KR102416335B1 - 기체 이동 통로와 추출액 이동 통로를 갖는 증폭 모듈 - Google Patents

기체 이동 통로와 추출액 이동 통로를 갖는 증폭 모듈 Download PDF

Info

Publication number
KR102416335B1
KR102416335B1 KR1020210084993A KR20210084993A KR102416335B1 KR 102416335 B1 KR102416335 B1 KR 102416335B1 KR 1020210084993 A KR1020210084993 A KR 1020210084993A KR 20210084993 A KR20210084993 A KR 20210084993A KR 102416335 B1 KR102416335 B1 KR 102416335B1
Authority
KR
South Korea
Prior art keywords
passage
gas
amplification module
extract
chamber
Prior art date
Application number
KR1020210084993A
Other languages
English (en)
Inventor
조영식
박해준
이선영
임관훈
김동헌
김인애
박효림
Original Assignee
에스디바이오센서 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에스디바이오센서 주식회사 filed Critical 에스디바이오센서 주식회사
Priority to KR1020210084993A priority Critical patent/KR102416335B1/ko
Priority to PCT/KR2021/012126 priority patent/WO2023277246A1/ko
Priority to CN202180101888.6A priority patent/CN117881480A/zh
Priority to EP21207157.5A priority patent/EP4112173A1/en
Priority to US17/455,577 priority patent/US20220410142A1/en
Priority to KR1020220038308A priority patent/KR102486349B1/ko
Application granted granted Critical
Publication of KR102416335B1 publication Critical patent/KR102416335B1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502723Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by venting arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L7/00Heating or cooling apparatus; Heat insulating devices
    • B01L7/52Heating or cooling apparatus; Heat insulating devices with provision for submitting samples to a predetermined sequence of different temperatures, e.g. for treating nucleic acid samples
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M47/00Means for after-treatment of the produced biomass or of the fermentation or metabolic products, e.g. storage of biomass
    • C12M47/06Hydrolysis; Cell lysis; Extraction of intracellular or cell wall material
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/686Polymerase chain reaction [PCR]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0647Handling flowable solids, e.g. microscopic beads, cells, particles
    • B01L2200/0663Stretching or orienting elongated molecules or particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0684Venting, avoiding backpressure, avoid gas bubbles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0689Sealing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/10Integrating sample preparation and analysis in single entity, e.g. lab-on-a-chip concept
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/16Reagents, handling or storing thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0816Cards, e.g. flat sample carriers usually with flow in two horizontal directions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices

Abstract

본 발명은 기체 이동 통로와 추출액 이동 통로를 갖는 증폭 모듈에 관한 것으로, 보다 구체적으로, 증폭 모듈이 설치된 추출 장치로부터 추출액이 투입될 때 각 수용부마다 정량의 추출액이 투입되어 검출의 정확성을 높이는 증폭 모듈에 관한 것이다.

Description

기체 이동 통로와 추출액 이동 통로를 갖는 증폭 모듈{Amplification Module With a Gas Moving Passage and an Extract Moving Passage}
본 발명은 기체 이동 통로와 추출액 이동 통로를 갖는 증폭 모듈에 관한 것이다.
현대에는 생명공학 기술의 발전에 따라 유전자 수준에서 질병의 원인을 해석하는 것이 가능해졌다. 그에 따라 인간의 질병을 치유하거나 예방하기 위한 생체 시료의 조작 및 생화학적 분석에 대한 요구가 점차 증가하고 있다.
아울러, 질병의 진단 외에도 신약개발, 바이러스나 박테리아 감염 여부의 사전 검사 및 법의학 등의 다양한 분야에서 생체 시료나 세포가 포함된 시료로부터 핵산을 추출, 분석하는 기술이 요구된다.
종래의 유전체 추출 장치는 처리 과정(농축, 정제) 별로 각각의 장치가 필요하며, 하나의 처리과정이 끝난 후 다른 장치로 이동시켜야 하므로 긴 시간을 필요로 한다.
이와 같은 긴 처리 과정으로 검출 효율성이 낮다는 종래의 문제점을 해결하기 위해 본 출원인에 의한 등록특허 제10-1989920호 등이 개발되어 사용되어 왔다.
상기 문헌에서는 버퍼 챔버 내부에 직접 버퍼를 분주하여 보관하지만, 장기 보관 시 버퍼 챔버 하부의 다양한 층 구조를 통해 미세 누수가 발생하고 추출 성능에 악영향을 미치는 문제점이 있었다.
또한, 상부 바디와 베이스 플레이트 사이에 배치되는 패드가 고무 재질로 이루어지는데, 패드가 상부 바디와 베이스 플레이트 사이에서 압착됨에 따라 패드에 관통 형성된 홀들의 직경이 감소하게 됨으로써 제품 설계 의도와 다른 용량의 추출액이 증폭 모듈로 이동하는 문제점이 있었다.
한국등록특허문헌 제10-1989920호(2019.06.11.) 한국등록특허문헌 제10-2065649호(2020.01.07.) 한국등록특허문헌 제10-2065650호(2020.01.07.) 한국등록특허문헌 제10-2076220호(2020.02.05.)
본 발명에 따르면, 유전체 추출에 필요한 시약들이 수용된 내측 챔버가 외측 챔버와 별도로 구비되고, 내측 챔버의 상부와 하부가 밀봉됨에 따라, 종래의 유전체 추출 장치에서 단일 챔버에 수용된 시약이 외부로 유출되는 문제를 해결한 유전체 추출 장치를 제공하는 것에 그 목적이 있다.
또한, 이중 챔버 사이의 공간을 통해 발생하는 모세관 현상에 의해 시약 간의 교차 오염 문제를 특유의 내측 챔버 설계(하부 내측 챔버)를 통해 해결한 유전체 추출 장치를 제공하는 것에 그 목적이 있다.
또한, 모세관 현상을 방지하기 위한 구조에서, 시약들이 외부로 유출되는 것을 방지하고자 특유의 내측 챔버 설계(상부 내측 챔버)를 통해 해결한 유전체 추출 장치를 제공하는 것에 그 목적이 있다.
또한, 외측 챔버 저면에 형성된 제1 돌출 부재의 구성으로 인해, 적은 힘으로도 밀봉 부재를 찢을 수 있고, 천공된 부분이 확장되어, 내측 챔버 내부에 수용된 시약이 외부로 원활히 유출되는 유전체 추출 장치를 제공하는 것에 그 목적이 있다.
또한, 시약들이 배출되는 배출공 주변에 경사진 부분이 형성되어, 배출공을 통해 시약들이 원활히 배출되는 유전체 추출 장치를 제공하는 것에 그 목적이 있다.
또한, 외측 챔버와 베이스 플레이트 사이에 이중 구조의 플로우 커버 - 패드가 배치됨으로써, 종래 1개의 패드만이 배치되는 유전체 추출 장치 대비, 제조의 편의성이 향상되고 의도치 않게 유로가 좁아지는 문제가 해결된 유전체 추출 장치를 제공하는 것에 그 목적이 있다.
또한, 베이스 플레이트 - 플로우 커버 - 패드 - 외측 챔버 간의 견고한 결합이 달성됨으로써, 시약들이 이동하는 과정에서 중간에서 유출되는 현상 없이 밀폐된 유로들이 형성된 유전체 추출 장치를 제공하는 것에 그 목적이 있다.
또한, 유전체 추출과 증폭에 필요한 비드들이 수용된 비드 챔버 역시 외측 챔버 - 비드 챔버의 이중 챔버 구조를 가짐으로써 수분에 취약한 비드의 성능을 오랜 시간 유지하는 것이 가능한 유전체 추출 장치를 제공하는 것에 그 목적이 있다.
또한, 비드 챔버가 개방되더라도, 비드 챔버의 상부에 위치되는 제습부에 의해 비드의 성능이 유지되는 유전체 추출 장치를 제공하는 것에 그 목적이 있다.
또한, 전처리 완료된 추출액이 투입됨에 따라 수용부 내부에 잔류하는 공기의 배출이 용이하게 이루어짐으로써, 충분한 용량의 추출액이 투입될 수 있는 증폭 모듈이 적용된 유전체 추출 장치를 제공하는 것에 그 목적이 있다.
또한, 증폭 모듈이 복수개의 수용부를 가지고, 각 수용부에는 서로 다른 유전체 증폭을 위한 프라이머 및 프로브들이 저장되어 있어서, 한번의 유전체 추출을 통해 여러 종류의 질병 진단이 가능한 유전체 추출 장치를 제공하는 것에 그 목적이 있다.
또한, 연결되어 있는 수용부의 위치에 따라, 기체 이동 통로와 추출액 이동 통로의 길이나 두께, 패턴들이 서로 다르게 구비되어, 수용부 내에 투입된 추출액 또는 증폭 산물이 혼합되는 것이 방지되는 유전체 추출 장치를 제공하는 것에 그 목적이 있다.
또한, 본 발명은 전술한 유전체 추출 장치를 이용한 유전체 추출 방법을 제공하는 것에 그 목적이 있다.
상기와 같은 과제를 해결하기 위한 본 발명의 일 실시예는, 추출 장치에 결합되어, 상기 추출 장치에서 추출되는 추출액을 수용하는 증폭 모듈로서, 바디, 상기 바디의 일측에 형성되고, 상기 추출 장치의 배출공과 연통하는 하나 이상의 주입구, 상기 바디의 타측에 형성되고 상기 추출액을 수용하는 공간인 수용부, 상기 바디의 일면에 형성되고, 상기 하나 이상의 주입구 중 어느 하나의 주입구와 상기 수용부를 연결하는 기체 이동 통로 및 상기 바디의 일면의 반대면에 형성되고, 상기 하나 이상의 주입구 중 다른 하나의 주입구와 상기 수용부를 연결하는 추출액 이동 통로를 포함하는, 증폭 모듈을 제공한다.
일 실시예에 있어서, 상기 기체 이동 통로는 상기 수용부의 상부와 연결되고,상기 추출액 이동 통로는 상기 수용부의 하부와 연결될 수 있다.
일 실시예에 있어서, 상기 수용부의 가장자리는 라운드 처리된 것일 수 있다.
일 실시예에 있어서, 상기 기체 이동 통로와 상기 추출액 이동 통로는 상기 주입구로부터 상기 수용부에 이르기까지 한번 이상 굽어지며, 굽어진 부분의 가장자리는 라운드 처리된 것일 수 있다.
일 실시예에 있어서, 상기 수용부는 상기 기체 이동 통로와 상기 추출액 이동 통로로부터 멀어질수록 그 폭이 좁아지는 형상을 가질 수 있다.
일 실시예에 있어서, 상기 수용부는 복수개 구비되고, 상기 기체 이동 통로는 상기 복수개의 수용부에 일대일 대응되며 연결되도록 상기 어느 하나의 주입구로부터 연장 형성되고, 상기 추출액 이동 통로는 상기 복수개의 수용부에 일대일 대응되며 연결되도록 상기 다른 하나의 주입구로부터 연장 형성될 수 있다.
일 실시예에 있어서, 복수개의 기체 이동 통로는 그 길이가 서로 상이하게 형성될 수 있다.
일 실시예에 있어서, 상기 기체 이동 통로는 상부에 위치한 수용부와 연결된 것일수록 그 길이가 짧을 수 있다.
일 실시예에 있어서, 상기 기체 이동 통로는, 상기 수용부와 연통하면서 상기 바디에 관통 형성된 연통공, 상기 연통공으로부터 연장되는 이동 통로, 소정 용량의 기체를 수용하는 저장 통로 및 상기 이동 통로의 일 지점 이상에 조합되어, 조합된 부분의 이동 통로를 폐쇄하는 통로 패턴 형성부를 포함하되, 상부에 위치한 수용부와 연결된 기체 이동 통로일수록 상기 저장 통로의 개수 및 상기 통로 패턴 형성부가 조합된 지점이 많을 수 있다.
일 실시예에 있어서, 복수개의 추출액 이동 통로는 그 길이가 서로 상이하게 형성될 수 있다.
일 실시예에 있어서, 길이가 상이한 복수개의 추출액 이동 통로는 상부에 위치한 수용부에 연결된 추출액 이동 통로일수록 그 두께가 얇을 수 있다.
일 실시예에 있어서, 상기 추출액 이동 통로는 상기 주입구로부터 일 지점까지 하나로 연장되다가, 상기 일 지점으로부터 각 수용부를 향해 분기될 수 있다.
일 실시예에 있어서, 상기 추출액 이동 통로는 분기된 상기 일 지점부터 그 두께가 상이해질 수 있다.
일 실시예에 있어서, 상기 수용부에는 추출액에 포함된 유전체를 증폭하기 위한 물질이 저장될 수 있다.
일 실시예에 있어서, 상기 수용부는 복수개 구비되고, 상기 복수개의 수용부 각각에는 유전체를 증폭하기 위한 서로 다른 물질들이 저장될 수 있다.
일 실시예에 있어서, 상기 바디의 상기 일면과 상기 반대면은 상기 일면과 상기 반대면에 부착되는 실링 부재에 의해 밀봉될 수 있다.
본 발명에 따른 유전체 추출 장치는, 유전체 추출에 필요한 시약들이 수용된 내측 챔버가 외측 챔버와 별도로 구비되고, 내측 챔버의 상부와 하부가 밀봉됨에 따라, 종래의 유전체 추출 장치에서 단일 챔버에 수용된 시약이 외부로 유출되는 문제가 해결된다.
또한, 이중 챔버 사이의 공간을 통해 발생하는 모세관 현상에 의해 시약 간의 교차 오염 문제가 해결된다.
또한, 모세관 현상을 방지하기 위한 구조에서, 시약들이 외부로 유출되는 것을 방지된다.
또한, 외측 챔버 저면에 형성된 제1 돌출 부재의 구성으로 인해, 적은 힘으로도 밀봉 부재를 찢을 수 있고, 천공된 부분이 확장되어, 내측 챔버 내부에 수용된 시약이 외부로 원활히 유출된다.
또한, 시약들이 배출되는 배출공 주변에 경사진 부분이 형성되어, 배출공을 통해 시약들이 원활히 배출된다.
또한, 외측 챔버와 베이스 플레이트 사이에 이중 구조의 플로우 커버 - 패드가 배치됨으로써, 종래 1개의 패드만이 배치되는 유전체 추출 장치 대비, 제조의 편의성이 향상되고 의도치 않게 유로가 좁아지는 문제가 해결된다.
또한, 베이스 플레이트 - 플로우 커버 - 패드 - 외측 챔버 간의 견고한 결합이 달성됨으로써, 시약들이 이동하는 과정에서 중간에서 유출되는 현상 없이 밀폐된 유로들이 형성된다.
또한, 유전체 추출과 증폭에 필요한 비드들이 수용된 비드 챔버 역시 외측 챔버 - 비드 챔버의 이중 챔버 구조를 가짐으로써 수분에 취약한 비드의 성능을 오랜 시간 유지하는 것이 가능하다.
또한, 비드 챔버가 개방되더라도, 비드 챔버의 상부에 위치되는 제습부에 의해 비드의 성능이 유지된다.
또한, 전처리 완료된 추출액이 투입됨에 따라 수용부 내부에 잔류하는 공기의 배출이 용이하게 이루어짐으로써, 충분한 용량의 추출액이 증폭 모듈에 투입된다.
또한, 증폭 모듈이 복수개의 수용부를 가지고, 각 수용부에는 서로 다른 유전체 증폭을 위한 프라이머 및 프로브들이 저장되어 있어서, 한번의 유전체 추출을 통해 여러 종류의 질병 진단이 가능하다.
또한, 연결되어 있는 수용부의 위치에 따라, 기체 이동 통로와 추출액 이동 통로의 길이나 두께, 패턴들이 서로 다르게 구비되어, 수용부 내에 투입된 추출액 또는 증폭 산물이 혼합되는 것이 방지된다.
도 1은 본 발명의 실시예에 따른 유전체 추출 장치의 전체적인 모습을 나타낸 사시도이다.
도 2는 도 1의 분해 사시도이다.
도 3은 외측 챔버와 내측 챔버의 결합 관계를 설명하기 위한 도면이다.
도 4는 외측 챔버의 평면도이다.
도 5는 내측 챔버와 외측 챔버의 결합 관계를 설명하기 위한 일 단면도이다.
도 6은 외측 챔버 저면에 형성된 제1 돌출 부재를 설명하기 위한 확대 도면이다.
도 7은 내측 챔버를 보다 구체적으로 설명하기 위한 도면이다.
도 8은 커버를 보다 구체적으로 설명하기 위한 저면 사시도이다.
도 9는 베이스 플레이트와 외측 챔버 사이에 배치되는 플로우 커버와 패드를 보다 구체적으로 설명하기 위한 분해 사시도이다.
도 10은 플로우 커버의 저면 사시도이다.
도 11은 베이스 플레이트를 보다 구체적으로 설명하기 위한 사시도이다.
도 12는 본 발명의 실시예에 따른 유전체 추출 장치를 구체적으로 설명하기 위해 도 1의 A-A선에 따른 단면도이다.
도 13은 본 발명의 실시예에 따른 유전체 추출 장치를 구체적으로 설명하기 위해 도 1의 B-B선에 따른 단면도이다.
도 14 내지 16은 본 발명의 제1 실시예에 따른 증폭 모듈을 설명하기 위한 도면이다.
도 17 내지 19는 본 발명의 제2 실시예에 따른 증폭 모듈을 설명하기 위한 도면이다.
도 20 내지 22는 본 발명의 제3 실시예에 따른 증폭 모듈을 설명하기 위한 도면이다.
도 23은 비드 챔버의 평면도이다.
도 24 및 25는 비드 챔버의 구성을 보다 구체적으로 설명하기 위한 사시도이다.
도 26은 도 25의 비드 챔버의 횡단면도이다.
도 27은 도 25의 비드 챔버의 종단면도로서, 외측 챔버와 결합된 구조를 설명하기 위한 도면이다.
