KR102391310B1 - Near-infrared fluorescent powder and light-emitting device containing the fluorescent powder - Google Patents

Near-infrared fluorescent powder and light-emitting device containing the fluorescent powder Download PDF

Info

Publication number
KR102391310B1
KR102391310B1 KR1020197029177A KR20197029177A KR102391310B1 KR 102391310 B1 KR102391310 B1 KR 102391310B1 KR 1020197029177 A KR1020197029177 A KR 1020197029177A KR 20197029177 A KR20197029177 A KR 20197029177A KR 102391310 B1 KR102391310 B1 KR 102391310B1
Authority
KR
South Korea
Prior art keywords
fluorescent powder
light emitting
infrared fluorescent
infrared
emitting device
Prior art date
Application number
KR1020197029177A
Other languages
Korean (ko)
Other versions
KR20200023265A (en
Inventor
룽후이 류
위엔훙 류
쇼우시아 천
쇼우러 마
웨이 고우
밍위에 천
Original Assignee
그리렘 어드밴스드 머티리얼스 캄파니 리미티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 그리렘 어드밴스드 머티리얼스 캄파니 리미티드 filed Critical 그리렘 어드밴스드 머티리얼스 캄파니 리미티드
Publication of KR20200023265A publication Critical patent/KR20200023265A/en
Application granted granted Critical
Publication of KR102391310B1 publication Critical patent/KR102391310B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/67Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing refractory metals
    • C09K11/68Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing refractory metals containing chromium, molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7712Borates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7706Aluminates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7766Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
    • C09K11/778Borates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7783Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals one of which being europium
    • C09K11/7797Borates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials

Abstract

본 발명은 발광 재료 기술 분야에 속하는 것으로, 특히는 근적외선 형광 분말에 관한 것이며, 그 제조 방법 및 상기 형광 분말을 함유하는 발광 장치를 더 공개하였다. 본 발명의 상기 근적외선 형광 분말은 구성식이 A x R p O r 인 무기 화합물을 포함하고, 상기 화합물은 A x R p O r 구조를 기질로 하며, 특정된 희토류 이온 또는 전이 금속 이온을 혼합하는 것을 통해, 제조된 형광 분말의 여기 피크는 350 내지 750nm에 위치하고, 자외광, 블루 레이 또는 적색 광의 여기하에 광폭 방출을 구현하며, 방출 메인 피크는 700 내지 1600nm에 위치한다. 이온 대체 등 방식을 통해 고용체를 구축하고, 결정 전기장 분열의 영향으로 인해, 상이한 방출 파장의 근적외선 형광 분말 재료를 제조할 수 있고, 형광 분말의 발광 강도를 향상하였을 뿐만 아니라, 스펙트럼의 조절 제어 가능성을 실현하였으며, 그 응용 범위를 더욱 확대하였다.The present invention belongs to the field of light emitting material technology, and more particularly relates to a near-infrared fluorescent powder, and a method for manufacturing the same and a light emitting device containing the fluorescent powder are further disclosed. The near-infrared fluorescent powder of the present invention includes an inorganic compound having a constitutional formula of A x R p O r , the compound has an A x R p O r structure as a substrate, and a specified rare earth ion or transition metal ion is mixed. Through this, the excitation peak of the prepared fluorescent powder is located at 350 to 750 nm, realizes wide emission under excitation of ultraviolet light, blue-ray or red light, and the emission main peak is located at 700 to 1600 nm. By constructing a solid solution through ion substitution, etc., and due to the effect of crystal electric field splitting, it is possible to prepare near-infrared fluorescent powder materials with different emission wavelengths, and not only to improve the emission intensity of the fluorescent powder, but also to increase the controllability of the spectrum. It has been realized, and the scope of its application has been further expanded.

Description

근적외선 형광 분말 및 상기 형광 분말을 함유하는 발광 장치Near-infrared fluorescent powder and light-emitting device containing the fluorescent powder

본원 발명은 출원번호가 201810969498.0이고, 출원 일자가 2018년 8월 23일인 중국특허에 기반하여 제출하며, 상기 중국특허출원의 우선권을 요구하고, 상기 중국특허출원의 모든 내용을 본원 발명에 인용하여 참조한다.The present invention is filed based on a Chinese patent with an application number of 201810969498.0 and an application date of August 23, 2018, requesting priority to the Chinese patent application, and all contents of the Chinese patent application are cited in the present invention for reference do.

본 발명은 발광 재료 기술 분야에 관한 것으로서, 특히는 근적외선 형광 분말에 관한 것이며, 그 제조 방법, 및 상기 형광 분말을 함유하는 발광 장치를 더 공개한다.BACKGROUND OF THE INVENTION Field of the Invention [0001] The present invention relates to the field of luminescent material technology, and more particularly to near-infrared fluorescent powder, and further discloses a method for producing the same, and a light emitting device containing the fluorescent powder.

근년래, 근적외선 스펙트럼 기술은 안면 인식, 홍채 인식, 방범 모니터, 레이저 레이더, 건강 검진, 3D 센서 등 분야에서의 응용이 비약적으로 발전함에 따라, 근적외선 LED도 지향성이 훌륭하고, 공률 손실이 낮으며 체적이 작은 등 일련의 장점을 구비하여 국제 연구 포커스로 자리 잡았다.In recent years, near-infrared spectrum technology has developed rapidly in applications such as face recognition, iris recognition, crime prevention monitor, laser radar, medical examination, and 3D sensor. It has established itself as an international research focus with a series of advantages such as small back.

현재 근적외선 LED의 주요 구현 방식은 근적외선 반도체 칩을 사용하는 방법으로서, 근적외선 칩 기술의 핵심 기술은 외국에서 이미 독점하였고, 원가가 높고 기술이 성숙되지 않은 등 문제가 존재한다. 따라서, 블루 레이 칩 복합 근적외선 발광 재료의 근적외선 LED를 출시하였고, 상기 복합 패키징의 구현 방식은 제조 공정이 간단하고 원가가 낮으며 발광 효율이 높은 등 장점을 구비하며, 국제적으로 광범위한 주목을 받았다. 따라서, 적외선 LED용 상이한 파단(波段)의 신형의 근적외선 발광 재료를 개발하는 것은 그 다양화의 응용 수요를 실현함에 있어서 매우 중요하다.Currently, the main implementation method of near-infrared LED is a method of using a near-infrared semiconductor chip. The core technology of near-infrared chip technology has already been monopolized by foreign countries, and there are problems such as high cost and immature technology. Therefore, a near-infrared LED of a Blu-ray chip composite near-infrared light emitting material has been released, and the implementation method of the complex packaging has advantages such as a simple manufacturing process, low cost, and high luminous efficiency, and has received wide international attention. Therefore, it is very important to develop a new type of near-infrared light emitting material of different breakage for infrared LEDs in realizing the diversified application demands.

피크 파장이 780 내지 1700nm인 근적외선 형광 분말은 식품 검사, 안면 인식, 홍채 인식, 방범 모니터, 레이저 레이더, 건강 검진 및 3D 센서 등 여러 분야에 응용될 수 있고, 가장 광범한 실질적인 응용 가치가 있으며, 상이한 응용 수요를 만족할 수 있다. 회티탄석 타입의 복합 산화물은 안정적인 결정체 구조를 구비하고, 반경이 근사한 기타 이온 부분에 의해 대체되어 그 결정체 구조가 기본적으로 변하지 않는다. 따라서, 희토류 이온과 전이 금속 이온이 혼합된 회티탄석 시스템을 연구 대상으로 하고 이온을 통해 대체되며, 고용체를 구축하고, 방출 메인 피크가 780 내지 1700nm인 광대역 또는 멀티 스펙트럼 근적외선 형광 분말을 제조하며, 조절 및 제어가 가능하고, 반응 조건을 개선하는 것을 통해 형태가 양호하고 제어 가능한 결정립을 획득함으로써, 응용 표준에 달성되어, 비교적 광범한 응용 전망을 구비한다.Near-infrared fluorescent powder with a peak wavelength of 780 to 1700 nm can be applied in many fields such as food inspection, face recognition, iris recognition, crime prevention monitor, laser radar, medical examination and 3D sensor, etc., and has the widest practical application value, different It can satisfy application demands. The titanium dioxide type composite oxide has a stable crystal structure and is replaced by other ionic moieties with approximate radii, so that the crystal structure is basically unchanged. Therefore, a titanium dioxide system in which rare earth ions and transition metal ions are mixed, replaced through ions, to establish a solid solution, and a broadband or multi-spectrum near-infrared fluorescent powder having an emission main peak of 780 to 1700 nm is prepared, It is adjustable and controllable, and by obtaining well-formed and controllable grains through improving the reaction conditions, the application standard is achieved, and has a relatively wide application prospect.

예컨대 중국 특허 CN107573937A에서는 구조가 MBO3:Cr3 +과 같은 붕산염 형광 분말을 공개하였고, 그 중 M은 Sc, Al, Lu, Gd 또는 Y원소이며, 상기 형광 분말은 블루 레이(420-520nm)에 의해 효과적으로 여기되어, 700 내지 920nm범위인 근적외선 광을 방출할 수 있다. M이 Al, Lu, Gd 또는 Y일 경우, 방출 스펙트럼은 모두 M이 Sc인 방출 스펙트럼과 유사하다. 이 밖에, 상기 특허는 주요하게 MBO3:Cr3 +의 제조 방법을 주력하여 연구하였고, 반응 온도와 반응 시간의 영향을 연구 토론하였지만, 그 스펙트럼 성능에 대해서는 논하지 않았다.For example, Chinese Patent CN107573937A discloses a borate fluorescent powder having the same structure as MBO 3 :Cr 3+ , among which M is Sc, Al, Lu, Gd or Y element, and the fluorescent powder is blue-ray (420-520 nm) It can be effectively excited by the light and emit near-infrared light in the range of 700 to 920 nm. When M is Al, Lu, Gd or Y, the emission spectra are all similar to those in which M is Sc. In addition, the above patent mainly studied the method for preparing MBO 3 :Cr 3 + , and studied and discussed the effect of reaction temperature and reaction time, but did not discuss the spectral performance.

또 예컨대 비특허 문헌 《Photoluminescence Properties of a ScBO3:Cr3 + Phosphor and Its Applications for Broadband Near-infrared LEDs》[J]. RSC Adv, 2018, 8, 12035-12042.에서는 근적외선 형광 분말 ScBO3:Cr3 +을 공개하였고, 상기 형광 분말은 블루 레이 칩의 여기하에, 메인 피크가 800nm에 위치한 근적외선 광폭 방출을 구현하며, 양자 효율은 65%이다. 상기 근적외선 형광 분말과 블루 레이 칩을 사용하여 패키징하며, 근적외선 광의 출력 파워는 26mW이고, 그 에너지 전환 효율은 비교적 낮으며 단지 7%이다. Also, for example, in the non-patent literature "Photoluminescence Properties of a ScBO 3 :Cr 3 + Phosphor and Its Applications for Broadband Near-infrared LEDs" [J]. RSC Adv, 2018, 8, 12035-12042. disclosed a near-infrared fluorescent powder ScBO 3 :Cr 3+ , which realizes near-infrared wide emission with a main peak located at 800 nm under excitation of a Blu-ray chip, and quantum The efficiency is 65%. The packaging uses the near-infrared fluorescent powder and the Blu-ray chip, the output power of the near-infrared light is 26mW, and the energy conversion efficiency thereof is relatively low, only 7%.

보다시피, 선행기술에서 개발한 이미 알고 있는 근적외선 분말 MBO3:Cr3 +은 방출 메인 피크가 대부분 800nm에 위치하고, 방출 파장 범위가 좁을뿐만 아니라 발광 강도도 비교적 낮으며, 또한 방출 파장은 조절이 불가하여, 상기 형광 분말의 응용 범위와 응용 효과를 한정하였다.As you can see, the near - infrared powder MBO 3 :Cr 3+ developed in the prior art has an emission main peak located at most 800 nm, and the emission wavelength range is narrow, and the emission intensity is relatively low, and the emission wavelength is not adjustable. Accordingly, the application range and application effect of the fluorescent powder were limited.

이를 위해, 본 발명에서 해결하고자 하는 기술적 과제는 근적외선 형광 분말을 제공하는 것이며, 상기 근적외선 형광 분말은 광대역 또는 멀티 스펙트럼 방출을 구비하고, 스펙트럼은 조절 가능하며, 발광 효율이 높은 장점을 구비하고, 안면 인식, 홍채 인식, 방범 모니터, 레이저 레이더, 건강 검진, 3D 센서 등 분야의 재료 성능 요구를 만족시킬 수 있다.To this end, the technical problem to be solved in the present invention is to provide a near-infrared fluorescent powder, the near-infrared fluorescent powder has broadband or multi-spectral emission, the spectrum is adjustable, has the advantage of high luminous efficiency, and It can meet the material performance requirements of fields such as recognition, iris recognition, crime prevention monitor, laser radar, medical examination, and 3D sensor.

본 발명에서 해결하고자 하는 두번째 기술적 과제는 블루 레이 또는 적색 광의 여기하에 고효율 근적외선 광의 방출을 실현할 수 있는 발광 장치를 제공하여 기존의 근적외선 발광 재료와 발광 장치의 안정성이 낮고 발광 효율이 낮은 문제를 해결하는 것이다.The second technical problem to be solved in the present invention is to provide a light emitting device capable of realizing high-efficiency near-infrared light emission under excitation of Blu-ray or red light, thereby solving the problem of low stability and low luminous efficiency of existing near-infrared light emitting materials and light emitting devices. will be.

상기 기술적 과제를 해결하기 위해, 본 발명의 상기 근적외선 형광 분말에 있어서, 상기 형광 분말은 화학식이 A x R p O r :D y 인 무기 화합물을 포함하고, 여기서, In order to solve the above technical problem, in the near-infrared fluorescent powder of the present invention, the fluorescent powder includes an inorganic compound having the chemical formula A x R p O r :D y ,

상기 A원소는 Sc, Y, La, Lu 또는 Gd원소 중의 한가지 또는 두가지에서 선택되며; the element A is selected from one or two of Sc, Y, La, Lu or Gd;

상기 R원소는 Ga원소를 포함하고, Al, B 또는 In원소 중의 한가지를 선택적으로 첨가할 수 있으며; The R element includes Ga element, and one of Al, B, and In elements may be selectively added;

상기 D원소는 Cr원소를 포함하고, Ce, Eu, Tb, Bi, Dy, Yb, Pr, Nd 또는 Er원소 중의 한가지를 선택적으로 첨가할 수 있으며; The element D includes element Cr, and one of Ce, Eu, Tb, Bi, Dy, Yb, Pr, Nd, and Er elements may be selectively added;

상기 파라미터 x, p, r와 y는 하기의 조건을 만족하는 바, 0.8≤x≤1.2, 0.8≤p≤1.2, 2≤r≤4, 0.0001≤y≤0.25이다. The parameters x, p , r and y satisfy the following conditions: 0.8≤x≤1.2, 0.8≤p≤1.2 , 2≤r≤4, and 0.0001≤y≤0.25.

바람직하게, 상기 A원소가 R원소와 상이할 경우 Ga원소이다. Preferably, when the element A is different from the element R, it is a Ga element.

바람직하게, 상기 파라미터 x, p, r과 y는 하기의 조건을 만족하는 바, (x+y): p: r=1: 1: 3이다. Preferably, the parameters x, p, r and y satisfy the following condition, ( x + y ): p : r =1: 1: 3:

더욱 바람직하게, 상기 R원소에서, Ga원소가 상기 R원소를 차지하는 몰 비율은 30%보다 크거나 같다. More preferably, in the R element, the molar ratio of the Ga element to the R element is greater than or equal to 30%.

더욱 바람직하게, 상기 A원소는 Sc원소이다. More preferably, the element A is an element Sc.

더욱 바람직하게, 상기 D원소는 Cr원소이다. More preferably, the element D is element Cr.

본 발명은 상기 근적외선 형광 분말의 제조 방법을 더 공개하였는 바, 하기의 단계를 포함한다.The present invention further discloses a method for producing the near-infrared fluorescent powder, including the following steps.

선택된 A, R과 D원소에 대응되는 화합물을 원료로 하고, 선택된 화학 계량 비율로 균일하게 혼합하여; 혼합물을 획득하는 단계(1); Using a compound corresponding to the selected A, R and D elements as a raw material, and uniformly mixing in a selected chemical metering ratio; obtaining a mixture (1);

획득한 혼합물을 1200 내지 1500℃에서, 공기 또는 보호 분위기 중 2 내지 10h 소결하여, 배소 산물을 획득하고; 획득한 배소 산물은 파쇄, 연마, 그레이딩 및 선별세척 후처리를 거쳐, 필요한 근적외선 형광 분말을 획득하는 단계(2). sintering the obtained mixture at 1200 to 1500° C. for 2 to 10 h in air or a protective atmosphere to obtain a roasting product; The obtained roasting product is subjected to post-treatment such as crushing, grinding, grading, and selective washing, to obtain a necessary near-infrared fluorescent powder (2).

부가적으로, 상기 A, R과 D원소에 대응되는 화합물은 산화물, 탄산염 및/또는 질산염을 포함한다. Additionally, the compounds corresponding to the elements A, R and D include oxides, carbonates and/or nitrates.

본 발명은 발광 장치를 더 공개하였는 바, 광원 및 발광 재료를 포함하고, 상기 발광 재료는 상기 근적외선 형광 분말을 포함한다. The present invention further discloses a light emitting device, comprising a light source and a light emitting material, wherein the light emitting material includes the near-infrared fluorescent powder.

상기 광원은 방출 피크 파장 범위가 350 내지 500nm인 반도체 칩이다. The light source is a semiconductor chip having an emission peak wavelength range of 350 to 500 nm.

본 발명의 상기 근적외선 형광 분말은 구성식이 A x R p O r 인 무기 화합물을 포함하고, 상기 화합물은 회티탄석 타입의 A x R p O r 구조를 기질로 하며, 선택된 희토류 이온 또는 전이 금속 이온을 혼합하는 것을 통해, 제조된 형광 분말의 여기 파장은 350 내지 750nm에 위치하고, 자외광, 블루 레이 또는 적색 광 여기하에 광폭 또는 멀티 스펙트럼 방출을 구현하며, 방출 메인 피크는 780 내지 1600nm에 위치한다. 이온 대체 등 방식을 통해 고용체를 구축하고, 결정 전기장 분열의 영향으로 인해, 상이한 방출 파장의 근적외선 형광 분말 재료를 제조할 수 있고, 형광 분말의 발광 강도를 향상하였을 뿐만 아니라, 스펙트럼의 조절 제어 가능성을 실현하였으며, 그 응용 범위를 더욱 확대하였다. 본 발명의 상기 근적외선 형광 분말은 이온 코도핑을 통해, 에너지 전달의 방식으로써, 이온이 혼합된 고효율 방출을 촉진하여, 상기 근적외선 형광 분말의 발광 강도를 더욱 향상시켰고, 더욱 훌륭한 응용 효과를 달성할 수 있다. The near-infrared fluorescent powder of the present invention includes an inorganic compound having a constitutional formula of A x R p O r , the compound has an A x R p O r structure of the grayish-titanium type as a substrate, and a selected rare earth ion or transition metal ion Through mixing, the excitation wavelength of the prepared fluorescent powder is located at 350 to 750 nm, and realizes wide or multi-spectral emission under ultraviolet light, Blu-ray or red light excitation, and the emission main peak is located at 780 to 1600 nm. By constructing a solid solution through ion substitution, etc., and due to the effect of crystal electric field splitting, it is possible to prepare near-infrared fluorescent powder materials with different emission wavelengths, and not only to improve the emission intensity of the fluorescent powder, but also to increase the controllability of the spectrum. It has been realized, and the scope of its application has been further expanded. The near-infrared fluorescent powder of the present invention promotes high-efficiency emission of mixed ions through ion co-doping, as a method of energy transfer, to further improve the emission intensity of the near-infrared fluorescent powder, and achieve more excellent application effects. there is.

본 발명에서 획득한 근적외선 발광 재료는 발광 장치의 제조에 응용될 수 있고, 상기 발광 장치는 블루 레이 칩, 자외선 칩 여기하에 광폭 근적외선 광을 방출할 수 있으며, 다양한 형광 분말을 조합하는 것을 통해, 스펙트럼의 조절 및 제어 가능한 효과를 실현한다. 본 발명의 상기 발광 장치는 광섬유통신 안면 및 홍채 인식, 방범 모니터, 위조 방지, 레이저 레이더, 식품 검사, 디지털 의료, 3D 센서 등 여러 분야의 수요를 만족할 수 있고, 원가가 높고 안정성이 낮은, 근적외선 칩을 직접 사용하는 폐단을 방지하여, 근적외선 광을 생성하는 새로운 수단으로 되었다.The near-infrared light emitting material obtained in the present invention can be applied to the manufacture of a light emitting device, the light emitting device can emit wide near-infrared light under excitation of a Blu-ray chip, an ultraviolet chip, and through combining various fluorescent powders, the spectrum of adjustable and controllable effects. The light emitting device of the present invention can satisfy the demands of various fields such as optical fiber communication face and iris recognition, crime prevention monitor, anti-counterfeiting, laser radar, food inspection, digital medical care, 3D sensor, etc., and has a high cost and low stability, near-infrared chip It has become a new means of generating near-infrared light by preventing the negative effects of using it directly.

본 발명의 내용을 더욱 잘 이해하게 하기 위해, 이하 본 발명의 구체적인 실시예와 도면을 결부하여, 본 발명을 더욱 상세하게 설명하도록 하는 바, 여기서,
도 1은 본 발명의 비교예1에서 제조한 형광 분말 샘플의 여기와 방출 스펙트럼도이고, 좌측 곡선 검출 파장은 810nm이며, 우측 곡선 여기 파장은 460nm이다.
도 2는 본 발명의 실시예1에서 제조한 형광 분말 샘플의 여기와 방출 스펙트럼도이고, 좌측 곡선 검출 파장은 835nm이며, 우측 곡선 여기 파장은 460nm이다.
In order to better understand the content of the present invention, the present invention will be described in more detail with reference to specific examples and drawings of the present invention below, where:
1 is an excitation and emission spectrum diagram of a fluorescent powder sample prepared in Comparative Example 1 of the present invention, the detection wavelength of the left curve is 810 nm, and the excitation wavelength of the right curve is 460 nm.
2 is an excitation and emission spectrum diagram of the fluorescent powder sample prepared in Example 1 of the present invention, the detection wavelength of the left curve is 835 nm, and the excitation wavelength of the right curve is 460 nm.

비교예comparative example

본 실시예의 상기 근적외선 형광 분말은, 그 포함되는 화합물 구성식은 Sc0.98BO3:Cr0.02이다.In the near-infrared fluorescent powder of this embodiment, the composition formula of the compound contained therein is Sc 0.98 BO 3 :Cr 0.02 .

화학식 Sc0 . 98BO3:Cr0 .02의 화학 계량 비율에 따라, Sc2O3, H3BO3과 Cr2O3을 정확하게 측량하여 취하고 균일하게 혼합하여, 혼합물을 획득하며; 획득한 혼합물을 공기 분위기에서, 1300℃로 8h 하소하며, 온도가 하강한 후 배소 산물을 획득하고; 배소 산물을 파쇄, 연마, 그레이딩, 선별세척 등 후처리하여, 근적외선 발광 재료 샘플을 획득한다. Formula Sc 0 . 98 BO 3 :According to the stoichiometric ratio of Cr 0.02 , Sc 2 O 3 , H 3 BO 3 and Cr 2 O 3 are accurately weighed and taken and mixed uniformly to obtain a mixture; The obtained mixture is calcined in an air atmosphere at 1300° C. for 8 h, and after the temperature is lowered, a roasting product is obtained; The roasting product is post-processed such as crushing, grinding, grading, selective washing, etc. to obtain a near-infrared light emitting material sample.

획득한 근적외선 발광 재료 샘플에 대해 여기 테스트하여, 획득한 샘플의 여기와 방출 스펙트럼도는 도 1에 도시된 바와 같다. 보다시피, 상기 형광 분말의 방출 피크는 810nm에 위치하고, 상대 발광 강도는 100이다. The obtained near-infrared light emitting material sample was subjected to an excitation test, and excitation and emission spectral diagrams of the obtained sample are as shown in FIG. 1 . As can be seen, the emission peak of the fluorescent powder is located at 810 nm, and the relative emission intensity is 100.

실시예1Example 1

본 실시예의 상기 근적외선 형광 분말, 그 포함되는 화합물 구성식은 Sc0.98GaO3:Cr0.02이다. The composition formula of the near-infrared fluorescent powder of this embodiment and the compound contained therein is Sc 0.98 GaO 3 :Cr 0.02 .

화학식 Sc0 . 98GaO3:Cr0 .02의 화학 계량 비율에 따라, Sc2O3, Ga2O3과 Cr2O3을 정확하게 측량하여 취하고 균일하게 혼합하여, 혼합물을 획득하며; 획득한 혼합물을 환원 분위기에서, 1400℃로 8h하소하며, 온도가 하강한 후 배소 산물을 획득하고; 배소 산물을 파쇄, 연마, 그레이딩, 선별세척 등 후처리하여, 근적외선 형광 분말 샘플을 획득한다. Formula Sc 0 . 98 According to the stoichiometric ratio of GaO 3 :Cr 0.02 , accurately measure and take Sc 2 O 3 , Ga 2 O 3 and Cr 2 O 3 and mix uniformly to obtain a mixture; calcining the obtained mixture at 1400° C. for 8 h in a reducing atmosphere, and after the temperature is lowered, a roasting product is obtained; The roasted product is post-processed such as crushing, grinding, grading, and selective washing to obtain a near-infrared fluorescent powder sample.

획득한 근적외선 발광 재료 샘플에 대해 여기 테스트하여, 획득한 샘플의 여기와 방출 스펙트럼도는 도 2에 도시된 바와 같다. 보다시피, 상기 형광 분말의 방출 피크는 835nm이고, 상대 발광 강도는 130이다. An excitation test was performed on the obtained near-infrared light emitting material sample, and excitation and emission spectrum diagrams of the obtained sample are as shown in FIG. 2 . As can be seen, the emission peak of the fluorescent powder is 835 nm, and the relative emission intensity is 130.

실시예2Example 2

본 실시예의 상기 근적외선 형광 분말, 그 포함되는 화합물 구성식은 Sc0.98Ga0.3B0.7O3:Cr0.02이다. The composition formula of the near-infrared fluorescent powder of this embodiment and the compound included therein is Sc 0.98 Ga 0.3 B 0.7 O 3 :Cr 0.02 .

화학식 Sc0 . 98Ga0 . 3B0 . 7O3:Cr0 .02의 화학 계량 비율에 따라, Sc2O3, Ga2O3과 Cr2O3을 정확하게 측량하여 취하고 균일하게 혼합하여; 획득한 혼합물을 환원 분위기에서, 1400℃로 8h 하소하며, 온도가 하강한 후 배소 산물을 획득하고; 배소 산물을 파쇄, 연마, 그레이딩, 선별세척 등 후처리하여, 근적외선 형광 분말 샘플을 획득한다. 측정을 거쳐, 상기 형광 분말의 방출 피크는 826nm이고, 상대 발광 강도는 150이다. Formula Sc 0 . 98 Ga 0 . 3 B 0 . According to the chemical metering ratio of 7 O 3 :Cr 0.02 , Sc 2 O 3 , Ga 2 O 3 and Cr 2 O 3 are accurately weighed and taken and mixed uniformly; calcining the obtained mixture at 1400° C. for 8 h in a reducing atmosphere to obtain a roasting product after the temperature is lowered; The roasted product is post-processed such as crushing, grinding, grading, and selective washing to obtain a near-infrared fluorescent powder sample. Through the measurement, the emission peak of the fluorescent powder is 826 nm, and the relative emission intensity is 150.

실시예3 내지 실시예26Examples 3 to 26

실시예3 내지 실시예26 상기의 근적외선 형광 분말 및 상기 형광 분말을 함유하는 발광 장치는, 그 화합물 구성식은 각각 표 1에 열거하였는 바, 각 실시예 중 재료의 제조 방법은 실시예1과 동일하며, 단지 각 실시예 중 목표 화합물의 화학식 구성에 따라, 적당한 계량의 화합물을 선택하여 혼합, 연마, 배소하면, 필요한 근적외선 발광 물질을 획득한다.Examples 3 to 26 As for the near-infrared fluorescent powder and the light-emitting device containing the fluorescent powder, the chemical formulas of the compounds are listed in Table 1, respectively. , only by selecting, mixing, grinding, and roasting an appropriate amount of a compound according to the chemical composition of the target compound in each example, to obtain a necessary near-infrared light emitting material.

각 실시예 중 제조된 발광 물질의 성능에 대해 검출하면, 그 테스트 결과는 표 1에 도시된 바와 같다. When the performance of the light emitting material prepared in each Example was detected, the test results are shown in Table 1.

실시예와 비교예 분자식 및 발광 성능, 여기 파장은 460nmExamples and Comparative Examples Molecular formula and luminescence performance, excitation wavelength is 460 nm 번호number 분자식molecular formula 피크 위치(nm)Peak position (nm) 상대 발광 강도Relative luminous intensity 비교예comparative example Sc0 . 98BO3:Cr0 .02 Sc 0 . 98 BO 3 :Cr 0 .02 810810 100100 실시예1Example 1 Sc0 . 98GaO3:Cr0 .02 Sc 0 . 98 GaO 3 :Cr 0.02 835835 130130 실시예2Example 2 Sc0.98Ga0.3B0.7O3:Cr0.02 Sc 0.98 Ga 0.3 B 0.7 O 3 :Cr 0.02 826826 150150 실시예3Example 3 Sc0.95Ga0.3B0.7O3:Cr0.02,Pr0.03 Sc 0.95 Ga 0.3 B 0.7 O 3 :Cr 0.02, Pr 0.03 844844 218218 실시예4Example 4 Y0.98Ga0.6B0.4O3:Cr0.02 Y 0.98 Ga 0.6 B 0.4 O 3 :Cr 0.02 831831 141141 실시예5Example 5 La0.98Ga0.3B0.7O3:Cr0.02 La 0.98 Ga 0.3 B 0.7 O 3 :Cr 0.02 823823 138138 실시예6Example 6 Lu0.96Ga0.8B0.2O3:Cr0.04 Lu 0.96 Ga 0.8 B 0.2 O 3 :Cr 0.04 827827 142142 실시예7Example 7 Gd0.96Ga0.8B0.2O3:Cr0.04 Gd 0.96 Ga 0.8 B 0.2 O 3 :Cr 0.04 827827 139139 실시예8Example 8 Sc0.97Ga0.6Al0.4O3:Cr0.03 Sc 0.97 Ga 0.6 Al 0.4 O 3 :Cr 0.03 843843 185185 실시예9Example 9 Sc0.97Ga0.6In0.4O3:Cr0.03 Sc 0.97 Ga 0.6 In 0.4 O 3 :Cr 0.03 837837 162162 실시예10Example 10 Sc0.75Ga0.3B0.7O2.7:Cr0.05 Sc 0.75 Ga 0.3 B 0.7 O 2.7 :Cr 0.05 845845 176176 실시예11Example 11 Sc1.15Ga0.7Al0.1O2.97:Cr0.03 Sc 1.15 Ga 0.7 Al 0.1 O 2.97 :Cr 0.03 830830 149149 실시예12Example 12 Sc1.2Ga0.7B0.35O3.42:Cr0.03 Sc 1.2 Ga 0.7 B 0.35 O 3.42 :Cr 0.03 839839 155155 실시예13Example 13 Sc0.85Ga0.7B0.5O3.12:Cr0.03 Sc 0.85 Ga 0.7 B 0.5 O 3.12 :Cr 0.03 842842 162162 실시예14Example 14 Sc0.97Ga0.9B0.1O3.33:Cr0.25 Sc 0.97 Ga 0.9 B 0.1 O 3.33 :Cr 0.25 837837 158158 실시예15Example 15 Sc0.97Ga0.3B0.7O2.96:Cr0.0001 Sc 0.97 Ga 0.3 B 0.7 O 2.96 :Cr 0.0001 843843 129129 실시예16Example 16 Sc0.8Ga0.4B0.4O2.415:Cr0.01 Sc 0.8 Ga 0.4 B 0.4 O 2.415 :Cr 0.01 829829 166166 실시예17Example 17 Sc0.7Y0.2Ga0.7B0.3O2.865:Cr0.01 Sc 0.7 Y 0.2 Ga 0.7 B 0.3 O 2.865 :Cr 0.01 827827 145145 실시예18Example 18 Sc1.2Ga0.6B0.6O4:Cr0.25 Sc 1.2 Ga 0.6 B 0.6 O 4 :Cr 0.25 845845 168168 실시예19Example 19 Sc0.97Ga0.6B0.5O3.18:Cr0.03,Ce0.02 Sc 0.97 Ga 0.6 B 0.5 O 3.18 :Cr 0.03, Ce 0.02 840840 200200 실시예20Example 20 Sc0.97Ga0.6B0.5O3.18:Cr0.03,Eu0.02 Sc 0.97 Ga 0.6 B 0.5 O 3.18 :Cr 0.03, Eu 0.02 829829 205205 실시예21Example 21 Sc0.97Ga0.6B0.5O3.18:Cr0.03,Tb0.02 Sc 0.97 Ga 0.6 B 0.5 O 3.18 :Cr 0.03, Tb 0.02 826826 191191 실시예22Example 22 Sc0.95Ga0.5B0.5O3:Cr0.03,Bi0.02 Sc 0.95 Ga 0.5 B 0.5 O 3 :Cr 0.03, Bi 0.02 825825 177177 실시예23Example 23 Sc0.95Ga0.5B0.5O3:Cr0.03,Dy0.02 Sc 0.95 Ga 0.5 B 0.5 O 3 :Cr 0.03, Dy 0.02 831831 176176 실시예24Example 24 Sc0.95Ga0.5B0.5O3:Cr0.03,Yb0.02 Sc 0.95 Ga 0.5 B 0.5 O 3 :Cr 0.03, Yb 0.02 970, 1026970, 1026 215(1026nm)215 (1026 nm) 실시예25Example 25 Sc0.95Ga0.5B0.5O3:Cr0.03,Nd0.02 Sc 0.95 Ga 0.5 B 0.5 O 3 :Cr 0.03, Nd 0.02 944, 1063,1075944, 1063,1075 221(1063nm)221 (1063 nm) 실시예26Example 26 Sc0.95Ga0.5B0.5O3:Cr0.03,Er0.02 Sc 0.95 Ga 0.5 B 0.5 O 3 :Cr 0.03, Er 0.02 1538,15571538,1557 205(1538nm)205 (1538 nm)

상기 실시예는 단지 열거된 예를 분명하게 설명하기 위한 것으로서, 실시예를 한정하지 않는 것이 분명하다. 본 기술분야의 통상의 기술자에게 있어서, 상기 설명의 기초상에서 기타 상이한 형식의 변화 또는 변동을 진행할 수 있다. 여기서 모든 실시예에 대해서 열거할 필요가 없다. 이로부터 유추해 낸 자명한 변화 또는 변동은 여전히 본 발명의 보호 범위에 속한다.It is clear that the above examples are only for clearly explaining the enumerated examples, and do not limit the examples. A person skilled in the art can proceed with other different types of changes or variations on the basis of the above description. It is not necessary to enumerate all examples here. Obvious changes or variations derived therefrom still fall within the protection scope of the present invention.

Claims (10)

근적외선 형광 분말에 있어서,
상기 형광 분말은 화학식이 AxRpOr:Dy인 무기 화합물을 포함하고,
상기 화합물은 회티탄석 타입의 A x R p O r 구조를 기질로 하며,
그 중, 상기 A원소는 Sc, Y, La, Lu 또는 Gd원소 중의 한가지 또는 두가지에서 선택되며;
상기 R원소는 Ga원소를 포함하고, Al, B 또는 In원소 중의 한가지를 선택적으로 첨가할 수 있으며;
그 중, Ga원소가 상기 R원소를 차지하는 몰 비율은 30%보다 크거나 같고;
상기 D원소는 Cr원소를 포함하고, Ce, Eu, Tb, Bi, Dy, Yb, Pr, Nd 또는 Er원소 중의 한가지를 선택적으로 첨가할 수 있으며;
상기 파라미터 x, p, r와 y는 하기의 조건을 만족하는 바, 0.8≤x≤1.2, 0.8≤p≤1.2, 2≤r≤4, 0.0001≤y≤ 0.25인 것을 특징으로 하는 근적외선 형광 분말.
In the near-infrared fluorescent powder,
The fluorescent powder includes an inorganic compound whose chemical formula is AxRpOr:Dy,
The compound has an A x R p O r structure of the gray titanite type as a substrate,
Among them, the A element is selected from one or two of Sc, Y, La, Lu and Gd elements;
The R element includes Ga element, and one of Al, B, and In elements may be selectively added;
Among them, the molar ratio of the Ga element to the R element is greater than or equal to 30%;
The element D includes element Cr, and one of Ce, Eu, Tb, Bi, Dy, Yb, Pr, Nd, and Er elements may be selectively added;
wherein the parameters x, p, r and y satisfy the following conditions, and 0.8≤x≤1.2, 0.8≤p≤1.2, 2≤r≤4, 0.0001≤y≤0.25.
제 1항에 있어서,
상기 파라미터 x, p, r과 y는 하기의 조건을 만족하는 바, (x+y): p: r=1: 1: 3인 것을 특징으로 하는 근적외선 형광 분말.
The method of claim 1,
The parameters x, p, r and y satisfy the following conditions, and ( x + y ): p : r =1: 1: 3, wherein the near-infrared fluorescent powder.
제 1항 또는 제 2항에 있어서,
상기 A원소는 Sc원소인 것을 특징으로 하는 근적외선 형광 분말.
3. The method of claim 1 or 2,
The element A is a near-infrared fluorescent powder, characterized in that the element Sc.
제 1항 또는 제 2항에 있어서,
상기 D원소는 Cr원소인 것을 특징으로 하는 근적외선 형광 분말.
3. The method of claim 1 or 2,
The near-infrared fluorescent powder, characterized in that the element D is element Cr.
선택된 A, R과 D원소에 대응되는 화합물을 원료로 하고, 선택된 화학 계량 비율로 균일하게 혼합하여; 혼합물을 획득하는 단계(1);
획득한 혼합물을 1200 내지 1500℃에서, 공기 또는 보호 분위기 중 2 내지 10h 소결하여, 배소 산물을 획득하고; 획득한 배소 산물은 파쇄, 연마, 그레이딩 및 선별세척 후처리를 거쳐, 필요한 근적외선 형광 분말을 획득하는 단계(2); 를 포함하는 것을 특징으로 하는 제 1항 또는 제 2항에 따른 근적외선 형광 분말의 제조 방법.
Using a compound corresponding to the selected A, R and D elements as a raw material, and uniformly mixing in a selected chemical metering ratio; obtaining a mixture (1);
sintering the obtained mixture at 1200 to 1500° C. for 2 to 10 h in air or a protective atmosphere to obtain a roasting product; The obtained roasting product is subjected to crushing, grinding, grading, and selective washing and post-treatment to obtain a necessary near-infrared fluorescent powder (2); The method for producing a near-infrared fluorescent powder according to claim 1 or 2, characterized in that it comprises a.
제 5항에 있어서,
상기 A, R과 D원소에 대응되는 화합물은 산화물, 탄산염 및/또는 질산염을 포함하는 것을 특징으로 하는 근적외선 형광 분말의 제조 방법.
6. The method of claim 5,
The compound corresponding to the elements A, R and D includes an oxide, carbonate and/or nitrate.
광원 및 발광 재료를 포함하는 발광 장치에 있어서,
상기 발광 재료는 제 1항 또는 제 2항에 따른 상기 근적외선 형광 분말을 포함하는 것을 특징으로 하는 발광 장치.
A light emitting device comprising a light source and a light emitting material, the light emitting device comprising:
The light emitting material is a light emitting device comprising the near-infrared fluorescent powder according to claim 1 or 2.
제 7항에 있어서,
상기 광원은 방출 피크 파장 범위가 350 내지 500nm인 반도체 칩인 것을 특징으로 하는 발광 장치.
8. The method of claim 7,
The light source is a light emitting device, characterized in that the emission peak wavelength range is a semiconductor chip of 350 to 500nm.
삭제delete 삭제delete
KR1020197029177A 2018-08-23 2018-11-30 Near-infrared fluorescent powder and light-emitting device containing the fluorescent powder KR102391310B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201810969498 2018-08-23
CN201810969498.0 2018-08-23
PCT/CN2018/118645 WO2020037873A1 (en) 2018-08-23 2018-11-30 Near-infrared fluorescent powder and luminescent device containing same

Publications (2)

Publication Number Publication Date
KR20200023265A KR20200023265A (en) 2020-03-04
KR102391310B1 true KR102391310B1 (en) 2022-04-26

Family

ID=69592257

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020197029177A KR102391310B1 (en) 2018-08-23 2018-11-30 Near-infrared fluorescent powder and light-emitting device containing the fluorescent powder

Country Status (3)

Country Link
KR (1) KR102391310B1 (en)
CN (1) CN110857389B (en)
WO (1) WO2020037873A1 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110408393B (en) * 2019-07-09 2021-03-19 有研稀土新材料股份有限公司 Red light and near-infrared luminescent material and luminescent device
JP7231660B2 (en) * 2019-07-09 2023-03-01 有研稀土新材料股▲フン▼有限公司 Near-infrared light-emitting materials and light-emitting devices
KR102554970B1 (en) * 2019-07-09 2023-07-11 그리렘 어드밴스드 머티리얼스 캄파니 리미티드 Red light and near-infrared light emitting materials and light emitting devices
CN111892929B (en) * 2020-06-23 2021-11-16 中山大学 X-ray activated ultra-long ultraviolet long-afterglow luminescent material and preparation method and application thereof
CN113845911B (en) * 2020-12-04 2023-02-03 有研稀土新材料股份有限公司 Luminescent material and luminescent device comprising same
CN114672310A (en) * 2020-12-24 2022-06-28 中国科学院宁波材料技术与工程研究所 Pyrophosphate near-infrared fluorescent powder and preparation method and application thereof
CN115125002A (en) * 2021-03-25 2022-09-30 中国科学院宁波材料技术与工程研究所 Silicon-based garnet near-infrared fluorescent material and preparation method and application thereof
CN115197702B (en) * 2021-04-08 2024-03-22 中国科学院宁波材料技术与工程研究所 Fluoride salt near infrared fluorescent powder and preparation method and application thereof
CN113698926A (en) * 2021-06-22 2021-11-26 广东工业大学 Narrow-band emission fluorescent powder and preparation method and application thereof
CN113481006B (en) * 2021-07-14 2023-05-16 广东工业大学 Near infrared broad spectrum fluorescent material and preparation method and application thereof
CN113817468B (en) * 2021-09-27 2022-10-25 华南理工大学 Oxide near-infrared luminescent material, preparation method thereof and luminescent device
CN114672306A (en) * 2022-03-28 2022-06-28 华南农业大学 Near-infrared fluorescent powder, preparation method and LED device formed by same
CN114717001B (en) * 2022-04-24 2023-05-05 江西离子型稀土工程技术研究有限公司 Oxide near-infrared luminescent material and preparation method and application thereof
CN115044374A (en) * 2022-06-29 2022-09-13 旭宇光电(深圳)股份有限公司 Red luminescent material, preparation method thereof and luminescent device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107573937A (en) * 2017-08-01 2018-01-12 东南大学 A kind of phosphor material powder for near-infrared LED and preparation method thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19638667C2 (en) * 1996-09-20 2001-05-17 Osram Opto Semiconductors Gmbh Mixed-color light-emitting semiconductor component with luminescence conversion element
JP4511849B2 (en) * 2004-02-27 2010-07-28 Dowaエレクトロニクス株式会社 Phosphor and its manufacturing method, light source, and LED
KR100985632B1 (en) * 2008-02-13 2010-10-05 부경대학교 산학협력단 YAlO3:Ce based fluorescent material and manufacturing method of the same
CN105567236B (en) * 2014-10-15 2018-07-20 有研稀土新材料股份有限公司 Carbuncle type fluorescent powder and preparation method and device comprising the fluorescent powder
CN106085425B (en) * 2016-06-02 2018-08-31 北京宇极科技发展有限公司 A kind of LED near-infrared fluorescent materials, preparation method and application
CN108231979B (en) * 2017-01-24 2020-03-31 江苏博睿光电有限公司 Infrared LED light source
CN107118770B (en) * 2017-06-16 2020-03-31 河北大学 Near-infrared fluorescent powder and preparation method thereof
CN108148593A (en) * 2018-01-29 2018-06-12 东南大学 It is a kind of for phosphor material powder of near-infrared LED and preparation method thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107573937A (en) * 2017-08-01 2018-01-12 东南大学 A kind of phosphor material powder for near-infrared LED and preparation method thereof

Also Published As

Publication number Publication date
CN110857389B (en) 2022-08-19
KR20200023265A (en) 2020-03-04
WO2020037873A1 (en) 2020-02-27
CN110857389A (en) 2020-03-03

Similar Documents

Publication Publication Date Title
KR102391310B1 (en) Near-infrared fluorescent powder and light-emitting device containing the fluorescent powder
KR102487738B1 (en) Near-infrared luminescent material and light-emitting device prepared using near-infrared luminescent material
CN108865139B (en) Broad-band near-infrared emission substance and light-emitting device containing same
CN108913135B (en) Broad-band near-infrared emission substance and light-emitting device containing same
KR102580962B1 (en) Red light and near-infrared light emitting materials, manufacturing methods, and light emitting devices
CN109135747B (en) Nitride luminescent material and luminescent device comprising same
CN101391803B (en) Method for preparing broadband excitation spectrum white light LED fluorescent powder
CN112011332B (en) Far-red fluorescent powder and light-emitting device comprising same
US20210155850A1 (en) Near-infrared light-emitting phosphor, phosphor mixture, light-emitting element, and light-emitting device
CN112342021A (en) Near-infrared broadband emission luminescent material, preparation method thereof and luminescent device comprising material
CN115558491A (en) Broadband short-wave infrared fluorescent powder, preparation method thereof and luminescent device
CN106147759A (en) A kind of white light LEDs borate substrate fluorescent powder and preparation method thereof
CN102942928B (en) Zirconate-base red phosphor, method for preparing same and application
CN115058247B (en) Short-wave infrared luminescent material and preparation method and application thereof
WO2022116726A1 (en) Light-emitting material and light-emitting device including same
Zhang et al. A novel banded structure ceramic phosphor for high-power white LEDs
CN113481009B (en) Cr (chromium) 3+ And Yb 3+ Codoped infrared luminescent material, and preparation method and application thereof
KR102035902B1 (en) Nitride-based phosphor preparation and light emitting device including the same
CN104560038A (en) Double tungstate based red fluorescent powder and preparation method thereof
JP2020517790A (en) Nitride fluorescent substance and light emitting device containing the fluorescent substance
CN114276807B (en) Near-infrared fluorescent powder, preparation method thereof and near-infrared light source using same
CN104877684B (en) A kind of fluorine oxide fluorescent powder and preparation method thereof
CN107987833B (en) Nitride luminescent material and luminescent device comprising same
EP3795655A1 (en) Red and near-infrared light-emitting material and light-emitting device
CN116987504A (en) Luminescent material, preparation method thereof and luminescent device comprising luminescent material

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant