KR102407724B1 - An Enzyme for ginsenoside bioconversion - Google Patents

An Enzyme for ginsenoside bioconversion Download PDF

Info

Publication number
KR102407724B1
KR102407724B1 KR1020210121660A KR20210121660A KR102407724B1 KR 102407724 B1 KR102407724 B1 KR 102407724B1 KR 1020210121660 A KR1020210121660 A KR 1020210121660A KR 20210121660 A KR20210121660 A KR 20210121660A KR 102407724 B1 KR102407724 B1 KR 102407724B1
Authority
KR
South Korea
Prior art keywords
ginsenoside
enzyme
glucosidase
composition
ginseng
Prior art date
Application number
KR1020210121660A
Other languages
Korean (ko)
Other versions
KR102407724B9 (en
Inventor
윤지영
최정효
최종명
김태정
Original Assignee
(주)녹십자웰빙
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)녹십자웰빙 filed Critical (주)녹십자웰빙
Priority to KR1020210121660A priority Critical patent/KR102407724B1/en
Application granted granted Critical
Publication of KR102407724B1 publication Critical patent/KR102407724B1/en
Priority to PCT/KR2022/013589 priority patent/WO2023038485A1/en
Publication of KR102407724B9 publication Critical patent/KR102407724B9/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
    • C12N9/2405Glucanases
    • C12N9/2408Glucanases acting on alpha -1,4-glucosidic bonds
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
    • C12N9/2405Glucanases
    • C12N9/2408Glucanases acting on alpha -1,4-glucosidic bonds
    • C12N9/2411Amylases
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y302/00Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
    • C12Y302/01Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
    • C12Y302/01001Alpha-amylase (3.2.1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y302/00Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
    • C12Y302/01Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
    • C12Y302/01003Glucan 1,4-alpha-glucosidase (3.2.1.3), i.e. glucoamylase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y302/00Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
    • C12Y302/01Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
    • C12Y302/0102Alpha-glucosidase (3.2.1.20)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y302/00Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
    • C12Y302/01Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
    • C12Y302/01021Beta-glucosidase (3.2.1.21)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/645Fungi ; Processes using fungi
    • C12R2001/66Aspergillus
    • C12R2001/685Aspergillus niger

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Medicines Containing Plant Substances (AREA)

Abstract

본 발명은 인삼으로부터 ginsenoside를 얻기 위한 생물전환 효소에 관한 발명이다. 본 발명의 생물전환 효소를 이용하여 인삼을 발효시키면 공지의 효소 대비 암 또는 암관련피로(Cancer related fatigue) 치료 효과가 뛰어난 Rh2를 더 많이 얻을 수 있다.The present invention relates to a bioconversion enzyme for obtaining ginsenoside from ginseng. When ginseng is fermented using the bioconverting enzyme of the present invention, it is possible to obtain more Rh2, which is excellent in treating cancer or cancer-related fatigue, compared to known enzymes.

Description

진세노사이드 생물전환 효소{An Enzyme for ginsenoside bioconversion}An Enzyme for ginsenoside bioconversion}

본 발명은 인삼으로부터 ginsenoside를 얻기 위한 생물전환 효소에 관한 발명이다. 본 발명의 생물전환 효소를 이용하여 인삼을 발효시키면 공지의 효소 대비 암 또는 암관련피로(Cancer related fatigue) 치료 효과가 뛰어난 Rh2를 더 많이 얻을 수 있다.The present invention relates to a bioconversion enzyme for obtaining ginsenoside from ginseng. When ginseng is fermented using the bioconverting enzyme of the present invention, it is possible to obtain more Rh2, which is excellent in treating cancer or cancer-related fatigue, compared to known enzymes.

인삼(Panax ginseng C. A. Meyer)은 오가피 나무과(Araliaceae)의 인삼속(Panax)에 속하는 다년생 음지성 숙근초로서, 최근에는 건강 기능식품 소재로 각광을 받고 있는 식품 원료이다. 인삼의 주요 약리활성 성분은 사포닌(Saponin) 성분이다. 사포닌이란 식물계에 널리 존재하는 배당체의 비(非)당부분(aglucan)이 여러 고리 화합물로 이루어진 것으로 흔히 식물체 성분 중에 거품을 일으키는 성분을 말하며 인삼에는 약 3~6% 정도 함유되어 있는 것으로 알려져 있다. 양파, 도라지, 마늘 등 식물체에 존재하는 사포닌과는 달리 인삼에만 들어있는 독특한 화학적인 구조의 특징을 가지고 있어 인삼의 학명을 따서 인삼사포닌을 다른 말로 진세노사이드(ginsenoside)라 부른다. 진세노사이드(ginsenoside)는 항염효과, 항산화 효과, 주름억제, 면역력강화, 미백 효과, 항암 효과, 항균 효과, 피부보호 효과를 가지고 있는 대표적인 천연물 성분이다.Ginseng ( Panax ginseng CA Meyer) is a perennial shaggy rooted plant belonging to the genus Panax of the Araliaceae family. The main pharmacologically active ingredient of ginseng is saponin. Saponin is a non-sugar part (aglucan) of glycosides widely present in the plant system composed of several cyclic compounds, and it is known that ginseng contains about 3 to 6%. Unlike saponins that exist in plants such as onions, bellflowers, and garlic, it has a unique chemical structure that is found only in ginseng. Ginsenoside is a representative natural ingredient that has anti-inflammatory effect, antioxidant effect, wrinkle suppression, immunity enhancement, whitening effect, anticancer effect, antibacterial effect, and skin protection effect.

사포닌 자체는 체내흡수율이 낮기 때문에 인삼을 식용할 수 있도록 장내환경과 같은 혐기성 상태에서 장내 미생물을 활용하여 발효시킨 것을 발효인삼이라고 한다. 발효 과정에서 사포닌의 대사가 일어나고 생리활성이 강화되어 활용가능성이 높아진다. 발효홍삼의 대사산물로는 다음의 그림에서 보는 바와 같이 현재까지 약 40여종 이상의 ginsenosides가 분리 확인 되었고, 이러한 ginsenosides의 분리 및 분석 방법의 진보를 통해 인삼 연구의 큰 진전이 이루어지고 있다. Because saponin itself has a low absorption rate in the body, fermented ginseng is fermented using intestinal microorganisms in an anaerobic condition such as the intestinal environment so that ginseng can be eaten. During the fermentation process, metabolism of saponin occurs and the physiological activity is strengthened, increasing the usability. As the metabolites of fermented red ginseng, as shown in the figure below, more than 40 types of ginsenosides have been isolated and confirmed so far.

Figure 112021105678453-pat00001
Figure 112021105678453-pat00001

(Kwok HH, Guo GL, Lau JK, Cheng YK, Wang JR, Jiang ZH, Keung MH, Mak NK, Yue PY and Wong RN. (2012). Stereoisomers ginsenosides-20(S)-Rg3 and -20(R)-Rg3 differentially induce angiogenesis through peroxisome proliferatoractivated receptor-gamma. Biochemical Pharmacology. 83:893-902)(Kwok HH, Guo GL, Lau JK, Cheng YK, Wang JR, Jiang ZH, Keung MH, Mak NK, Yue PY and Wong RN. (2012). Stereoisomers ginsenosides-20(S)-Rg3 and -20(R) -Rg3 differentially induce angiogenesis through peroxisome proliferatoractivated receptor-gamma. Biochemical Pharmacology. 83:893-902)

발효증폭시킨 추출물의 증가된 대사산물들 중에서도 특히 G-Rg3, G-Rf 또는 G-Rh2가 기억력개선 효과, 발기부전효과, 항알러지 효과, 항아토피 효과 등을 나타내는 것으로 홍삼의 효능들이 새롭게 보고되고 있다. 특히 Rh2는 인삼에는 들어있지 않으면서 홍삼에만 0.001% 정도, 산삼에는 0.02%로 아주 소량이 들어있으면서 흔히 말하는 산삼의 신비성도 여기에 있지 않을까 하는 학자들의 견해도 있는 만큼 암세포증식억제, 종양증식 억제, 항암제의 항암활성 증대작용, 면역증강 효능을 가지는 것으로 알려져 있다. Rg3는 인삼과 홍삼에 다 들어있으면서 암세포 전이 억제, 혈소판 응집억제, 항혈전작용, 항암제 내성 억제에 암세포 증식억제 효능을 나타내는 것으로 알려져 있다. 이러한 효능은 인삼을 발효시켜서 만든 홍삼에만 존재하는 ginsenosides 성분에 의해서 나타나는 효과일 수 있다는 가능성들이 제기되고 있다.Among the increased metabolites of the fermentation-amplified extract, especially G-Rg3, G-Rf, or G-Rh2, the effects of red ginseng have been newly reported to show memory improvement effect, erectile dysfunction effect, anti-allergic effect, anti-atopic effect, etc. have. In particular, Rh2 is not contained in ginseng, but only 0.001% in red ginseng and 0.02% in wild ginseng. It is known that anti-cancer agents have anti-cancer activity and immune-enhancing effects. Rg3, which is contained in both ginseng and red ginseng, is known to exhibit cancer cell proliferation inhibitory effects in inhibiting cancer cell metastasis, inhibiting platelet aggregation, antithrombotic action, and inhibiting anticancer drug resistance. Possibilities are being raised that this effect may be due to the effect of ginsenosides, which are present only in red ginseng made by fermenting ginseng.

Ginsenoside의 다양한 기능이 과학적으로 밝혀지면서 다양한 연구와 ginsenoside을 활용한 응용이 활발히 진행되고 있으며, 그런 연구와 제품들에 따른 소비자들의 관심과 수요도 증가되고 있다. 한국의 우수한 인삼의 가치를 극대화할 수 있는 것이 Ginsenoside의 연구와 기술개발이다. 하지만 아직까지 Ginsenoside의 유효성분 분석 및 추출 기술이 명확하지 않고 미비하여 효용가치가 많이 떨어지고 있는 실정이다. 그 중에 항염, 항암 관련 인자에 대한 protein 발현 및 메커니즘 확인이 미흡하고 절실하다.As the various functions of ginsenoside are scientifically revealed, various studies and applications using ginsenoside are being actively conducted, and consumer interest and demand according to such studies and products are increasing. It is the research and technology development of Ginsenoside that can maximize the value of Korea's excellent ginseng. However, the effective ingredient analysis and extraction technology of ginsenoside is still not clear and incomplete, so its utility value is declining. Among them, protein expression and mechanisms for anti-inflammatory and anticancer-related factors are insufficient and urgent.

현재까지 암 또는 암관련피로(CRF) 효과를 가지는 것으로 알려진 진세노사이드는 진세노사이드 Rh2이며, 이 중에서도 Rh2는 암관련피로 예방 또는 치료용 조성물(중국등록특허 제101612159호, 2011. 08. 31.)로 알려져 있고, 암세포를 제거한 환자에 대한 Rg3의 피로 감소 효과(Kou Xiao-ge et al., National Medical Frontiers of China, 2010, Abstract.)와, 용량 의존적까지는 아니지만 비강내로 진세노사이드 Rg3를 투여했을 때 항피로 효과를 나타낸다고 보고된 바 있다(Wenyan et al.. 2008). Ginsenoside known to have cancer or cancer-related fatigue (CRF) effects so far is ginsenoside Rh2, among which Rh2 is a composition for preventing or treating cancer-related fatigue (Chinese Patent No. 101612159, 2011. 08. 31) .), the fatigue-reducing effect of Rg3 on patients with cancer cells removed (Kou Xiao-ge et al., National Medical Frontiers of China, 2010, Abstract.) and, although not dose-dependent, intranasally ginsenoside Rg3 It has been reported that when administered, it exhibits an anti-fatigue effect (Wenyan et al. 2008).

인삼 (panax ginseng)에서 Rg3나 Rh2와 같은 진세노사이드를 얻기 위해서는 화학적 처리, 열처리, 효소 전환과 같은 생물학적 처리 등의 방법이 알려져 있다. 화학적 처리나 열처리 같은 경우 가수분해 과정에서 오염물질 방출로 인한 대량생산에 한계가 있고, 반응의 선택성이 적어서 원하는 반응물을 얻기 쉽지 않다. 반면에, 효소를 이용하는 효소 전환 방법은 친환경적인 실험조건에서 실험이 가능하며, 특히 반응하는 특정 부위와 특정 당류에 대한 선택성이 있어서 원하는 반응물의 수율이 다른 방법에 비해서 높은 장점이 있다고 알려져 있다. [Kyung Hoon Chang, Mi Na Jo, Kee-Tae Kim, Hyun-Dong Paik, Evaluation of glucosidases of Aspergillus niger strain comparing with other glucosidases in transformation of ginsenoside Rb1 to ginsenosides Rg3, J Ginseng Res 38 (2014) 47-51] In order to obtain ginsenosides such as Rg3 or Rh2 from ginseng (panax ginseng), methods such as chemical treatment, heat treatment, and biological treatment such as enzymatic conversion are known. In the case of chemical treatment or heat treatment, there is a limit to mass production due to the release of pollutants during the hydrolysis process, and it is difficult to obtain a desired reactant because the selectivity of the reaction is small. On the other hand, the enzyme conversion method using an enzyme can be tested under environmentally friendly experimental conditions, and it is known that the yield of the desired reactant is high compared to other methods because of the selectivity for a specific reaction site and a specific saccharide. [Kyung Hoon Chang, Mi Na Jo, Kee-Tae Kim, Hyun-Dong Paik, Evaluation of glucosidases of Aspergillus niger strain comparing with other glucosidases in transformation of ginsenoside Rb1 to ginsenosides Rg3, J Ginseng Res 38 (2014) 47-51]

본 발명자들은 인삼의 효소 전환 반응을 연구하면서 인삼 배양 효소를 자체 연구개발하여 사용하였는데 이의 시작은 식용 누룩균이라고 하는 Aspergillus niger를 배양하여 제조한 효소이다. Aspergillus 종 중에서도, 특히 Aspergillus niger는 FDA에서 GRAS (Generally recognized as safe)로 인증한 안전한 균주로 알려져 있으며, 간단한 공정으로 대량생산이 가능하여 이를 기반으로 식품 및 의약품의 원료 추출에 폭넓게 사용되고 있다고 한다. 또한, 다른 균주와 비교하여, Aspergillus niger는 인삼으로부터 진세노사이드의 주요성분을 생성시키기 위한 반응에 기여하는 cellulase 효소들을 다량 배출하여 Rh2 및 Rg3와 같은 얻고자 하는 진세노사이드의 생성물을 선택적으로 얻을 수 있는 것으로 알려져 있다. [Fani Ntana, Uffe Hasbro Mortensen, Catherine Sarazin, and Rainer Figge, Aspergillus: A Powerful Protein Production Platform, Catalysts 2020, 10(9), 1064; doi:10.3390/catal10091064]The present inventors have researched and developed their own ginseng culture enzyme while studying the enzyme conversion reaction of ginseng. Among Aspergillus species, Aspergillus niger, in particular, is known as a safe strain certified as GRAS (Generally Recognized as Safe) by the FDA, and it is said that it is widely used for extracting raw materials for food and pharmaceuticals based on this because it can be mass-produced with a simple process. In addition, compared to other strains, Aspergillus niger releases a large amount of cellulase enzymes that contribute to the reaction to produce the main component of ginsenoside from ginseng, thereby selectively obtaining the desired ginsenoside products such as Rh2 and Rg3. known to be possible. [Fani Ntana, Uffe Hasbro Mortensen, Catherine Sarazin, and Rainer Figge, Aspergillus: A Powerful Protein Production Platform, Catalysts 2020, 10(9), 1064; doi:10.3390/catal10091064]

효소 반응에 관련되는 문헌에 의하면, Aspergillus niger로부터 얻어지는 여러 종류의 cellulase 효소 중에서도 대표적으로 β-glucosidase가 ginsenoside Rb1의 3번 탄소에 붙어있는 당을 선택적으로 잘라내면서 20번 탄소에 연결된 당을 잘라내지 않는 것으로 알려져 있다. [Kyung Hoon Chang, Mi Na Jo, Kee-Tae Kim, Hyun-Dong Paik, Evaluation of glucosidases of Aspergillus niger strain comparing with other glucosidases in transformation of ginsenoside Rb1 to ginsenosides Rg3, J Ginseng Res 38 (2014) 47-51] According to the literature related to the enzymatic reaction, among various cellulase enzymes obtained from Aspergillus niger, β-glucosidase selectively cuts the sugar attached to carbon 3 of ginsenoside Rb1 while not cutting the sugar attached to carbon 20. it is known [Kyung Hoon Chang, Mi Na Jo, Kee-Tae Kim, Hyun-Dong Paik, Evaluation of glucosidases of Aspergillus niger strain comparing with other glucosidases in transformation of ginsenoside Rb1 to ginsenosides Rg3, J Ginseng Res 38 (2014) 47-51]

앞 페이지의 표에서 본 바와 같이, Rh2 및 Rg3와 같은 얻고자 하는 진세노사이드의 생성물은 3번과 20번에 모두 당이 없는 구조이므로, 3번과 20번의 당을 선택적으로 잘라내면서 반응의 효율을 높이기 위한 효소가 필요하였다.As seen in the table on the previous page, the products of ginsenosides to be obtained, such as Rh2 and Rg3, have no sugar structures in both Nos. 3 and 20, so the efficiency of the reaction while selectively cutting off sugars at Nos. 3 and 20 An enzyme was needed to increase the

1) Jose Arnau, Debbie Yaver, and Carsten M. Hjort, Strategies and Challenges for the Development of Industrial Enzymes Using Fungal Cell FactoriesGrand Challenges in fungal Biotechnology pp179-210 (2020), Chapter 17.1) Jose Arnau, Debbie Yaver, and Carsten M. Hjort, Strategies and Challenges for the Development of Industrial Enzymes Using Fungal Cell FactoriesGrand Challenges in fungal Biotechnology pp179-210 (2020), Chapter 17. 2) Bong-Kyu Song, Kyeng Min Kim, Kang-Duk Choi, and Wan-Taek Im, Production of the Rare Ginsenoside Rh2-MIX (20(S)-Rh2, 20(R)-Rh2, Rk2, and Rh3) by Enzymatic Conversion Combined with Acid Treatment and Evaluation of Its Anti-Cancer Activity, J.Microbiol.Biotechnol. (2017),27(7), 1233-12412) Bong-Kyu Song, Kyeng Min Kim, Kang-Duk Choi, and Wan-Taek Im, Production of the Rare Ginsenoside Rh2-MIX (20(S)-Rh2, 20(R)-Rh2, Rk2, and Rh3) by Enzymatic Conversion Combined with Acid Treatment and Evaluation of Its Anti-Cancer Activity, J. Microbiol. Biotechnol. (2017), 27(7), 1233-1241 3) Ru Zhang, Xue-Mei Huang, Hui-Juan Yan, Xin-Yi Liu, Qi Zhou, Zhi-Yong Luo, Xiao-Ning Tan, and Bian-Ling Zhang, Highly Selective Production of Compound K from Ginsenoside Rd by Hydrolyzing Glucose at C-3 Glycoside Using β-Glucosidase of Bifidobacterium breve ATCC 15700, J.Microbiol. Biotechnol. (2019), 29(3), 410-4183) Ru Zhang, Xue-Mei Huang, Hui-Juan Yan, Xin-Yi Liu, Qi Zhou, Zhi-Yong Luo, Xiao-Ning Tan, and Bian-Ling Zhang, Highly Selective Production of Compound K from Ginsenoside Rd by Hydrolyzing Glucose at C-3 Glycoside Using β-Glucosidase of Bifidobacterium breve ATCC 15700, J. Microbiol. Biotechnol. (2019), 29(3), 410-418 4) DIA SEPTIANI, HERMAN SURYADI, ABDUL MUN'IM, WIBOWO MANGUNWARDOYO, Production of cellulase from Aspergillus niger and Trichoderma reesei mixed culture in carboxymethylcellulose medium as sole carbon, Biodiversitas 20(12):3539-3544 (2019)4) DIA SEPTIANI, HERMAN SURYADI, ABDUL MUN'IM, WIBOWO MANGUNWARDOYO, Production of cellulase from Aspergillus niger and Trichoderma reesei mixed culture in carboxymethylcellulose medium as sole carbon, Biodiversitas 20(12):3539-3544 (2019)

본 발명에서는 인삼 (또는 홍삼) 유래의 항암제 또는 암관련피로(CRF)를 치료하기 위한 약제를 제조하는 공정 중 사포닌을 발효분해하는 효소반응의 필요성을 규명하고자 하였고, 미량의 진세노사이드 성분인 Rh2를 효과적으로 얻을 수 있는 효소를 개발하고자 시도하였다. 본 발명의 사포닌 분해효소를 제조한 후 제조한 사포닌 분해효소와 유기산에 의한 가수분해를 이용하여 알려진 다른 효소(예컨대 β-glucosidase 또는 glucoamylase 등)을 사용하였을 때보다 Rh2가 효과적으로 생성되는 것을 확인하고 본 발명을 완성하였다. In the present invention, the need for an enzyme reaction that fermentatively decomposes saponin during the manufacturing process of an anticancer drug derived from ginseng (or red ginseng) or a drug for treating cancer-related fatigue (CRF) was investigated, and a trace amount of ginsenoside component Rh2 An attempt was made to develop an enzyme that can effectively obtain After preparing the saponin-degrading enzyme of the present invention, using the saponin-degrading enzyme prepared and hydrolysis with an organic acid, it was confirmed that Rh2 is produced more effectively than when other known enzymes (eg, β-glucosidase or glucoamylase, etc.) are used. The invention was completed.

1. 인삼을 배양 발효시키기 위한 효소.1. Enzyme for culture fermentation of ginseng.

2. 상기 1에 있어서, 효소는 ginsenoside Rh2를 생성시키는 효소.2. The enzyme according to 1 above, wherein the enzyme produces ginsenoside Rh2.

3. 상기 1에 있어서, 효소는 ginsenoside Rb1으로부터 3번과 20번 말단의 glucose를 순차적으로 또는 동시에 절단시켜 ginsenoside F2를 생성시키는 효소.3. The enzyme according to 1 above, wherein the enzyme cleaves glucose at the 3rd and 20th terminals sequentially or simultaneously from ginsenoside Rb1 to produce ginsenoside F2.

4. 상기 1에 있어서, 효소는 glucosidase를 포함하는 효소.4. The enzyme according to 1 above, wherein the enzyme comprises glucosidase.

5. 상기 4에 있어서, glucosidase는 β-glucosidase 및/또는 α-glucosidase인 것을 특징으로 하는 효소.5. The enzyme according to 4 above, wherein the glucosidase is β-glucosidase and/or α-glucosidase.

6. 상기 4에 있어서, glucosidase를 전체 효소 중 5~30% 함유하는 것을 특징으로 하는 효소.6. The enzyme according to the above 4, characterized in that it contains 5 to 30% of the total enzyme glucosidase.

7. 상기 1에 있어서, 효소는 glucosidase 및 amylase를 포함하는 효소.7. The enzyme according to 1 above, wherein the enzyme includes glucosidase and amylase.

8. 상기 7에 있어서, amylase는 glucoamylase 및/또는 α-amylase A인 것을 특징으로 하는 효소.8. The enzyme according to the above 7, wherein the amylase is glucoamylase and/or α-amylase A.

9. 상기 7에 있어서, amylase를 전체 효소 중 10~30% 함유하는 것을 특징으로 하는 효소.9. The enzyme according to the above 7, wherein amylase is contained in an amount of 10 to 30% of the total enzyme.

10. 상기 1에 있어서, 기탁번호 KCCM11451P로 기탁된 Aspergillus niger 균주로부터 추출하여 얻어지는 효소.10. The enzyme obtained by extraction from the Aspergillus niger strain deposited with the accession number KCCM11451P according to the 1 above.

본 발명에서 개발한 생물전환효소를 사용하여 인삼을 발효시키면 항암제 또는 암관련피로 치료제의 유효 성분이 되는 ginsenoside Rh2를 효과적으로 많이 얻을 수 있다.When ginseng is fermented using the bioconverting enzyme developed in the present invention, it is possible to effectively obtain a large amount of ginsenoside Rh2, which is an active ingredient of an anticancer drug or a therapeutic agent for cancer-related fatigue.

도 1은 본 발명의 효소를 사용한 효소 반응, 효소를 사용하지 않은 반응, β-glucosidase 및 glucoamylase를 사용하여 반응시킨 후의 F2 및 Rh2와 Rg3를 정성적으로 확인한 결과이다.
도 2는 β-glucosidase를 각각 30, 60, 120, 240 mg 반응시킨 후의 F2 및 Rh2와 Rg3를 정성적으로 확인한 결과이다.
도 3은 β-glucosidase를 600mg 사용하여 반응시킨 후의 F2 및 Rh2와 Rg3를 정성적으로 확인한 결과이다.
1 is a result of qualitatively confirming F2 and Rh2 and Rg3 after an enzyme reaction using an enzyme of the present invention, a reaction without an enzyme, and a reaction using β-glucosidase and glucoamylase.
2 is a result of qualitative confirmation of F2 and Rh2 and Rg3 after reacting with β-glucosidase 30, 60, 120, and 240 mg, respectively.
3 is a result of qualitatively confirming F2, Rh2, and Rg3 after reacting with 600 mg of β-glucosidase.

[용어의 정의][Definition of Terms]

MCB: Master cell Bank의 약자로 기탁 균주(한국미생물보존센터 KCCM11451P)로부터 2% 인삼agar배지에 계대배양을 거쳐 앰플로 제작하여 냉장 보관하고 있는 균주.MCB: Abbreviation for Master Cell Bank, a strain that is subcultured in 2% ginseng agar medium from the deposited strain (Korea Microbial Conservation Center KCCM11451P), produced as an ampoule, and stored in a refrigerator.

균주배양: MCB 3차계대 plate를 8%인삼agar배지 Petridish에 배양하는 단계 Strain culture: Step of culturing MCB 3rd passage plate in 8% ginseng agar medium Petridish

본배양: Petridish에서 배양된 Aspergillus Niger를 대량화 시키기 위해 Case 배지에서 접종하는 단계Main culture: Inoculation step in case medium to bulk up Aspergillus Niger cultured in Petridish

Harvest: 배지와 효소를 분리하여 Crude한 효소를 얻는 공정Harvest: The process of obtaining crude enzymes by separating the medium and enzymes

한외여과: 배양액 중 효소가 포함된 100kDa 이상의 효소액을 얻기 위해 여과하는 공정Ultrafiltration: A process of filtration to obtain an enzyme solution of 100 kDa or more containing enzymes in the culture medium

주정침지: 여과된 효소액에 주정을 첨가하여 효소를 침전 시키는 공정Alcohol immersion: A process of precipitating the enzyme by adding alcohol to the filtered enzyme solution

원심분리: 주정과 침전물(효소)이 혼합되어 있는 상태에서 침전물(효소)만을 획득하기 위한 공정 Centrifugation: A process to obtain only the precipitate (enzyme) in a state in which alcohol and the precipitate (enzyme) are mixed

동결건조(F/D, freeze drying): 침전물(효소)를 분말화하는 공정 Freeze drying (F/D, freeze drying): The process of powdering the precipitate (enzyme)

[실시예][Example]

다음과 같은 시약 및 기구를 사용하였다.The following reagents and instruments were used.

원료 및 시약 정보 Raw material and reagent information 시약reagent 제조처manufacturer 인삼 분말 ginseng powder 보국약품 / 일화Boguk Pharmaceutical / Ilhwa Agar 분말 Agar Powder Junsei / MB cellJunsei / MB cell 밀기울 bran 사조 동아원 / 유스마일Sajo Dongawon / Youth Smile Intermediate 1Intermediate 1 CRF 치료용조성물의 중간 산물 Intermediate product of CRF therapeutic composition Acetic AcidAcetic Acid DAE JUNG / 유니케미칼DAE JUNG / Uni-Chemical 95% Ethanol95% Ethanol ㈜대한주정라이프 / 주정판매월드Daehan Liquor Life Co., Ltd. / Alcohol Sales World Sodium acetate sodium acetate DAE JUNG / 프라임사이언스DAE JUNG / Prime Science

기기 및 자재의 정보 Device and material information DeviceDevice ModelModel CompanyCompany 저울 Scale AP250DAP250D OHAUSOHAUS 고압멸균기 Autoclave LAC-5100SDLAC-5100SD 대한랩테크 Daehan Lab Tech 교반기 agitator Lab-stirrer LR400BLab-stirrer LR400B Yamato Yamato Incubator Incubator IB39IB39 Vision사이언스 Vision Science 원심분리기centrifuge Continent 512R plusContinent 512R plus 한일과학산업Hanil Science Industry UPLCUPLC Acquity UPLC H-Class Acquity UPLC H-Class Waters Waters 500 mL flask500 mL flask -- Schott DuranSchott Duran 500 mL glass column500 mL glass column -- Pyrex Glass Pyrex Glass Evaporator Evaporator 주문제작 custom order 두영엔지니어링 Dooyoung Engineering Shaking waterbath Shaking waterbath LB-SW025 LB-SW025 LK LAB Korea LK LAB Korea HP-20 resin HP-20 resin -- 삼양 Samyang BrixmeterBrixmeter PAL-3LPAL-3L AtagoAtago pH meterpH meter IP54 IP54 Mettler ToledoMettler Toledo

1.One. 효소가 관여하는 반응reactions involving enzymes

인삼으로부터 하기 반응 중 Rh2와 Rg3와 같은 ginsenoside를 함유하는 항암제 또는 암관련피로 치료용 약제를 제조하는 단계 중 일부는 다음과 같다. 이 반응 중 본 발명의 효소를 BST101이라고 하여 표기하였다.Among the following reactions from ginseng, some of the steps of preparing an anticancer agent containing ginsenoside such as Rh2 and Rg3 or a drug for treating cancer-related fatigue are as follows. In this reaction, the enzyme of the present invention was denoted as BST101.

Figure 112021105678453-pat00002
Figure 112021105678453-pat00002

Intermediate 1: 인삼 유래 CRF치료용 조성물 제조과정 중 효소 반응 이전 단계의 starting material Intermediate 1: Starting material before the enzymatic reaction during the manufacturing process of a composition for CRF treatment derived from ginseng

Intermediate 2: 인삼 유래 CRF치료용 조성물 제조과정 중 효소 반응 직후의 생성물Intermediate 2: Product immediately after enzymatic reaction during the manufacturing process of ginseng-derived CRF treatment composition

위의 반응 중 BST101은 인삼 원료의 Intermediate1(Rb1)과 반응하여 Rb1의 20번탄소 위치에 연결되어 있는 2개의 당 중 더 바깥쪽의 당을 잘라내어 Rd를 생성시키고, 다시 Rd로부터 3번 탄소 위치에 연결되어 있는 2개의 당 중 더 바깥쪽의 당을 잘라내어 F2를 생성시키는데, Rd와 F2를 합하여 Intermediate 2라고 칭하였다. 이와 같은 과정은 Rd가 먼저 생성되고 그 후에 F2가 만들어지기도 하는 순차적인 반응으로 진행될 수도 있고, 또한 Rd를 거치지 않고 Rb1으로부터 20번과 3번 위치의 당이 동시에 절단되는 하나의 단계로 F2가 생성되어질 수도 있다. 어느 방법으로든 Intermediate 2 (F2 성분과 Rd 성분으로 구성)를 생성시키고, 생성된 F2와 Rd는 각각 산 가수분해 반응을 거쳐 각각 Rh2와 Rg3의 최종생성물이 된다. 최종 CRF치료용 조성물을 제조하는 단계에서는 Rg3를 더 많이 얻기 위해 중간 산 가수분해 단계에서 Intermediate 1(Rb1)을 더 사용하게 되는데 이는 본 발명의 효소 반응 단계와는 무관하므로 더 이상 언급하지 않겠다. BST101 효소는 Intermediate 1으로부터 F2를 생성시켜 Rh2를 생성시키는 유일한 반응 ⓛ에 필수적인 효소라고 할 수 있다. In the above reaction, BST101 reacts with Intermediate1 (Rb1) of ginseng raw material to cut the outermost sugar out of the two sugars connected to the 20th carbon position of Rb1 to produce Rd, and then to the 3rd carbon position from Rd again. The outermost one of the two linked sugars is cut to form F2, and Rd and F2 are combined to be called Intermediate 2. Such a process may proceed as a sequential reaction in which Rd is first produced and then F2 is produced. Also, F2 is produced in one step in which the sugars at positions 20 and 3 are simultaneously cleaved from Rb1 without going through Rd. it may become Either way, Intermediate 2 (composed of F2 component and Rd component) is generated, and the generated F2 and Rd undergo acid hydrolysis, respectively, to become final products of Rh2 and Rg3, respectively. In the step of preparing the final composition for CRF treatment, Intermediate 1 (Rb1) is further used in the intermediate acid hydrolysis step to obtain more Rg3, which is not related to the enzymatic reaction step of the present invention, so it will not be mentioned any more. BST101 enzyme can be said to be an essential enzyme for the only reaction ⓛ that generates F2 from Intermediate 1 to produce Rh2.

이하의 실험예에서는 인삼 유래 항암제 또는 암관련피로 치료용 약제의 지표 성분 중 하나인 Rh2 성분을 생성하는 과정 중에서 BST101의 공정이 반드시 필요한지 여부를 규명하고, BST101이 상용화된 공지의 단일 효소들 대비 효과가 우월한지 여부를 확인하고자 하였다. In the following experimental example, it is investigated whether the process of BST101 is absolutely necessary in the process of generating Rh2 component, which is one of the indicator components of ginseng-derived anticancer drugs or drugs for the treatment of cancer-related fatigue, and the effect of BST101 compared to known single enzymes commercially available It was attempted to determine whether the

2.2. 공지 효소와의 대비 실험Contrast experiments with known enzymes

본 발명의 효소와 공지 효소의 효과를 대비하기 위하여 다음과 같이 실험을 설계하였다. 효소 표준품은 시그마알드리치 또는 PubChem에서 구입하여 사용하였다.In order to compare the effects of the enzyme of the present invention and the known enzyme, the experiment was designed as follows. Enzyme standards were purchased from Sigma-Aldrich or PubChem and used.

각 실험군의 효소반응 단계에서 적용한 효소의 구성 Composition of the enzyme applied in the enzymatic reaction step of each experimental group group 구성group configuration 분량amount 비고note 실험 1Experiment 1 Column 1. BST101
Column 2. 효소반응 x
Column 3. β-glucosidase
Column 4. Glucoamylase
Column 1. BST101
Column 2. Enzyme reaction x
Column 3. β-glucosidase
Column 4. Glucoamylase
0.3g
0
26.4mg
47.4mg
0.3g
0
26.4mg
47.4mg


제조사: 시그마알드리치
제조사: 시그마알드리치


Manufacturer: Sigma Aldrich
Manufacturer: Sigma Aldrich
실험 2Experiment 2 Column 1. β-glucosidase Column 2. β-glucosidase
Column 3. β-glucosidase
Column 4. β-glucosidase
Column 1. β-glucosidase Column 2. β-glucosidase
Column 3. β-glucosidase
Column 4. β-glucosidase
30mg
60mg
120mg
240mg
30mg
60mg
120mg
240mg
제조사: 시그마알드리치
또는 PubChem
Manufacturer: Sigma Aldrich
or PubChem
실험 3Experiment 3 Column 1. β-glucosidaseColumn 1. β-glucosidase 600mg 600mg 제조사: 시그마알드리치Manufacturer: Sigma Aldrich

0.02M sodium acetate buffer 용액 90mL을 500ml의 삼각 플라스크에 넣고 intermediate 1 시료 3g을 넣는다. 위의 Table 3의 효소 구성에 따라 각 효소를 각각 넣는다. Put 90 mL of 0.02 M sodium acetate buffer solution into a 500 mL Erlenmeyer flask, and add 3 g of intermediate 1 sample. Add each enzyme according to the enzyme composition in Table 3 above.

상기 반응물을 32℃에서 100rpm에서 24시간동안 shake하여 효소 반응을 진행시킨다. 상기 반응물을 일부 채취하여 TLC로 반응 여부(F2 생성물 확인)를 확인한다. 이 반응물에 270mL의 주정을 넣고 실온에서 정치시킨다. 이 용액을 5500rpm, 4℃, 5분 동안 원심분리하여 침전물과 상등액을 완전히 분리시킨다. 상등액을 취하여 감압건조기에서 50℃, 76cmHg로 감압농축시킨다. 농축물을 감압건조기에서 50℃, 76cmHg에서 감압건조시킨다. 50% 초산을 위의 500mL 삼각플라스크에 넣는다. intermediate 2 건조 분말과 intermediate 1 건조 분말 2g을 상기 용액에 첨가한 후 70℃에서 6시간동안 교반시킨다. 반응물을 일부 채취하여 TLC로 Rg3와 Rh2를 확인한다. 반응물을 실온으로 식힌 후 300mL 정제수를 가한다. 250mL HP20 레진을 충전시킨 컬럼을 주정 2 bead volume (약 500mL)으로 세척한 후, 물 10 bead volume (약 2.5L)으로 세척한다. 위의 컬럼에 이제까지의 반응물을 주입한다. 반응물을 모두 loading하고 나면 정제수를 계속해서 컬럼에 부어준다. 통액의 pH가 5.0 이상이 될 때까지 정제수를 부어준다. pH를 맞춘 상기 컬럼에 625mL의 주정을 주입한 후 컬럼을 통과한 여액을 모은다. 모아진 여액을 감압농축기로 옮겨 50℃, 76cmHg에서 감압농축시킨다. 감압농축물을 감압건조기로 이송하여 50℃, 76cmHg에서 감압건조시킨다. 건조시킨 시료를 막자사발에서 분쇄한 후 무게를 측정하여 최종 ginsenoside를 얻는다. The reaction was shaken at 32° C. at 100 rpm for 24 hours to proceed with the enzymatic reaction. A portion of the reactant is sampled to check whether the reaction occurs (confirmation of F2 product) by TLC. 270 mL of alcohol was added to the reaction mixture and allowed to stand at room temperature. This solution was centrifuged at 5500 rpm, 4° C., for 5 minutes to completely separate the precipitate and the supernatant. The supernatant is taken and concentrated under reduced pressure at 50°C and 76 cmHg in a vacuum dryer. The concentrate is dried under reduced pressure at 50°C and 76 cmHg in a vacuum dryer. Add 50% acetic acid to the 500mL Erlenmeyer flask above. After adding intermediate 2 dry powder and intermediate 1 dry powder 2 g to the solution, the mixture was stirred at 70° C. for 6 hours. A portion of the reactant is collected and Rg3 and Rh2 are confirmed by TLC. After the reaction was cooled to room temperature, 300 mL of purified water was added. The column filled with 250mL HP20 resin is washed with 2 bead volume (about 500mL) of alcohol, and then washed with 10 bead volume (about 2.5L) of water. Inject the reactants so far into the column above. After all the reactants are loaded, purified water is continuously poured into the column. Pour purified water until the pH of the solution reaches 5.0 or higher. After injecting 625 mL of alcohol into the column adjusted to the pH, the filtrate passing through the column is collected. The collected filtrate is transferred to a vacuum concentrator and concentrated under reduced pressure at 50°C and 76 cmHg. The concentrated under reduced pressure was transferred to a reduced pressure dryer and dried under reduced pressure at 50°C and 76 cmHg. The dried sample is ground in a mortar and weighed to obtain the final ginsenoside.

3. 시험분석법 3. Test method

1) 정성분석 (TLC) 1) Qualitative Analysis (TLC)

시료용액을 캐필러리 등의 가는 관을 이용하여 흡수시킨다. 용매를 빨아들인 캐필러리의 끝을 TLC 플레이트에 점적하면 시료용액이 플레이트에 스며들어 spot이 생성되게 한다. 시료용액이 점적된 TLC 플레이트 하부를 전개 용매를 적정량으로 채운 병에 담가 뚜껑을 닫는다. 이 때, 뚜껑을 닫지 않으면 플레이트 상에서 용매가 증발하므로 주의한다. 용매가 완전히 다 올라가기 직전에 플레이트를 용매에서 꺼내 건조시킨다. 건조된 TLC 플레이트를 10% 황산 용매에 담근 후 고온의 hot-plate에서 가열시키면 TLC플레이트 위의 시료가 발색되면서 정성 분석이 가능하다. Absorb the sample solution using a thin tube such as a capillary. If the tip of the capillary, which has absorbed the solvent, is dripped onto the TLC plate, the sample solution permeates the plate and creates a spot. Place the lower part of the TLC plate on which the sample solution is dripped into a bottle filled with an appropriate amount of the developing solvent and close the lid. At this time, be careful as the solvent evaporates on the plate if the lid is not closed. Just before the solvent has completely risen, the plate is removed from the solvent and dried. If the dried TLC plate is immersed in 10% sulfuric acid solvent and heated in a hot-plate at a high temperature, the sample on the TLC plate develops color and qualitative analysis is possible.

2) 정량분석 (HPLC) 2) Quantitative analysis (HPLC)

다음과 같이 표준품과 HPLC에 필요한 재료를 준비하였다.Standards and materials required for HPLC were prepared as follows.

인삼추출물의 표준품은 다음과 같다.Standard products of ginseng extract are as follows.

- Ginsenoside Rg3 (20S) pure product (Chromadex)- Ginsenoside Rg3 (20S) pure product (Chromadex)

- Ginsenoside Rg3 (20R) pure product (Chromadex)- Ginsenoside Rg3 (20R) pure product (Chromadex)

- Ginsenoside Rh2 (20S) pure product (Chromadex)- Ginsenoside Rh2 (20S) pure product (Chromadex)

- Ginsenoside Rh2 (20R) pure product (Chromadex)- Ginsenoside Rh2 (20R) pure product (Chromadex)

사용 장비:Equipment used:

- Pump and Autosampler System, Waters Alliance e2695- Pump and Autosampler System, Waters Alliance e2695

- Photodiode Array Detector, Waters 2998- Photodiode Array Detector, Waters 2998

- Empower 3 chromatography management system- Empower 3 chromatography management system

용매menstruum

- Water (HPLC grade)- Water (HPLC grade)

- Acetonitrile (HPLC grade)- Acetonitrile (HPLC grade)

- Methanol (HPLC grade)- Methanol (HPLC grade)

- DMSO (Analytical grade)- DMSO (Analytical grade)

- Trifluoroacetic acid (TFA, Analytical grade)- Trifluoroacetic acid (TFA, Analytical grade)

분석조건Analysis conditions

- Column: Kinetex C18 250 mm x 4.6 mm, 5 um (Phenomenex) or equivalent.- Column: Kinetex C18 250 mm x 4.6 mm, 5 um (Phenomenex) or equivalent.

- Detection Wavelength: 203 nm- Detection Wavelength: 203 nm

- Injection volume: 10 uL- Injection volume: 10 uL

- Column temperature: 25℃- Column temperature: 25℃

- Autosampler temperature: 25℃- Autosampler temperature: 25℃

- Flow rate: 1 mL/min- Flow rate: 1 mL/min

- Mobile phase: Solvent A - Acetonitrile + 50 ppm TFA, Solvent B - Water + 50 ppm TFA- Mobile phase: Solvent A - Acetonitrile + 50 ppm TFA, Solvent B - Water + 50 ppm TFA

Gradient 농도 구배 조건 Gradient Concentration Gradient Conditions TimeTime Solvent A (%)Solvent A (%) Solvent B (%)Solvent B (%) 00 2525 7575 3232 5050 5050 5050 00 100100 5555 00 100100 6262 2525 7575 6565 2525 7575

분석시료Analytical sample

- Blank solution:- Blank solution:

Blank solution A: MeOH/Water = 8:2 (V/V)Blank solution A: MeOH/Water = 8:2 (V/V)

Blank solution B: DMSO/Blank solvent A = 2:8 (V/V)Blank solution B: DMSO/Blank solvent A = 2:8 (V/V)

- 표준용액의 제조: 10 mL volumetric 플라스크에 1 mg의 진세노사이드 20S-Rh2와 20R-Rh2, 2 mg의 20S-Rg3를 각각 넣고 blank solvent A를 표선까지 채운다. 5 mL volumetric 플라스크에 2 mg의 20R-Rg3를 넣고 2 mL DMSO 용매를 넣고 녹인 후 blank solution A로 표선까지 채운다. 4개의 표준품을 녹인 volumetric 플라스크를 1분 동안 초음파 진동시킨 후 0.22 ㎕ PTFE 실린지 필터를 사용하여 여과시키고 이 여액을 표준용액으로 사용한다.- Preparation of standard solution: In a 10 mL volumetric flask, add 1 mg of ginsenoside 20S-Rh2, 20R-Rh2, and 2 mg of 20S-Rg3, respectively, and fill with blank solvent A up to the marked line. Add 2 mg of 20R-Rg3 to a 5 mL volumetric flask, add 2 mL DMSO solvent, dissolve, and fill with blank solution A up to the mark. After ultrasonically vibrating the volumetric flask in which 4 standards were dissolved for 1 minute, filter it using a 0.22 μl PTFE syringe filter, and use this filtrate as a standard solution.

- 시험용액의 제조: 25 mg의 시료를 10 mL volumetric 플라스크에 넣고 8 mL의 blank solution A를 넣고 5분 동안 초음파 진동시킨 후 표선까지 blank solution A로 채운다. 이 용액을 0.22 ㎛ PTFE 실린지 필터를 사용하여 여과시키고 이 여액을 시험용액으로 사용한다.- Preparation of test solution: Put a 25 mg sample in a 10 mL volumetric flask, add 8 mL of blank solution A, vibrate with ultrasonic waves for 5 minutes, and fill with blank solution A up to the mark. This solution is filtered using a 0.22 ㎛ PTFE syringe filter, and this filtrate is used as the test solution.

실험방법Experimental method

컬럼 온도를 25℃로 설정한 후 초기 이동상 용매를 지속적으로 흘려보내 HPLC를 평형화시킨다. Baseline이 안정화 되면 아래 순서로 시료를 주입한다.After setting the column temperature to 25 °C, the initial mobile phase solvent is continuously flowed to equilibrate the HPLC. When the baseline is stabilized, inject the sample in the following order.

① Blank Solution A① Blank Solution A

② Blank Solution B② Blank Solution B

③ Ginsenoside Rg3 (20S) reference solution preparation③ Ginsenoside Rg3 (20S) reference solution preparation

④ Ginsenoside Rg3 (20R) reference solution preparation④ Ginsenoside Rg3 (20R) reference solution preparation

⑤ Ginsenoside Rh2 (20S) reference solution preparation⑤ Ginsenoside Rh2 (20S) reference solution preparation

⑥ Ginsenoside Rh2 (20R) reference solution preparation⑥ Ginsenoside Rh2 (20R) reference solution preparation

⑦ Test solution ⑦ Test solution

함량 계산content calculation

진세노사이드 Rg3 함량(%)Ginsenoside Rg3 content (%)

Figure 112021105678453-pat00003
Figure 112021105678453-pat00003

A1 = 시험용액의 진세노사이드 S-Rg3 피크면적A1 = Ginsenoside S-Rg3 peak area of the test solution

A2 = 시험용액의 진세노사이드 R-Rg3 피크면적 A2 = Ginsenoside R-Rg3 peak area of the test solution

A3 = 표준용액의 진세노사이드 S-Rg3 피크면적 A3 = Ginsenoside S-Rg3 peak area of standard solution

A4 = 표준용액의 진세노사이드 R-Rg3 피크면적 A4 = Ginsenoside R-Rg3 peak area of standard solution

m1 = 시료무게 (mg)m1 = sample weight (mg)

m2 = 표준품 S-Rg3의 무게 (mg) m2 = weight of standard S-Rg3 (mg)

m3 = 표준품 R-Rg3의 무게 (mg)m3 = weight of standard R-Rg3 (mg)

진세노사이드 Rh2의 함량(%)Ginsenoside Rh2 content (%)

Figure 112021105678453-pat00004
Figure 112021105678453-pat00004

A1 = 시험용액의 진세노사이드 S-Rh2 피크면적 A1 = Ginsenoside S-Rh2 peak area of the test solution

A2 = 시험용액의 진세노사이드 R-Rh2 피크면적 A2 = Ginsenoside R-Rh2 peak area of the test solution

A3 = 표준용액의 진세노사이드S-Rh2 피크면적 A3 = Ginsenoside S-Rh2 peak area of standard solution

A4 = 표준용액의 진세노사이드 R-Rh2 피크면적 A4 = Ginsenoside R-Rh2 peak area of standard solution

m1 = 시료무게 (mg)m1 = sample weight (mg)

m2 = 표준품 S-Rh2의 무게 (mg) m2 = weight of standard S-Rh2 (mg)

m3 = 표준품 R-Rh2의 무게 (mg)m3 = Weight of standard R-Rh2 (mg)

[분석결과][Analysis]

1) 실험 1 1) Experiment 1

실험 1에서는 효소 반응 단계에서 아래와 같은 각각의 효소로 효소 반응을 거쳐서 생성된 최종 생성물을 정성분석(TLC) 및 정량분석(HPLC)으로 분석하여 BST101의 유/무 및 공지 효소(β-glucosidase 또는 Glucoamylase)와의 비교실험을 통해 BST101의 효소의 우수성을 입증하고자 하였다. In Experiment 1, the final product produced through the enzymatic reaction with each of the following enzymes in the enzymatic reaction step was analyzed by qualitative analysis (TLC) and quantitative analysis (HPLC), and the presence/absence of BST101 and known enzymes (β-glucosidase or Glucoamylase ) to prove the superiority of the enzyme of BST101 through a comparative experiment.

정성분석 결과, 본 발명의 효소 BST101을 이용한 효소반응을 통해 얻은 생성물 Intermediate 2에서 F2의 진한 band를 확인하였고, 최종생성물 내에서도 Rg3와 Rh2의 진한 band를 확인하였다 (도 1). As a result of qualitative analysis, a dark band of F2 was confirmed in Intermediate 2, a product obtained through an enzymatic reaction using the enzyme BST101 of the present invention, and dark bands of Rg3 and Rh2 were also confirmed in the final product (FIG. 1).

실험 1의 HPLC 정량분석 결과 HPLC quantitative analysis result of Experiment 1 BST101BST101 효소반응 xenzymatic reaction x β-glucosidaseβ-glucosidase GlucoamylaseGlucoamylase Rg3Rg3 12.39%12.39% 18.38%18.38% 19.59%19.59% 19.44%19.44% Rh2Rh2 7.87%7.87% 0.29%0.29% 0.28%0.28% 0.13% 0.13%

정량분석 결과를 보면 Rg3 12.39%, Rh2 7.87%의 함량을 나타냄에 따라 TLC의 결과와 일치함을 확인하였다. 반면에 효소반응을 하지 않은 생성물 Intermediate 2에서는 F2의 band를 확인할 수 없었으며, 최종생성물 내에서도 Rh2 band를 확인 할 수 없었다. HPLC 정량분석 결과에서는 Rg3는 18.38%, Rh2는 0.29%를 나타냄에 따라 효소반응을 하지 않은 반응에서는 Rh2의 생성이 미미하였다. According to the quantitative analysis results, it was confirmed that the contents of Rg3 12.39% and Rh2 7.87% were consistent with the results of TLC. On the other hand, the F2 band could not be confirmed in Intermediate 2, a product that did not undergo enzymatic reaction, and the Rh2 band could not be confirmed even in the final product. As a result of HPLC quantitative analysis, Rg3 was 18.38% and Rh2 was 0.29%, so the production of Rh2 was insignificant in the reaction without enzymatic reaction.

공지의 효소 β-glucosidase와 Glucoamylase를 각각 효소반응 단계에 처리했을 때 생성되는 Intermediate 2에서는 F2의 band를 확인할 수 없었으며, 최종생성물인 CRF치료용 조성물 내에서도 Rh2 band를 확인 할 수 없었다 (도 1). HPLC 정량분석 결과에서는 β-glucosidase의 경우 Rg3는 18.38%, Rh2는 0.29%를 나타내었고, Glucoamylase의 경우 Rg3는 19.44%, Rh2는 0.13%를 나타냄에 따라 단일의 공지 효소로 효소반응을 시킬 경우 생성되는 CRF치료용 조성물 내의 Rh2 함량은 미미하였다. In Intermediate 2 produced when the known enzymes β-glucosidase and Glucoamylase were treated in the enzymatic reaction step, respectively, the F2 band could not be confirmed, and the Rh2 band could not be confirmed even in the final product, CRF treatment composition (Fig. 1) . As a result of HPLC quantitative analysis, Rg3 was 18.38% and Rh2 0.29% in the case of β-glucosidase, and in the case of glucoamylase, Rg3 was 19.44% and Rh2 0.13% The Rh2 content in the composition for CRF treatment was insignificant.

2) 실험 2 2) Experiment 2

Rh2 생성의 주요 기전은 BST101 효소반응 단계에서 intermediate 1 (ginsenoside Rb1)의 3번 및 20번 탄소에 결합된 2개의 Glucose 중 바깥쪽 Glucose 사슬을 모두 끊어냄으로써 중간체인 F2가 생성되는 반응이다. 본 발명에서는 BST101을 여러가지 효소가 복합된 복합효소라고 가정하였고, 그 중에서도 β-glucosidase 성분이 이렇게 glucose를 잘라내는 작용을 하여서 F2가 생성될 것으로 예상을 하고, 상기의 실험1의 효소반응 단계에서 단일의 β-glucosidase의 용량과 반응 정도에 용량 의존도가 있는지를 확인하고자 β-glucosidase를 각각 30, 60, 120, 240mg으로 처리하여 생성물을 분석하였다. 그러나 이 실험 2에서 정성분석 (TLC) 결과 F2와 Rh2는 모두 생성되지 않았으며, β-glucosidase 반응시 β-glucosidase의 농도와 무관하게 β-glucosidase 반응 모든 그룹에서 평균 Rg3 19.59% 및 Rh2 0.78%가 생성되었다. The main mechanism of Rh2 generation is the reaction in which the intermediate F2 is produced by cleaving all the outer glucose chains among the two glucose bonded to the 3rd and 20th carbons of intermediate 1 (ginsenoside Rb1) in the BST101 enzymatic reaction step. In the present invention, it is assumed that BST101 is a complex enzyme in which various enzymes are complexed, and among them, the β-glucosidase component acts to cut glucose in this way and F2 is expected to be produced, and in the enzymatic reaction step of Experiment 1, a single In order to check whether there is a dose dependence on the dose and reaction degree of β-glucosidase, the products were analyzed by treatment with 30, 60, 120, and 240 mg of β-glucosidase, respectively. However, as a result of qualitative analysis (TLC) in Experiment 2, neither F2 nor Rh2 were generated, and in the β-glucosidase reaction, regardless of the concentration of β-glucosidase, the average Rg3 of 19.59% and Rh2 of 0.78% in all the β-glucosidase groups was created

실험 2의 HPLC 결과 HPLC Results of Experiment 2 β-glucosidaseβ-glucosidase 30mg30mg 60mg60mg 120mg120mg 240mg240mg Rg3Rg3 19.75%19.75% 19.46%19.46% 19.57%19.57% 19.57%19.57% Rh2Rh2 0.77%0.77% 0.78%0.78% 0.79%0.79% 0.76% 0.76%

3) 실험 3 3) Experiment 3

실험 2의 결과로 β-glucosidase의 양을 증가시켰음에도 β-glucosidase 만에 의한Rh2 생성량은 미미하여 β-glucosidase를 고용량(600mg)으로 효소반응 단계에서 반응시켜서 생성되는 Rh2의 함량을 분석하고자 하였다. As a result of Experiment 2, although the amount of β-glucosidase was increased, the amount of Rh2 produced by β-glucosidase alone was insignificant. Therefore, the content of Rh2 produced by reacting β-glucosidase with a high dose (600 mg) in the enzymatic reaction step was analyzed.

실험 3의 HPLC의 결과 Results of HPLC of Experiment 3 β-glucosidaseβ-glucosidase 600mg 600mg Rg3Rg3 19.14%19.14% Rh2Rh2 0.40%0.40%

β-glucosidase 단일 효소의 고용량을 효소반응 단계에서 처리하였을 때, 도 3의 정성 분석 및 Table 7에서 보는 바와 같이 Rh2는 0.40% 함량을 나타내어 β-glucosidase의 양과 상관없이 Rh2는 단일효소의 반응으로 생성되지 않음을 알 수 있었다. When a high dose of β-glucosidase single enzyme was treated in the enzymatic reaction step, as shown in the qualitative analysis of FIG. 3 and Table 7, Rh2 showed a content of 0.40%, so regardless of the amount of β-glucosidase, Rh2 was produced by a single enzyme reaction knew it wasn't.

실험 결과를 기반으로 BST101의 활성 기전은 Intermediate 2에서 F2가 생성된 후, 최종 산물인 Rh2를 생성시킨다. 공지의 β-glucosidase 또는 Glucoamylase의 단일효소 반응에서 생성되는 F2 및 Rh2보다 본 발명의 BST101의 효소반응으로 인한 F2와 Rh2를 얻을 수 있음을 확인하였다.Based on the experimental results, the activation mechanism of BST101 is to generate the final product, Rh2, after F2 is generated in Intermediate 2. It was confirmed that F2 and Rh2 resulting from the enzymatic reaction of BST101 of the present invention could be obtained rather than F2 and Rh2 generated from a single enzyme reaction of β-glucosidase or glucoamylase.

4. 본 발명의 효소의 제조4. Preparation of the enzyme of the present invention

균주 (Aspergillus Niger, 한국미생물보존센터 기탁번호 KCCM11451P)를 Petridish에 분주하여 loading 후 Incubator에 넣고 28℃에서 72-96 hr 배양한다. 균주 배양한 배지를 모두 긁어내어 균주액을 조제 후 인삼분말과 밀기울이 함유된 드럼통에 넣어 혼합한다. 이를 본 배양 트레이에 평평하게 편 후, 28℃에서 96~144 Hr 배양하고 습도는 50-60% 유지시킨다. 배양이 완료된 배지를 물에 넣어 4시간 교반 후, 탈수기에 돌려 액과 배지를 분리한다. 이때 생성된 배양액을 5500rpm으로 5분 원심분리하여 상층액을 감압여과기로 여과한다. 100KDa이상의 효소액을 투입량의 1/10이 될 때까지 농축시킨다. 농축여과액의 3배 해당량의 주정 (95% EtOH)을 첨가하여 효소를 침지한 후, 원심분리하여 효소를 획득한다. 본 발명에서는 이와 같은 방식으로 BST-001, BST-002, BST-003, BST-005, 및 BST-006까지 5LOT의 시료를 제조하였다.The strain (Aspergillus Niger, Accession No. KCCM11451P, Korea Microbial Conservation Center) is aliquoted into Petridish, loaded, put in an incubator, and incubated at 28°C for 72-96 hr. Scrape all of the cultured culture medium to prepare a strain solution, then put it in a drum containing ginseng powder and bran and mix. After flattening it on the main culture tray, incubate at 28°C for 96-144 Hr, and maintain 50-60% humidity. The cultured medium is put in water and stirred for 4 hours, then returned to a dehydrator to separate the liquid and medium. At this time, the resulting culture solution is centrifuged at 5500 rpm for 5 minutes, and the supernatant is filtered with a reduced pressure filter. Enzyme solution of 100 KDa or more is concentrated until it becomes 1/10 of the input amount. After immersing the enzyme by adding alcohol (95% EtOH) in an amount equivalent to 3 times of the concentrated filtrate, centrifugation is performed to obtain the enzyme. In the present invention, 5 LOT samples were prepared up to BST-001, BST-002, BST-003, BST-005, and BST-006 in this way.

본 발명에서 제조한 5 LOT의 BST101 효소의 단백질을 i) HPLC(SEC 및 IEX) ii) emPAI iii) reference protein을 이용한 Extracted Ion Chromatography 및 iv) Extracted Ion Chromatography 분석 결과 peptide의 함량 분석을 통한 단백질의 함량 분석으로 분석하였을 때, 다음과 같은 종류의 효소로 구성되어 있음을 확인하였다.The protein of 5 LOT BST101 enzyme prepared in the present invention was analyzed using i) HPLC (SEC and IEX) ii) emPAI iii) Reference protein and Extracted Ion Chromatography and iv) Extracted Ion Chromatography Analysis Results Protein content through peptide content analysis When analyzed by analysis, it was confirmed that it was composed of the following types of enzymes.

BST101효소의 단백질 동정 결과 Protein identification result of BST101 enzyme

Figure 112021105678453-pat00005
Figure 112021105678453-pat00005

본 발명의 효소는 glucosidase (alpha-glucosidase 및 beta-glucosidase)로서 5~30%를 함유하며, 더 구체적으로는 glucosidase 외에 amylase (glucoamylase 및 alpha amylase A)로서 10~30%를 함유하는 것으로 보인다. 효소를 이용하는 배양 과정에서 글루코스(glucose), 아밀로스(amylose), 자일로스(xylose), 푸라노스(furanose), 갈락토스(galactose), 아라비노스(arabinose) 등과 같은 수많은 당을 제거하게 될 수 있으므로 이와 같은 당류를 제거하는 다양한 종류의 효소들이 복합적으로 포함되어 있는 것을 확인할 수 있다.The enzyme of the present invention contains 5 to 30% as glucosidase (alpha-glucosidase and beta-glucosidase), and more specifically, 10 to 30% as amylase (glucoamylase and alpha amylase A) in addition to glucosidase. In the process of culturing using enzymes, numerous sugars such as glucose, amylose, xylose, furanose, galactose, and arabinose can be removed, so such It can be seen that various types of enzymes that remove sugars are included in a complex manner.

본 발명의 실시과정을 요약하면 단일 효소로 각각 효소 반응을 시켰을 때 Rh2의 중간 생성물인 F2는 생성되지 않았다. F2를 생성시키기 위해서는 진세노사이드 Rb1에서 3번과 20번 위치 탄소에 연결되어 있는 당의 결합이 모두 분해가 되어야 하는데, β-glucosidase 단일 효소는 진세노사이드 Rb1의 3번 탄소에 연결되어 있는 당의 결합만 선택적으로 분해하는 것으로 알려져 있고, 다른 cellulase 효소들은 20번 탄소에 연결되어 있는 당의 결합만을 분해하는 것으로 알려져 있다. Aspergillus niger에서 추출한 복합 효소는 다양한 cellulase 효소들이 함유되어 있지만, 먼저 진세노사이드 Rb1의 20번 위치 탄소에 연결된 바깥쪽 당을 잘라내어 진세노사이드 Rd를 생성시키고, 그 후에 순차적으로 Rd의 3번 탄소에 연결된 바깥쪽 당을 잘라내어 F2가 생성되는 것으로 보고되고 있다. 본 발명에서는 이와 같은 순차 반응을 한번에 진행시킬 수 있는 효소를 개발하여 진세노사이드 Rb1의 3번 위치 탄소와 20번 위치 탄소에 연결되어 있는 당을 동시에 또는 순차적으로 잘라내어 F2를 생성시키고, 결과적으로 진세노사이드의 Rh2를 효율적으로 얻어낼 수 있는 복합효소를 개발하여 본 발명을 완성하였다.To summarize the process of the present invention, when each enzymatic reaction was performed with a single enzyme, F2, an intermediate product of Rh2, was not produced. In order to generate F2, all the sugar bonds connected to the 3rd and 20th carbons of ginsenoside Rb1 must be broken down. The β-glucosidase single enzyme binds the sugars connected to the 3rd carbon of ginsenoside Rb1. It is known that it selectively degrades only the sugar chain, and other cellulase enzymes are known to degrade only the sugar bond linked to carbon 20. The complex enzyme extracted from Aspergillus niger contains various cellulase enzymes, but first, the outer sugar linked to the 20th carbon of ginsenoside Rb1 is cut to produce ginsenoside Rd, and then sequentially added to the 3rd carbon of Rd. It has been reported that F2 is produced by cleaving the linked outer sugar. In the present invention, by developing an enzyme that can carry out such a sequential reaction at once, the sugars connected to the 3-position carbon and the 20-position carbon of ginsenoside Rb1 are cut simultaneously or sequentially to generate F2, and as a result, the gene The present invention was completed by developing a complex enzyme capable of efficiently obtaining Rh2 of senoside.

한국미생물보존센터(국외)Korea Microorganism Conservation Center (Overseas) KCCM11451PKCCM11451P 2018012520180125

Claims (10)

아스퍼질러스 나이저(Aspergillus niger) KCCM11451P 배양액 상등액의 분자량 100KDa 이상의 단백질 혼합물을 포함하고,
상기 단백질 혼합물은 글루코시데이즈, 아밀레이즈, 자일로시데이즈, 자일라네이즈, 아라비노퓨라노시데이즈, 셀로바이오하이드롤레이즈 및 갈락토시데이즈를 포함하는, 진세노사이드 F2 제조용 조성물.
Aspergillus niger (Aspergillus niger) KCCM11451P containing a protein mixture with a molecular weight of 100KDa or more of the culture supernatant,
The protein mixture comprises glucosidase, amylase, xyloside, xylanase, arabinofuranosidase, cellobiohydrolase and galactosidase, ginsenoside F2 production composition.
청구항 1에 있어서, 진세노사이드 Rb1의 3번과 20번 탄소에 연결된 글루코스를 절단하여 진세노사이드 F2를 생성시키는 조성물.
The composition of claim 1, wherein the ginsenoside F2 is produced by cleaving the glucose linked to the 3rd and 20th carbons of the ginsenoside Rb1.
청구항 1에 있어서, 상기 글루코시데이즈는 알파-글루코시데이즈 및 베타-글루코시데이즈인 조성물.
The composition of claim 1, wherein the glucosidase is alpha-glucosidase and beta-glucosidase.
청구항 1에 있어서, 상기 아밀레이즈는 글루코아밀레이즈 및 알파-아밀레이즈 A인 조성물.
The composition of claim 1, wherein the amylase is glucoamylase and alpha-amylase A.
청구항 1에 있어서, 상기 자일로시데이즈는 알파-자일로시데이즈 A 및 엑소-1,4-베타-자일로시데이즈 xlnD인 조성물.
The composition of claim 1, wherein the xylosidase is alpha-xylosidase A and exo-1,4-beta-xylocidase xlnD.
청구항 1에 있어서, 상기 자일라네이즈는 엔도-1,4-베타-자일라네이즈 A, 엔도-1,4-베타-자일라네이즈 B 및 엔도-1,4-베타-자일라네이즈 C인 조성물.
The composition of claim 1, wherein the xylanase is endo-1,4-beta-xylanase A, endo-1,4-beta-xylanase B and endo-1,4-beta-xylanase C. .
청구항 1에 있어서, 상기 아라비노퓨라노시데이즈는 알파-L-아라비노퓨라노시데이즈 axhA 및 알파-L-아라비노퓨라노시데이즈 B인 조성물.
The composition of claim 1, wherein the arabinofuranosidase is alpha-L-arabinofuranosidase axhA and alpha-L-arabinofuranosidase B.
청구항 1에 있어서, 상기 셀로바이오하이드롤레이즈는 1,4-베타-D-글루칸 셀로바이오하이드롤레이즈 A, 1,4-베타-D-글루칸 셀로바이오하이드롤레이즈 B 및 1,4-베타-D-글루칸 셀로바이오하이드롤레이즈 C인 조성물.
The method according to claim 1, wherein the cellobiohydrolase is 1,4-beta-D-glucan cellobiohydrolase A, 1,4-beta-D-glucan cellobiohydrolase B and 1,4-beta-D-glucan A composition that is cellobiohydrolase C.
청구항 1에 있어서, 상기 갈락토시데이즈는 알파-갈락토시데이즈 A, 알파-갈락토시데이즈 B 및 베타-갈락토시데이즈 A인 조성물.
The composition of claim 1, wherein the galactosidase is alpha-galactosidase A, alpha-galactosidase B and beta-galactosidase A.
진세노사이드 Rb1에 청구항 1 내지 9 중 어느 한 항의 조성물을 처리하여 진세노사이드 F2를 제조하는 단계; 및 상기 진세노사이드 F2를 산 가수분해하여 진세노사이드 Rh2를 제조하는 단계;를 포함하는 진세노사이드 Rh2의 제조 방법.Treating ginsenoside Rb1 with the composition of any one of claims 1 to 9 to prepare ginsenoside F2; and preparing ginsenoside Rh2 by acid hydrolyzing the ginsenoside F2.
KR1020210121660A 2021-09-13 2021-09-13 An Enzyme for ginsenoside bioconversion KR102407724B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020210121660A KR102407724B1 (en) 2021-09-13 2021-09-13 An Enzyme for ginsenoside bioconversion
PCT/KR2022/013589 WO2023038485A1 (en) 2021-09-13 2022-09-13 Enzyme for ginsenoside bioconversion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020210121660A KR102407724B1 (en) 2021-09-13 2021-09-13 An Enzyme for ginsenoside bioconversion

Publications (2)

Publication Number Publication Date
KR102407724B1 true KR102407724B1 (en) 2022-06-10
KR102407724B9 KR102407724B9 (en) 2023-04-12

Family

ID=81986312

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210121660A KR102407724B1 (en) 2021-09-13 2021-09-13 An Enzyme for ginsenoside bioconversion

Country Status (2)

Country Link
KR (1) KR102407724B1 (en)
WO (1) WO2023038485A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023038485A1 (en) * 2021-09-13 2023-03-16 (주)녹십자웰빙 Enzyme for ginsenoside bioconversion

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120017733A (en) * 2010-08-19 2012-02-29 건국대학교 산학협력단 A bioconversion method of ginsenoside rb1 and product thereby
KR20170095766A (en) * 2017-08-02 2017-08-23 농업회사법인 금산흑삼주식회사 Black ginseng containing ginsenoside F2

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101566589B1 (en) * 2013-11-22 2015-11-06 경희대학교 산학협력단 Method for producing fermented red ginseng with increased Ginsenoside F2 contents and fermented red ginseng extract produced by the same method
KR102407724B1 (en) * 2021-09-13 2022-06-10 (주)녹십자웰빙 An Enzyme for ginsenoside bioconversion

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120017733A (en) * 2010-08-19 2012-02-29 건국대학교 산학협력단 A bioconversion method of ginsenoside rb1 and product thereby
KR20170095766A (en) * 2017-08-02 2017-08-23 농업회사법인 금산흑삼주식회사 Black ginseng containing ginsenoside F2

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
1) Jose Arnau, Debbie Yaver, and Carsten M. Hjort, Strategies and Challenges for the Development of Industrial Enzymes Using Fungal Cell FactoriesGrand Challenges in fungal Biotechnology pp179-210 (2020), Chapter 17.
2) Bong-Kyu Song, Kyeng Min Kim, Kang-Duk Choi, and Wan-Taek Im, Production of the Rare Ginsenoside Rh2-MIX (20(S)-Rh2, 20(R)-Rh2, Rk2, and Rh3) by Enzymatic Conversion Combined with Acid Treatment and Evaluation of Its Anti-Cancer Activity, J.Microbiol.Biotechnol. (2017),27(7), 1233-1241
3) Ru Zhang, Xue-Mei Huang, Hui-Juan Yan, Xin-Yi Liu, Qi Zhou, Zhi-Yong Luo, Xiao-Ning Tan, and Bian-Ling Zhang, Highly Selective Production of Compound K from Ginsenoside Rd by Hydrolyzing Glucose at C-3 Glycoside Using β-Glucosidase of Bifidobacterium breve ATCC 15700, J.Microbiol. Biotechnol. (2019), 29(3), 410-418
4) DIA SEPTIANI, HERMAN SURYADI, ABDUL MUN'IM, WIBOWO MANGUNWARDOYO, Production of cellulase from Aspergillus niger and Trichoderma reesei mixed culture in carboxymethylcellulose medium as sole carbon, Biodiversitas 20(12):3539-3544 (2019)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023038485A1 (en) * 2021-09-13 2023-03-16 (주)녹십자웰빙 Enzyme for ginsenoside bioconversion

Also Published As

Publication number Publication date
KR102407724B9 (en) 2023-04-12
WO2023038485A1 (en) 2023-03-16

Similar Documents

Publication Publication Date Title
KR100992800B1 (en) A process for preparing novel processed ginseng or extract thereof showing increased amount of minor ginsenosides
CN102268490B (en) Clean technique for co-producing xylose, xylitol and arabinose from agricultural waste and forest waste
Lomovsky et al. 13 Mechanochemically Assisted Extraction
CN104894204B (en) The method that microbial enzyme conversion ginsenoside prepares the rare saponin(e of ginseng
CN100510094C (en) Production method of konjak mannose using cellulase
KR20000062140A (en) manufacture method for ginseng saponin
Wang et al. Mycelial polysaccharides of Lentinus edodes (shiitake mushroom) in submerged culture exert immunoenhancing effect on macrophage cells via MAPK pathway
KR101566589B1 (en) Method for producing fermented red ginseng with increased Ginsenoside F2 contents and fermented red ginseng extract produced by the same method
CN104232498B (en) A kind of fine bacteria strain of fibrosis fiber and application thereof
KR102407724B1 (en) An Enzyme for ginsenoside bioconversion
KR101805737B1 (en) Manufacturing method for fermented Panax ginseng powder and Fermented Panax ginseng powder manufactured by the method
CN102154428B (en) Method for preparing ginsenoside Rh2
KR101564487B1 (en) Manufacturing method of small molecule Ginsenoside
KR101597877B1 (en) Extracting method of effective component from ginsenosides
CN110882285A (en) Efficient preparation method of active substances in phellinus igniarius
KR101218275B1 (en) Methods for preparing fermented ginseng or fermented red ginseng using yeast
KR102258788B1 (en) Novel Aspergillus niger C2-2 isolated from Nu-ruk producing ginsenoside compound K biotransformation enzyme and use thereof
CN110628846B (en) Method for preparing xylooligosaccharide by high-temperature high-pressure treatment
CN109206336B (en) Method for preparing ceramide from rice bran by fermentation method
KR20130110658A (en) Method for preparing ginsenoside rg3 using recombinant beta-glucosidase gene and hsccc (high speed counter current chromatography) after mplc (medium pressure chromatography) pre-treatment
KR101777673B1 (en) Preparation method of ginsenoside-Rd using an enzyme
KR101802979B1 (en) Mehod for producing ginsenoside F1 using bioconversion
CN113249235B (en) Pichia pastoris for producing beta-D-glucosidase and application thereof
CN111358799B (en) Application of ginsenoside CK as lipid-lowering and weight-losing medicine
KR100849660B1 (en) Ginseng preparations containing a high concentration of ginseng sapogenin using a Bacillus natto and method thereof

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
G170 Re-publication after modification of scope of protection [patent]