몇몇 경우, 본 발명의 개념이 모호해지는 것을 피하기 위하여 공지의 구조 및 장치는 생략되거나, 각 구조 및 장치의 핵심기능을 중심으로 한 블록도 형식으로 도시될 수 있다.
명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함(comprising 또는 including)"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다. 또한, 명세서에 기재된 "…부", "…기", "모듈" 등의 용어는 적어도 하나의 기능이나 동작을 처리하는 단위를 의미하며, 이는 하드웨어나 소프트웨어 또는 하드웨어 및 소프트웨어의 결합으로 구현될 수 있다. 또한, "일(a 또는 an)", "하나(one)", "그(the)" 및 유사 관련어는 본 발명을 기술하는 문맥에 있어서(특히, 이하의 청구항의 문맥에서) 본 명세서에 달리 지시되거나 문맥에 의해 분명하게 반박되지 않는 한, 단수 및 복수 모두를 포함하는 의미로 사용될 수 있다.
본 발명의 실시예들을 설명함에 있어서 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략할 것이다. 그리고 후술되는 용어들은 본 발명의 실시예에서의 기능을 고려하여 정의된 용어들로서 이는 사용자, 운용자의 의도 또는 관례 등에 따라 달라질 수 있다. 그러므로 그 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다.
이하, 첨부된 도면을 참조하여 본 발명을 상세히 설명한다.
도 1을 참조하면, 본 발명의 실시예에 따른 유전체 추출 장치(1000)는 외측 챔버(100), 내측 챔버(200), 커버(300), 베이스 플레이트(400), 안전 클립(500), 증폭 모듈(600), 피스톤(700), 구동부(800) 및 비드 챔버(900)를 포함한다.
외측 챔버(100)는 외측 챔버 격벽에 의해 복수의 제1 공간(101, 102, 103, 104, 105, 106, 107)으로 구획된다. 즉, 복수의 제1 공간(101, 102, 103, 104, 105, 106, 107)는 서로 독립적인 공간일 수 있다.
복수의 제1 공간(101, 102, 103, 104, 105, 106, 107)은 상부가 개방되고, 하부는 폐쇄된 형태로 구비될 수 있다. 한편, 복수의 제1 공간(101, 102, 103, 104, 105)의 저면에는 외측 챔버(100)의 중앙부로부터 제1 거리만큼 이격되면서 원주 방향을 따라 형성되는 제1 배출공(121, 122, 123, 124, 125)들이 관통 형성되고, 나머지 제1 공간(106, 107)의 저면에는 외측 챔버(100)의 중앙부로부터 제2 거리만큼 이격되면서 원주 방향을 따라 형성되는 제2 배출공(126, 127)들이 관통 형성된다. 또한, 제1 공간(106, 107) 사이의 공간의 저면에는 증폭 모듈(600)과 연통하는 배출공(128, 129)들이 관통 형성된다. 여기에서, 제1 거리는 제2 거리보다 짧을 수 있으나, 다른 실시예에서는 제1 거리가 제2 거리보다 더 길수도 있다.
복수의 제1 공간(101, 102, 103, 104, 105)에는 후술하는 내측 챔버(200)에 저장된 시약들이 투입되고, 나머지 복수의 제1 공간(106, 107)에는 비드 챔버(900)에 저장된 비드들이 투입된다.
복수의 제1 공간(101, 102, 103, 104, 105, 106, 107)의 중심부에는 피스톤(700)이 삽입되는 피스톤 삽입부(108)가 상하 관통 형성된다. 피스톤 삽입부(108)에 피스톤(700)이 삽입되고, 진단 기기의 구동부(미도시)가 피스톤(700)에 결합되어 피스톤(700)을 승강시킴으로써 제1 공간(101, 102, 103, 104, 105, 106, 107)의 시약(유체)가 피스톤(700) 내부의 유체 수용부(701)로 출입하는 것이 가능하다. 보다 구체적인 내용은 후술한다.
도 3을 참조하면, 외측 챔버(100)의 외면 상부(100a)는 외면 하부(100b)보 중앙부를 향해 함몰 형성된다. 안전 클립(500)은 외측 챔버(100)의 외면 상부(100a)에 결합되며, 외면 상부(100a)와 외면 하부(100b)의 경계가 안전 클립(500)의 단턱 역할을 수행함으로써, 안전 클립(500)이 외면 상부(100a)에 결합된 후 그 결합 위치가 유지될 수 있다. 안전 클립(500)은 외측 챔버(100)의 외면 상부(100a) 둘레를 적어도 일부 둘러싸는 길이를 가지며 연장되는 결합부(510) 및 결합부(510) 일측에 형성된 손잡이(520)를 포함한다.
안전 클립(500)이 외측 챔버(100)에 결합됨에 따라, 커버(300)가 외측 챔버(100)에 결합된 내측 챔버(200)를 가압하여 내측 챔버(200)의 상부 개구와 하부 개구가 개방되는 것이 방지될 수 있다. 사용자는 손잡이(520)를 파지하여 안전 클립(500)을 외측 챔버(100)로부터 제거한 이후 추출 과정을 시작하는 것이 가능하다. 다시 말하면, 안전 클립(500)이 외측 챔버(100)에 결합되어 있을 때에는 내측 챔버(200)의 시약이 외측 챔버(100)로 투입되지 않으며, 안전 클립(500)이 외측 챔버(100)로부터 제거되어야만 내측 챔버(200)의 시약이 외측 챔버(100)로 투입되는 것이 가능하다.
도 5를 참조하면, 외측 챔버(100)의 내벽 상측에는 삽입 공간(130)이 함몰 형성되고, 상기 삽입 공간(130)에 내측 챔버(200)의 결합 후크(220)가 결합될 수 있다. 삽입 공간(130)의 상측에는 걸림 돌기(131)가 외측 챔버(100) 내측을 향해 돌출 형성된다. 따라서, 커버(300)에 의해 내측 챔버(200)가 가압되지 않을때는 내측 챔버(200)의 결합 후크(220)가 걸림 돌기(131) 상에 위치하나, 커버(300)에 의해 내측 챔버(200)가 가압되면 결합 후크(220)가 걸림 돌기(131)를 지나 삽입 공간(130)에 삽입될 수 있게 된다.
내측 챔버(200)는 내측 챔버 격벽에 의해 복수의 제2 공간(201, 202, 203, 204, 205)로 구획된다. 즉, 복수의 제2 공간(201, 202, 203, 204, 205)는 서로 독립적인 공간일 수 있다.
복수의 제2 공간(201, 202, 203, 204, 205)의 상부와 하부는 개방되어 있으며(즉, 복수의 제2 공간은 상부 개구와 하부 개구를 가짐), 하부는 제1 밀봉 부재(S1)에 의해 밀봉되고, 상부는 제2 밀봉 부재(S2)에 의해 밀봉된다. 제1 밀봉 부재(S1)와 제2 밀봉 부재(S2)는 일 예로 필름(film)일 수 있으며, 이에 제한되지 않고 유체가 통과하지 않는 임의의 재질로 제조된 필름이 적용될 수 있다.
복수의 제2 공간(201, 202, 203, 204, 205)에는 각기 다른 시약이 투입되며, 먼저, 제1 밀봉 부재(S1)가 복수의 제2 공간 하부를 밀봉한 후 시약이 투입되고 제2 밀봉 부재(S2)가 복수의 제2 공간 상부를 밀봉함으로써 내측 챔버(200)에의 시약 투입이 완료될 수 있다.
도 3을 참조하면, 내측 챔버(200)는 상부 내측 챔버(210)와 하부 내측 챔버(220)를 포함한다.
상부 내측 챔버(210)는 일체로 형성되고, 외측 챔버(100)와 결합 시, 외측 챔버(100)의 내벽에 밀착되도록 구성된다.
하부 내측 챔버(220)는 상부 내측 챔버(210)와 연결되면서, 외측 챔버(100)와 결합 시, 외측 챔버(100)의 내벽으로부터 이격되도록(반경 방향 내측을 향하도록) 굽어진 부분을 포함한다.
본 발명에서는 내측 챔버 - 외측 챔버로 이루어진 이중 챔버 구조를 사용하기 때문에, 구동 시 내측 챔버(200)의 시약 간의 교차 오염 위험 문제가 있을 수 있다. 교차 오염은 내측 챔버 - 외측 챔버 사이의 미세 공간을 통해 모세관 현상이 발생하여 이루어질 수 있는데, 본 발명에서는 상기 교차 오염 문제를 방지하고자, 내측 챔버(200)가 외측 챔버(100)의 내벽으로부터 충분히 이격되도록 굽어진 구조를 채택하여 모세관 현상을 방지하였다.
또한, 모세관 현상 방지를 위한 외측 챔버(100)와 내측 챔버(200)의 이격 설계에 의해, 이격된 부분을 통해 시약이 외부로 유출되는 것을 방지하고자, 상부 내측 챔버(210)가 외측 챔버(100)의 내벽에 밀착되도록 구성하였다.
한편, 복수의 제1 공간(101, 102, 103, 104, 105) 저면에는 내측 챔버(200)의 제1 밀봉 부재(S1)를 찢음으로써, 내측 챔버(200)에 수용된 시약이 복수의 제1 공간(101, 102, 103, 104, 105)으로 유출되도록 하는 제1 돌출 부재(111, 112, 113, 114, 115)들이 돌출 형성된다.
각각의 제1 돌출 부재(111, 112, 113, 114, 115)는 복수의 제1 공간(101, 102, 103, 104, 105)과 일대일 대응되도록 배치될 수 있으며, 예를 들어 도면 부호 111에 해당하는 제1 돌출 부재는 도면 부호 101에 해당하는 제1 공간 상부를 실링하는 제1 밀봉 부재(S1)를 찢고, 도면 부호 115에 해당하는 제1 돌출 부재는 도면 부호 105에 해당하는 제1 공간 상부를 실링하는 제1 밀봉 부재(S1)를 찢게 된다.
제1 돌출 부재(111, 112, 113, 114, 115)는 복수의 제1 공간(101, 102, 103, 104, 105) 저면으로부터 제1 높이(h1)만큼 돌출되는 돌출부(111a, 112a, 113a, 114a, 115a)와, 돌출부(111a, 112a, 113a, 114a, 115a)로부터 연장되며 상기 저면으로부터 제1 높이(h1)보다 낮은 제2 높이(h2)만큼 돌출되는 날개부(111b, 112b, 113b, 114b, 115b)를 포함한다. 여기에서, 날개부(111b, 112b, 113b, 114b, 115b)는 돌출부(111a, 112a, 113a, 114a, 115a)로부터 좌우 양방향으로 연장된 구조일 수 있다.
돌출부는 제1 밀봉 부재(S1)를 천공하는 역할을 수행하고, 날개부는 제1 밀봉 부재(S1)의 천공 부분을 확장하는 역할을 수행한다. 본 발명에서, 돌출부의 높이가 날개부보다 더 높기 때문에, 내측 챔버(200)의 하부를 밀봉하는 제1 밀봉 부재(S1)와 돌출부 간 점 접촉(point-contanct)이 이루어지고, 점 접촉을 통해 제1 밀봉 부재(S1)가 찢겨질 때 압력이 최소화되는 효과를 갖게 된다. 따라서, 보다 적은 힘으로도 제1 밀봉 부재(S1)를 찢을 수 있다.
돌출 부재(111, 112, 113, 114, 115)에 의해 제1 밀봉 부재(S1)가 찢기면, 내측 챔버(200)의 복수의 제2 공간(201, 202, 203, 204, 205)에 저장되어 있는 시약들이 외측 챔버(100)의 복수의 제1 공간(101, 102, 103, 104, 105)으로 유출된다. 그리고, 유출된 시약들이 제1 공간(101, 102, 103, 104, 105)의 저면에 형성된 제1 배출공(121, 122, 123, 124, 125)들을 통해 배출된다. 제1 배출공(121, 122, 123, 124, 125)으로의 시약 유출이 용이하도록, 제1 배출공(121, 122, 123, 124, 125)의 주변에는 제1 배출공(121, 122, 123, 124, 125)을 향해 하측으로 경사진 부분이 존재한다. 상기 경사진 부분은 3도 내지 10도의 각도를 가질 수 있으며, 이를 통해 제1 공간(101, 102, 103, 104, 105)으로 유출된 시약들이 제1 배출공(121, 122, 123, 124, 125)으로 빠져나가는 과정이 용이하게 이루어질 수 있다.
커버(300)는 외측 챔버(100)의 상부에 결합되어, 외측 챔버(100)와 내측 챔버(200)의 상부를 커버하도록 구성된다.
도 8을 참조하면, 커버(300)는 커버 바디(301) 및 덮개(302)를 포함한다.
커버 바디(301)에는 피스톤 삽입부(108)과 정렬되는 제1 삽입공(307)과, 검체가 투입되는 제1 검체 투입공(309)이 관통 형성되며, 커버 바디(301)의 저면에는 제2 밀봉 부재(S2)를 찢는 제2 돌출 부재(311, 312, 313, 314, 315)와 제3 밀봉 부재(S3)를 찢는 제3 돌출 부재(316, 317)가 돌출 형성된다.
제2 돌출 부재(311, 312, 313, 314, 315)는 복수의 제1 공간(101, 102, 103, 104, 105, 106, 107)과 일대일 대응되도록 배치될 수 있으며, 제3 돌출 부재(316, 317)는 복수의 제3 공간(910, 920)과 일대일 대응되도록 배치될 수 있다. 예를 들어 도면 부호 311에 해당하는 제2 돌출 부재는 도면 부호 101에 해당하는 제1 공간 상부를 실링하는 제2 밀봉 부재(S2)를 찢고, 도면 부호 315에 해당하는 제2 돌출 부재는 도면 부호 105에 해당하는 제1 공간 상부를 실링하는 제2 밀봉 부재(S2)를 찢게 된다.
덮개(302)는 커버 바디(301)의 일측에 힌지 회전 가능하도록 연결된다. 덮개(302)의 중앙부에는 제1 삽입공(307)과 정렬되는 제2 삽입공(308)이 관통 형성된다.
커버(300)가 외측 챔버(100)에 결합된 상태에서, 안전 클립(500)을 외측 챔버(100)로부터 분리한 후, 커버(300)를 아래를 향해 가압하면, 외측 챔버(100)에 결합되어 있는 내측 챔버(200)가 외측 챔버(100)의 내벽을 따라 하강하게 된다. 외측 챔버(100)의 저면에는 제1 돌출 부재(111, 112, 113, 114, 115, 116, 117)가 형성되어 있고, 커버(300)의 저면에는 제2 돌출 부재(311, 312, 313, 314, 315)와 제3 돌출 부재(316, 317)가 형성되는 바, 돌출 부재들에 의해 내측 챔버(200)의 하부와 상부 개구를 밀봉하는 제1 밀봉 부재(S1) 및 제2 밀봉 부재(S2), 그리고 비드 챔버(900)의 상부 개구를 밀봉하는 제3 밀봉 부재(S3)가 찢어지게 된다. 따라서, 내측 챔버(200)에 수용되어 있던 시약들이 외측 챔버(100)의 복수의 제1 공간(101, 102, 103, 104, 105)으로 유출되며, 내측 챔버(200)의 상부 개구를 밀봉하는 제2 밀봉 부재(S2)가 찢어짐으로써 시약들이 제1 공간으로 충분히 배출될 수 있도록 에어 벤트(air vent) 역할을 수행하게 된다.
베이스 플레이트(400)는 외측 챔버(100)의 하부에 결합되며, 시약들이 외측 챔버(100)의 제1 공간(101, 102, 103, 104, 105, 106, 107)과, 피스톤(700)의 유체 수용부 사이를 이동하는 경로를 가이드하는 복수의 유로를 포함한다.
본 발명의 일 실시예에 따르면, 베이스 플레이트(400)에는 액체가 이동할 수 있는 액체 유로와 공기가 이동할 수 있는 공기 유로가 존재할 수 있으며, 외측 챔버(100)와 베이스 플레이트(400) 사이에는 외측 챔버(100)와 결합 시 액체의 누수 방지를 위하여 베이스 플레이트(400) 상면에 배치되는 플로우 커버(410)와 패드(420)를 더 포함할 수 있다. 베이스 플레이트(400) - 플로우 커버(410) - 패드(420)가 결합되면 베이스 플레이트(400)의 액체 유로와 공기 유로가 플로우 커버(410) 및 패드(420)에 의해 상면이 막혀 공간을 형성하여 완벽한 유로가 완성된다.
액체 유로는 플로우 커버(410), 패드(420) 및 외측 챔버(100)와 연결되어 검체 및 시약이 이동, 혼합될 수 있는 공간을 제공한다.
공기 유로는 증폭 모듈(600)과 피스톤(700)의 진공 제어 부위를 연결하여, 증폭 모듈(600)로 추출된 유전체가 이동할 때 발생할 수 있는 진공을 제어하고, 유전체 증폭 시 발생할 수 있는 증폭 산물이 오염되는 것을 방지하는 역할을 수행한다.
베이스 플레이트(400)의 상부에는 복수개의 유로(401, 402, 403, 404, 405, 406, 407, 408, 409)가 형성된다. 각각의 유로는 서로 교차하지 않으며, 하부 바디(400)의 중심부에서 외곽부로 연장되도록 형성된다. 여기에서, 액체 유로는 도면 부호 401 내지 408에 해당하는 구성이며, 공기 유로는 도면 부호 409에 해당하는 구성이다.
도 11을 참조하면, 복수의 유로 중 일부의 유로는 일단이 동일한 원주상에 배치되고, 타단 또한 서로 동일한 원주상에 배치될 수 있다.
베이스 플레이트(400)의 중심부에는 피스톤(700)을 회전시키는 피스톤 구동부(800)가 결합될 수 있도록 피스톤 구동부 삽입공(400a)이 관통 형성된다.
베이스 플레이트(400) 상부의 안착 공간에는 플로우 커버(410)가 놓여진다. 플로우 커버(410)는 예를 들어, 플라스틱으로 제조될 수 있으며, 베이스 플레이트(400) 상부에 안착된 상태로 초음파 융착되어 베이스 플레이트(400)와 일체로 구비될 수 있다.
플로우 커버(410)는 피스톤 구동부 삽입공(400a)과 정렬되는 제1 관통공(410a)을 가지며, 제1 관통공(410a)으로부터 제1 거리 떨어진 제1 원주 상으로 복수의 제1 플로우 커버 홀(411a, 412a, 413a, 414a, 415a, 416a, 417a, 418a)이 관통 형성되고, 제1 관통공(410a)으로부터 제2 거리 떨어진 제2 원주 상으로 복수의 제2 플로우 커버 홀(411b, 412b, 413b, 414b, 415b)이 관통 형성되며, 제1 관통공(410a)으로부터 제3 거리 떨어진 제3 원주 상으로 복수의 제3 플로우 커버 홀(416b, 417b, 418b)이 관통 형성되고, 공기 유로(409)의 일단과 타단에 연통하는 제4 플로우 커버 홀(419a, 419b)이 관통 형성된다. 여기에서, 제1 플로우 커버 홀은 하부 바디(400)에 형성된 유로의 내측 일단과 정렬되고, 제2 플로우 커버 홀과 제3 플로우 커버 홀은 유로의 외측 타단과 정렬되며, 제4 플로우 커버 홀은 공기 유로의 일단 및 타단과 연통된다. 상기 제2 거리는 제1 거리보다는 길고 제3 거리보다 짧을 수 있다.
도 9를 참조하면, 제1 관통공(410a)의 외주 상으로 상하부를 향해 돌출되는 제1 결합 돌기(410b)가 더 형성될 수 있다.
또한, 플로우 커버(410)의 저면에는 베이스 플레이트(400)의 복수의 유로 가장자리를 따라 결합하는 용융 돌기(410c)가 돌출 형성될 수 있다(도 10 참조). 플로우 커버(410)가 베이스 플레이트(400) 상면에 설치된 후 초음파 융착을 수행하는 경우, 용융 돌기(410c)는 용융되어 베이스 플레이트(400)와 일체화된다. 이를 통해, 베이스 플레이트(400) - 플로우 커버(410) 간의 밀착 결합이 가능하다.
플로우 커버(410) 상부에는 패드(420)가 놓여진다. 패드(420)는 예를 들어, 실리콘 재질로 제조될 수 있으나, 소정의 탄성력을 갖는 재질이면 특별히 이에 제한되지 않고 적용될 수 있다.
플로우 커버(410)에는 복수의 제2 결합 돌기(410d)가 상면으로부터 돌출 형성되고, 제2 결합 돌기(410d)가 패드(420)의 결합 홈(420c)들에 결합됨으로써 플로우 커버(410) - 패드(420) 간 견고한 결합이 이루어진다. 또한, 플로우 커버(410)의 제1 결합 돌기(410b) 역시 패드(420)의 제2 관통공(420a)에 삽입 결함됨으로써 양 구성 간의 견고한 결합을 이룰 수 있다.
패드(420)는 제1 관통공(410a)과 정렬되는 제2 관통공(420a)을 가지며, 제2 관통공(420a)으로부터 제1 거리 떨어진 제1 원주 상으로 복수의 제1 패드 홀(421a, 422a, 423a, 424a, 425a, 426a, 427a, 428a)이 관통 형성되고, 제2 관통공(420a)으로부터 제2 거리 떨어진 제2 원주 상으로 복수의 제2 패드 홀(421b, 422b, 423b, 424b, 425b)이 관통 형성되며, 제2 관통공(420a)으로부터 제3 거리 떨어진 제3 원주 상으로 복수의 제3 패드 홀(426b, 427b, 428b)이 관통 형성되고, 공기 유로(409)의 일단과 타단에 연통하는 제4 패드 홀(429a, 429b)이 관통 형성된다. 여기에서, 제1 패드 홀은 제1 플로우 커버 홀과 정렬되고, 제2 패드 홀은 제2 플로우 커버 홀과 정렬되며, 제3 패드 홀은 제3 플로우 커버 홀과 정렬되고, 제4 패드 홀은 제4 플로우 커버 홀과 정렬된다.
패드(420)의 상면에는 복수의 제2 패드 홀(421b, 422b, 423b, 424b, 425b), 복수의 제3 패드 홀(426b, 427b, 428b), 그리고 공기 유로의 타단과 연통하는 제4 패드 홀(429b)이 형성된 부분으로부터 돌출되되, 상측을 향할수록 좁아지는 돌출부가 더 형성된다. 돌출부 형성을 통해 패드(420)가 외측 챔버(100)와 베이스 플레이트(400) 사이에 밀착 배치되더라도 패드 홀들의 직경이 의도된 바와 다르게 감소하는 문제점이 해결될 수 있다.
증폭 모듈(600)은 외측 챔버(100)에 결합되어, 전처리가 완료된 검체를 수용하도록 구성된다. 검체의 전처리가 완료되었다는 것은, 검체에 포함된 DNA, RNA 등의 유전체가 시약 내에 용출(lysis)되었다는 의미이다. 본 발명에 따른 유전체 추출 장치(1000)가 진단 기기(미도시)에 결합되면, 증폭 모듈(600)에 수용된 유전체의 증폭 과정(PCR 등)이 이루어질 수 있다.
도 2를 참조하면, 증폭 모듈(600)은 수직한 방향으로 외측 챔버(100)에 결합된다. 다시 말하면, 증폭 모듈(600)의 수용부(630)의 상부(631)가 하부(632)보다 지면으로부터 더 멀어지도록 외측 챔버(100)에 결합된다.
도 14 내지 22를 참조하면, 증폭 모듈(600)은 바디(610), 주입구(621, 622), 수용부(630), 기체 이동 통로(640) 및 추출액 이동 통로(650)를 포함한다.
바디(610)는 증폭 모듈(600)의 외형을 이루는 부분이고, 바디(610)의 일측에는 외측 챔버(100)의 배출공(128, 129)에 결합하는 주입구(621, 622)가 형성된다.
주입구(621, 622)는 배출공(128, 129)에 결합하여, 배출공(128, 129)으로부터 배출되는 추출액이 수용부(630)로 투입되기 위한 입구 역할을 수행한다.
본 발명의 실시예에 따른 증폭 모듈(600)은 2개의 주입구(621, 622)를 가질 수 있으나, 특별히 이에 제한되지 않고 2개보다 많은 개수의 주입구를 갖는 실시예도 본 발명의 범주에 포함될 수 있다.
이하에서는, 본 발명의 실시예에 따른 증폭 모듈(600)이 2개의 주입구(621, 622)를 갖는 것으로 가정하여 구체적으로 설명한다.
2개의 주입구(621, 622) 중 어느 하나의 주입구(621)는 공기 유로(409)와 연통되고, 다른 하나의 주입구(622)는 액체 유로(408)와 연통된다. 즉, 다른 하나의 주입구(622)를 통해 전처리가 완료된 검체를 포함하는 추출액이 유입되고, 이 과정에서 수용부(630)의 공기가 어느 하나의 주입구(621)를 통해 공기 유로(409)로 배출될 수 있는 것이다.
바디(610)의 타측에는 주입구(621)를 통해 유입된 추출액을 수용하는 공간인 수용부(630)가 형성된다.
일 예에서, 수용부(630)는 바디(610)의 일면과 반대면을 모두 관통하는 형태로 제조될 수 있으나, 다른 예에서는 일면만을 관통하고 반대면은 관통하지 않는 형태로 제조될 수도 있다. 상기 두 실시예 모두 개방된 부분이 실링 부재에 의해 실링된다는 점은 동일하다. 따라서, 수용부(630)에는 기체 이동 통로(640)와 추출액 이동 통로(650)를 통해서만 추출액과 공기가 투입되거나 배출된다.
본 발명의 실시예에 따른 수용부(630)는 하나의 증폭 모듈(600) 내에 1개 이상 구비될 수 있다. 도 14에는 1개의 수용부가 구비된 증폭 모듈, 도 17에는 2개의 수용부가 구비된 증폭 모듈, 그리고 도 20에는 4개의 수용부가 구비된 증폭 모듈이 도시된다.
수용부(630)는 대략 사다리꼴 형태를 가질 수 있으며, 보다 구체적으로 가장자리가 라운드 처리된 사다리꼴 형태를 갖는 것이 바람직하다.
여기에서, 사다리꼴 형태란 기체 이동 통로(640)와 추출액 이동 통로(650)로부터 멀어질수록 그 폭이 좁아지는 형태를 의미한다. 수용부(630)가 상기 형상을 가짐으로써, 추출액 이동 통로(650)를 통해 추출액이 주입되더라도 기포(bubble)가 발생하는 문제가 해결된다. 기포가 수용부(630) 내에 잔류한다면, 증폭 과정 이후 형광 검출 과정에서 발생할 수 있는 검출 실패의 문제가 발생하므로, 상기 수용부(630)의 형상을 통해 상기 문제점을 해결하는 것이 가능하다.
수용부(630) 내에는 유전체 증폭에 필요한 프라이머 및 프로브 등이 구비된다. 본 발명의 실시예에 따른 증폭 모듈(600)은 1개 이상의 수용부(630)가 구비되되, 각 수용부(630)에는 서로 다른 종류의 프라이머 및 프로브가 구비되는 것도 가능하다. 따라서, 하나의 검체에서 추출된 유전체에서, 복수의 검출 과정을 동시에 수행할 수 있다는 장점을 갖는다. 일 예로, 하나의 수용부(630a)에서는 코로나 바이러스 증폭을 위한 프라이머 및 프로브가 구비되고, 다른 수용부(630b)에서는 인플루엔자 바이러스 증폭을 위한 프라이머 및 프로브가 구비되어, 하나의 증폭 모듈(600)에서 동시에 다양한 검출 과정을 수행하는 것이 가능하다.
기체 이동 통로(640)는 바디(610)의 일면(611)에 형성되고, 주입구(621)와 수용부(630)의 상부(631)를 연결하도록 구성된다. 이와 반대로, 추출액 이동 통로(650)는 상기 일면(611)과 반대되는 반대면(612)에 형성되고, 주입구(622)와 수용부(630)의 하부(632)를 연결하도록 구성된다.
기체 이동 통로(640)는 수용부(630) 내의 기체가 이동하는 통로 역할을 수행한다. 증폭 모듈(600)의 유로는 유전체 추출 장치(100)와 연통되면서, 동시에 폐쇄 유로의 성격을 갖는다. 수용부(630)는 추출액이 주입되기 이전에 공기로 충진된 상태이기 때문에, 추출액이 주입된다면 그에 걸맞는 용량의 공기가 외부로 배출되어야 한다. 본 발명에서는, 기체 이동 통로(640)를 통해 수용부(630) 내부의 공기가 주입구(621)를 거쳐 공기 유로(409)로 배출됨으로써, 수용부(630) 내의 압력 저감과 함께 공기가 잔류함으로 인해 발생하는 기포 문제 역시 해결하였다. 기체 이동 통로(640) 역시 수용부(630)와 마찬가지로 각진 부분 없이 통로의 연결 부분들이 곡선 형태로 구비되어 기포 발생을 최소화한다.
기체는 추출액과 같은 액체보다 가볍기에, 기체 이동 통로(640)는 수용부(630)의 상부(631) 말단에 연결된다.
수용부(630)가 복수개 구비될 경우, 각 수용부(630)에 연결되는 기체 이동 통로(640)의 길이는 서로 다른 것이 바람직하다.
수용부(630)가 복수개 구비되는 실시예의 경우, 하부에 위치한 수용부에서부터 추출액이 주입되며, 상부에 위치한 수용부일수록 더 지연된 시간에 추출액이 주입된다. 따라서, 수용부(630)의 형성 위치에 따라, 해당 수용부(630)로부터 공기가 배출되는 시간 역시 상이할 것이다. 다시 말하면, 하부에 위치한 수용부일수록 공기가 더 빨리 기체 이동 통로(640)를 통해 배출된다.
또한, 기체 이동 통로(640)를 통해서는 수용부(630) 내의 공기뿐만 아니라, 수용부(630)에 투입된 추출액이 같이 배출될 수도 있다. 복수의 기체 이동 통로(640)는 서로 연결되기에, 어느 하나의 기체 이동 통로(640)를 통해 배출된 추출액은 다른 기체 이동 통로(640)를 따라 다른 수용부로 투입되어 추출액 또는 증폭 산물이 혼합되는 문제가 발생할 수 있다. 상기한 문제점을 해결하기 위해, 본 발명에서는 하부에 위치한 수용부(630)에 연결된 기체 이동 통로(640)일수록 그 길이를 더 길게 형성하여, 추출액 또는 증폭 산물이 혼합되는 문제를 해결하였다.
기체 이동 통로(640)의 길이를 서로 다르게 하는 방법은 도 18에 도시된 바와 같이 구성하거나, 도 21에 도시된 바와 구성할 수 있다.
도 21을 참조하면, 기체 이동 통로(640)는, 바디(610)의 일면(611)에 형성되고 수용부(630)의 상부(631)와 연결된 기체 배출 통로(633)와 연통하면서, 바디(610)를 관통하는 연통공(641), 이동 통로(642), 저장 통로(643) 및 통로 패턴 형성부(644)를 포함한다.
통로 패턴 형성부(644)는 이동 통로(642)에 소정의 통로 패턴이 형성되도록 구성된다. 도 21을 예로 들면, 통로 패턴 형성부(644)는 반원 형상을 가질 수 있으며, 반원의 통로 패턴 형성부(644)가 선형의 이동 통로(642)와 조합됨으로써 도 21에 도시된 바와 같은 통로 패턴이 제조될 수 있다. 통로 패턴 형성부(644)는 선형의 이동 통로(642)의 좌측과 우측에 번갈아가며서 이동 통로(642)와 조합되면서 도 21에 도시된 통로 패턴을 형성할 수 있다. 여기서, 조합이란 이동 통로(642)의 비워진 공간이 통로 패턴 형성부(644)의 형상으로 채워져서, 채워진 공간은 유체가 통과하지 못한다는 것을 의미한다.
즉, 통로 패턴 형성부(644)와 조합된 기체 이동 통로(640)의 부분이 이동 통로(642)에 해당하고, 조합되지 않은 기체 이동 통로(640)의 부분이 저장 통로(643)에 해당된다.
기체 이동 통로(640)의 길이는, 통로 패턴 형성부(644)가 많이 조합될수록, 그리고 저장 통로(643)가 많을수록 이에 비례하여 길어지며, 하부에 위치한 수용부일수록 많은 개수의 통로 패턴 형성부(644)와 저장 통로(643)를 갖게 된다. 이를 통해, 수용부(630)에 수용된 추출액 또는 증폭 산물의 혼합을 방지할 수 있다.
추출액 이동 통로(650)는 바디(610)의 일면(611)과 반대되는 반대면(612)에 형성되고, 주입구(622)와 수용부(630)의 하부(632)를 연결하도록 구성된다. 추출액 이동 통로(650)는 유전체 추출 장치(1000)에서 전처리된 추출액이 이동하는 통로 역할을 수행한다.
추출액 이동 통로(650) 역시 수용부(630)에 수용된 추출액 또는 증폭 산물의 혼합을 방지하거나, 동일한 양의 추출액이 각 수용부(630)에 투입되도록 하기 위해 수용부(630)가 복수개 구비되는 경우 각 추출액 이동 통로(650)의 길이가 동일하거나, 길이가 상이한 경우 각 추출액 이동 통로(650)의 두께가 상이할 수 있다.
또한, 추출액 이동 통로(650)를 통해 추출액이 이동하는 과정에서 기포가 발생하는 현상을 방지하기 위해, 추출액 이동 통로(650)는 각진 부분 없이 통로의 연결 부분들이 곡선 형태로 구비되어 기포 발생을 최소화한다.
도 22를 참조하면, 추출액 이동 통로(650)는 주입구(622)로부터 연장되다가 일 지점에서 분기되는데, 분기되는 시점부터는 하부에 위치한 수용부일수록 두껍고 상부에 위치한 수용부일수록 얇게 구비된다. 통로의 두께가 얇을수록 빠른 속도로 추출액이 통과하기 때문에 상부, 하부 수용부 불문 동일한 양의 추출액이 투입될 수 있다.
피스톤(700)은 외측 챔버(100)의 피스톤 삽입부(108)에 삽입되어 승강 이동에 따라 외측 챔버(100)에 수용된 시약을 흡입하거나, 외측 챔버(100) 또는 증폭 모듈(600)로 흡입된 시약을 배출하도록 구성된다.
도 2를 참조하면, 피스톤(700)은 상부 피스톤(710) 및 하부 피스톤(720)을 포함한다.
상부 피스톤(710)은 상부가 개방되어 있으며, 흡입된 유체들이 수용되는 유체 수용부(701)가 내부에 형성된다. 상부 피스톤(710) 내부에는 밀착부(711)가 설치된다. 밀착부(711)의 외면은 상부 피스톤(710)의 내면과 밀착되어 밀착부(711)의 외면과 상부 피스톤(710)의 내면 사이의 공간을 통해서는 유체의 출입이 불가능하다. 밀착부(711)의 중앙에는 진단 기기의 구동부(미도시)가 결합되는 구동부 설치부(711a)가 함몰 형성된다. 진단 기기의 구동부(미도시)는 구동부 설치부(711a)에 결합되어, 밀착부(711)를 상부 피스톤(710) 내부에서 승강시킴으로써 유체 수용부(701)로 유체를 흡입하거나, 유체 수용부(701)에 수용된 유체를 외부로 배출시키게 된다.
상부 피스톤(710)의 저면에는 하부 피스톤(720)과 맞물리는 결합구조가 형성될 수 있으며, 하부 피스톤(720)의 액체 포트와 연결되는 제1 홀(712) 및 하부 피스톤(720)의 필터 포트와 연결되는 제2 홀(713)이 관통 형성된다. 제2 홀(713)은 지지구조체 및 필터의 이탈을 방지할 수 있도록 필터 포트의 필터 안착 공간보다 작은 직경을 갖도록 형성될 수 있다.
하부 피스톤(720)은 상부 피스톤(710)의 저면에 형성된 결합구조에 맞물려 고정된다.
하부 피스톤(720)은 원판 형태의 몸체(721)와, 몸체(721)의 중심에서 외부로 돌출되도록 형성되는 샤프트(722)와, 몸체(711)의 중심에서 동일한 거리 떨어져 배치되는 액체 포트(723) 및 필터 포트(724)를 포함할 수 있다.
액체 포트(723)는 검체 및 시약을 피스톤(700) 내부로 흡입, 혼합 및 배출할 때 이용되고, 필터 포트(724)는 유전체 포집 필터를 세척하거나 유전체 포집 필터에서 유전체를 분리할 때 이용할 수 있다.
또한, 하부 피스톤(720) 몸체(721)의 외주에는 중심 방향으로 리세스된 홈이 형성될 수 있다. 이 홈은 추출 장치 내부에서 액체 이동시 발생할 수 있는 진공을 제거하는 역할을 수행한다.
액체 포트(723)와 필터 포트(724)는 동일 원주 상에서 서로 일정 각도 떨어져 배치된다. 에를 들어, 필터 포트(724)와 액체 포트(723)의 두 개의 포트는 18도 내지 36도만큼 서로 떨어져 배치될 수 있으며, 보다 구체적으로 두 포트는 22.5도 간격을 이루도록 배치될 수 있다. 16회로 분할하여 한바퀴 회전을 수행하는 스텝 모터를 이용할 경우 1번의 구동에 의해 액체 포트(723)와 필터 포트(724)의 위치를 변경할 수 있다.
하부 피스톤(720)의 필터 포트(724)는 필터 안착 공간(725)을 포함할 수 있으며, 필터 안착 공간(725)에는 필터 및 지지구조체가 배치될 수 있다. 유전체 포집을 위한 필터는 다양한 입도를 갖는 글래스 파이버 필터가 사용될 수 있으며, 지지구조체는 유전체 포집을 위한 필터를 고정시키는 역할을 수행한다.
지지구조체는 유체 배출 시 필터의 이탈을 방지하고 일정한 압력을 유지할 수 있도록 일정한 입도를 가진 다공성 플라스틱 재질로 형성될 수 있다.
구동부(800)는 진단 기기의 구동부(미도시)와 연결되어 피스톤(700)을 일정 각도로 회전시키는 매개체 역할을 수행한다.
구동부(800)는 일면의 중앙부에 샤프트(722)와 맞물리도록 형성되는 결합홈과, 타면에 진단 기기의 구동부(미도시)와 맞물리도록 형성되는 구동홈을 포함할 수 있다.
구동부(800)는 피스톤(700)과 결합하여 유전체 추출 단계에서 필요한 다양한 화학적 반응을 하나의 장치 내부에서 수행할 수 있도록 적절한 외측 챔버(100)의 제1 배출공 위치로 액체 포트(723)와 필터 포트(724)를 위치시킨다.
액체 포트(723)와 필터 포트(724)는 일정 각도 이격되어 있으며, 구동부(800)는 유전체 추출 시 상기 포트들을 각 단계에 적합한 위치로 회전시킨다.
비드 챔버(900)는 제1 비드 챔버(910), 제2 비드 챔버(920) 및 제습 챔버(930)를 포함하며, 이들은 제1 비드 챔버 격벽(901)과 제2 비드 챔버(902)에 의해 구획된다. 제1 비드 챔버(910)는 외측 챔버(100)의 제1 공간(106)에 삽입되고, 제2 비드 챔버(920)는 외측 챔버(100)의 제1 공간(107)에 삽입된다.
내측 챔버(200)와 마찬가지로, 비드 챔버(900)의 상부 개구 역시 제3 밀봉 부재(S3)에 의해 밀봉되어 있으며, 제3 밀봉 부재(S3)는 커버(300)가 외측 챔버(100)에 결합될 때, 커버(300)의 저면에 형성된 제3 돌출 부재(316, 317)들에 의해 천공된다. 제3 돌출 부재(316, 317)에 의해 비드 챔버(900)의 상부 개구가 개방됨으로써, 이후 제1 비드 챔버(910)와 제2 비드 챔버(920) 내로 유체가 투입되더라도 이에 대응하는 양의 공기가 천공된 부분을 통해 배출되는 것이 가능하다.
비드 챔버(900)의 하부 개구는 별도로 밀봉 부재에 의해 밀봉되지 않고 개방된 형태로 구비된다. 비드 챔버(900)에는 건조 비드(보다 구체적으로는, 동결 건조 비드)들이 저장되는데, 건조 비드는 수분에 취약한 특성을 갖는다. 본 발명에 따른 유전체 추출 장치에서는, 비드 챔버(900)의 하부 개구, 외측 챔버(100)의 제1 공간, 플로우 커버(410), 패드(420), 베이스 플레이트(400)의 유로, 증폭 모듈(600)의 유로가 서로 연통되되, 외기에 노출되지 않는 폐쇄된(closed) 형태의 유로를 이룸으로써, 비드 챔버(900) 내부로의 수분 유입이 최소화된다.
제1 비드 챔버(910)에는 유전체 추출에 필요한 여러 개의 건조 비드(b1)가 저장될 수 있으며, 제2 비드 챔버(920)에는 유전체 증폭에 필요한 여러 개의 건조 비드(b2)가 저장될 수 있다.
제1 비드 챔버(910)의 상부 개구에는 건조 비드(b1)가 외부로 배출되지 않고 내부에 유지되도록 구성된 제1 비드 홀더(911)가 설치되고, 제습 챔버(930)에는 제1 비드 챔버(910) 내부 공간의 제습을 위한 제1 제습부(912)가 설치된다. 여기에서, 유전체 증폭에 필요한 건조 비드는 예를 들어, 캡슐(capsule) 형태로 구비될 수 있으나, 특별히 이에 제한되는 것은 아니다.
제2 비드 챔버(920)의 상부 개구에는 건조 비드(b2)가 외부로 배출되지 않고 내부에 유지되도록 구성된 제2 비드 홀더(921)가 설치되고, 제2 비드 홀더(921) 상부에는 제2 비드 챔버(920) 내부를 제습하는 제2 제습부(922)가 설치된다. 제3 밀봉 부재(S3)는 제2 비드 챔버(920)가, 제습 챔버(930) 및 제1 비드 챔버(910)와 서로 연통되지 않도록 밀봉하지만, 제1 비드 챔버(910)와 제습 챔버(930)는 서로 연통되도록 밀봉하게 된다. 도 23 및 24를 참조하여, 이를 구체적으로 설명한다.
상기한 효과는 제1 비드 챔버 격벽(901)과 제2 비드 챔버(902)의 높이 차이 구성을 통해 달성된다. 도 23 및 24를 참조하면, 제2 비드 챔버(920)와 제습 챔버(930)를 구획하는 제2 비드 챔버 격벽(902)은, 제1 비드 챔버(910)와 제습 챔버(930)를 구획하는 제1 비드 챔버 격벽(901)보다 높은 높이를 갖는다.
다시 말하면, 제2 비드 챔버 격벽(902)의 상부는, 제2 비드 챔버(920)를 이루는 외측 격벽의 상부와 동일한 높이까지 연장되고, 제1 비드 챔버 격벽(901)의 상부는, 제1 비드 챔버(910)를 이루는 외측 격벽의 상부보다 낮은 높이까지 연장된다.
따라서, 제3 밀봉 부재(S3)에 의해 비드 챔버(900)의 상부 개구가 밀봉되더라도, 제1 비드 챔버 격벽(901)과 제3 밀봉 부재(S3) 사이의 공간을 통해, 제1 비드 챔버(910)와 제습 챔버(930)가 서로 연통될 수 있다. 따라서, 제1 비드 챔버(910)는 제습 챔버(930) 내부에 설치된 제2 제습부(912)에 의해 제습된다.
제1 비드 챔버(910)의 하부 개구(912)(즉, 제1 비드 챔버의 배출구)와, 제2 비드 챔버(920)의 하부 개구(922)(즉, 제2 비드 챔버의 배출구)는, 비드 챔버(900)로부터 베이스 플레이트(400)를 향할수록 좁아지는 배출 통로(911, 921)의 말단에 형성된다.
배출 통로(911, 921) 내부에 건조 비드들이 수용될 수 있으며, 배출 통로(911, 921) 상부에 비드 홀더들이 설치되어 배출 통로(911, 921)에 수용된 비드들의 외부 유출을 방지할 수 잇다.
배출 통로(911, 921)는 베이스 플레이트(400)를 향할수록 좁아지는 이른바 테이퍼진 형상을 가질 수 있다. 그리고, 배출 통로(911, 921)의 말단에 위치하는 하부 개구(912, 922)의 직경은 건조 비드들의 직경보다 작게 구비되어, 하부 개구(912, 922)를 통해서는 비드들이 외부로 배출되지 못한다. 유체가 하부 개구(912, 922)를 통해 배출 통로(911, 921) 내부로 유입되고, 유입된 유체가 건조 비드들을 녹이고, 유체의 형태를 통해서만 하부 개구(912, 922)를 통해 외부(피스톤의 유체 수용부 또는 증폭 모듈)로 배출될 수 있다.
여기에서, 유전체 증폭에 필요한 건조 비드들이 저장된 제1 비드 챔버(910)의 배출 통로(911)는, 제2 비드 챔버(920)의 배출 통로(921)보다 더 넓은 직경을 가지며 베이스 플레이트(400)를 향할수록 좁아질 수 있다.
증폭 모듈(600)을 향해 전처리된 추출액이 투입되기 이전에, 마지막 유체가 투입되는 구성이 제1 비드 챔버(910)에 해당한다. 제1 비드 챔버(910)에 투입된 유체가 제1 비드 챔버(910)내에 최대한 잔류하지 않고, 증폭 모듈(600)의 수용부(630)에 투입되어야만 정확한 검출 결과를 획득하는 것이 가능하므로, 본 발명에서는 제1 비드 챔버(910)의 배출 통로(911)가 제2 비드 챔버(920)의 배출 통로(921)보다 더 넓은 직경을 가지며 좁아지게 형성함으로써, 제1 비드 챔버(910) 내에서의 유체 잔류량을 최소화하였다.
또한, 본 발명에 따른 비드 챔버(900)는 제1 비드 챔버(910)와 제2 비드 챔버(920)의 외측 격벽의 저면으로부터 연장되는 제1 걸림 돌기(903, 904)를 갖는다. 도 25 및 27에 도시된 바와 같이, 제1 걸림 돌기(903, 904)는 베이스 플레이트(400)를 향해 연장되다가 외측을 향해 돌출된 구조로 형성될 수 있다.
비드 챔버(900)와 결합하는 외측 챔버(100)에는, 복수의 제1 공간을 구획하는 외측 챔버 격벽의 일측에 제2 걸림 돌기(109)가 형성되고, 비드 챔버(900)를 베이스 플레이트(400) 방향으로 힘을 주면 제1 걸림 돌기(903, 904)가 제2 걸림 돌기(109)를 지나 서로가 결합됨으로써, 양 구성 간의 견고한 결합이 이루어질 수 있다. 제1 걸림 돌기(903, 904)가 제2 걸림 돌기(109)와 결합되는 경우, 비드 챔버(900)의 외측 챔버(100)에 대한 상대 위치가 고정된다.
이하에서는, 본 발명의 실시예에 따른 추출 방법을 구체적으로 설명한다.
먼저, (a) 외측 챔버의 복수의 제1 공간의 상부 개구를 통해 내측 챔버가 외측 챔버와 결합된다.
다음, (b) 커버가 외측 챔버에 결합되고, (c) 안전 클립이 외측 챔버로부터 제거된다.
다음, (d) 커버가 가압되어 외측 챔버의 복수의 제1 공간의 저면에 형성된 제1 돌출 부재에 의해 내측 챔버의 하부 개구를 밀봉하는 제1 밀봉 부재가 찢기고, 커버의 저면에 형성된 제2 돌출 부재에 의해 내측 챔버의 상부 개구를 밀봉하는 제2 밀봉 부재가 찢어져서, 내측 챔버에 수용된 시약들이 복수의 제1 공간으로 유출되고, (e) 구동부의 구동에 의해, 복수의 제1 공간으로 유출된 시약들이 상부 피스톤 내부의 유체 수용부로 흡입 및 혼합된 후, 혼합된 시약들이 증폭 모듈로 배출된다.
상기 (e) 단계는 복수의 단계로 이루어질 수 있다. 이하에서는, (e) 단계를 보다 구체적으로 후술한다.
먼저, (e1) 커버의 검체 투입공을 통해 분석 대상 검체가 상기 외측 챔버의 복수의 제1 공간 중 어느 하나의 제1 공간에 투입된다.
다음, (e2) 외측 챔버의 피스톤 수용부에 설치된 피스톤이 회전하여, 피스톤의 액체 포트와 분석 대상 검체가 투입된 상기 어느 하나의 제1 공간의 저면에 형성된 제1 배출공이 연통된다.
다음, (e3) 상기 피스톤 내부 공간에 설치된 밀착부가 상승하여 상기 어느 하나의 제1 공간에 수용된 분석 대상 검체가 상기 외측 챔버 내부의 유체 수용부로 흡입된다.
다음, (e4) 피스톤이 회전하여, 피스톤의 액체 포트와 다른 하나의 제1 공간의 저면에 형성된 제1 배출공이 연통된다.
다음, (e5) 밀착부가 상승하여 상기 다른 하나의 제1 공간에 수용된 제1 시약이 외측 챔버 내부의 유체 수용부로 흡입됨으로써, 분석 대상 검체와 제1 시약이 유체 수용부 내에서 혼합된다.
다음, (e6) 피스톤이 회전하여, 피스톤의 액체 포트와 또 다른 하나의 제1 공간의 저면에 형성된 제1 배출공이 연통된다.
다음, (e7) 밀착부가 상승하여 상기 또 다른 하나의 제1 공간에 수용된 제2시약이 외측 챔버 내부의 유체 수용부로 흡입됨으로써, 분석 대상 검체와 상기 제1 시약 및 상기 제2 시약이 혼합된다.
다음, (e8) 피스톤이 회전하여, 피스톤의 필터 포트와 상기 또 다른 하나의 제1 공간의 저면에 형성된 제1 배출공이 연통된다.
다음, (e9) 밀착부가 하강하여 유체 수용부에 수용된 혼합액이 필터 포트에 설치된 유전체 포집 필터를 통과하여 상기 또 다른 하나의 제1 공간으로 배출된다.
다음, (e10) 피스톤이 회전하여, 피스톤의 액체 포트와 제1 시약과 제2 시약과 다른 시약들이 수용된 제1 공간의 저면에 형성된 제1 배출공이 연통된다.
다음, (e11) 밀착부가 상승하여 다른 시약들이 유체 수용부 내로 흡입 및 혼합된다.
다음, (e12) 피스톤이 회전하여, 피스톤의 필터 포트와 다른 시약들이 수용된 제1 공간의 저면에 형성된 제1 배출공이 연통된다.
다음, (e13) 밀착부가 하강하여 유체 수용부에 수용된 혼합액이 유전체 포집 필터를 통과하여 다른 시약들이 수용된 제1 공간으로 배출된다.
다음, (e14) 피스톤이 회전하여, 피스톤의 액체 포트와 용리액이 수용된 제1 공간의 저면에 형성된 제1 배출공이 연통된다.
다음, (e15) 밀착부가 상승하여 용리액이 유체 수용부 내로 흡입된다.
다음, (e16) 피스톤이 회전하여, 피스톤의 필터 포트와 유전체 증폭에 필요한 비드들이 수용된 제1 공간의 저면에 형성된 제2 배출공이 연통된다.
다음, (e17) 밀착부가 하강하여, 유체 수용부에 수용된 용리액이 유전체 포집 필터를 통과하여 유전체 증폭에 필요한 비드들이 수용된 제1 공간으로 배출되는 단계로서, 유전체 포집 필터에 포집된 유전체가 유전체 포집 필터로부터 분리되어 상기 제1 공간으로 함께 배출된다.
다음, (e18) 피스톤이 회전하여, 피스톤의 액체 포트와 유전체가 수용된 제1 공간의 저면에 형성된 제2 배출공이 연통된다.
다음, (e19) 밀착부가 상승하여 유전체를 포함하는 추출액이 유체 수용부 내로 흡입된다.
다음, (e20) 피스톤이 회전하여, 피스톤의 액체 포트와 증폭 모듈이 연통된다.
다음, (e21) 밀착부가 하강하여, 유체 수용부에 수용된 유전체를 포함하는 추출액이 상기 증폭 모듈로 배출된다.
다음, (e22) 추출액이 증폭 모듈의 추출액 이동 통로를 통해 증폭 모듈의 수용부로 투입된다.
다음, (e23) 수용부의 잔류하는 공기가 증폭 모듈의 기체 이동 통로를 통해 증폭 모듈 외부로 배출된다.
다음, (e24) 증폭 장치가 수용부에 소정 온도 이상의 열을 인가하여 상기 유전체의 증폭이 이루어진다.
다음, (e25) 상기 유전체의 증폭 산물의 형광 강도에 기초하여, 분석 대상 검체에 대한 질병 감염 여부가 판단된다.
이상, 본 명세서에는 본 발명을 당업자가 용이하게 이해하고 재현할 수 있도록 도면에 도시한 실시예를 참고로 설명되었으나 이는 예시적인 것에 불과하며, 당업자라면 본 발명의 실시예로부터 다양한 변형 및 균등한 타 실시예가 가능하다는 점을 이해할 것이다. 따라서 본 발명의 보호범위는 청구범위에 의해서 정해져야 할 것이다.
S1: 제1 밀봉 부재
S2: 제2 밀봉 부재
S3: 제3 밀봉 부재
S4, S5: 실링 부재
100: 외측 챔버
100a: 외면 상부
100b: 외면 하부
101, 102, 103, 104, 105, 106, 107: 제1 공간
108: 피스톤 삽입부
109: 제2 걸림 돌기
111, 112, 113, 114, 115: 제1 돌출 부재
111a, 112a, 113a, 114a, 115a: 돌출부
111b, 112b, 113b, 114b, 115b: 날개부
121, 122, 123, 124, 125: 제1 배출공
126, 127, 129: 제2 배출공
128: 공기 배출공
130: 삽입 공간
131: 걸림 돌기
200: 내측 챔버
201, 202, 203, 204, 205: 제2 공간
210: 상부 내측 챔버
220: 하부 내측 챔버
300: 커버
301: 커버 바디
302: 덮개
307: 제1 삽입공
308: 제2 삽입공
311, 312, 313, 314, 315: 제2 돌출 부재
316, 317: 제3 돌출 부재
400: 베이스 플레이트
400a: 피스톤 구동부 삽입공
401, 402, 403, 404, 405, 406, 407, 408: 액체 유로
409: 공기 유로
410: 플로우 커버
410a: 제1 관통공
410b: 제1 결합 돌기
410c: 용융 돌기
410d: 제2 결합 돌기
411a, 412a, 413a, 414a, 415a, 416a, 417a, 418a: 제1 플로우 커버 홀
411b, 412b, 413b, 414b, 415b: 제2 플로우 커버 홀
416b, 417b, 418b: 제3 플로우 커버 홀
419a, 419b: 제4 플로우 커버 홀
420: 패드
420a: 제2 관통공
421a, 422a, 423a, 424a, 425a, 426a, 427a, 428a: 제1 패드 홀
421b, 422b, 423b, 424b, 425b: 제2 패드 홀
426b, 427b, 428b: 제3 패드 홀
429a, 429b: 제4 패드 홀
420c: 결합 홈
500: 안전 클립
510: 결합부
520: 손잡이
600: 증폭 모듈
610: 바디
611: 일면
612: 반대면
621, 622: 주입구
630: 수용부
631: 상부
632: 하부
633: 기체 배출 통로
640: 기체 이동 통로
641: 연통공
642: 이동 통로
643: 저장 통로
644: 통로 패턴 형성부
650: 추출액 이동 통로
700: 피스톤
701: 유체 수용부
710: 상부 피스톤
711: 밀착부
711a: 구동부 설치부
712: 제1 홀
713: 제2 홀
720: 하부 피스톤
721: 몸체
722: 샤프트
723: 액체 포트
724: 필터 포트
800: 구동부
900: 비드 챔버
910: 제1 비드 챔버
911: 제1 비드 홀더
912: 제1 제습부
920: 제2 비드 챔버
921: 제2 비드 홀더
922: 제2 제습부
930: 제습 챔버
1000: 유전체 추출 장치

Claims (16)

  1. 바디;
    상기 바디에 형성되고 추출액이 유입되는 유입구;
    상기 유입구와 연결되어 유입되는 추출액이 수용되는 복수의 수용부;
    상기 유입구와 상기 복수의 수용부를 서로 연결하는 복수의 추출액 이동 통로;
    상기 바디에 형성되고 기체가 배출되는 배출구; 및
    상기 배출구와 상기 복수의 수용부를 서로 연결하는 복수의 기체 이동 통로로서, 상기 복수의 기체 이동 통로는 서로 길이가 다른 적어도 2개의 기체 이동 통로;를 포함하고,
    상기 추출액 이동 통로를 통해 추출액이 상기 수용부로 유입됨에 따라 상기 추출액 이동 통로, 상기 수용부 및 상기 기체 이동 통로 내에 잔류하는 기체가 상기 추출액 이동 통로, 상기 수용부, 상기 기체 이동 통로 및 상기 배출구를 통해 배출되는,
    증폭 모듈.
  2. 제1항에 있어서,
    상기 복수의 수용부에는 추출액에 포함된 유전체를 증폭하기 위한 프라이머 및 프로브가 저장된,
    증폭 모듈.
  3. 제2항에 있어서,
    복수의 기체 이동 통로가 서로 길이가 다른 적어도 2개의 기체 이동 통로를 포함함에 따라, 상기 복수의 수용부에 유입된 추출액 및 상기 추출액에 포함된 유전체 증폭 산물들은 서로 혼합되지 않는,
    증폭 모듈.
  4. 제1항에 있어서,
    상기 증폭 모듈은 투입된 샘플로부터 유전체를 추출하는 추출 장치에 결합되되, 복수의 수용부 각각이 지면으로부터 이격된 거리는 서로 상이한,
    증폭 모듈.
  5. 제4항에 있어서,
    복수의 기체 이동 통로의 길이는, 지면으로부터 멀리 떨어진 수용부와 연결된 기체 이동 통로일수록 짧은,
    증폭 모듈.
  6. 제1항에 있어서,
    상기 복수의 기체 이동 통로는 상기 수용부의 상부와 연결되고,
    상기 추출액 이동 통로는 상기 수용부의 하부와 연결되는,
    증폭 모듈.
  7. 제1항에 있어서,
    상기 수용부의 가장자리는 라운드 처리된 것인,
    증폭 모듈.
  8. 제1항에 있어서,
    상기 기체 이동 통로는 상기 수용부로부터 상기 배출구에 이르기까지 한 번 이상 굽어지며, 굽어진 부분의 가장자리는 라운드 처리된 것인,
    증폭 모듈.
  9. 제1항에 있어서,
    상기 수용부는 상기 기체 이동 통로와 상기 추출액 이동 통로로부터 멀어질수록 그 폭이 좁아지는 형상을 갖는,
    증폭 모듈.
  10. 제1항에 있어서,
    상기 복수의 기체 이동 통로는 상기 복수의 수용부에 일대일 대응되며 연결되도록 상기 유입구로부터 연장 형성되는,
    증폭 모듈.
  11. 제1항에 있어서,
    상기 복수의 기체 이동 통로는 그 길이가 서로 상이하게 형성되는,
    증폭 모듈.
  12. 제1항에 있어서,
    상기 기체 이동 통로는, 상기 수용부와 연통하면서 상기 바디에 관통 형성된 연통공과 연결되고,
    상기 기체 이동 통로는, 조합된 부분의 기체 이동 통로를 폐쇄하는 통로 패턴 형성부와 일 지점 이상에서 조합되어 그 길이가 결정되고, 상기 통로 패턴 형성부와 조합된 기체 이동 통로의 부분이 이동 통로이고, 조합되지 않은 기체 이동 통로의 부분이 저장 통로이며,
    하부에 위치한 수용부와 연결된 기체 이동 통로일수록 상기 저장 통로의 개수 및 상기 기체 이동 통로와 상기 통로 패턴 형성부가 조합된 지점이 많은,
    증폭 모듈.
  13. 제2항에 있어서,
    상기 복수의 수용부 각각에는 유전체를 증폭하기 위한 서로 다른 종류의 프라이머 및 프로브가 저장된,
    증폭 모듈.
  14. 제1항에 있어서,
    상기 추출액 이동 통로는 상기 바디의 일면에 형성되고,
    상기 기체 이동 통로는 상기 바디의 일면과 반대되는 반대면에 형성되며,
    상기 일면과 상기 반대면은 각각 실링 부재에 의해 밀봉되는,
    증폭 모듈.
  15. 삭제
  16. 삭제
KR1020210084993A 2021-06-29 2021-06-29 기체 이동 통로와 추출액 이동 통로를 갖는 증폭 모듈 KR102416335B1 (ko)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020210084993A KR102416335B1 (ko) 2021-06-29 2021-06-29 기체 이동 통로와 추출액 이동 통로를 갖는 증폭 모듈
PCT/KR2021/012126 WO2023277246A1 (ko) 2021-06-29 2021-09-07 기체 이동 통로와 추출액 이동 통로를 갖는 증폭 모듈
CN202180101888.6A CN117881480A (zh) 2021-06-29 2021-09-07 带有气体移动通道和提取物移动通道的扩增模块
EP21207157.5A EP4112173A1 (en) 2021-06-29 2021-11-09 Amplification module with gas moving passage and extract moving passage
US17/455,577 US20220410142A1 (en) 2021-06-29 2021-11-18 Amplification module with gas moving passage and extract moving passage
KR1020220038308A KR102486349B1 (ko) 2021-06-29 2022-03-28 기체 이동 통로와 추출액 이동 통로를 갖는 증폭 모듈

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020210084993A KR102416335B1 (ko) 2021-06-29 2021-06-29 기체 이동 통로와 추출액 이동 통로를 갖는 증폭 모듈

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020220038308A Division KR102486349B1 (ko) 2021-06-29 2022-03-28 기체 이동 통로와 추출액 이동 통로를 갖는 증폭 모듈

Publications (1)

Publication Number Publication Date
KR102416335B1 true KR102416335B1 (ko) 2022-07-05

Family

ID=78592615

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020210084993A KR102416335B1 (ko) 2021-06-29 2021-06-29 기체 이동 통로와 추출액 이동 통로를 갖는 증폭 모듈
KR1020220038308A KR102486349B1 (ko) 2021-06-29 2022-03-28 기체 이동 통로와 추출액 이동 통로를 갖는 증폭 모듈

Family Applications After (1)

Application Number Title Priority Date Filing Date
KR1020220038308A KR102486349B1 (ko) 2021-06-29 2022-03-28 기체 이동 통로와 추출액 이동 통로를 갖는 증폭 모듈

Country Status (5)

Country Link
US (1) US20220410142A1 (ko)
EP (1) EP4112173A1 (ko)
KR (2) KR102416335B1 (ko)
CN (1) CN117881480A (ko)
WO (1) WO2023277246A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102548277B1 (ko) * 2022-11-15 2023-06-29 주식회사 위즈바이오솔루션 분자진단용 카트리지 및 상기 카트리지를 갖는 분자진단장치
KR20240044103A (ko) 2022-09-28 2024-04-04 에스디바이오센서 주식회사 추출액 유입구에 인접한 분기 공간을 갖는 유전체 증폭 모듈
WO2024085330A1 (ko) * 2022-10-21 2024-04-25 고려대학교 산학협력단 현장 진단 검사 장치

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180009377A (ko) * 2018-01-19 2018-01-26 삼성전자주식회사 기체 버블 트랩 기능을 갖는 미세 유체 공급소자
KR20190022423A (ko) * 2018-11-26 2019-03-06 경희대학교 산학협력단 시료 분석용 칩, 이를 포함하는 시료 분석용 디바이스, 그리고 시료 분석용 칩에 장착되는 카트리지
KR101989920B1 (ko) 2017-12-28 2019-06-17 에스디 바이오센서 주식회사 핵산 추출용 카트리지
KR20190083724A (ko) * 2018-01-05 2019-07-15 성균관대학교산학협력단 시료의 농축 및 정제를 위한 미세유체 칩 및 전처리 방법
KR102065649B1 (ko) 2017-12-28 2020-01-13 에스디 바이오센서 주식회사 핵산 추출용 카트리지의 피스톤
KR102076220B1 (ko) 2017-12-28 2020-02-11 에스디 바이오센서 주식회사 핵산 추출용 카트리지의 유로 구조
KR102065650B1 (ko) 2017-12-28 2020-02-11 에스디 바이오센서 주식회사 카트리지를 이용한 핵산 추출 방법
KR20210065460A (ko) * 2019-11-27 2021-06-04 주식회사 바이오티엔에스 유체 분석용 마이크로 칩 및 이를 이용한 유전자 증폭 방법

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6153076A (en) * 1998-01-12 2000-11-28 The Regents Of The University Of California Extended length microchannels for high density high throughput electrophoresis systems
US7915030B2 (en) * 2005-09-01 2011-03-29 Canon U.S. Life Sciences, Inc. Method and molecular diagnostic device for detection, analysis and identification of genomic DNA
KR101429253B1 (ko) * 2014-05-22 2014-08-12 (주) 굿모닝 바이오 다채널 혈액 통로를 구비한 혈소판 활성화 장치
EP3351941A1 (en) * 2015-09-15 2018-07-25 PHC Holdings Corporation Analysis container
PL425107A1 (pl) * 2018-03-30 2019-10-07 Bacteromic Spółka Z Ograniczoną Odpowiedzialnością Segment inkubacyjny
KR101986464B1 (ko) * 2018-11-26 2019-06-05 경희대학교 산학협력단 시료 분석용 칩, 이를 포함하는 시료 분석용 디바이스, 그리고 시료 분석용 칩에 장착되는 카트리지
CN209680122U (zh) * 2019-01-09 2019-11-26 南京岚煜生物科技有限公司 多指标微流控芯片
KR102281116B1 (ko) * 2019-06-28 2021-07-27 주식회사 엘지화학 일체형 카트리지

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101989920B1 (ko) 2017-12-28 2019-06-17 에스디 바이오센서 주식회사 핵산 추출용 카트리지
KR102065649B1 (ko) 2017-12-28 2020-01-13 에스디 바이오센서 주식회사 핵산 추출용 카트리지의 피스톤
KR102076220B1 (ko) 2017-12-28 2020-02-11 에스디 바이오센서 주식회사 핵산 추출용 카트리지의 유로 구조
KR102065650B1 (ko) 2017-12-28 2020-02-11 에스디 바이오센서 주식회사 카트리지를 이용한 핵산 추출 방법
KR20190083724A (ko) * 2018-01-05 2019-07-15 성균관대학교산학협력단 시료의 농축 및 정제를 위한 미세유체 칩 및 전처리 방법
KR20180009377A (ko) * 2018-01-19 2018-01-26 삼성전자주식회사 기체 버블 트랩 기능을 갖는 미세 유체 공급소자
KR20190022423A (ko) * 2018-11-26 2019-03-06 경희대학교 산학협력단 시료 분석용 칩, 이를 포함하는 시료 분석용 디바이스, 그리고 시료 분석용 칩에 장착되는 카트리지
KR20210065460A (ko) * 2019-11-27 2021-06-04 주식회사 바이오티엔에스 유체 분석용 마이크로 칩 및 이를 이용한 유전자 증폭 방법

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20240044103A (ko) 2022-09-28 2024-04-04 에스디바이오센서 주식회사 추출액 유입구에 인접한 분기 공간을 갖는 유전체 증폭 모듈
WO2024071599A1 (ko) * 2022-09-28 2024-04-04 에스디바이오센서 주식회사 추출액 유입구에 인접한 분기 공간을 갖는 유전체 증폭 모듈
WO2024085330A1 (ko) * 2022-10-21 2024-04-25 고려대학교 산학협력단 현장 진단 검사 장치
KR102548277B1 (ko) * 2022-11-15 2023-06-29 주식회사 위즈바이오솔루션 분자진단용 카트리지 및 상기 카트리지를 갖는 분자진단장치

Also Published As

Publication number Publication date
CN117881480A (zh) 2024-04-12
EP4112173A1 (en) 2023-01-04
US20220410142A1 (en) 2022-12-29
KR20230002034A (ko) 2023-01-05
WO2023277246A1 (ko) 2023-01-05
KR102486349B1 (ko) 2023-01-09

Similar Documents

Publication Publication Date Title
KR102293717B1 (ko) 플로우 커버를 포함하는 유전체 추출 장치
KR102416335B1 (ko) 기체 이동 통로와 추출액 이동 통로를 갖는 증폭 모듈
KR102346703B1 (ko) 외측 챔버와 내측 챔버가 결합된 이중 챔버 구조의 유전체 추출 장치
US10648975B2 (en) Single channel chemiluminescent micro-fluidic chip and detection method thereof
KR101046156B1 (ko) 혈구 분리 칩
JP6272895B2 (ja) デバイスおよび装置
JP2007033350A (ja) 化学分析装置
KR20120063162A (ko) 유전자 분석 장치 및 이를 이용한 유전자 분석 방법
US20200408752A1 (en) Fluidic system for performing assays
KR102375252B1 (ko) 외측 챔버와 비드 챔버가 결합된 이중 챔버 구조의 유전체 추출 장치
KR102362853B1 (ko) 내측 챔버와 결합되는 안전 클립을 포함하는 유전체 추출 장치
CA2548414A1 (en) Sample mixing on a microfluidic device
KR100647320B1 (ko) 혈청 분리용 마이크로 장치
KR101780429B1 (ko) 정량주입 가능한 바이오칩
KR20240044103A (ko) 추출액 유입구에 인접한 분기 공간을 갖는 유전체 증폭 모듈
US11583849B2 (en) Flow control system for diagnostic assay system
KR20240059057A (ko) 미세유체 분리 및 분석용 통합카트리지
CN217757478U (zh) 微流控芯片
KR101906969B1 (ko) 유전자 분석장치 및 이를 이용한 유전자 분석방법
US11369959B2 (en) Fluidic device
US10279343B2 (en) Transfer device of biological material
KR20240066173A (ko) 미세유체 칩 및 미세유체 칩 검출 시스템

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant