KR102377657B1 - Mullite-containing sintered body, method for manufacturing the same, and composite substrate - Google Patents

Mullite-containing sintered body, method for manufacturing the same, and composite substrate Download PDF

Info

Publication number
KR102377657B1
KR102377657B1 KR1020170035402A KR20170035402A KR102377657B1 KR 102377657 B1 KR102377657 B1 KR 102377657B1 KR 1020170035402 A KR1020170035402 A KR 1020170035402A KR 20170035402 A KR20170035402 A KR 20170035402A KR 102377657 B1 KR102377657 B1 KR 102377657B1
Authority
KR
South Korea
Prior art keywords
mullite
sintered body
containing sintered
less
substrate
Prior art date
Application number
KR1020170035402A
Other languages
Korean (ko)
Other versions
KR20170110526A (en
Inventor
요시노리 이소다
요시노 스즈키
가츠히로 이노우에
유지 가츠다
Original Assignee
엔지케이 인슐레이터 엘티디
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엔지케이 인슐레이터 엘티디 filed Critical 엔지케이 인슐레이터 엘티디
Publication of KR20170110526A publication Critical patent/KR20170110526A/en
Application granted granted Critical
Publication of KR102377657B1 publication Critical patent/KR102377657B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/18Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide
    • C04B35/185Mullite 3Al2O3-2SiO2
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/005Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising one layer of ceramic material, e.g. porcelain, ceramic tile
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/04Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62655Drying, e.g. freeze-drying, spray-drying, microwave or supercritical drying
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/001Joining burned ceramic articles with other burned ceramic articles or other articles by heating directly with other burned ceramic articles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/14Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/022 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/538Roughness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/546Flexural strength; Flexion stiffness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2429/00Carriers for sound or information
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • C04B2235/3463Alumino-silicates other than clay, e.g. mullite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3865Aluminium nitrides
    • C04B2235/3869Aluminium oxynitrides, e.g. AlON, sialon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3873Silicon nitrides, e.g. silicon carbonitride, silicon oxynitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/785Submicron sized grains, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/786Micrometer sized grains, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/963Surface properties, e.g. surface roughness
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • C04B2237/341Silica or silicates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/70Forming laminates or joined articles comprising layers of a specific, unusual thickness
    • C04B2237/704Forming laminates or joined articles comprising layers of a specific, unusual thickness of one or more of the ceramic layers or articles

Abstract

본 발명의 멀라이트 함유 소결체는, 멀라이트 이외에 질화규소, 산질화규소 및 사이알론으로 이루어진 군에서 선택된 적어도 1종을 함유한다. 이 멀라이트 함유 소결체는, 40℃∼400℃의 열팽창계수가 4.3 ppm/℃ 미만이고, 개기공률이 0.5% 이하이며, 평균 결정 입경이 1.5 ㎛ 이하인 것이 바람직하다.The mullite-containing sintered compact of the present invention contains at least one selected from the group consisting of silicon nitride, silicon oxynitride and sialon in addition to mullite. The mullite-containing sintered compact preferably has a thermal expansion coefficient of less than 4.3 ppm/°C at 40°C to 400°C, an open porosity of 0.5% or less, and an average grain size of 1.5 µm or less.

Description

멀라이트 함유 소결체, 그 제법 및 복합 기판{MULLITE-CONTAINING SINTERED BODY, METHOD FOR MANUFACTURING THE SAME, AND COMPOSITE SUBSTRATE}Mullite-containing sintered compact, manufacturing method thereof, and composite substrate

본 발명은, 멀라이트 함유 소결체, 그 제법 및 복합 기판에 관한 것이다.The present invention relates to a mullite-containing sintered body, a manufacturing method thereof, and a composite substrate.

멀라이트 소결체는, 일반적으로, 산화알루미늄(Al2O3)과 산화규소(SiO2)를 3:2의 비율로 소결한 내열충격성이 우수한 재료이며, 3Al2O3·2SiO2로 표시된다. 이러한 멀라이트 소결체로는, 예컨대 특허문헌 1에 개시되어 있는 바와 같이, 멀라이트 분말에 산화이트륨 안정화 지르코니아(YSZ) 분말을 30 질량% 혼합한 분말을 성형하고, 그 성형체를 소결시킨 것이 알려져 있다. 특허문헌 1에서는, 멀라이트 소결체로부터 멀라이트 기판을 잘라내고, 그 멀라이트 기판의 주표면을 연마함으로써, GaN 기판과 접합시키는 데 이용되는 하지 기판으로 하고 있다. GaN의 열팽창계수는 실온으로부터 1000℃의 범위에서 6.0 ppm/K로 되고, 멀라이트의 열팽창계수는 5.2 ppm/K로 되어 있다. 그 때문에, 양자를 접합시켜 사용하는 것을 고려하면, 멀라이트의 열팽창계수를 높여 GaN 기판의 열팽창계수에 가깝게 하는 것이 바람직하고, 그렇기 때문에 멀라이트 분말에 YSZ 분말을 혼합하여 소결시키고 있다.In general, the mullite sintered body is a material excellent in thermal shock resistance obtained by sintering aluminum oxide (Al 2 O 3 ) and silicon oxide (SiO 2 ) in a ratio of 3:2, and is represented by 3Al 2 O 3 ·2SiO 2 . As such a mullite sintered compact, as disclosed in Patent Document 1, for example, a powder obtained by mixing 30% by mass of yttrium oxide stabilized zirconia (YSZ) powder with mullite powder is molded and the compact is sintered. In Patent Document 1, a mullite substrate is cut out from a mullite sintered body and the main surface of the mullite substrate is polished to obtain a base substrate used for bonding to a GaN substrate. The coefficient of thermal expansion of GaN is 6.0 ppm/K in the range from room temperature to 1000°C, and the coefficient of thermal expansion of mullite is 5.2 ppm/K. Therefore, considering the bonding of both, it is desirable to increase the thermal expansion coefficient of mullite to approximate that of a GaN substrate.

한편, 특허문헌 2에는, 탄탈산리튬이나 니오븀산리튬 등으로 이루어진 기능성 기판과 멀라이트 소결체로 제조된 지지 기판이 직접 접합에 의해 접합된 복합 기판을, 탄성 표면파 소자 등의 탄성파 디바이스에 이용한 예가 기재되어 있다. 이러한 탄성파 디바이스에서는, 지지 기판인 멀라이트 기판의 열팽창계수가 4.4 ppm/℃(40∼400℃) 정도로 작고, 영률이 220 GPa 이상으로 크기 때문에, 탄성파 디바이스 자체의 온도 변화에 따른 팽창이나 수축을 작게 할 수 있고, 이것에 따라 주파수의 온도 의존성이 크게 개선된다. 기능성 기판과 지지 기판을 직접 접합하기 위해서는 각 접합면에서 높은 평탄성이 요구된다. 예컨대, 특허문헌 2에는 중심선 평균 거칠기 Ra가 3 ㎚ 이하인 것이 바람직하다고 기재되어 있다.On the other hand, Patent Document 2 describes an example in which a composite substrate in which a functional substrate made of lithium tantalate or lithium niobate and a support substrate made of a mullite sintered body are joined by direct bonding is used for a surface acoustic wave device such as a surface acoustic wave device. has been In such an elastic wave device, the thermal expansion coefficient of the mullite substrate, which is the supporting substrate, is as small as 4.4 ppm/°C (40 to 400°C) and the Young's modulus is as large as 220 GPa or more. and, accordingly, the temperature dependence of the frequency is greatly improved. In order to directly bond the functional substrate and the supporting substrate, high flatness is required at each bonding surface. For example, it is described in patent document 2 that it is preferable that center line average roughness Ra is 3 nm or less.

[특허문헌 1] 일본 특허 제5585570호 공보[Patent Document 1] Japanese Patent No. 5585570 [특허문헌 2] 일본 특허 제5861016호 공보[Patent Document 2] Japanese Patent No. 5861016

그러나, 멀라이트에 상당량의 다른 성분을 첨가하여 열팽창계수를 높인 멀라이트 소결체에 대해서는 특허문헌 1에 기재되고, 멀라이트의 순도가 높은 멀라이트 소결체에 대해서는 특허문헌 2에 기재되어 있지만, 열팽창계수를 저감한 멀라이트 소결체에 대해서는 언급되어 있지 않고, 더구나 이러한 저열팽창의 멀라이트 소결체로서 연마 마무리한 면의 표면 평탄성이 높은 것은 알려져 있지 않다. 또한, 저열팽창이어도 저강성의 멀라이트 소결체를 복합 기판의 지지 기판으로서 이용한 경우, 복합 기판이 근소한 온도차에 의해 휘어 버리는 경우가 있다.However, Patent Document 1 describes a mullite sintered compact with a high coefficient of thermal expansion by adding a significant amount of other components to mullite, and Patent Document 2 describes a mullite sintered compact with high mullite purity. There is no mention of a reduced mullite sintered compact, and furthermore, as such a low thermal expansion mullite sintered compact, it is not known that the polished surface has a high surface flatness. Further, even with low thermal expansion, when a mullite sintered body with low rigidity is used as a support substrate for a composite substrate, the composite substrate may warp due to a slight temperature difference.

본 발명은 이러한 과제를 해결하기 위해서 이루어진 것으로, 멀라이트를 함유하는 소결체에 있어서, 멀라이트 단독에 비해 열팽창계수를 낮게 강성을 높게 함과 더불어, 연마면의 평탄성을 높게 하는 것을 주목적으로 한다.The present invention has been made in order to solve these problems, and in a sintered body containing mullite, the main object is to have a low coefficient of thermal expansion and high rigidity as compared to mullite alone, and to increase the flatness of the polished surface.

본 발명의 멀라이트 함유 소결체는, 멀라이트 이외에 질화규소, 산질화규소 및 사이알론으로 이루어진 군에서 선택된 적어도 1종을 함유하는 멀라이트 함유 소결체로서, 40∼400℃의 열팽창계수가 4.3 ppm/℃ 미만이고, 개기공률이 0.5% 이하이며, 평균 결정 입경(소결 입자의 평균 입경)이 1.5 ㎛ 이하인 것이다. 이 멀라이트 함유 소결체는, 멀라이트 단독에 비해 열팽창계수가 낮고 강성이 높다. 또한, 연마면의 평탄성을 높게 할 수 있다.The mullite-containing sintered body of the present invention is a mullite-containing sintered body containing at least one selected from the group consisting of silicon nitride, silicon oxynitride, and sialon in addition to mullite, and has a thermal expansion coefficient of 40 to 400° C. of less than 4.3 ppm/° C. , the open porosity is 0.5% or less, and the average crystal grain size (average particle size of the sintered particles) is 1.5 µm or less. This mullite-containing sintered compact has a lower coefficient of thermal expansion and higher rigidity than mullite alone. Moreover, the flatness of a grinding|polishing surface can be made high.

본 발명의 멀라이트 함유 소결체의 제법은, (a) 평균 입경 1.5 ㎛ 이하의 멀라이트 분말 50∼90 체적%와 평균 입경 1 ㎛ 이하의 질화규소 분말 10∼50 체적%를 합계 100 체적%가 되도록 혼합하여 혼합 원료 분말을 얻는 공정과, (b) 상기 혼합 원료 분말을 미리 정해진 형상의 성형체로 성형하고, 상기 성형체를 프레스압 20∼300 kgf/㎠, 소성 온도 1525∼1700℃에서 핫프레스 소성을 행함으로써, 멀라이트 함유 소결체를 얻는 공정을 포함하는 것이다. 이 제법은, 전술한 본 발명의 멀라이트 함유 소결체를 제조하는 데 적합하다. 또한, 분말의 평균 입경은, 레이저 회절법에 의해 측정된 값이다(이하 동일함).In the manufacturing method of the mullite-containing sintered body of the present invention, (a) 50 to 90% by volume of mullite powder having an average particle diameter of 1.5 μm or less and 10 to 50% by volume of silicon nitride powder having an average particle diameter of 1 μm or less are mixed so that a total of 100% by volume to obtain a mixed raw material powder; (b) molding the mixed raw material powder into a molded body having a predetermined shape, and hot press firing the molded body at a press pressure of 20 to 300 kgf/cm 2 and a firing temperature of 1525 to 1700 ° C. By doing so, the process of obtaining a mullite containing sintered compact is included. This production method is suitable for producing the mullite-containing sintered body of the present invention described above. In addition, the average particle diameter of a powder is the value measured by the laser diffraction method (it is the same hereafter).

본 발명의 복합 기판은, 기능성 기판과 지지 기판이 접합된 복합 기판으로서, 상기 지지 기판은, 전술한 멀라이트 함유 소결체이다. 이 복합 기판은, 지지 기판인 멀라이트 함유 소결체의 연마면의 평탄성이 높기 때문에, 기능성 기판과 양호하게 접합된다. 또한, 이 복합 기판을 탄성 표면파 디바이스에 이용했을 경우, 주파수 온도 의존성이 크게 개선된다. 또한, 광 도파로 디바이스, LED 디바이스, 스위치 디바이스에 있어서도 지지 기판의 열팽창계수가 작음으로써 성능이 향상된다.The composite substrate of the present invention is a composite substrate in which a functional substrate and a supporting substrate are bonded, and the supporting substrate is the above-described mullite-containing sintered body. Since this composite substrate has a high flatness of the polished surface of the mullite-containing sintered body serving as the supporting substrate, it is well bonded to the functional substrate. In addition, when this composite substrate is used for a surface acoustic wave device, the frequency-temperature dependence is greatly improved. Moreover, also in an optical waveguide device, an LED device, and a switch device, the performance improves because the thermal expansion coefficient of a support substrate is small.

도 1은 멀라이트 함유 소결체의 제조 공정도.
도 2는 복합 기판(10)의 사시도.
도 3은 복합 기판(10)을 이용하여 제작한 전자 디바이스(30)의 사시도.
1 is a manufacturing process diagram of a mullite-containing sintered body.
2 is a perspective view of a composite substrate 10;
3 is a perspective view of an electronic device 30 manufactured using a composite substrate 10;

이하, 본 발명의 실시형태를 구체적으로 설명하였으나, 본 발명은 이하의 실시형태에 한정되지 않고, 본 발명의 취지를 일탈하지 않는 범위에서, 당업자의 통상의 지식에 기초하여, 적절하게 변경, 개량 등이 가해지는 것이 이해되어야 한다.Hereinafter, although embodiment of this invention was described concretely, this invention is not limited to the following embodiment, It is a range which does not deviate from the meaning of this invention, Based on common knowledge of those skilled in the art, appropriate change and improvement It should be understood that the back is applied.

본 실시형태의 멀라이트 함유 소결체는, 멀라이트 이외에 질화규소, 산질화규소 및 사이알론으로 이루어진 군에서 선택된 적어도 1종을 함유한다. 멀라이트는, 소결체 내에 가장 많이 포함되는 성분(주성분)인 것이 바람직하지만, 상기 군에서 선택된 성분이 주성분이어도 상관없다. 이 멀라이트 함유 소결체는, 40∼400℃의 열팽창계수가 4.3 ppm/℃ 미만이고, 개기공률이 0.5% 이하이며, 평균 결정 입경이 1.5 ㎛ 이하인 것이 바람직하다. 이 멀라이트 함유 소결체는, 멀라이트 단독헤 비해 열팽창계수가 낮고 영률(강성)이 높다. 또한, 이 멀라이트 함유 소결체는, 개기공률이 0.5% 이하이며 기공을 거의 갖지 않고, 평균 결정 입경이 1.5 ㎛ 이하로 작기 때문에, 연마 마무리면(연마면)의 평탄성이 높아진다.The mullite-containing sintered compact of this embodiment contains at least 1 sort(s) selected from the group which consists of silicon nitride, silicon oxynitride, and sialon other than mullite. It is preferable that the mullite is the component (main component) contained the most in the sintered body, but the component selected from the above group may be the main component. It is preferable that this mullite-containing sintered compact has a thermal expansion coefficient of less than 4.3 ppm/°C at 40 to 400°C, an open porosity of 0.5% or less, and an average grain size of 1.5 µm or less. This mullite-containing sintered compact has a lower coefficient of thermal expansion and a higher Young's modulus (rigidity) than mullite alone. In addition, since this mullite-containing sintered body has an open porosity of 0.5% or less, almost no pores, and a small average grain size of 1.5 µm or less, the flatness of the polished surface (polished surface) is improved.

본 실시형태의 멀라이트 함유 소결체는, 연마면 100 ㎛×100 ㎛의 면적에 대해 존재하는 최대 길이 1 ㎛ 이상의 기공의 수가 10개 이하인 것이 바람직하다. 기공의 수가 10개 이하이면, 연마 마무리면의 평탄성이 보다 높아진다. 이러한 기공의 수는, 3개 이하인 것이 보다 바람직하고, 제로인 것이 더욱 바람직하다.In the mullite-containing sintered body of the present embodiment, it is preferable that the number of pores having a maximum length of 1 µm or more with respect to an area of 100 µm×100 µm of the polished surface is 10 or less. When the number of pores is 10 or less, the flatness of the polished surface becomes higher. The number of such pores is more preferably three or less, and still more preferably zero.

본 실시형태의 멀라이트 함유 소결체는, 영률이 240 GPa 이상인 것이 바람직하고, 4점 굽힘 강도가 300 MPa 이상인 것이 바람직하다. 질화규소나 그것에서 유래되는 성분은 멀라이트보다 영률이나 강도가 높기 때문에, 멀라이트에 대한 질화규소의 첨가 비율을 조절함으로써 멀라이트 함유 소결체의 영률을 240 GPa 이상으로 하거나 4점 굽힘 강도를 300 MPa 이상으로 하거나 할 수 있다. 또한, 4점 굽힘 강도는 320 MPa 이상인 것이 보다 바람직하다.It is preferable that the Young's modulus of the mullite-containing sintered compact of this embodiment is 240 GPa or more, and it is preferable that four-point bending strength is 300 MPa or more. Since silicon nitride or components derived therefrom have higher Young's modulus and strength than mullite, by adjusting the addition ratio of silicon nitride to mullite, the Young's modulus of the mullite-containing sintered body is set to 240 GPa or higher, or the four-point bending strength is set to 300 MPa or higher. or you can Moreover, as for 4-point bending strength, it is more preferable that it is 320 MPa or more.

본 실시형태의 멀라이트 함유 소결체는, 연마면의 중심선 평균 거칠기 Ra가 1.5 ㎚ 이하인 것이 바람직하다. 탄성파 디바이스 등에 이용되는 복합 기판으로서, 기능성 기판과 지지 기판을 접합한 것이 알려져 있지만, 이와 같이 연마면의 Ra가 1.5 ㎚ 이하인 멀라이트 함유 소결체를 지지 기판으로서 이용함으로써, 지지 기판과 기능성 기판의 접합성이 양호해진다. 예컨대, 접합 계면 중 실제로 접합하고 있는 면적의 비율(접합 면적 비율)이 80% 이상(바람직하게는 90% 이상)이 된다. 연마면의 중심선 평균 거칠기 Ra는 1.1 ㎚ 이하인 것이 보다 바람직하고, 1.0 ㎚ 이하인 것이 더욱 바람직하다.In the mullite-containing sintered body of the present embodiment, it is preferable that the center line average roughness Ra of the polished surface is 1.5 nm or less. It is known that a functional substrate and a supporting substrate are bonded as a composite substrate for use in acoustic wave devices. However, by using a mullite-containing sintered body having a polished surface Ra of 1.5 nm or less as a supporting substrate as described above, bonding between the supporting substrate and the functional substrate is improved. get better For example, the ratio (junction area ratio) of the area actually joined among the bonding interfaces is 80% or more (preferably 90% or more). The center line average roughness Ra of the polished surface is more preferably 1.1 nm or less, and still more preferably 1.0 nm or less.

본 실시형태의 멀라이트 함유 소결체는, 40∼400℃의 열팽창계수가 3.8 ppm/℃ 이하인 것이 보다 바람직하다. 이러한 멀라이트 함유 소결체를 지지 기판으로 하는 복합 기판을 탄성파 디바이스에 이용함으로써, 탄성 디바이스의 온도가 상승한 경우에 기능성 기판은 원래의 열팽창보다 작은 열팽창이 되기 때문에, 탄성 디바이스의 주파수 온도 의존성이 개선된다. 40∼400℃의 열팽창계수는 3.5 ppm/℃ 이하인 것이 더욱 바람직하다.As for the mullite containing sintered compact of this embodiment, it is more preferable that the thermal expansion coefficient of 40-400 degreeC is 3.8 ppm/degreeC or less. By using a composite substrate having such a mullite-containing sintered body as a support substrate for an elastic wave device, the functional substrate undergoes a smaller thermal expansion than the original thermal expansion when the temperature of the elastic device rises, so that the frequency-temperature dependence of the elastic device is improved. It is more preferable that the thermal expansion coefficient of 40-400 degreeC is 3.5 ppm/degreeC or less.

다음에, 본 발명의 멀라이트 함유 소결체의 제조 방법의 일 실시형태에 대해서 설명한다. 멀라이트 함유 소결체의 제조 플로우는, 도 1에 도시된 바와 같이, (a) 혼합 원료 분말을 조제하는 공정과, (b) 멀라이트 함유 소결체를 제작하는 공정을 포함한다.Next, one Embodiment of the manufacturing method of the mullite containing sintered compact of this invention is demonstrated. The production flow of the mullite-containing sintered body includes (a) a step of preparing the mixed raw material powder and (b) a step of producing the mullite-containing sintered body, as shown in FIG. 1 .

·공정 (a): 혼합 원료 분말의 조제·Step (a): Preparation of mixed raw material powder

혼합 원료 분말은, 멀라이트 분말과 질화규소 분말을 혼합함으로써 조제한다. 멀라이트 원료로는, 순도가 높고, 평균 입경이 작은 분말을 사용하는 것이 바람직하다. 순도는 99.0% 이상이 바람직하고, 99.5% 이상이 보다 바람직하며, 99.8% 이상이 더욱 바람직하다. 순도의 단위는 질량%이다. 또한, 평균 입경(D50)은 1.5 ㎛ 이하가 바람직하고, 0.1∼1.5 ㎛가 보다 바람직하다. 멀라이트 원료는, 시판품을 이용하여도 좋고, 고순도의 알루미나나 실리카 분말을 이용하여 제작한 것을 이용하여도 좋다. 멀라이트 원료를 제작하는 방법으로는, 예컨대 특허문헌 2에 기재된 방법을 들 수 있다. 질화규소 원료로는, 평균 입경이 작은 분말을 사용하는 것이 바람직하다. 평균 입경은 1 ㎛ 이하가 바람직하고, 0.1∼1 ㎛가 보다 바람직하다. 멀라이트 원료와 질화규소 원료의 혼합 비율은, 예컨대, 멀라이트 원료 50∼90 체적%(바람직하게는 70∼90 체적%)와 질화규소 원료 10∼50 체적%(바람직하게는 10∼30 체적%)를 합계 100 체적%가 되도록 칭량하고, 포트 밀(pot mill) 등의 혼합기로 혼합하며, 필요에 따라 스프레이 드라이어로 건조시켜 혼합 원료 분말을 얻도록 하여도 좋다.The mixed raw material powder is prepared by mixing mullite powder and silicon nitride powder. As the mullite raw material, it is preferable to use a powder having high purity and a small average particle size. The purity is preferably 99.0% or more, more preferably 99.5% or more, and still more preferably 99.8% or more. The unit of purity is mass %. Moreover, 1.5 micrometers or less are preferable and, as for the average particle diameter (D50), 0.1-1.5 micrometers is more preferable. As a mullite raw material, a commercially available item may be used and what was produced using high-purity alumina or silica powder may be used for it. As a method of producing a mullite raw material, the method described in patent document 2 is mentioned, for example. As the silicon nitride raw material, it is preferable to use a powder having a small average particle size. 1 micrometer or less is preferable and, as for an average particle diameter, 0.1-1 micrometer is more preferable. The mixing ratio of the mullite raw material and the silicon nitride raw material is, for example, 50 to 90 vol% (preferably 70 to 90 vol%) of the mullite raw material and 10 to 50 vol% (preferably 10 to 30 vol%) of the silicon nitride raw material. It may be weighed so as to be 100% by volume in total, mixed with a mixer such as a pot mill, and, if necessary, dried with a spray dryer to obtain a mixed raw material powder.

·공정(b): 멀라이트 함유 소결체의 제작·Step (b): Preparation of mullite-containing sintered body

공정 (a)에서 얻어진 혼합 원료 분말을 미리 정해진 형상의 성형체로 성형한다. 성형 방법에 특별히 제한은 없고, 일반적인 성형법을 이용할 수 있다. 예컨대, 혼합 원료 분말을 그대로 금형에 의해 프레스 성형하여도 좋다. 프레스 성형의 경우는, 혼합 원료 분말을 스프레이 드라이에 의해 과립형으로 해 두면, 성형성이 양호해진다. 그 외에, 유기 바인더를 첨가하여 배토를 제작하여 압출 성형하거나, 슬러리를 제작하여 시트 성형할 수 있다. 이들 프로세스에서는 소성 공정 전 혹은 소성 공정 중에 유기 바인더 성분을 제거하는 것이 필요하게 된다. 또한, CIP(냉간 정수압 프레스)로써 고압 성형하여도 좋다.The mixed raw material powder obtained in step (a) is molded into a molded body having a predetermined shape. There is no restriction|limiting in particular in the shaping|molding method, A general shaping|molding method can be used. For example, the mixed raw material powder may be press-molded with a mold as it is. In the case of press molding, when the mixed raw material powder is made into granular form by spray drying, the moldability is improved. In addition, an organic binder may be added to prepare a clay to be extruded, or a slurry may be prepared to form a sheet. In these processes, it becomes necessary to remove the organic binder component before or during the firing process. In addition, high pressure molding may be performed by CIP (Cold Hydrostatic Press).

다음에, 얻어진 성형체를 소성하여 멀라이트 함유 소결체를 제작한다. 이 때, 소결 입자를 미세하게 유지하고, 소결 중에 기체를 배출하는 것이 멀라이트 함유 소결체의 표면 평탄성을 높이는 데에 있어서 바람직하다. 그 수법으로서, 핫 프레스법이 매우 유효하다. 이 핫 프레스법을 이용함으로써 상압 소결에 비해 저온에서 미세 입자의 상태로 치밀화가 진행되고, 상압 소결에서 자주 볼 수 있는 조대한 기공의 잔류를 억제할 수 있다. 이 핫 프레스시의 소성 온도(최고 온도)는 1525∼1700℃가 바람직하다. 또한, 핫 프레스시의 프레스 압력은 20∼300 kgf/㎠로 하는 것이 바람직하다. 특히 낮은 프레스 압력에서는, 핫 프레스 지그의 소형화나 장수명화가 가능하기 때문에 바람직하다. 소성 온도에서의 유지 시간은, 성형체의 형상이나 크기, 가열로의 특성 등을 고려하여, 적절하게, 적당한 시간을 선택할 수 있다. 구체적인 바람직한 유지 시간은, 예컨대 1∼12시간, 더욱 바람직하게는 2∼8시간이다. 소성 분위기에도 특별히 제한은 없고, 핫 프레스시의 분위기는 질소, 아르곤 등의 불활성 분위기가 일반적이다. 승온 속도나 강온 속도는, 성형체의 형상이나 크기, 가열로의 특성 등을 고려하여, 적절하게, 설정하면 되고, 예컨대 50∼300℃/hr의 범위로 설정하면 된다.Next, the obtained molded body is fired to produce a mullite-containing sintered body. At this time, it is preferable in order to improve the surface flatness of the mullite-containing sintered body to keep the sintered particles fine and to discharge gas during sintering. As the method, the hot press method is very effective. By using this hot press method, densification proceeds in the state of fine particles at a low temperature compared to normal pressure sintering, and it is possible to suppress the residual coarse pores frequently seen in atmospheric sintering. As for the firing temperature (maximum temperature) at the time of this hot press, 1525-1700 degreeC is preferable. In addition, it is preferable that the press pressure at the time of hot press shall be 20-300 kgf/cm<2>. In particular, at a low press pressure, since miniaturization and long life of a hot press jig|tool are possible, it is preferable. The holding time at the firing temperature can be appropriately selected in consideration of the shape and size of the molded article, the characteristics of the heating furnace, and the like. A specific preferable holding time is, for example, 1 to 12 hours, more preferably 2 to 8 hours. The firing atmosphere is not particularly limited, and an inert atmosphere such as nitrogen or argon is generally used as the atmosphere at the time of hot pressing. The temperature increase rate and temperature decrease rate may be appropriately set in consideration of the shape and size of the molded article, the characteristics of the heating furnace, and the like, and may be set, for example, in the range of 50 to 300°C/hr.

다음에, 본 발명의 복합 기판의 일 실시형태에 대헤서 설명한다. 본 실시형태의 복합 기판은, 기능성 기판과, 전술한 멀라이트 함유 소결체 제조의 지지 기판이 접합된 것이다. 이 복합 기판은, 양 기판의 접합 면적 비율이 커지고, 양호한 접합성을 나타낸다. 기능성 기판으로는, 특별히 한정되지 않지만, 예컨대 탄탈산리튬, 니오븀산리튬, 질화갈륨, 실리콘 등을 들 수 있다. 접합 방법은, 직접 접합이 바람직하다. 직접 접합의 경우에는, 기능성 기판과 지지 기판의 각각의 접합면을 연마한 후 활성화하고, 양 접합면을 마주보게 한 상태에서 양 기판을 누른다. 접합면의 활성화는, 예컨대, 접합면으로의 불활성 가스(아르곤 등)의 이온빔의 조사 외에, 플라즈마나 중성 원자빔의 조사 등으로 행한다. 기능성 기판과 지지 기판의 두께의 비(기능성 기판의 두께/지지 기판의 두께)는 0.1 이하인 것이 바람직하다. 도 2에 복합 기판의 일례를 도시한다. 복합 기판(10)은, 기능성 기판인 압전 기판(12)과 지지 기판(14)이 직접 접합에 의해 접합된 것이다.Next, an embodiment of the composite substrate of the present invention will be described. In the composite substrate of the present embodiment, the functional substrate and the support substrate for manufacturing the mullite-containing sintered body described above are bonded together. This composite substrate has a large bonding area ratio between the two substrates, and exhibits good bonding properties. Although it does not specifically limit as a functional board|substrate, For example, lithium tantalate, lithium niobate, gallium nitride, silicon, etc. are mentioned. As for the bonding method, direct bonding is preferable. In the case of direct bonding, the respective bonding surfaces of the functional substrate and the supporting substrate are polished and then activated, and both substrates are pressed while the bonding surfaces are facing each other. Activation of the bonding surface is performed, for example, by irradiation with an ion beam of an inert gas (argon or the like) to the bonding surface, but also by irradiation with plasma or a neutral atom beam. It is preferable that the ratio (thickness of a functional substrate/thickness of a support substrate) of the thickness of a functional substrate and a support substrate is 0.1 or less. Fig. 2 shows an example of a composite substrate. The composite substrate 10 is one in which a piezoelectric substrate 12 as a functional substrate and a support substrate 14 are directly bonded by bonding.

본 실시형태의 복합 기판은, 전자 디바이스 등에 이용 가능하다. 이러한 전자 디바이스로서는, 탄성파 디바이스(탄성 표면파 디바이스나 램파 소자, 박막 공진자(FBAR) 등) 외에, LED 디바이스, 광 도파로 디바이스, 스위치 디바이스 등을 들 수 있다. 탄성파 디바이스에 전술한 복합 기판을 이용하는 경우에는, 지지 기판인 멀라이트 함유 소결체의 열팽창계수가 4.3 ppm/K(40∼400℃) 미만으로 작기 때문에, 주파수 온도 의존성이 크게 개선된다. 도 3에 복합 기판(10)을 이용하여 제작한 전자 디바이스(30)의 일례를 나타낸다. 전자 디바이스(30)는, 1 포트 SAW 공진자 즉 탄성 표면파 디바이스이다. 우선, 복합 기판(10)의 압전 기판(12)에 일반적인 포토리소그래피 기술을 이용하여 다수의 전자 디바이스(30)의 패턴을 형성하고, 그 후, 다이싱에 의해 하나하나의 전자 디바이스(30)로 잘라낸다. 전자 디바이스(30)는, 포토리소그래피 기술에 의해, 압전 기판(12)의 표면에 IDT(Interdigital Transducer) 전극(32, 34)과 반사 전극(36)이 형성된 것이다.The composite substrate of the present embodiment can be used for electronic devices and the like. Examples of such electronic devices include LED devices, optical waveguide devices, and switch devices in addition to acoustic wave devices (such as surface acoustic wave devices, Ram wave elements, and thin film resonators (FBARs)). When the above-described composite substrate is used for the acoustic wave device, the coefficient of thermal expansion of the mullite-containing sintered body as the supporting substrate is as small as 4.3 ppm/K (40 to 400° C.), so that the frequency-temperature dependence is greatly improved. An example of the electronic device 30 manufactured using the composite board|substrate 10 in FIG. 3 is shown. The electronic device 30 is a one-port SAW resonator, that is, a surface acoustic wave device. First, patterns of a plurality of electronic devices 30 are formed on a piezoelectric substrate 12 of a composite substrate 10 using a general photolithography technique, and then, each electronic device 30 is formed by dicing. Cut out. The electronic device 30 has IDT (Interdigital Transducer) electrodes 32 and 34 and a reflective electrode 36 formed on the surface of the piezoelectric substrate 12 by photolithography.

또한, 본 발명은 전술한 실시형태에 전혀 한정되지 않고, 본 발명의 기술적 범위에 속하는 한 여러 가지의 양태로 실시할 수 있는 것은 물론이다.In addition, this invention is not limited at all to the above-mentioned embodiment, It goes without saying that it can be implemented in various aspects as long as it falls within the technical scope of this invention.

실시예Example

1. 혼합 원료 분말의 제작1. Preparation of mixed raw material powder

멀라이트 원료로서, 시판되고 있는 순도 99.9% 이상, 평균 입경 1.5 ㎛의 멀라이트 분말을, 질화규소 원료로서 시판되고 있는 순도 97% 이상, 평균 입경 0.8 ㎛의 질화규소 분말을 이용하였다. 멀라이트 원료와 질화규소 원료를 표 1의 실험예 1∼3에 나타내는 비율로 칭량하고, φ5 ㎜의 알루미나 알돌을 이용하여 포트 밀 혼합하고, 스프레이 드라이에 의해 혼합 원료 분말을 제작하였다.As the mullite raw material, commercially available mullite powder having a purity of 99.9% or more and an average particle diameter of 1.5 µm was used, and a commercially available silicon nitride powder having a purity of 97% or more and an average particle diameter of 0.8 µm was used as a silicon nitride raw material. The mullite raw material and the silicon nitride raw material were weighed in the proportions shown in Experimental Examples 1 to 3 in Table 1, and pot mill-mixed using alumina aldol having a diameter of 5 mm, and spray-drying to prepare a mixed raw material powder.

Figure 112017027969027-pat00001
Figure 112017027969027-pat00001

*1: XRD 프로파일의 멀라이트 (210)면(2θ=26.2°)의 피크 면적을 1로 하여, 그것에 대한 각 결정상의 피크 면적을 결정상 비율로 함*1: The peak area of the mullite (210) plane (2θ = 26.2°) of the XRD profile is set to 1, and the peak area of each crystal phase to it is taken as the crystal phase ratio

*2: IR 투과상으로부터 접합 면적 비율이 90% 이상인 것을 「가장 양호」, 80% 이상 90% 미만인 것을 「양호」로 함*2: From the IR transmission image, a junction area ratio of 90% or more is considered "best", and a junction area ratio of 80% or more and less than 90% is considered "good".

2. 멀라이트 함유 소결체의 제작2. Fabrication of mullite-containing sintered compact

실험예 1∼3의 혼합 원료 분말을, 직경 약 125 ㎜의 금형에 넣어, 두께 10∼15 ㎜ 정도의 원반 형상으로 200 kgf/㎠의 압력으로 성형하고, 멀라이트 함유 성형체를 얻었다. 계속해서, 내경 약 125 ㎜의 핫 프레스용의 흑연 몰드에 멀라이트 함유 성형체를 수납하고, 핫 프레스로 직경 약 125 ㎜이고 두께 5∼8 ㎜ 정도의 멀라이트 함유 소결체를 제작하였다. 또한, 소성시의 최고 온도(소성 온도)를 1650℃, 소성 온도에서의 유지 시간을 5 hr로 하고, 승온 속도, 강온 온도 모두 100℃/hr로 하였다. 프레스 하중은 승온 중의 900℃ 이상에서 200 kgf/㎠로 하고, 로내 분위기는 900℃까지는 진공으로 하며, 900℃ 도달 후에 N2를 도입하여 N2 하에서 소결을 진행시켰다. 소성 온도에서 미리 정해진 시간 유지한 후에는 1200℃까지 강온하고, 프레스 하중과 로내 분위기의 제어를 멈추어 실온까지 자연 냉각시켰다. 또한, 실험예 4에서는, 멀라이트 분말만으로 동일하게 하여 성형체, 소결체를 제작하였다.The mixed raw material powders of Experimental Examples 1 to 3 were put into a mold with a diameter of about 125 mm, and molded into a disk shape with a thickness of about 10 to 15 mm at a pressure of 200 kgf/cm 2 to obtain a mullite-containing molded body. Then, the mullite-containing molded body was placed in a graphite mold for hot pressing with an inner diameter of about 125 mm, and a mullite-containing sintered body having a diameter of about 125 mm and a thickness of about 5 to 8 mm was produced by hot pressing. In addition, the maximum temperature (calcination temperature) at the time of baking was 1650 degreeC, the holding time at the calcination temperature was 5 hr, and both the temperature increase rate and temperature fall temperature were 100 degreeC/hr. The press load was set to 200 kgf/cm 2 at 900° C. or higher during temperature rise, and the furnace atmosphere was vacuumed up to 900° C. After reaching 900° C., N 2 was introduced to proceed with sintering under N 2 . After holding the calcination temperature for a predetermined time, the temperature was lowered to 1200°C, the press load and control of the furnace atmosphere were stopped, and the temperature was naturally cooled to room temperature. In addition, in Experimental Example 4, a molded body and a sintered body were produced in the same manner only with the mullite powder.

3. 특성 평가3. Characteristic evaluation

실험예 1∼4의 소결체로부터, 시험편(4×3×40 ㎜ 사이즈의 항절봉 등)을 잘라내고, 각종 특성을 평가하였다. 또한, 소결체의 연마면은, 4×3×10 ㎜ 정도의 시험편의 일면을 연마에 의해 경면형으로 마무리한 것으로 하였다. 연마는 3 ㎛의 다이아몬드 지립, 0.5 ㎛의 다이아몬드 지립의 순서로 진행되고, 최종 마무리에는 0.1 ㎛ 이하의 다이아몬드 지립을 이용한 랩 연마를 행하였다. 평가한 특성은 이하와 같다.From the sintered body of Experimental Examples 1 to 4, a test piece (such as a 4×3×40 mm size anti-cutting rod) was cut out, and various characteristics were evaluated. In addition, the polished surface of the sintered compact was made to be mirror-finished by grinding|polishing one surface of the test piece of about 4x3x10 mm. Polishing was performed in the order of diamond abrasive grains of 3 µm and diamond abrasive grains of 0.5 µm, and lab polishing was performed using diamond abrasive grains of 0.1 µm or less for final finishing. The evaluated characteristics are as follows.

(1) 결정상(1) crystalline phase

소결체를 분쇄하고, X선 회절 장치에 의해, 결정상의 동정을 행하였다. 측정 조건은 CuKα, 50 kV, 300 mA, 2θ=5-70°로 하고, 회전 대음극형 X선 회절 장치(이학전기 제조 RINT)를 이용하였다.The sintered compact was pulverized, and the crystal phase was identified by an X-ray diffraction apparatus. Measurement conditions were CuKα, 50 kV, 300 mA, 2θ = 5-70°, and a rotating counter-cathode type X-ray diffractometer (RINT, manufactured by Rhythmic Electric Co., Ltd.) was used.

(2) 결정상 비율(2) crystalline phase ratio

상기 (1)의 X선 회절 프로파일로부터, 각 결정상의 피크 면적 비율을 산출하였다. 멀라이트 (210)면(2θ=26.2°)의 피크 면적을 1로 하고, 그것에 대한 각 결정상의 피크 면적을 결정상 비율로 하였다. 여기서 각 결정상의 대표 피크로서, 질화규소는 (101)면(2θ=20.6°), 사이알론은 Si2Al3O7N의 (3-20)면(2θ=24.6°) 및 Si5AlON7의 (200)면(2θ=26.9°)을 이용하였다.From the X-ray diffraction profile of (1) above, the peak area ratio of each crystal phase was calculated. The peak area of the mullite (210) plane (2θ = 26.2°) was set to 1, and the peak area of each crystal phase to it was defined as the crystal phase ratio. Here, as a representative peak of each crystal phase, silicon nitride has a (101) plane (2θ = 20.6°), sialon is a (3-20) plane of Si 2 Al 3 O 7 N (2θ = 24.6°) and Si 5 AlON 7 A (200) plane (2θ = 26.9°) was used.

(3) 부피 밀도, 개기공률(3) bulk density, open porosity

항절봉을 이용하고, 순수를 이용한 아르키메데스법에 의해, 부피 밀도, 개기공률을 측정하였다.Bulk density and open porosity were measured by Archimedes' method using pure water using a cleavage rod.

(4) 영률(4) Young's modulus

JIS R 1602에 준한 정적 휨법으로 측정하였다. 시험편 형상은 3 ㎜×4 ㎜×40 ㎜ 항절봉으로 하였다.It measured by the static bending method according to JIS R 1602. The shape of the test piece was made into a 3 mm x 4 mm x 40 mm cross-section bar.

(5) 굽힘 강도(5) bending strength

JIS R1601에 준하여, 4점 굽힘 강도를 측정하였다. 시험편 형상은 3 ㎜×4 ㎜×40 ㎜ 항절봉 혹은 그 하프 사이즈로 하였다.According to JIS R1601, the four-point bending strength was measured. The shape of the test piece was made into a 3 mm x 4 mm x 40 mm cross-section bar or its half size.

(6) 열팽창계수(40∼400℃)(6) Coefficient of thermal expansion (40~400℃)

JIS R1618에 준하여, 압봉 시차식으로 측정하였다. 시험편 형상은 3 ㎜×4 ㎜×20 ㎜로 하였다.According to JIS R1618, it was measured by the pressure rod differential method. The test piece shape was 3 mm x 4 mm x 20 mm.

(7) 기공의 수(7) Number of pores

상기한 바와 같이 마무리한 소결체의 연마면을 SEM 관찰하고, 100 ㎛×100 ㎛에 대해 존재하는 최대 길이가 1 ㎛ 이상인 기공의 수를 계측하였다.The polished surface of the sintered body finished as described above was observed by SEM, and the number of pores having a maximum length of 1 μm or more per 100 μm×100 μm was counted.

(8) 표면 평탄성(Ra)(8) Surface flatness (Ra)

상기한 바와 같이 마무리한 소결체의 연마면에 대하여, AFM을 이용하여 중심선 평균 거칠기 Ra를 측정하였다. 측정 범위는 10 ㎛×10 ㎛로 하였다.With respect to the polished surface of the sintered body finished as described above, the center line average roughness Ra was measured using AFM. The measurement range was 10 µm×10 µm.

(9) 소결 입자의 평균 입경(9) Average particle size of sintered particles

상기한 바와 같이 마무리한 소결체의 연마면을 인산으로써 케미컬 에칭하고, SEM으로 소결 입자의 크기를 200개 이상 측정하고, 선분법을 이용하여 평균 입경을 산출하였다. 선분법의 계수는 1.5로 하고, SEM으로 실측된 길이에 1.5를 곱한 값을 평균 입경으로 하였다.The polished surface of the sintered body finished as described above was chemically etched with phosphoric acid, the size of 200 or more sintered particles was measured by SEM, and the average particle diameter was calculated using a line segmentation method. The coefficient of the line segmentation method was set to 1.5, and the value obtained by multiplying the length measured by SEM by 1.5 was used as the average particle diameter.

(10) 접합성(10) Adhesion

실험예 1∼4의 소결체로부터 직경 100 ㎜, 두께 600 ㎛ 정도의 원판을 잘라내었다. 이 원판을 상기와 같이 연마 마무리한 후에, 세정하여 표면의 파티클이나 오염물질 등을 제거하였다. 다음에, 이 원판을 지지 기판으로 하고, 지지 기판과 기능성 기판과의 직접 접합을 실시하여 복합 기판을 얻었다. 즉, 우선 지지 기판과 기능성 기판의 각각의 접합면을 아르곤의 이온빔에 의해 활성화하고, 그 후에 양 접합면을 마주보게 하여 10 tonf로 누르고, 접합하여 복합 기판을 얻었다. 기능성 기판으로는, 니오븀산리튬(LN) 기판을 이용하였다. 접합성의 평가는, IR 투과상으로부터 접합 면적 비율이 90% 이상인 것을 「가장 양호」, 80% 이상 90% 미만인 것을 「양호」, 80% 미만인 것을 「불량」이라고 하였다.A disk having a diameter of 100 mm and a thickness of about 600 µm was cut out from the sintered bodies of Experimental Examples 1 to 4. After the original plate was polished as described above, it was washed to remove particles and contaminants from the surface. Next, using this original plate as a support substrate, direct bonding between the support substrate and the functional substrate was performed to obtain a composite substrate. That is, first, each bonding surface of the support substrate and the functional substrate was activated by an ion beam of argon, and then both bonding surfaces were faced to each other and pressed with 10 tonf, followed by bonding to obtain a composite substrate. As the functional substrate, a lithium niobate (LN) substrate was used. In the evaluation of bonding properties, from the IR transmission image, those having a bonding area ratio of 90% or more were “best”, those of 80% or more and less than 90% were “good”, and those of less than 80% were “poor”.

4. 평가 결과4. Evaluation Results

실험예 1∼3의 멀라이트 함유 소결체는, 멀라이트 원료와 질화규소 원료를 혼합한 혼합 원료 분말을 소성한 것이지만, 질화규소의 일부가 소성에 의해 사이알론으로 변화되었다. 실험예 1∼3의 멀라이트 함유 소결체는, 질화규소 등을 포함하고 있기 때문에, 실험예 4의 멀라이트 단독의 소결체에 비해 영률 및 4점 굽힘 강도가 향상되었다. 즉 영률은 240 GPa 이상, 4점 굽힘 강도가 320 MPa 이상으로 향상되었다. 또한, 실험예 1∼3의 멀라이트 함유 소결체는, 40∼400℃의 열팽창계수가 4.3 ppm/℃ 미만(3.5∼4.1 ppm/℃)으로서, 실험예 4의 멀라이트 단독의 소결체보다 낮은 값이 되었다. 또한, 실험예 1∼3의 멀라이트 함유 소결체나 실험예 4의 멀라이트 단독의 소결체는, 개기공률이 0.5% 이하(0.1% 미만), 평균 결정 입경이 1.5 ㎛ 이하(1.0∼1.2 ㎛)이기 때문에, 연마면의 중심 평균 거칠기 Ra는 1.1 ㎚ 이하(0.9∼1.1 ㎚)로 작아졌다. 그 때문에, 실험예 2∼4의 소결체로부터 잘라낸 원판을 기능성 기판과 직접 접합했을 때의 접합성은, 모두 접합 면적 비율이 90% 이상인 「가장 양호」이며, 실험예 1의 소결체로부터 잘라낸 원판을 기능성 기판과 직접 접합했을 때의 접합성은, 접합 면적 비율이 80% 이상 90% 미만인 「양호」였다. 또한, 연마면의 중심 평균 거칠기 Ra가 이와 같이 작은 값이 된 것은 기공의 수가 3개 이하(제로)인 것도 기여하고 있다.In the mullite-containing sintered compacts of Experimental Examples 1 to 3, a mixed raw material powder obtained by mixing a mullite raw material and a silicon nitride raw material was calcined, but a part of silicon nitride was changed to sialon by calcination. Since the mullite-containing sintered compacts of Experimental Examples 1 to 3 contained silicon nitride and the like, the Young's modulus and 4-point bending strength were improved compared to the mullite-only sintered compact of Experimental Example 4 . That is, the Young's modulus was improved to 240 GPa or more, and the four-point bending strength was improved to 320 MPa or more. In addition, the mullite-containing sintered body of Experimental Examples 1 to 3 had a coefficient of thermal expansion of 40 to 400°C of less than 4.3 ppm/°C (3.5-4.1 ppm/°C), which was lower than that of the mullite-only sintered body of Experimental Example 4 became In addition, the mullite-containing sintered body of Experimental Examples 1 to 3 or the mullite alone sintered body of Experimental Example 4 had an open porosity of 0.5% or less (less than 0.1%) and an average grain size of 1.5 μm or less (1.0-1.2 μm). Therefore, the center average roughness Ra of the polished surface was reduced to 1.1 nm or less (0.9 to 1.1 nm). Therefore, the bondability when the original plate cut out from the sintered body of Experimental Examples 2 to 4 is directly bonded to the functional substrate is "best" in all of the bonding area ratios of 90% or more, and the original plate cut out from the sintered body of Experimental Example 1 is used as a functional substrate. The bondability when directly joined to the joint was "good" with a joint area ratio of 80% or more and less than 90%. In addition, the fact that the number of pores is three or less (zero) also contributes to such a small value of the central average roughness Ra of the polished surface.

또한, 실험예 1∼3이 본 발명의 실시예에 상당하고, 실험예 4가 비교예에 상당한다. 이들 실험예는 본 발명을 전혀 한정하지 않는다.Further, Experimental Examples 1 to 3 correspond to Examples of the present invention, and Experimental Example 4 corresponds to Comparative Examples. These experimental examples do not limit the present invention at all.

본 출원은, 2016년 3월 23일에 출원된 일본국 특허출원 제2016-058970호를 우선권 주장의 기초로 하고 있고, 인용에 의해 그 내용의 전부가 본 명세서에 포함된다.This application is based on the priority claim of Japanese Patent Application No. 2016-058970 for which it applied on March 23, 2016, The whole content is incorporated in this specification by reference.

10 : 복합 기판 12 : 압전 기판
14 : 지지 기판 30 : 전자 디바이스
32, 34 : IDT 전극 36 : 반사 전극
10: composite substrate 12: piezoelectric substrate
14: support substrate 30: electronic device
32, 34: IDT electrode 36: reflective electrode

Claims (10)

멀라이트 이외에 질화규소, 산질화규소 및 사이알론으로 이루어진 군에서 선택된 적어도 1종을 함유하는 멀라이트 함유 소결체에 있어서,
40℃∼400℃의 열팽창계수가 4.1 ppm/℃ 이하이고,
개기공률이 0.5% 이하이며,
평균 결정 입경이 1.5 ㎛ 이하이고,
연마면의 중심선 평균 거칠기 Ra가 1.5 ㎚ 이하인 것인, 멀라이트 함유 소결체.
In the mullite-containing sintered body containing at least one selected from the group consisting of silicon nitride, silicon oxynitride and sialon in addition to mullite,
The coefficient of thermal expansion at 40°C to 400°C is 4.1 ppm/°C or less,
The open porosity is 0.5% or less,
an average grain size of 1.5 μm or less,
A mullite-containing sintered body, wherein the average roughness Ra of the center line of the polished surface is 1.5 nm or less.
제1항에 있어서, 연마면 100 ㎛×100 ㎛의 면적에 대해 존재하는 최대 길이 1 ㎛ 이상의 기공의 수가 10개 이하인 것인, 멀라이트 함유 소결체.The mullite-containing sintered body according to claim 1, wherein the number of pores having a maximum length of 1 μm or more existing for an area of 100 μm×100 μm of the polished surface is 10 or less. 제1항 또는 제2항에 있어서, 영률이 240 GPa 이상인 것인, 멀라이트 함유 소결체.The mullite-containing sintered body according to claim 1 or 2, wherein the Young's modulus is 240 GPa or more. 제1항 또는 제2항에 있어서, 4점 굽힘 강도가 320 MPa 이상인 것인, 멀라이트 함유 소결체.The mullite-containing sintered body according to claim 1 or 2, wherein the four-point bending strength is 320 MPa or more. 삭제delete 삭제delete 제1항 또는 제2항에 있어서, 4점 굽힘 강도가 350 MPa 이하인 것인, 멀라이트 함유 소결체.The mullite-containing sintered body according to claim 1 or 2, wherein the four-point bending strength is 350 MPa or less. 멀라이트 함유 소결체의 제법에 있어서,
(a) 평균 입경 1.5 ㎛ 이하의 멀라이트 분말 50 체적%∼90 체적%와 평균 입경 1 ㎛ 이하의 질화규소 분말 10 체적%∼50 체적%를 합계 100 체적%가 되도록 혼합하여 혼합 원료 분말을 얻는 공정과,
(b) 상기 혼합 원료 분말을 미리 정해진 형상의 성형체로 성형하고, 상기 성형체를 프레스압 20 kgf/㎠∼300 kgf/㎠, 소성 온도 1525℃∼1700℃에서 핫 프레스 소성을 행함으로써, 제1항에 기재된 멀라이트 함유 소결체를 얻는 공정
을 포함하는, 멀라이트 함유 소결체의 제법.
In the manufacturing method of a mullite-containing sintered compact,
(a) Mixing 50% to 90% by volume of a mullite powder having an average particle diameter of 1.5 μm or less and 10% to 50% by volume of a silicon nitride powder having an average particle diameter of 1 μm or less to a total of 100% by volume to obtain a mixed raw material powder class,
(b) The mixed raw material powder is molded into a molded body having a predetermined shape, and the molded body is subjected to hot press firing at a press pressure of 20 kgf/cm 2 to 300 kgf/cm 2 and a firing temperature of 1525° C. to 1700° C. The process of obtaining the mullite-containing sintered body described in
A manufacturing method of a mullite-containing sintered body comprising a.
제8항에 있어서,
승온 속도가 50℃/hr∼300℃/hr이고,
소성 온도에서의 유지 시간은 2시간∼8시간인 것인, 멀라이트 함유 소결체의 제법.
9. The method of claim 8,
The temperature increase rate is 50°C/hr to 300°C/hr,
A method for producing a mullite-containing sintered body, wherein the holding time at the calcination temperature is 2 to 8 hours.
기능성 기판과 지지 기판이 접합된 복합 기판에 있어서,
상기 지지 기판은, 제1항 또는 제2항에 기재된 멀라이트 함유 소결체인 것인, 복합 기판.
A composite substrate in which a functional substrate and a support substrate are bonded, the composite substrate comprising:
The support substrate is a composite substrate that is a mullite-containing sintered body according to claim 1 or 2.
KR1020170035402A 2016-03-23 2017-03-21 Mullite-containing sintered body, method for manufacturing the same, and composite substrate KR102377657B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016058970A JP6650804B2 (en) 2016-03-23 2016-03-23 Mullite-containing sintered body, its production method and composite substrate
JPJP-P-2016-058970 2016-03-23

Publications (2)

Publication Number Publication Date
KR20170110526A KR20170110526A (en) 2017-10-11
KR102377657B1 true KR102377657B1 (en) 2022-03-24

Family

ID=59814206

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170035402A KR102377657B1 (en) 2016-03-23 2017-03-21 Mullite-containing sintered body, method for manufacturing the same, and composite substrate

Country Status (6)

Country Link
US (1) US9981876B2 (en)
JP (1) JP6650804B2 (en)
KR (1) KR102377657B1 (en)
CN (1) CN107226690B (en)
DE (1) DE102017002808A1 (en)
TW (1) TWI718275B (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001319967A (en) 2000-05-11 2001-11-16 Ibiden Co Ltd Method for manufacturing ceramic substrate
JP2005234338A (en) 2004-02-20 2005-09-02 Taiheiyo Cement Corp Mirror for position measurement
JP2007223137A (en) 2006-02-23 2007-09-06 National Institute Of Advanced Industrial & Technology Casting mold to be heated by microwave and manufacturing method for ceramic sintered compact
JP2013116826A (en) 2011-12-01 2013-06-13 Sumitomo Electric Ind Ltd Sintered body comprising mullite as main component
WO2015186560A1 (en) * 2014-06-06 2015-12-10 日本碍子株式会社 Mullite sintered compact, method for producing same, and composite substrate

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5585570A (en) 1978-12-25 1980-06-27 Ishihara Sangyo Kaisha Ltd Pyrazole derivative and its preparation
JPS5861016A (en) 1981-10-07 1983-04-11 Nissan Motor Co Ltd Vehicular air conditioner
JPS62260769A (en) * 1986-05-02 1987-11-13 株式会社日立製作所 Mullite ceramic material
JPS6472961A (en) * 1987-09-16 1989-03-17 Nihon Cement Production of ceramic sintered body
JPH0196062A (en) * 1987-10-09 1989-04-14 Toyota Central Res & Dev Lab Inc Mullite-based sintered body and production thereof
JPH0772108B2 (en) * 1988-04-16 1995-08-02 トヨタ自動車株式会社 Method for manufacturing β-sialon sintered body
JPH0818875B2 (en) * 1988-09-05 1996-02-28 トヨタ自動車株式会社 Method for manufacturing silicon nitride sintered body
JPH06100306A (en) * 1992-09-22 1994-04-12 Toray Ind Inc Sialon crystal particle and sintered compact of complex ceramics
KR100730526B1 (en) * 2001-02-01 2007-06-20 아사히 가라스 가부시키가이샤 Joining method for high-purity ceramic parts
CN102596850B (en) * 2009-11-06 2014-04-09 三井金属矿业株式会社 Mullite ceramic and method for producing same
JP2016058970A (en) 2014-09-11 2016-04-21 キヤノン株式会社 Radio communication equipment, control method for radio communication equipment, and program

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001319967A (en) 2000-05-11 2001-11-16 Ibiden Co Ltd Method for manufacturing ceramic substrate
JP2005234338A (en) 2004-02-20 2005-09-02 Taiheiyo Cement Corp Mirror for position measurement
JP2007223137A (en) 2006-02-23 2007-09-06 National Institute Of Advanced Industrial & Technology Casting mold to be heated by microwave and manufacturing method for ceramic sintered compact
JP2013116826A (en) 2011-12-01 2013-06-13 Sumitomo Electric Ind Ltd Sintered body comprising mullite as main component
WO2015186560A1 (en) * 2014-06-06 2015-12-10 日本碍子株式会社 Mullite sintered compact, method for producing same, and composite substrate

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JOURNAL OF THE CERAMIC SOCIETY OF JAPAN 99(1145) 89-93

Also Published As

Publication number Publication date
KR20170110526A (en) 2017-10-11
US9981876B2 (en) 2018-05-29
US20170275206A1 (en) 2017-09-28
TW201733962A (en) 2017-10-01
JP2017171534A (en) 2017-09-28
CN107226690B (en) 2021-06-29
CN107226690A (en) 2017-10-03
TWI718275B (en) 2021-02-11
DE102017002808A1 (en) 2017-09-28
JP6650804B2 (en) 2020-02-19

Similar Documents

Publication Publication Date Title
JP5861016B1 (en) Sintered mullite, its manufacturing method and composite substrate
JP5890945B1 (en) Cordierite sintered body, manufacturing method thereof, composite substrate and electronic device
KR102377658B1 (en) Cordierite sintered body and production thereof and composite substrate
US10998881B2 (en) Composite substrate, method for producing the same, and electronic device
KR102377657B1 (en) Mullite-containing sintered body, method for manufacturing the same, and composite substrate
KR102395407B1 (en) Sialon sintered body, method for producing the same, composite substrate, and electronic device
JP6940959B2 (en) Cordellite sintered body, its manufacturing method and composite substrate
TWI762509B (en) Silicon aluminum oxynitride sintered body, its production method, composite substrate and electronic component

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right