KR102405002B1 - Mrm 지원을 위한 자율 주행 시스템 - Google Patents

Mrm 지원을 위한 자율 주행 시스템 Download PDF

Info

Publication number
KR102405002B1
KR102405002B1 KR1020200173437A KR20200173437A KR102405002B1 KR 102405002 B1 KR102405002 B1 KR 102405002B1 KR 1020200173437 A KR1020200173437 A KR 1020200173437A KR 20200173437 A KR20200173437 A KR 20200173437A KR 102405002 B1 KR102405002 B1 KR 102405002B1
Authority
KR
South Korea
Prior art keywords
driving
controller
autonomous driving
layer
mrm
Prior art date
Application number
KR1020200173437A
Other languages
English (en)
Other versions
KR20220010407A (ko
Inventor
유시복
임현주
송문형
박지훈
박정태
Original Assignee
한국자동차연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국자동차연구원 filed Critical 한국자동차연구원
Publication of KR20220010407A publication Critical patent/KR20220010407A/ko
Application granted granted Critical
Publication of KR102405002B1 publication Critical patent/KR102405002B1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W60/00Drive control systems specially adapted for autonomous road vehicles
    • B60W60/001Planning or execution of driving tasks
    • B60W60/0015Planning or execution of driving tasks specially adapted for safety
    • B60W60/0016Planning or execution of driving tasks specially adapted for safety of the vehicle or its occupants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/02Control of vehicle driving stability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/181Preparing for stopping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/10Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/02Ensuring safety in case of control system failures, e.g. by diagnosing, circumventing or fixing failures
    • B60W50/029Adapting to failures or work around with other constraints, e.g. circumvention by avoiding use of failed parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W60/00Drive control systems specially adapted for autonomous road vehicles
    • B60W60/001Planning or execution of driving tasks
    • B60W60/0015Planning or execution of driving tasks specially adapted for safety
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/04Vehicle stop
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2300/00Purposes or special features of road vehicle drive control systems
    • B60Y2300/02Control of vehicle driving stability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2300/00Purposes or special features of road vehicle drive control systems
    • B60Y2300/18Propelling the vehicle
    • B60Y2300/18008Propelling the vehicle related to particular drive situations
    • B60Y2300/18091Preparing for stopping

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Traffic Control Systems (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)

Abstract

본 발명은 자율 주행 상황에서 MRM을 지원하기 위한 자율 주행 시스템에 관한 것이다. 본 발명에 따른 자율 주행 시스템은, 제1 계층 주행 컨트롤러; 상기 제1 계층과 구분된 제어를 위한 제2 계층 주행 컨트롤러; 및 외부 환경 정보를 수집하는 센싱 모듈;을 포함하고, 자율 주행 중 고장(failure)상황이 발생하는 경우, 상기 제1 또는 제2 계층 주행 컨트롤러 중 어느 하나를 이용하여 상기 고장 상황에 대응(fallback)하도록 차량을 제어하는 MRM(Minimal Risk Maneuver) 모듈은 제1 또는 제2 계층 주행 컨트롤러에 포함되는 것이 바람직하다. 본 발명에 따르면 자율 주행 시스템의 긴급 상황 발생시 안정성을 높일 수 있다.

Description

MRM 지원을 위한 자율 주행 시스템{Automatic Driving System for supporting MRM(Minimal Risk Maneuver)}
본 발명은 자율 주행 상황에서 MRM을 지원하기 위한 자율 주행 시스템에 관한 것이다.
통상적으로, 자율 주행 시스템은 차선 이탈 방지 기술, 차량 변경 제어 기술, 장애물 회피 제어 기술 등을 이용하여, 최적의 주행 경로를 선택하고, 자율 주행하도록 하는 기술로써, 운전자가 핸들과 가속 페달, 브레이크 등을 조작하지 않아도 스스로 목적지까지 찾아가는 차량의 주행과 관련된 기술을 의미한다.
운전자가 차량을 조작하지 않아도 스스로 주행하는 자동차는 차세대 자동차산업으로 주목받고 있는 기술이다. 이러한 시대의 흐름에 따라 많은 자동차 업체에서는 자율 주행차에 대한 기술 개발이 이루어지고 있는 실정이다.
자율 주행 기술이 실현되기 위해서는 여러 가지의 핵심 기술이 필요하다. 예를 들면, 고속도로에서 차간 거리를 자동으로 유지해주는 HDA(Highway Driving Assist) 기술, 차선 이탈 경보 시스템(LKAS, Lane Keeping Assist System), 후측방 경보 시스템(BSD, Blind Spot Detection), 크루즈 컨트롤(Advanced Smart Cruise Control), 자동 긴급 제동 시스템(AEB, Autonomous Emergency Braking) 등이 필요하다.
국제자동차기술자협회(SAE)에 따르면, 자율 주행자동차는 운전자지원장치(ADAS, Advanced Driver Assistance System)부터 완벽한 자율 주행자동차(ADS, Automatic Driving System)는 0단계부터 5단계까지로 구분할 수 있으며, 운전자의 도움이 필요 없는 자율 주행자동차는 3단계 이상의 시스템으로 구분하고 있다. 3단계의 시스템에서는 비상 대응 사용자(FRU, Fallback-Ready User)가 비상 상황에서 대처해야 하며, 4단계 이상의 시스템에서는 자율 주행자동차에 고장 등의 비상 상황이 발생하더라도 스스로 대응(Fallback)할 수 있어야 함을 명시하고 있다. 여기서 자율 주행자동차의 대응이란 고장이 날 경우 스스로 최소위험상태(MRC, Minimal Risk Condition)로 변경하기 위한 제어(MRM, Minimal Risk Maneuver)를 의미한다.
그러나 MRM이 작동해야 하거나 FRU가 대응한다고 하더라도 고장/실패 등의 비상 상황에서 자차량의 인지 센서를 기반으로 안전지대를 확인하는 것은 한계가 있다. 또한, 기존의 자율 주행 시스템은 일부가 분리되어 있지 않고 전체가 일체화된 형태로 구성됨에 따라 일부 센서나 컨트롤러에 문제가 발생하더라도 전체 기능에 영향을 주는 문제가 발생할 수 있다.
따라서, 이러한 자율 주행 시스템을 보다 체계적으로 독립시킴으로써 MRM 동작을 수행할 수 있도록 할 필요가 있다.
본 발명은 자율 주행 시 고장(Failure) 상황에 대한 대응(Fall-back)을 위한 자율 주행 시스템의 분리 설계 방법을 제안하는 것을 목적으로 한다.
본 발명은 MRM 동작을 위한 시스템의 분리 구조를 제안하는 것을 목적으로 한다.
또한, 본 발명은 자율 주행 시스템의 독립적인 설계의 우선순위를 계층적으로 구분하는 방법을 제안하는 것을 목적으로 한다.
또한, 본 발명은 자율 주행 시스템의 구성들에 대하여 독립된 네트워크를 제공하는 것을 목적으로 한다.
상기 기술적 과제를 해결하기 위한 본 발명에 따른 자율 주행 시스템은, 제1 계층 주행 컨트롤러; 상기 제1 계층과 구분된 제어를 위한 제2 계층 주행 컨트롤러; 및 외부 환경 정보를 수집하는 센싱 모듈;을 포함하고, 자율 주행 중 고장(failure)상황이 발생하는 경우, 상기 제1 또는 제2 계층 주행 컨트롤러 중 어느 하나를 이용하여 상기 고장 상황에 대응(fallback)하도록 차량을 제어하는 MRM(Minimal Risk Maneuver) 모듈은 제1 또는 제2 계층 주행 컨트롤러에 포함되는 것이 바람직하다.
상기 제1 및 제2 계층 주행 컨트롤러는 서로 다른 우선순위에 따라 독립된 네트워크가 제공되는 것이 바람직하다.
상기 제1 계층 주행 컨트롤러는 차량의 조향(Steering) 또는 가속(Accelerating)의 직접적인 주행 제어 및 제2 계층 주행 컨트롤러로부터 수신된 제어 명령에 따른 제어를 수행하며, 상기 제2 계층 주행 컨트롤러에 대하여 우선하여 독립 또는 중복된 네트워크가 제공되는 것이 바람직하다.
상기 제2 계층 주행 컨트롤러는 상기 외부 환경 정보에 따라 주행 방향 및 속도를 결정하며, 상기 센싱 모듈에 우선하여 독립된 네트워크가 제공되는 것이 바람직하다.
상기 제1 및 제2 계층 주행 컨트롤러는 고장 상황 발생 시 정차 유형에 따라 결정된 MRM 타입에 따라 필요한 제어 동작으로 구분되는 것이 바람직하다.
정보를 송수신하는 네트워크 통신 모듈을 더 포함하고, 상기 통신 모듈은 상기 제1 및 제2 계층 주행 컨트롤러가 서로 독립된 네트워크를 통해 상기 차량을 제어하도록 하는 것이 바람직하다.
상기 자율 주행 시스템은, 상기 제1 계층 주행 컨트롤러 및 주행 기록 모듈로 구성된 제1 그룹; 및 상기 제2 계층 주행 컨트롤러 및 운전자 모니터링 모듈로 구성된 제 2 그룹을 포함하며 상기 통신 모듈은 제1 그룹 및 상기 제2 그룹 내에서 공통 네트워크를 통해 정보를 송수신 하도록 하는 것이 바람직하다.
본 발명에 따르면 자율 주행 시스템의 긴급 상황 발생시 안정성을 높일 수 있다.
또한, 본 발명은 자율 주행 시스템의 계층화된 분리 방법을 제안함으로써 최선의 대응방법을 제공해 줄 수 있다.
또한, 본 발명은 MRM 동작을 위한 구성을 분리 설계하여 네트워크의 문제로부터 독립하여 위험 회피 제어를 구현할 수 있도록 한다.
도 1은 본 발명의 일 실시예에 따른 자율 주행 시스템을 나타내는 예시도이다.
도 2 내지 3은 본 발명의 일 실시예에 따른 자율 주행 시스템의 MRM 동작을 나타내는 예시도이다.
도 4은 본 발명의 일 실시예에 따른 자율 주행 시스템의 구현을 나타내는 예시도이다.
도 5는 본 발명의 일 실시예에 따른 자율 주행 시스템의 구현을 보다 상세히 나타내는 예시도이다.
도 6은 본 발명의 일 실시예에 따른 자율 주행 시스템의 구현을 나타내는 예시도이다.
도 7은 본 발명의 일 실시예에 따른 자율 주행 시스템의 네트워크 구현을 나타내는 예시도이다.
이하의 내용은 단지 발명의 원리를 예시한다. 그러므로 당업자는 비록 본 명세서에 명확히 설명되거나 도시 되지 않았지만 발명의 원리를 구현하고 발명의 개념과 범위에 포함된 다양한 장치를 발명할 수 있는 것이다. 또한, 본 명세서에 열거된 모든 조건부 용어 및 실시 예들은 원칙적으로, 발명의 개념이 이해되도록 하기 위한 목적으로만 명백히 의도되고, 이외같이 특별히 열거된 실시 예들 및 상태들에 제한적이지 않는 것으로 이해되어야 한다.
상술한 목적, 특징 및 장점은 첨부된 도면과 관련한 다음의 상세한 설명을 통하여 보다 분명해질 것이며, 그에 따라 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 발명의 기술적 사상을 용이하게 실시할 수 있을 것이다.
또한, 발명을 설명함에 있어서 발명과 관련된 공지 기술에 대한 구체적인 설명이 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에 그 상세한 설명을 생략하기로 한다. 이하에는 첨부한 도면을 참조하여 본 발명의 바람직한 실시 예에 대해 상세하게 설명한다.
도 1은 본 발명의 일 실시예에 따른 자율 주행 시스템(100)(ADS, Automatic Driving System)의 구성을 나타내는 도이다.
도 1을 참조하면, 본 실시예에 따른 자율 주행 시스템(100)은 사용자와 차량(10) 간의 인터페이스를 위한 HVI(Human Vehicle Interface)(130), 통신부(140), 센서부(150), 컨트롤러(110) 및 액츄에이터(120)로 구성될 수 있다.
HVI(130)는 자율 주행 차량(10)과 사용자 간의 인터페이스를 위한 것으로 운전자의 신체 상태나와 차량(10)의 주행 상태를 능동적으로 인식하고 최적화된 방식의 인터페이스를 제공함으로써 운전자의 편의와 안전을 보장하기 위한 장치이다.
즉, 비전 센서나 다양한 센서를 통해 운전자의 상태를 감지함과 동시에 차량(10)의 주행 상태나 외부 운행 환경을 감지하고 이를 분석하며, 운전 부하나 이상 상황을 판단하고 다양한 형태의 인터페이스로 운전자에게 상황을 안내할 수 있다. 또한 운전자는 차량(10)의 제어 상황을 인지함으로써 차량(10)의 주행 상태를 확인하고 직접 주행을 위한 개입 여부를 결정할 수 있다.
통신부(140)는 텔레매틱스(Telematics) 시스템과 같은 다양한 정보통신 기술을 활용하여 외부와 송수신 하는 장치로, 통신 기술로 셀룰러(4G, LTE 등), WAVE(Wireless Access in Vehicular Environment)등이 사용될 수 있으며, 이러한 통신 기술을 통해 차량(10)과 차량(10)(Vehicle to Vehicle)간 통신 또는 차량(10)과 노변 장치(RSU: Road Side Unit)간 통신(V2I: Vehicle to Infrastructure) 등이 가능하다.
센서부(150)는 차량(10)의 상태 및 외부 환경을 감지하고 자율 주행을 위한 주변 정보를 획득하기 위한 장치로, 센서는 카메라, 레이더 유닛, IR(Infrared) 센서, LIDAR 센서, 음향 센서 등을 포함할 수 있다.
센서부(150) 내 다양한 센서 모듈들은 자율 주행을 위하여 차량(10)에 직접 장착될 수 있으며 차량(10)의 크기나 구조에 따라, 결정된 센싱 범위 내 정보를 획득하기 위한 최적의 위치에 배치될 수 있다.
또한 센서부(150)는 차량(10) 자체의 위치(position)나 동작(behavior)을 측정하기 위한 센서로 자이로스코프, 가속도 센서 등을 포함하고 이를 통해 차량(10)의 현재 주행 상태를 내부적으로 파악할 수 있다.
컨트롤러(110)는 자율 주행 차량(10)의 동작을 위한 제어 명령을 생성하고 출력하는 장치로 컨트롤러(110)는 자율 주행을 위하여 행동을 제어하는 프로세서로 기능에 따라 다양한 모듈들로 구분될 수 있다.
예를 들어 기본적인 조향과 가속, 감속을 위한 제어기와 함께 감가속 제어를 통해 어댑티브 크루즈 컨트롤을 수행하는 ACC(Adaptive Cruise Control) 모듈, 차선 유지 및 변경을 위한 모듈(Lane Centering, In-Lane driving, Lane change, Lane-keeping), 좌우 회전을 위한 모듈, 정차를 위한 모듈, 교차로 나 정류장 등의 도시 환경에 따른 주행 동작을 제어하기 위한 모듈 등을 포함할 수 있다.
그 외에도 MRM을 실행시키기 위한 MRM 모듈 및 MRM에 따라 일반 또는 긴급 정차시키기 위한 모듈들이 포함될 수 있다.
다만, 이러한 컨트롤러(110) 내부의 구성들은 하나의 시스템으로 통합되어 동작하므로 센서와 관련된 통신 라인의 고장이나 네트워크 모듈의 문제로 인해 전체 자율 주행 시스템(100)이 동작이 불가한 문제를 일으킬 수 있다.
따라서, 본 실시예에서는 컨트롤러(110)를 구분하여 독립적으로 관리하도록 한다.
구체적으로 컨트롤러(110)는 제1 컨트롤러(112) 및 제2 컨트롤러(114)로 구분될 수 있으며 제1 컨트롤러(112)는 기본적인 제어로서 낮은 레벨(Low Level)의 주행 제어를 위한 모듈들로 구성되며, 제2 컨트롤러(114)는 보다 높은 레벨(High level)의 실질적인 자율 주행 제어를 위한 모듈로 구성될 수 있다.
이때, 제1 및 제2 컨트롤러(112, 114)는 물리적으로 구분될 수 있으며 또는 소프트웨어적으로 인가되는 네트워크의 접속 관계를 분리함으로써 구분될 수 있다. 또한, 제1 컨트롤러(112) 내부의 구성 중 일부 또는 제2 컨트롤러(114) 내부의 구성은 중복하여 양 컨트롤러(110)에 설계되는 것도 가능하다.
즉, 네트워크의 분리 및 필수 구성의 중복 설계를 통해 자율 주행 중 위험 상황을 최소화하고, 바람직하게는 MRM을 위한 필수 동작들을 수행할 수 있도록 한다.
액츄에이터(120)는 실제 차량(10)의 주행을 위한 기계적인 장치로서 조향 동작을 위한 스티어링 액츄에이터, 가속을 위한 액츄에이터 및 감속을 위한 액츄에이터로 구현될 수 있다.
이상의 본 실시예에 따른 자율 주행 시스템(100)은 시스템 내부의 고장이나 통신 네트워크의 문제 발생에 따라 자율 주행에 위급 상황이 발생한 경우에 독립적인 구조를 통해 안전한 대처를 제공하고자 한다.
따라서, 이러한 상황의 대처 프로세스에 대하여 도 2를 참고하여 먼저 설명하면 자율 주행의 주행 상태가 정상에서 상술한 이상 상황이 감지되면, 우선적으로 MRM 동작 상태가 발진(Trigger)되며(21) MRC 상태가 될 때까지 MRM에서 정의되는 제어 동작들을 수행하게 된다. 동작 상태의 변경은 자율 주행 시스템(100)에서 직접 수행될 수 있으며 이와 동시에 자율 주행에 대한 운잔자 개입의 요청(RTI:Request to Intervene)을 발생(22)시킬 수 있다.
개입의 요청 단계는 고장 상황에 대해 대응 준비된 사용자(FRU:Fall-back Ready User)에 대하여 운전을 위한 제어권의 이양(take-over)를 요청할 수 있다(24). 다만, 자율 주행의 레벨 4 이상의 경우는 운전자가 존재하지 않을 수 있으므로 해당 단계는 선택적으로 수행될 수 있다.
또한, 제어권의 이양을 요청하였으나 타임아웃이 발생된 경우 MRM 상태로 변경(23)되어 자율 주행 시스템(100)에서 정의한 MRM 동작이 수행될 수 있다.
이때 MRM은 자율 주행 시스템(100)에서 차량(10)이 MRC 상태가 되기까지 제어하는 일련의 동작들로 MRM 상황에서 자율 주행 시스템(100)은 MRM 타입을 결정하고, 운전자에게 MRM에 따른 동작이 수행됨을 안내하는 등의 동작들을 수행한다. MRM 상태에서도 제어권은 운전자의 개입 여부에 따라 이양될 수 있다(26).
MRM을 통해 위험이 최소화된 상태, 예를 들어 안전지대에 정차하게 되면 MRC 상태가 되며(25), MRC 상태가 되면 제어권을 운전자에게 이양(27)함으로써 고장 상황이 해소된 경우 다시 자율 주행을 시작하거나 복귀할 수 있도록 한다.
구체적으로 도 3을 참고하여 MRM과 MRC에 따른 동작에 대해 설명하면, 먼저 자율 주행 시스템(100)이 자율 주행의 정상적인 수행에 문제가 발생하면, 운전자의 제어권 이양이 없는 경우 MRM 동작을 요청하게 된다(21).
MRM을 요청하면 자율 주행 시스템(100) 내의 MRM 모듈은 자율 주행 시스템(100)의 상태를 모니터링 하고(32), 고장 상태 또는 고장 상태의 심각도에 따라 내부적 환경과 또는 안전지대 상황 등의 외부적 환경 요인을 파악하여 MRM의 타입을 결정한다(33). MRM 타입은 정차 상황에 따라 구분될 수 있으며 직진 정차(Straight stop), 차선 내 정차(In-lane stop), 인접 차선 정차(Adjacent Lane stop)로 구분될 수 있다.
직진 정차는 예를 들어 가장 긴급한 상황으로 현재 차량(10)이 주행하고 있는 방향에서 제동이 수행되며 차량(10)이 정차하는 것을 의미한다. 따라서, 측면조향(Lateral control), 가속제어(Acceleration) 및 차선변경(Lane Change)의 제어가 필요치 않으며, 제동을 위한 감속제어(Deceleration)가 수행된다.
차선 내 정차는 현재 차량(10)이 주행하고 있는 차선을 유지하는 방향으로 제동이 수행되며 차량(10)이 정차하는 것을 의미한다. 따라서 가속제어(Acceleration) 및 차선변경(Lane Change)의 제어가 필요치 않으며, 차선을 유지하기 위한 측면조향(Lateral control) 및 제동을 위한 감속제어(Deceleration)가 수행된다.
인접 차선 정차는 현재 차량(10)이 주행하고 있는 차선을 벗어나 보다 안전한 다른 차선으로 차량(10)이 이동하며 제동이 수행되어 차량(10)이 정차하는 것을 의미한다. 인접 차선 정차에서는 현재 주행중인 차선을 벗어나기 위한 가속제어(Acceleration)와 다른 차선으로 이동하기 위한 차선변경(Lane Change)의 제어와 차선 이동 및 차선을 유지하기 위한 측면조향(Lateral control) 및 제동을 위한 감속제어(Deceleration)가 수행된다.
이 외의 정차 타입으로 외부 서버나 도로 주변 유닛(RSU:Road Side Unit)을 통해 검색된 안전지대가 사용 가능할 경우 수행될 수 있으며, 일 예로써 갓길이나 주/정차 구역에 정차하기 위한 노견 정차(Shoulder stop), 주차 차선 정차(Parking Lane stop) 등이 포함될 수 있다.
또한 결정된 MRM 타입은 내 외부 환경의 변화에 따라 유동적으로 변경될 수 있으며 결정된 타입에 따라 MRM 동작을 실행시킨다(34). 최종 결정된 타입으로 차량(10)이 정차하게 되면 이때의 차량(10)은 MRC로 위험이 최소화된 상태가 된다.
또한, 상술한 바와 같이 MRM 동작 중에 대응 준비된 사용자에게 개입을 요청하고 직접 제어권을 이양하는 것도 가능하다(26).
즉, 자율 주행 시스템(100)은 정상 상태에서 자율 주행이 불가하거나 제한되는 상황을 감지하고 대응을 위하여 MRM 모듈이 결정된 타입에 따른 주행을 제어하게 된다. 다만, MRM을 야기시키는 고장 상황은 자율 주행 시스템(100) 내부의 구성들의 상호 연관관계 또는 외부 네트워크의 문제에 따라 발생될 수 있는데, 동작 가능한 장치들을 통해 보다 효율적인 대처를 위해서는 자율 주행 시스템(100) 내부의 구성들을 독립적으로 구분하여 구성할 필요가 있다.
따라서, 일부 센서나 네트워크의 문제로 동작이 불가하더라도 동작 가능한 장치를 통해서 MRM 타입을 결정하고 MRM 동작을 수행할 수 있도록 할 필요가 있다.
본 실시예에 따른 자율 주행 시스템(100)은 이러한 목적에 따라 내부 구성들을 효과적으로 분리 또는 중복 설계한다.
도 4를 참조하면, 자율 주행 시스템(100) 내의 구성은 자율 주행 컨트롤러(110)를 기준으로 구분될 수 있다.
예를 들어 제2 컨트롤러(114)의 경우는 자율 주행에 필요한 지도를 관리하고 동적 지도를 생성하는 지도 모듈, MRM 모듈, 센서 및 자율 주행 제어 로직이 탑재되는 상위제어기로 주행 제어부를 포함하도록 구성되며 전체적인 판단, 디스플레이를 통한 운전자와의 인터페이스 등을 담당하며 보다 높은 레벨의 자율 주행 상황의 제어를 위한 동작을 수행할 수 있다.
예를 들어 ADAS 모듈로 크루즈 컨트롤(Advanced Smart Cruise Control), 차선 이탈 경보 시스템(LKAS, Lane Keeping Assist System), 자동 긴급 제동 시스템(AEB, Autonomous Emergency Braking) 모듈 및 자율 주행 모듈들이 포함될 수 있다.
즉, 상위 제어기로 제2 컨트롤러(114)는 주변상황을 인지하고 판단하여 경로나 차선을 고려하여 직진, 좌회전 우회전을 할 것인지를 판단하고, 직진 시의 속도, 우회전 시의 스티어링 각도 등을 계산하여 하위 제어기, 본 실시예의 제1 컨트롤러(112)로 명령을 내리는 동작을 수행하는 모듈들로 구성될 수 있다.
그 외 제2 컨트롤러(114)에는 기타 모듈들로 예를 들어 센서와 외부 통신 등을 담당하는 부품으로, 단일 부품의 고장이 자율 주행 차량(10)의 심각한 치명적 사고로 바로 이어지지는 않는 부품으로 구성될 수 있다.
반면 제1 컨트롤러(112)는 자율 주행 모드 주행 중 MRM 에 따른 RTI 등의 발생으로 운전자의 개입이 발생하고 제어권이 수동모드로 전환되는 경우, 제어권 전환 후의 작동 등 안전운전의 기본 적인 동작을 수행하는 하위 제어기로 조향 및 가(감)속 액츄에이터를 사용하여 상위제어기가 명령한 속도 또는 가속도, 스티어링 각도 등을 직접 달성하는 제어기로 구성될 수 있다.
이때 제1 컨트롤러(112)와 제2 컨트롤러(114)는 네트워크(300)가 중복 설계됨으로써 독립된 네트워크 라인으로 연결될 수 있으며 따라서 제2 네트워크(320)에 문제가 발생하더라도 제1 네트워크(310)를 통해 통신 가능한 제1 컨트롤러(112)는 기본적인 주행을 수행하며 MRM 타입에 따른 정차를 감속 제어를 통해 수행할 수 있도록 하며, 제어권을 운전자에게 이양함으로써 수동 운전을 통해 고장 상황을 회피할 수 있도록 한다.
나아가, 본 실시예에서 자율 주행 시스템(100)에는 직접 주행 제어 명령을 생성하는 컨트롤러(110) 외에도 다양한 센서를 포함하므로 이러한 센서들도 컨트롤러(110)와 연계하여 그룹화 할 수 있다.
도 5를 참조하면 본 실시예에서 자율 주행 시스템(100)은 컨트롤러(110)와 센서 및 기타 구성들을 그룹화하고 그룹을 독립 설계의 우선순위에 따라 최우선 계층(52), 우선 계층(54), 일반 계층(56)으로 구분할 수 있다.
먼저, 고장 상황 발생시 가장 치명적인 위험을 초래하는 제1 컨트롤러(112)와 실제 차량(10)의 주행을 제어하는 액츄에이터를 최우선 계층(52)으로 구분할 수 있다. 액츄에이터는 제1 컨트롤러(112)의 전자/전기식 제어를 받는 차량(10) 조향, 제동, 가속 액츄에이터로, 해당 기능이 정지 시에는 즉각 차량(10) 주행에 심각한 문제가 발생되는 구성들로 이루어질 수 있다.
또한, 최우선 계층에는 저장부로서 자율 주행 기록장치(ADR:Automotive Driving Recorder)를 포함할 수 있으며 운행기록(상시) 및 사고기록(사고 이벤트 발생시) 데이터를 기록하여 자율 주행에서 사고 발생 시의 원인과 문제를 파악할 수 있도록 한다.
이어서, 차순위의 우선 계층(54)에는 자율 주행의 상위제어기로 제2 컨트롤러(114)와 사용자 인터페이스 모듈, 디스플레이부, 운전자 상태 모니터링 부로 구성된 HVI 그룹이 포함될 수 있다.
나머지 일반 계층(56)에는 기타 구성들로 센서 및 통신부로 카메라, 레이더, LIDAR 장치 및 외부 네트워크와 통신을 위한 통신 모듈 들이 포함될 수 있다. 또한, 자율 주행을 위한 지도와 위치 시스템으로 맵 모듈, 위치 모듈, GNSS 안테나들도 일반 계층에 포함될 수 있다.
즉, 이상의 계층에 따라 본 실시예에서는 네트워크를 우선하여 독립적으로 설계한다.
예를 들어 네트워크(300)가 두개의 모듈로 독립적으로 구성될 수 있는 경우에는 최우선 계층에 해당하는 장치들에게 제1 네트워크(310)를 통해 정보의 송수신이 가능하도록 하되, 우선 계층과 일반 계층은 공통된 제2 네트워크(320)를 통해 정보의 송수신이 가능하도록 한다. 따라서 제2 네트워크(320)에 문제가 발생하는 경우에도 최우선 계층에 해당하는 장치들을 이용하여 고장 상황을 회피할 수 있도록 한다.
또한, 안전도 설계 기준을 참고하여 자율 주행 시스템(100) 내 주행 제어부를 분리하여 구성하는 것도 가능하다. 예를 들어 계층을 구성하는 그룹 간의 우선순위는 자율주행 시스템의 기능에 있어 상이할 수 있다. 최종으로 차량의 종횡방향 동작을 담당하는 하위 제어기와 엑츄에이터 들은 문제 발생 시 즉각적인 교통사고의 위험이 있는 부품이므로, 이에 대한 안전도 설계 기준을 다른 부품보다 차별적으로 높게 설계할 필요가 있다. 따라서, 안전도 설계 기준은 이러한 부품을 SW 나 HW적인 이중(중복) 설계 또는 보다 안전성이 향상된 부품의 적용을 요구할 수 있다.
반면, 상위 제어기와 HVI 장치는 운전자에게 현재 상황을 알리고 MRM 등 대응 기능을 구현하는 핵심 부품이므로, 그 이외의 부품과 달리 안전도가 높게 설계될 수 있다.
따라서, 본 발명에 따른 구성들의 분리 설계는 MRM을 고려하여 일부의 중복(Redundancy)을 포함할 수 있다.
도 6을 참조하면 상술한 제1 컨트롤러(112)는 자율 주행의 기본적인 제어 및 제어권의 운전자 이양 시 수동 제어를 위한 구성들로 이루어지되, 자율 주행 상태의 감지와 고장 상황에 대한 대응을 수행하는 MRM 모듈은 제2 컨트롤러(114)와 함께 중복하여 설계할 수 있다.
이를 통해 제1 컨트롤러(112) 내 MRM은 보다 높은(위험한) 타입의 고장 상황이 발생한 경우, 수동 제어가 불가능한 상황에서 직진 정차나 차선 내 정차를 제어할 수 있다. 반면 제2 컨트롤러(114) 내 MRM은 일부 센서 나 자율 주행을 위한 모듈에 고장이 발생한 경우 동작가능한 제어기를 이용하여 안전하고 주변 교통에 방해가 적은 위치로 예를 들어 인접 차선 또는 갓길에 주차할 수 있도록 한다.
즉, MRM 타입에 따른 정차를 위해 직진 정차와 차선내 정차를 위한 종횡방향 제어기를 제1 컨트롤러(112)에 포함하고, ADAS 나 자율주행 제어를 위한 모듈은 제2 컨트롤러(114)로 구분하여 설계하는 것도 가능하다. 또는 종횡방향을 구분하여 종방향 제어기를 제1 컨트롤러(112), 횡방향 제어기를 제2 컨트롤러(114)로 구분하여 설계하는 것도 가능하다. 종방향 제어기(Longitudinal Controller)에는 속도 제어기(Speed Controller)가 포함될 수 있다. 반면 횡방향 제어기(Lateral Controller)에는 조향 제어기(Steering Controller)가 포함될 수 있다.
또는 MRM 모듈을 제2 컨트롤러(114)에서 구분하여 제1 컨트롤러(112) 내 또는 그룹으로 설계하는 것도 가능하다. 즉, 도 4에서 자율 주행 제어를 전반적으로 담당하는 상위 제어 모듈인 제2 컨트롤러(114)의 추종 주행, 정속 주행, 좌우회전 등을 담당하는 자율주행 모듈을 포함하는 주행 제어부(Behavior Executor) 와MRM 모듈을 분리하여 MRM 모듈은 제1 컨트롤러(112)에 포함되도록 설계할 수 있다.
이를 통해 MRM 모듈은 고장 상황이 발생하면 직접 MRM 타입에 따라 제1 컨트롤러(112)의 제어기를 통해 액츄에이터를 제어하여 MRC 상황으로 차량(10)을 동작시킨다.
본 실시예에서 구성들은 계층에 따라 독립된 네트워크를 구성하여 외부의 침입이나 네트워크의 문제로부터 보다 안정적으로 동작할 수 있도록 한다.
도 7을 참조하면 자율 주행 시스템(100)의 구성들은 도 5에 따른 계층에 따라 각각 독립적인 네트워크(300) 연결 계통을 가질 수 있다.
즉, 제1 네트워크(310)는 최우선 계층의 제1 컨트롤러(112)와 액츄에이터 및 저장부와 연결될 수 있다.
또한, 제2 네트워크(320)는 우선 계층의 제2 컨트롤러(114)와 HVI와 연결될 수 있으며 제3 네트워크(330)는 일반 계층의 센서 및 통신부와 지도 및 위치 시스템과 연결될 수 있다.
구성품 그룹 간의 일부는 네트워크 모듈의 연결을 중복 설계함으로써 어느 하나의 네트워크가 동작 불능인 상태에서도 통신이 가능하도록 한다.
이상 본 발명에 따르면 자율 주행 시스템(100)의 긴급 상황 발생시 안정성을 높일 수 있다.
또한, 본 발명은 자율 주행 시스템(100)의 계층화된 분리 방법을 제안함으로써 최선의 대응방법을 제공해 줄 수 있다.
또한, 본 발명은 MRM 동작을 위한 구성을 분리 설계하여 전원이나 네트워크의 문제로부터 독립하여 위험 회피 제어를 구현할 수 있도록 한다.
여기에 설명되는 다양한 실시예는 예를 들어, 소프트웨어, 하드웨어 또는 이들의 조합된 것을 이용하여 컴퓨터 또는 이와 유사한 장치로 읽을 수 있는 기록매체 내에서 구현될 수 있다.
하드웨어적인 구현에 의하면, 여기에 설명되는 실시예는 ASICs (application specific integrated circuits), DSPs (digital signal processors), DSPDs (digital signal processing devices), PLDs (programmable logic devices), FPGAs (field programmable gate arrays, 프로세서(processors), 제어기(controllers), 마이크로 컨트롤러(micro-controllers), 마이크로 프로세서(microprocessors), 기타 기능 수행을 위한 전기적인 유닛 중 적어도 하나를 이용하여 구현될 수 있다. 일부의 경우에 본 명세서에서 설명되는 실시예들이 제어 모듈 자체로 구현될 수 있다.
소프트웨어적인 구현에 의하면, 본 명세서에서 설명되는 절차 및 기능과 같은 실시예들은 별도의 소프트웨어 모듈들로 구현될 수 있다. 상기 소프트웨어 모듈들 각각은 본 명세서에서 설명되는 하나 이상의 기능 및 작동을 수행할 수 있다. 적절한 프로그램 언어로 쓰여진 소프트웨어 어플리케이션으로 소프트웨어 코드가 구현될 수 있다. 상기 소프트웨어 코드는 메모리 모듈에 저장되고, 제어모듈에 의해 실행될 수 있다.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위 내에서 다양한 수정, 변경 및 치환이 가능할 것이다.
따라서, 본 발명에 개시된 실시 예 및 첨부된 도면들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시 예 및 첨부된 도면에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호 범위는 아래의 청구 범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리 범위에 포함되는 것으로 해석되어야 할 것이다.

Claims (7)

  1. 자율 주행 시스템에 있어서,
    차량의 조향, 제동 및 가속 액츄에이터를 구동하는 제어 신호를 생성하는 제1 계층 주행 컨트롤러;
    상기 제1 계층과 구분된 제어로 자율주행 및 주변상황의 인지에 기반한 제어신호를 생성하여 상기 제1 계층 주행 컨트롤러로 명령을 내리는 제2 계층 주행 컨트롤러; 및
    외부 환경 정보를 수집하는 센싱 모듈;
    로 구성되고,
    상기 제2 계층 주행 컨트롤러는,
    자율 주행 중 고장(failure)상황이 발생하는 경우, 상기 고장 상황에 대응(fallback)하도록 차량을 제어하는 MRM(Minimal Risk Maneuver) 모듈을 포함하고,
    상기 차량의 자율주행 레벨에 따라 운전자 개입의 요청을 선택적으로 발생시키고,
    상기 요청에 대한 사용자 인터페이스로부터 입력된 운전자의 개입 여부에 따라 수동 주행 모드로 전환 또는 MRM 모듈에 따른 정차 제어를 수행하며,
    상기 제2 계층 주행 컨트롤러의 안전도 설계 기준은 상기 제1 계층 주행 컨트롤러에 비하여 높게 설정되고,
    상기 제1, 제2 계층 주행 컨트롤러 및 센싱 모듈은 각각 독립적인 네트워크로 연결되는 것을 특징으로 하는 자율 주행 시스템.
  2. 제 1 항에 있어서,
    상기 제1 및 제2 계층 주행 컨트롤러는 서로 다른 우선순위에 따라 독립된 네트워크가 제공되는 것을 특징으로 하는 자율 주행 시스템.
  3. 제 2 항에 있어서,
    상기 제1 계층 주행 컨트롤러는 차량의 조향(Steering) 또는 가속(Accelerating)의 직접적인 주행 제어 및 제2 계층 주행 컨트롤러로부터 수신된 제어 명령에 따른 제어를 수행하며,
    상기 제2 계층 주행 컨트롤러에 대하여 우선하여 독립 또는 중복된 네트워크가 제공되는 것을 특징으로 하는 자율 주행 시스템.
  4. 제 3 항에 있어서,
    상기 제2 계층 주행 컨트롤러는 상기 외부 환경 정보에 따라 주행 방향 및 속도를 결정하며,
    상기 센싱 모듈에 우선하여 독립된 네트워크가 제공되는 것을 특징으로 하는 자율 주행 시스템.
  5. 제 1 항에 있어서,
    상기 제1 및 제2 계층 주행 컨트롤러는 고장 상황 발생 시 정차 유형을 결정하는 MRM 타입에 따라 필요한 제어 동작으로 구분되는 것을 특징으로 하는 자율 주행 시스템.
  6. 제 1 항에 있어서,
    정보를 송수신하는 네트워크를 더 포함하고,
    상기 네트워크는 상기 제1 및 제2 계층 주행 컨트롤러가 서로 독립된 제1 및 제2 네트워크를 통해 상기 차량을 제어하도록 하는 것을 특징으로 하는 자율 주행 시스템.
  7. 제 6 항에 있어서,
    상기 자율 주행 시스템은
    상기 제1 계층 주행 컨트롤러 및 주행 기록 모듈로 구성된 제1 그룹; 및
    상기 제2 계층 주행 컨트롤러 및 운전자 모니터링 모듈로 구성된 제 2 그룹으로 구성되며,
    상기 네트워크는 제1 그룹 및 상기 제2 그룹 내에서 공통 네트워크를 통해 정보를 송수신 하도록 하는 것을 특징으로 하는 자율 주행 시스템.
KR1020200173437A 2020-07-17 2020-12-11 Mrm 지원을 위한 자율 주행 시스템 KR102405002B1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR1020200088702 2020-07-17
KR20200088702 2020-07-17
KR20200088700 2020-07-17
KR1020200088700 2020-07-17

Publications (2)

Publication Number Publication Date
KR20220010407A KR20220010407A (ko) 2022-01-25
KR102405002B1 true KR102405002B1 (ko) 2022-06-07

Family

ID=80049279

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020200173437A KR102405002B1 (ko) 2020-07-17 2020-12-11 Mrm 지원을 위한 자율 주행 시스템
KR1020200185248A KR20220010697A (ko) 2020-07-17 2020-12-28 안전지대 제공 시스템

Family Applications After (1)

Application Number Title Priority Date Filing Date
KR1020200185248A KR20220010697A (ko) 2020-07-17 2020-12-28 안전지대 제공 시스템

Country Status (1)

Country Link
KR (2) KR102405002B1 (ko)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018111391A (ja) * 2017-01-11 2018-07-19 株式会社デンソー 車両用制御システム
JP2018158697A (ja) 2017-03-24 2018-10-11 日立オートモティブシステムズ株式会社 自動運転制御装置
KR102000395B1 (ko) 2018-05-10 2019-10-01 경일대학교산학협력단 자율주행 차량의 운행 모드 전환을 위한 장치, 이를 위한 방법 및 이 방법을 수행하는 프로그램이 기록된 컴퓨터 판독 가능한 기록매체
JP2020124994A (ja) 2019-02-04 2020-08-20 日産自動車株式会社 車両運動制御方法及び車両運動制御装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101998787B1 (ko) * 2017-11-27 2019-07-11 (주)에이텍티앤 차량의 안전운전방법
KR20200081530A (ko) * 2018-12-19 2020-07-08 주식회사 만도 자율 주행 차량의 안전 제어 시스템 및 방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018111391A (ja) * 2017-01-11 2018-07-19 株式会社デンソー 車両用制御システム
JP2018158697A (ja) 2017-03-24 2018-10-11 日立オートモティブシステムズ株式会社 自動運転制御装置
KR102000395B1 (ko) 2018-05-10 2019-10-01 경일대학교산학협력단 자율주행 차량의 운행 모드 전환을 위한 장치, 이를 위한 방법 및 이 방법을 수행하는 프로그램이 기록된 컴퓨터 판독 가능한 기록매체
JP2020124994A (ja) 2019-02-04 2020-08-20 日産自動車株式会社 車両運動制御方法及び車両運動制御装置

Also Published As

Publication number Publication date
KR20220010697A (ko) 2022-01-26
KR20220010407A (ko) 2022-01-25

Similar Documents

Publication Publication Date Title
US20200189618A1 (en) Vehicle and control device and control method of the vehicle
US9663104B2 (en) Method and device for operating a motor vehicle in an automated driving mode
US11673564B2 (en) Autonomous vehicle safety platform system and method
KR20200081530A (ko) 자율 주행 차량의 안전 제어 시스템 및 방법
WO2017064944A1 (ja) 自動運転システム、自動運転制御方法、データecuおよび自動運転ecu
CN102233877B (zh) 确保有限能力自动驾驶车辆的运行的方法和系统
JP7193289B2 (ja) 車載電子制御システム
CN110568852A (zh) 一种自动驾驶系统及其控制方法
CN111565992A (zh) 车辆控制装置
CN113825688A (zh) 自主车辆控制系统
KR102396538B1 (ko) 자율 주행 차량의 안전 제어 시스템 및 방법
JP2019185246A (ja) 自動運転制御システム
CN112141107A (zh) 用于控制自主车辆的设备
KR20210138201A (ko) 자율 주행 제어 방법 및 장치
CN113247022A (zh) 一种自动驾驶冗余控制系统及方法
US20230399018A1 (en) Vehicle for performing minimal risk maneuver and method for operating the same
US20220308577A1 (en) Virtual towing device, system, and method
CN113895450A (zh) 一种无人驾驶车辆感知系统安全冗余系统及控制方法
CN114620064A (zh) 车辆控制系统、自动驾驶车辆以及车辆控制方法
KR102405002B1 (ko) Mrm 지원을 위한 자율 주행 시스템
CN107783530B (zh) 基于软件代码迁移的失效可操作的系统设计模式
CN115723783A (zh) 用于自动驾驶的安全控制器
CN111591303B (zh) 一种自动驾驶交通工具、系统及自动驾驶安全控制方法
KR20230092059A (ko) 주행 모드 간 전환을 지원하는 차량 내 자율 주행 시스템
JP7177968B1 (ja) 車両制御装置、車両制御方法、およびプログラム

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant