KR102008622B1 - A linker material for introducing biological materials and a magnetic nanoparticle attached the said linker - Google Patents

A linker material for introducing biological materials and a magnetic nanoparticle attached the said linker Download PDF

Info

Publication number
KR102008622B1
KR102008622B1 KR1020180111319A KR20180111319A KR102008622B1 KR 102008622 B1 KR102008622 B1 KR 102008622B1 KR 1020180111319 A KR1020180111319 A KR 1020180111319A KR 20180111319 A KR20180111319 A KR 20180111319A KR 102008622 B1 KR102008622 B1 KR 102008622B1
Authority
KR
South Korea
Prior art keywords
magnetic nanoparticles
magnetic
linker
compound
nanoparticles
Prior art date
Application number
KR1020180111319A
Other languages
Korean (ko)
Inventor
박진우
최재호
송미영
김진호
박지은
Original Assignee
(주)바이오액츠
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)바이오액츠 filed Critical (주)바이오액츠
Priority to KR1020180111319A priority Critical patent/KR102008622B1/en
Application granted granted Critical
Publication of KR102008622B1 publication Critical patent/KR102008622B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic System
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/0803Compounds with Si-C or Si-Si linkages
    • C07F7/081Compounds with Si-C or Si-Si linkages comprising at least one atom selected from the elements N, O, halogen, S, Se or Te
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54313Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals the carrier being characterised by its particulate form
    • G01N33/54326Magnetic particles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54313Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals the carrier being characterised by its particulate form
    • G01N33/54346Nanoparticles
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2563/00Nucleic acid detection characterized by the use of physical, structural and functional properties
    • C12Q2563/143Magnetism, e.g. magnetic label
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2563/00Nucleic acid detection characterized by the use of physical, structural and functional properties
    • C12Q2563/155Particles of a defined size, e.g. nanoparticles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2446/00Magnetic particle immunoreagent carriers
    • G01N2446/80Magnetic particle immunoreagent carriers characterised by the agent used to coat the magnetic particles, e.g. lipids
    • G01N2446/90Magnetic particle immunoreagent carriers characterised by the agent used to coat the magnetic particles, e.g. lipids characterised by small molecule linker used to couple immunoreagents to magnetic particles

Abstract

The present invention, in a method for measuring biomaterials such as DNA, RNA, antibodies in vivo using magnetic nanoparticles, relates to magnetic nanoparticles in which a magnetic nanoparticle is bound to a linker that specifically binds to a biomaterial in order to efficiently detect the biomaterials and the like when the magnetic nanoparticles are injected in vivo. Magnetic nanoparticles surface-treated with the linker compound provided in the present invention can specifically bind to biomaterials such as DNA, RNA, antibodies, proteins, etc., thereby simplifying the biomaterial measurement process. In addition, the magnetic nanoparticles may specifically bind to a desired biomaterial, thereby improving the specificity and sensitivity of the magnetic label.

Description

생체물질 도입을 위한 링커 및 상기 링커가 결합된 자성 나노입자{A linker material for introducing biological materials and a magnetic nanoparticle attached the said linker}Linker material for introducing biological materials and a magnetic nanoparticle attached the said linker}

본 발명은 자성 나노입자를 이용하여 생체내의 DNA, RNA, 항체(Ab) 등 바이오 물질을 측정하는 방법에 있어서, 상기 자성 나노입자를 생체내에 주입하였을 때 자성 나노입자가 상기 바이오물질 등을 효율적으로 검출하기 위하여 자성 나노입자에 바이오 물질과 특이적으로 결합하는 링커를 결합시킨 자성 나노입자에 관한 것이다.The present invention provides a method for measuring biomaterials such as DNA, RNA, and antibodies (Ab) in vivo using magnetic nanoparticles, wherein the magnetic nanoparticles efficiently infuse the biomaterials when the magnetic nanoparticles are injected in vivo. The present invention relates to a magnetic nanoparticle having a linker that specifically binds a biomaterial to a magnetic nanoparticle for detection.

일반적으로 DNA, RNA 등 유전물질 및 항체 등 단백질의 생체내의 활성측정이나 작용효과를 평가하기 위해서 다양한 나노입자를 사용할 수 있다. 나노입자로서는 금 나노입자, 반도체 나노입자, 자성 나노입자 등이 주로 사용되고 있다. 본 발명은 상기 나노입자 중에서도 자성 나노입자에 관한 것으로서 상기 유전물질, 단백질 등 생체물질의 결합이 용이하도록 자성 나노입자에 생체물질이 특이적으로 결합할 수 있는 링커 화합물 및 상기 링커 화합물이 도입된 자성 나노입자에 관한 것이다.Generally, a variety of nanoparticles can be used to measure the activity and activity effects of genetic materials such as DNA and RNA, and proteins such as antibodies. As nanoparticles, gold nanoparticles, semiconductor nanoparticles, magnetic nanoparticles and the like are mainly used. The present invention relates to magnetic nanoparticles among the nanoparticles, and a linker compound capable of specifically binding a biological material to magnetic nanoparticles and a magnetic compound into which the linker compound is introduced so as to easily bind the biological material such as the genetic material or the protein. It relates to nanoparticles.

형광 및 자성 폴리머성 입자는 다양한 생물 의학의 분석에서 마커 및 지시약으로서의 용도가 알려져 있다. 그 중에서 세포 분류를 위하여 가장 통상적으로 사용되는 마커는 예를 들면, 면역-형광 및 면역-자성 표지를 포함하는 면역접합체 또는 면역학적 표지이다. 면역-형광 표지는 대체로 예를 들면, 항체에 결합된 형광 분자를 포함한다. 면역-자성 표지는 대체로 예를 들면, 일차 또는 이차 항체에 결합된 강한 상자성 입자를 포함한다. 세포 표지는 예를 들면, 항체를 세포의 표면상의 대상 마커(예컨대, 수용체 부위), 즉 세포 표면 마커에 부착시킴으로써 수행될 수 있다. 그러나 세포 표면 마커의 화학적 및 물리적 구조 및 세포 표면에 부착된 면역학적 표지의 밀도는 일반적으로 정확히 측정하기가 어렵다.Fluorescent and magnetic polymeric particles are known for use as markers and indicators in various biomedical assays. Among them, the markers most commonly used for cell sorting are, for example, immunoconjugates or immunological labels comprising immuno-fluorescent and immuno-magnetic labels. Immuno-fluorescent labels generally include, for example, fluorescent molecules bound to the antibody. Immuno-magnetic labels generally include strong paramagnetic particles that are bound to, for example, primary or secondary antibodies. Cell labeling can be performed, for example, by attaching the antibody to a subject marker (eg, a receptor site) on the surface of the cell, ie, a cell surface marker. However, the chemical and physical structure of cell surface markers and the density of immunological labels attached to the cell surface are generally difficult to accurately measure.

공지된 자기적 활성 물질과 같은 자성 입자는 예를 들면, 특정 세포 타입, 항원, 또는 다른 표적에 특이성이 모노클로날 항체와 같은 항체에 결합되거나 또는 부착될 수 있다. 결과물인 자성-항체는 그 후 예를 들면, 정제되지 않은(crude) 조직 샘플, 반응기에서 성장된 세포 등과 같은 많은 개별적인 세포 타입의 커다란 집단과 혼합될 수 있다. 자성-항체는 그러므로 미리-선택된 표적 세포 타입에 부착되어, 자성-항체-세포 접합체를 형성한다. 이 접합체는 그 후 자기장을 이용하여 나머지 세포 집단으로부터 분리될 수 있다. 세포 또는 다른 생물학적 표적 측정 대상이 예를 들면 세포 상의 특이적 합텐에 특이적 상자성 화합물을 결합에 의한, 또는 상자성 금속 또는 금속 복합체가 금속 결합 미생물과 같은 세포에 직접적으로 특이적 또는 비-특이적 결합에 의한, 또는 식세포 활동(phagocytosis)과 같은 방법에 의하여 산출되는 분석 및 진단 정보를 혼동시킬 수 있는 다수의 개별적인 경로에 의하여 상자성이 부여될 것이므로, 자성 입자의 단점은 자성 표지의 특이성이 부족하다는 것이다. 탐지 및 진단법에 사용되는 자성 입자가 직면하게 되는 다른 문제들은 예를 들면, 세포 집단의 자성 감수성의 고도로 정확한 정량을 얻기가 어렵다는 것을 포함한다.Magnetic particles, such as known magnetically active substances, may, for example, be bound or attached to antibodies, such as monoclonal antibodies, specificity for a particular cell type, antigen, or other target. The resulting magnetic-antibody can then be mixed with a large population of many individual cell types such as, for example, crude tissue samples, cells grown in a reactor, and the like. The magnetic-antibody is therefore attached to a pre-selected target cell type, forming a magnetic-antibody-cell conjugate. This conjugate can then be separated from the rest of the cell population using a magnetic field. The cell or other biological target measurement object is for example by binding a specific paramagnetic compound to a specific hapten on the cell, or the paramagnetic metal or metal complex directly or specifically specific to a cell, such as a metal binding microorganism. The disadvantage of magnetic particles is the lack of specificity of the magnetic label, as paramagnetic will be imparted by a number of individual pathways that can confuse the analytical and diagnostic information produced by or by methods such as phagocytosis. . Other problems faced by magnetic particles used in detection and diagnostics include, for example, the difficulty in obtaining highly accurate quantification of magnetic susceptibility in cell populations.

따라서 측정하고자 하는 생체 물질에 선택적으로 자성 나노입자를 부착시키는 것이 매우 중요한 문제이다.Therefore, it is very important to attach magnetic nanoparticles selectively to the biological material to be measured.

자성 나노입자 표면을 실리카 화합물로 개질함으로써 상기와 같은 문제점들을 극복하려는 노력이 있어왔다. 실리카는 화학적으로 안정되고, 나노입자의 분산성을 향상시키며 표면에 높은 농도의 silanol 기를 가지고 있어서 다양한 표면 접합반응과 다른 분자의 고정화반응에 이용될 수 있다. 일반적으로 사용되는 졸-겔(sol-gel) 공정에서는 암모니아, TEOS/H2O 비의 조절을 통해 자성 나노입자 외각에 형성되는 실리카 층의 두께 제어가 용이하다. 또한 실리카 shell은 자성코어를 보호해줄 뿐만 아니라 수용액상에서의 분산성과 산화안정성을 확보해준다. 그러나 비자성물질인 실리카 층의 두께가 증가하면 자성 나노입자의 포화자화도(saturation magnetization)는 상대적으로 급격히 감소하게 된다.Efforts have been made to overcome these problems by modifying the magnetic nanoparticle surface with silica compounds. Silica is chemically stable, improves dispersibility of nanoparticles, and has a high concentration of silanol groups on its surface, which can be used for various surface bonding reactions and immobilization of other molecules. In a commonly used sol-gel process, it is easy to control the thickness of the silica layer formed on the outer surface of the magnetic nanoparticles by controlling ammonia and TEOS / H 2 O ratio. The silica shell not only protects the magnetic core but also secures dispersibility and oxidation stability in aqueous solution. However, as the thickness of the nonmagnetic silica layer increases, the saturation magnetization of the magnetic nanoparticles decreases relatively rapidly.

실리카 코어 외각에 다량의 자성나노입자가 클러스터 형태로 결합되면, 실리카 코어의 사이즈와 외각에 결합되는 magnetite의 수를 제어함으로써 자성값(즉, 포화자화도) 및 사이즈의 제어가 가능하다. Stoeva는 J. Am. Chem. Soc., 127, 15362 (2005)에서 amine-functionalized 실리카 코어 표면에 negatively-charged Fe3O4(15nm) 나노입자를 정전기적 상호작용을 이용하여 결합시킨 single silica core-clustered magnetite shell 형태의 자성 나노복합체를 형성하였다. Nagao는 Langmuir, 24, 98049808 (2008)에서 positively-charged 자성 나노입자(8nm)를 제조한 후에 스퇴버방법(Stmethod)에 의해 제조된 실리카 나노입자(negatively-charged)와 혼합하여 자성 나노입자가 실리카 표면에 정전기적으로 결합된 나노복합체를 제조하였다. 그리고 다시 sodium silicate의 코팅공정을 통해 외각에 얇은 실리카 층을 형성하여 자성 나노입자의 안정성을 향상시켰다. Salgueirino-Maceria는 Adv. Func. Mater., 15, 1036-1040(2005)에서 LbL(layer-by-layer) 기술을 이용하여 실리카 나노입자 표면에 코발트/코발트 산화물 나노입자를 결합시켜 클러스터 외각층을 형성한 후에 다시 실리카 층으로 코팅하였다. 이러한 단일 실리카 코어-마그네타이트 클러스터 shell로 구성되는 자성 나노복합체의 제조방법은 고정이 복잡해지고, 실리카코어 외각에 결합되지 않은 다량의 자성 나노입자의 회수가 어렵고, 표면에 결합된 자성 나노입자의 산화안정성 및 표면기능화를 위해서 이차적인 보호층의 형성이 필요하게 되는 문제점이 있다.When a large amount of magnetic nanoparticles are bound to the outer core of the silica core in the form of a cluster, the magnetic value (that is, the degree of saturation magnetization) and the size can be controlled by controlling the size of the silica core and the number of magnetite bound to the outer shell. Stoeva, J. Am. Chem. Soc., 127, 15362 (2005), a single silica core-clustered magnetite shell incorporating negatively-charged Fe 3 O 4 (15 nm) nanoparticles onto an amine-functionalized silica core surface by electrostatic interaction. The complex was formed. Nagao prepared positively-charged magnetic nanoparticles (8 nm) in Langmuir, 24, 98049808 (2008), and then mixed them with silica nanoparticles (negatively-charged) prepared by the Stutter method. The nanocomposite was electrostatically bonded to the surface. And again through the coating process of sodium silicate to form a thin silica layer on the outer shell to improve the stability of the magnetic nanoparticles. Salgueirino-Maceria is available from Adv. Func. Mater., 15, 1036-1040 (2005) combines cobalt / cobalt oxide nanoparticles on the surface of silica nanoparticles using layer-by-layer (LbL) technology to form a clustered outer layer and then coated with silica layer again It was. The manufacturing method of the magnetic nanocomposite composed of such a single silica core-magnetite cluster shell is complicated to fix, and it is difficult to recover a large amount of magnetic nanoparticles not bound to the silica core shell, and the oxidation stability of the magnetic nanoparticles bonded to the surface is difficult. And there is a problem that it is necessary to form a secondary protective layer for the surface functionalization.

이에 본 발명자들은 자성 나노입자의 자화성은 유지하면서 생체물질에 특이적으로 결합할 수 있는 링커 화합물을 개발하였고, 상기 링커 화합물을 자성 나노입자에 결합시킴으로써 생체내에서 유전물질, 단백질 등을 측정할 때에 결합효율이 높아 민감도와 친화도가 우수하고 또한 자선 나노입자 제조의 공정을 획기적으로 단순화한 자성 나노입자를 개발함으로써 본 발명을 완성하였다.The present inventors have developed a linker compound that can specifically bind to a biological material while maintaining the magnetization of the magnetic nanoparticles, and measure the genetic material, protein, etc. in vivo by binding the linker compound to the magnetic nanoparticles. The present invention has been completed by developing magnetic nanoparticles having high bonding efficiency, excellent sensitivity and affinity, and greatly simplifying the process of producing charitable nanoparticles.

한국공개특허 10-2011-0103009호Korean Patent Publication No. 10-2011-0103009 한국공개특허 10-2011-0035010호Korean Patent Publication No. 10-2011-0035010

본 발명은 자성 나노입자를 이용하여 생체물질을 측정할 때에, 상기 자성 나노입자가 목적하는 생체물질에 특이적으로 결합할 수 있도록 하는 링커 화합물을 이용하여 상기 자성 나노입자의 표면을 개질함으로써 자성 표지의 특이성과 민감도를 높이는 것을 해결하고자 한다. The present invention is a magnetic label by modifying the surface of the magnetic nanoparticles by using a linker compound that allows the magnetic nanoparticles to specifically bind to the desired biomaterials when measuring the biological material using the magnetic nanoparticles To improve the specificity and sensitivity of the solution.

또한, 종래의 기술에서는 자성 나노입자와 항체 및 계면 활성제 등을 독립적으로 적용하여 측정실험을 실시해야 하여 공정이 복잡해진다는 문제점이 있었는데, 본 발명에서는 표면이 개질된 자성 나노입자를 적용함으로써 생체 물질을 측정하는 과정을 단순화할 수 있다는 장점이 있다.In addition, the conventional technology has a problem that the process is complicated because the measurement experiments must be carried out by independently applying the magnetic nanoparticles, the antibody and the surfactant, etc. In the present invention, the biological material by applying the surface-modified magnetic nanoparticles The advantage of simplifying the measurement is that

상기 과제를 해결하기 위하여 본 발명인은 자성 나노입자에 DNA, RNA, 단백질, 항체 등의 생체물질에 특이적으로 결합할 수 있도록 하는 하기의 화학식 1 및 2로 표현되는 링커 화합물을 개발하고 이를 자성 나노입자에 결합시킴으로써 위의 문제점을 해결할 수 있었다. In order to solve the above problems, the present inventors have developed a linker compound represented by the following Chemical Formulas 1 and 2, which enables specific binding to biological materials such as DNA, RNA, proteins, antibodies, and the like, to magnetic nanoparticles The above problem could be solved by binding to the particles.

[화학식 A][Formula A]

Figure 112018092714950-pat00001
Figure 112018092714950-pat00001

상기 식에서 m은 1 내지 20의 정수이고, 바람직하게는 1 내지 10의 정수이며, 더욱 바람직하게는 1 내지 5의 정수이다.In said formula, m is an integer of 1-20, Preferably it is an integer of 1-10, More preferably, it is an integer of 1-5.

R1은 탄소수 1 내지 5개의 알킬 실란 또는 알콕시 실란이다.R 1 is an alkyl silane or alkoxy silane having 1 to 5 carbon atoms.

[화학식 B][Formula B]

Figure 112018092714950-pat00002
Figure 112018092714950-pat00002

상기 식에서 n은 1 내지 20의 정수이고, 바람직하게는 1 내지 10의 정수이며, 더욱 바람직하게는 1 내지 5의 정수이다.N is an integer of 1-20, Preferably it is an integer of 1-10, More preferably, it is an integer of 1-5.

R2는 탄소수 1 내지 5개의 알킬기 또는 알콕시기이다.R 2 is an alkyl group having 1 to 5 carbon atoms or an alkoxy group.

본 발명은 자성 나노입자의 표면에 DNA, RNA, 항체, 단백질 등의 생체물질에 특이적으로 결합할 수 있는 링커를 도입함으로써 자성 나노입자를 이용한 생체물질 측정과정을 단순화할 수 있고, 또한 자성 나노입자가 목적하는 생체물질에 특이적으로 결합할 수 있음으로써 자성 표지의 특이성과 민감도를 향상시킬 수 있다는 장점이 있다. 또한, 자성 나노입자의 항체 선택도 및 결합도가 우수하여 자성 나노입자와 항체 결합체의 높은 농도를 얻을 수 있어서 측정결과에 대한 신뢰도가 종래기술에 비하여 현저하게 상승한다는 장점이 있다.The present invention can simplify the biomaterial measurement process using the magnetic nanoparticles by introducing a linker that can specifically bind to biological materials such as DNA, RNA, antibodies, proteins, etc. on the surface of the magnetic nanoparticles. Since the particles can specifically bind to the desired biomaterial, there is an advantage in that the specificity and sensitivity of the magnetic label can be improved. In addition, since the magnetic nanoparticles have excellent antibody selectivity and binding degree, high concentrations of the magnetic nanoparticles and the antibody conjugate can be obtained, and thus the reliability of the measurement results is remarkably increased compared to the prior art.

도 1은 본 발명에서 제공되는 링커 화합물 A 및 B가 도입된 자성 나노입자와 종래의 자성 나노입자의 Rabbit IgG의 부착량을 대비한 것이다.
도 2는 본 발명에서 제공되는 링커 화합물 A 및 B가 도입된 자성 나노입자와 종래의 자성 나노입자의 Mouse IgG의 부착량을 대비한 것이다.
1 is a comparison of the amount of adhesion of the rabbit IgG of the magnetic nanoparticles with the linker compounds A and B provided in the present invention and the conventional magnetic nanoparticles.
Figure 2 compares the amount of adhesion of the mouse IgG of the magnetic nanoparticles with the linker compounds A and B provided in the present invention and the conventional magnetic nanoparticles.

본 발명인은 하기의 화학식 A 및 B로 표현되는 링커 화합물을 개발함으로써 본 발명을 완성하게 되었다.The present inventors have completed the present invention by developing a linker compound represented by the following formulas (A) and (B).

[화학식 A][Formula A]

Figure 112018092714950-pat00003
Figure 112018092714950-pat00003

상기 식에서 m은 1 내지 20의 정수이고, 바람직하게는 1 내지 10의 정수이며, 더욱 바람직하게는 1 내지 5의 정수이다.In said formula, m is an integer of 1-20, Preferably it is an integer of 1-10, More preferably, it is an integer of 1-5.

R1은 탄소수 1 내지 5개의 알킬 실란 또는 알콕시 실란이다.R 1 is an alkyl silane or alkoxy silane having 1 to 5 carbon atoms.

[화학식 B][Formula B]

Figure 112018092714950-pat00004
Figure 112018092714950-pat00004

상기 식에서 n은 1 내지 20의 정수이고, 바람직하게는 1 내지 10의 정수이며, 더욱 바람직하게는 1 내지 5의 정수이다.N is an integer of 1-20, Preferably it is an integer of 1-10, More preferably, it is an integer of 1-5.

R2는 탄소수 1 내지 5개의 알킬기 또는 알콕시기이다.R 2 is an alkyl group having 1 to 5 carbon atoms or an alkoxy group.

아래에서는 상기 화학식 A 및 B로 표현되는 화합물의 제조방법에 대해서 자세히 설명한다.Hereinafter, a method for preparing the compound represented by Chemical Formulas A and B will be described in detail.

본 발명은 자성 나노입자에 DNA/Protein 및 Ab와 같은 생체 재료 물질의 도입을 위한 링커 합성에 관한 것으로, 보다 구체적인 일 실시예로서는 하기 화학식 1 및 2로 표시되는 광학 자성 나노입자에 도입되는 링커의 합성에 관한 것이다:The present invention relates to the synthesis of linkers for the introduction of biomaterials such as DNA / Protein and Ab to the magnetic nanoparticles, as a specific embodiment of the synthesis of the linker introduced to the optical magnetic nanoparticles represented by the formula (1) and (2) It is about:

이하에서는 실시예 및 비교 실험을 통하여 본 발명을 더욱 상세히 설명한다. 그러나 하기 실시예는 본 발명을 예시하기 위한 것일 뿐, 본 발명의 범위를 한정하고자 하는 것이 아니다.Hereinafter, the present invention will be described in more detail through examples and comparative experiments. However, the following examples are only for illustrating the present invention and are not intended to limit the scope of the present invention.

먼저, 실시예 및 비교 실험에서 사용된 실험 장치, 분석 장비 및 시약에 대하여 설명한다. First, experimental apparatus, analytical equipment, and reagents used in Examples and Comparative Experiments will be described.

FT-NMR 분광 분석을 위한 기기로는 Bruker사의 Avance 300 및 500을 사용하였고, LC/MS에는 Agilent사의 LC/MSD (G-1956B) 을 사용하여 측정되었다. Instruments for FT-NMR spectroscopy were measured using Avance 300 and 500 from Bruker and LC / MSD (G-1956B) from Agilent for LC / MS.

유기 화합물의 분리 및 정제를 위한 칼럼 크로마토그래피는 정상 (normal phase)의 경우, 실리카겔 (silica gel)로서 Merck사의 kieselgel 60 (230-400 mesh)을 사용하였고, 박층 크로마토그래피 (TLC)에는 실리카겔 60 GF254 (0.25 mm, Merck)가 도포되어 있는 유리판을 사용하고, TLC 상의 화합물 확인은 254 nm 및 365 nm의 자외선을 이용하거나, 발색제로서 Ceric Ammonoum Molybdate (CAM) 또는 KMnO4를 사용하였다. Column chromatography for the separation and purification of organic compounds used Merck's kieselgel 60 (230-400 mesh) as a silica gel in the normal phase, silica gel 60 GF254 for thin layer chromatography (TLC) (0.25 mm, Merck) was applied, and the compound identification on TLC used ultraviolet rays of 254 nm and 365 nm, or Ceric Ammonoum Molybdate (CAM) or KMnO 4 was used as a coloring agent.

실시예 1 : 화학식 1의 화합물의 제조방법Example 1 Preparation of a Compound of Formula 1

[화학식 1][Formula 1]

Figure 112018092714950-pat00005
Figure 112018092714950-pat00005

상기 식에서 TMS 는 트리메틸실릴((CH3)3Si)을 나타낸다.In the above formula, TMS represents trimethylsilyl ((CH 3 ) 3 Si).

이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 하기 실시예는 본 발명을 예시하는 것일 분 본 발명의 범위가 하기 실시예에 한정되는 것은 아니다.Hereinafter, preferred examples are provided to help understanding of the present invention, but the following examples are not intended to limit the scope of the present invention as long as it illustrates the present invention.

(1) 화합물 a의 합성 (I-0561)(1) Synthesis of Compound a (I-0561)

Figure 112018092714950-pat00006
Figure 112018092714950-pat00006

테트라에틸렌글리콜 (Tetraethylene glycol) (20 g, 0.10 mol, 1 eq, TCI)과 석신산무수물 (51.5 g, 0.51 mol, 5 eq, TCI)을 둥근 플라스크에 넣고, 클로르포름 (Chlorform) 500 ml 에 녹인 후 피리딘 (Pyridine) (41.6 ml, 0.51 mmol, 5 eq, 덕산)을 가하여 5 시간동안 60℃에서 교반했다. 이후, 감압증류로 용매를 건조시키고, 5% 탄산수소나트륨 수용액 (Sodium bicarbonate, NaHCO3) 500 ml를 첨가하였다. 산도를 높이기 위해 6M 염산 수용액 (Hydrochloric acid, HCl)을 pH 1로 맞춘 후, 디클로로메탄(Dichloromethane)과 산도를 맞춘 용액으로 추출한 후, 디클로로메탄층을 황산마그네슘으로 수분을 제거한 후 여과하여 감압증류를 통해 노란색의 액체 입자를 얻었다(40.1 g, 98.8%).Tetraethylene glycol (20 g, 0.10 mol, 1 eq, TCI) and succinic anhydride (51.5 g, 0.51 mol, 5 eq, TCI) are placed in a round flask and dissolved in 500 ml of chlorform. Then pyridine (41.6 ml, 0.51 mmol, 5 eq, Deoksan) was added and stirred at 60 ° C. for 5 hours. Then, the solvent was dried by distillation under reduced pressure, and 500 ml of 5% aqueous sodium bicarbonate solution (NaHCO 3 ) was added thereto. To increase the acidity, 6M hydrochloric acid (HCl) solution was adjusted to pH 1, extracted with dichloromethane and acid solution, and the dichloromethane layer was dried over magnesium sulfate, filtered, and distilled under reduced pressure. Yellow liquid particles were obtained (40.1 g, 98.8%).

Rf = 0.25 (Silicagel, 디클로로메탄/메탄올 10:1 v/v)R f = 0.25 (Silicagel, dichloromethane / methanol 10: 1 v / v)

LC/MS, 계산치 C16H26O11 394.37, 측정치 417.3 (+Na+)LC / MS, calculated C 16 H 26 O 11 394.37, found 417.3 (+ Na + )

(2) 화합물 b의 합성 (I-0691)(2) Synthesis of Compound b (I-0691)

Figure 112018092714950-pat00007
Figure 112018092714950-pat00007

(상기 화학식에서 Bn은 벤젠고리를 나타낸다)(Bn in the above formula represents a benzene ring)

둥근 플라스크에 화합물 a (10 g, 0.025 mol, 1 eq)과 디클로로메탄(Dichloromethane) 100 ml를 가한 후 -20℃ 상태에서 트리에틸아민 (Triethylamine) (5.29 ml, 0.038 mol, 1.5 eq, TCI)를 넣고 Dropping funnel로 브로모벤젠 (Benzyl bromide) (3.92 ml, 0.032 mol, 1.3 eq, TCI) 과 디클로로메탄 100 ml를 가하여 약 2시간동안 천천히 가하여 교반시킨다. 이후, 16 시간 동안 상온에서 교반시켰다. 디클로로메탄과 1M 염산 수용액으로 추출한 후, 디클로로메탄층을 황산마그네슘으로 수분을 제거한 후 여과하여 감압증류를 통해 노란색의 액체 입자를 얻었고, 디클로로메탄과 메탄올의 비율을 10:1로 혼합한 전개액으로 실리카겔 정상 크로마토그래피로 정제하여 순수한 화합물 b을 얻었다(2.08 g, 16.9%).To a round flask, Compound a (10 g, 0.025 mol, 1 eq) and 100 ml of Dichloromethane were added, and triethylamine (5.29 ml, 0.038 mol, 1.5 eq, TCI) was added at -20 ° C. Add Benzyl bromide (3.92 ml, 0.032 mol, 1.3 eq, TCI) and 100 ml of dichloromethane to the dropping funnel, and slowly add and stir for about 2 hours. Thereafter, the mixture was stirred at room temperature for 16 hours. After extracting with dichloromethane and 1M aqueous hydrochloric acid solution, the dichloromethane layer was dehydrated with magnesium sulfate and filtered to obtain yellow liquid particles through distillation under reduced pressure, and the developing solution was mixed with dichloromethane and methanol in a ratio of 10: 1. Purification by silica gel normal chromatography gave pure compound b (2.08 g, 16.9%).

Rf = 0.15 (Silicagel, 디클로로메탄/메탄올 10:1 v/v)R f = 0.15 (Silicagel, dichloromethane / methanol 10: 1 v / v)

LC/MS, 계산치 C23H32O11 484.50, 측정치 523.2 (+K+)LC / MS, calcd C 23 H 32 0 11 484.50, found 523.2 (+ K + )

(3) 화합물 c의 합성 (I-0712)(3) Synthesis of Compound c (I-0712)

Figure 112018092714950-pat00008
Figure 112018092714950-pat00008

화합물 b (2 g, 4.12 mmol, 1 eq)와 클로로메탄(Dichloromethane) 100 ml를 가한 후 용액을 둥근 플라스크에 넣고, 0℃ 상태에서 EDCI (1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide) (1.02 g, 5.36 mmol, 1.3 eq, TCI)과 4-디메틸아미노피리딘 (4-Dimethylaminopyridine, DMAP) (50 mg, 0.41 mmol, 0.1 eq, TCI)를 넣은 후, 트리메틸실릴 에탄올 (Trimethylsilyl ethanol) (0.76 ml, 5.36 mmol, 1.3 eq, TCI)를 약 10분간 천천히 가하여 교반시킨다. 이후, 16 시간 동안 상온에서 교반시켰다. 에틸아세테이트(Ethyl acetate, EtOAc)에 5% 시트르산 (Citric acid), 포화 탄산수소나트륨 수용액 (Sodium bicarbonate, NaHCO3), 포화 염화나트륨 수용액 (Sodium Chloride, Brine) 로 각각 추출한 후, 디클로로메탄 층을 황산마그네슘으로 수분을 제거한 후 여과하여 감압증류를 통해 건조하였고, 에틸아세테이트와 헥산의 비율을 1:2로 혼합한 전개액으로 실리카겔 정상 크로마토그래피로 정제하여 순수한 화합물 c을 얻었다(1.77 g, 73.4%).After adding compound b (2 g, 4.12 mmol, 1 eq) and 100 ml of chloromethane (Dichloromethane), the solution was placed in a round flask, and EDCI (1-Ethyl-3- (3-dimethylaminopropyl) carbodiimide) ( 1.02 g, 5.36 mmol, 1.3 eq, TCI) and 4-dimethylaminopyridine (DMAP) (50 mg, 0.41 mmol, 0.1 eq, TCI), followed by Trimethylsilyl ethanol (0.76 ml , 5.36 mmol, 1.3 eq, TCI) was added slowly and stirred for about 10 minutes. Thereafter, the mixture was stirred at room temperature for 16 hours. After extracting ethyl acetate (Ethyl acetate) with 5% citric acid, saturated aqueous sodium bicarbonate (NaHCO 3 ) and saturated aqueous sodium chloride solution (Sodium Chloride, Brine), the dichloromethane layer was extracted with magnesium sulfate. After removing water with filtration, and dried by distillation under reduced pressure, and purified by silica gel normal chromatography with a developing solution in which the ratio of ethyl acetate and hexane was mixed 1: 2 to obtain a pure compound c (1.77 g, 73.4%).

Rf = 0.4 (Silicagel, 에틸아세테이트/헥산 1:2 v/v)R f = 0.4 (Silicagel, ethyl acetate / hexane 1: 2 v / v)

LC/MS, 계산치 C28H44O11Si 584.73, 측정치 623.2 (+K+)LC / MS, calculated C 28 H 44 O 11 Si 584.73, found 623.2 (+ K + )

(3) 화학식 1의 화합물(화합물 A) 합성 (I-0713)(3) Synthesis of Compound (Compound A) of Formula 1 (I-0713)

Figure 112018092714950-pat00009
Figure 112018092714950-pat00009

화합물 c (1.74 g, 2.97 mmol, 1 eq)와 10 wt% Palladium hydroxide (Pd(OH)2/C) (0.41 g, 0.59 mmol, 0.2 eq)을 둥근 플라스크에 넣고, 진공상태로 질소 치환 한 다음, 에틸아세테이트 무수물 10 ml를 주사기로 주입 후, 진공상태로 수소 치환하여 4.5시간 동안 교반했다. 이후, 셀라이트를 통하여 여과하여 여과액을 감압증류를 통해 건조하여 순수한 화합물 A을 얻었다. (0.96 g, 65.3%)Compound c (1.74 g, 2.97 mmol, 1 eq) and 10 wt% Palladium hydroxide (Pd (OH) 2 / C) (0.41 g, 0.59 mmol, 0.2 eq) were placed in a round flask, nitrogen was replaced in vacuo. 10 ml of ethyl acetate anhydride was injected into the syringe, and then hydrogen-substituted in a vacuum state and stirred for 4.5 hours. Thereafter, the mixture was filtered through celite, and the filtrate was dried through vacuum distillation to obtain pure Compound A. (0.96 g, 65.3%)

Rf = 0.2 (Silicagel, 에틸아세테이트/헥산 1:2 v/v)R f = 0.2 (Silicagel, ethyl acetate / hexane 1: 2 v / v)

LC/MS, 계산치 C21H38O11Si 494.61, 측정치 517.0 (+Na+)LC / MS, calculated C 21 H 38 0 11 Si 494.61, found 517.0 (+ Na + )

1H NMR (500 MHz, CDCl3) : δ 7.60 (s, 1H), 7.58 (d, 1H, J = 8.32 Hz), 7.32 (d, 1H, J = 7.99 Hz), 2.08 (s, 3H), 1.06 (s, 6H) 1 H NMR (500 MHz, CDCl 3 ): δ 7.60 (s, 1H), 7.58 (d, 1H, J = 8.32 Hz), 7.32 (d, 1H, J = 7.99 Hz), 2.08 (s, 3H), 1.06 (s, 6H)

실시예 2 : 화학식 2의 화합물의 제조방법Example 2 Preparation of a Compound of Formula 2

[화학식 2][Formula 2]

Figure 112018092714950-pat00010
Figure 112018092714950-pat00010

상기 식에서 EtO는 에톡시기를 나타낸다.In the above formula, EtO represents an ethoxy group.

이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 하기 실시예는 본 발명을 예시하는 것일 분 본 발명의 범위가 하기 실시예에 한정되는 것은 아니다.Hereinafter, preferred examples are provided to help understanding of the present invention, but the following examples are not intended to limit the scope of the present invention as long as it illustrates the present invention.

(1) 화합물 d의 합성 (I-0707)(1) Synthesis of Compound d (I-0707)

Figure 112018092714950-pat00011
Figure 112018092714950-pat00011

10-Undecenoic acid (10 g, 0.54 mol, 1 eq, TCI)과 탄산칼륨 (Potassium carbonate) (15 g, 1.08 mol, 2 eq, 덕산)을 둥근 플라스크에 넣고, 디메틸포름아마이드 (Dimethylformamide) 50 ml 에 녹인 후 브로모벤젠 (Benzyl bromide) (7 ml, 0.54 mmol, 1.11 eq, TCI)을 가하여 16 시간동안 80℃에서 교반했다. 상온으로 냉각 후, 다이에틸에테르(Diethyl ether)와 증류수로 추출한 후, 다이에틸에테르층을 황산마그네슘으로 수분을 제거한 후 여과하여 감압증류를 통해 노란색의 액체 입자를 얻었다(14.8 g, 100%).10-Undecenoic acid (10 g, 0.54 mol, 1 eq, TCI) and Potassium carbonate (15 g, 1.08 mol, 2 eq, Ducksan) are placed in a round flask and 50 ml of dimethylformamide. After dissolving, benzyl bromide (7 ml, 0.54 mmol, 1.11 eq, TCI) was added thereto, followed by stirring at 80 ° C. for 16 hours. After cooling to room temperature, the mixture was extracted with diethyl ether and distilled water, and then the diethyl ether layer was dried over magnesium sulfate, filtered, and filtered to obtain yellow liquid particles through distillation under reduced pressure (14.8 g, 100%).

Rf = 0.55 (Silicagel, 헥산)R f = 0.55 (Silicagel, hexane)

LC/MS, 계산치 C18H26O2 274.40, 측정치 278.1LC / MS, calculated C 18 H 26 O 2 274.40, found 278.1

(2) 화합물 e의 합성 (I-0708)(2) Synthesis of Compound e (I-0708)

Figure 112018092714950-pat00012
Figure 112018092714950-pat00012

둥근 플라스크에 화합물 d (2 g, 7.28 mmol, 1 eq)과 19-21.5 wt% Karstedt’catalyst (0.96 g, 10 mol%, TCI)를 넣고 트리에톡시실란 (Triethoxysilane) (2.69 ml, 14.57 mmol, 2 eq, Sigma aldrich)을 가하여 80℃에서 24 시간 동안 상온에서 교반시켰다. 에틸아세테이트와 헥산의 비율을 1:9로 혼합한 전개액으로 실리카겔 정상 크로마토그래피로 정제하여 순수한 화합물 e을 얻었다(921 mg, 28.8%).To a round flask, add compound d (2 g, 7.28 mmol, 1 eq) and 19-21.5 wt% Karstedt'catalyst (0.96 g, 10 mol%, TCI) and add triethoxysilane (2.69 ml, 14.57 mmol, 2 eq, Sigma aldrich) was added and stirred at 80 ° C. for 24 hours at room temperature. Purified by silica gel normal chromatography with a developing solution in which the ratio of ethyl acetate and hexane was 1: 9 to obtain a pure compound e (921 mg, 28.8%).

Rf = 0.35 (Silicagel, 에틸아세테이트/헥산 1:9 v/v)R f = 0.35 (Silicagel, ethyl acetate / hexane 1: 9 v / v)

LC/MS, 계산치 C24H42O5Si 438.68, 측정치 517.0 (+2K+) LC / MS, calculated C 24 H 42 O 5 Si 438.68, found 517.0 (+ 2K + )

(3) 화학식 2의 화합물(화합물 B)의 합성 (I-0709)(3) Synthesis of Compound (Compound B) of Formula 2 (I-0709)

Figure 112018092714950-pat00013
Figure 112018092714950-pat00013

화합물 e (870 mg, 1.98 mmol, 1 eq)와 10 wt% Palladium on carbon (Pd/C) (0.21 g, 0.19 mmol, 0.1 eq)을 둥근 플라스크에 넣고, 진공상태로 질소 치환 한 다음, 에틸아세테이트 무수물 10 ml를 주사기로 주입 후, 진공상태로 수소 치환하여 4.5시간 동안 교반했다. 이후, 셀라이트를 통하여 여과하여 여과액을 감압증류를 통해 건조하여 순수한 화합물 B을 얻었다(0.591 mg, 85.5%).Compound e (870 mg, 1.98 mmol, 1 eq) and 10 wt% Palladium on carbon (Pd / C) (0.21 g, 0.19 mmol, 0.1 eq) were placed in a round flask, nitrogen-substituted in vacuo, and ethyl acetate 10 ml of anhydride was injected into the syringe, and then hydrogen-substituted in a vacuum and stirred for 4.5 hours. Thereafter, the mixture was filtered through celite, and the filtrate was dried through vacuum distillation to obtain pure Compound B (0.591 mg, 85.5%).

Rf = 0.1 (Silicagel, 에틸아세테이트/헥산 1:9 v/v)R f = 0.1 (Silicagel, ethyl acetate / hexane 1: 9 v / v)

LC/MS, 계산치 C17H36O5Si 348.56, 측정치 389.2 (+K+)LC / MS, calculated C 17 H 36 O 5 Si 348.56, found 389.2 (+ K + )

1H NMR (500 MHz, CDCl3) : 3.83-3.78 (q, 4H, J = 3.81 Hz), 2.35-2.32 (t, 2H, J = 2.33 Hz), 1.65-1.59 (m, 2H, J = 1.62 Hz), 1.29-1.20 (m, 23H, J = 1.23 Hz), 0.53-0.50 (m, 1H, J = 0.61 Hz), 0.05-0.03 (d, 1H, J = 0.04 Hz) 1 H NMR (500 MHz, CDCl 3 ): 3.83-3.78 (q, 4H, J = 3.81 Hz), 2.35-2.32 (t, 2H, J = 2.33 Hz), 1.65-1.59 (m, 2H, J = 1.62 Hz), 1.29-1.20 (m, 23H, J = 1.23 Hz), 0.53-0.50 (m, 1H, J = 0.61 Hz), 0.05-0.03 (d, 1H, J = 0.04 Hz)

시험예 1. 자성 나노입자의 표지시험Test Example 1 Labeling Test of Magnetic Nanoparticles

본 발명에 따른 상기 화학식 1 및 2로 표시되는 링커화합물을 부착하여 표면이 실리카 화합물로 코팅된 자성 나노입자의 카르복실화하기 위한 시험을 진행하였다.The linker compounds represented by Chemical Formulas 1 and 2 according to the present invention were attached, and a test for carboxylating the magnetic nanoparticles coated with silica compounds was performed.

가. 표지실험end. Cover experiment

자성 나노입자 ZnMnFe2O4@SiO2 샘플당 각 1mg 씩 준비하여 혼합용매 EtOH를 300uL 첨가하여 자석 스탠드에 정치시킨 후 여액을 제거한 후 다시 EtOH 300uL 넣고 샘플을 세척한다. 이를 3회 반복한 후 최종 Volume이 200uL가 채워지도록 준비한다. 다음 화합물 A 및 화합물 B로 표시되는 링커 화합물 10mg을 각각 새 Tube에 무게를 측정하여 EtOH 300uL를 첨가 후 Vortex로 혼합한 뒤, 준비된 자성나노입자가 포함된 200uL을 추가로 넣어주어 혼합한다. 이 과정에서 상기 링커화합물과 자성 나노입자의 균일한 분포를 위하여 Water Sonicator에서 풀어준 후, Incubator에서 Multi-Mixer(B2, 15;mode)로 상온에서 Overnight 반응하였다. 반응 후 남아있는 링커 화합물 A 및 B를 제거하기 위하여 자석 스탠드에서 정치시킨 후 남아 있는 여액을 제거한 후 EtOH 500uL를 첨가하여 혼합하였다. 이 과정을 3회 반복하여 남아있는 잔여물을 제거하였다.Magnetic nanoparticles ZnMnFe 2 O 4 @SiO 2 Prepare 1mg each sample, add 300uL of mixed solvent EtOH, leave the magnet stand, remove the filtrate, and then put again 300uL of EtOH and wash the sample. After repeating this three times, prepare the final volume to fill 200uL. Next, 10 mg of the linker compound represented by Compound A and Compound B were weighed in a new tube, and 300 μL of EtOH was added thereto, mixed with Vortex, and then mixed by adding 200 μL of the prepared magnetic nanoparticles. In this process, the homogenous distribution of the linker compound and the magnetic nanoparticles were released in a water sonicator, followed by overnight reaction at room temperature in a multi-mixer (B2, 15; mode) in an incubator. In order to remove the remaining linker compounds A and B after the reaction, the mixture was left to stand in a magnetic stand and the remaining filtrate was removed, followed by mixing by adding 500 µL of EtOH. This process was repeated three times to remove residual residue.

나. 링커 화합물이 도입된 자성 나노입자의 항체 결합능 분석I. Analysis of Antibody Binding Ability of Magnetic Nanoparticles with Linker Compounds

상기 화합물 A 및 B가 각각 결합된 자성 나노입자의 말단부위가 카르복실기(-COOH)로 개질되었는지 확인하기 위하여 Goat anti-Rabbit IgG (H+L) (31210, ThermoFisher Scientific, San Jose, CA, USA) 항체와 Goat anti-Mouse IgG (H+L) (31160, ThermoFisher Scientific, San Jose, CA, USA) 항체를 부착하여 자성 나노입자 카르복실기와 항체와의 결합을 진행하였다. 종래기술에 의해 제조된 자성 나노입자와 비교하기 위하여 이미 카르복실화된 자성 나노입자 MagnaBind Carboxyl Derivatized Beads (21353, ThermoFisher Scientific, San Jose, CA, USA)와 함께 분석하였다. 화합물 A 및 B로 표시되는 실란링커가 도입된 본 시험예에서 제조된 자성 나노입자를 각 1mg 씩 Tube에 분주하여 자석 스탠드에 정치시킨다. 이 후 여액을 제거하여 1X PBS (pH 7.4) (70011044, ThermoFisher Scientific, San Jose, CA, USA) 300 uL를 첨가한다. 이 과정을 3회 반복 후 최종 200 uL 로 Volume을 맞추어 Vortex를 이용하여 혼합 후 1.5 mL Tube Rack에 보관한다.Goat anti-Rabbit IgG (H + L) (31210, ThermoFisher Scientific, San Jose, CA, USA) to confirm that the terminal portions of the magnetic nanoparticles to which Compounds A and B are bound are modified with a carboxyl group (-COOH). Antibodies and Goat anti-Mouse IgG (H + L) (31160, ThermoFisher Scientific, San Jose, Calif., USA) antibodies were attached to bind the magnetic nanoparticle carboxyl group to the antibody. Analyzes were made with MagnaBind Carboxyl Derivatized Beads (21353, ThermoFisher Scientific, San Jose, Calif., USA) already carboxylated for comparison with magnetic nanoparticles prepared by the prior art. The magnetic nanoparticles prepared in this test example in which the silane linkers represented by Compounds A and B were introduced were dispensed into tubes each 1 mg and placed on a magnetic stand. The filtrate is then removed and 300 μL of 1 × PBS (pH 7.4) (70011044, ThermoFisher Scientific, San Jose, CA, USA) is added. Repeat this process three times, adjust the volume to the final 200 uL, mix with Vortex, and store in 1.5 mL Tube Rack.

상기 항체는 각 자성 나노입자 1mg 당 200ug을 첨가하여 25℃ incubator에서 1 내지 2시간 동안 반응 시킨다. 반응 종료 후 각 Tube를 자석 스탠드에 30 min간 정치시킨 후 여액을 샘플별로 수집하였다. 수집된 샘플의 경우, 부착되지 않은 항체의 농도를 측정하기 위하여 충분히 자성 나노입자를 제거한 후 Nanodrop을 측정한 후 최종적으로 화합물 A 및 B로 표시되는 실란링커가 도입된 자성 나노입자의 항체 도입율을 확인하여 도면 1에 나타내었다.The antibody is added to 200ug per mg of each magnetic nanoparticles and reacted for 1 to 2 hours in a 25 ℃ incubator. After completion of the reaction, each tube was allowed to stand for 30 min on a magnetic stand, and the filtrate was collected for each sample. In the collected samples, the magnetic nanoparticles were sufficiently removed to measure the concentration of the unattached antibody, the nanodrop was measured, and the antibody introduction ratio of the magnetic nanoparticles having the silane linkers represented by the compounds A and B was finally introduced. It confirmed and shown in FIG.

하기 표 1에 나타낸 바와 같이, 본 발명에 따른 링커가 도입된 화합물은 자성 나노입자에 효과적으로 결합되었다. 준비된 각 항체의 표지 결과, Control 제품(MagnaBind Carboxyl Derivatized Beads)을 포함하여 항체가 결합된 것을 확인하였고 이를 분석하였다.As shown in Table 1 below, the compound incorporating the linker according to the present invention was effectively bound to the magnetic nanoparticles. As a result of labeling each prepared antibody, it was confirmed that the antibody is bound, including the Control product (MagnaBind Carboxyl Derivatized Beads) and analyzed.

[표 1. 항체 부착량]Table 1. Antibody Attachment Amount Rabbit IgG 부착량 평균 (ug)Rabbit IgG Attachment Average (ug) Control (Thermo 社)Control (Thermo) 화합물 ACompound A 화합물 BCompound B 6.0836.083 109.667109.667 105.333105.333 Mouse IgG 부착량 평균 (ug)Mouse IgG Attachment Average (ug) Control (Thermo 社)Control (Thermo) 화합물 ACompound A 화합물 BCompound B 36.50036.500 59.50059.500 63.33363.333

상기의 표에 나타난 바와 같이, 종래의 자성 나노입자에 비하여 본 발명에서 제공하는 링커 화합물로 자성 나노입자의 표면에 항체 등 생체물질에 특이적인 링커로 표면을 개질한 자성 나노입자가 항체 부착량에 있어서 우수하다는 것이 입증되었다.As shown in the above table, compared to the conventional magnetic nanoparticles, the linker compound provided in the present invention is a magnetic nanoparticle whose surface is modified with a linker specific to a biological material such as an antibody on the surface of the magnetic nanoparticle in terms of antibody adhesion amount. It proved to be excellent.

본 발명은 산업상 이용가능하다.The present invention is industrially available.

Claims (15)

자성 나노입자의 표면에 도입되어 생체물질에 특이적으로 결합되는 하기의 화학식 A로 나타내어지는 링커 화합물
[화학식 A]
Figure 112019039334084-pat00020

상기 식에서 m은 1 내지 20의 정수이고, R1은 탄소수 1 내지 5개의 알킬 실란 또는 알콕시 실란이다.
A linker compound represented by the following Formula A which is introduced to the surface of the magnetic nanoparticles and specifically bound to a biological material
[Formula A]
Figure 112019039334084-pat00020

Wherein m is an integer from 1 to 20, R 1 is an alkyl silane or alkoxy silane having 1 to 5 carbon atoms.
제1항에 있어서, 상기 화학식 A에서 m은 1 내지 5의 정수인 것을 특징으로 하는 생체물질에 특이적으로 결합되는 링커 화합물According to claim 1, wherein in Formula A, m is a linker compound specifically bound to a biological material, characterized in that an integer of 1 to 5 제1항에 있어서, 상기 링커 화합물은 아래의 화학식으로 나타내어지는 것을 특징으로 하는 링커 화합물
Figure 112018092714950-pat00015
The linker compound of claim 1, wherein the linker compound is represented by the following formula:
Figure 112018092714950-pat00015
제1항 내지 제3항 중 어느 한 항에 있어서, 상기 생체물질은 DNA, RNA, 항체 중에서 선택된 어느 하나인 것을 특징으로 하는 링커 화합물The linker compound according to any one of claims 1 to 3, wherein the biomaterial is any one selected from DNA, RNA, and antibody. 제1항의 링커 화합물이 결합되고, 생체물질에 특이적으로 결합하는 자성 나노입자Magnetic nanoparticles to which the linker compound of claim 1 is bound and specifically bound to a biological material 제3항의 링커 화합물이 결합되고, 생체물질에 특이적으로 결합하는 자성 나노입자Magnetic nanoparticles to which the linker compound of claim 3 is bound and specifically binds to a biological material 제5항 또는 제6항에 있어서, 상기 생체물질은 DNA, RNA, 항체 중에서 선택된 어느 하나인 것을 특징으로 하는 자성 나노입자The magnetic nanoparticle of claim 5 or 6, wherein the biomaterial is any one selected from DNA, RNA, and antibody. 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 하기의 화학식 A로 표현되는 링커 화합물을 자성 나노입자에 도입하여 DNA, RNA, 항체 중에서 선택된 어느 하나의 생체물질을 측정하는 것을 특징으로 하는 생체물질의 측정 방법
[화학식 A]
Figure 112019039334084-pat00021

상기 식에서 m은 1 내지 20의 정수이고, R1은 탄소수 1 내지 5개의 알킬 실란 또는 알콕시 실란이다.
Method for measuring a biomaterial, characterized in that by introducing a linker compound represented by the formula A to the magnetic nanoparticles to measure any one biomaterial selected from DNA, RNA, antibodies
[Formula A]
Figure 112019039334084-pat00021

Wherein m is an integer from 1 to 20, R 1 is an alkyl silane or alkoxy silane having 1 to 5 carbon atoms.
KR1020180111319A 2018-09-18 2018-09-18 A linker material for introducing biological materials and a magnetic nanoparticle attached the said linker KR102008622B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180111319A KR102008622B1 (en) 2018-09-18 2018-09-18 A linker material for introducing biological materials and a magnetic nanoparticle attached the said linker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180111319A KR102008622B1 (en) 2018-09-18 2018-09-18 A linker material for introducing biological materials and a magnetic nanoparticle attached the said linker

Publications (1)

Publication Number Publication Date
KR102008622B1 true KR102008622B1 (en) 2019-08-07

Family

ID=67621530

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180111319A KR102008622B1 (en) 2018-09-18 2018-09-18 A linker material for introducing biological materials and a magnetic nanoparticle attached the said linker

Country Status (1)

Country Link
KR (1) KR102008622B1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090088299A (en) * 2008-02-14 2009-08-19 (주)바이오니아 Magnetic silica coated particles having a spherical form and a process for preparing the same
KR20110035010A (en) 2009-09-29 2011-04-06 한국화학연구원 Magnetic phosphor complex and manufacturing method for the same
KR20110103009A (en) 2010-03-12 2011-09-20 차의과학대학교 산학협력단 Magnetic fluorescent nanoparticle imaging probes for detecting intracellular target molecules
KR101283446B1 (en) * 2010-11-10 2013-07-08 재단법인대구경북과학기술원 Magnetic nanoparticles surface-modified with phosphocholine, preparing method of the same, and separating method of protein using the same
KR101631721B1 (en) * 2008-01-09 2016-06-17 매그포스 아게 Nanoparticles and method for the production of particles
JP2016526378A (en) * 2013-06-11 2016-09-05 スリーエム イノベイティブ プロパティズ カンパニー Magnetic separation method using carboxyl functionalized superparamagnetic nanoclusters
KR20170005794A (en) * 2014-03-11 2017-01-16 레스 이노베이션즈 매터리움 Processes for preparing silica-carbon allotrope composite materials and using same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101631721B1 (en) * 2008-01-09 2016-06-17 매그포스 아게 Nanoparticles and method for the production of particles
KR20090088299A (en) * 2008-02-14 2009-08-19 (주)바이오니아 Magnetic silica coated particles having a spherical form and a process for preparing the same
KR20110035010A (en) 2009-09-29 2011-04-06 한국화학연구원 Magnetic phosphor complex and manufacturing method for the same
KR20110103009A (en) 2010-03-12 2011-09-20 차의과학대학교 산학협력단 Magnetic fluorescent nanoparticle imaging probes for detecting intracellular target molecules
KR101283446B1 (en) * 2010-11-10 2013-07-08 재단법인대구경북과학기술원 Magnetic nanoparticles surface-modified with phosphocholine, preparing method of the same, and separating method of protein using the same
JP2016526378A (en) * 2013-06-11 2016-09-05 スリーエム イノベイティブ プロパティズ カンパニー Magnetic separation method using carboxyl functionalized superparamagnetic nanoclusters
KR20170005794A (en) * 2014-03-11 2017-01-16 레스 이노베이션즈 매터리움 Processes for preparing silica-carbon allotrope composite materials and using same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Anal Methods, 2015, 7: 10109-10120 (2015.11.04.)* *
Tetrahedron Letters, 58(16): 1576-1578 (2017.03.09.)* *

Similar Documents

Publication Publication Date Title
DE69936534T2 (en) NANOPARTICLES WITH POLYMERSHOLES
JP4083584B2 (en) Photoinduced electron transfer fluorescence sensor molecule
CN107746367B (en) β -caryophyllene derivative and preparation method and application thereof
CN109321577A (en) It is a kind of to detect the aptamers group of excretion body, lateral flow type aptamers biosensor and preparation method thereof
CA2528460A1 (en) Magnetic nanoparticles
JPH0637513B2 (en) Digoxigenin derivative, production method thereof, labeled conjugate production method, nucleic acid detection method and digoxigenin conjugate
JP2003531213A (en) Metal chelating composite
CN110152571B (en) Environment-sensitive magnetic microsphere for separating and purifying marker protein and preparation method and application thereof
JP2604993B2 (en) New biotinylation reagent
JP3831183B2 (en) Novel calixcrown derivative, method for producing the same, self-assembled monolayer produced using the same, and method for immobilizing a protein monolayer utilizing the self-assembled monolayer
KR20110076359A (en) Molecular imprinted polymers for detecting pentraxin protein and the methods thereof
KR102008622B1 (en) A linker material for introducing biological materials and a magnetic nanoparticle attached the said linker
CN109504652B (en) Method for promoting biological interaction and application
JP6505490B2 (en) Molecular imprinting film, method for producing the same, template compound, and method for detecting steroid hormone compound
CN112881358A (en) Supermolecule biomolecule nano particle and synthetic method and application thereof
KR102426161B1 (en) Magnetic nanoparticles introduced with silane functional moiety
Zhang et al. The development of an electrochemical immunosensor using a thiol aromatic aldehyde and PAMAM-functionalized Fe3O4@ Au nanoparticles
CN113429460B (en) Fluorescent probe for cell membrane imaging and preparation method and application thereof
KR100847311B1 (en) Polydiacetylene Sensor Chip Comprising DNA Sequence and Manufacturing Process thereof
KR102624804B1 (en) Streptavidin coated solid phase with absence of binding pairs
US20170276671A1 (en) Receptor linked regenerated cellulose membrane and methods for producing and using the same
WO2020246602A1 (en) Tetra-functional chemical probe and method for identifying target membrane protein from living cell or living tissue by using said probe
KR101422700B1 (en) Synthetic antibody for detecting C-reactive protein
Adamczyk et al. An efficient stereoselective synthesis of 6-α-aminoestradiol: Preparation of estradiol fluorescent probes
KR101946488B1 (en) Linker compound and preparation method thereof

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant