KR102426161B1 - Magnetic nanoparticles introduced with silane functional moiety - Google Patents

Magnetic nanoparticles introduced with silane functional moiety Download PDF

Info

Publication number
KR102426161B1
KR102426161B1 KR1020210173381A KR20210173381A KR102426161B1 KR 102426161 B1 KR102426161 B1 KR 102426161B1 KR 1020210173381 A KR1020210173381 A KR 1020210173381A KR 20210173381 A KR20210173381 A KR 20210173381A KR 102426161 B1 KR102426161 B1 KR 102426161B1
Authority
KR
South Korea
Prior art keywords
formula
magnetic nanoparticles
magnetic
sio
represented
Prior art date
Application number
KR1020210173381A
Other languages
Korean (ko)
Inventor
박진우
김진호
선경표
장수정
Original Assignee
(주)바이오액츠
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)바이오액츠 filed Critical (주)바이오액츠
Priority to KR1020210173381A priority Critical patent/KR102426161B1/en
Application granted granted Critical
Publication of KR102426161B1 publication Critical patent/KR102426161B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic System
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/0803Compounds with Si-C or Si-Si linkages
    • C07F7/081Compounds with Si-C or Si-Si linkages comprising at least one atom selected from the elements N, O, halogen, S, Se or Te
    • C07F7/0812Compounds with Si-C or Si-Si linkages comprising at least one atom selected from the elements N, O, halogen, S, Se or Te comprising a heterocyclic ring
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54313Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals the carrier being characterised by its particulate form
    • G01N33/54326Magnetic particles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54313Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals the carrier being characterised by its particulate form
    • G01N33/54346Nanoparticles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y15/00Nanotechnology for interacting, sensing or actuating, e.g. quantum dots as markers in protein assays or molecular motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2563/00Nucleic acid detection characterized by the use of physical, structural and functional properties
    • C12Q2563/143Magnetism, e.g. magnetic label
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2563/00Nucleic acid detection characterized by the use of physical, structural and functional properties
    • C12Q2563/149Particles, e.g. beads
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2563/00Nucleic acid detection characterized by the use of physical, structural and functional properties
    • C12Q2563/155Particles of a defined size, e.g. nanoparticles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2446/00Magnetic particle immunoreagent carriers
    • G01N2446/80Magnetic particle immunoreagent carriers characterised by the agent used to coat the magnetic particles, e.g. lipids
    • G01N2446/90Magnetic particle immunoreagent carriers characterised by the agent used to coat the magnetic particles, e.g. lipids characterised by small molecule linker used to couple immunoreagents to magnetic particles

Abstract

In a method for measuring biomaterials such as DNA, RNA, and proteins in a living body, the present invention relates to magnetic nanoparticles, wherein when a silane functional group capable of specifically binding to the biomaterials is introduced into the magnetic nanoparticles and the magnetic nanoparticles are injected into the living body, the magnetic nanoparticles specifically bind to the biomaterials labeled with a fluorescent compound or the like to easily separate the same and efficiently detect the biomaterials.

Description

실란작용기가 도입된 자성나노입자{Magnetic nanoparticles introduced with silane functional moiety}Magnetic nanoparticles introduced with silane functional moiety}

본 발명은 생체 내의 DNA, RNA, 단백질 등 바이오 물질을 측정하는 방법에 있어서, 상기 바이오 물질에 특이적으로 결합할 수 있는 작용기를 자성 나노입자에 도입하여, 상기 자성 나노입자를 생체 내에 주입하였을 때에 형광 화합물 등으로 표지된 상기 바이오 물질과 특이적으로 결합하여 이를 용이하게 분리할 수 있고 바이오 물질을 효율적으로 검출할 수 있는 자성 나노입자에 관한 것이다.The present invention relates to a method for measuring a biomaterial such as DNA, RNA, or protein in a living body, when a functional group capable of specifically binding to the biomaterial is introduced into the magnetic nanoparticles, and the magnetic nanoparticles are injected into the living body. The present invention relates to magnetic nanoparticles capable of specifically binding to the biomaterial labeled with a fluorescent compound and the like, thereby easily separating the biomaterial, and efficiently detecting the biomaterial.

일반적으로 DNA, RNA 등 유전물질 및 항체 등 단백질의 생체내의 활성측정이나 작용효과를 평가하기 위해서 다양한 나노입자를 사용할 수 있다. 나노입자로서는 금 나노입자, 반도체 나노입자, 자성 나노입자 등이 주로 사용되고 있다. 본 발명은 상기 나노입자 중에서도 자성 나노입자에 관한 것으로서, 자성 나노입자에 실란 작용기를 도입하여 상기 유전물질, 단백질 등 생체물질이 특이적으로 결합하게 함으로써 자성 나노입자를 분리할 수 있는 용매를 이용하여 상기 생체물질 등을 용이하게 분리하고 검출할 수 있는 자성 나노입자에 관한 것이다.In general, a variety of nanoparticles can be used in order to measure the in vivo activity of a genetic material such as DNA, RNA, or a protein such as an antibody or to evaluate the effect. As nanoparticles, gold nanoparticles, semiconductor nanoparticles, magnetic nanoparticles, and the like are mainly used. The present invention relates to magnetic nanoparticles among the nanoparticles, and by introducing a silane functional group to the magnetic nanoparticles to specifically bind the biomaterials such as the dielectric material and protein, using a solvent capable of separating the magnetic nanoparticles. The present invention relates to magnetic nanoparticles capable of easily separating and detecting the biomaterial and the like.

형광 및 자성 폴리머성 입자는 다양한 생물 의학의 분석에서 마커 및 지시약으로서의 용도가 알려져 있다. 그 중에서 세포 분류를 위하여 가장 통상적으로 사용되는 마커는 예를 들면, 면역-형광 및 면역-자성 표지를 포함하는 면역접합체 또는 면역학적 표지이다. 면역-형광 표지는 대체로 예를 들면, 항체에 결합된 형광 분자를 포함한다. 면역-자성 표지는 대체로 예를 들면, 일차 또는 이차 항체에 결합된 강한 상자성 입자를 포함한다. 세포 표지는 예를 들면, 항체를 세포의 표면상의 대상 마커(예컨대, 수용체 부위), 즉 세포 표면 마커에 부착시킴으로써 수행될 수 있다. 그러나 세포 표면 마커의 화학적 및 물리적 구조 및 세포 표면에 부착된 면역학적 표지의 밀도는 일반적으로 정확히 측정하기가 어렵다.Fluorescent and magnetic polymeric particles are known for their use as markers and indicators in a variety of biomedical assays. Among them, the most commonly used markers for cell sorting are, for example, immunoconjugates or immunological markers including immuno-fluorescence and immuno-magnetic markers. Immuno-fluorescent labels usually comprise, for example, a fluorescent molecule bound to an antibody. Immuno-magnetic labels usually comprise, for example, strong paramagnetic particles bound to a primary or secondary antibody. Cell labeling can be accomplished, for example, by attaching the antibody to a marker of interest (eg, a receptor site) on the surface of the cell, ie, a cell surface marker. However, the chemical and physical structures of cell surface markers and the density of immunological markers attached to the cell surface are generally difficult to accurately measure.

공지된 자기적 활성 물질과 같은 자성 입자는 예를 들면, 특정 세포 타입, 항원, 또는 다른 표적에 특이성이 모노클로날 항체와 같은 항체에 결합되거나 또는 부착될 수 있다. 결과물인 자성-항체는 그 후 예를 들면, 정제되지 않은(crude) 조직 샘플, 반응기에서 성장된 세포 등과 같은 많은 개별적인 세포 타입의 커다란 집단과 혼합될 수 있다. 자성-항체는 그러므로 미리-선택된 표적 세포 타입에 부착되어, 자성-항체-세포 접합체를 형성한다. 이 접합체는 그 후 자기장을 이용하여 나머지 세포 집단으로부터 분리될 수 있다. 세포 또는 다른 생물학적 표적 측정 대상이 예를 들면 세포 상의 특이적 합텐에 특이적 상자성 화합물을 결합에 의한, 또는 상자성 금속 또는 금속 복합체가 금속 결합 미생물과 같은 세포에 직접적으로 특이적 또는 비-특이적 결합에 의한, 또는 식세포 활동(phagocytosis)과 같은 방법에 의하여 산출되는 분석 및 진단 정보를 혼동시킬 수 있는 다수의 개별적인 경로에 의하여 상자성이 부여될 것이므로, 자성 입자의 단점은 자성 표지의 특이성이 부족하다는 것이다. 탐지 및 진단법에 사용되는 자성 입자가 직면하게 되는 다른 문제들은 예를 들면, 세포 집단의 자성 감수성의 고도로 정확한 정량을 얻기가 어렵다는 것을 포함한다.Magnetic particles, such as known magnetically active substances, can be bound or attached to antibodies, such as monoclonal antibodies, for example, with specificity for a particular cell type, antigen, or other target. The resulting magnetic-antibody can then be mixed with large populations of many individual cell types, such as, for example, crude tissue samples, cells grown in reactors, and the like. The magnetic-antibody thus attaches to the pre-selected target cell type, forming a magnetic-antibody-cell conjugate. The zygote can then be separated from the rest of the cell population using a magnetic field. Specific or non-specific binding of a cell or other biological target directly to a cell, for example by binding a specific paramagnetic compound to a specific hapten on the cell, or by a paramagnetic metal or metal complex to a cell, such as a metal-binding microorganism A disadvantage of magnetic particles is that they lack the specificity of magnetic labels, as they will be imparted paramagnetism by a number of distinct pathways that can confound analytical and diagnostic information generated by methods such as phagocytosis or by methods such as phagocytosis. . Other problems encountered with magnetic particles used in detection and diagnostics include, for example, the difficulty in obtaining highly accurate quantification of the magnetic susceptibility of a cell population.

따라서 측정하고자 하는 생체 물질에 선택적으로 자성 나노입자를 부착시키는 것이 매우 중요한 문제이다.Therefore, it is a very important problem to selectively attach magnetic nanoparticles to a biological material to be measured.

자성 나노입자 표면을 실리카 화합물로 개질함으로써 상기와 같은 문제점들을 극복하려는 노력이 있어왔다. 실리카는 화학적으로 안정되고, 나노입자의 분산성을 향상시키며 표면에 높은 농도의 silanol 기를 가지고 있어서 다양한 표면 접합반응과 다른 분자의 고정화반응에 이용될 수 있다. 일반적으로 사용되는 졸-겔(sol-gel) 공정에서는 암모니아, TEOS/H2O 비의 조절을 통해 자성 나노입자 외각에 형성되는 실리카 층의 두께 제어가 용이하다. 또한 실리카 shell은 자성코어를 보호해줄 뿐만 아니라 수용액상에서의 분산성과 산화안정성을 확보해준다. 그러나 비자성물질인 실리카 층의 두께가 증가하면 자성 나노입자의 포화자화도(saturation magnetization)는 상대적으로 급격히 감소하게 된다.Efforts have been made to overcome the above problems by modifying the surface of magnetic nanoparticles with a silica compound. Silica is chemically stable, improves the dispersibility of nanoparticles, and has a high concentration of silanol groups on the surface, so it can be used for various surface bonding reactions and immobilization of other molecules. In a commonly used sol-gel process, it is easy to control the thickness of the silica layer formed on the outer shell of the magnetic nanoparticles by controlling the ammonia and TEOS/H 2 O ratio. In addition, the silica shell not only protects the magnetic core, but also ensures dispersibility and oxidation stability in aqueous solution. However, when the thickness of the silica layer, which is a non-magnetic material, increases, the saturation magnetization of the magnetic nanoparticles decreases relatively rapidly.

실리카 코어 외각에 다량의 자성나노입자가 클러스터 형태로 결합되면, 실리카 코어의 사이즈와 외각에 결합되는 magnetite의 수를 제어함으로써 자성값(즉, 포화자화도) 및 사이즈의 제어가 가능하다. Stoeva는 J. Am. Chem. Soc., 127, 15362 (2005)에서 amine-functionalized 실리카 코어 표면에 negatively-charged Fe3O4(15nm) 나노입자를 정전기적 상호작용을 이용하여 결합시킨 single silica core-clustered magnetite shell 형태의 자성 나노복합체를 형성하였다. Nagao는 Langmuir, 24, 98049808 (2008)에서 positively-charged 자성 나노입자(8nm)를 제조한 후에 스퇴버방법(Stmethod)에 의해 제조된 실리카 나노입자(negatively-charged)와 혼합하여 자성 나노입자가 실리카 표면에 정전기적으로 결합된 나노복합체를 제조하였다. 그리고 다시 sodium silicate의 코팅공정을 통해 외각에 얇은 실리카 층을 형성하여 자성 나노입자의 안정성을 향상시켰다. Salgueirino-Maceria는 Adv. Func. Mater., 15, 1036-1040(2005)에서 LbL(layer-by-layer) 기술을 이용하여 실리카 나노입자 표면에 코발트/코발트 산화물 나노입자를 결합시켜 클러스터 외각층을 형성한 후에 다시 실리카 층으로 코팅하였다. 이러한 단일 실리카 코어-마그네타이트 클러스터 shell로 구성되는 자성 나노복합체의 제조방법은 고정이 복잡해지고, 실리카코어 외각에 결합되지 않은 다량의 자성 나노입자의 회수가 어렵고, 표면에 결합된 자성 나노입자의 산화안정성 및 표면기능화를 위해서 이차적인 보호층의 형성이 필요하게 되는 문제점이 있다.When a large amount of magnetic nanoparticles are bonded to the outer shell of the silica core in a cluster form, the magnetic value (ie, saturation magnetization) and size can be controlled by controlling the size of the silica core and the number of magnetites bonded to the outer shell. Stoeva is J. Am. Chem. Soc., 127, 15362 (2005), a single silica core-clustered magnetite shell-type magnetic nanoparticle in which negatively-charged Fe 3 O 4 (15 nm) nanoparticles were bonded to the surface of an amine-functionalized silica core using electrostatic interaction. A complex was formed. Nagao reported that, in Langmuir, 24, 98049808 (2008), positively-charged magnetic nanoparticles (8 nm) were prepared and then mixed with silica nanoparticles (negatively-charged) prepared by Stmethod to obtain silica nanoparticles. A nanocomposite electrostatically bonded to the surface was prepared. Then, through the coating process of sodium silicate, a thin silica layer was formed on the outer shell to improve the stability of the magnetic nanoparticles. Salgueirino-Maceria Adv. Func. Mater., 15, 1036-1040 (2005), using LbL (layer-by-layer) technology to form an outer cluster layer by bonding cobalt/cobalt oxide nanoparticles to the surface of silica nanoparticles, and then coating them again with a silica layer did. The method for manufacturing a magnetic nanocomposite composed of such a single silica core-magnetite cluster shell is complicated in fixation, difficult to recover a large amount of magnetic nanoparticles not bound to the outer shell of the silica core, and oxidation stability of magnetic nanoparticles bound to the surface. And there is a problem that the formation of a secondary protective layer is required for surface functionalization.

이에 본 발명자들은 자성 나노입자의 자화성은 유지하면서 목적하는 생체물질에 특이적으로 결합할 수 있는 실란 작용기가 도입된 자성 나노입자를 개발하였고, 상기 자성 나노입자의 표면을 이산화규소로 코팅함으로서 위의 문제점을 해결할 수 있었고, 이와 같은 방법으로 제조된 자성 나노입자가 포함된 본 발명에서 제공하는 생체물질을 표지하기 위한 조성물은 민감도와 친화도가 우수하여 생체 내에서 유전물질, 단백질 등과 결합효율이 높아 생체물질의 검출효율을 향상시킬 수 있다.Accordingly, the present inventors have developed magnetic nanoparticles into which a silane functional group capable of specifically binding to a desired biological material is introduced while maintaining the magnetization of the magnetic nanoparticles, and by coating the surface of the magnetic nanoparticles with silicon dioxide, The composition for labeling a biological material provided in the present invention containing magnetic nanoparticles prepared in this way has excellent sensitivity and affinity, and thus the binding efficiency with genetic material, protein, etc. in vivo is high. It is possible to improve the detection efficiency of biomaterials.

한국공개특허 10-2011-0103009호Korean Patent Publication No. 10-2011-0103009 한국공개특허 10-2011-0035010호Korean Patent Publication No. 10-2011-0035010

본 발명은 자성 나노입자를 이용하여 생체물질을 측정할 때에, 상기 자성 나노입자가 목적하는 생체물질에 특이적으로 결합할 수 있도록 하는 실란 작용기를 도입하고, 상기 자성 나노입자의 표면을 개질함으로써 생체물질을 표지하는 데에 있어서 특이성과 민감도를 높이는 것을 해결하고자 한다. The present invention provides a biomaterial by introducing a silane functional group that allows the magnetic nanoparticles to specifically bind to a target biomaterial when measuring a biomaterial using a magnetic nanoparticle, and modifying the surface of the magnetic nanoparticle. It is intended to solve the problem of increasing specificity and sensitivity in labeling substances.

또한, 종래의 기술에서는 자성 나노입자와 항체 및 계면 활성제 등을 독립적으로 적용하여 측정실험을 실시해야 함으로서 공정이 복잡해진다는 문제점이 있었는데, 본 발명에서는 표면이 개질된 자성 나노입자를 적용함으로써 생체 물질을 측정하는 과정을 단순화할 수 있다는 장점이 있다.In addition, in the prior art, there was a problem that the process was complicated by independently applying magnetic nanoparticles, antibodies, and surfactants to conduct measurement experiments. It has the advantage of simplifying the measurement process.

상기 과제를 해결하기 위하여 본 발명은 하기의 화학식 5로 표시된 바와 같이 자성 나노입자에 DNA, RNA, 단백질, 항체 등의 생체물질에 특이적으로 결합할 수 있도록 하는 실란 작용기를 도입함으로서 위의 문제점을 해결할 수 있었다. In order to solve the above problems, the present invention solves the above problems by introducing a silane functional group that allows specific binding to biomaterials such as DNA, RNA, protein, and antibody to magnetic nanoparticles as shown in Chemical Formula 5 below. could solve it

<화학식 5><Formula 5>

ZnMnFe2O4@SiO2@TsZnMnFe 2 O 4 @SiO 2 @Ts

상기 화학식에서 Ts는 아래의 화학식으로 표현되는 토실기를 나타내고, @Ts는 이산화규소(SiO2)로 코팅된 자성입자인 ZnMnFe2O4@SiO2를 토실기가 결합되어 있는 하기의 화학식 3으로 표시되는 화합물로 코팅한 것을 나타낸다.In the above formula, Ts represents a tosyl group represented by the following formula, @Ts is a magnetic particle coated with silicon dioxide (SiO 2 ) ZnMnFe 2 O 4 @SiO 2 Represented by the following formula 3 to which a tosyl group is bonded It indicates that it is coated with a compound that is

<Ts; 토실기><Ts; Tosilgi>

Figure 112021141477922-pat00001
Figure 112021141477922-pat00001

<화학식 3><Formula 3>

Figure 112021141477922-pat00002
Figure 112021141477922-pat00002

본 발명은 자성 나노입자의 표면에 DNA, RNA, 항체, 단백질 등의 생체물질에 특이적으로 결합할 수 있는 실란작용기를 도입함으로써 자성 나노입자를 이용한 생체물질 측정과정을 단순화할 수 있고, 또한 자성 나노입자가 목적하는 생체물질에 특이적으로 결합할 수 있음으로써 자성 표지의 특이성과 민감도를 향상시킬 수 있고, 따라서 자성 나노입자가 도입된 표지 화합물과 타겟물질이 결합된 결합체의 높은 농도를 얻을 수 있어서 측정결과에 대한 신뢰도가 종래기술에 비하여 현저하게 우수하다는 장점이 있다.The present invention can simplify the biomaterial measurement process using magnetic nanoparticles by introducing a silane functional group capable of specifically binding to biomaterials such as DNA, RNA, antibody, and protein on the surface of the magnetic nanoparticles, and also The specificity and sensitivity of the magnetic label can be improved by the nanoparticles being able to specifically bind to a desired biomaterial, and thus a high concentration of the conjugate in which the label compound into which the magnetic nanoparticles are introduced and the target material are bound can be obtained. Therefore, there is an advantage in that the reliability of the measurement result is remarkably superior to that of the prior art.

도 1은 본 발명의 실시예 1에 의해서 제조된 자성나노입자의 전자 현미경 사진을 나타낸 것이다.
도 2는 본 발명의 실시예 2에 의해서 제조된 자성나노입자의 전자 현미경 사진을 나타낸 것이다.
도 3은 본 발명의 실시예 3에 의해서 제조된 자성나노입자의 전자 현미경 사진을 나타낸 것이다.
도 4는 본 발명의 실시예 4에 의해서 제조된 자성나노입자의 전자 현미경 사진을 나타낸 것이다.
도 5는 본 발명에서 제공하는 자성나노입자를 이용하여 표지된 streptavin의 양과 종래의 자성나노입자를 이용하여 표지된 streptavin의 양을 흡광도 측정 장비를 이용하여 분석한 결과를 나타낸다.
1 shows an electron micrograph of the magnetic nanoparticles prepared according to Example 1 of the present invention.
Figure 2 shows an electron micrograph of the magnetic nanoparticles prepared according to Example 2 of the present invention.
3 shows an electron micrograph of the magnetic nanoparticles prepared according to Example 3 of the present invention.
4 shows an electron micrograph of the magnetic nanoparticles prepared according to Example 4 of the present invention.
5 shows the results of analyzing the amount of streptavin labeled using the magnetic nanoparticles provided in the present invention and the amount of streptavin labeled using the conventional magnetic nanoparticles using an absorbance measuring device.

본 발명은 형광을 발산하는 화합물과 결합하여 사용하는 자성나노입자에 관한 것으로서, 상기 자성나노입자가 도입된 형광 물질은 DNA, RNA, 단백질 등과 같은 검출대상이 되는 생체물질과 매우 특이적으로 결합하고, 상기 생체물질이 결합된 자성나노입자와 형광물질 결합체의 높은 농도를 얻을 수 있어서, 형광을 이용하여 생체물질을 검출하는 결과의 신뢰도가 매우 높다.The present invention relates to magnetic nanoparticles used in combination with a compound that emits fluorescence, wherein the fluorescent material into which the magnetic nanoparticles are introduced binds very specifically to a biological material to be detected, such as DNA, RNA, protein, etc. , it is possible to obtain a high concentration of the magnetic nanoparticles and the fluorescent material conjugate to which the biomaterial is bound, so that the reliability of the result of detecting the biomaterial using fluorescence is very high.

본 발명인은 하기의 화학식 5로 표현되는 자성나노입자를 개발함으로써 본 발명을 완성하게 되었다.The present inventors have completed the present invention by developing magnetic nanoparticles represented by the following Chemical Formula 5.

<화학식 5><Formula 5>

ZnMnFe2O4@SiO2@TsZnMnFe 2 O 4 @SiO 2 @Ts

상기 화학식에서 Ts는 아래의 화학식으로 표현되는 토실기를 나타내고, @Ts는 이산화규소(SiO2)로 코팅된 자성입자인 ZnMnFe2O4@SiO2를 토실기가 결합되어 있는 하기의 화학식 3으로 표시되는 화합물로 코팅한 것을 나타낸다.In the above formula, Ts represents a tosyl group represented by the following formula, @Ts is a magnetic particle coated with silicon dioxide (SiO 2 ) ZnMnFe 2 O 4 @SiO 2 Represented by the following formula 3 to which a tosyl group is bonded It indicates that it is coated with a compound that is

<Ts; 토실기><Ts; Tosilgi>

Figure 112021141477922-pat00003
Figure 112021141477922-pat00003

<화학식 3><Formula 3>

Figure 112021141477922-pat00004
Figure 112021141477922-pat00004

아래에서는 상기 화학식 5로 표현되는 자성나노입자의 제조방법에 대해서 자세히 설명한다.Hereinafter, a method for producing the magnetic nanoparticles represented by the above formula (5) will be described in detail.

하기의 화학식 1 내지 4는 상기의 화학식 5를 제조하기 위한 시작물질 또는 중간물질을 나타낸 것이다.The following Chemical Formulas 1 to 4 represent starting materials or intermediates for preparing Chemical Formula 5 above.

<화학식 1> <Formula 1>

Figure 112021141477922-pat00005
Figure 112021141477922-pat00005

<화학식 2><Formula 2>

Figure 112021141477922-pat00006
Figure 112021141477922-pat00006

<화학식 3><Formula 3>

Figure 112021141477922-pat00007
Figure 112021141477922-pat00007

<화학식 4><Formula 4>

ZnMnFe2O4@SiO2 ZnMnFe 2 O 4 @SiO 2

<화학식 5><Formula 5>

ZnMnFe2O4@SiO2@TsZnMnFe 2 O 4 @SiO 2 @Ts

상기 및 하기의 화학식에서 Ts는 아래의 화학식으로 표현되는 토실기를 나타내고, @Ts는 자성나노입자인 ZnMnFe2O4를 이산화규소(SiO2)로 코팅한 것(화학식 4)을 아래의 토실기가 결합되어 있는 하기의 화학식 3으로 표시되는 물질로 코팅한 것(화학식 5)을 나타낸다.In the above and below formulas, Ts represents a tosyl group represented by the following formula, and @Ts is a magnetic nanoparticle ZnMnFe 2 O 4 coated with silicon dioxide (SiO 2 ) (Formula 4) The tosyl group below It represents a thing coated with a material represented by the following formula (3) that is bound (Formula 5).

<Ts; 토실기><Ts; Tosilgi>

Figure 112021141477922-pat00008
Figure 112021141477922-pat00008

합성예 1. 하기 화학식 2의 화합물 제조 Synthesis Example 1. Preparation of a compound of the following formula (2)

Figure 112021141477922-pat00009
Figure 112021141477922-pat00009

8-nonene-1-ol (화학식 1, 10 g, 70.31 mmol)을 dichloromethane (200 mL)에 용해시키고 p-toluenesulfonyl chloride (16.08 g, 84.36 mmol), N,N-dimethyl-4-aminopyridine (860 mg, 7.04 mmol), pyridine (25.48 mL, 316.36 mmol)을 순서대로 가한다.8-nonene-1-ol (Formula 1, 10 g, 70.31 mmol) was dissolved in dichloromethane (200 mL), p -toluenesulfonyl chloride (16.08 g, 84.36 mmol), N,N-dimethyl-4-aminopyridine (860 mg) , 7.04 mmol) and pyridine (25.48 mL, 316.36 mmol) are added in this order.

반응물을 상온에서 4시간 동안 교반한 후, 염산 수용액 (1N, 300 mL)을 가하여 반응을 종결시킨다. 물층과 유기층을 분리하고 물층을 dichloromethane으로 추출한다. 유기층을 혼압하고 MgSO4로 건조한 후 감압증류하여 얻은 잔존물을 flash chromatography로 정제하여 (SiO2,40%EtOAc-hexanes)황색 액체 형태의 화학식 2 화합물을 얻었다(8.96 g).After the reaction was stirred at room temperature for 4 hours, an aqueous hydrochloric acid solution (1 N, 300 mL) was added to terminate the reaction. The water layer and the organic layer are separated, and the water layer is extracted with dichloromethane. The organic layer was mixed, dried over MgSO 4 , and distilled under reduced pressure, and the residue obtained was purified by flash chromatography (SiO 2 ,40% EtOAc-hexanes) to obtain the compound of Formula 2 in the form of a yellow liquid (8.96 g).

1H NMR (500 MHz, DMSO) δ 7.78 (d, J = 10.0 Hz, 2H), 7.47 (d, J = 10.0 Hz, 2H), 5.83 - 5.74 (m, 1H), 4.99 - 4.91 (m, 2H), 4.00 (t, J = 6.4 Hz, 2H), 2.41 (s, 3H), 1.99 - 1.94 (m, 2H), 1.53 - 1.50 (m, 2H), 1.28 - 1.24(m, 2H), 1.20 - 1.13 (m, 8H). 1 H NMR (500 MHz, DMSO) δ 7.78 (d, J = 10.0 Hz, 2H), 7.47 (d, J = 10.0 Hz, 2H), 5.83 - 5.74 (m, 1H), 4.99 - 4.91 (m, 2H) ), 4.00 (t, J = 6.4 Hz, 2H), 2.41 (s, 3H), 1.99 - 1.94 (m, 2H), 1.53 - 1.50 (m, 2H), 1.28 - 1.24 (m, 2H), 1.20 - 1.13 (m, 8H).

합성예 2. 하기 화학식 3의 화합물 제조 Synthesis Example 2. Preparation of a compound of Formula 3

Figure 112021141477922-pat00010
Figure 112021141477922-pat00010

가열로 건조한 둥근바닥 플라스크에 DMF (100 mL)를 가하고 화학식 2 (4.36 g, 14.74 mmol)와 Et3OSiH(8.16mL,44.23mmol)를 적가한 후, 0 oC에서 karsdets Cat (20% Pt, 1.76 mL, 1.48 mmol)를 천천히 적가한다. 0 oC에서 상온으로 서서히 온도를 높이며 4시간 동안 교반한다. 감압증류하여 용매를 제거하고 잔존물을 flash chroamtography로 정제하여 (SiO2,30%EtOAc-hexanes)연황색 액체 형태의 화학식 3 화합물을 얻었다(2.17 g).DMF (100 mL) was added to a round-bottom flask dried by heating, and Chemical Formula 2 (4.36 g, 14.74 mmol) and Et 3 OSiH (8.16 mL, 44.23 mmol) were added dropwise, and then karsdets Cat (20% Pt, 20% Pt, 1.76 mL, 1.48 mmol) is slowly added dropwise. Slowly increase the temperature from 0 o C to room temperature and stir for 4 hours. The solvent was removed by distillation under reduced pressure, and the residue was purified by flash chromatography (SiO 2 ,30% EtOAc-hexanes) to obtain the compound of Formula 3 in the form of a pale yellow liquid (2.17 g).

1H NMR (500 MHz, DMSO) 1H NMR (500 MHz, DMSO) δ 7.78 (d, J = 5.0 Hz, 2H), 7.48 (d, J = 5.0 Hz, 2H), 4.05 - 3.98 (m, 2H), 3.75 - 3.68 (m, 6H), 2.42 (s, 1H), 1.54 - 1.51 (m, 2H), 1.30 - 1.04 (m, 25H) 1 H NMR (500 MHz, DMSO) 1 H NMR (500 MHz, DMSO) δ 7.78 (d, J = 5.0 Hz, 2H), 7.48 (d, J = 5.0 Hz, 2H), 4.05 - 3.98 (m, 2H) ), 3.75 - 3.68 (m, 6H), 2.42 (s, 1H), 1.54 - 1.51 (m, 2H), 1.30 - 1.04 (m, 25H)

실시예 1. 하기 화학식 5의 화합물 제조Example 1. Preparation of a compound of Formula 5

100 mL 1-neck 둥근바닥 플라스크에 화학식 4 (10 mL)를 넣고 교반하였다. 화학식 3 (412 mg)와 ethanol (4.8 mL)를 섞은 용액을 100 mL 1-neck 둥근바닥 플라스크에 천천히 적가하였다. 10 분간 교반 후 ammonium hydroxide (1680 uL)와 ethanol (4.16 mL)을 섞은 용액을 천천히 적가하였다.Formula 4 (10 mL) was added to a 100 mL 1-neck round-bottom flask and stirred. A solution of Formula 3 (412 mg) and ethanol (4.8 mL) was slowly added dropwise to a 100 mL 1-neck round-bottom flask. After stirring for 10 minutes, a solution of ammonium hydroxide (1680 uL) and ethanol (4.16 mL) was slowly added dropwise.

상기 용액을 18 시간 교반 후 50 mL nalgene tube에 넣고 magnetic stand에서 10 초간 유지시켰다. 자석으로 분리된 여액을 제거 후 새로운 ethanol (30 mL)을 주입하여 분산시켰다. Magnetic stand에서 50 mL tube를 놓고 ethanol에 분산시킨 용액을 넣고 5 초간 유지시켰다.After stirring the solution for 18 hours, it was put into a 50 mL nalgene tube and maintained on a magnetic stand for 10 seconds. After removing the magnetically separated filtrate, fresh ethanol (30 mL) was injected and dispersed. Place a 50 mL tube on a magnetic stand, add a solution dispersed in ethanol, and hold for 5 seconds.

자석으로 분리된 ethanol을 제거 후 새로운 ethanol (30 mL)을 주입하여 분산시켰다. Magnetic stand에서 50 mL tube를 놓고 ethanol 에 분산시킨 용액을 넣고 3 초간 유지시켰다. 자석으로 분리된 ethanol을 제거 후 건조시킨 후에 화학식 5의 화합물을 수득하였다.After removing the magnetically separated ethanol, fresh ethanol (30 mL) was injected and dispersed. Place a 50 mL tube on a magnetic stand, add a solution dispersed in ethanol, and hold for 3 seconds. After the magnetically separated ethanol was removed and dried, a compound of Formula 5 was obtained.

실시 예 2. 화학식 5의 화합물 제조Example 2. Preparation of the compound of formula 5

100 mL 1-neck 둥근바닥 플라스크에 화학식 4 (10 mL)를 넣고 교반하였다. 화학식 3 (412 mg)와 ethanol (4.8 mL)를 섞은 용액을 100 mL 1-neck 둥근바닥 플라스크에 drop-wise 하였다. 10 분 교반 후 ammonium hydroxide (840 uL)와 ethanol (4.16 mL)을 섞은 용액을 천천히 적가하였다.Formula 4 (10 mL) was added to a 100 mL 1-neck round-bottom flask and stirred. A solution of Formula 3 (412 mg) and ethanol (4.8 mL) was added drop-wise to a 100 mL 1-neck round-bottom flask. After stirring for 10 minutes, a solution of ammonium hydroxide (840 uL) and ethanol (4.16 mL) was slowly added dropwise.

상기 용액을 18 시간 교반 후 50 mL nalgene tube에 넣고 magnetic stand에서 10 초간 유지시켰다. 자석으로 분리된 여액을 제거 후 새로운 ethanol (30 mL)을 주입하여 분산시켰다. Magnetic stand에서 50 mL tube를 놓고 ethanol에 분산시킨 용액을 넣고 5 초간 유지시켰다. 자석으로 분리된 ethanol을 제거 후 새로운 ethanol (30 mL)을 주입하여 분산시켰다. Magnetic stand에서 50 mL tube를 놓고 ethanol 에 분산시킨 용액을 넣고 3 초간 유지시켰다. 자석으로 분리된 ethanol (10 mL)을 주입하여 분산시켰다.After stirring the solution for 18 hours, it was put into a 50 mL nalgene tube and maintained on a magnetic stand for 10 seconds. After removing the magnetically separated filtrate, fresh ethanol (30 mL) was injected and dispersed. Place a 50 mL tube on a magnetic stand, add a solution dispersed in ethanol, and hold for 5 seconds. After removing the magnetically separated ethanol, fresh ethanol (30 mL) was injected and dispersed. Place a 50 mL tube on a magnetic stand, add a solution dispersed in ethanol, and hold for 3 seconds. Ethanol (10 mL) separated by a magnet was injected and dispersed.

100 mL 1-neck 둥근바닥 플라스크에 ethanol (10 mL)에 분산된 입자를 넣고 교반하였다. 화학식 3 (412 mg)와 ethanol (4.8 mL)를 섞은 용액을 100 mL 1-neck 둥근바닥 플라스크에 천천히 적가하였다. 10 분간 교반 후 ammonium hydroxide (840 uL)와 ethanol (4.16 mL)을 섞은 용액을 천천히 적가하였다. 18 시간 교반 후 50 mL nalgene tube에 넣고 magnetic stand에서 10 초간 유지시켰다. 자석으로 분리된 여액을 제거 후 새로운 ethanol (30 mL)을 주입하여 분산시켰다. Magnetic stand에서 50 mL tube를 놓고 ethanol에 분산시킨 용액을 넣고 5 초간 유지시켰다. 자석으로 분리된 ethanol을 제거 후 새로운 ethanol (30 mL)을 주입하여 분산시켰다. Magnetic stand에서 50 mL tube를 놓고 ethanol 에 분산시킨 용액을 넣고 3 초간 유지시켰다. 자석으로 분리된 ethanol을 제거 후 건조시킨 후에 화학식 5의 화합물을 수득하였다.The particles dispersed in ethanol (10 mL) were added to a 100 mL 1-neck round-bottom flask and stirred. A solution of Formula 3 (412 mg) and ethanol (4.8 mL) was slowly added dropwise to a 100 mL 1-neck round-bottom flask. After stirring for 10 minutes, a solution of ammonium hydroxide (840 uL) and ethanol (4.16 mL) was slowly added dropwise. After stirring for 18 hours, it was placed in a 50 mL nalgene tube and maintained on a magnetic stand for 10 seconds. After removing the magnetically separated filtrate, fresh ethanol (30 mL) was injected and dispersed. Place a 50 mL tube on a magnetic stand, add a solution dispersed in ethanol, and hold for 5 seconds. After removing the magnetically separated ethanol, fresh ethanol (30 mL) was injected and dispersed. Place a 50 mL tube on a magnetic stand, add a solution dispersed in ethanol, and hold for 3 seconds. After the magnetically separated ethanol was removed and dried, a compound of Formula 5 was obtained.

실시 예 3. 화학식 5의 화합물 제조Example 3. Preparation of the compound of formula 5

100 mL 1-neck 둥근바닥 플라스크에 화학식 4 (10 mL)를 넣고 교반하였다. 화학식 3 (412 mg)와 ethanol (4.8 mL)를 섞은 용액을 100 mL 1-neck 둥근바닥 플라스크에 천천히 적가하였다. 10 분 교반 후 ammonium hydroxide (840 uL)와 ethanol (4.16 mL)을 섞은 용액을 drop-wise하였다.Formula 4 (10 mL) was added to a 100 mL 1-neck round-bottom flask and stirred. A solution of Formula 3 (412 mg) and ethanol (4.8 mL) was slowly added dropwise to a 100 mL 1-neck round-bottom flask. After stirring for 10 minutes, a solution of ammonium hydroxide (840 uL) and ethanol (4.16 mL) was added drop-wise.

상기 용액을 18 시간 교반 후 50 mL nalgene tube에 넣고 magnetic stand에서 10 초간 유지시켰다. 자석으로 분리된 여액을 제거 후 새로운 ethanol (30 mL)을 주입하여 분산시켰다. Magnetic stand에서 50 mL tube를 놓고 ethanol에 분산시킨 용액을 넣고 5 초간 유지시켰다. 자석으로 분리된 ethanol을 제거 후 새로운 ethanol (30 mL)을 주입하여 분산시켰다. Magnetic stand에서 50 mL tube를 놓고 ethanol 에 분산시킨 용액을 넣고 3 초간 유지시켰다. 자석으로 분리된 ethanol을 제거 후 건조시킨 후에 화학식 5의 화합물을 수득하였다.After stirring the solution for 18 hours, it was put into a 50 mL nalgene tube and maintained on a magnetic stand for 10 seconds. After removing the magnetically separated filtrate, fresh ethanol (30 mL) was injected and dispersed. Place a 50 mL tube on a magnetic stand, add a solution dispersed in ethanol, and hold for 5 seconds. After removing the magnetically separated ethanol, fresh ethanol (30 mL) was injected and dispersed. Place a 50 mL tube on a magnetic stand, add a solution dispersed in ethanol, and hold for 3 seconds. After the magnetically separated ethanol was removed and dried, a compound of Formula 5 was obtained.

실시 예 4. 화학식 5의 화합물 제조Example 4. Preparation of the compound of formula 5

100 mL 1-neck 둥근바닥 플라스크에 화학식 4 (10 mL)를 넣고 교반하였다. 화학식 3 (206 mg)와 tetraethyl orthosilicate (100 uL), ethanol (4.8 mL)를 섞은 용액을 100 mL 1-neck 둥근바닥 플라스크에 천천히 적가하였다. 10 분 교반 후 ammonium hydroxide (840 uL)와 ethanol (4.16 mL)을 섞은 용액을 천천히 적가하였다.Formula 4 (10 mL) was added to a 100 mL 1-neck round-bottom flask and stirred. A solution of Formula 3 (206 mg), tetraethyl orthosilicate (100 uL), and ethanol (4.8 mL) was slowly added dropwise to a 100 mL 1-neck round-bottom flask. After stirring for 10 minutes, a solution of ammonium hydroxide (840 uL) and ethanol (4.16 mL) was slowly added dropwise.

상기 용액을 18 시간 교반 후 50 mL nalgene tube에 넣고 magnetic stand에서 10 초간 유지시켰다. 자석으로 분리된 여액을 제거 후 새로운 ethanol (30 mL)을 주입하여 분산시켰다. Magnetic stand에서 50 mL tube를 놓고 ethanol에 분산시킨 용액을 넣고 5 초간 유지시켰다. 자석으로 분리된 ethanol을 제거 후 새로운 ethanol (30 mL)을 주입하여 분산시켰다. Magnetic stand에서 50 mL tube를 놓고 ethanol 에 분산시킨 용액을 넣고 3 초간 유지시켰다. 자석으로 분리된 ethanol을 제거 후 건조시킨 후에 화학식 5의 화합물을 수득하였다.After stirring the solution for 18 hours, it was put into a 50 mL nalgene tube and maintained on a magnetic stand for 10 seconds. After removing the magnetically separated filtrate, fresh ethanol (30 mL) was injected and dispersed. Place a 50 mL tube on a magnetic stand, add a solution dispersed in ethanol, and hold for 5 seconds. After removing the magnetically separated ethanol, fresh ethanol (30 mL) was injected and dispersed. Place a 50 mL tube on a magnetic stand, add a solution dispersed in ethanol, and hold for 3 seconds. After the magnetically separated ethanol was removed and dried, a compound of Formula 5 was obtained.

본 발명에서 제공하고자 하는 또 다른 목적은 상기의 화학식 5로 표현되는 자성나노입자를 이용하여 시료 내에 존재하는 생체물질을 검출하는 방법에 관한 것으로서, 상기 검출방법은 시료에 하기의 화학식 5로 표현되는 자성나노입자와 형광 화합물을 혼합하여 상기 생체물질에 대한 표지반응을 실시하는 제1단계;Another object to be provided by the present invention relates to a method for detecting a biological material present in a sample using the magnetic nanoparticles represented by the formula (5), wherein the detection method is represented by the following formula (5) in the sample A first step of mixing magnetic nanoparticles and a fluorescent compound to perform a labeling reaction on the biological material;

상기 표지반응을 실시한 후에 마그네틱 스탠드에 정치시킨 후에 첫 번째 여과하여 자성나노입자를 수득하는 제2단계;a second step of obtaining magnetic nanoparticles by first filtration after performing the labeling reaction and standing on a magnetic stand;

상기 제2단계에서 수득된 자성나노입자에 완충용액을 첨가한 후에 블록킹 반응을 시킨 후에 마그네틱 스탠드에 정치시킨 후에 두 번째 여과한 후에 자성나노입자를 수득하는 제3단계;A third step of obtaining magnetic nanoparticles after a second filtration after adding a buffer solution to the magnetic nanoparticles obtained in the second step, allowing a blocking reaction, and then standing on a magnetic stand;

상기 제3단계에서 수득된 자성나노입자에 표지된 생체물질의 흡광도를 측정하는 단계;로 이루어지는 것을 특징으로 한다.Measuring the absorbance of the biomaterial labeled on the magnetic nanoparticles obtained in the third step; characterized in that it consists of.

상기 생체물질은 주로 DNA, RNA 및 단백질 등이고, 상기 형광 화합물은 특정한 형광 화합물에 제한되지 않고 생체물질을 표지하기 위한 어떠한 형광 화합물도 사용이 가능하다.The biomaterial is mainly DNA, RNA and protein, and the fluorescent compound is not limited to a specific fluorescent compound, and any fluorescent compound for labeling the biomaterial may be used.

이하에서는 상기 실시예를 통하여 제조된 화학식 5로 표현되는 자성나노입자의 물리적인 특성과 생체물질을 검출하는 데에 적용한 결과를 종래의 자성나노입자와 대비하여 본 발명에서 제공하는 자성나노입자를 더욱 자세히 설명한다. 그러나, 실시예는 본 발명을 예시하기 위한 것일 뿐, 본 발명의 범위를 한정하고자 하는 것이 아니다.Hereinafter, the magnetic nanoparticles provided in the present invention are further compared with the conventional magnetic nanoparticles by comparing the results applied to the detection of the physical properties and biomaterials of the magnetic nanoparticles represented by Chemical Formula 5 prepared through the above Examples. Describe in detail. However, the examples are only intended to illustrate the present invention, and are not intended to limit the scope of the present invention.

시험예 1. 본 발명에서 제공하는 화학식 5의 자성나노입자의 크기 측정Test Example 1. Measurement of the size of the magnetic nanoparticles of Formula 5 provided in the present invention

본 발명에 따른 자성나노입자의 크기를 확인하기 위하여 투과 전자 현미경(transmission electron microscopy) 측정을 수행하였다. 실시예 1 내지 4의 화합물을 sonication 분산시켜 carbon grid에 5 uL를 넣어서 건조시켰다. 투과 전자 현미경을 이용하여 화합물의 크기를 확인하였으며, 그 결과를 도 1 내지 도 4에 제시하였다.In order to confirm the size of the magnetic nanoparticles according to the present invention, transmission electron microscopy was performed. The compounds of Examples 1 to 4 were dispersed by sonication, and 5 uL was put on a carbon grid and dried. The size of the compound was confirmed using a transmission electron microscope, and the results are presented in FIGS. 1 to 4 .

시험예 2. 본 발명에서 제공하는 화학식 5의 자성나노입자의 functional group의 성능 확인 Test Example 2. Confirmation of the performance of the functional group of the magnetic nanoparticles of Formula 5 provided in the present invention

본 발명에서 도입한 자성나노입자 작용기의 성능을 확인하기 위하여 단백질을 표지한 후, 표지된 단백질의 양을 측정하였다. 사용된 단백질은 Streptavidin이며, 각 실험의 샘플 수는 3개씩 진행하였다.After labeling the protein to confirm the performance of the functional group of the magnetic nanoparticles introduced in the present invention, the amount of the labeled protein was measured. The protein used was Streptavidin, and the number of samples in each experiment was carried out by three.

자성나노입자를 0.1 M sodium borate buffer(pH 9.5)에 분산시켜 10 mg/mL의 농도로 맞춘다. 분산된 자성나노입자 200 uL (2 mg)를 1.5 mL ep Tube에 분주하여 magnetic stand에 담지한 후에 자성나노입자를 제외한 맑은 여액을 제거한다. 여액이 제거된 자성나노입자에 40 uL의 0.1M sodium borate buffer (pH 9.5)를 주입한 후 분산시키고, 다시 magnetic stand에 놓은 후 여액을 제거하여 자성나노입자의 세척 과정을 마친다.The magnetic nanoparticles are dispersed in 0.1 M sodium borate buffer (pH 9.5) and adjusted to a concentration of 10 mg/mL. Dispense 200 uL (2 mg) of dispersed magnetic nanoparticles into a 1.5 mL ep tube, place it on a magnetic stand, and remove the clear filtrate except for the magnetic nanoparticles. After injecting 40 uL of 0.1M sodium borate buffer (pH 9.5) into the magnetic nanoparticles from which the filtrate has been removed, disperse them, put them on a magnetic stand again, and remove the filtrate to complete the washing process of the magnetic nanoparticles.

본격적으로 표지반응을 진행하기에 앞서 미리 Streptavidin을 0.1M sodium borate buffer (pH 9.5)에 분산시켜 10 mg/mL의 농도로 맞춘다.Before proceeding with the labeling reaction, Streptavidin is dispersed in 0.1M sodium borate buffer (pH 9.5) in advance and adjusted to a concentration of 10 mg/mL.

상기 세척이 완료된 자성나노입자에 13.4 uL의 0.1M sodium borate buffer (pH 9.5)를 주입한 후 분산시킨다. 분산된 자성나노입자 혼합물에 20 uL (200 ug)의 Streptavidin을 처리한 후 가볍게 vortexing 한다.After the washing is completed, 13.4 uL of 0.1M sodium borate buffer (pH 9.5) is injected into the magnetic nanoparticles and dispersed. After treating the dispersed magnetic nanoparticle mixture with 20 uL (200 ug) of Streptavidin, vortex lightly.

상기 혼합물에 3M ammonium sulphate solution을 16.6 uL 처리하여 혼합물의 총 부피를 50 uL로 맞춘 후에, 이 혼합물을 인큐베이터에서 Multi-mixer (b3 mode, 5 rpm), 37℃, 24시간동안 반응을 시켜 표지반응을 진행한다.After treating the mixture with 16.6 uL of 3M ammonium sulphate solution to adjust the total volume of the mixture to 50 uL, the mixture was incubated in a Multi-mixer (b3 mode, 5 rpm), 37°C, for 24 hours for labeling reaction. proceed with

반응이 끝난 후에 상기 혼합물을 magnetic stand에 2분간 정치시킨 후 첫 번째 여액 50 uL을 수득한다(1번 여액).After the reaction was completed, the mixture was left on a magnetic stand for 2 minutes, and then 50 uL of the first filtrate was obtained (Filtrate No. 1).

여액이 제거된 후 남은 자성나노입자에 0.01M phosphate buffered saline (pH 7.4, with 0.5% BSA and 0.05% Tween®20)를 50 uL 첨가한 후에 가볍게 vortexing 한다.After the filtrate is removed, add 50 uL of 0.01M phosphate buffered saline (pH 7.4, with 0.5% BSA and 0.05% Tween®20) to the remaining magnetic nanoparticles and vortex lightly.

상기 혼합물을 인큐베이터 Multi-mixer(b3 mode, 5 rpm, 37℃)에서 24시간동안 반응을 시켜 blocking 반응을 진행한다. 반응이 끝난 혼합물을 magnetic stand에 2분간 정치시킨 후 두 번째 여액 50 uL을 수득한다(2번 여액). The mixture was reacted in an incubator Multi-mixer (b3 mode, 5 rpm, 37° C.) for 24 hours to perform a blocking reaction. After the reaction mixture was left on a magnetic stand for 2 minutes, 50 uL of a second filtrate was obtained (Filtrate No. 2).

위의 실험에서 얻은 1번 여액과 2번 여액으로부터 자성나노입자에 표지된 streptavidin의 양을 측정하였으며, 그 양을 흡광도 측정 장비 NanoDrop™ 2000 Spectrophotometer를 이용해 분석하였다. 측정하고자 하는 샘플의 양이 많지 않기 때문에 상기 흡광도 측정 장비로 선정하였으며, 측정값은 샘플의 n수를 늘려 (n=3) 진행하여 평균값을 구하면서 오차 범위를 보완하였다.The amount of streptavidin labeled on magnetic nanoparticles was measured from filtrate No. 1 and filtrate No. 2 obtained in the above experiment, and the amount was analyzed using absorbance measuring equipment NanoDrop™ 2000 Spectrophotometer. Since the amount of the sample to be measured is not large, it was selected as the absorbance measuring device, and the measured value was performed by increasing the number of n samples (n=3) to compensate for the error range while obtaining the average value.

상기 흡광도의 측정 과정은 다음과 같다. 우선, streptavidin의 280 nm 파장에서의 표준 편차선를 그린다. 1번 여액과 2번 여액의 버퍼는 서로 다르기 때문에 1번 및 2번 여액을 동일한 버퍼에 각각 녹인 두 가지의 streptavidin 표준 용액을 준비한다. NanoDrop™ 장비를 사용하여 streptavidin 표준 용액을 2분의 1씩 분주 희석하여 각각 280 nm 파장에서의 흡광도를 측정한다. 얻은 흡광도 데이터를 이용하여 두 가지의 표준편차선을 도출한 후에 추세선 식을 얻는다.The absorbance measurement process is as follows. First, draw a standard deviation line at the 280 nm wavelength of streptavidin. Since the buffers of Filtrate 1 and Filtrate 2 are different, prepare two standard streptavidin solutions in which filtrates 1 and 2 are respectively dissolved in the same buffer. Using NanoDrop™ equipment, dilute the streptavidin standard solution by 1/2 and measure the absorbance at each 280 nm wavelength. After deriving two standard deviation lines using the obtained absorbance data, a trend line equation is obtained.

상기 1번 여액을 280 nm 파장에서 흡광도를 측정한 후 해당되는 streptavidin 표준편차 추세선 식에 대입하여 1번 여액에 있는 streptavidin 평균량 (ug)을 구한다. 최초 streptavidin의 양(200 ug)을 앞에서 얻은 streptavidin 평균량 (ug)에서 뺀 값을 구하여 자성나노입자에 표지된 streptavidin 평균량 (ug)을 얻는다. 상기 2번 여액도 동일한 방법으로 흡광도를 측정하되 계산시에는 여액의 streptavidin 평균량 (ug)까지만 구한다. 이는 blocking step에서, 자성나노입자로부터 떨어진 streptavidin의 양을 측정하기 위함이다. 최종적으로 본 발명에서 제공하는 자성나노입자에 표지된 streptavidin의 평균량(ug)은 [1번 여액을 통해 얻은 표지된 streptavidin의 평균량(ug) - 2번 여액의 streptavidin의 평균량(ug)] 이다. After measuring the absorbance of the filtrate No. 1 at 280 nm wavelength, the average amount of streptavidin (ug) in the filtrate No. 1 is obtained by substituting it into the corresponding streptavidin standard deviation trend line equation. The average amount (ug) of streptavidin labeled on magnetic nanoparticles is obtained by subtracting the initial amount of streptavidin (200 ug) from the average amount of streptavidin (ug) obtained above. Absorbance is measured in the same manner for filtrate No. 2, but only the average amount of streptavidin (ug) in the filtrate is calculated. This is to measure the amount of streptavidin separated from magnetic nanoparticles in the blocking step. Finally, the average amount (ug) of streptavidin labeled on the magnetic nanoparticles provided in the present invention is [average amount of labeled streptavidin obtained through filtrate 1 (ug) - average amount of streptavidin in filtrate 2 (ug)] to be.

좀 더 정확한 비교를 위해, 종래의 자성나노입자인 ThermoFisher scientific의 Dynabeads™ MyOne™ Tosylactivated(카탈로그 65501) 제품을 기준으로 선정하였다. 앞서 구한 streptavidin 평균량 (ug)과 상기 종래의 자성나노입자 대비 streptavidin 표지율 (%)의 결과를 표 1 및 2 와 도 5에 제시하였다.For a more accurate comparison, ThermoFisher scientific's Dynabeads™ MyOne™ Tosylactivated (catalog 65501) product, which is a conventional magnetic nanoparticle, was selected as a reference. The results of the previously obtained average amount of streptavidin (ug) and the streptavidin labeling rate (%) compared to the conventional magnetic nanoparticles are presented in Tables 1 and 2 and FIG. 5 .

SampleSample Dynabeads™ MyOne™ TosylactivatedDynabeads™ MyOne™ Tosylactivated 화학식 5의 화합물(실시예 1)Compound of Formula 5 (Example 1) 화학식 5의 화합물(실시예 2)Compound of Formula 5 (Example 2) Streptavidin
평균 표지량 (ug)
Streptavidin
Average labeling amount (ug)
35.335.3 40.740.7 31.731.7

SampleSample Dynabeads™ MyOne™ TosylactivatedDynabeads™ MyOne™ Tosylactivated 화학식 5의 화합물(실시예 1)Compound of Formula 5 (Example 1) 화학식 5의 화합물(실시예 2)Compound of Formula 5 (Example 2) 타사 자성나노입자
대비 (%)
Third-party magnetic nanoparticles
prepare (%)
100100 115115 9090

상기 표 1 및 표 2와 도 5에 나타난 바와 같이, 본 발명에서 제공하는 자성나노입자를 이용하여 Streptavidin의 양을 측정한 결과와 종래기술에서 제공하는 자성나노입자를 이용하여 상기 단백질의 흡광도를 대비한 결과, 본 발명에서 제공하는 자성나노입자를 이용하고, 두 번의 여과단계를 거쳐 흡광도를 측정하였을 때에 종래기술보다 훨씬 우수한 결과를 나타냈다.As shown in Tables 1 and 2 and FIG. 5, the absorbance of the protein was compared with the result of measuring the amount of Streptavidin using the magnetic nanoparticles provided in the present invention and the magnetic nanoparticles provided in the prior art. As a result, when the magnetic nanoparticles provided in the present invention were used and absorbance was measured through two filtration steps, much superior results were obtained than in the prior art.

본 발명은 산업상 이용가능하다.The present invention is industrially applicable.

Claims (8)

하기의 화학식 5로 표현되는 생체물질의 표지를 위한 자성나노입자
<화학식 5>
ZnMnFe2O4@SiO2@Ts
상기 화학식에서 Ts는 아래의 화학식으로 표현되는 토실기를 나타내고, @Ts는 이산화규소(SiO2)로 코팅된 자성입자인 ZnMnFe2O4@SiO2를 토실기가 결합되어 있는 하기의 화학식 3으로 표시되는 화합물로 코팅한 것을 나타낸다.
<Ts; 토실기>
Figure 112022051896726-pat00026

<화학식 3>
Figure 112022051896726-pat00027


Magnetic nanoparticles for labeling biomaterials represented by the following Chemical Formula 5
<Formula 5>
ZnMnFe 2 O 4 @SiO 2 @Ts
In the above formula, Ts represents a tosyl group represented by the following formula, @Ts is a magnetic particle coated with silicon dioxide (SiO 2 ) ZnMnFe 2 O 4 @SiO 2 Represented by the following formula 3 to which a tosyl group is bonded It indicates that it is coated with a compound that is
<Ts;Tosilgi>
Figure 112022051896726-pat00026

<Formula 3>
Figure 112022051896726-pat00027


제1항의 자성나노입자를 제조하는 방법에 관한 것으로서,
하기의 화학식 1로 표현되는 화합물과 p-톨루엔설포닐 클로라이드, N-N-디메틸-4-아미노피리딘 및 피리딘을 디클로로메탄 용매에 혼합하여 하기의 화학식 2로 표현되는 제조하는 제1단계;
상기 제1단계에서 수득된 화학식 2의 화합물을 포함하는 조성물에 트리에톡시실란를 적가하여 하기의 화학식 3으로 표현되는 화합물을 제조하는 제2단계;
하기의 화학식 4로 표현되는 화합물에 상기 제 2단계에서 수득된 화학식 3으로 표현되는 화합물과 에탄올의 혼합물을 적가한 후에 암모늄히드록시드와 에탄올의 혼합물을 적가형 하기의 화학식 5로 표현되는 화합물을 제조하는 제3단계;를
포함하여 이루어지는 것을 특징으로 하는 자성나노입자를 제조하는 방법
<화학식 1>
Figure 112022051896726-pat00028


<화학식 2>
Figure 112022051896726-pat00029

<화학식 3>
Figure 112022051896726-pat00030

<화학식 4>
ZnMnFe2O4@SiO2
<화학식 5>
ZnMnFe2O4@SiO2@Ts
상기 및 하기의 화학식에서 Ts는 아래의 화학식으로 표현되는 토실기를 나타내고, @Ts는 자성입자인 ZnMnFe2O4를 이산화규소(SiO2)로 코팅한 것(화학식 4)과, 상기 이산화규소로 코팅된 자성입자인 ZnMnFe2O4@SiO2(화학식4)를 토실기를 가지는 화학식 3으로 표시되는 화합물로 코팅한 것(화학식 5)을 나타낸다.
<Ts; 토실기>
Figure 112022051896726-pat00031


As a method for producing the magnetic nanoparticles of claim 1,
A first step of preparing a compound represented by the following Chemical Formula 1 and p-toluenesulfonyl chloride, NN-dimethyl-4-aminopyridine and pyridine mixed in a dichloromethane solvent to prepare a compound represented by the following Chemical Formula 2;
a second step of preparing a compound represented by the following formula (3) by dropwise adding triethoxysilane to the composition containing the compound of formula (2) obtained in the first step;
A mixture of the compound represented by Formula 3 and ethanol obtained in the second step was added dropwise to the compound represented by Formula 4 below, and then a mixture of ammonium hydroxide and ethanol was added dropwise to the compound represented by Formula 5 below. the third step of manufacturing;
Method for producing magnetic nanoparticles comprising the
<Formula 1>
Figure 112022051896726-pat00028


<Formula 2>
Figure 112022051896726-pat00029

<Formula 3>
Figure 112022051896726-pat00030

<Formula 4>
ZnMnFe 2 O 4 @SiO 2
<Formula 5>
ZnMnFe 2 O 4 @SiO 2 @Ts
In the above and below formulas, Ts represents a tosyl group represented by the following formula, @Ts is a magnetic particle of ZnMnFe 2 O 4 coated with silicon dioxide (SiO 2 ) (Formula 4) and the silicon dioxide The coated magnetic particles of ZnMnFe 2 O 4 @SiO 2 (Formula 4) are coated with a compound represented by Formula 3 having a tosyl group (Formula 5).
<Ts;Tosilgi>
Figure 112022051896726-pat00031


제2항에 있어서, 상기 제조방법의 제3단계에서 적가되는 화학식 3으로 표현되는 화합물과 에탄올의 혼합물에 테트라에틸오소실리케이트를 더 첨가하여 적가하는 것을 특징으로 하는 자성나노입자를 제조하는 방법
The method according to claim 2, wherein tetraethyl orthosilicate is further added dropwise to a mixture of the compound represented by Formula 3 and ethanol added dropwise in the third step of the manufacturing method.
제1항에 있어서, 상기 생체물질은 DNA, RNA, 단백질 중에서 선택되는 어느 하나인 것을 특징으로 하는 자성나노입자
The magnetic nanoparticles according to claim 1, wherein the biomaterial is any one selected from DNA, RNA, and protein.
하기의 화학식 5로 표현되는 자성나노입자를 포함하여 형성되는 생체물질의 표지를 위한 조성물
<화학식 5>
ZnMnFe2O4@SiO2@Ts
상기 화학식에서 Ts는 아래의 화학식으로 표현되는 토실기를 나타내고, @Ts는 이산화규소(SiO2)로 코팅된 자성입자인 ZnMnFe2O4@SiO2를 토실기가 결합되어 있는 하기의 화학식 3으로 표시되는 화합물로 코팅한 것을 나타낸다.
<Ts; 토실기>
Figure 112022051896726-pat00032

<화학식 3>
Figure 112022051896726-pat00033


Composition for labeling biomaterials formed including magnetic nanoparticles represented by the following Chemical Formula 5
<Formula 5>
ZnMnFe 2 O 4 @SiO 2 @Ts
In the above formula, Ts represents a tosyl group represented by the following formula, @Ts is a magnetic particle coated with silicon dioxide (SiO 2 ) ZnMnFe 2 O 4 @SiO 2 Represented by the following formula 3 to which a tosyl group is bonded It indicates that it is coated with a compound that is
<Ts;Tosilgi>
Figure 112022051896726-pat00032

<Formula 3>
Figure 112022051896726-pat00033


제5항에 있어서, 상기 생체물질은 DNA, RNA, 단백질 중에서 선택되는 어느 하나인 것을 특징으로 하는 생체물질의 표지를 위한 조성물
The composition for labeling a biological material according to claim 5, wherein the biological material is any one selected from DNA, RNA, and protein.
시료 내의 생체물질을 검출하는 방법에 관한 것으로서,
상기 검출방법은 시료에 하기의 화학식 5로 표현되는 자성나노입자와 형광 화합물을 혼합하여 상기 생체물질에 대한 표지반응을 실시하는 제1단계;
상기 표지반응을 실시한 후에 마그네틱 스탠드에 정치시킨 후에 첫 번째 여과하여 자성나노입자를 수득하는 제2단계;
상기 제2단계에서 수득된 자성나노입자에 완충용액을 첨가한 후에 블록킹 반응을 시킨 후에 마그네틱 스탠드에 정치시킨 후에 두 번째 여과한 후에 자성나노입자를 수득하는 제3단계;
상기 제3단계에서 수득된 자성나노입자에 표지된 생체물질의 흡광도를 측정하는 단계;로 이루어지는 것을 특징으로 하는 생체물질의 검출방법
<화학식 5>
ZnMnFe2O4@SiO2@Ts
상기 화학식에서 Ts는 아래의 화학식으로 표현되는 토실기를 나타내고, @Ts는 이산화규소(SiO2)로 코팅된 자성입자인 ZnMnFe2O4@SiO2를 토실기가 결합되어 있는 하기의 화학식 3으로 표시되는 화합물로 코팅한 것을 나타낸다.
<Ts; 토실기>
Figure 112022051896726-pat00034

<화학식 3>
Figure 112022051896726-pat00035



A method for detecting a biological material in a sample, comprising:
The detection method may include a first step of mixing a sample with magnetic nanoparticles represented by the following Chemical Formula 5 and a fluorescent compound to perform a labeling reaction on the biological material;
a second step of obtaining magnetic nanoparticles by first filtration after performing the labeling reaction and then standing on a magnetic stand;
A third step of obtaining magnetic nanoparticles after a second filtration after adding a buffer solution to the magnetic nanoparticles obtained in the second step, allowing a blocking reaction, and then standing on a magnetic stand;
Measuring the absorbance of the biological material labeled on the magnetic nanoparticles obtained in the third step; Method for detecting a biological material, characterized in that consisting of
<Formula 5>
ZnMnFe 2 O 4 @SiO 2 @Ts
In the above formula, Ts represents a tosyl group represented by the following formula, @Ts is a magnetic particle coated with silicon dioxide (SiO 2 ) ZnMnFe 2 O 4 @SiO 2 Represented by the following formula 3 to which a tosyl group is bonded It indicates that it is coated with a compound that is
<Ts;Tosilgi>
Figure 112022051896726-pat00034

<Formula 3>
Figure 112022051896726-pat00035



제7항에 있어서, 상기 생체물질은 DNA, RNA, 단백질 중에서 선택되는 어느 하나인 것을 특징으로 하는 생체물질의 검출방법

The method according to claim 7, wherein the biomaterial is any one selected from DNA, RNA, and protein.

KR1020210173381A 2021-12-07 2021-12-07 Magnetic nanoparticles introduced with silane functional moiety KR102426161B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020210173381A KR102426161B1 (en) 2021-12-07 2021-12-07 Magnetic nanoparticles introduced with silane functional moiety

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020210173381A KR102426161B1 (en) 2021-12-07 2021-12-07 Magnetic nanoparticles introduced with silane functional moiety

Publications (1)

Publication Number Publication Date
KR102426161B1 true KR102426161B1 (en) 2022-07-28

Family

ID=82607810

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210173381A KR102426161B1 (en) 2021-12-07 2021-12-07 Magnetic nanoparticles introduced with silane functional moiety

Country Status (1)

Country Link
KR (1) KR102426161B1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070033091A (en) * 2005-09-20 2007-03-26 한양대학교 산학협력단 Method for manufacturing nanohybrid particle using for biomolecule detection, biomolecule detection system, biomolecule detection method, and analysis apparatus using for biomolecule detection using nanohybrid particle
KR20110035010A (en) 2009-09-29 2011-04-06 한국화학연구원 Magnetic phosphor complex and manufacturing method for the same
KR20110103009A (en) 2010-03-12 2011-09-20 차의과학대학교 산학협력단 Magnetic fluorescent nanoparticle imaging probes for detecting intracellular target molecules

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070033091A (en) * 2005-09-20 2007-03-26 한양대학교 산학협력단 Method for manufacturing nanohybrid particle using for biomolecule detection, biomolecule detection system, biomolecule detection method, and analysis apparatus using for biomolecule detection using nanohybrid particle
KR20110035010A (en) 2009-09-29 2011-04-06 한국화학연구원 Magnetic phosphor complex and manufacturing method for the same
KR20110103009A (en) 2010-03-12 2011-09-20 차의과학대학교 산학협력단 Magnetic fluorescent nanoparticle imaging probes for detecting intracellular target molecules

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Frederic Reymond 등. Biotechnol. Prog. Vol. 29, No. 2, p. 532-542 (2013.03.06.) *
Jun Wang 등. J. Nanosci. Nanotech. Vol. 5, No. 5, p. 772-775 (2005.) *

Similar Documents

Publication Publication Date Title
US7175912B2 (en) Super-paramagnetic composite particle with core/shell structure, preparation method and use thereof
Song et al. Fluorescent-magnetic-biotargeting multifunctional nanobioprobes for detecting and isolating multiple types of tumor cells
CN106366196B (en) EpCAM antibody immunomagnetic beads and preparation method thereof
CN101019019A (en) Surface enhanced spectrometry-active composite nanoparticles
CN107614458A (en) stable nano magnetic particle dispersion
CN109321577A (en) It is a kind of to detect the aptamers group of excretion body, lateral flow type aptamers biosensor and preparation method thereof
CN111351943B (en) Aptamer recognition-HCR reaction-based rapid detection method for early pregnancy of cattle and application
US9733315B2 (en) Nanomagnetic detector array for biomolecular recognition
Li et al. A 3D graphene oxide microchip and a Au-enwrapped silica nanocomposite-based supersandwich cytosensor toward capture and analysis of circulating tumor cells
CN107841527A (en) It is a kind of to utilize aptamer and the fluorescence detection method of magnetic material detection fibrin ferment
Elingarami et al. Surface-engineered magnetic nanoparticles for molecular detection of infectious agents and cancer
Zhao et al. Selective and sensitive fluorescence detection method for pig IgG based on competitive immunosensing strategy and magnetic bioseparation
CN106366195B (en) PD-L1 antibody immunomagnetic beads and preparation method thereof
Ma et al. Progress in nanomaterials-based optical and electrochemical methods for the assays of exosomes
EP3851854A1 (en) Biomaterial-detecting microparticle and biomaterial detection method using same
US8026108B1 (en) Detection of biotargets using bioreceptor functionalized nanoparticles
KR102426161B1 (en) Magnetic nanoparticles introduced with silane functional moiety
CN110553991B (en) Biological/chemical detection reagent and detection method based on hollow gold nanoparticle-DNA compound
Ashley et al. Functionalization of hybrid surface microparticles for in vitro cellular antigen classification
Park et al. Highly photoluminescent superparamagnetic silica composites for on-site biosensors
Ghafary et al. Ultrasensitive fluorescence immunosensor based on mesoporous silica and magnetic nanoparticles: Capture and release strategy
CN115554992B (en) Polymer modified magnetic nano material, preparation method and application thereof
CN106279421B (en) CD133, CD24 and CD44 multiple antibody immunomagnetic beads and preparation method thereof
CN112394167A (en) Fluorescent nano magnetic bead for capturing and identifying CTCs (biological chemical centers), and preparation method and application thereof
Yan et al. Biomineralization-inspired magnetic nanoflowers for sensitive miRNA detection based on exonuclease-assisted target recycling amplification

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant