KR102391580B1 - Multilayered capacitor - Google Patents

Multilayered capacitor Download PDF

Info

Publication number
KR102391580B1
KR102391580B1 KR1020200143337A KR20200143337A KR102391580B1 KR 102391580 B1 KR102391580 B1 KR 102391580B1 KR 1020200143337 A KR1020200143337 A KR 1020200143337A KR 20200143337 A KR20200143337 A KR 20200143337A KR 102391580 B1 KR102391580 B1 KR 102391580B1
Authority
KR
South Korea
Prior art keywords
dielectric
mol
dielectric layer
multilayer capacitor
less
Prior art date
Application number
KR1020200143337A
Other languages
Korean (ko)
Other versions
KR20200128495A (en
Inventor
김경식
차경진
조지홍
Original Assignee
삼성전기주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020190018061A external-priority patent/KR102194706B1/en
Application filed by 삼성전기주식회사 filed Critical 삼성전기주식회사
Priority to KR1020200143337A priority Critical patent/KR102391580B1/en
Publication of KR20200128495A publication Critical patent/KR20200128495A/en
Application granted granted Critical
Publication of KR102391580B1 publication Critical patent/KR102391580B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • H01G4/1209Ceramic dielectrics characterised by the ceramic dielectric material
    • H01G4/1218Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates
    • H01G4/1227Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates based on alkaline earth titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/02Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances
    • H01B3/12Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances ceramics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/30Stacked capacitors

Abstract

티탄산바륨(BaTiO3)을 포함하는 모재 분말; 및 상기 모재 분말 100몰(mol)에 대하여, 0.5몰 초과 1.5몰 이하의 지르코늄(Zr); 을 포함하는 유전체 조성물을 포함하는 적층형 커패시터를 제공한다.Barium titanate (BaTiO 3 ) Base powder containing; And with respect to 100 mol (mol) of the base powder, more than 0.5 mol and 1.5 mol or less of zirconium (Zr); It provides a multilayer capacitor comprising a dielectric composition comprising a.

Description

적층형 커패시터{MULTILAYERED CAPACITOR}Multilayer Capacitor {MULTILAYERED CAPACITOR}

본 발명은 적층형 커패시터에 관한 것이다.The present invention relates to a multilayer capacitor.

적층형 커패시터는 유전체 재료를 사용하는 전자 부품으로, 용도 및 용량에 따라 다양한 크기와 형태를 가지며, 최근에는 적용되는 전자 제품의 추세에 따라 소형화 및 고집적화가 요구되고 있다.A multilayer capacitor is an electronic component using a dielectric material, and has various sizes and shapes depending on usage and capacity.

적층형 커패시터의 소형화 및 고집적화를 위해서는 적층형 커패시터를 구성하는 유전체층과 내부 전극의 초박층화가 필요하다.For miniaturization and high integration of the multilayer capacitor, it is necessary to make the dielectric layer constituting the multilayer capacitor and the internal electrode ultra-thin.

그러나, 유전체층과 내부 전극의 두께를 얇게 하면 동일 전압 인가 조건에서 유전체층에 걸리는 전계의 세기가 높아지기 때문에 DC-바이어스(bias) 특성이 악화될 수 있다.However, when the thickness of the dielectric layer and the internal electrode is reduced, the strength of the electric field applied to the dielectric layer increases under the same voltage application condition, so that the DC-bias characteristic may be deteriorated.

또한, 적층형 커패시터에 사용하는 유전체는 온도 변화에 따라 유전율의 변화가 심하기 때문에, 특히 고온에서 적층형 커패시터의 용량 손실이 발생하는 문제가 있다.In addition, since the dielectric constant of the dielectric used in the multilayer capacitor varies greatly according to the temperature change, there is a problem in that the capacity loss of the multilayer capacitor occurs particularly at a high temperature.

국내공개특허 제2009-0105972호Domestic Patent Publication No. 2009-0105972 일본등록특허 제4805938호Japanese Patent No. 4805938

본 발명의 목적은, 유전체층의 두께를 얇게 하더라도, DC-바이어스 특성의 저하를 줄이 수 있고, 온도 변화에 따른 유전율의 변화와 고온에서의 용량의 손실을 최소화할 수 있는 유전체 조성물을 포함하는 적층형 커패시터를 제공하는 것이다.It is an object of the present invention, even if the thickness of the dielectric layer is thin, it is possible to reduce the decrease in DC-bias characteristics, and to minimize the change in dielectric constant due to temperature change and loss of capacity at high temperature. to provide capacitors.

본 발명의 일 측면은, 티탄산바륨(BaTiO3)을 포함하는 모재 분말; 및 상기 모재 분말 100몰(mol)에 대하여, 0.5몰 초과, 1.5몰 이하의 지르코늄(Zr); 을 포함하는 유전체 조성물을 제공한다.One aspect of the present invention, barium titanate (BaTiO 3 ) Base powder comprising a; And with respect to 100 mol (mol) of the base powder, more than 0.5 mol, 1.5 mol or less of zirconium (Zr); It provides a dielectric composition comprising a.

본 발명의 일 실시 예에서, 상기 유전체 조성물은, 상기 모재 분말 100몰에 대하여, 0.3 내지 2.0몰의 가돌리늄(Gd: Gadolinium)을 더 포함할 수 있다.In an embodiment of the present invention, the dielectric composition may further include 0.3 to 2.0 moles of gadolinium (Gd: Gadolinium) with respect to 100 moles of the base material powder.

본 발명의 일 실시 예에서, 상기 유전체 조성물은, 알루미늄(Al) 산화물을 더 포함할 수 있다.In an embodiment of the present invention, the dielectric composition may further include aluminum (Al) oxide.

본 발명의 일 실시 예에서, 상기 유전체 조성물은, 마그네슘(Mg) 산화물 또는 탄산염을 더 포함할 수 있다.In an embodiment of the present invention, the dielectric composition may further include magnesium (Mg) oxide or carbonate.

본 발명의 일 실시 예에서, 상기 유전체 조성물은, 알루미늄(Al) 산화물과, 마그네슘(Mg) 산화물 또는 탄산염을 더 포함할 수 있다.In an embodiment of the present invention, the dielectric composition may further include aluminum (Al) oxide and magnesium (Mg) oxide or carbonate.

본 발명의 다른 측면은, 평균 두께가 0.4㎛ 이하인 유전체층과, 평균 두께가 0.4㎛ 이하인 내부 전극을 포함하는 바디; 및 상기 바디에 내부 전극과 접속하도록 배치되는 외부 전극; 을 포함하고, 상기 유전체층은, 티탄산바륨(BaTiO3)을 포함하는 모재 분말을 포함하는 유전체 그레인(Grain)과, 상기 유전체 그레인 사이에 존재하는 그레인 바운더리(Grain Boundary) 및 첨가제가 고용된 쉘(shell)부를 포함하고, 상기 유전체층의 쉘부에, 상기 모재 분말 100몰(mol)에 대하여, 0.5몰 초과, 1.5몰 이하의 지르코늄(Zr)이 포함되는 적층형 커패시터를 제공한다.Another aspect of the present invention provides a body including a dielectric layer having an average thickness of 0.4 μm or less, and an internal electrode having an average thickness of 0.4 μm or less; and an external electrode disposed on the body to be connected to the internal electrode. Including, wherein the dielectric layer is, a dielectric grain (Grain) including a base material powder containing barium titanate (BaTiO 3 ), and a grain boundary existing between the dielectric grains (Grain Boundary) and a shell in which the additive is dissolved ), and in the shell part of the dielectric layer, more than 0.5 mol and 1.5 mol or less of zirconium (Zr) with respect to 100 mol (mol) of the base material powder.

본 발명의 일 실시 예에서, 상기 적층형 커패시터는, 상기 유전체층의 쉘부에, 상기 모재 분말 100몰에 대하여, 0.3 내지 2.0몰의 가돌리늄(Gd)이 더 포함될 수 있다.In an embodiment of the present invention, in the multilayer capacitor, 0.3 to 2.0 moles of gadolinium (Gd) may be further included in the shell portion of the dielectric layer with respect to 100 moles of the base material powder.

본 발명의 일 실시 예에서, 상기 적층형 커패시터는, 상기 유전체층의 그레인에 알루미늄(Al) 산화물이 더 포함될 수 있다.In an embodiment of the present invention, in the multilayer capacitor, aluminum (Al) oxide may be further included in the grains of the dielectric layer.

본 발명의 일 실시 예에서, 상기 적층형 커패시터는, 상기 유전체층의 그레인에 마그네슘(Mg) 산화물 또는 탄산염이 더 포함될 수 있다.In an embodiment of the present invention, in the multilayer capacitor, magnesium (Mg) oxide or carbonate may be further included in the grains of the dielectric layer.

본 발명의 일 실시 예에서, 상기 적층형 커패시터는, 상기 유전체층의 그레인에 알루미늄(Al) 산화물과, 마그네슘(Mg) 산화물 또는 탄산염이 더 포함될 수 있다.In an embodiment of the present invention, in the multilayer capacitor, aluminum (Al) oxide and magnesium (Mg) oxide or carbonate may be further included in the grains of the dielectric layer.

본 발명의 일 실시 예에서, 상기 적층형 커패시터는, 길이가 1.0mm 이하이고, 폭이 0.5mm 이하일 수 있다.In an embodiment of the present invention, the multilayer capacitor may have a length of 1.0 mm or less and a width of 0.5 mm or less.

본 발명의 일 실시 예에 따르면, 적층형 커패시터에서 유전체층의 두께를 얇게 하더라도, DC-바이어스 특성의 저하를 최소화할 수 있고, 온도 변화에 따른 유전율의 변화와 고온에서의 용량의 손실을 최소화할 수 있는 효과가 있다.According to an embodiment of the present invention, even if the thickness of the dielectric layer in the multilayer capacitor is thin, the deterioration of the DC-bias characteristic can be minimized, and the change in the dielectric constant according to the temperature change and the loss of capacity at high temperature can be minimized. It works.

도 1은 본 발명의 일 실시 예에 따른 적층형 커패시터를 개략적으로 도시한 사시도이다.
도 2는 도 1의 I-I'선 단면도이다.
도 3은 본 발명의 일 실시 예에 의한 바디의 유전체층과 내부 전극의 구조를 나타낸 분해사시도이다.
도 4는 바디에 포함되는 Zr의 함량에 따라 적층형 커패시터에서 온도에 대한 커패시턴스(Capacitance)가 변화하는 것을 비교하여 나타낸 그래프이다.
도 5는 바디에 포함되는 Zr의 함량에 따라 적층형 커패시터에서 DC bias에 대한 커패시턴스가 변화하는 것을 비교하여 나타낸 그래프이다.
도 6은 도 5에서 비교 예와 실시 예의 커패시턴스의 차이가 심한 부분을 확대하여 나타낸 그래프이다.
1 is a perspective view schematically illustrating a multilayer capacitor according to an embodiment of the present invention.
FIG. 2 is a cross-sectional view taken along line II′ of FIG. 1 .
3 is an exploded perspective view showing the structure of the dielectric layer and the internal electrode of the body according to an embodiment of the present invention.
4 is a graph showing a comparison of changes in capacitance with respect to temperature in a multilayer capacitor according to the content of Zr included in the body.
5 is a graph showing a comparison of changes in capacitance with respect to DC bias in a multilayer capacitor according to the content of Zr included in the body.
FIG. 6 is an enlarged graph showing a portion in which a difference in capacitance between a comparative example and an embodiment is severe in FIG. 5 .

이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시 예를 다음과 같이 설명한다.Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings.

그러나, 본 발명의 실시 예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 이하 설명하는 실시 예로 한정되는 것은 아니다.However, embodiments of the present invention may be modified in various other forms, and the scope of the present invention is not limited to the embodiments described below.

또한, 본 발명의 실시 예는 당해 기술 분야에서 평균적인 지식을 가진 자에게 본 발명을 더욱 완전하게 설명하기 위해서 제공되는 것이다.In addition, the embodiments of the present invention are provided in order to more completely explain the present invention to those with average knowledge in the art.

따라서, 도면에서의 요소들의 형상 및 크기 등은 보다 명확한 설명을 위해 과장될 수 있으며, 도면상의 동일한 부호로 표시되는 요소는 동일한 요소이다.Accordingly, the shapes and sizes of elements in the drawings may be exaggerated for clearer description, and elements indicated by the same reference numerals in the drawings are the same elements.

또한, 유사한 기능 및 작용을 하는 부분에 대해서는 도면 전체에 걸쳐 동일한 부호를 사용한다.In addition, the same reference numerals are used throughout the drawings for parts having similar functions and functions.

덧붙여, 명세서 전체에서 어떤 구성 요소를 '포함'한다는 것은 특별히 반대되는 기재가 없는 한 다른 구성 요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있다는 것을 의미한다.In addition, 'including' a certain component throughout the specification means that other components may be further included, rather than excluding other components, unless otherwise stated.

본 발명은 유전체 조성물에 관한 것으로, 이하 본 발명의 실시 예에 따른 유전체 조성물을 포함하는 적층형 커패시터에 관하여도 함께 설명하기로 한다.The present invention relates to a dielectric composition, and hereinafter, a multilayer capacitor including a dielectric composition according to an embodiment of the present invention will also be described.

이하, 본 발명의 실시 예를 명확하게 설명하기 위해 적층형 커패시터의 방향을 정의하면, 도면에 표시된 X, Y 및 Z는 각각 바디(110)의 길이 방향, 폭 방향 및 두께 방향을 나타낸다.Hereinafter, when the direction of the multilayer capacitor is defined to clearly describe the embodiment of the present invention, X, Y, and Z indicated in the drawings indicate the longitudinal direction, the width direction, and the thickness direction of the body 110 , respectively.

또한, 본 실시 예에서, Z방향은 유전체층(111)이 적층되는 적층 방향과 동일한 개념으로 사용될 수 있다.Also, in this embodiment, the Z direction may be used as the same concept as the stacking direction in which the dielectric layers 111 are stacked.

도 1은 본 발명의 일 실시 예에 따른 적층형 커패시터를 개략적으로 도시한 사시도이고, 도 2는 도 1의 I-I'선 단면도이고, 도 3은 본 발명의 일 실시 예에 의한 바디의 유전체층과 내부 전극의 구조를 나타낸 분해사시도이다.1 is a perspective view schematically showing a multilayer capacitor according to an embodiment of the present invention, FIG. 2 is a cross-sectional view taken along line I-I' of FIG. 1 , and FIG. 3 is a dielectric layer of a body according to an embodiment of the present invention; It is an exploded perspective view showing the structure of the internal electrode.

도 1 내지 도 3을 참조하면, 본 실시 예에 따른 적층형 커패시터(100)는 복수의 유전체층(111)과 제1 및 제2 내부 전극(121, 122)을 포함하는 바디(110)와 제1 및 제2 외부 전극(131, 132)을 포함한다.1 to 3 , the multilayer capacitor 100 according to the present embodiment includes a body 110 including a plurality of dielectric layers 111 and first and second internal electrodes 121 and 122, and first and It includes second external electrodes 131 and 132 .

이때, 본 실시 예의 적층형 커패시터(100)는 X방향의 길이가 1.0mm 이하이고, Y방향의 폭이 0.5mm 이하일 수 있다.In this case, the multilayer capacitor 100 of the present embodiment may have a length of 1.0 mm or less in the X direction and a width of 0.5 mm or less in the Y direction.

바디(110)는 복수의 유전체층(111)을 Z방향으로 적층한 다음 소성한 것으로서, 바디(110)의 서로 인접하는 유전체층(111) 사이의 경계는 주사전자현미경(SEM: Scanning Electron Microscope)을 이용하지 않고 확인하기 곤란할 정도로 일체화될 수 있다.The body 110 is formed by stacking a plurality of dielectric layers 111 in the Z-direction and then firing, and the boundary between the dielectric layers 111 adjacent to each other of the body 110 uses a scanning electron microscope (SEM). It can be integrated to the extent that it is difficult to confirm without it.

이때, 바디(110)는 특별히 제한되는 형상이 없지만, 대체로 직방체 형상일 수 있으며, 본 발명이 이에 한정되는 것은 아니다.At this time, the body 110 is not particularly limited in shape, but may have a substantially rectangular shape, and the present invention is not limited thereto.

또한, 바디(110)의 형상, 치수 및 유전체층(111)의 적층 수가 본 실시 예의 도면에 도시된 것으로 한정되는 것은 아니다.In addition, the shape and size of the body 110 and the number of stacked dielectric layers 111 are not limited to those shown in the drawings of this embodiment.

본 실시 예에서는 설명의 편의를 위해, 바디(110)의 Z방향으로 서로 대향하는 양면을 제1 및 제2 면(1, 2)으로, 제1 및 제2 면(1, 2)과 연결되고 X방향으로 서로 대향하는 양면을 제3 및 제4 면(3, 4)으로, 제1 및 제2 면(1, 2)과 연결되고 제3 및 제4 면(3, 4)과 연결되고 Y방향으로 서로 대향하는 양면을 제5 및 제6 면(5, 6)으로 정의한다.In this embodiment, for convenience of explanation, both sides of the body 110 opposite to each other in the Z direction are connected to the first and second surfaces 1 and 2, and the first and second surfaces 1 and 2, and Both surfaces opposite to each other in the X direction are connected to the third and fourth surfaces 3 and 4, the first and second surfaces 1 and 2 are connected, and the third and fourth surfaces 3 and 4 are connected to the Y Both surfaces opposite to each other in the direction are defined as fifth and sixth surfaces 5 and 6 .

본 실시 예에서, 적층형 커패시터(100)의 실장 면은 바디(110)의 제1 면(1)일 수 있다.In this embodiment, the mounting surface of the multilayer capacitor 100 may be the first surface 1 of the body 110 .

그리고, 이러한 바디(110)에 포함되는 유전체층(111)은 유전체 조성물을 포함하여 이루어질 수 있다.In addition, the dielectric layer 111 included in the body 110 may include a dielectric composition.

이때, 상기 유전체 조성물은, BaTiO3을 포함하는 유전체 그레인(Grain)과, 상기 유전체 그레인 사이에 존재하는 그레인 바운더리(Grain Boundary) 및 첨가제가 고용된 쉘(shell)부를 포함하고, 유전체층의 쉘부에, 모재 분말 100몰(mol)에 대하여, 0.5몰 초과 내지 1.5몰 이하의 지르코늄(Zr)이 포함된다.In this case, the dielectric composition includes a dielectric grain including BaTiO 3 , a grain boundary existing between the dielectric grains and a shell part in which an additive is dissolved, and a shell part of the dielectric layer, With respect to 100 mol (mol) of the base material powder, more than 0.5 mol to 1.5 mol or less of zirconium (Zr) is included.

또한, 바디(110)는 커패시터의 용량 형성에 기여하는 부분으로서의 액티브 영역(115)과, 상하 마진부로서 Z방향으로 액티브 영역(115)의 상하부에 각각 형성되는 상부 및 하부 커버(112, 113)를 포함할 수 있다.In addition, the body 110 includes the active region 115 as a part contributing to the formation of capacitance of the capacitor, and upper and lower covers 112 and 113 respectively formed on the upper and lower portions of the active region 115 in the Z direction as upper and lower margins. may include

상부 및 하부 커버(112, 113)는 내부 전극을 포함하지 않는 것을 제외하고는 액티브 영역(115)의 유전체층(111)과 동일한 재질 및 구성을 가질 수 있다.The upper and lower covers 112 and 113 may have the same material and configuration as the dielectric layer 111 of the active region 115 except that they do not include internal electrodes.

이때, 상부 및 하부 커버(112, 113)는 단일 유전체층 또는 2 개 이상의 유전체층을 액티브 영역(115)의 상하 면에 각각 Z방향으로 적층하여 형성할 수 있다.In this case, the upper and lower covers 112 and 113 may be formed by stacking a single dielectric layer or two or more dielectric layers on upper and lower surfaces of the active region 115 in the Z-direction, respectively.

상부 및 하부 커버(112, 113)는 기본적으로 물리적 또는 화학적 스트레스에 의한 제1 및 제2 내부 전극(121, 122)의 손상을 방지하는 역할을 수행할 수 있다.The upper and lower covers 112 and 113 may basically serve to prevent damage to the first and second internal electrodes 121 and 122 due to physical or chemical stress.

제1 및 제2 내부 전극(121, 122)은 서로 다른 극성을 인가 받는 전극으로서, 유전체층(111)을 사이에 두고 Z방향을 따라 번갈아 배치되고, 일단이 바디(110)의 제3 및 제4 면(3, 4)을 통해 각각 노출될 수 있다.The first and second internal electrodes 121 and 122 are electrodes to which different polarities are applied, are alternately disposed along the Z-direction with the dielectric layer 111 interposed therebetween, and have one end of the third and fourth ends of the body 110 . It can be exposed through the faces 3 and 4, respectively.

이때, 제1 및 제2 내부 전극(121, 122)은 중간에 배치된 유전체층(111)에 의해 서로 전기적으로 절연될 수 있다.In this case, the first and second internal electrodes 121 and 122 may be electrically insulated from each other by the dielectric layer 111 disposed therebetween.

또한, 바디(110)의 제3 및 제4 면(3, 4)을 통해 번갈아 노출되는 제1 및 제2 내부 전극(121, 122)의 단부는 바디(110)의 제3 및 제4 면(3, 4)에 배치되는 제1 및 제2 외부 전극(131, 132)과 각각 접속되어 전기적으로 연결될 수 있다.In addition, the ends of the first and second internal electrodes 121 and 122 alternately exposed through the third and fourth surfaces 3 and 4 of the body 110 are disposed on the third and fourth surfaces ( 3 and 4) may be electrically connected to the first and second external electrodes 131 and 132 respectively.

위와 같은 구성에 따라, 제1 및 제2 외부 전극(131, 132)에 소정의 전압을 인가하면 제1 및 제2 내부 전극(121, 122) 사이에 전하가 축적된다.According to the above configuration, when a predetermined voltage is applied to the first and second external electrodes 131 and 132 , electric charges are accumulated between the first and second internal electrodes 121 and 122 .

이때, 적층형 커패시터(100)의 정전 용량은 액티브 영역(115)에서 Z방향을 따라 서로 중첩되는 제1 및 제2 내부 전극(121, 122)의 서로 오버랩 되는 면적과 비례하게 된다.In this case, the capacitance of the multilayer capacitor 100 is proportional to the overlapping area of the first and second internal electrodes 121 and 122 overlapping each other along the Z-direction in the active region 115 .

제1 및 제2 외부 전극(131, 132)은 서로 다른 극성의 전압이 제공되는 것으로서, 바디(110)의 X방향의 양 단부에 각각 배치되고, 바디(110)의 제3 및 제4 면(3, 4)을 통해 노출되는 제1 및 제2 내부 전극(121, 122)의 단부와 접속되어 전기적으로 연결되어 커패시터 회로를 구성할 수 있다.The first and second external electrodes 131 and 132 are provided with voltages of different polarities, respectively, disposed at both ends of the body 110 in the X direction, and on the third and fourth surfaces of the body 110 ( 3 and 4) may be connected to the ends of the first and second internal electrodes 121 and 122 exposed through and electrically connected to form a capacitor circuit.

제1 외부 전극(131)은 제1 머리부(131a)와 제1 밴드부(131b)를 포함할 수 있다.The first external electrode 131 may include a first head portion 131a and a first band portion 131b.

제1 머리부(131a)는 바디(110)의 제3 면(3)에 형성되어 제1 내부 전극(121)의 노출되는 부분과 접속되는 부분이고, 제1 밴드부(131b)는 제1 머리부(131a)에서 실장 면인 바디(110)의 제1 면(1)의 일부까지 연장되는 부분이다.The first head portion 131a is formed on the third surface 3 of the body 110 and is connected to the exposed portion of the first internal electrode 121 , and the first band portion 131b is the first head portion (131a) is a portion extending from the mounting surface to a portion of the first surface (1) of the body (110).

이때, 제1 밴드부(131b)는 고착 강도 향상 등을 위해 바디(110)의 제5 및 제6 면(5, 6)의 일부 및 제2 면(2)의 일부까지 더 연장될 수 있다.In this case, the first band portion 131b may further extend to a portion of the fifth and sixth surfaces 5 and 6 and a portion of the second surface 2 of the body 110 to improve fixing strength.

제2 외부 전극(132)은 제2 머리부(132a)와 제2 밴드부(132b)를 포함할 수 있다.The second external electrode 132 may include a second head portion 132a and a second band portion 132b.

제2 머리부(132a)는 바디(110)의 제4 면(4)에 형성되어 제2 내부 전극(122)의 노출되는 부분과 접속되는 부분이고, 제2 밴드부(132b)는 제2 머리부(132a)에서 실장 면인 바디(110)의 제1 면(1)의 일부까지 연장되는 부분이다.The second head portion 132a is formed on the fourth surface 4 of the body 110 and is connected to the exposed portion of the second internal electrode 122 , and the second band portion 132b is the second head portion. (132a) is a portion that extends to a portion of the first surface (1) of the mounting surface of the body (110).

이때, 제2 밴드부(132b)는 고착 강도 향상 등을 위해 커패시터 바디(110)의 제5 및 제6 면(5, 6)의 일부 및 제2 면(2)의 일부까지 더 연장될 수 있다.In this case, the second band portion 132b may further extend to a portion of the fifth and sixth surfaces 5 and 6 and a portion of the second surface 2 of the capacitor body 110 to improve fixing strength.

또한, 제1 및 제2 외부 전극(131, 132)은 필요시 바디(110)의 제3 및 제4 면(3, 4)에 형성되는 도전층과 상기 도전층 상에 형성되는 도금층을 포함할 수 있다.In addition, the first and second external electrodes 131 and 132 may include a conductive layer formed on the third and fourth surfaces 3 and 4 of the body 110 and a plating layer formed on the conductive layer, if necessary. can

이때, 상기 도금층은 도전층 상에 형성되는 니켈(Ni) 도금층과 상기 니켈(Ni) 도금층 상에 형성되는 주석(Sn) 도금층을 포함할 수 있다In this case, the plating layer may include a nickel (Ni) plating layer formed on the conductive layer and a tin (Sn) plating layer formed on the nickel (Ni) plating layer.

한편, 본 실시 예에서, 바디(110)에 포함되는 유전체층(111)은 내환원성 유전체 조성물을 함유할 수 있으며, 상기 유전체 조성물은 다양한 산화물 및 탄산염 첨가제를 더 함유할 수 있다. Meanwhile, in the present embodiment, the dielectric layer 111 included in the body 110 may contain a reduction-resistant dielectric composition, and the dielectric composition may further contain various oxide and carbonate additives.

이하, 본 발명의 일 실시 예에 따른 유전체 조성물의 각 성분에 대해 보다 구체적으로 설명한다. Hereinafter, each component of the dielectric composition according to an embodiment of the present invention will be described in more detail.

본 실시 예에 따른 유전체 조성물의 모재 분말은 유전체의 주성분으로, BT(BaTiO3)를 포함한다.The base material powder of the dielectric composition according to the present embodiment includes BT (BaTiO 3 ) as a main component of the dielectric.

또한, 본 실시 예의 유전체 조성물은, 모재 분말 100몰(mol)에 대하여, 0.5 초과, 1.5몰 이하의 지르코늄(Zr)을 포함할 수 있다.In addition, the dielectric composition of the present embodiment may contain more than 0.5 and 1.5 moles or less of zirconium (Zr) with respect to 100 moles (mol) of the base material powder.

이때, Zr의 함량이 0.5 몰 이하인 경우 앞서 설명한 적층형 커패시터의 TCC를 개선하는 효과가 미비해질 수 있다.In this case, when the content of Zr is 0.5 mol or less, the effect of improving the TCC of the multilayer capacitor described above may be insignificant.

또한, Zr의 함량이 1.5몰을 초과하면 유전체의 치밀화도가 떨어져 적층형 커패시터에 여러 가지 안 좋은 영향을 미칠 수 있다.In addition, when the content of Zr exceeds 1.5 moles, the degree of densification of the dielectric decreases, which may adversely affect the multilayer capacitor.

또한, 본 실시 예의 유전체 조성물은, 가돌리늄(Gd)을 더 포함할 수 있다. 상기 Gd는 희토류 원소(Rare earth element)로서, 산화물 또는 탄산염 형태로 포함될 수 있으며, 이때 산화물 또는 탄산염의 형태가 특별히 제한되는 것은 아니다.In addition, the dielectric composition of the present embodiment may further include gadolinium (Gd). The Gd is a rare earth element, and may be included in the form of an oxide or carbonate, and the form of the oxide or carbonate is not particularly limited.

이러한 Gd는 유전체 그레인의 입성장을 제어하고 그레인의 분포를 균일화 하며, BT의 격자 내에 고용되어 도너(donor)로 작용함으로써, 적층형 커패시터의 신뢰성을 향상시키는 역할을 할 수 있다.Such Gd controls the grain growth of dielectric grains, uniforms the distribution of grains, and acts as a donor by being dissolved in the lattice of BT, thereby improving the reliability of the multilayer capacitor.

이때, Gd는 모재 분말 100몰(mol)에 대하여 0.3 내지 2.0몰을 포함할 수 있다.In this case, Gd may include 0.3 to 2.0 moles based on 100 moles (mol) of the base material powder.

Gd가 0.3 몰 미만인 경우 신뢰성 향상 효과가 미비해지고, Gd가 2.0몰을 초과하는 경우 치밀도가 저하되고 TCC 열화 문제가 발생할 수 있다.When Gd is less than 0.3 mol, the reliability improvement effect is insignificant, and when Gd exceeds 2.0 mol, the density is lowered and a TCC deterioration problem may occur.

또한, 본 실시 예의 유전체 조성물은, 알루미늄(Al) 또는 마그네슘(Mg) 중 적어도 하나 이상을 더 포함할 수 있다.In addition, the dielectric composition of the present embodiment may further include at least one of aluminum (Al) and magnesium (Mg).

본 실시 예에서, Al 및 Mg 원소는 유전체 그레인의 균일한 입성장을 제어하는 역할을 할 수 있다.In this embodiment, Al and Mg elements may serve to control uniform grain growth of dielectric grains.

유전체 그레인의 입성장이 균일하게 제어되는 경우, 적층형 커패시터의 내전압 및 신뢰성이 개선될 뿐만 아니라 DC-bias 특성 역시 개선될 수 있다.When the grain growth of dielectric grains is uniformly controlled, not only the withstand voltage and reliability of the multilayer capacitor can be improved, but also the DC-bias characteristic can be improved.

종래의 적층형 커패시터에 사용되는 유전체 조성물은 주성분인 티탄산바륨(BaTiO3)에 칼슘(Ca), 망간(Mn), 마그네슘(Mg), 희토류(Rear Earth) 등을 고용시켜 제조한다.A dielectric composition used in a conventional multilayer capacitor is prepared by dissolving calcium (Ca), manganese (Mn), magnesium (Mg), rare earth, or the like in a solid solution in barium titanate (BaTiO 3 ), which is a main component.

그러나, 유전체층의 두께를 얇게 하면, 동일 인가 전압 하에서, 유전체층에 걸리는 전계 세기가 높아져 DC-바이어스(bias) 특성이 악화될 수 있다.However, when the thickness of the dielectric layer is reduced, the strength of an electric field applied to the dielectric layer increases under the same applied voltage, thereby deteriorating the DC-bias characteristic.

또한, 유전체는 온도에 따른 유전율의 변화가 심한 강유전체로써, 고온에서 적층형 캐패시터의 특성이 크게 열화될 수 있다.In addition, since the dielectric is a ferroelectric with a high dielectric constant change according to temperature, the characteristics of the multilayer capacitor may be greatly deteriorated at a high temperature.

이에 적층형 커패시터에서 온도 변화에 따른 유전율의 변화를 최소화 하기 위해서는 유전체 페로브스카이트(Perovskite) 구조 내에 서로 다른 원자가 및 이온 반경을 가지는 원소들을 고용하여, 유전 완화(Dielectric relaxation)을 유도하는 것이 필요하다.Therefore, in order to minimize the change in permittivity due to temperature change in the multilayer capacitor, it is necessary to induce dielectric relaxation by employing elements having different valences and ionic radii in the dielectric perovskite structure. .

이러한 유전 완화 현상은 온도에 따른 유전율의 변화를 최소화 할 수 있을 뿐 아니라, 완화 강유전체(relaxor ferroelectric) 거동에 의해 외부 전계에 따른 유전율의 변화도 최소화할 수 있다.This dielectric relaxation phenomenon can not only minimize the change in dielectric constant according to temperature, but also minimize the change in dielectric constant according to the external electric field due to the relaxation ferroelectric behavior.

하지만, 원자가가 다른 원소를 치환할 경우, 결함(defect)이 발생하여 신뢰성 및 절연 저항의 저하가 나타날 수 있다.However, when an element having a different valence is substituted, a defect may occur, thereby reducing reliability and insulation resistance.

따라서, 이를 해결하기 위해서는 유전체 내에 이온 반경의 차이가 있고 원자가가 동일한 원소의 치환이 필요하다.Therefore, in order to solve this problem, it is necessary to substitute elements having the same valence and having a difference in ionic radius in the dielectric.

또한, 본 실시 예의 적층형 커패시터에서, 유전체층의 평균 두께는 0.4㎛ 이하이고, 제1 및 제2 내부 전극의 평균 두께는 0.4㎛ 이하일 수 있다.Also, in the multilayer capacitor of the present embodiment, the average thickness of the dielectric layer may be 0.4 μm or less, and the average thickness of the first and second internal electrodes may be 0.4 μm or less.

일반적으로 적층형 커패시터에서 유전체층의 평균 두께가 얇아지면, 적층형 커패시터가 온도 및 외부 전계의 변화에 취약해진다.In general, as the average thickness of the dielectric layer in the multilayer capacitor decreases, the multilayer capacitor becomes vulnerable to changes in temperature and external electric field.

그러나, 본 실시 예에 따르면, 바디의 유전체층의 쉘부에 모재 분말 100몰에 대하여 0.5몰 초과, 1.5몰 이하의 지르코늄이 포함되어, 위와 같이 유전체층의 평균 두께를 0.4㎛ 이하로 하더라도, 외부 환경의 변화에 따른 바디의 유전율의 변화를 최소화시킬 수 있다.However, according to this embodiment, more than 0.5 mol and 1.5 mol or less of zirconium is contained in the shell part of the dielectric layer of the body with respect to 100 mol of the base material powder, so even if the average thickness of the dielectric layer is 0.4 μm or less as above, changes in the external environment It is possible to minimize the change in the dielectric constant of the body according to the

적층형 커패시터를 제조하는 공정 상에서 소량의 Zr 오염이 발생할 수 있는데, 상기와 같은 유전율 변화를 최소화하는 효과를 구현하기 위해서는 유전체층 내에 오염도 이상의 Zr 함량이 필요하며, ICP 분석을 하는 경우 바디의 전체에서, Zr이 0.5몰을 초과하여 검출 되어야 한다.A small amount of Zr contamination may occur in the process of manufacturing the multilayer capacitor. In order to realize the effect of minimizing the change in permittivity as described above, a Zr content greater than the contamination level is required in the dielectric layer. It should be detected in excess of 0.5 mol.

또한, 본 실시 예에서 사용되는 유전체 조성물은 BaTiO3 (BT)로써, A-site, Ba2+ 및 B-site, Ti4+로 구성되어 있는 perovskite 물질이다.In addition, the dielectric composition used in this embodiment is BaTiO 3 (BT), which is a perovskite material composed of A-site, Ba2+, B-site, and Ti4+.

이때, Zr4+ (0.72 nm)는 Ti4+ (0.60 nm)와 동일한 원자가를 가지고, 이온 반경의 차이가 커, 상기 아이디어에 적합한 물질이다.At this time, Zr4+ (0.72 nm) has the same valence as Ti4+ (0.60 nm) and has a large difference in ionic radius, so it is a material suitable for the above idea.

즉, 본 실시 예의 유전체 조성물은, 유전체 BaTiO3(BT)에서 B-site 점유 원소인 Ti 와 동일한 원자가를 가지고 이온 반경의 차이가 있는 Zr를 치환함으로써, 온도 및 외부 전계 변화에 따른 유전율의 변화를 최소화 할 수 있다.That is, in the dielectric composition of this embodiment, the dielectric BaTiO 3 (BT) has the same valency as Ti, which is the occupant element of the B-site, and substitutes Zr with a difference in ionic radius. can be minimized

따라서, 적층형 커패시터가 낮은 온도 변화 상수(TCC: Temperature Change Coefficient) 및 우수한 DC-바이어스 특성을 가질 수 있고, 높은 신뢰성을 확보할 수 있다.Accordingly, the multilayer capacitor may have a low temperature change coefficient (TCC) and excellent DC-bias characteristics, and high reliability may be secured.

이하, 본 발명은 실시 예 및 비교 예를 통하여 더욱 상세히 설명하지만, 이는 발명의 구체적인 이해를 돕기 위한 것으로, 본 발명의 범위가 하기의 실시 예에 의해 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail through Examples and Comparative Examples, but these are provided to help a specific understanding of the present invention, and the scope of the present invention is not limited by the following Examples.

실험에 사용된 적층형 커패시터의 제조 공정은 다음과 같다.The manufacturing process of the multilayer capacitor used in the experiment is as follows.

먼저 유전체 조성물의 모재 분말은 평균 입자 크기가 100nm 혹은 그 이하 급인 BT를 사용한다.First, as the base powder of the dielectric composition, BT having an average particle size of 100 nm or less is used.

그리고, 비교 예 1은 바디의 유전체층에 Zr이 포함되지 않은 경우이고, 비교 예 2는 바디의 유전체층에 Zr이 모재 분말 100몰에 대하여 0.2몰 포함되는 경우이고, 실시 예 1은 바디의 유전체층에 Zr이 모재 분말 100몰에 대하여 0.6몰 포함되는 경우이고, 실시 예 2는 바디의 유전체층에 Zr이 모재 분말 100몰에 대하여 1.5몰 포함되는 경우이다. 이때, Zr은 산화물 또는 탄산염의 형태로 투입한다.And, Comparative Example 1 is a case in which Zr is not included in the dielectric layer of the body, Comparative Example 2 is a case in which 0.2 mol of Zr is included in 100 mol of the base material powder in the dielectric layer of the body, and in Example 1, Zr is included in the dielectric layer of the body This is a case where 0.6 mol is included with respect to 100 mol of the base material powder, and Example 2 is a case where 1.5 mol of Zr is included with respect to 100 mol of the base material powder in the dielectric layer of the body. At this time, Zr is added in the form of oxide or carbonate.

또한, 본 실험에서 비교 예 2와 실시 예 1, 2는 모재 분말과 Zr을 마련한 후, 지르코니아 볼을 혼합 및 분산 메디아로 사용하고 에탄올 및 톨루엔을 용매로 하여 분산제와 혼합한 후 약 20시간 동안 볼 밀링(milling)하고, 이후 유전체 시트(Sheet)의 강도 구현을 위해 바인더를 혼합하여 슬러리를 제작한다.In addition, in Comparative Example 2 and Examples 1 and 2 in this experiment, after preparing the base material powder and Zr, zirconia balls were used as mixing and dispersing media, and ethanol and toluene were mixed with the dispersing agent as solvents. After mixing the balls for about 20 hours  After milling, a slurry is prepared by mixing a binder in order to realize the strength of the dielectric sheet.

다음으로, 이렇게 제조된 슬러리는 소형 닥터 블레이드(doctor blade) 방식의 코터(coater)를 이용하여 0.6㎛ 혹은 그 이상 두께의 시트로 성형하여 제조한다.Next, the slurry prepared in this way is manufactured by molding it into a sheet having a thickness of 0.6 μm or more using a coater of a small doctor blade type.

다음으로, 성형된 시트에 Ni로 내부 전극을 인쇄한 후, 상하 커버로 3㎛ 두께의 시트 15층을 각각 적층하여 적층체를 만들고 압착 공정을 거쳐 바아(Bar)를 제작한다.Next, after printing internal electrodes with Ni on the molded sheet, 15 layers of 3 μm thick sheets are respectively laminated with upper and lower covers to make a laminate, and a bar is manufactured through a pressing process.

그리고, 상기 바아를 절단기를 이용하여 X방향의 길이와 Y방향의 폭이 각각 0.6mm×0.3mm 크기의 칩으로 절단한다.Then, the bar is cut into chips having a length in the X direction and a width in the Y direction of 0.6 mm × 0.3 mm, respectively, using a cutter.

다음으로, 상기 칩을 탈 바인더를 위해 400℃ 에어 분위기에서 가소한 후, 약 1,300℃ 이하 수소(H2) 농도 2.0% 이하 조건에서 1시간 내외 소성한다.Next, after calcining the chip in an air atmosphere at 400° C. for binder removal, it is calcined for about 1 hour at a hydrogen (H 2 ) concentration of 2.0% or less at about 1,300° C. or less.

이후, 구리(Cu) 페이스트로 터미네이션 공정 및 전극 소성을 행하여 적층형 커패시터를 완성한다.Thereafter, a termination process and electrode firing are performed with copper (Cu) paste to complete the multilayer capacitor.

그리고, 각각의 시료 별로 아래 도 4 및 도 5에서와 같이 적층형 커패시터의 특성을 측정한다.Then, for each sample, the characteristics of the multilayer capacitor are measured as shown in FIGS. 4 and 5 below.

도 4는 바디에 포함되는 Zr의 함량에 따라 적층형 커패시터에서 온도에 대한 커패시턴스(Capacitance)가 변화하는 것을 비교하여 나타낸 그래프이다.4 is a graph showing a comparison of changes in capacitance with respect to temperature in a multilayer capacitor according to the content of Zr included in the body.

도 4를 참조하면, 유전체층에 Zr이 0.5몰을 초과하여 포함된 실시 예 1 및 2의 경우, Zr이 포함되지 않은 비교 예 1 대비 상온(25oc) 이하 에서 용량이 상승하여 보전되는 것으로 확인되었고, 따라서 적층형 커패시터의 온도에 따른 용량 변화가 완화 되는 것을 알 수 있다.Referring to FIG. 4, in the case of Examples 1 and 2 in which Zr was contained in excess of 0.5 moles in the dielectric layer, compared to Comparative Example 1 in which Zr was not included, the capacity was increased and preserved at room temperature (25 o c) or less. Therefore, it can be seen that the change in capacity according to the temperature of the multilayer capacitor is alleviated.

한편, Zr의 함량이 오염 기준 수치인 0.5몰 이하로서 0.2몰인 비교 예 2의 경우 비교 예 1 대비 용량의 상승이 있긴 하지만 그 상승 폭이 크지 않고, 따라서 실시 예 1 및 2와 비교하여 상온 이하 에서의 용량 증가 효과가 뚜렷하게 나타나지 않아, 온도에 따른 용량 변화가 여전히 큰 것을 알 수 있다.On the other hand, in the case of Comparative Example 2, where the Zr content is 0.5 mol or less, which is the contamination standard value, and 0.2 mol, there is an increase in capacity compared to Comparative Example 1, but the increase is not large, and therefore, compared to Examples 1 and 2, at room temperature or less It can be seen that the effect of increasing the capacity of

즉, 유전체의 Ti를 다른 이온 반경을 가지는 Zr로 치환 하여, 그 함량이 0.5몰 이하(비교 예 2 참고)인 경우, 유전체의 완화(relaxor) 거동이 거의 나타나지 않는다.That is, when Ti of the dielectric is replaced with Zr having a different ionic radius and the content is 0.5 mol or less (refer to Comparative Example 2), the relaxation behavior of the dielectric is hardly observed.

따라서, 본 실시 예의 경우, 바디에 포함되는 Zr의 함량을 0.5몰 초과, 1.5몰 이하로 한정함으로써, 이러한 유전체 완화(dielectric relaxation) 거동을 유도할 수 있고, 그에 의해 온도에 따른 유전율 변화가 보다 완화되는 효과를 기대할 수 있다.Therefore, in the present embodiment, by limiting the content of Zr contained in the body to more than 0.5 mol and less than 1.5 mol, such a dielectric relaxation behavior can be induced, whereby the change in dielectric constant according to temperature is more relaxed effect can be expected.

도 5는 바디에 포함되는 Zr의 함량에 따라 적층형 커패시터에서 DC bias에 대한 커패시턴스가 변화하는 것을 비교하여 나타낸 그래프이고, 도 6은 도 5에서 비교 예와 실시 예의 커패시턴스의 차이가 심한 부분을 확대하여 나타낸 그래프이다.5 is a graph showing the change in capacitance with respect to DC bias in a multilayer capacitor according to the content of Zr included in the body by comparison, and FIG. 6 is an enlarged part of the difference in capacitance between the comparative example and the embodiment in FIG. This is the graph shown.

도 5 및 도 6에서, 비교 예 1은 바디의 유전체층에 Zr이 포함되지 않은 경우이고, 비교 예 2는 바디의 유전체층에 Zr이 모재 분말 100몰에 대하여 0.2몰 포함되는 경우이고, 실시 예 1은 바디의 유전체층에 Zr이 모재 분말 100몰에 대하여 0.6몰 포함되는 경우이고, 실시 예 2는 바디의 유전체층에 Zr이 모재 분말 100몰에 대하여 1.5몰 포함되는 경우이다.5 and 6, Comparative Example 1 is a case in which Zr is not included in the dielectric layer of the body, Comparative Example 2 is a case in which 0.2 mol of Zr is included with respect to 100 mol of the base material powder in the dielectric layer of the body, Example 1 In the case where the dielectric layer of the body contains 0.6 mol of Zr with respect to 100 mol of the base material powder, Example 2 is a case where the dielectric layer of the body contains 1.5 mol of Zr with respect to 100 mol of the base material powder.

도 5 및 도 6을 참조하면, 유전체층에 Zr이 0.5몰을 초과하여 포함된 실시 예 1 및 2의 경우, 상온에서 유전율이 유사한 수준 내에서 DC 전압 인가에 따른 유전율의 변화가 줄어드는 것을 알 수 있다. 5 and 6 , in the case of Examples 1 and 2 in which Zr is contained in the dielectric layer in excess of 0.5 mole, it can be seen that the change in permittivity according to DC voltage application is reduced within a similar level of permittivity at room temperature. .

이는 Ti와 Zr의 이온 반경 차이에 의한 유전체 완화(dielectric relaxation) 거동에 의한 것이며, 유전체 내의 Zr 함량이 0.5몰 이하(비교 예 2 참조)인 경우 완화 (Relaxation) 거동이 미미하여 DC 인가 전압에 따른 유전율의 변화가 크다.This is due to the dielectric relaxation behavior due to the difference in ionic radii between Ti and Zr, and when the Zr content in the dielectric is 0.5 mol or less (refer to Comparative Example 2), the relaxation behavior is insignificant, so the dielectric constant according to the DC applied voltage change is large.

따라서, 바디에 포함되는 Zr의 함량을 0.5몰 초과, 1.5몰 이하로 한정함으로써, 인가 되는 DC 전압에 따른 유전율의 변화를 최소화하는 효과를 기대할 수 있다.Therefore, by limiting the content of Zr contained in the body to more than 0.5 mol and less than 1.5 mol, an effect of minimizing the change in dielectric constant according to the applied DC voltage can be expected.

본 발명은 상술한 실시 예 및 첨부된 도면에 의해 한정되는 것이 아니며 첨부된 청구범위에 의해 한정하고자 한다.The present invention is not limited by the above-described embodiments and the accompanying drawings, but is intended to be limited by the appended claims.

따라서, 청구범위에 기재된 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 당 기술분야의 통상의 지식을 가진 자에 의해 다양한 형태의 치환, 변형 및 변경이 가능할 것이며, 이 또한 본 발명의 범위에 속한다고 할 것이다.Accordingly, various types of substitution, modification and change will be possible by those skilled in the art within the scope not departing from the technical spirit of the present invention described in the claims, and it is also said that it falls within the scope of the present invention. something to do.

100: 적층형 커패시터
110: 바디
111: 유전체층
112, 113: 커버
115: 액티브 영역
121, 122: 제1 및 제2 내부 전극
131, 132: 제1 및 제2 외부 전극
131a, 132a: 제1 및 제2 머리부
131b, 132b: 제1 및 제2 밴드부
100: multilayer capacitor
110: body
111: dielectric layer
112, 113: cover
115: active area
121, 122: first and second internal electrodes
131, 132: first and second external electrodes
131a, 132a: first and second heads
131b, 132b: first and second band portions

Claims (10)

유전체층과, 내부 전극을 포함하는 바디; 및
상기 바디에 내부 전극과 접속하도록 배치되는 외부 전극; 을 포함하고,
상기 유전체층은, 티탄산바륨(BaTiO3)을 포함하는 유전체 그레인(Grain)과, 상기 유전체 그레인 사이에 존재하는 그레인 바운더리(Grain Boundary) 및 첨가제가 고용된 쉘(shell)부를 포함하고, 상기 유전체층의 쉘부에, 상기 티탄산바륨 100몰(mol)에 대하여, 0.5몰 초과 1.5몰 이하의 지르코늄(Zr)이 포함되고, 상기 유전체층의 평균 두께가 0.4㎛ 이하인 적층형 커패시터.
a body including a dielectric layer and an internal electrode; and
an external electrode disposed on the body to be connected to the internal electrode; including,
The dielectric layer includes a dielectric grain including barium titanate (BaTiO 3 ), a grain boundary existing between the dielectric grains, and a shell portion in which an additive is dissolved, and the shell portion of the dielectric layer A multilayer capacitor having an average thickness of the dielectric layer of 0.4 μm or less, wherein zirconium (Zr) in an amount greater than 0.5 mol and 1.5 mol or less is included with respect to 100 mol (mol) of the barium titanate.
제1항에 있어서,
길이가 1.0mm 이하이고, 폭이 0.5mm 이하인 적층형 커패시터.
According to claim 1,
Multilayer capacitors with a length of 1.0 mm or less and a width of 0.5 mm or less.
제2항에 있어서,
상기 유전체층의 쉘부에, 상기 티탄산바륨 100몰에 대하여, 0.3 내지 2.0몰의 가돌리늄(Gd)이 더 포함되는 적층형 커패시터.
3. The method of claim 2,
The multilayer capacitor further comprising 0.3 to 2.0 moles of gadolinium (Gd) based on 100 moles of barium titanate in the shell portion of the dielectric layer.
제3항에 있어서,
상기 유전체층의 유전체 그레인에 알루미늄(Al) 산화물이 더 포함되는 적층형 커패시터.
4. The method of claim 3,
A multilayer capacitor further comprising aluminum (Al) oxide in dielectric grains of the dielectric layer.
제4항에 있어서,
상기 유전체층의 유전체 그레인에 마그네슘(Mg) 산화물 또는 탄산염이 더 포함되는 적층형 커패시터.
5. The method of claim 4,
The multilayer capacitor further comprising magnesium (Mg) oxide or carbonate in dielectric grains of the dielectric layer.
유전체층과, 내부 전극을 포함하는 바디; 및
상기 바디에 내부 전극과 접속하도록 배치되는 외부 전극; 을 포함하고,
상기 유전체층은, 티탄산바륨(BaTiO3)을 포함하는 유전체 그레인(Grain)과, 상기 유전체 그레인 사이에 존재하는 그레인 바운더리(Grain Boundary) 및 첨가제가 고용된 쉘(shell)부를 포함하고, 상기 유전체층의 쉘부에, 상기 티탄산바륨 100몰(mol)에 대하여, 0.5몰 초과 1.5몰 이하의 지르코늄(Zr)이 포함되고, 상기 내부 전극의 평균 두께가 0.4㎛ 이하인 적층형 커패시터.
a body including a dielectric layer and an internal electrode; and
an external electrode disposed on the body to be connected to the internal electrode; including,
The dielectric layer includes a dielectric grain including barium titanate (BaTiO 3 ), a grain boundary existing between the dielectric grains, and a shell portion in which an additive is dissolved, and the shell portion of the dielectric layer In, with respect to 100 mol (mol) of the barium titanate, more than 0.5 mol and 1.5 mol or less of zirconium (Zr) is included, and the average thickness of the internal electrode is 0.4 μm or less.
제6항에 있어서,
길이가 1.0mm 이하이고, 폭이 0.5mm 이하인 적층형 커패시터.
7. The method of claim 6,
Multilayer capacitors with a length of 1.0 mm or less and a width of 0.5 mm or less.
제7항에 있어서,
상기 유전체층의 쉘부에, 상기 티탄산바륨 100몰에 대하여, 0.3 내지 2.0몰의 가돌리늄(Gd)이 더 포함되는 적층형 커패시터.
8. The method of claim 7,
The multilayer capacitor further comprising 0.3 to 2.0 moles of gadolinium (Gd) based on 100 moles of barium titanate in the shell portion of the dielectric layer.
제8항에 있어서,
상기 유전체층의 유전체 그레인에 알루미늄(Al) 산화물이 더 포함되는 적층형 커패시터.
9. The method of claim 8,
A multilayer capacitor further comprising aluminum (Al) oxide in dielectric grains of the dielectric layer.
제9항에 있어서,
상기 유전체층의 유전체 그레인에 마그네슘(Mg) 산화물 또는 탄산염이 더 포함되는 적층형 커패시터.
10. The method of claim 9,
The multilayer capacitor further comprising magnesium (Mg) oxide or carbonate in dielectric grains of the dielectric layer.
KR1020200143337A 2019-02-15 2020-10-30 Multilayered capacitor KR102391580B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020200143337A KR102391580B1 (en) 2019-02-15 2020-10-30 Multilayered capacitor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020190018061A KR102194706B1 (en) 2019-02-15 2019-02-15 Multilayered capacitor
KR1020200143337A KR102391580B1 (en) 2019-02-15 2020-10-30 Multilayered capacitor

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020190018061A Division KR102194706B1 (en) 2019-02-15 2019-02-15 Multilayered capacitor

Publications (2)

Publication Number Publication Date
KR20200128495A KR20200128495A (en) 2020-11-13
KR102391580B1 true KR102391580B1 (en) 2022-04-28

Family

ID=81447996

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200143337A KR102391580B1 (en) 2019-02-15 2020-10-30 Multilayered capacitor

Country Status (1)

Country Link
KR (1) KR102391580B1 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS485938Y1 (en) 1969-07-22 1973-02-15
KR101229823B1 (en) 2007-02-26 2013-02-05 가부시키가이샤 무라타 세이사쿠쇼 Dielectric ceramic and layer-built ceramic capacitor
KR102097326B1 (en) * 2014-09-22 2020-04-06 삼성전기주식회사 Dielectric ceramic composition and multilayer ceramic capacitor comprising the same
KR20160123645A (en) * 2015-04-16 2016-10-26 삼성전기주식회사 Dielectric ceramic composition and multilayer ceramic capacitor comprising the same

Also Published As

Publication number Publication date
KR20200128495A (en) 2020-11-13

Similar Documents

Publication Publication Date Title
KR101179295B1 (en) Non-reducible dielectric composition and ceramic electronic component
KR102141217B1 (en) Multi-layered ceramic capacitor
US9036331B2 (en) Dielectric composition and ceramic electronic component including the same
KR102497972B1 (en) Multi-layered ceramic capacitor and method of manufacturing the same
KR20190116113A (en) Multi-layered ceramic capacitor and method of manufacturing the same
US20130083450A1 (en) Dielectric composition and ceramic electronic component including the same
KR102121580B1 (en) Multi-layered ceramic capacitor
US20170162323A1 (en) Ceramic dielectric composition and multilayer ceramic capacitor containing the same
KR20190121143A (en) Multi-layered ceramic capacitor
KR101983171B1 (en) Dielectric ceramic composition and multilayer ceramic capacitor comprising the same
US10832867B2 (en) Dielectric composition and electronic component using the same
US9384894B2 (en) Dielectric composition to be sintered at low temperature, multilayer ceramic electronic component containing the same, and method of manufacturing the multilayer ceramic electronic component
KR102414829B1 (en) Multi-layered ceramic capacitor
KR102391580B1 (en) Multilayered capacitor
US9287045B2 (en) Dielectric ceramic composition and multilayer ceramic capacitor including the same
KR102194706B1 (en) Multilayered capacitor
KR102381271B1 (en) Multi-layered ceramic capacitor
KR20220059823A (en) Dielectric composition and multilayered capacitor comprising the same
KR102409109B1 (en) Dielectric composition and electronic component using the same
US20230154681A1 (en) Multilayer ceramic electronic device and manufacturing method of the same
US20220277897A1 (en) Ceramic electronic device, powder material, paste material, and manufacturing method of ceramic electronic device
KR102202462B1 (en) Dielectric composition and multilayer ceramic capacitor comprising the same
KR20200067807A (en) Multi-layered ceramic capacitor
KR20230098984A (en) Multilayer ceramic electronic component
KR20220067953A (en) Multilayered electronic component

Legal Events

Date Code Title Description
A107 Divisional application of patent
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant