KR102404686B1 - Two liquid type polyurethane composition for Semi-nonflammable urethane composite material and Semi-nonflammable urethane composite material using the same - Google Patents

Two liquid type polyurethane composition for Semi-nonflammable urethane composite material and Semi-nonflammable urethane composite material using the same Download PDF

Info

Publication number
KR102404686B1
KR102404686B1 KR1020210114966A KR20210114966A KR102404686B1 KR 102404686 B1 KR102404686 B1 KR 102404686B1 KR 1020210114966 A KR1020210114966 A KR 1020210114966A KR 20210114966 A KR20210114966 A KR 20210114966A KR 102404686 B1 KR102404686 B1 KR 102404686B1
Authority
KR
South Korea
Prior art keywords
weight
semi
catalyst
foam
composite material
Prior art date
Application number
KR1020210114966A
Other languages
Korean (ko)
Inventor
허민준
Original Assignee
주식회사 알리바
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 알리바 filed Critical 주식회사 알리바
Priority to KR1020210114966A priority Critical patent/KR102404686B1/en
Application granted granted Critical
Publication of KR102404686B1 publication Critical patent/KR102404686B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/4009Two or more macromolecular compounds not provided for in one single group of groups C08G18/42 - C08G18/64
    • C08G18/4018Mixtures of compounds of group C08G18/42 with compounds of group C08G18/48
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/16Catalysts
    • C08G18/161Catalysts containing two or more components to be covered by at least two of the groups C08G18/166, C08G18/18 or C08G18/22
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/16Catalysts
    • C08G18/18Catalysts containing secondary or tertiary amines or salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/16Catalysts
    • C08G18/22Catalysts containing metal compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • C08G18/7657Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings
    • C08G18/7664Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings containing alkylene polyphenyl groups
    • C08G18/7671Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings containing alkylene polyphenyl groups containing only one alkylene bisphenyl group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0014Use of organic additives
    • C08J9/0038Use of organic additives containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0066Use of inorganic compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0085Use of fibrous compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/125Water, e.g. hydrated salts
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/14Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
    • C08J9/142Compounds containing oxygen but no halogen atom

Abstract

본 발명은 2액형 경질 폴리우레탄 조성물, 이를 이용한 준불연 우레탄 복합소재로서 건물의 화재 발생시 질식사의 가장 큰 원인이 유독 및 유해가스를 최소화하며 낮은 열전도로 기존 폴리우레탄 단열효과를 나타내는 기술에 관한 것이다. The present invention relates to a two-component rigid polyurethane composition, a semi-non-combustible urethane composite material using the same, which minimizes toxic and harmful gases, the biggest cause of suffocation in the event of a fire in a building, and relates to a technology that exhibits the insulation effect of existing polyurethane with low thermal conductivity.

Description

준불연 우레탄 복합소재용 2액형 경질 폴리우레탄 조성물, 이를 이용한 준불연 우레탄 복합소재{Two liquid type polyurethane composition for Semi-nonflammable urethane composite material and Semi-nonflammable urethane composite material using the same}Two liquid type polyurethane composition for Semi-nonflammable urethane composite material and Semi-nonflammable urethane composite material using the same}

본 발명은 2액형 경질 폴리우레탄 조성물, 이를 이용하여 제조한 준불연 우레탄 복합소재로서 건물의 화재 발생시 질식사의 가장 큰 원인이 유독 및 유해가스를 최소화하며, 열전도도 0.026(W/m·K) 이하의 낮은 열전도를 가지는 바, 단열성이 우수하여, 건물의 내외벽 내장재 및/또는 단열재 소재로 적용하기 적합한 준불연 복합소재에 관한 것이다.The present invention is a two-component rigid polyurethane composition, a semi-non-combustible urethane composite material manufactured using the same, and minimizes toxic and harmful gases, the biggest cause of suffocation in the event of a fire in a building, and has a thermal conductivity of 0.026 (W/m·K) or less It relates to a semi-non-combustible composite material that has a low thermal conductivity of the bar and has excellent thermal insulation properties and is suitable for use as interior and exterior wall interior materials and/or insulation materials of buildings.

화재로 인한 인명 피해의 주된 원인은 유해/유독 가스를 포함하여 발생되는 연기에 의한 것이며, 실제로 화재 시 소사(불에 타서 사망)하는 것보다 유해/유독 가스에 의하여 질식사하는 것이 화재 사망자의 원인의 약 80% 정도를 차지하고 있다.The main cause of casualties due to fire is smoke generated including harmful/toxic gas. It accounts for about 80%.

더욱이, 화재 발생시 불이 번지는 속도보다 유해/유독 가스의 이동 속도가 훨씬 빠른 속도를 갖기에, 유해/유독 가스를 포함하는 연기가 발생하면 가시거리 확보가 되지 않아 신속 대피가 어렵고, 특히 노약자나 어린이는 더욱 열악한 상황에 대한 위험성이 급증되는 문제점이 있다. 또한, 빠른 속도로 화염이 번져 화재의 피해가 크고, 유독/유해 가스를 포함하는 연기가 다량 발생되어 2차 피해로서, 인명피해가 극심한 문제점이 있다.Moreover, when a fire occurs, the movement speed of harmful/toxic gas is much faster than the speed at which the fire spreads, so when smoke containing harmful/toxic gas is generated, it is difficult to quickly evacuate because visibility is not secured, especially the elderly and the weak. Children have a problem in that the risk of worse situations increases rapidly. In addition, since the flame spreads rapidly, the damage of the fire is large, and a large amount of smoke including toxic/noxious gas is generated, so that as a secondary damage, there is an extreme problem in human casualties.

최근 의정부 도시형생활주택 화재(15년1월), 제천 스포츠센터 화재(17년12월), 이천 물류창고 화재(20년4월), 울산 주상복합 화재(20년10월) 등 여러 차례 대형 화재사고가 발생하였었는데, 샌드위치패널과 드라이비트 공법을 사용한 외벽 또는 가연성 알루미늄 복합 패널 등의 외벽 복합 마감재료가 화재 확산에 영향을 미치는 주요 원인으로 지목되어 왔다. 또한, 영국 런던 North Kensignton의 Grenfell Tower 화재는 많은 사상자와 건축물의 피해를 발생시킨 사건으로서 이 화재사건 역시 가연성 외장 재료의 화재 확산으로 인해 인명 및 재산 상의 큰 피해를 입힌 사례로 볼 수 있다. Recently, several large-scale fires such as the Uijeongbu Urban Housing Fire (January 2015), the Jecheon Sports Center Fire (December 2017), the Icheon Logistics Warehouse Fire (April 2020), and the Ulsan Residential Complex Fire (October 2020) Accidents have occurred, and composite finishing materials for exterior walls such as sandwich panels and dry-bit method or combustible aluminum composite panels have been pointed out as the main factors affecting the spread of fire. In addition, the Grenfell Tower fire in North Kensignton, London, England, caused many casualties and damage to buildings, and this fire incident can also be viewed as a case of serious damage to life and property due to the spread of fire from combustible exterior materials.

국내 건축법에서는 건축물의 마감 재료를 내부와 외부로 구분하여 규정하고 있다. 건축물의 외벽에 사용하는 마감 재료는 건축물의 용도 및 높이에 따라 대통령령으로 방화에 지장이 없는 재료로 하도록 하고 있으며, 건축물의 피난·방화구조 등의 기준에 관한 규칙에서 건축물의 외벽에는 불연재료 또는 준불연 재료를 마감재료(단열재, 도장 등 코팅재료 및 그 밖에 마감 재료를 구성하는 모든 재료를 포함한다)로 사용할 것을 규정하고 있다. 다만, 외벽 마감 재료를 구성하는 재료 전체를 하나로 보아 불연재료 또는 준불연 재료에 해당하는 경우 마감재료 중 단열재는 난연재료로 사용할 수 있도록 하였다. The domestic building law stipulates that the finishing materials for buildings are divided into interior and exterior. The finishing materials used for the exterior walls of buildings are to be made of materials that do not interfere with fire prevention by Presidential Decree according to the purpose and height of the buildings. It is stipulated that non-combustible materials should be used as finishing materials (including coating materials such as insulation and painting, and all other materials constituting finishing materials). However, in the case of non-combustible or semi-non-combustible materials considering the entire material constituting the exterior wall finishing material, the insulating material among the finishing materials can be used as a flame-retardant material.

즉, 건축물의 주요 구조부 외부에 설치되는 외벽 마감 재료를 하나의 시스템으로 볼 때 전체 시스템은 불연재료 또는 준불연 재료로 사용되어야 하고, 시스템 내부의 단열재만 난연재료 이상으로 사용하도록 완화하였다. In other words, when the exterior wall finishing material installed outside the main structural part of the building is viewed as a single system, the entire system should be used as a non-combustible or semi-non-combustible material, and only the insulation inside the system was relaxed to be used more than the flame-retardant material.

현행 건축법에서 규정하는 난연, 준불연, 불연재료에 대한 성능기준은 소형시험편(100Х100㎜) 크기로 열방출량과 가스유해성을 측정하여 성능을 평가하고 있으며, 지지 구조, 단열재, 접합부, 표면 마감재 등 다양하게 구성되는 외부 마감재 시스템 전체의 화재 안전성을 평가하는 데에는 새로운 시험 방식을 도입하여 구조체 변형, 붕괴 및 화재 연소·확산성능 등을 평가하는 "실대형 성능시험"을 실시할 예정이다.The performance standards for flame-retardant, semi-incombustible, and non-combustible materials stipulated in the current building law are evaluated by measuring heat release and gas hazard with a small test piece (100Х100 mm) size. In order to evaluate the fire safety of the entire external finishing material system, a new test method will be introduced to conduct a "real-scale performance test" to evaluate structural deformation, collapse, and fire combustion/spreading performance.

최근에는 폴리스티렌 또는 폴리스티렌을 발포한 중간체에 난연물질을 코팅하거나 내부에 난연물질을 중합 및 함침하여 제조한 심재로만 구성된 비드계 난연단열재와 난연단열재에 난연물질을 코팅한 코팅형 난연단열재에 대한 연구가 활발히 진행되고 있는데 이러한 난연단열재의 경우 열방출시험 또는 가스유해성시험을 통과하기가 어렵고, 제조과정에서 품질편차가 크므로 품질안정성을 확보하는데에도 한계가 있는 등 건축용 준불연단열재로 사용하기에는 많은 문제점이 있다.Recently, research on a bead-based flame-retardant insulation material composed only of a core material manufactured by coating a flame-retardant material on polystyrene or an intermediate foamed with polystyrene, or by polymerizing and impregnating a flame-retardant material inside, and a coated flame-retardant insulation material coated with a flame-retardant material on the flame-retardant insulation material In the case of these flame-retardant insulation materials, it is difficult to pass a heat release test or a gas hazard test, and there are many problems to be used as semi-non-combustible insulation materials for construction, such as there is a limit in securing quality stability due to a large quality deviation in the manufacturing process. have.

이에, 단열성이 우수하면서 충분한 기계적 물성을 확보함과 동시에, 유독/유해 가스 발생을 저감시키면서 인명피해를 현격히 저감시킬 수 있는 건축 내외장재로서 준불연 복합소재 제조에 적용가능한 새로운 폴리우레탄 소재가 절실히 필요한 실정이다.Accordingly, there is an urgent need for a new polyurethane material applicable to the manufacture of semi-non-combustible composite materials as interior and exterior materials for buildings that can significantly reduce human casualties while ensuring sufficient mechanical properties while having excellent thermal insulation properties while reducing the generation of toxic/toxic gases to be.

대한민국 공개특허번호 제10-2019-0117397호(공개일 2019.10.16)Republic of Korea Patent Publication No. 10-2019-0117397 (published on October 16, 2019)

본 발명은 건축용 내외장재의 단열재, 마감재 등의 소재 적용하기 적합한 소재로서, 우수한 기계적 물성을 가지면서도 낮은 열전도도 및 연소시 적은 가스 방출량을 가지는 준불연 우레탄 복합소재 및 이의 제조에 사용되는 조성물을 제공하고자 한다.The present invention is a material suitable for applying materials such as insulation and finishing materials for interior and exterior materials for construction, and provides a semi-non-combustible urethane composite material having excellent mechanical properties and low thermal conductivity and low gas emission during combustion, and a composition used for manufacturing the same. do.

상술한 과제를 해결하기 위한 본 발명은 2액형 경질 폴리우레탄 조성물로서, 유기난연제, 무기난연제, 정포제, 거품 촉매(blowing catalyst), 겔화 촉매(gelling catalyst), 삼량화 촉매(Trimerizationcatalyst), 발포제 및 폴리올을 포함하는 주제; 및 MDI(Methylene diphenyl diisocyanat)를 포함하는 경화제;를 포함한다.The present invention for solving the above problems is a two-component rigid polyurethane composition, an organic flame retardant, an inorganic flame retardant, a foam stabilizer, a blowing catalyst, a gelling catalyst, a trimerization catalyst, a blowing agent and subject comprising polyols; and a curing agent including MDI (Methylene diphenyl diisocyanat).

또한, 본 발명은 상기 조성물을 이용하여 제조한 준불연 우레탄 복합소재로서, 상기 2액형 경질 폴리우레탄 조성물의 주제 및 경화제를 혼합 및 발포시킨 발포체인 준불연 우레탄 복합소재을 포함한다.In addition, the present invention includes a semi-non-combustible urethane composite material produced by using the composition as a semi-non-combustible urethane composite material, which is a foam obtained by mixing and foaming the main and curing agent of the two-component rigid polyurethane composition.

본 발명의 2액형 경질 폴리우레탄 조성물로 제조한 준불연 우레탄 복합소재는 높은 압축강도를 가지면서도 낮은 열전도도를 가지면, 연소시 낮은 총 열방출량 및 낮은 가스 방출량의 우수한 난연성을 가지는 바, 건축용 건축용 내외장재의 단열재, 마감재 등의 소재로 사용하기 적합하다.The semi-incombustible urethane composite material prepared with the two-component rigid polyurethane composition of the present invention has high compressive strength and low thermal conductivity, and has excellent flame retardancy of low total heat release and low gas release during combustion. It is suitable for use as a material for insulation and finishing materials.

이하, 본 발명에 대해 보다 상세하게 설명한다.Hereinafter, the present invention will be described in more detail.

본 발명의 경질 폴리우레탄 조성물은 준불연 우레탄 복합소재 제조에 사용되는 조성물로서, 주제 및 경화제를 포함하는 2액형 조성물이다.The rigid polyurethane composition of the present invention is a composition used for manufacturing a semi-non-flammable urethane composite material, and is a two-component composition including a main agent and a curing agent.

상기 주제는 폴리올, 유기난연제, 무기난연제, 정포제, 거품 촉매(blowing catalyst), 겔화 촉매(gelling catalyst), 삼량화 촉매(Trimerizationcatalyst), 발포제를 포함한다.The subject includes polyols, organic flame retardants, inorganic flame retardants, foam stabilizers, blowing catalysts, gelling catalysts, trimerization catalysts, blowing agents.

주제 성분 중 상기 폴리올은 폴리에스테르 폴리올 및 폴리에테르 폴리올을 1 : 0.1 ~ 0.5 중량비로, 바람직하게는 1 : 0.2 ~ 0.4 중량비로 포함하며, 이때, 폴리에테르 폴리올 혼합량이 0.1 중량비 미만이면 발포체인 우레탄 폼이 충분한 압축강도 등의 기계적 물성을 확보하지 못할 수 있고, 폴리에테르 폴리올 혼합량이 0.5 중량비를 초과하면 우레탄 폼의 기계적 물성은 우수하나, 준불연에 준하는 난연 성능에 문제가 있을 수 있고, 오히려 폼의 기공 사이즈가 상대적으로 조밀해지지 못해 우레탄 폼인 복합소재의 열전도도가 높아지는 문제가 있을 수 있으므로 상기 범위 내로 사용하는 것이 좋다. Among the main components, the polyol contains polyester polyol and polyether polyol in a weight ratio of 1: 0.1 to 0.5, preferably, in a weight ratio of 1: 0.2 to 0.4. It may not be possible to secure mechanical properties such as sufficient compressive strength, and if the polyether polyol mixing amount exceeds 0.5 weight ratio, the mechanical properties of the urethane foam are excellent, but there may be a problem in the flame retardant performance equivalent to that of the semi-non-combustible, rather than the foam Since the pore size does not become relatively dense, there may be a problem in that the thermal conductivity of the composite material, which is a urethane foam, may increase, so it is preferable to use it within the above range.

상기 폴리에스테르 폴리올은 관능기(fuctionality) 1.8 ~ 2.2, 중량평균분자량 300 ~ 1800 및 OH-V(value) 180 ~ 380 mg KOH/g인 것을, 바람직하게는 관능기1.9 ~ 2.2, 중량평균분자량 300 ~ 1500 및 OH-V(value) 220 ~ 350 mg KOH/g인 것을, 더욱 바람직하게는 관능기2.0 ~ 2.2, 중량평균분자량 300 ~ 1000 및 OH-V(value) 240 ~ 330 mg KOH/g인 것을 사용할 수 있다. 그리고, 본 발명에서 상기 폴리에스테르 폴리올은 디에틸렌글리콜 2 ~ 10 중량% 및 잔량의 디에틸렌 글리콜-프탈릭 언하이드라드 폴리머를 포함하는 것을, 바람직하게는 디에틸렌글리콜을 3 ~ 8 중량% 및 잔량의 디에틸렌 글리콜-프탈릭 언하이드라드 폴리머를 포함하는 것을 사용할 수 있다.The polyester polyol has a functional group (fuctionality) of 1.8 to 2.2, a weight average molecular weight of 300 to 1800, and an OH-V (value) of 180 to 380 mg KOH/g, preferably a functional group of 1.9 to 2.2, a weight average molecular weight of 300 to 1500 and OH-V (value) of 220 to 350 mg KOH/g, more preferably functional group 2.0 to 2.2, weight average molecular weight of 300 to 1000, and OH-V (value) of 240 to 330 mg KOH/g. have. And, in the present invention, the polyester polyol contains 2 to 10% by weight of diethylene glycol and the remaining amount of diethylene glycol-phthalic anhydrad polymer, preferably 3 to 8% by weight of diethylene glycol and the remaining amount of diethylene glycol-phthalic anhydrad polymer may be used.

상기 폴리에테르 폴리올은 소수성 증대, 기계적 강도를 향상시키는 역할을 하는 것으로서, 관능기 3.8 ~ 5.2, 중량평균분자량 280 ~ 1500 및 OH-V(value) 280 ~ 500mg KOH/g인 것을, 바람직하게는 관능기 4.0 ~ 5.0, 중량평균분자량 400 ~ 1300 및 OH-V 320 ~ 450mg KOH/g인 것을, 더욱 바람직하게는 관능기 4.0 ~ 4.6, 중량평균분자량 500 ~ 1200 및 OH-V 320 ~ 400mg KOH/g인 것을 사용할 수 있다. 그리고, 본 발명에서 상기 폴리에테르 폴리올은 에틸렌옥사이드 및/또는 프로필렌 옥사이드와 같은 알킬렌옥사이드로 축합된 수크로즈와 글리세린 유도체의 혼합물을 중합시켜 제조한 수크로즈계 폴리에테르 폴리올을 사용할 수 있다. The polyether polyol serves to increase hydrophobicity and improve mechanical strength, and has a functional group of 3.8 to 5.2, a weight average molecular weight of 280 to 1500 and an OH-V (value) of 280 to 500 mg KOH/g, preferably a functional group 4.0 ~ 5.0, weight average molecular weight 400 ~ 1300 and OH-V 320 ~ 450 mg KOH / g, more preferably a functional group 4.0 ~ 4.6, weight average molecular weight 500 ~ 1200 and OH-V 320 ~ 400 mg KOH / g can And, as the polyether polyol in the present invention, a sucrose-based polyether polyol prepared by polymerizing a mixture of sucrose and glycerin derivatives condensed with an alkylene oxide such as ethylene oxide and/or propylene oxide may be used.

본 발명 조성물 주제 성분 내 상기 폴리올의 함량은 주제 100 중량% 중 유기난연제, 무기난연제, 정포제, 거품 촉매, 겔화 촉매, 삼량화 촉매 및 발포제를 제외한 나머지 잔량이다.The content of the polyol in the main component of the composition of the present invention is the remaining amount excluding the organic flame retardant, inorganic flame retardant, foam stabilizer, foam catalyst, gelling catalyst, trimerization catalyst and foaming agent in 100% by weight of the main agent.

다음으로, 주제 성분 중 상기 유기 난연제는 무기 난연제와 함께 우레탄 폼의 난연성을 부여하는 역할을 하는 것으로서, 당업계에서 사용하는 일반적인 인계 난연제 및 멜라민계 난연제 중에서 선택된 1종 이상을 포함할 수 있고, 바람직하게는 TCPP(Tris-choroisopropyl phosphate), TEP(Triethyl phosphate) 및 TCPE(Tris carboxyethyl phosphate) 중에서 선택된 1종 이상을 포함하는 인계 난연제를 포함할 수 있으며, 상기 인계 난연제는 인(P) 함량이 5 ~ 30 중량% 인 것이 좋다. Next, the organic flame retardant of the main component serves to impart flame retardancy of the urethane foam together with the inorganic flame retardant, and may include at least one selected from general phosphorus-based flame retardants and melamine-based flame retardants used in the art, preferably It may include a phosphorus-based flame retardant comprising at least one selected from among TCPP (Tris-choroisopropyl phosphate), TEP (Triethyl phosphate) and TCPE (Tris carboxyethyl phosphate), wherein the phosphorus (P) content is 5 ~ 30% by weight is preferred.

그리고, 유기 난연제의 사용량은 주제 전체 중량% 중 3.0 ~ 15 중량%, 바람직하게는 4.0 ~ 13 중량%, 더욱 바람직하게는 5.0 ~ 11.5 중량%인 것이 적절하며, 이때, 유기 난연제 함량이 3 중량% 미만이면 우레탄 폼의 난연성이 저조할 수 있고, 난연제 함량이 15 중량%를 초과하면 과다 사용으로서 더 이상의 난연성 증대 효과가 없으면서 오히려 우레탄 폼의 기계적 강도를 낮출 수 있으므로 상기 범위 내로 사용하는 것이 좋다.And, it is appropriate that the amount of the organic flame retardant used is 3.0 to 15% by weight, preferably 4.0 to 13% by weight, and more preferably 5.0 to 11.5% by weight of the total weight% of the main ingredient, and at this time, the organic flame retardant content is 3% by weight If it is less than, the flame retardancy of the urethane foam may be low, and if the flame retardant content exceeds 15% by weight, it is preferable to use it within the above range because it can lower the mechanical strength of the urethane foam without further increasing the flame retardancy due to excessive use.

다음으로, 주제 성분 중 상기 무기 난연제는 유기 난연제와 함께 우레탄 폼인 복합소재의 난연성 증대, 연소시 유해가스 방출 지연 및/또는 억제 등의 역할을 하는 것으로서, 팽창흑연 및 절단유리섬유(fiber glass chopped strands)를 1 : 0.2 ~ 0.7 중량비로, 바람직하게는 1 : 0.4 ~ 0.6 중량비로 혼합하여 사용하는 것이 좋다. Next, the inorganic flame retardant among the main ingredients serves to increase the flame retardancy of the urethane foam composite material together with the organic flame retardant, delay and/or suppress the release of harmful gases during combustion, and expand graphite and fiber glass chopped strands ) in a weight ratio of 1: 0.2 to 0.7, preferably 1: 0.4 to 0.6 by weight.

상기 팽창흑연은 팽창율 350% ~ 450%, 입자 사이즈 80㎛ ~ 200 ㎛, 황(S) 함량 2,500 ppm 이하인 것을 사용하는 것이 다른 조성물과의 혼화성, 분산성 및 연기 포집력 측면에서 좋다.The expanded graphite has an expansion rate of 350% to 450%, a particle size of 80 μm to 200 μm, and a sulfur (S) content of 2,500 ppm or less in terms of compatibility with other compositions, dispersibility and smoke trapping power.

그리고, 상기 절단유리섬유는 ZrO2 함량 12 ~ 18 중량%인 유리섬유를 절단하여 제조한 것으로서, 절단유리섬유는 혼화성, 분산성 측면에서 평균지름 10 ~ 13㎛, 길이 10 ~ 18 mm인 것을, 바람직하게는 평균지름 10 ~ 13㎛, 길이 10 ~ 12 mm인 것을 사용하는 것이 좋다.And, the cut glass fiber is produced by cutting glass fiber having a ZrO 2 content of 12 to 18 wt%, and the cut glass fiber has an average diameter of 10 to 13 μm and a length of 10 to 18 mm in terms of miscibility and dispersibility. , It is preferable to use an average diameter of 10 to 13㎛, and a length of 10 to 12 mm.

그리고, 무기 난연제의 주제 내 사용량은 주제 전체 중량 중 20.0 ~ 40.0 중량%, 바람직하게는 21.0 ~ 35.0 중량%, 더욱 바람직하게는 23.5 ~ 34.0 중량%를 사용하는 것이 좋다. 이때, 무기 난연제 함량이 20.0 중량% 미만이면 그 사용량이 적어서 연소시 유해가스 방출 지연 효과가 미비할 수 있고, 40.0 중량%를 초과하여 사용하는 것은 과량 사용이며 오히려 복합소재의 발포성을 떨어뜨리고, 기계적 물성 저하, 점도 증가로 인한 성형성 감소 등의 문제가 있을 수 있으므로 상기 범위 내로 사용하는 것이 좋다.And, the amount of the inorganic flame retardant in the main agent is 20.0 to 40.0 wt%, preferably 21.0 to 35.0 wt%, more preferably 23.5 to 34.0 wt%, based on the total weight of the main agent. At this time, if the content of the inorganic flame retardant is less than 20.0% by weight, the amount used is small, and the effect of delaying the release of harmful gases during combustion may be insignificant. Since there may be problems such as deterioration of physical properties and reduction of moldability due to increase in viscosity, it is recommended to use within the above range.

다음으로, 상기 정포제는 발포된 우레탄 폼의 셀 균일화 및 형태를 유지하는 역할을 하는 것으로서, 당업계에서 사용하는 일반적인 정포제를 사용할 수 있으며, 바람직하게는 실리콘(silicon), 실리콘 글리콜 코폴리머(silicon glycol copolymer), 폴리실록산 에테르(polysiloxane ether) 등의 실리콘계 정포제를 사용하는 것이 좋으며, 더욱 바람직하게는 하기 화학식 1로 표시되는 실리콘 글리콜 코폴리머를 사용하는 것이 좋다.Next, the foam stabilizer serves to maintain cell uniformity and shape of the foamed urethane foam, and a general foam stabilizer used in the art may be used, preferably silicone, silicone glycol copolymer ( It is preferable to use a silicone-based foam stabilizer such as silicon glycol copolymer or polysiloxane ether, and more preferably, a silicone glycol copolymer represented by the following formula (1).

[화학식 1][Formula 1]

Figure 112021100183471-pat00001
Figure 112021100183471-pat00001

화학식 1에서, R1, R2 및 R3 각각은 독립적으로 수소원자 또는 탄소수 1 ~ 3의 직쇄형 알킬기이고, 바람직하게는 R1, R2 및 R3 각각은 독립적으로 탄소수 1 ~ 3의 직쇄형 알킬기이다. 그리고, 화학식 1의 R4는 탄소수 1 ~ 5의 직쇄형 알킬렌기이며, 바람직하게는 탄소수 2 ~ 4의 직쇄형 알킬렌기이다. 또한, 화학식 1의 상기 R5 및 R6 각각은 독립적으로 탄소수 1 ~ 3의 직쇄형 알킬렌기이고, 바람직하게는 R5 및 R6 각각은 독립적으로 탄소수 1 ~ 2의 직쇄형 알킬렌기이다. 또한, R7 각각은 수소원자, 탄소수 1 ~ 3의 직쇄형 알킬기 또는 탄소수 3 ~ 5의 분쇄형 알킬기이며, 바람직하게는 수소원자 또는 탄소수 1 ~ 3의 직쇄형 알킬기이다. 그리고, 화학식 1의 A는 H 또는 t-부틸기이며, x, y은 몰비로서, x는 1 ~ 20의 정수이고, y는 1 ~ 5의 정수이며, x는 1 ~ 10의 정수이고, y는 1 ~ 3의 정수이다. 그리고, m, n 각각은 독립적으로 1 ~ 3의 자연수이고, 바람직하게는 1 또는 2이다.In Formula 1, each of R 1 , R 2 and R 3 is independently a hydrogen atom or a linear alkyl group having 1 to 3 carbon atoms, preferably R 1 , R 2 and R 3 are each independently a straight chain alkyl group having 1 to 3 carbon atoms. It is a chain-type alkyl group. And, R 4 in Formula 1 is a straight-chain alkylene group having 1 to 5 carbon atoms, preferably a straight-chain alkylene group having 2 to 4 carbon atoms. In addition, each of R 5 and R 6 in Formula 1 is independently a linear alkylene group having 1 to 3 carbon atoms, and preferably, each of R 5 and R 6 is independently a linear alkylene group having 1 to 2 carbon atoms. Further, each of R 7 is a hydrogen atom, a linear alkyl group having 1 to 3 carbon atoms, or a pulverized alkyl group having 3 to 5 carbon atoms, preferably a hydrogen atom or a straight chain alkyl group having 1 to 3 carbon atoms. And, in Formula 1, A is H or a t-butyl group, x and y are molar ratios, x is an integer from 1 to 20, y is an integer from 1 to 5, x is an integer from 1 to 10, y is an integer from 1 to 3. And, each of m and n is independently a natural number of 1 to 3, preferably 1 or 2.

그리고, 주제 내 상기 정포제의 사용량은 주제 전체 중량 중 0.5 ~ 4.0 중량%, 바람직하게는 0.8 ~ 3.5 중량%, 더욱 바람직하게는 1.0 ~ 3.2 중량%이며, 이때, 정포제 사용량이 0.5 중량% 미만이면 우레탄 폼 내 셀의 균질하지 않게 형성되어 기계적 물성이 고르지 못하는 문제가 있을 수 있고, 우레탄 폼 사용량이 4.0 중량%를 초과하여 사용하면 다른 조성물과의 상용성이 떨어져서 우레탄 폼의 기계적 물성 및/또는 난연성 등이 오히려 떨어지는 문제가 있을 수 있으므로 상기 범위 내로 사용하는 것이 좋다.And, the amount of the foam stabilizer used in the main agent is 0.5 to 4.0 wt%, preferably 0.8 to 3.5 wt%, more preferably 1.0 to 3.2 wt%, based on the total weight of the main agent, and in this case, the amount of the foam stabilizer used is less than 0.5 wt% On the other hand, the cells in the urethane foam may be formed non-uniformly, so there may be a problem that the mechanical properties are not uniform, and when the amount of urethane foam used exceeds 4.0 wt%, compatibility with other compositions is lowered, so that the mechanical properties of the urethane foam and / or Since there may be a problem that the flame retardancy is rather deteriorated, it is better to use it within the above range.

다음으로, 본 발명의 조성물 내 주제는 발포체 생성시 반응시간을 단축하고 발포체의 부풀음, 즉 라이징과 관련해서 발포체의 흐름성을 적절하게 조절하기 위해 3종의 촉매를 포함하며, 구체적으로는 거품 촉매(blowing catalyst), 겔화 촉매(gelling catalyst), 삼량화 촉매(Trimerizationcatalyst)를 포함한다.Next, the subject matter in the composition of the present invention includes three catalysts to shorten the reaction time during foam formation and appropriately control the flowability of the foam in relation to the swelling, that is, rising of the foam, specifically, the foam catalyst (blowing catalyst), gelling catalyst (gelling catalyst), trimerization catalyst (Trimerization catalyst).

상기 거품 촉매는 발포제인 물과 경화제 내 MDI간의 반응을 용이하게 해서 발포시 필요한 열을 공급하고, 폴리올과 MDI와의 수지화 반응을 가속화시키는 역할을 하는 것으로서, PMDETA(pentamethyl diethylene triamine) 및 BDMEE(di-(N,N-dimethyl aminoethyl)ether) 중에서 선택된 1종 이상을 포함할 수 있으며, 바람직하게는 PMDETA 및 BDMEE 를 1 : 1 ~ 2 중량비로 혼합하여 사용할 수 있다. 상기 PMDETA의 상업적으로 판매되는 바람직한 일례를 들면, 상품명 PC-5, TC-DT, KAO-3 등이 있다. 또한, BDMEE 의 상업적으로 판매되는 바람직한 일례를 들면, 상품명 DABCO BL-11, TC-ET, NIAX A-1 등이 있다.The foam catalyst facilitates the reaction between water, which is a foaming agent, and MDI in the curing agent, supplies heat required for foaming, and serves to accelerate the resinization reaction between polyol and MDI. PMDETA (pentamethyl diethylene triamine) and BDMEE (di -(N,N-dimethyl aminoethyl)ether) may include at least one selected from the group consisting of, and preferably, PMDETA and BDMEE may be mixed in a 1:1 to 2 weight ratio. Preferred commercially available examples of the PMDETA include PC-5, TC-DT, KAO-3, and the like. Further, commercially available preferred examples of BDMEE include trade names DABCO BL-11, TC-ET, NIAX A-1, and the like.

그리고, 주제 내 거품 촉매의 사용량은 주제 전체 중량 중 0.20 ~ 1.20 중량%, 바람직하게는 0.40 ~ 1.15 중량%, 더욱 바람직하게는 0.42 ~ 1.10 중량%를 사용하는 것이 좋다. 이때, 거품 촉매 사용량이 0.20 중량% 미만이면 그 사용량이 적어서 이의 사용으로 인한 폴리올과 MDI와의 반응 가속 효과가 없을 수 있고, 1.20 중량%를 초과하여 사용하면 과량 사용으로 인해 오히려 우레탄 폼의 기계적 물성은 좋으나, 발포 후 치수안정성과 내부 온도 조절에 문제가 있을 수 있으므로 상기 범위 내로 사용하는 것이 좋다.And, the amount of the foam catalyst used in the main agent is 0.20 to 1.20% by weight, preferably 0.40 to 1.15% by weight, more preferably 0.42 to 1.10% by weight of the total weight of the main agent. At this time, if the amount of the foam catalyst used is less than 0.20% by weight, the amount is small and there may be no effect of accelerating the reaction between the polyol and MDI due to its use, and if it is used in excess of 1.20% by weight, the mechanical properties of the urethane foam are rather reduced due to excessive use However, since there may be problems with dimensional stability and internal temperature control after foaming, it is recommended to use within the above range.

촉매 중 상기 겔화 촉매는 거품 촉매로 활성화된 MDI(Methylene diphenyl diisocyanat)를 폴리올과 반응시켜 폴리우레탄 수지를 만드는 역할을 하는 것으로서, DMCHA(dimethylcyclohexyl amine), TMHDA(N,N,N',N'-Tetramethyl-1,6- hexanediamine) 및 TEDA(triethylenediamine) 중에서 선택된 1종 이상을 포함할 수 있고, 바람직하게는 DMCHA 및 TMHDA 중에서 선택된 1종 이상을 포함할 수 있다. 상기 DMCHA 의 상업적으로 판매되는 바람직한 일례를 들면, 상품명 PC-8, PC-33, TC-DMCH, KAO-10 등이 있다. 또한, 상기 TMHDA의 상업적으로 판매되는 바람직한 일례를 들면, 상품명 PC-6, TC-MR, KAO-1 등이 있다. 또한, 상기 TEDA의 상업적으로 판매되는 바람직한 일례를 들면, 상품명 DABCO33LV, NIAXA-33, TC TEA-L33 등이 있다.Among the catalysts, the gelation catalyst serves to make a polyurethane resin by reacting MDI (Methylene diphenyl diisocyanat) activated as a foam catalyst with a polyol, DMCHA (dimethylcyclohexyl amine), TMHDA (N,N,N',N'- Tetramethyl-1,6-hexanediamine) and may include one or more selected from TEDA (triethylenediamine), and preferably may include one or more selected from DMCHA and TMHDA. Preferred commercially available examples of DMCHA include trade names PC-8, PC-33, TC-DMCH, KAO-10, and the like. In addition, commercially available preferred examples of the TMHDA include trade names PC-6, TC-MR, KAO-1, and the like. In addition, commercially available preferred examples of TEDA include trade names DABCO33LV, NIAXA-33, TC TEA-L33, and the like.

그리고, 주제 내 겔화 촉매의 사용량은 주제 전체 중량 중 0.01 ~ 0.20 중량%, 바람직하게는 0.03 ~ 0.18 중량%, 더욱 바람직하게는 0.03 ~ 0.16 중량%를 사용하는 것이 좋다. 이때 겔화 촉매 함량이 0.01 중량% 미만이면 그 사용량이 너무 적어서 이를 사용함으로 인한 폴리우레탄 수지 내 매트릭스 형성이 저조하여 기계적 물성이 좋지 않을 수 있고, 0.20 중량%를 초과하여 사용하는 것을 과량 사용이며 오히려 우레탄 폼 내 셀 형성이 잘 되지 않고, 이로 인해 우레탄 폼의 열전도도가 증가 및 폼 수축, 발포 성형에 문제가 있을 수 있으므로 상기 범위 내로 사용하는 것이 좋다. And, the amount of the gelling catalyst used in the main agent is 0.01 to 0.20 wt%, preferably 0.03 to 0.18 wt%, more preferably 0.03 to 0.16 wt%, based on the total weight of the main agent. At this time, if the content of the gelation catalyst is less than 0.01% by weight, the amount used is too small, and the matrix formation in the polyurethane resin due to the use thereof may be poor, and the mechanical properties may be poor. Cell formation in the foam does not work well, so the thermal conductivity of the urethane foam may increase, and there may be problems in foam shrinkage and foam molding, so it is better to use it within the above range.

촉매 중 상기 삼량화 촉매(Trimerization catalyst) 는 주제와 경화제간 반응성을 증대시키는 역할과 경화제와 경화제의 결합을 증대시켜 기계적, 난연성을 증대시키는 역할을 하는 것으로서, 유기카르본산의 금속염, 3급 아민 화합물 및 4급 암모늄염이 포함하는 삼량화 촉매를 사용하는 것이 좋으며, 바람직하게는 상업적으로 판매되는 상품명 DABCO K-15, DABCO T-45, DABCO TMR-30 및/또는 POLYCAT-46(Air Product Co.)를 1종 또는 2종 이상을 혼합하여 사용할 수 있다. 그리고, 주제 내 삼량화 촉매의 사용량은 주제 전체 중량 중 0.50 ~ 2.50 중량%, 바람직하게는 0.65 ~ 2.30 중량%, 더욱 바람직하게는 0.74 ~ 2.15 중량%이다. 이때, 삼량화 촉매 사용량이 0.50 중량% 미만이면 우레탄 폼 내 삼량화 구조 형성율이 낮고, 준불연 성능에 문제가 있을 수 있고, 2.50 중량%를 초과하면 과량 사용으로서, 우레탄 폼 내 삼량화 구조 형성율은 우수하나, 오히려 치수 안정성 및 폼 성형성에 문제가 있으므로 상기 범위 내로 사용하는 것이 좋다.Among the catalysts, the trimerization catalyst serves to increase the reactivity between the main agent and the curing agent and to increase the bonding between the curing agent and the curing agent to increase the mechanical and flame retardancy. Metal salts of organic carboxylic acids, tertiary amine compounds And it is preferable to use a trimerization catalyst comprising a quaternary ammonium salt, preferably commercially available under the trade names DABCO K-15, DABCO T-45, DABCO TMR-30 and/or POLYCAT-46 (Air Product Co.) may be used alone or as a mixture of two or more. And, the amount of the trimerization catalyst used in the main agent is 0.50 to 2.50 wt%, preferably 0.65 to 2.30 wt%, more preferably 0.74 to 2.15 wt%, based on the total weight of the main agent. At this time, if the amount of the trimerization catalyst used is less than 0.50 wt%, the formation rate of the trimerization structure in the urethane foam is low, and there may be a problem in the semi-incombustible performance, and if it exceeds 2.50 wt%, the trimerization structure is formed in the urethane foam Although the ratio is excellent, it is better to use it within the above range because there are problems in dimensional stability and formability.

다음으로, 주제 성분 중 상기 발포제는 화학적 발포제 및 물리적 발포제를 혼합하여 사용할 수 있고, 상기 화학적 발포제로는 물을 사용하고, 물리적 발포제로는 사이클로펜탄, 1,1-디클로로-1-플루오로에탄(1,1-Dichloro-1-fluoroethane) 및 1,1,1,3,3-펜타플루오로프로판(1,1,1,3,3-Pentafluoropropane) 중에서 선택된 1종 이상을 포함할 수 있다. Next, among the main components, the blowing agent may be used by mixing a chemical blowing agent and a physical blowing agent, water is used as the chemical blowing agent, and cyclopentane, 1,1-dichloro-1-fluoroethane ( 1,1-Dichloro-1-fluoroethane) and 1,1,1,3,3-pentafluoropropane (1,1,1,3,3-Pentafluoropropane).

그리고, 발포제는 상기 화학적 발포제인 물 및 상기 물리적 발포제를 1 : 5 ~ 30 중량비로 포함할 수 있고, 바람직하게는 1 : 8 ~ 25 중량비로, 더욱 바람직하게는 1 : 12 ~ 18 중량비로 포함하는 것이 발포체의 적정 속도로의 발포성, 우레탄 폼 내 적정 셀 형성 측면에서 유리하다. And, the foaming agent may include the chemical foaming agent water and the physical foaming agent in a weight ratio of 1: 5 to 30, preferably in a weight ratio of 1: 8 to 25, more preferably in a weight ratio of 1: 12 to 18. This is advantageous in terms of foamability at an appropriate rate of the foam and proper cell formation in the urethane foam.

그리고, 주제 내 발포제의 함량은 주제 전체 중량 중 6.0 ~ 20.0 중량%, 바람직하게는 7.5 ~ 18.0 중량%, 더욱 바람직하게는 8.5 ~ 16.0 중량%이다. 이때, 발포제 사용량이 6.0 중량% 미만이면 발포성이 너무 부족한 문제가 있을 수 있고, 20.0 중량%를 초과하여 사용하면 발포력은 좋으나, 너무 급격하게 발포하여 성형가공성이 떨어지고, 우레탄 폼 내 셀이 너무 크게 형성되어 기계적 물성이 저조하여 건축용 내외장재 소재로 사용할 수 없는 문제가 있을 수 있으므로 상기 범위 내로 사용하는 것이 좋다.And, the content of the foaming agent in the main agent is 6.0 to 20.0 wt%, preferably 7.5 to 18.0 wt%, more preferably 8.5 to 16.0 wt%, based on the total weight of the main agent. At this time, if the amount of the foaming agent used is less than 6.0% by weight, there may be a problem that the foaming property is too insufficient. It is recommended to use within the above range because there may be a problem that it cannot be used as an interior or exterior material for construction due to its low mechanical properties.

또한, 본 발명의 조성물 중 상기 주제는 유기난연제 및/또는 무기난연제의 주제 및 발포체 내 분산성을 증대시키기 위해서 하기 화학식 2로 표시되는 중합체를 분산제로 더 포함할 수도 있다.In addition, in the composition of the present invention, the subject may further include a polymer represented by the following formula (2) as a dispersant in order to increase dispersibility in the main and foam of the organic flame retardant and/or inorganic flame retardant.

[화학식 2][Formula 2]

Figure 112021100183471-pat00002
Figure 112021100183471-pat00002

화학식 2에서, R1은 탄소수 1 ~ 5의 직쇄형 알킬기, 탄소수 4 ~ 8의 분쇄형 알킬기 또는 -C(=O)CH3이고, 바람직하게는 탄소수 4 ~ 8의 분쇄형 알킬기 또는 -C(=O)CH3이며, 더욱 바람직하게는 탄소수 4 ~ 8의 분쇄형 알킬기이다. 또한, 화학식 2의 상기 R2는 -CH2C(=O)R3 또는 -CH2SO3R4이고, 바람직하게는 -CH2SO3R4이다. 그리고, 상기 R3는 수소원자 또는 탄소수 1~3의 직쇄형 알킬기이다. 그리고, 상기 R4는 수소원자, Na+ 또는 K+이고, 바람직하게는 수소원자이다. 또한, 화학식 2의 상기 m은 2 ~ 5의 자연수, 바람직하게는 m은 3 ~ 4의 자연수이다.In Formula 2, R 1 is a linear alkyl group having 1 to 5 carbon atoms, a pulverized alkyl group having 4 to 8 carbon atoms, or -C(=O)CH 3 , and preferably a pulverized alkyl group having 4 to 8 carbon atoms or -C( =O)CH 3 , and more preferably a pulverized alkyl group having 4 to 8 carbon atoms. In addition, R 2 of Formula 2 is —CH 2 C(=O)R 3 or —CH 2 SO 3 R 4 , preferably —CH 2 SO 3 R 4 . And, R 3 is a hydrogen atom or a straight-chain alkyl group having 1 to 3 carbon atoms. And, R 4 is a hydrogen atom, Na + or K + , preferably a hydrogen atom. In addition, in Formula 2, m is a natural number of 2 to 5, preferably m is a natural number of 3 to 4.

그리고, 상기 분산제의 사용량은 주제 전체 중량 중 0.1 ~ 0.5 중량%, 바람직학는 0.15 ~ 0.40 중량%, 더욱 바람직하게는 0.15 ~ 0.35 중량%이며, 이때, 분산제 함량이 주체 전체 중량 중 0.1 중량% 미만이면 그 사용량이 적어서 이의 사용으로 인한 난연성분의 분산성 향상으로 인한 발포체의 균일한 난연성 확보 효과가 미비할 수 있고, 0.5 중량%를 초과하여 사용하면 오히려 발포체의 난연성 및/또는 기계적 물성을 떨어뜨릴 수 있으므로 상기 범위 내로 사용하는 것이 좋다. And, the amount of the dispersant used is 0.1 to 0.5% by weight, preferably 0.15 to 0.40% by weight, more preferably 0.15 to 0.35% by weight, based on the total weight of the main agent, and in this case, if the dispersant content is less than 0.1% by weight of the total weight of the main body Since the amount used is small, the effect of ensuring uniform flame retardancy of the foam due to the improvement of the dispersibility of the flame retardant component due to its use may be insufficient, and if it is used in excess of 0.5 wt %, the flame retardancy and / or mechanical properties of the foam may be reduced. Therefore, it is recommended to use it within the above range.

본 발명의 2액형 경질 폴리우레탄 조성물 중 경화제는 NCO 함량 29 ~ 34 중량%인 MDI(Methylene diphenyl diisocyanat)를 포함하며, 바람직하게는 NCO 함량 30 ~ 33 중량%인 MDI를 포함할 수 있다.The curing agent in the two-component rigid polyurethane composition of the present invention may include MDI (Methylene diphenyl diisocyanat) having an NCO content of 29 to 34 wt%, and preferably MDI having an NCO content of 30 to 33 wt%.

본 발명의 준불연 우레탄 복합소재는 앞서 설명한 2액형 경질 폴리우레탄 조성물로 제조한 것으로서, 상기 주제와 경화제를 1:1.2 ~ 1:2.0 중량비로 혼합하여 발포시켜서 제조한 발포체를 포함한다. The semi-nonflammable urethane composite material of the present invention is prepared from the two-component rigid polyurethane composition described above, and includes a foam prepared by mixing the main agent and the curing agent in a weight ratio of 1:1.2 to 1:2.0 and foaming.

이때, 발포를 위하여 고압발포기를 사용할 수 있으며, 발포시 온도는 저장 탱크기준으로 18 ~ 25℃, 고압 펌프는 압력은 110 ~ 140 bar로 조절하여 발포를 수행할 수 있다. At this time, a high-pressure foaming machine may be used for foaming, and the foaming may be performed by adjusting the foaming temperature to 18 to 25° C. based on the storage tank, and the pressure of the high-pressure pump to 110 to 140 bar.

상기와 같이 발포시켜 제조한 본 발명의 준불연 우레탄 복합소재(우레탄 폼)은 KS M 3809에 의거하여 측정시 열전도도 0.026 W/m·K 이하이고, 바람직하게는 0.025 W/m·K 이하이고 더욱 바람직하게는 0.018 W/m·K ~ 0.024 W/m·K일 수 있다.The semi-non-flammable urethane composite material (urethane foam) of the present invention manufactured by foaming as described above has a thermal conductivity of 0.026 W/m·K or less, preferably 0.025 W/m·K or less, when measured in accordance with KS M 3809. More preferably, it may be 0.018 W/m·K to 0.024 W/m·K.

또한, 본 발명의 준불연 우레탄 복합소재(우레탄 폼)은 KS M 3809에 의거하여 측정된 압축강도가 25.0 N/㎠ 이상, 바람직하게는 25.0 N/㎠ ~ 35.0 N/㎠ , 더욱 바람직하게는 25.0 N/㎠ ~ 30.0 N/㎠ 일 수 있다. In addition, the semi-nonflammable urethane composite material (urethane foam) of the present invention has a compressive strength of 25.0 N/cm 2 or more, preferably 25.0 N/cm 2 ~ 35.0 N/cm 2 , more preferably 25.0 measured in accordance with KS M 3809 It may be N/cm 2 ~ 30.0 N/cm 2 .

또한, 본 발명의 준불연 우레탄 복합소재(우레탄 폼)은 KS F ISO 5660-1에 의거하여 측정된 총 열방출량이 8 MJ/㎡ 미만일 수 있고, 바람직하게는 7.9 MJ/㎡ ~ 6.0 MJ/㎡을, 7.8 MJ/㎡ ~ 6.5 MJ/㎡ 을 만족할 수 있다.In addition, the semi-incombustible urethane composite material (urethane foam) of the present invention may have a total heat release amount of less than 8 MJ/m2 measured in accordance with KS F ISO 5660-1, preferably 7.9 MJ/m2 to 6.0 MJ/m2 , 7.8 MJ/m2 to 6.5 MJ/m2 may be satisfied.

또한, 본 발명의 준불연 우레탄 복합소재(우레탄 폼)은 KS F 2271에 의거하여 측정된 가스 유해성 측정시 9분 이상을 만족하며, 바람직하게는 10분 ~ 15 분 이상을 만족할 수 있다.In addition, the semi-nonflammable urethane composite material (urethane foam) of the present invention satisfies 9 minutes or more when measuring gas toxicity measured in accordance with KS F 2271, and preferably 10 minutes to 15 minutes or more.

이하에서는 실시예를 통하여 본 발명을 더욱 구체적으로 설명하기로 하지만, 하기 실시예가 본 발명의 범위를 제한하는 것은 아니며, 이는 본 발명의 이해를 돕기 위한 것으로 해석되어야 할 것이다.Hereinafter, the present invention will be described in more detail through examples, but the following examples are not intended to limit the scope of the present invention, which should be construed to aid understanding of the present invention.

[실시예] [Example]

실시예 1 : 2액형 경질 폴리우레탄 조성물 및 준불연 우레탄 복합소재의 제조Example 1: Preparation of two-component rigid polyurethane composition and semi-non-combustible urethane composite material

(1) 2액형 경질 폴리우레탄 조성물의 준비(1) Preparation of two-component rigid polyurethane composition

평균 관능기 2.0, 중량평균분자량 300 ~ 600 및 OH-V 180 ~ 280mg KOH/g인 폴리에스테르 폴리올을 준비하였다. 이때, 폴리에스테르 폴리올은 디에틸렌글리콜을 4.8 중량% 및 잔량의 디에틸렌 글리콜-프탈릭 언하이드라드 폴리머을 포함한다.Average A polyester polyol having a functional group of 2.0, a weight average molecular weight of 300 to 600 and an OH-V of 180 to 280 mg KOH/g was prepared. In this case, the polyester polyol contains 4.8 wt% of diethylene glycol and the remaining amount of diethylene glycol-phthalic anhydrad polymer.

평균 관능기 4.5, 중량평균분자량 700 ~ 900 및 OH-V 350 ~ 370mg KOH/g인 폴리에테르 폴리올(비중 1.085)을 준비하였다. 이때, 상기 폴리에테르 폴리올은 에틸렌옥사이드로 축합된 수크로즈와 글리세린 유도체의 혼합물을 중합시켜 제조한 수크로즈계 폴리에테르 폴리올이다.A polyether polyol (specific gravity 1.085) having an average functional group of 4.5, a weight average molecular weight of 700 to 900 and an OH-V of 350 to 370 mg KOH/g was prepared. In this case, the polyether polyol is a sucrose-based polyether polyol prepared by polymerizing a mixture of sucrose condensed with ethylene oxide and a glycerin derivative.

상기 폴리에스테르 폴리올 및 상기 폴리에테르 폴리올을 1 : 0.253중량비로 혼합하여 폴리올을 제조하였다.The polyester polyol and the polyether polyol were mixed in a weight ratio of 1: 0.253 to prepare a polyol.

유기 난연제로서 TCPP(Tris-choroisopropyl phosphate) 및 TEP(Triethyl phosphate)을 1: 0.8 중량비로 포함하는 액상 인계 난연제(인 함량 20~25 중량%)를 준비하였다.As an organic flame retardant, a liquid phosphorus-based flame retardant (phosphorus content of 20 to 25% by weight) containing Tris-choroisopropyl phosphate (TCP) and Triethyl phosphate (TEP) in a weight ratio of 1: 0.8 was prepared.

무기 난연제로서, 팽창흑연 및 절단유리섬유(fiber glass chopped strands)를 1 : 0.5 중량비로 혼합하여 준비하였다. 이때, 상기 팽창흑연은 팽창율 350 ~ 450%이고, 입자 사이즈 80㎛ ~ 200 ㎛, 황(S) 함량 2,500 ppm 이하인 것을 사용하였으며, 상기 절단유리섬유는 Zro2 함량 14 ~ 15 중량%인 유리섬유를 절단하여, 평균지름 약 11 ~ 12㎛ 및 길이 10 ~ 12mm인 것을 사용하였다.As an inorganic flame retardant, expanded graphite and fiber glass chopped strands were prepared by mixing them in a weight ratio of 1:0.5. At this time, the expanded graphite had an expansion rate of 350 to 450%, a particle size of 80 μm to 200 μm, and a sulfur (S) content of 2,500 ppm or less was used, and the cut glass fiber was a glass fiber having a Zro 2 content of 14 to 15% by weight. After cutting, those having an average diameter of about 11 to 12 μm and a length of 10 to 12 mm were used.

정포제로서, 하기 화학식 1-1로 표시되는 실리콘 글리콜 코폴리머(점도 800 ~ 950 mPas, 수중 내 pH 6.0 ~ 7.0, 밀도 1.04 ~ 1.06)를 준비하였다.As a foam stabilizer, a silicone glycol copolymer (viscosity 800 to 950 mPas, pH 6.0 to 7.0 in water, density 1.04 to 1.06) represented by the following Chemical Formula 1-1 was prepared.

[화학식 1-1][Formula 1-1]

Figure 112021100183471-pat00003
Figure 112021100183471-pat00003

화학식 1-1에서, R1, R2 및 R3은 메틸기이고, R4는 에틸렌기이며, R5 및 R6 은 메틸렌기이고, R7 은 메틸기이며, A은 t-부틸기이고, x는 5이고, y는 2이며, m, n은 각각 2이다.In Formula 1-1, R 1 , R 2 and R 3 are a methyl group, R 4 is an ethylene group, R 5 and R 6 are a methylene group, R 7 is a methyl group, A is a t-butyl group, x is 5, y is 2, and m and n are 2 each.

거품 촉매로서, PMDETA(pentamethyl diethylene triamine) 및 BDMEE(di-(N,N-dimethyl aminoethyl)ether)를 1 : 1.2 중량비로 혼합하여 준비하였다.As a foam catalyst, PMDETA (pentamethyl diethylene triamine) and BDMEE (di-(N,N-dimethyl aminoethyl)ether) were prepared by mixing in a weight ratio of 1:1.2.

겔화 촉매로서 DMCHA(dimethylcyclohexyl amine)를 준비하였다.DMCHA (dimethylcyclohexyl amine) was prepared as a gelation catalyst.

삼량화 촉매로서, POLYCAT-46(Air Product Co.)을 준비하였다.As a trimerization catalyst, POLYCAT-46 (Air Product Co.) was prepared.

발포제로서 물 및 1,1,1,3,3-펜타플루오로프로판(1,1,1,3,3-Pentafluoropropane)을 1 : 15.2 중량비로 혼합하여 준비하였다.As a foaming agent, water and 1,1,1,3,3-pentafluoropropane (1,1,1,3,3-Pentafluoropropane) were mixed in a weight ratio of 1: 15.2 to prepare.

그리고, 상기 유기 난연제 9.5 중량%, 상기 무기 난연제 25.3 중량%, 상기 정포제 2.0 중량%, 거품 촉매 0.78 중량%, 겔화 촉매 0.12 중량%, 삼량화 촉매 1.60 중량%, 발포제 16.2 중량% 및 잔량의 폴리올을 혼합하여 주제를 제조하였다.And, 9.5% by weight of the organic flame retardant, 25.3% by weight of the inorganic flame retardant, 2.0% by weight of the foam stabilizer, 0.78% by weight of the foam catalyst, 0.12% by weight of the gelation catalyst, 1.60% by weight of the trimerization catalyst, 16.2% by weight of the blowing agent, and the remainder of the polyol was mixed to prepare the subject.

또한, 경화제인 이소시아네이트로서, NCO 함량 31~32 중량%인 MDI Methylene diphenyl diisocyanat)를 준비하였다.In addition, as an isocyanate as a curing agent, MDI Methylene diphenyl diisocyanat) having an NCO content of 31 to 32% by weight) was prepared.

(2) 준불연 우레탄 복합소재(우레탄 폼)의 제조(2) Manufacture of semi-non-flammable urethane composite material (urethane foam)

앞서 제조한 주제 및 경화제를 1 : 1.5 중량비로 혼합 및 발포시켜서 발포체인 우레탄 폼을 형성시켜서 준불연 우레탄 복합소재를 제조하였다. A semi-non-combustible urethane composite material was prepared by mixing and foaming the above-prepared base material and curing agent in a weight ratio of 1: 1.5 to form a foamed urethane foam.

이때, 발포를 위하여 고압발포기를 사용하였으며, 발포시 온도는 저장 탱크기준으로 20℃, 고압발포기의 고압 펌프 압력은 120 ~ 125 bar로 조절하여 발포를 수행하였다. At this time, a high-pressure foaming machine was used for foaming, and the foaming was performed by adjusting the foaming temperature to 20°C based on the storage tank and the high-pressure pump pressure of the high-pressure foaming machine to 120 ~ 125 bar.

실시예 2Example 2

상기 실시예 1과 동일한 방법으로 우레탄 폼을 형성시켜서 준불연 우레탄 복합소재를 제조하되, 주제 제조시, 하기 화학식 2-1로 표시되는 분산제를 주제 전체 중량 중 0.35 중량% 더 혼합하여 제조한 것을 사용하였다.A semi-non-flammable urethane composite material was prepared by forming a urethane foam in the same manner as in Example 1, but the dispersing agent represented by the following Chemical Formula 2-1 was further mixed with 0.35% by weight of the total weight of the main material. did

[화학식 2-1][Formula 2-1]

Figure 112021100183471-pat00004
Figure 112021100183471-pat00004

화학식 2-1에서 R1은 t-부틸기이고, R2는 -CH2SO3R4이고, R4는 수소원자이며, m은 3이다.In Formula 2-1, R 1 is a t-butyl group, R 2 is -CH 2 SO 3 R 4 , R 4 is a hydrogen atom, and m is 3.

실시예 3 ~ 11 및 비교예 1 ~ 10Examples 3 to 11 and Comparative Examples 1 to 10

상기 실시예 1 또는 실시예 2와 동일한 조성으로 2액형 경질 폴리우레탄 조성물의 주제, 경화제를 준비한 후, 이를 이용하여 동일한 방법으로 우레탄 폼을 형성시켜서 준불연 우레탄 복합소재를 각각 제조하여 실시예 2 ~ 10 및 비교예 1 ~ 10을 각각 실시하였다. 다만, 하기 표 1 ~ 표 4와 같이 주제 내 조성의 함량을 달리하여 실시하였다.After preparing the main and curing agent of the two-component rigid polyurethane composition with the same composition as in Example 1 or Example 2, using this, a urethane foam was formed in the same manner to prepare a semi-non-combustible urethane composite material, respectively, Examples 2 ~ 10 and Comparative Examples 1 to 10 were performed, respectively. However, as shown in Tables 1 to 4 below, it was carried out by varying the content of the composition in the main subject.

비교예 11Comparative Example 11

상기 실시예 1과 동일한 조성으로 2액형 경질 폴리우레탄 조성물의 주제, 경화제를 준비한 후, 이를 이용하여 동일한 방법으로 우레탄 폼을 형성시켜서 준불연 우레탄 복합소재를 각각 제조하였다. 다만, 주제 성분 중 폴리올로서, 상기 폴리에스테르 폴리올 및 상기 폴리에테르 폴리올을 1 : 0.050 중량비로 혼합하여 폴리올을 제조하였다.After preparing the main and curing agent of the two-component rigid polyurethane composition with the same composition as in Example 1, urethane foam was formed in the same manner using this to prepare semi-nonflammable urethane composite materials, respectively. However, as a polyol among the main components, the polyester polyol and the polyether polyol were mixed in a weight ratio of 1:0.050 to prepare a polyol.

비교예 12Comparative Example 12

상기 실시예 1과 동일한 조성으로 2액형 경질 폴리우레탄 조성물의 주제, 경화제를 준비한 후, 이를 이용하여 동일한 방법으로 우레탄 폼을 형성시켜서 준불연 우레탄 복합소재를 각각 제조하였다. 다만, 주제 성분 중 폴리올로서, 상기 폴리에스테르 폴리올 및 상기 폴리에테르 폴리올을 1 : 0.610 중량비로 혼합하여 폴리올을 제조하였다.After preparing the main and curing agent of the two-component rigid polyurethane composition with the same composition as in Example 1, urethane foam was formed in the same manner using this to prepare semi-nonflammable urethane composite materials, respectively. However, as a polyol among the main components, the polyester polyol and the polyether polyol were mixed in a weight ratio of 1:0.610 to prepare a polyol.

비교예 13Comparative Example 13

상기 실시예 1과 동일한 방법으로 우레탄 폼을 형성시켜서 준불연 우레탄 복합소재를 제조하되, 주제 제조시, 하기 화학식 2-1로 표시되는 분산제를 주제 전체 중량 중 0.55 중량% 더 혼합하여 제조한 것을 사용하였다.A semi-non-flammable urethane composite material was prepared by forming a urethane foam in the same manner as in Example 1, but the dispersing agent represented by the following Chemical Formula 2-1 was further mixed with 0.55 wt% of the total weight of the main material. did

[화학식 2-1][Formula 2-1]

Figure 112021100183471-pat00005
Figure 112021100183471-pat00005

화학식 2-1에서 R1은 t-부틸기이고, R2는 -CH2SO3R4이고, R4는 수소원자이며, m은 3이다.In Formula 2-1, R 1 is a t-butyl group, R 2 is -CH 2 SO 3 R 4 , R 4 is a hydrogen atom, and m is 3.

주제
조성(중량%)
topic
Composition (wt%)
실시예 1Example 1 실시예 2Example 2 실시예 3Example 3 실시예 4Example 4 실시예 5Example 5 실시예 6Example 6 실시예 7Example 7
유기
난연제
abandonment
flame retardant
TCPP/TEPTCP/TEP 9.59.5 9.59.5 14.514.5 9.59.5 9.59.5 9.59.5 9.59.5
무기
난연제
weapon
flame retardant
팽창흑연expanded graphite 13.813.8 13.813.8 13.813.8 11.511.5 17.517.5 13.813.8 13.813.8
절단
유리섬유
cut
fiberglass
9.59.5 9.59.5 9.59.5 9.79.7 14.514.5 9.59.5 9.59.5
정포제antifoaming agent 실리콘 글리콜 코폴리머silicone glycol copolymer 2.02.0 2.02.0 2.02.0 2.02.0 2.02.0 1.01.0 3.53.5 촉매catalyst 거품 촉매foam catalyst 0.780.78 0.780.78 0.780.78 0.780.78 0.780.78 0.780.78 0.780.78 겔화 촉매gelation catalyst 0.120.12 0.120.12 0.120.12 0.120.12 0.120.12 0.120.12 0.120.12 삼량화 촉매trimerization catalyst 1.61.6 1.61.6 1.61.6 1.61.6 1.61.6 1.61.6 1.61.6 발포제blowing agent water 1.01.0 1.01.0 1.01.0 1.01.0 1.01.0 1.01.0 1.01.0 물리적 발포제physical blowing agent 15.215.2 15.215.2 15.215.2 15.215.2 15.215.2 15.215.2 15.215.2 분산제dispersant 화학식 2-1Formula 2-1 -- 0.350.35 -- -- -- -- -- 폴리올polyol 폴리에스테르 폴리올 및 폴리에테르 폴리올polyester polyols and polyether polyols 나머지
잔량 100 중량%
Remainder
100% by weight remaining

주제
조성(중량%)
topic
Composition (wt%)
실시예 8Example 8 실시예 9Example 9 실시예 10Example 10 실시예 11Example 11
유기
난연제
abandonment
flame retardant
TCPP 및
TEP
TCPP and
TEP
9.59.5 9.59.5 9.59.5 9.59.5
무기
난연제
weapon
flame retardant
팽창흑연expanded graphite 13.813.8 13.813.8 13.813.8 13.813.8
절단 유리섬유cutting fiberglass 9.59.5 9.59.5 9.59.5 9.59.5 정포제antifoaming agent 실리콘 글리콜 코폴리머silicone glycol copolymer 2.02.0 2.02.0 2.02.0 2.02.0 촉매catalyst 거품 촉매foam catalyst 1.201.20 0.780.78 0.780.78 0.780.78 겔화 촉매gelation catalyst 0.120.12 0.120.12 0.120.12 0.120.12 삼량화 촉매trimerization catalyst 1.61.6 0.80.8 2.52.5 1.61.6 발포제blowing agent water 1.01.0 1.01.0 1.01.0 2.92.9 물리적 발포제physical blowing agent 15.215.2 15.215.2 15.215.2 15.215.2 분산제dispersant 화학식 2-1Formula 2-1 -- -- -- -- 폴리올polyol 폴리에스테르 폴리올 및 폴리에테르 폴리올polyester polyols and polyether polyols 나머지
잔량 100 중량%
Remainder
100% by weight remaining

주제
조성(중량%)
topic
Composition (wt%)
비교예 1Comparative Example 1 비교예 2Comparative Example 2 비교예 3Comparative Example 3 비교예 4Comparative Example 4 비교예 5Comparative Example 5 비교예 6Comparative Example 6 비교예 7Comparative Example 7
유기
난연제
abandonment
flame retardant
TCPP/TEPTCP/TEP 4.74.7 16.216.2 9.59.5 9.59.5 9.59.5 9.59.5 9.59.5
무기
난연제
weapon
flame retardant
팽창흑연expanded graphite 13.813.8 13.813.8 10.510.5 22.522.5 13.813.8 13.813.8 13.813.8
절단
유리섬유
cut
fiberglass
9.59.5 9.59.5 7.27.2 19.419.4 9.59.5 9.59.5 9.59.5
정포제antifoaming agent 실리콘 글리콜 코폴리머silicone glycol copolymer 2.02.0 2.02.0 2.02.0 2.02.0 0.30.3 4.54.5 2.02.0 촉매catalyst 거품 촉매foam catalyst 0.780.78 0.780.78 0.780.78 0.780.78 0.780.78 0.780.78 1.601.60 겔화 촉매gelation catalyst 0.120.12 0.120.12 0.120.12 0.120.12 0.120.12 0.120.12 0.150.15 삼량화 촉매trimerization catalyst 1.61.6 1.61.6 1.61.6 1.61.6 1.61.6 1.61.6 1.71.7 발포제blowing agent water 1.01.0 1.01.0 1.01.0 1.01.0 1.01.0 1.01.0 1.01.0 물리적 발포제physical blowing agent 15.215.2 15.215.2 15.215.2 15.215.2 15.215.2 15.215.2 15.215.2 폴리올polyol 폴리에스테르 폴리올 및 폴리에테르 폴리올polyester polyols and polyether polyols 나머지
잔량 100 중량%
Remainder
100% by weight remaining

주제
조성(중량%)
topic
Composition (wt%)
비교예 8Comparative Example 8 비교예 9Comparative Example 9 비교예 10Comparative Example 10 비교예 11Comparative Example 11 비교예 12Comparative Example 12 비교예 13Comparative Example 13
유기
난연제
abandonment
flame retardant
TCPP/TEPTCP/TEP 9.59.5 9.59.5 9.59.5 9.59.5 9.59.5 9.59.5
무기
난연제
weapon
flame retardant
팽창흑연expanded graphite 13.813.8 13.813.8 13.813.8 13.813.8 13.813.8 13.813.8
절단
유리섬유
cut
fiberglass
9.59.5 9.59.5 9.59.5 9.59.5 9.59.5 9.59.5
정포제antifoaming agent 실리콘 글리콜 코폴리머silicone glycol copolymer 2.02.0 2.02.0 2.02.0 2.02.0 2.02.0 2.02.0 촉매catalyst 거품 촉매foam catalyst 0.780.78 0.780.78 0.780.78 0.780.78 0.780.78 0.780.78 겔화 촉매gelation catalyst 0.120.12 0.120.12 0.120.12 0.120.12 0.120.12 0.120.12 삼량화 촉매trimerization catalyst 0.40.4 3.53.5 1.61.6 1.61.6 1.61.6 1.61.6 발포제blowing agent water 1.01.0 1.01.0 5.05.0 1.01.0 1.01.0 1.01.0 물리적 발포제physical blowing agent 15.215.2 15.215.2 13.513.5 15.215.2 15.215.2 15.215.2 분산제dispersant 화학식 2-1Formula 2-1 -- -- -- -- -- 0.550.55 폴리올polyol 폴리에스테르 폴리올 및 폴리에테르 폴리올polyester polyols and polyether polyols 나머지
잔량 100 중량%
Remainder
100% by weight remaining

실험예 1 : 준불연 우레탄 복합소재의 물성 측정Experimental Example 1: Measurement of physical properties of semi-nonflammable urethane composite material

상기 실시예 및 비교예에서 제조한 우레탄 폼인 준불연 우레탄 복합소재의 열전도도, 압축강도, 총 열방출량 및 가스유해성을 하기와 같은 방법으로 측정하였고, 그 결과를 하기 표 5에 나타내었다.The thermal conductivity, compressive strength, total heat release, and gas hazard of the semi-incombustible urethane composite material, which is the urethane foam prepared in Examples and Comparative Examples, was measured as follows, and the results are shown in Table 5 below.

(1) 열전도도 측정방법(1) Method of measuring thermal conductivity

본 발명에 따른 실시예 및 비교예로 제조된 준불연 폴리우레탄 복합소재를 KS M 3809에 의거하여 열전도도(W/m·K)를 측정하였다. 계류된 열량을 측정하고 이것으로부터 전도율을 계산하는 방식으로서, 열전도율 측정기 (TCA-8)로 자동 측정하였다.The thermal conductivity (W/m·K) of the semi-incombustible polyurethane composite materials prepared in Examples and Comparative Examples according to the present invention was measured in accordance with KS M 3809. As a method of measuring the amount of entrained heat and calculating the conductivity from this, it was automatically measured with a thermal conductivity meter (TCA-8).

(2) 압축강도 측정방법(2) Compressive strength measurement method

실시예 및 비교예에서 제조된 준불연 폴리우레탄 복합소재를 KS M 3809에 의거하여 발포 방향에 대하여 수직 또는 수평으로 폼(Foam) 높이의 10%를 압축하여 압출강도(kg/㎠)를 측정하였다.The semi-incombustible polyurethane composite material prepared in Examples and Comparative Examples was compressed by 10% of the height of the foam vertically or horizontally with respect to the foaming direction in accordance with KS M 3809 to measure the extrusion strength (kg/cm2). .

(3) 총 열방출량 측정방법(3) Method of measuring total heat release

실시예 및 비교예에서 제조된 준불연 폴리우레탄 복합소재를 KS F ISO 5660-1에 의거하여 총 방 출열량(MJ/㎡)을 측정하였다. 구체적으로, 100㎜×100㎜(가로×세로) 시편에 50kW/㎡의 복사선을 조사하여 시편으로부터 발생되는 열량을 5분간 누적하여 측정하였다.The total amount of heat released (MJ/m2) of the semi-incombustible polyurethane composite materials prepared in Examples and Comparative Examples was measured in accordance with KS F ISO 5660-1. Specifically, 50 kW/m2 of radiation was irradiated to a 100 mm × 100 mm (width × length) specimen, and the amount of heat generated from the specimen was accumulated and measured for 5 minutes.

(4) 가스유해성 측정방법(4) Gas toxicity measurement method

실시예 및 비교예에서 제조된 준불연 폴리우레탄 복합소재를 KS F 2271 에 의거하여 가스유해성을 측정하였다.Gas toxicity was measured in accordance with KS F 2271 of the semi-incombustible polyurethane composite materials prepared in Examples and Comparative Examples.

구분division 열전도도
(W/m·K)
thermal conductivity
(W/m K)
압축강도
(kg/㎠)
compressive strength
(kg/cm2)
총 열방출량
(MJ/㎡)
total heat release
(MJ/㎡)
가스유해성
(분:초)
gas toxicity
(minutes:seconds)
실시예 1Example 1 0.0200.020 25.225.2 7.57.5 14:3514:35 실시예2Example 2 0.0190.019 27.827.8 7.07.0 15:1215:12 실시예 3Example 3 0.0210.021 25.625.6 7.67.6 14:4214:42 실시예 4Example 4 0.0200.020 25.025.0 7.47.4 13:2313:23 실시예 5Example 5 0.0280.028 25.325.3 7.77.7 14:5814:58 실시예 6Example 6 0.0200.020 25.325.3 7.57.5 14:2214:22 실시예 7Example 7 0.0200.020 25.525.5 7.87.8 14:3914:39 실시예 8Example 8 0.0200.020 25.825.8 7.97.9 14:3014:30 실시예 9Example 9 0.0210.021 26.726.7 7.57.5 14:2014:20 실시예 10Example 10 0.0200.020 25.425.4 7.77.7 14:1614:16 실시예 11Example 11 0.0200.020 25.625.6 7.87.8 14:0514:05 비교예 1Comparative Example 1 0.0650.065 24.424.4 12.212.2 08:2608:26 비교예 2Comparative Example 2 0.0240.024 14.414.4 10.010.0 10:0110:01 비교예 3Comparative Example 3 0.0220.022 25.625.6 11.511.5 07:1207:12 비교예 4Comparative Example 4 0.0360.036 15.815.8 7.77.7 11:2211:22 비교예 5Comparative Example 5 0.0240.024 15.215.2 8.58.5 12:0912:09 비교예 6Comparative Example 6 0.0310.031 18.818.8 7.77.7 11:3611:36 비교예 7Comparative Example 7 0.0520.052 25.725.7 7.87.8 12:3412:34 비교예 8Comparative Example 8 0.0460.046 22.822.8 8.88.8 11:5011:50 비교예 9Comparative Example 9 0.0230.023 23.923.9 7.97.9 12:2012:20 비교예 10Comparative Example 10 0.0210.021 14.514.5 8.08.0 12:3512:35 비교예 11Comparative Example 11 0.0200.020 13.613.6 7.27.2 12:4012:40 비교예 12Comparative Example 12 0.0690.069 26.526.5 8.88.8 9:139:13 비교예 13 Comparative Example 13 0.0320.032 15.815.8 7.77.7 13:0113:01

상기 표 5의 실험결과를 살펴보면, 실시예 1 ~ 11은 전반적으로 낮은 열전도도, 높은 압축강도, 낮은 총 열방출량 및 가스유해 저감성이 우수한 결과를 보였다. 특히, 분산제를 사용한 실시예 2가 실시예 1, 실시예 3 ~ 11 보다 상대적으로 우수한 기계적 물성, 난연성 및 가스유해 저감성 측정 결과를 보였다. Looking at the experimental results in Table 5, Examples 1 to 11 showed excellent results in overall low thermal conductivity, high compressive strength, low total heat release and gas harm reduction. In particular, Example 2 using a dispersant showed relatively superior mechanical properties, flame retardancy and gas hazard reduction measurement results than Examples 1 and 3 to 11.

이에 반해, 유기 난연제를 5 중량% 미만으로 사용한 비교예 1의 경우, 실시예 1과 비교할 때, 압축강도에 큰 영향은 없으나, 열전도도가 크게 증가하고, 총 열방출량이 크게 증가하는 문제가 있었다.On the other hand, in the case of Comparative Example 1 using less than 5% by weight of the organic flame retardant, compared with Example 1, there was no significant effect on the compressive strength, but the thermal conductivity was greatly increased, and there was a problem that the total heat release amount was greatly increased. .

또한, 유기 난연제를 15 중량% 초과 사용한 비교예 2의 경우, 실시예 1 및 실시예 3과 비교할 때, 열전도도가 낮고, 총 열방출량이 적어서 난연성은 우수하나, 압축강도가 15 kg/㎠ 미만으로 크게 낮아지는 문제가 있었다.In addition, in the case of Comparative Example 2 in which the organic flame retardant was used in excess of 15% by weight, compared with Examples 1 and 3, the thermal conductivity was low and the total heat emission was small, so the flame retardancy was excellent, but the compressive strength was less than 15 kg/cm 2 There was a problem of significantly lowering.

무기 난연제를 20.0 중량% 미만으로 사용한 비교예 3의 경우, 실시예 4와 비교할 때, 가스 유해성 측정 시간이 크게 짧아지는 문제가 있었으며, 무기 난연제를 40.0 중량% 초과하여 사용한 비교예 4의 경우, 실시예 5와 비교할 때, 가스유해 저해성은 우수하나, 오히려 기계적 물성 및 난연성이 저하되었는데, 이는 발포체의 발포성이 떨어지고, 균일한 셀 형성이 이루어지지 않아서 기계적 물성이 저하되었기 때문이다.In the case of Comparative Example 3 using less than 20.0 wt% of the inorganic flame retardant, there was a problem in that the gas toxicity measurement time was significantly shortened as compared to Example 4, In the case of Comparative Example 4 using the inorganic flame retardant in excess of 40.0 wt%, practice Compared with Example 5, the gas-harm inhibitory property is excellent, but mechanical properties and flame retardancy were rather deteriorated, because the foamability of the foam was poor, and the mechanical properties were lowered because uniform cell formation was not achieved.

또한, 정포제를 0.5 중량% 미만으로 사용한 비교예 5의 경우, 실시예 6과 비교할 때, 기계적 물성이 크게 떨어지는 결과를 보였는데, 이는 우레탄 폼 내 셀 균질성이 떨어졌기 때문이다. 또한, 정포제를 4.0 중량% 초과하여 사용한 비교예 6의 경우, 실시예 7과 비교할 때, 오히려 기계적 물성 및 난연성이 감소하는 결과를 보였는데, 이는 다른 조성과의 상용성이 떨어져서 난연 효과 및/또는 우레탄 폼 내 셀 형성에 방해를 주었기 때문이다.In addition, in the case of Comparative Example 5 using less than 0.5% by weight of the foam stabilizer, when compared with Example 6, the mechanical properties were significantly lowered, which is because the cell homogeneity in the urethane foam was poor. In addition, in the case of Comparative Example 6 in which the foaming agent was used in excess of 4.0% by weight, compared with Example 7, the results were rather decreased in mechanical properties and flame retardancy, which had poor compatibility with other compositions, resulting in a flame retardant effect and / Or because it interfered with the cell formation in the urethane foam.

거품 촉매를 1.20 중량% 초과 사용한 비교예 7의 경우, 실시예 8과 비교할 때, 우레탄 폼의 발포성이 부족하여 폼의 열전도도가 크게 증가하는 문제가 있었다.In the case of Comparative Example 7 using more than 1.20 wt% of the foam catalyst, there was a problem in that the thermal conductivity of the foam was greatly increased due to insufficient foamability of the urethane foam when compared with Example 8.

또한, 삼량화 촉매는 0.5 중량% 미만으로 사용한 비교예 8은, 실시예 9와 비교할 때, 우레탄 폼 내 셀 형성율이 낮고, 셀이 너무 작게 형성되어 전반적인 물성이 크게 낮은 결과를 보였으며, 삼량화 촉매를 2.50 중량% 초과하여 사용한 비교예 9의 경우, 실시예 10과 비교할 때 오히려 압축 강도가 낮아지는 결과를 보였다.In addition, Comparative Example 8, in which the trimerization catalyst was used in less than 0.5% by weight, had a low cell formation rate in the urethane foam, compared with Example 9, and the cell was formed too small, resulting in significantly low overall physical properties, In the case of Comparative Example 9, in which the catalyst was used in excess of 2.50 wt%, the compressive strength was rather lowered compared to that of Example 10.

또한, 발포제 내 화학적 발포제 및 물리적 발포제를 1 : 3 중량비 미만, 및 발포제를 17.5 중량%를 초과하여 사용한 비교예 10의 경우, 발포성이 매우 좋았으나, 오히려 셀이 불필요하게 크게 형성되고, 일부분은 셀이 오히려 뭉게져서 불량률이 높고, 실시예 11과 비교할 때, 물성이 낮은 결과를 보였다.In addition, in the case of Comparative Example 10, in which the chemical foaming agent and the physical foaming agent in the foaming agent were used in a weight ratio of less than 1:3 and the foaming agent was used in excess of 17.5% by weight, the foaming property was very good, but rather large cells were formed unnecessarily, and some cells were It was rather crushed, so the defect rate was high, and compared with Example 11, the physical properties were low.

주제 성분 중 폴리에스테르 폴리올 및 폴리에테르 폴리올을 1 : 0.1 중량비 미만으로 사용한 비교예 11의 경우, 실시예 1과 비교할 때 압축강도가 저조한 문제가 있었고, 주제 성분 중 폴리에스테르 폴리올 및 폴리에테르 폴리올을 1 : 0.5 중량비 초과하여 사용한 비교예 12의 경우, 우레탄 폼의 열전도도가 크게 증가하는 문제가 있었다.In Comparative Example 11, in which polyester polyol and polyether polyol among the main components were used in a weight ratio of less than 1: 0.1, there was a problem in that the compressive strength was low compared to Example 1, and polyester polyol and polyether polyol were used as 1 of the main components. : In the case of Comparative Example 12 used in excess of 0.5 weight ratio, there was a problem in that the thermal conductivity of the urethane foam was greatly increased.

그리고, 주제 내 분산제를 0.50 중량% 초과한 0.55 중량%를 사용한 비교예 13의 경우, 분산제를 0.35 중량% 사용한 실시예 2와 비교할 때, 전반적인 물성이 크게 떨어졌고, 오히려 분산제를 사용하지 않은 실시예 1 보다도 열전도도가 증가하고 압축강도가 낮아지는 문제가 있었다.And, in the case of Comparative Example 13 using 0.55% by weight, which exceeds 0.50% by weight of the dispersing agent in the main ingredient, compared with Example 2 using 0.35% by weight of the dispersant, the overall physical properties were significantly lowered, rather, the dispersant was not used Example 1, there was a problem in that the thermal conductivity increased and the compressive strength was lowered.

상기 실시예 및 실험예를 통하여, 본 발명의 2액형 경질 폴리우레탄 조성물을 이용하여 제조한 우레탄 폼인 준불연 우레탄 복합소재가 우수한 난연성, 낮은 열전도도를 가지면서 기계적 물성이 우수함을 확인할 수 있었다. 이를 통하여, 본 발명의 상기 복합소재는 건물의 내외벽 내장재 및/또는 단열재 소재로 적용하기 적합함을 확인할 수 있었다.Through the above Examples and Experimental Examples, it was confirmed that the semi-non-flammable urethane composite material, which is a urethane foam prepared using the two-component rigid polyurethane composition of the present invention, has excellent flame retardancy and low thermal conductivity, and has excellent mechanical properties. Through this, it was confirmed that the composite material of the present invention is suitable for application as an interior and/or insulation material for interior and exterior walls of buildings.

Claims (3)

유기난연제 5.0 ~ 15.0 중량%, 무기난연제 21.0 ~ 35.0 중량%, 정포제 0.8 ~ 3.5 중량%, 거품 촉매(blowing catalyst) 0.40 ~ 1.20 중량%, 겔화 촉매(gelling catalyst) 0.03 ~ 0.18 중량%, 삼량화 촉매(Trimerizationcatalyst) 0.65 ~ 2.50 중량%, 발포제 7.5 ~ 18.0 중량% 및 잔량의 폴리올을 포함하는 주제; 및 NCO 함량 29 ~ 34 중량%인 MDI(Methylene diphenyl diisocyanate)를 포함하는 경화제;를 포함하고,
상기 주제 및 상기 경화제를 1 : 1.2 ~ 2.0 중량비로 포함하며,
상기 폴리올은 폴리에스테르 폴리올 및 폴리에테르 폴리올을 1 : 0.2 ~ 0.4 중량비로 포함하며,
상기 폴리에스테르 폴리올은 관능기(fuctionality) 1.8 ~ 2.2, 중량평균분자량 300 ~ 1,800 및 OH-V(value) 180 ~ 380 mg KOH/g이고,
상기 폴리에테르 폴리올은 관능기 4.0 ~ 4.5, 중량평균분자량 500 ~ 1200 및 OH-V 320 ~ 400mg KOH/g이며,
상기 유기난연제는 TCPP(Tris-choroisopropyl phosphate), TEP(Triethyl phosphate) 및 TCPE(Tris carboxyethyl phosphate) 중에서 선택된 1종 이상을 포함하는 인계난연제를 포함하고,
상기 무기난연제는 팽창흑연 및 평균지름 10 ~ 13㎛, 길이 10 ~ 18 mm인 절단유리섬유를 1 : 0.2 ~ 0.7 중량비로 포함하며,
상기 팽창흑연은 팽창율 350% ~ 450%, 입자 사이즈 80㎛ ~ 200 ㎛, 황(S) 함량 2,500 ppm 이하이고,
상기 절단유리섬유는 ZrO2 함량 12 ~ 18 중량%인 절단 유리섬유이며,
상기 정포제는 하기 화학식 1로 표시되는 실리콘 글리콜 코폴리머(silicon glycol copolymer)를 포함하는 실리콘계 정포제를 포함하고,
상기 거품 촉매는 PMDETA(pentamethyl diethylene triamine) 및 BDMEE(di-(N,N-dimethyl aminoethyl)ether) 중에서 선택된 1종 이상을 포함하며,
상기 겔화 촉매는 DMCHA(dimethylcyclohexyl amine), TMHDA(N,N,N',N'-Tetramethyl-1,6- hexanediamine) 및 TEDA(triethylenediamine) 중에서 선택된 1종 이상을 포함하고,
상기 삼량화 촉매는 유기카르본산 금속염, 3급 아민 화합물 및 4급 암모늄염이 포함하는 촉매이고,
상기 발포제는 물 및 물리적 발포제를 1 : 8 ~ 25 중량비로 포함하며,
상기 물리적 발포제는 사이클로펜탄, 1,1-디클로로-1-플루오로에탄(1,1-Dichloro-1-fluoroethane) 및 1,1,1,3,3-펜타플루오로프로판(1,1,1,3,3-Pentafluoropropane) 중에서 선택된 1종 이상을 포함하는 것을 특징으로 하는 준불연 우레탄 복합소재용 2액형 경질 폴리우레탄 조성물.
[화학식 1]
Figure 112022025954856-pat00006

화학식 1에서, R1, R2 및 R3 각각은 독립적으로 수소원자 또는 탄소수 1 ~ 3의 직쇄형 알킬기이고, R4는 탄소수 1 ~ 5의 직쇄형 알킬렌기이며, R5 및 R6 각각은 독립적으로 탄소수 1 ~ 3의 직쇄형 알킬렌기이고, R7은 수소원자, 탄소수 1 ~ 3의 직쇄형 알킬기 또는 탄소수 3 ~ 5의 분쇄형 알킬기이며, A는 H 또는 t-부틸기이며, x, y, m, n은 몰비로서, x는 1 ~ 20의 정수이고, y는 1 ~ 5의 정수이며, m, n 각각은 독립적으로 1 ~ 3의 자연수이다.
Organic flame retardant 5.0 to 15.0 wt%, inorganic flame retardant 21.0 to 35.0 wt%, foam stabilizer 0.8 to 3.5 wt%, blowing catalyst 0.40 to 1.20 wt%, gelling catalyst 0.03 to 0.18 wt%, trimerization a main agent comprising 0.65 to 2.50% by weight of a Trimerizationcatalyst, 7.5 to 18.0% by weight of a blowing agent and the balance of a polyol; and a curing agent comprising MDI (Methylene diphenyl diisocyanate) having an NCO content of 29 to 34 wt%;
The main agent and the curing agent are included in a weight ratio of 1: 1.2 to 2.0,
The polyol comprises a polyester polyol and a polyether polyol in a weight ratio of 1: 0.2 to 0.4,
The polyester polyol has a functional group (functionality) of 1.8 to 2.2, a weight average molecular weight of 300 to 1,800, and an OH-V (value) of 180 to 380 mg KOH/g,
The polyether polyol has a functional group of 4.0 to 4.5, a weight average molecular weight of 500 to 1200, and OH-V 320 to 400 mg KOH/g,
The organic flame retardant comprises a phosphorus-based flame retardant comprising at least one selected from Tris-choroisopropyl phosphate (TCP), Triethyl phosphate (TEP), and Tris carboxyethyl phosphate (TCPE),
The inorganic flame retardant comprises expanded graphite and cut glass fibers having an average diameter of 10 to 13 μm and a length of 10 to 18 mm in a weight ratio of 1: 0.2 to 0.7,
The expanded graphite has an expansion rate of 350% to 450%, a particle size of 80 μm to 200 μm, and a sulfur (S) content of 2,500 ppm or less,
The cut glass fiber is a cut glass fiber having a ZrO 2 content of 12 to 18% by weight,
The foam stabilizer includes a silicone-based foam stabilizer including a silicone glycol copolymer represented by the following Chemical Formula 1,
The foam catalyst includes at least one selected from pentamethyl diethylene triamine (PMDETA) and di-(N,N-dimethyl aminoethyl)ether (BDMEE),
The gelation catalyst includes at least one selected from dimethylcyclohexyl amine (DMCHA), N,N,N',N'-Tetramethyl-1,6-hexanediamine (TEDA), and triethylenediamine (TEDA),
The trimerization catalyst is a catalyst comprising an organic carboxylic acid metal salt, a tertiary amine compound, and a quaternary ammonium salt,
The foaming agent contains water and a physical foaming agent in a weight ratio of 1: 8 to 25,
The physical blowing agent is cyclopentane, 1,1-dichloro-1-fluoroethane and 1,1,1,3,3-pentafluoropropane (1,1,1). ,3,3-Pentafluoropropane) a two-component rigid polyurethane composition for a semi-non-flammable urethane composite material comprising at least one selected from the group consisting of.
[Formula 1]
Figure 112022025954856-pat00006

In Formula 1, each of R 1 , R 2 and R 3 is independently a hydrogen atom or a straight-chain alkyl group having 1 to 3 carbon atoms, R 4 is a straight-chain alkylene group having 1 to 5 carbon atoms, and R 5 and R 6 are each independently a linear alkylene group having 1 to 3 carbon atoms, R 7 is a hydrogen atom, a linear alkyl group having 1 to 3 carbon atoms, or a pulverized alkyl group having 3 to 5 carbon atoms, A is H or a t-butyl group, x, y, m, and n are molar ratios, where x is an integer from 1 to 20, y is an integer from 1 to 5, and each of m and n is independently a natural number from 1 to 3.
삭제delete 제1항의 주제 및 경화제를 혼합 및 발포시켜 형성된 우레탄 폼을 포함하며, 상기 우레탄 폼은,
KS M 3809에 의거하여 측정시 열전도도 0.026 W/m·K 이하이고,
KS M 3809에 의거하여 측정된 압축강도가 25.0 N/㎠ 이상이며,
KS F ISO 5660-1에 의거하여 측정된 총 열방출량이 8 MJ/㎡ 미만이고,
KS F 2271에 의거하여 측정된 가스 유해성 측정시 9분 이상을 만족하는 것을 특징으로 하는 준불연 우레탄 복합소재.
It includes a urethane foam formed by mixing and foaming the subject and curing agent of claim 1, wherein the urethane foam,
When measured in accordance with KS M 3809, the thermal conductivity is 0.026 W/m·K or less,
Compressive strength measured in accordance with KS M 3809 is 25.0 N/㎠ or more,
The total heat release measured according to KS F ISO 5660-1 is less than 8 MJ/m2,
Semi-nonflammable urethane composite material, characterized in that it satisfies 9 minutes or more when measuring gas toxicity measured in accordance with KS F 2271.
KR1020210114966A 2021-08-30 2021-08-30 Two liquid type polyurethane composition for Semi-nonflammable urethane composite material and Semi-nonflammable urethane composite material using the same KR102404686B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020210114966A KR102404686B1 (en) 2021-08-30 2021-08-30 Two liquid type polyurethane composition for Semi-nonflammable urethane composite material and Semi-nonflammable urethane composite material using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020210114966A KR102404686B1 (en) 2021-08-30 2021-08-30 Two liquid type polyurethane composition for Semi-nonflammable urethane composite material and Semi-nonflammable urethane composite material using the same

Publications (1)

Publication Number Publication Date
KR102404686B1 true KR102404686B1 (en) 2022-06-03

Family

ID=81983421

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210114966A KR102404686B1 (en) 2021-08-30 2021-08-30 Two liquid type polyurethane composition for Semi-nonflammable urethane composite material and Semi-nonflammable urethane composite material using the same

Country Status (1)

Country Link
KR (1) KR102404686B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102511309B1 (en) 2022-12-26 2023-03-17 나상권 A semi-nonflammable rigid polyurethane foam comprising enamel powder and a method for manufacturing the same
KR102638311B1 (en) * 2022-11-23 2024-02-19 주식회사 에코인슈텍 Polyurethane foam having semi-incombustibility and method for producing polyurethane foam having semi-incombustibility for producing the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2679214B2 (en) * 1989-02-16 1997-11-19 日本化成株式会社 Flame retardant polyurethane foam
KR20130125526A (en) * 2012-05-09 2013-11-19 애경유화주식회사 Polyurethane composition using soundproofing for car
KR101494305B1 (en) * 2014-08-28 2015-02-24 주식회사 원준하이테크 Urethane Foam Composition with Excellent Flame ersistance and Insulation Wall Construction Method Using the Same
JP2017532423A (en) * 2014-10-21 2017-11-02 モメンティブ パフォーマンス マテリアルズ インコーポレイテッド Rigid polyurethane foam containing modified phenolic resin additives
KR20180121577A (en) * 2016-03-07 2018-11-07 바스프 에스이 Rigid polyurethane foam
KR20190117397A (en) 2018-04-06 2019-10-16 김범호 Semi-flammable urethane insulator and method of exterior insulating building using the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2679214B2 (en) * 1989-02-16 1997-11-19 日本化成株式会社 Flame retardant polyurethane foam
KR20130125526A (en) * 2012-05-09 2013-11-19 애경유화주식회사 Polyurethane composition using soundproofing for car
KR101494305B1 (en) * 2014-08-28 2015-02-24 주식회사 원준하이테크 Urethane Foam Composition with Excellent Flame ersistance and Insulation Wall Construction Method Using the Same
JP2017532423A (en) * 2014-10-21 2017-11-02 モメンティブ パフォーマンス マテリアルズ インコーポレイテッド Rigid polyurethane foam containing modified phenolic resin additives
KR20180121577A (en) * 2016-03-07 2018-11-07 바스프 에스이 Rigid polyurethane foam
KR20190117397A (en) 2018-04-06 2019-10-16 김범호 Semi-flammable urethane insulator and method of exterior insulating building using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102638311B1 (en) * 2022-11-23 2024-02-19 주식회사 에코인슈텍 Polyurethane foam having semi-incombustibility and method for producing polyurethane foam having semi-incombustibility for producing the same
KR102511309B1 (en) 2022-12-26 2023-03-17 나상권 A semi-nonflammable rigid polyurethane foam comprising enamel powder and a method for manufacturing the same

Similar Documents

Publication Publication Date Title
KR102404686B1 (en) Two liquid type polyurethane composition for Semi-nonflammable urethane composite material and Semi-nonflammable urethane composite material using the same
EP1115771B1 (en) Rigid polyurethane foam and heat insulating construction element comprising the same
KR101850997B1 (en) Semi-nonflammable urethane foam composition and method of manufacturing the same
KR101983509B1 (en) A high flame retardant insulation material and manufacturing method for it
KR101623177B1 (en) Increasing the sound absorption in foam insulating materials
CN102911334A (en) B1-grade high-fire-retardant low-smoke-generation rigid polyurethane foam
KR102065299B1 (en) A semi-nonflammable insulation material and manufacturing method for it
CN109096482B (en) Flame-retardant polyol composition and preparation method and application thereof
JPS6044137B2 (en) laminate
EP0496081B1 (en) Rigid polyurethane and polyisocyanurate foams
RU2629020C2 (en) Sugar-based polyurethanes, methods of their obtaining and application
JP2017095553A (en) Method for producing hard polyurethane foam
JP2015004011A (en) Method for producing rigid polyurethane foam
CN110527054B (en) Flame-retardant rigid polyurethane foam material and preparation method and application thereof
JP5710654B2 (en) Polyurethane foam panels
KR101610460B1 (en) Flame retarded slabstock polyurethane foam composition for flame Lamination
KR101340061B1 (en) Spray type flame retardant polyurethane foam and method for producing the same
KR20200070131A (en) Phenol resin foam, method of producing the same, and insulating material
CN108017774B (en) Flame-retardant combined polyether, rigid polyurethane foam containing flame-retardant combined polyether and preparation method of rigid polyurethane foam
KR102237997B1 (en) Two liquid type polyurethane composition and semi-non-combustible polyurethane composite material manufactured from the same and method for manufacturing the same
KR20240039521A (en) Two liquid type polyurethane composition for Semi-nonflammable urethane composite material and Semi-nonflammable urethane composite material using the same
KR101565281B1 (en) Insulating Material Compositions for Having Inorganic Foam Material, Process for preparing Insulating Materials and Insulating Materials Prepared Therefrom
KR102220943B1 (en) Thermosetting foam, method of producing the same, and insulating material
EP3464434B1 (en) Flame retardant semi-rigid polyurethane foam
KR102190353B1 (en) An excellent flame retardancy insulation material comprising intumescent heat insulating paints and manufacturing method for it

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant