-(((2R,3R,4S,5S,6R)-3,4,5-트라이하이드록시-6-(하이드록시메틸)테트라하이드로-2H-파이렌-2-일)옥시)에톡시)에톡시)벤질 ((2S,3S,4S,6R)-3-하이드록시-2-메틸-6-(((1S,3S)-3,5,12-트라이하이드록시-3-(2-하이드록시아세틸)-10-메톡시-6,11-다이옥소-1,2,3,4,6,11-헥사하이드로테트라센-1-일)옥시)테트라하이드로-2H-파이렌-4-일)카바메이트, (2-(2-(4-(((((2S,3S,4S,6R)-3-하이드록시-2-메틸-6-(((1S,3S)-3,5,12-트라이하이드록시-3-(2-하이드록시아세틸)-10-메톡시-6,11-다이옥소-1,2,3,4,6,11-헥사하이드로테트라센-1-일)옥시)테트라하이드로-2H-파이렌-4-일)카바모일)옥시)메틸)-2-메톡시-5-나이트로페녹시)에톡시)에틸)트라이페닐포스포늄 브로마이드, 4,5-다이메톡시-2-나이트로벤질 4-(아이소퀴놀린-5-일설포닐)-1,4-다이아제페인-1-카복실레이트, 및 4,5-다이메톡시-2-나이트로벤질 ((R)-1-((1r,4R)-1-메틸-4-(피리딘-4-일카바모일)싸이클로헥실)에틸)카바메이트로 이루어진 군에서 선택된 어느 하나인 것을 특징으로 하는 광활성 형광체 프로브를 이용한 암세포 사멸방법.
  2. 제1항에 있어서,
    상기 (2) 단계의 헬라세포는 자궁경부암에서 유래된 것을 특징으로 하는 광활성 형광체 프로브를 이용한 암세포 사멸방법.
  3. 삭제
  4. 삭제
  5. 삭제
KR1020200038772A 2020-03-31 2020-03-31 광활성 형광체 프로브 및 이를 이용한 암세포 검출방법 KR102431783B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020200038772A KR102431783B1 (ko) 2020-03-31 2020-03-31 광활성 형광체 프로브 및 이를 이용한 암세포 검출방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200038772A KR102431783B1 (ko) 2020-03-31 2020-03-31 광활성 형광체 프로브 및 이를 이용한 암세포 검출방법

Publications (2)

Publication Number Publication Date
KR20210121661A KR20210121661A (ko) 2021-10-08
KR102431783B1 true KR102431783B1 (ko) 2022-08-16

Family

ID=78115849

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200038772A KR102431783B1 (ko) 2020-03-31 2020-03-31 광활성 형광체 프로브 및 이를 이용한 암세포 검출방법

Country Status (1)

Country Link
KR (1) KR102431783B1 (ko)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017019520A1 (en) * 2015-07-24 2017-02-02 Memorial Sloan Kettering Cancer Center Compositions and methods of cerenkov targeted and activated imaging and therapeutics

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102159181B1 (ko) * 2019-01-04 2020-09-23 한국외국어대학교 연구산학협력단 광활성 형광체 화합물, 상기 광활성 형광체 화합물을 포함하는 조성물(광활성 형광체 조성물) 및 이들의 제조 방법

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017019520A1 (en) * 2015-07-24 2017-02-02 Memorial Sloan Kettering Cancer Center Compositions and methods of cerenkov targeted and activated imaging and therapeutics

Also Published As

Publication number Publication date
KR20210121661A (ko) 2021-10-08

Similar Documents

Publication Publication Date Title
Cao et al. Coumarin-based small-molecule fluorescent chemosensors
Klán et al. Photoremovable protecting groups in chemistry and biology: reaction mechanisms and efficacy
Takakusa et al. A novel design method of ratiometric fluorescent probes based on fluorescence resonance energy transfer switching by spectral overlap integral
Gottumukkala et al. Synthesis, cellular uptake and animal toxicity of a tetra (carboranylphenyl)-tetrabenzoporphyrin
Papalia et al. Cell internalization of BODIPY-based fluorescent dyes bearing carbohydrate residues
CN109503546A (zh) 一种间苯二酚二苯甲醚及其应用
Schlenk et al. A Selective 3‐Acylation of Tetramic Acids and the First Synthesis of Ravenic Acid
Moshkin et al. Synthesis of benzopyranopyrrolidines via 1, 3-dipolar cycloaddition of nonstabilized azomethine ylides with 3-substituted coumarins
Huvelle et al. Syntheses and kinetic studies of cyclisation-based self-immolative spacers
Hao et al. Synthesis of porphyrin-carbohydrate conjugates using" click" chemistry and their preliminary evaluation in human HEp2 cells
Tietze et al. Photoactivatable prodrugs of highly potent duocarmycin analogues for a selective cancer therapy
Weinig et al. Molecular signal transduction by conformational transmission: Use of tetrasubstituted perhydroanthracenes as transducers
KR102159181B1 (ko) 광활성 형광체 화합물, 상기 광활성 형광체 화합물을 포함하는 조성물(광활성 형광체 조성물) 및 이들의 제조 방법
EP2778161A1 (en) Two-photon fluorescent probe using naphthalene as matrix and preparation method and use thereof
Calatrava‐Pérez et al. Real‐Time Multi‐Photon Tracking and Bioimaging of Glycosylated Theranostic Prodrugs upon Specific Enzyme Triggered Release
KR102431783B1 (ko) 광활성 형광체 프로브 및 이를 이용한 암세포 검출방법
WO2019224339A1 (en) Long wavelength emitting chemiluminescent probes
Fusaro et al. Synthesis of glycosylamines and glyconamides using molecular iodine
Enes et al. Synthesis and solvent dependence of the photophysical properties of [60] fullerene–sugar conjugates
Srivastava et al. Synthesis and Photophysical Studies on N1-(2′-O, 4′-C-Methyleneribofurano-nucleoside-3′-yl)-C4-(coumarin-7-oxymethyl)-1, 2, 3-triazoles
Gómez et al. A Concise Route to Water-Soluble 2, 6-Disubstituted BODIPY-Carbohydrate Fluorophores by Direct Ferrier-Type C-Glycosylation
Trost et al. Application of the AAA Reaction to the Synthesis of the Furanoside of C‐2‐epi‐Hygromycin A: A Total Synthesis of C‐2‐epi‐Hygromycin A
Wu et al. Asymmetric Synthesis of Atorvastatin Calcium through Intramolecular Oxidative Oxygen‐Nucleophilic Bromocyclization
CN103936794A (zh) 一种水溶性阳离子磷光铱配合物及其制备方法和应用
EP3757111A1 (en) Ruthenium (ii) complexes and conjugates thereof for use as photosensitizer agent in photodynamic therapy

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant