KR102429173B1 - Synthesis methods porous Pt-Cu catalyst on a carbon support and porous Pt-Cu catalyst on a carbon support using the same - Google Patents

Synthesis methods porous Pt-Cu catalyst on a carbon support and porous Pt-Cu catalyst on a carbon support using the same Download PDF

Info

Publication number
KR102429173B1
KR102429173B1 KR1020160183192A KR20160183192A KR102429173B1 KR 102429173 B1 KR102429173 B1 KR 102429173B1 KR 1020160183192 A KR1020160183192 A KR 1020160183192A KR 20160183192 A KR20160183192 A KR 20160183192A KR 102429173 B1 KR102429173 B1 KR 102429173B1
Authority
KR
South Korea
Prior art keywords
platinum
carbon
copper alloy
supported
alloy catalyst
Prior art date
Application number
KR1020160183192A
Other languages
Korean (ko)
Other versions
KR20180078460A (en
Inventor
김준태
김원중
이주희
송유정
박주안
유성종
장인준
장종현
김형준
김진영
Original Assignee
현대자동차주식회사
기아 주식회사
한국과학기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 현대자동차주식회사, 기아 주식회사, 한국과학기술연구원 filed Critical 현대자동차주식회사
Priority to KR1020160183192A priority Critical patent/KR102429173B1/en
Publication of KR20180078460A publication Critical patent/KR20180078460A/en
Application granted granted Critical
Publication of KR102429173B1 publication Critical patent/KR102429173B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8926Copper and noble metals
    • B01J35/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/56Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0213Preparation of the impregnating solution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)

Abstract

본 발명은 이온성 액체를 사용하지 않고 수용해성 파우더인 글루코스 기판에 백금-구리의 합금 나노 입자를 증착하고, 이를 탄소가 분산되어 있는 분산용액에 녹여 백금과 구리의 합금 나노 입자가 탄소에 담지되며, 산처리하여 다공성을 갖는 탄소에 담지된 다공성 백금-구리 합금 촉매에 관한 것으로, 기존의 화학적 또는 물리적 합성 방법이 가지고 있던 환경적 문제, 비용적 문제 및 제조과정의 복잡성을 완전히 해결한 연료전지용 고활성의 합금 촉매에 관한 것이다.The present invention deposits platinum-copper alloy nanoparticles on a glucose substrate, which is a water-soluble powder, without using an ionic liquid, and dissolves them in a dispersion solution in which carbon is dispersed so that the platinum and copper alloy nanoparticles are supported on carbon. , It relates to a porous platinum-copper alloy catalyst supported on carbon having porosity by acid treatment, and it is a high-performance fuel cell catalyst that completely solves the environmental problems, cost problems, and complexity of the manufacturing process of the existing chemical or physical synthesis methods. It relates to an active alloy catalyst.

Description

탄소에 담지된 다공성 백금-구리 합금 촉매의 제조방법 및 이에 의해 제조된 촉매{Synthesis methods porous Pt-Cu catalyst on a carbon support and porous Pt-Cu catalyst on a carbon support using the same}Method for preparing a porous platinum-copper alloy catalyst supported on carbon and a catalyst prepared thereby

본 발명은 탄소에 담지된 다공성 백금-구리 합금 촉매의 제조방법 및 이에 의해 제조된 촉매에 관한 것으로, 보다 구체적으로 이온성 액체를 사용하지 않고 수용해성 파우더인 글루코스 기판에 백금-구리의 합금 나노 입자를 증착하고, 이를 탄소가 분산되어 있는 분산용액에 녹여 합금 나노 입자가 탄소에 담지되며, 산처리하여 제조되는 다공성을 갖는 탄소에 담지된 다공성 백금-구리 합금 촉매에 관한 것으로, 기존의 화학적 또는 물리적 합성 방법이 가지고 있던 환경적 문제, 비용적 문제 및 제조과정의 복잡성을 완전히 해결한 연료전지용 고활성의 합금 촉매에 관한 것이다.The present invention relates to a method for producing a porous platinum-copper alloy catalyst supported on carbon and a catalyst prepared thereby, and more particularly, to a glucose substrate that is a water-soluble powder without using an ionic liquid, and platinum-copper alloy nanoparticles. It relates to a porous platinum-copper alloy catalyst supported on carbon having porosity produced by depositing and dissolving it in a dispersion solution in which carbon is dispersed, in which alloy nanoparticles are supported on carbon, and produced by acid treatment. It relates to a highly active alloy catalyst for a fuel cell that completely solves the environmental problem, cost problem, and manufacturing process complexity of the synthesis method.

지난 수십년 동안, 금속 혹은 금속 산화물 나노 입자는 그것들의 독특한 특성 때문에 다양한 분야에서 연구되었다. In the past decades, metal or metal oxide nanoparticles have been studied in various fields because of their unique properties.

그러나 열역학적으로 불안정하기 때문에 넓은 표면적을 가진 지지체에 담지된 형태로 많은 산업에서 사용되었고, 특히 값이 싸면서 높은 표면적과 전기전도성을 가진 탄소 담체가 대표적인 예이다. However, since it is thermodynamically unstable, it has been used in many industries in a form supported on a support having a large surface area. In particular, a carbon carrier having a high surface area and electrical conductivity while being inexpensive is a representative example.

이러한 탄소 담지 촉매는 주로 화학적 방법으로 합성 하여 사용하였다. 화학적 합성 방법은 금속염 형태의 전구체에 환원제를 넣어 나노 입자를 만드는 방법으로, 값이 비싼 금속 전구체와 환원제 계면 활성제등 많은 종류의 화학 물질이 필요하고, 그 합성 과정 또한 다단계를 거쳐서 진행되어 매우 높은 복잡성을 띄고 있다. These carbon-supported catalysts were mainly synthesized and used by chemical methods. The chemical synthesis method is a method of making nanoparticles by adding a reducing agent to a precursor in the form of a metal salt, and it requires many kinds of chemicals such as expensive metal precursors and reducing agent surfactants. stands out

또한 화학적 합성 방법 이외에도 물리적인 증착법을 이용해 합성이 가능하다. 이 방법으로는 금속 덩어리에서 떨어져 나오는 나노 입자를 이온성 액체를 통해 안정화 시켜 더 이상 성장이 일어나지 않고 나노 입자 형태를 유지하도록 만들어 주게 된다. 하지만 이러한 물리적 방법을 사용하게 될 경우에는 이온성 액체가 나노입자에 강하게 흡착하여 촉매로써의 기능을 잃게 하거나, 낮은 표면 에너지로 인해 탄소에 잘 담지 되지 않는 결과를 낳게 된다. 또한 고가의 이온성 액체가 촉매의 대량 생산에 걸림돌이 되기도 한다.In addition to the chemical synthesis method, the synthesis is possible using a physical vapor deposition method. In this method, the nanoparticles falling off the metal mass are stabilized through the ionic liquid so that no further growth occurs and the nanoparticle shape is maintained. However, when such a physical method is used, the ionic liquid strongly adsorbs to the nanoparticles and loses its function as a catalyst, or it is not well supported on carbon due to low surface energy. In addition, expensive ionic liquids are an obstacle to mass production of catalysts.

이에, 상기 화학적 또는 물리적 합성 방법이 갖는 환경적 문제, 비용적 문제 및 제조과정의 복잡성을 해결한 연료전지용 고활성의 합금 촉매의 제조공정이 필요한 실정이다.Accordingly, there is a need for a manufacturing process of a highly active alloy catalyst for a fuel cell that solves the environmental problem, the cost problem, and the complexity of the manufacturing process of the chemical or physical synthesis method.

한국 공개특허 제2015-59692호Korean Patent Publication No. 2015-59692 미국 등록특허 제8354355호US Patent No. 8354355 미국 등록특허 제9120121호US Registered Patent No. 9120121

Sputter deposition onto ionic liquids: Simple and clean synthesis of highly dispersed ultrafine metal nanoparticles / Tsukasa Torimoto, Ken-ichi Okazaki, Tomonori Kiyama / APPLIED PHYSICS LETTERS 89, 243117 2006. Sputter deposition onto ionic liquids: Simple and clean synthesis of highly dispersed ultrafine metal nanoparticles / Tsukasa Torimoto, Ken-ichi Okazaki, Tomonori Kiyama / APPLIED PHYSICS LETTERS 89, 243117 2006. Synthesis of Gold Nanoparticles in Liquid Polyethylene Glycol by Sputter Deposition and Temperature Effects on their Size and Shape / Yoshikiyo Hatakeyama, Takeshi Morita, Satoshi Takahashi, Kei Onishi, and Keiko Nishikawa / J. Phys. Chem. C 2011, 115, 3279-3285 Synthesis of Gold Nanoparticles in Liquid Polyethylene Glycol by Sputter Deposition and Temperature Effects on their Size and Shape / Yoshikiyo Hatakeyama, Takeshi Morita, Satoshi Takahashi, Kei Onishi, and Keiko Nishikawa / J. Phys. Chem. C 2011, 115, 3279-3285

이에 본 발명자들은 이온성 액체를 사용하지 않고 수용해성 글루코스 파우더 기판에 백금(Pt)과 구리(Cu)를 스퍼터링하여 백금-구리 합금이 증착된 글루코스를 제조하고, 이를 탄소가 분산된 분산용액에 용해하고 글루코스를 제거하여 탄소에 담지된 백금-구리 합금 촉매를 제조하는 경우 친환경적이면서도 저비용으로 고활성의 담지 촉매를 제조할 수 있다는 것을 알게 되어 본 발명을 완성하기에 이르렀다.Accordingly, the present inventors sputtered platinum (Pt) and copper (Cu) on a water-soluble glucose powder substrate without using an ionic liquid to prepare a platinum-copper alloy deposited glucose, and dissolved it in a dispersion solution in which carbon is dispersed In the case of producing a platinum-copper alloy catalyst supported on carbon by removing glucose, it was found that a supported catalyst having high activity at a low cost while being environmentally friendly could be prepared, and thus the present invention was completed.

따라서, 본 발명은 탄소에 담지된 다공성 백금-구리 합금 촉매의 제조방법을 제공하는데 있다. Accordingly, the present invention is to provide a method for preparing a porous platinum-copper alloy catalyst supported on carbon.

또한, 본 발명은 상기 제조방법으로 제조된 탄소에 담지된 다공성 백금-구리 합금 촉매를 제공하는데 있다.In addition, the present invention is to provide a porous platinum-copper alloy catalyst supported on carbon prepared by the above method.

위와 같은 과제를 해결하기 위해, 본 발명은 (a) 글루코스 파우더에 백금(Pt)과 구리(Cu)를 스퍼터링하여 백금-구리 합금이 증착된 글루코스를 제조하는 단계; (b) 탄소 담지체가 분산된 분산 용액에 상기 (a) 단계에서 제조된 글루코스를 넣고 교반한 후 글루코스를 제거하여 탄소에 담지된 백금-구리 합금 촉매를 제조하는 단계; 및 (c) 상기 (b) 단계에서 얻은 탄소에 담지된 백금-구리 합금 촉매에 산처리하여 다공성이 형성된 탄소에 담지된 다공성 백금-구리 합금 촉매를 제조하는 단계를 포함하는 것을 특징으로 하는 탄소에 담지된 다공성 백금-구리 합금 촉매의 제조방법을 제공한다.In order to solve the above problems, the present invention comprises the steps of (a) sputtering platinum (Pt) and copper (Cu) in glucose powder to prepare a platinum-copper alloy deposited glucose; (b) preparing a platinum-copper alloy catalyst supported on carbon by adding the glucose prepared in step (a) to the dispersion solution in which the carbon carrier is dispersed, and then removing the glucose; and (c) acid-treating the platinum-copper alloy catalyst supported on the carbon obtained in step (b) to prepare a porous platinum-copper alloy catalyst supported on the carbon in which porosity is formed. A method for preparing a supported porous platinum-copper alloy catalyst is provided.

또한, 본 발명은 상기 제조방법으로 제조된 고활성의 탄소에 담지된 다공성 백금-구리 합금 촉매를 제공한다.In addition, the present invention provides a porous platinum-copper alloy catalyst supported on highly active carbon prepared by the above method.

본 발명에 따른 촉매의 제조방법은 기존 화학적 또는 물리적 촉매 합성 방법에 비해 간단하면서도 친환경적이고 저비용으로 촉매를 제조할 수 있다.The method for preparing a catalyst according to the present invention is simple, environmentally friendly, and can produce a catalyst at low cost compared to the conventional chemical or physical catalyst synthesis method.

또한, 본 발명에서 제조된 촉매를 연료전지에 적용함으로써 연료전지 성능을 향상시키며, 기존 백금 촉매 적용 시와 대비하여 연료전지 백금량을 저감할 수 있다는 이점이 있다.In addition, by applying the catalyst prepared in the present invention to the fuel cell, the fuel cell performance is improved, and there is an advantage that the amount of platinum in the fuel cell can be reduced compared to the time of applying the existing platinum catalyst.

도 1은 본 발명에 따른 탄소에 담지된 백금-구리 합금 촉매를 제조과정 중에서 (a) 및 (b) 단계를 나타낸 모식도이다.
도 2는 투과전자현미경(Transmission electron microscopy, TEM)을 이용하여 실시예에서 제조한 탄소에 담지된 백금-구리 합금 촉매의 구조를 분석한 결과이다.
도 3은 전기화학적 산소환원 반응 활성을 평가하기 위해 3전극 시스템을 이용하여 측정한 산소환원 분극곡선 결과이다.
1 is a schematic diagram showing steps (a) and (b) in the manufacturing process of a platinum-copper alloy catalyst supported on carbon according to the present invention.
Figure 2 is a result of analyzing the structure of the platinum-copper alloy catalyst supported on carbon prepared in Example using a transmission electron microscope (Transmission electron microscopy, TEM).
3 is a result of oxygen reduction polarization curve measured using a three-electrode system to evaluate the electrochemical oxygen reduction reaction activity.

이하에서는 본 발명을 하나의 실시예로 더욱 상세하게 설명한다.Hereinafter, the present invention will be described in more detail by way of an embodiment.

본 발명은 총 3가지 단계로 구성되며, 2단계까지의 공정도는 도 1에 나타낸 바와 같다. 보다 구체적으로 본 발명은 (a) 글루코스 파우더에 백금(Pt)과 구리(Cu)를 스퍼터링하여 백금-구리 합금이 증착된 글루코스를 제조하는 단계; (b) 탄소 담지체가 분산된 분산 용액에 상기 (a) 단계에서 제조된 글루코스를 넣고 교반한 후 글루코스를 제거하여 탄소에 담지된 백금-구리 합금 촉매를 제조하는 단계; 및 (c) 상기 (b) 단계에서 얻은 탄소에 담지된 백금-구리 합금 촉매에 산처리하여 다공성이 형성된 탄소에 담지된 다공성 백금-구리 합금 촉매를 제조하는 단계를 포함하는 것으로, 총 3 단계로 구성된다. 이하 각 단계 별로 상세하게 설명한다. The present invention consists of a total of three steps, and the process diagram up to the second step is as shown in FIG. 1 . More specifically, the present invention comprises the steps of (a) sputtering platinum (Pt) and copper (Cu) in glucose powder to prepare a platinum-copper alloy deposited glucose; (b) preparing a platinum-copper alloy catalyst supported on carbon by adding the glucose prepared in step (a) to the dispersion solution in which the carbon carrier is dispersed, and then removing the glucose; and (c) acid-treating the platinum-copper alloy catalyst supported on carbon obtained in step (b) to prepare a porous platinum-copper alloy catalyst supported on carbon having porosity, a total of three steps is composed Hereinafter, each step will be described in detail.

먼저, 상기 (a) 단계는 담지 촉매를 제조하기 위해 이온성 액체를 사용하지 않고 수용해성 파우더인 글루코스 기판에 백금(Pt)과 구리(Cu)의 합금 나노 입자를 증착하는 단계이다. First, step (a) is a step of depositing alloy nanoparticles of platinum (Pt) and copper (Cu) on a glucose substrate, which is a water-soluble powder, without using an ionic liquid to prepare a supported catalyst.

이때, 상기 수용해성 파우더인 글루코스 파우더는 80 ~ 100℃에서 10-1 ~ 10-3 Torr 조건에서 건조하여 표면 수분을 제거한 분말을 사용하는 것이 바람직하다. 수분이 남아 있는 경우 탄소 담지체에 촉매를 담지하는데 한계가 있기 때문이다. In this case, it is preferable to use a powder from which the surface moisture is removed by drying the glucose powder, which is the water-soluble powder, under the conditions of 10 -1 to 10 -3 Torr at 80 to 100°C. This is because there is a limit to supporting the catalyst on the carbon carrier when moisture remains.

다음으로, 상기 글루코스 파우더에 백금(Pt)와 구리(Cu)를 스퍼터링 하며, 백금과 구리의 비율을 조절하기 위해 각각의 스퍼터 파워를 조절할 수 있다. 바람직하게는 (a) 단계의 스퍼터링은 초기 진공 10-5 ~ 10-7 Torr 조건에서 백금과 구리를 동시에 진행하여 백금과 구리의 나노 입자를 글루코스 표면에 증착할 수 있다. 이때, 백금의 스퍼터 파워는 10 ~ 30 W, 구리의 스퍼터 파워는 60 ~ 100 W에서 진행할 수 있다.Next, platinum (Pt) and copper (Cu) are sputtered on the glucose powder, and each sputtering power may be adjusted to control the ratio of platinum and copper. Preferably, in the sputtering of step (a), platinum and copper are simultaneously performed in an initial vacuum of 10 -5 to 10 -7 Torr to deposit platinum and copper nanoparticles on the glucose surface. In this case, the sputtering power of platinum may be 10 to 30 W, and the sputtering power of copper may be performed at 60 to 100 W.

이렇게 얻어진 백금-구리 합금이 증착된 글루코스는 탄소 담지체가 분산되어 있는 분산용액 넣어 합성 과정을 거친다.The thus-obtained platinum-copper alloy-deposited glucose is put into a dispersion solution in which a carbon carrier is dispersed and subjected to a synthesis process.

구체적으로, 상기 (b) 단계는 탄소 담지체가 분산된 분산 용액에 상기 (a) 단계에서 제조된 글루코스를 넣고 교반한 후 글루코스를 제거하여 탄소에 담지된 백금-구리 합금 촉매를 제조하는 단계로서, 탄소 담지체의 분산용매로서 물을 사용할 수 있으며, 물에 탄소 담지체가 고르게 분산되도록 초음파 처리를 하는 것이 바람직하다.Specifically, step (b) is a step of preparing a platinum-copper alloy catalyst supported on carbon by adding the glucose prepared in step (a) to the dispersion solution in which the carbon carrier is dispersed, and then removing the glucose, Water can be used as a dispersion solvent of the carbon carrier, and it is preferable to perform ultrasonication so that the carbon carrier is evenly dispersed in the water.

탄소 담지체가 고르게 분산된 분산용액에 충분히 글루코스가 용해되도록 백금 구리 합금 입자들이 탄소에 올라갈 수 있도록 충분히 저어준다. 바람직하게는 6 ~ 12 시간 동안 교반한다.Stir enough so that the platinum copper alloy particles can rise to the carbon so that the glucose is sufficiently dissolved in the dispersion solution in which the carbon carrier is evenly dispersed. Preferably, the mixture is stirred for 6 to 12 hours.

이렇게 교반이 끝난 용액은 필터지를 이용하여 촉매를 거르고 증류수를 이용하여 잔여 글루코스를 씻어내는 과정을 수차례 반복하여 탄소에 담지된 백금-구리 합금 촉매를 수득한다. After stirring the solution, the catalyst is filtered using filter paper and the process of washing the residual glucose with distilled water is repeated several times to obtain a platinum-copper alloy catalyst supported on carbon.

이때 글루코스를 제거하고 난 후 탄소에 담지된 백금-구리 합금 촉매를 건조하여 물을 제거한 후에, 아르곤 가스 분위기에서 600 ~ 1000℃에서 1 ~ 3 시간 동안 열치리한 후 자연 냉각한다. At this time, after glucose is removed, the platinum-copper alloy catalyst supported on carbon is dried to remove water, and then heat treated at 600 to 1000° C. for 1 to 3 hours in an argon gas atmosphere, followed by natural cooling.

끝으로, 열처리하고 냉각하여 얻은 탄소에 담지된 백금-구리 합금 촉매에 다공성을 형성시킨다. 이에 상기 (c) 단계는 (b) 단계에서 얻은 탄소에 담지된 백금-구리 합금 촉매에 산처리하여 다공성을 형성하여 탄소에 담지된 다공성 백금-구리 합금 촉매를 제조하는 단계로서, 산처리 공정을 통해 스퍼터 반응시 주입된 과량의 구리(Cu)로 인한 촉매 표면에 발생한 구리(Cu)와 산화구리(CuO)과 같은 부산물을 제거하며 이 과정 중 구리와 산화구리(CuO)가 잔류하던 공간에 기공이 생성됨으로써 다공성 구조가 형성하게 되는 과정이다.Finally, porosity is formed in the platinum-copper alloy catalyst supported on carbon obtained by heat treatment and cooling. Accordingly, the step (c) is a step of preparing a porous platinum-copper alloy catalyst supported on carbon by acid-treating the platinum-copper alloy catalyst supported on the carbon obtained in step (b) to form porosity. Through the sputtering reaction, by-products such as copper (Cu) and copper oxide (CuO) generated on the surface of the catalyst due to the excess copper (Cu) injected during the sputtering reaction are removed, and in the process, there are pores in the space where copper and copper oxide (CuO) remained. This is a process by which a porous structure is formed.

구체적으로, 산처리는 (b) 단계에서 얻은 탄소에 담지된 백금-구리 합금 촉매에 0.05 ~ 0.15몰 농도의 HClO4 용액에 넣고 초음파 처리하여 다공성을 형성할 수 있으나, 반드시 이에 제한되는 것은 아니다.Specifically, the acid treatment may be carried out in step (b) in a platinum-copper alloy catalyst supported on carbon in an HClO 4 solution having a concentration of 0.05 to 0.15 molar and ultrasonically treated to form porosity, but is not necessarily limited thereto.

상기 방법으로 제조된 탄소에 담지된 다공성 백금-구리 합금 촉매는 백금이 합금 촉매 전체 중량에 대해 8 ~ 10 중량%가 담지되고, 구리가 합금 촉매 전체 중량에 대해 3 ~ 5 중량%가 담지된 것으로, 다공성이 25 ~ 30%로 형성된 것으로, 이렇게 상기 제조방법을 통해 제조된 탄소에 담지된 다공성 백금-구리 합금 촉매의 경우 연료전지에 적용함에 있어서 연료전지의 성능을 향상시키며(도 3 참조), 특히 고분자 전해질(PEMFC) 연료전지에 활용가치가 높으며, 이온성 액체를 사용하지 않기에 친환경적이고, 저비용으로 촉매를 효율적으로 제조할 수 있다.In the porous platinum-copper alloy catalyst supported on carbon prepared by the above method, 8 to 10% by weight of platinum is supported with respect to the total weight of the alloy catalyst, and 3 to 5% by weight of copper is supported with respect to the total weight of the alloy catalyst. , having a porosity of 25 to 30%, and in the case of a porous platinum-copper alloy catalyst supported on carbon prepared in this way, when applied to a fuel cell, the performance of the fuel cell is improved (see FIG. 3 ), In particular, it has high utility value for polymer electrolyte (PEMFC) fuel cells, is eco-friendly because it does not use ionic liquids, and can efficiently manufacture catalysts at low cost.

이하, 본 발명을 실시예에 의거 더욱 상세하게 설명하면 다음과 같은 바, 본 발명에 실시예에 의해 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail based on Examples, but the present invention is not limited by the Examples.

실시예 Example

글루코스를 증착하기 24 시간 전부터 90℃, 10-2 torr 에서 건조하여 표면의 수분을 제거하여 글루코스 파우더를 준비하였다. 글루코스 40g을 덜어서 교반기에 넣고, 교반기를 스퍼터 메인 챔버에 장착하였다. 아울러, 백금 타겟과 구리 타겟을 RF 마그네트론 스퍼터링 건에 장착하였다. 다음으로, 진공펌프를 이용하여 진공상태를 형성하였으며, 초기 진공은 10-6 torr를 유지하였다. 교반기를 가동한 후, 백금과 구리의 스퍼터링을 동시에 진행하여 합금 나노 입자를 글루코스 표면에 증착한다. 이때 백금의 스퍼터 파워는 20W로 하였고, 구리의 스퍼터 파워는 80W가 되도록 하였다((a) 단계). 이렇게 백금-구리 합금이 증착된 글루코스를 준비하였다.Glucose powder was prepared by drying at 90° C. and 10 -2 torr for 24 hours before depositing glucose to remove moisture from the surface . 40 g of glucose was removed and put into a stirrer, and the stirrer was installed in the sputter main chamber. In addition, a platinum target and a copper target were mounted on an RF magnetron sputtering gun. Next, a vacuum state was formed using a vacuum pump, and the initial vacuum was maintained at 10 -6 torr. After operating the stirrer, the alloy nanoparticles are deposited on the glucose surface by simultaneously performing sputtering of platinum and copper. At this time, the sputtering power of platinum was set to 20W, and the sputtering power of copper was set to 80W (step (a)). In this way, a platinum-copper alloy deposited glucose was prepared.

다음으로, 탄소 담지체(Vulcan XC-72R) 를 증류수에 넣은 후 초음파 처리를 하여 고르게 분산시켜 탄소 담지체가 분산된 분산 용액 250.43g을 준비하였다.Next, the carbon carrier (Vulcan XC-72R) was put in distilled water and then evenly dispersed by ultrasonication to prepare 250.43 g of a dispersion solution in which the carbon carrier was dispersed.

여기에 먼저 준비한 백금-구리 합금이 증착된 글루코스 40.65g을 넣고 잘 용해 되도록 상온에서 12 시간 동안 교반하여 글루코스가 용해되고 합금 입자가 탄소에 올라갈 수 있도록 하였다. 교반을 끝은 분산 용액을 필터지를 이용하여 촉매를 거르고, 2L 의 증류수를 이용해서 잔여 글루코스를 씻어내는 과정을 수차례 반복하였다. 그리고 촉매는 60℃ 오븐에서 2시간 이상 건조시켜 물을 완전히 증발시켰다. 건조가 끝난 촉매는 튜브형태의 전기로를 사용하여 열처리를 진행하였으며, 이때의 열처리는 아르곤 가스 분위기에서 800℃에서 2시간 동안 열처리를 한 후 자연 냉각시켜 탄소에 담지된 백금-구리 합금 촉매를 제조하게 되었다((b)단계).To this, 40.65 g of glucose on which the previously prepared platinum-copper alloy was deposited was added and stirred at room temperature for 12 hours to dissolve well so that the glucose was dissolved and the alloy particles were able to rise to the carbon. After stirring the dispersion solution, the catalyst was filtered using filter paper, and 2L of distilled water was used to wash off the remaining glucose. The process was repeated several times. And the catalyst was dried in an oven at 60° C. for 2 hours or more to completely evaporate water. After drying, the catalyst was heat-treated using a tube-type electric furnace, which was heat-treated at 800°C for 2 hours in an argon gas atmosphere and then cooled naturally to produce a platinum-copper alloy catalyst supported on carbon. became (step (b)).

끝으로, 상기 탄소에 담지된 백금-구리 합금 촉매를 0.1몰 농도의 HClO4 용액에 넣고 초음파 처리하여 고르게 분산시킴으로써 촉매에 다공성을 형성시켰다((c)단계).Finally, the platinum-copper alloy catalyst supported on the carbon was placed in a 0.1 molar concentration of HClO 4 solution and sonicated to form porosity in the catalyst (step (c)).

이렇게 얻은 촉매는 백금이 합금 촉매 전체 중량에 대해 9 중량%가 담지되고, 구리가 합금 촉매 전체 중량에 대해 4 중량%이며, 다공성이 28%인 담지 촉매이다.The catalyst thus obtained is a supported catalyst in which 9 wt% of platinum is supported based on the total weight of the alloy catalyst, 4 wt% of copper is based on the total weight of the alloy catalyst, and the porosity is 28%.

비교예: 종래의 탄소에 담지된 백금 촉매Comparative Example: Platinum catalyst supported on conventional carbon

종래의 사용되는 Pt/C 촉매(Johnson Matthey)를 준비하였다. 이때 백금의 담지량은 촉매 전체 중량에 대해 20 중량%이다.A conventionally used Pt/C catalyst (Johnson Matthey) was prepared. At this time, the amount of platinum supported is 20% by weight based on the total weight of the catalyst.

실험예 1: TEM 측정Experimental Example 1: TEM measurement

상기 실시예의 촉매에 대해 투과전자현미경(Transmission electron microscopy, TEM)을 이용을 이용하여 촉매의 구조를 분석하였다. 도 2는 투과전자현미경을 측정한 결과로서, 약 5 - 10 nm 크기의 입자가 탄소에 담지되어 있는 것을 확인할 수 있으며(도 2(a) 참조), 백금-구리 원소가 한 입자 내에 골고루 분포하고 있어 합금이 잘 만들어진 것 또한 확인할 수 있었다(도 2(b) 참조).For the catalyst of the above example, the structure of the catalyst was analyzed using a transmission electron microscopy (TEM). Figure 2 is a result of transmission electron microscopy, it can be confirmed that particles with a size of about 5 - 10 nm are supported on carbon (see Figure 2 (a)), platinum-copper elements are evenly distributed in one particle, It was also confirmed that the alloy was well made (see FIG. 2(b)).

실험예 2: 전기화학적 산소환원 반응 활성을 평가Experimental Example 2: Evaluation of electrochemical oxygen reduction reaction activity

상기 실시예 및 비교예의 촉매에 대해, 전기화학적 산소환원 반응(oxygen reduction reaction, ORR) 활성을 평가를 하였다. For the catalysts of Examples and Comparative Examples, electrochemical oxygen reduction reaction (ORR) activity was evaluated.

구체적으로, 전기화학적 산소환원 반응을 평가하기 위해서 회전 원판 전극(rotation disk electrode, RDE)을 이용하여, 이때 회전 원판 전극의 면적은 19.6 mm2 이며, 전극 위에 합성된 촉매를 올리는 방법은 다음과 같다. 파우더 형태의 촉매를 알코올에 분산시켜 촉매 잉크를 만든 후, 회전 원판 전극 위에 떨어뜨린 후, 건조시켜 알코올을 증발시킨다. 따라서 원판 전극 위에는 파우더 형태의 촉매만이 남게 된다. Specifically, using a rotation disk electrode (RDE) to evaluate the electrochemical oxygen reduction reaction, the area of the rotating disk electrode is 19.6 mm 2 , and the method of placing the synthesized catalyst on the electrode is as follows. . After dispersing the catalyst in powder form in alcohol to make catalyst ink, it is dropped on a rotating disk electrode, and then dried to evaporate the alcohol. Therefore, only the catalyst in powder form remains on the disk electrode.

아울러, 전기화학적 특성은 3전극 시스템을 이용하여 분석하였으며, 기준 전극으로는 SCE 전극을 사용하였고, 상대전극으로는 백금선을 이용하였다. 모든 분석은 상온에서 실시하였다.In addition, the electrochemical properties were analyzed using a three-electrode system, an SCE electrode was used as a reference electrode, and a platinum wire was used as a counter electrode. All analyzes were performed at room temperature.

산소환원 분극곡선을 얻기 위한 실험 조건은 다음과 같다. 전해질 용액을 산소로 포화시킨 후, 분석하는 동안 지속적으로 산소를 공급해 주었다. 스캔 속도는 5 mV/sec 이며, 범위는 0.05 - 1.0 V (vs. RHE) 이다. 마지막으로 전극의 회전 속도는 1600 RPM을 유지하였다. 분극곡선의 반파전위 값이 높은 전위를 나타낼수록 산소환원반응에 대한 활성이 좋은 것을 의미한다. 이렇게 측정한 산소환원반응에 대한 분극곡선 결과를 도 3에 나타내었다. The experimental conditions for obtaining the oxygen reduction polarization curve are as follows. After the electrolyte solution was saturated with oxygen, oxygen was continuously supplied during the analysis. The scan rate is 5 mV/sec, and the range is 0.05 - 1.0 V (vs. RHE). Finally, the rotational speed of the electrode was maintained at 1600 RPM. The higher the half-wave potential value of the polarization curve, the better the activity for the oxygen reduction reaction. The result of the polarization curve for the oxygen reduction reaction measured in this way is shown in FIG. 3 .

도 3의 결과를 보면, 본 합성 방법을 통해 만들어진 실시예의 촉매의 경우 반파전위값이 930 mV이 였다. 한편, 연료전지 촉매 중 가장 우수한 활성을 나타내는 촉매 중 하나로 알려져 있는 Johnson Matthey 사의 비교예의 촉매의 경우 반파전위값이 890 mV으로서, 실시예의 촉매가 약 40 mV 정도 더 높은 값을 가지고 있는 것으로서, 본 발명에 따라 제조된 촉매가 산소활성반응에 있어서 매우 높은 활성을 갖음을 알 수 있다.Referring to the result of FIG. 3 , the half-wave potential value of the catalyst of Example prepared through the present synthesis method was 930 mV. On the other hand, in the case of the comparative example of Johnson Matthey, which is known as one of the catalysts showing the best activity among fuel cell catalysts, the half-wave potential value is 890 mV, and the catalyst of the example has a higher value by about 40 mV, the present invention It can be seen that the catalyst prepared according to the method has a very high activity in the oxygen-activated reaction.

따라서, 본 발명에 따른 제조방법을 통해 제조된 탄소에 담지된 다공성 백금-구리 합금 촉매의 경우 연료전지에 적용함에 있어서 연료전지의 성능을 향상시키며, 이온성 액체를 사용하지 않기에 친환경적이고, 저비용으로 촉매를 효율적으로 제조할 수 있는 우수할 발명인 것이다.Therefore, in the case of a porous platinum-copper alloy catalyst supported on carbon produced by the manufacturing method according to the present invention, the performance of the fuel cell is improved when applied to a fuel cell, and since it does not use an ionic liquid, it is eco-friendly and low-cost This is an excellent invention that can efficiently prepare a catalyst.

Claims (9)

(a) 표면 수분을 제거한 글루코스 파우더에 백금(Pt)과 구리(Cu)를 스퍼터링하여 백금-구리 합금이 증착된 글루코스를 제조하는 단계;
(b) 탄소 담지체가 분산된 분산 용액에 상기 (a) 단계에서 제조된 글루코스를 넣고 교반한 후 글루코스를 제거하여 탄소에 담지된 백금-구리 합금 촉매를 제조하는 단계; 및
(c) 상기 (b) 단계에서 얻은 탄소에 담지된 백금-구리 합금 촉매에 산처리하여 다공성이 형성된 탄소에 담지된 다공성 백금-구리 합금 촉매를 제조하는 단계;
를 포함하며,
상기 (a) 단계의 스퍼터링은 초기 진공 10-5 ~ 10-7 Torr 조건에서 백금의 스퍼터 파워는 10 ~ 30 W에서, 구리의 스퍼터 파워는 60 ~ 100 W 으로 백금과 구리를 동시에 스퍼터링 진행하여 백금과 구리의 나노 입자를 글루코스 표면에 증착하는 것을 특징으로 하는 탄소에 담지된 전기화학적 산화환원반응용 다공성 백금-구리 합금 촉매의 제조방법.
(a) sputtering platinum (Pt) and copper (Cu) on glucose powder from which surface moisture has been removed to prepare a platinum-copper alloy deposited glucose;
(b) preparing a platinum-copper alloy catalyst supported on carbon by adding the glucose prepared in step (a) to the dispersion solution in which the carbon carrier is dispersed, and then removing the glucose; and
(c) preparing a porous platinum-copper alloy catalyst supported on carbon in which porosity is formed by acid-treating the platinum-copper alloy catalyst supported on carbon obtained in step (b);
includes,
In the sputtering of step (a), the sputtering power of platinum is 10 ~ 30 W and the sputtering power of copper is 60 ~ 100 W under the initial vacuum condition of 10 -5 ~ 10 -7 Torr. Platinum and copper are simultaneously sputtered. Method for producing a porous platinum-copper alloy catalyst for electrochemical redox reaction supported on carbon, characterized in that depositing nanoparticles of and copper on the surface of glucose.
제 1 항에 있어서, 상기 (a) 단계의 글루코스 파우더는 80 ~ 100℃에서 10-1 ~ 10-3 Torr 조건에서 건조하여 표면 수분을 제거한 분말인 것을 특징으로 하는 탄소에 담지된 전기화학적 산화환원반응용 다공성 백금-구리 합금 촉매의 제조방법.
According to claim 1, wherein the glucose powder in step (a) is dried under the conditions of 10 -1 ~ 10 -3 Torr at 80 ~ 100 ℃ electrochemical oxidation-reduction supported on carbon, characterized in that the powder is a powder from which surface moisture is removed. A method for preparing a porous platinum-copper alloy catalyst for reaction.
삭제delete 제 1 항에 있어서, 상기 (b) 단계는 탄소 담지체가 분산된 분산 용액에 백금-구리 합금이 증착된 글루코스를 넣고 글루코스가 용해되어 백금과 구리의 나노 입자가 탄소 담지체에 올라갈 수 있도록 교반하는 것을 특징으로 하는 탄소에 담지된 전기화학적 산화환원반응용 다공성 백금-구리 합금 촉매의 제조방법.
The method of claim 1, wherein in step (b), a platinum-copper alloy-deposited glucose is added to the dispersion solution in which the carbon carrier is dispersed, and the glucose is dissolved and stirred so that the platinum and copper nanoparticles can rise on the carbon carrier. A method for producing a porous platinum-copper alloy catalyst for an electrochemical redox reaction supported on carbon, characterized in that.
제 1 항에 있어서, 상기 (b) 단계는 글루코스의 제거 후에 탄소에 담지된 백금-구리 합금 촉매를 아르곤 가스 분위기에서 600 ~ 1000℃에서 1 ~ 3 시간 동안 열처리한 후 냉각하는 것을 특징으로 하는 탄소에 담지된 전기화학적 산화환원반응용 다공성 백금-구리 합금 촉매의 제조방법.
The carbon according to claim 1, wherein in step (b), the platinum-copper alloy catalyst supported on carbon is heat treated at 600 to 1000° C. for 1 to 3 hours in an argon gas atmosphere after the glucose is removed, and then cooled. Method for producing a porous platinum-copper alloy catalyst for electrochemical redox reaction supported on
제 1 항에 있어서, 상기 (c) 단계에서 다공성의 형성은 산처리하여 탄소에 담지된 백금-구리 합금 촉매에 구리(Cu) 또는 산화구리(CuO)를 제거하여 기공이 형성되는 것을 특징으로 하는 하는 탄소에 담지된 전기화학적 산화환원반응용 다공성 백금-구리 합금 촉매의 제조방법.
According to claim 1, wherein the formation of porosity in step (c) is characterized in that the pores are formed by removing copper (Cu) or copper oxide (CuO) from the platinum-copper alloy catalyst supported on carbon by acid treatment. A method for producing a porous platinum-copper alloy catalyst for an electrochemical redox reaction supported on carbon.
제 1 항, 제 2 항, 제 4항 내지 제 6 항 중에서 선택된 어느 한 항의 제조방법으로 제조된 탄소에 담지된 전기화학적 산화환원반응용 다공성 백금-구리 합금 촉매.
A porous platinum-copper alloy catalyst for an electrochemical redox reaction supported on carbon prepared by the method of any one of claims 1, 2, and 4 to 6.
제 7 항에 있어서, 상기 합금 촉매는 백금이 합금 촉매 전체 중량에 대해 8 ~ 10 중량%가 담지되고, 구리가 합금 촉매 전체 중량에 대해 4 ~ 5 중량%가 담지되는 것을 특징으로 하는 탄소에 담지된 전기화학적 산화환원반응용 다공성 백금-구리 합금 촉매.
8. The alloy catalyst according to claim 7, wherein 8 to 10 wt% of platinum is supported with respect to the total weight of the alloy catalyst, and 4 to 5 wt% of copper is supported with respect to the total weight of the alloy catalyst. Porous platinum-copper alloy catalyst for electrochemical redox reaction.
제 7 항에 있어서, 상기 합금 촉매는 다공성이 25 ~ 30%로 형성되어 있는 것을 특징으로 하는 탄소에 담지된 전기화학적 산화환원반응용 다공성 백금-구리 합금 촉매.The porous platinum-copper alloy catalyst for an electrochemical redox reaction supported on carbon according to claim 7, wherein the alloy catalyst has a porosity of 25 to 30%.
KR1020160183192A 2016-12-30 2016-12-30 Synthesis methods porous Pt-Cu catalyst on a carbon support and porous Pt-Cu catalyst on a carbon support using the same KR102429173B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020160183192A KR102429173B1 (en) 2016-12-30 2016-12-30 Synthesis methods porous Pt-Cu catalyst on a carbon support and porous Pt-Cu catalyst on a carbon support using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020160183192A KR102429173B1 (en) 2016-12-30 2016-12-30 Synthesis methods porous Pt-Cu catalyst on a carbon support and porous Pt-Cu catalyst on a carbon support using the same

Publications (2)

Publication Number Publication Date
KR20180078460A KR20180078460A (en) 2018-07-10
KR102429173B1 true KR102429173B1 (en) 2022-08-03

Family

ID=62916051

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160183192A KR102429173B1 (en) 2016-12-30 2016-12-30 Synthesis methods porous Pt-Cu catalyst on a carbon support and porous Pt-Cu catalyst on a carbon support using the same

Country Status (1)

Country Link
KR (1) KR102429173B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109277103A (en) * 2018-12-03 2019-01-29 新疆大学 A kind of high activity platinum bimetallic liberation of hydrogen catalyst and preparation method thereof
KR102322106B1 (en) 2019-04-23 2021-11-04 건국대학교 산학협력단 Highly dispersed platinum supported porous carbon sheet, cathode catalyst comprising the same, and MEA for PEMFC using the same

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0457550B1 (en) 1990-05-14 1997-01-02 Nippon Petrochemicals Company, Limited Partially crosslinked thermoplastic resin composition
US8900420B2 (en) * 2007-08-20 2014-12-02 3M Innovative Properties Company Catalyst production process
GB201012982D0 (en) * 2010-08-03 2010-09-15 Johnson Matthey Plc Catalyst
KR20140100613A (en) * 2013-02-05 2014-08-18 한국과학기술연구원 A process of preparing carbon-supported metal catalyst by using physical deposition method
KR20140121718A (en) * 2013-04-08 2014-10-16 건국대학교 산학협력단 In the form of a hybrid fuel cell electrode catalyst
EP3020475B1 (en) * 2013-07-12 2020-04-01 Showa Denko K.K. Oxygen reducing catalyst, application thereof, and method for producing same
KR101577649B1 (en) 2013-11-22 2015-12-17 한국과학기술연구원 Method for preparing carbon-supported platinum catalyst using sputtering

Also Published As

Publication number Publication date
KR20180078460A (en) 2018-07-10

Similar Documents

Publication Publication Date Title
US10850270B2 (en) Preparation method of carbon-supported metal oxide and/or alloy nanoparticles catalyst using physical vapour deposition
Kim et al. Effect of surface oxygen functionalization of carbon support on the activity and durability of Pt/C catalysts for the oxygen reduction reaction
Kim et al. Enhancement of ORR catalytic activity by multiple heteroatom-doped carbon materials
Guilminot et al. Use of cellulose-based carbon aerogels as catalyst support for PEM fuel cell electrodes: Electrochemical characterization
Ding et al. Space-confinement-induced synthesis of pyridinic-and pyrrolic-nitrogen-doped graphene for the catalysis of oxygen reduction.
Sibul et al. Sulphur and nitrogen co-doped graphene-based electrocatalysts for oxygen reduction reaction in alkaline medium
US9123964B2 (en) Fuel cell electrode and production process thereof
Jukk et al. Electroreduction of oxygen on palladium nanoparticles supported on nitrogen-doped graphene nanosheets
Cantane et al. Electro-oxidation of ethanol on Pt/C, Rh/C, and Pt/Rh/C-based electrocatalysts investigated by on-line DEMS
KR20140100613A (en) A process of preparing carbon-supported metal catalyst by using physical deposition method
JP2018507097A (en) Carbon supported catalyst containing modifier and method for producing carbon supported catalyst
JP2017508619A (en) Method for producing a carbon-supported catalyst
Liu et al. A novel TiN coated CNTs nanocomposite CNTs@ TiN supported Pt electrocatalyst with enhanced catalytic activity and durability for methanol oxidation reaction
KR102595260B1 (en) Manufacturing of graphene materials
Varga et al. One step synthesis of chlorine-free Pt/Nitrogen-doped graphene composite for oxygen reduction reaction
Zhang et al. PtRu nanoparticles supported on nitrogen-doped polyhedral mesoporous carbons as electrocatalyst for methanol oxidation
Obradović et al. RuxTi1− xO2 as the support for Pt nanoparticles: Electrocatalysis of methanol oxidation
Banik et al. Size control synthesis of pure Ni nanoparticles and anodic-oxidation of Butan-1-ol in alkali
da Silva Freitas et al. Tailoring MOF structure via iron decoration to enhance ORR in alkaline polymer electrolyte membrane fuel cells
KR102429173B1 (en) Synthesis methods porous Pt-Cu catalyst on a carbon support and porous Pt-Cu catalyst on a carbon support using the same
Bredol et al. How the colloid chemistry of precursor electrocatalyst dispersions is related to the polymer electrolyte membrane fuel cell performance
Grigoriev et al. Synthesis of nanostructural electrocatalytic materials on various carbon substrates by ion plasma sputtering of platinum metals
Xie et al. Metal–organic framework derived single-atom catalysts for electrochemical CO 2 reduction
Yohannes et al. Effect of ethylene glycol on electrochemical and morphological features of platinum electrodeposits from chloroplatinic acid
RU2456717C1 (en) Method of forming catalyst layer for solid-polymer fuel cell

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant