KR102365351B1 - Manufaturing method of neutralized gypsum for cement using waste sulfuric acid - Google Patents

Manufaturing method of neutralized gypsum for cement using waste sulfuric acid Download PDF

Info

Publication number
KR102365351B1
KR102365351B1 KR1020210056761A KR20210056761A KR102365351B1 KR 102365351 B1 KR102365351 B1 KR 102365351B1 KR 1020210056761 A KR1020210056761 A KR 1020210056761A KR 20210056761 A KR20210056761 A KR 20210056761A KR 102365351 B1 KR102365351 B1 KR 102365351B1
Authority
KR
South Korea
Prior art keywords
gypsum
sulfuric acid
compound
hydrogen peroxide
cement
Prior art date
Application number
KR1020210056761A
Other languages
Korean (ko)
Other versions
KR102365351B9 (en
Inventor
권민재
Original Assignee
(주)광진화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)광진화학 filed Critical (주)광진화학
Priority to KR1020210056761A priority Critical patent/KR102365351B1/en
Application granted granted Critical
Publication of KR102365351B1 publication Critical patent/KR102365351B1/en
Publication of KR102365351B9 publication Critical patent/KR102365351B9/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B11/00Calcium sulfate cements
    • C04B11/26Calcium sulfate cements strating from chemical gypsum; starting from phosphogypsum or from waste, e.g. purification products of smoke
    • C04B11/262Calcium sulfate cements strating from chemical gypsum; starting from phosphogypsum or from waste, e.g. purification products of smoke waste gypsum other than phosphogypsum
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B11/00Calcium sulfate cements
    • C04B11/005Preparing or treating the raw materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Processing Of Solid Wastes (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

Disclosed is a method for manufacturing neutralized gypsum for cement using semiconductor waste sulfuric acid. A method for manufacturing neutralized gypsum for cement according to one embodiment of the present invention includes: a) a step of producing a mixture by mixing a calcium compound and a hydrogen peroxide decomposing agent; b) a step of producing a gypsum compound by adding waste sulfuric acid to the resulting mixture and conducting reaction; and c) a step of aging the resulting gypsum compound at ambient temperature, wherein an equivalent ratio of sulfuric acid and calcium carbonate in the gypsum compound is 1 : 1, and the hydrogen peroxide decomposing agent in the mixture is included in 0.1 to 0.15 parts by weight based on 100 parts by weight of the calcium compound. According to the present invention, quality of neutralized gypsum can be increased.

Description

반도체 폐황산을 이용한 시멘트용 중화석고 제조방법{MANUFATURING METHOD OF NEUTRALIZED GYPSUM FOR CEMENT USING WASTE SULFURIC ACID}Method for manufacturing neutralized gypsum for cement using semiconductor waste sulfuric acid

본 발명은 시멘트용 중화석고를 제조하는 방법에 관한 것으로, 보다 구체적으로는 반도체공정에서 발생하는 폐황산을 재활용하여 시멘트용 중화석고를 제조하는 방법에 관한 것이다. The present invention relates to a method for manufacturing neutralized gypsum for cement, and more particularly, to a method for manufacturing neutralized gypsum for cement by recycling waste sulfuric acid generated in a semiconductor process.

일반적으로 반도체나 디스플레이 제조공정에서는 웨이퍼 표면 등에 존재하는 불순물을 제거하기 위해 세정액을 사용하며, 이 과정에서 폐황산이 발생한다. 폐황산은 황산과 과산화수소를 함유하고 있고 이들은 불안정한 상태이므로 취급시 각별한 주의가 필요하며, 폐황산 처리업체들에서는 이러한 폐황산을 공급 받고 과산화수소를 제거하고 순수한 황산으로 정제하여 재활용 황산을 제조하고 있다. In general, in a semiconductor or display manufacturing process, a cleaning solution is used to remove impurities present on the wafer surface, etc., and waste sulfuric acid is generated in this process. Waste sulfuric acid contains sulfuric acid and hydrogen peroxide, and since they are in an unstable state, special care must be taken when handling them. Waste sulfuric acid treatment companies receive this waste sulfuric acid, remove hydrogen peroxide, and purify it with pure sulfuric acid to produce recycled sulfuric acid.

그러나 최근 반도체, 디스플레이 산업이 매우 크게 성장함에 따라 폐황산의 배출량도 급격히 증가하고 있으며 폐황산 재활용 처리 능력이 이에 미치지 못하는 상황이 발생하고 있다. 이에 따라 폐황산을 정제하여 황산으로 재활용하는 것 이외에도 다른 활용처를 찾기 위한 시도가 지속적으로 이어지고 있다. 이와 같은 시도 중 하나가 폐황산을 활용하여 시멘트용 중화석고를 제조하는 것이다. However, as the semiconductor and display industries have grown significantly in recent years, the emission of waste sulfuric acid is also rapidly increasing, and the recycling capacity of waste sulfuric acid does not meet this level. Accordingly, attempts are continuously being made to find other uses other than refining waste sulfuric acid and recycling it as sulfuric acid. One of such attempts is to manufacture neutralized gypsum for cement using waste sulfuric acid.

기존 폐황산을 활용하여 시멘트용 중화석고를 제조하는 방법은 폐황산을 칼슘 화합물과 반응시켜 중화시키고 석고를 부산물로 제조하는 것인데 대부분 상술한 중화반응이 습식 방식으로 이루어지므로, 제조 과정 중 발생하는 폐수의 처리 문제로 인해 제조 비용이 상승하는 등의 한계가 있어 이를 개선할 방안이 요구되고 있다. The existing method for producing neutralized gypsum for cement using waste sulfuric acid is to neutralize waste sulfuric acid by reacting it with a calcium compound and produce gypsum as a by-product. There are limitations such as an increase in manufacturing cost due to the processing problem of

한국등록특허 제10-2038327호(2019년 10월 24일 등록)Korean Patent Registration No. 10-2038327 (registered on October 24, 2019)

본 발명은 제조 과정에서 공정수를 투입하지 않고 반도체 폐황산을 이용하여 시멘트용 중화석고를 제조할 수 있는 제조방법을 제공하고자 한다.An object of the present invention is to provide a manufacturing method capable of manufacturing neutralized gypsum for cement using semiconductor waste sulfuric acid without adding process water during the manufacturing process.

본 발명의 일 측면에 따르면, a) 분말상의 칼슘 화합물과 분말상의 과산화수소 분해제를 혼합하여 혼합물을 생성하는 단계; b) 생성된 혼합물에 결정농도 45wt% 내지 55wt%인 폐황산을 첨가하고 반응시켜 석고 화합물을 생성하는 단계; 및c) 생성된 석고 화합물을 대기 온도로 숙성시키는 단계를 포함하고, 상기 석고 화합물에서 황산과 탄산칼슘의 당량비는 1:1이고, 상기 혼합물에서 과산화수소 분해제는 칼슘 화합물 100 중량부를 기준으로 0.1 내지 0.15 중량부를 포함하고, 상기 과산화수소 분해제는 과망간산나트륨, 수산화알루미늄 및 알루민산나트륨으로 구성되는 군에서 1이상 선택되는 것을 특징으로 하는 시멘트용 중화석고 제조방법이 제공될 수 있다. According to one aspect of the present invention, the steps of: a) mixing a powdery calcium compound and a powdery hydrogen peroxide decomposing agent to produce a mixture; b) adding and reacting spent sulfuric acid having a crystal concentration of 45 wt% to 55 wt% to the resulting mixture to produce a gypsum compound; And c) aging the resulting gypsum compound at ambient temperature, wherein the equivalent ratio of sulfuric acid and calcium carbonate in the gypsum compound is 1:1, and the hydrogen peroxide decomposing agent in the mixture is 0.1 to 100 parts by weight of the calcium compound Containing 0.15 parts by weight, the hydrogen peroxide decomposing agent can be provided a method for producing neutralized gypsum for cement, characterized in that at least one selected from the group consisting of sodium permanganate, aluminum hydroxide and sodium aluminate.

삭제delete

삭제delete

또한, 상기 칼슘 화합물은 탄산칼슘, 소석회, 소다회 및 생석회로 구성되는 군에서 1이상 선택되는 것을 특징으로 할 수 있다. In addition, the calcium compound may be characterized in that at least one selected from the group consisting of calcium carbonate, slaked lime, soda ash and quicklime.

또한, 상기 단계 b)에서 발생하는 이산화탄소를 대기오염방지시설로 포집시키는 단계를 더 포함할 수 있다.In addition, it may further include the step of collecting the carbon dioxide generated in step b) to an air pollution prevention facility.

본 발명에 따른 시멘트용 중화석고 제조방법은 분말상으로 존재하는 혼합물에 폐황산을 첨가하여 반응시켜 중화석고를 제조하는 것으로, 별도의 공정수가 요구되지 않는다. 기존 폐황산을 이용하여 중화석고를 제조하는 방법들에서는 수용성의 분위기에서 진행되는 것이 일반적이었으며, 이에 따라 과잉의 물이 발생하여 별도로 처리해야 하는 공정이 추가되어야만 하고 처리된 물이 방류수 수질 기준을 초과하는 경우에는 별도의 폐수 처리 공정이 요구되어 전체 제조공수가 증가하는 한계가 있었다. 그러나 본 발명에 따른 시멘트용 중화석고 제조방법에서는 별도의 공정수를 요구하지 않는 바, 이러한 물 처리 공정이 요구되지 않아 중화석고의 제조비용을 낮출 수 있다. 또한 폐황산에 포함되는 미량의 과산화수소를 제거함과 동시에 중화석고를 형성하게 되므로 제조되는 중화석고의 품질을 높일 수 있다.The method for producing neutralized gypsum for cement according to the present invention is to prepare neutralized gypsum by adding spent sulfuric acid to a mixture existing in powder form and reacting it, and does not require a separate process number. In the existing methods for producing neutralized gypsum using waste sulfuric acid, it was common to proceed in a water-soluble atmosphere. Accordingly, excess water was generated and a separate treatment process had to be added, and the treated water exceeded the effluent water quality standard. In this case, a separate wastewater treatment process is required, and there is a limitation in that the total number of manufacturing processes is increased. However, the method for manufacturing neutralized gypsum for cement according to the present invention does not require a separate process water, and thus the water treatment process is not required, so that the manufacturing cost of neutralized gypsum can be lowered. In addition, since a small amount of hydrogen peroxide contained in waste sulfuric acid is removed and neutralized gypsum is formed at the same time, the quality of the produced neutralized gypsum can be improved.

도 1은 본 발명의 일 구체예에 따른 시멘트용 중화석고 제조방법의 순서도이다.1 is a flowchart of a method for manufacturing neutralized gypsum for cement according to an embodiment of the present invention.

이하, 본 발명에 대해 구체적으로 설명하도록 한다. Hereinafter, the present invention will be described in detail.

도 1은 본 발명의 일 구체예에 따른 시멘트용 중화석고 제조방법의 순서도이다. 1 is a flowchart of a method for manufacturing neutralized gypsum for cement according to an embodiment of the present invention.

도 1을 참조하면, 본 발명의 일 구체예들에 따른 시멘트용 중화석고 제조방법은 a) 칼슘 화합물과 과산화수소 분해제를 혼합하여 혼합물을 생성하는 단계(S100); b) 생성된 혼합물에 폐황산을 첨가하고 반응시켜 석고 화합물을 생성하는 단계(S200); 및 c) 생성된 석고 화합물을 대기 온도로 숙성시키는 단계(S300)를 포함한다. 이하에서는 각 단계에 대해 순차적으로 설명한다. Referring to FIG. 1 , the method for producing neutralized gypsum for cement according to embodiments of the present invention includes: a) mixing a calcium compound and a hydrogen peroxide decomposing agent to create a mixture (S100); b) adding and reacting spent sulfuric acid to the resulting mixture to produce a gypsum compound (S200); and c) aging the produced gypsum compound at ambient temperature (S300). Hereinafter, each step will be described sequentially.

단계 a)는 칼슘 화합물과 과산화수소 분해제를 혼합하여 혼합물을 생성하는 단계다. 칼슘 화합물은 탄산칼슘, 소석회, 소다회 및 생석회로 구성되는 군에서 1이상 선택될 수 있으며, 그 이외에도 칼슘을 포함하고 있는 한 특별히 제한되지 않는다. 한편, 고순도의 중화석고를 획득하기 위해 칼슘 화합물 내의 산화칼슘(CaO)는 중량 기준으로 52% 이상인 것이 바람직하다. 또한 칼슘 화합물의 입도는 200 mesh 이하가 바람직하다. 과산화수소 분해제는 과망간산나트륨, 철가루, 수산화알루미늄 및 알루민산나트륨으로 구성되는 군에서 1 이상 선택될 수 있으며, 그 이외에도 과산화수소 분해제로서 기능할 수 있는 한 특별히 제한되지 않는다. 이하에서는 설명의 편의를 위해 칼슘 화합물이 탄산칼슘이고, 과산화수소 분해제가 과망간산나트륨인 경우를 중심으로 설명하도록 한다. Step a) is a step of mixing a calcium compound and a hydrogen peroxide decomposing agent to form a mixture. The calcium compound may be one or more selected from the group consisting of calcium carbonate, slaked lime, soda ash, and quicklime, and is not particularly limited as long as it contains calcium. On the other hand, in order to obtain high-purity neutralized gypsum, the calcium oxide (CaO) in the calcium compound is preferably 52% or more by weight. In addition, the particle size of the calcium compound is preferably 200 mesh or less. The hydrogen peroxide decomposing agent may be one or more selected from the group consisting of sodium permanganate, iron powder, aluminum hydroxide and sodium aluminate, and in addition, as long as it can function as a hydrogen peroxide decomposing agent, it is not particularly limited. Hereinafter, for convenience of explanation, a case where the calcium compound is calcium carbonate and the hydrogen peroxide decomposing agent is sodium permanganate will be mainly described.

한편 상기 혼합물에서 과산화수소 분해제는 칼슘 화합물 100 중량부를 기준으로 0.1 내지 0.15 중량부를 포함할 수 있다. 단계 a)는 통상의 믹서(mixer) 내에서 이루어질 수 있다. 이와 같은 믹서의 종류로는 스파이럴 믹서, 패들믹서, 리본믹서, 트윈샤프트 믹서, 스크류 믹서, 수직패들 믹서 등이 있으며, 그 이외에도 두 종류의 물질을 믹싱할 수 있는 한 특별히 제한되지 않는다. 일 구체예에 있어서 칼슘 화합물과 과산화수소 분해제는 분말상으로 존재할 수 있으며, 믹서 내로 칼슘 화합물과 과산화수소 분해제를 기 결정된 비율로 투입한 후에 믹서를 가동시켜 칼슘 화합물과 과산화수소 분해제를 균일하게 섞어 줌으로써 혼합물을 생성할 수 있다. Meanwhile, in the mixture, the hydrogen peroxide decomposing agent may include 0.1 to 0.15 parts by weight based on 100 parts by weight of the calcium compound. Step a) can be carried out in a conventional mixer. Examples of such a mixer include a spiral mixer, a paddle mixer, a ribbon mixer, a twin shaft mixer, a screw mixer, and a vertical paddle mixer. In one embodiment, the calcium compound and the hydrogen peroxide decomposing agent may exist in a powder form, and after the calcium compound and the hydrogen peroxide decomposing agent are put into the mixer in a predetermined ratio, the mixer is operated to uniformly mix the calcium compound and the hydrogen peroxide decomposing agent. can create

단계 b)는 생성된 혼합물에 폐황산을 첨가하고 반응시켜 석고 화합물을 생성하는 단계다. 폐황산은 칼슘 화합물과 중화 반응을 일으켜 황산칼슘을 형성시킴으로써 석고 화합물을 생성한다. 여기에서 폐황산은 결정농도가 기 결정되어 있으며, 구체적으로는 45wt% 내지 55wt%이다. 또한 폐황산은 미량의 과산화수소를 포함하며, 일 구체예에 있어서 폐황산 100 중량부에 대하여 과산화수소는 1 내지 2 중량부를 포함할 수 있다. 폐황산의 투입량은 상기 석고 화합물에서 황산과 탄산칼슘의 당량비가 1:1이 되도록 하는 양으로 결정될 수 있다. 한편 중화석고 제조시간을 줄이기 위하여 폐황산 투입시에는 일반적으로 이용되는 적가(천천히 부가함; add dropwise) 방식이 아니라 기 결정된 투입량을 한번에 투입하는 방식을 이용하는 것이 바람직하다. Step b) is a step of adding spent sulfuric acid to the resulting mixture and reacting it to produce a gypsum compound. Spent sulfuric acid undergoes a neutralization reaction with calcium compounds to form calcium sulfate, thereby producing gypsum compounds. Here, the crystal concentration of the spent sulfuric acid is predetermined, and specifically, 45 wt% to 55 wt%. In addition, the spent sulfuric acid includes a trace amount of hydrogen peroxide, and in one embodiment, the hydrogen peroxide may include 1 to 2 parts by weight based on 100 parts by weight of the spent sulfuric acid. The input amount of spent sulfuric acid may be determined in an amount such that the equivalent ratio of sulfuric acid and calcium carbonate in the gypsum compound is 1:1. On the other hand, in order to reduce the production time of neutralized gypsum, it is preferable to use a method of injecting a predetermined amount at once, rather than the generally used dropwise (add dropwise) method when inputting spent sulfuric acid.

단계 b)에서 혼합물에 폐황산을 첨가하는 경우, 혼합물에 포함되는 칼슘 화합물과 폐황산이 중화반응을 일으켜 석고 화합물이 생성될 수 있다. 또한 폐황산에 포함되는 과산화수소는 혼합물에 포함되는 과산화수소 분해제와 촉매반응을 일으켜 산소와 물로 분리될 수 있다. 이를 정리하면 반응식 1과 같다. When the spent sulfuric acid is added to the mixture in step b), the calcium compound and the spent sulfuric acid contained in the mixture undergo a neutralization reaction to produce a gypsum compound. In addition, hydrogen peroxide contained in the spent sulfuric acid may be separated into oxygen and water by causing a catalytic reaction with the hydrogen peroxide decomposing agent contained in the mixture. To summarize, Scheme 1 is the same.

[반응식 1][Scheme 1]

Figure 112021050940162-pat00001
Figure 112021050940162-pat00001

즉, i) 폐황산 내의 황산(H2SO4)이 탄산칼슘(CaCO3)과 반응하여, 1차적으로 무수석고(CaSO4)를 생성하고, ii) 폐황산 내의 과산화수소(H2O2)는 과산화수소 분해제와 촉매반응하여 산소(O2)와 물(H2O)로 분리되고, 폐황산 내의 물(H2O)과 ii) 반응에서 생성된 물이 무수석고(CaSO4)와 반응하여 이수석고(CaSO2H2O)를 생성한다. That is, i) sulfuric acid (H 2 SO 4 ) in spent sulfuric acid reacts with calcium carbonate (CaCO 3 ) to primarily produce anhydrite (CaSO 4 ), ii) hydrogen peroxide in spent sulfuric acid (H 2 O 2 ) is separated into oxygen (O 2 ) and water (H 2 O) by a catalytic reaction with a hydrogen peroxide decomposing agent, and water (H 2 O) in spent sulfuric acid and water produced in ii) reaction reacts with anhydrite (CaSO 4 ) to produce dihydrate gypsum (CaSO 2H 2 O).

본 발명의 일 구체예에 따른 중화석고 제조방법은 분말상으로 존재하는 혼합물에 폐황산을 첨가하여 반응시켜 중화석고를 제조하는 것으로, 별도의 공정수가 요구되지 않는다. 기존 폐황산을 이용하여 중화석고를 제조하는 방법들에서는 수용성의 분위기에서 진행되는 것이 일반적이었으며, 이에 따라 과잉의 물이 발생하여 별도로 처리해야 하는 공정이 추가되어야만 하고 처리된 물이 방류수 수질 기준을 초과하는 경우에는 별도의 폐수 처리 공정이 요구되어 전체 제조공수가 증가하는 한계가 있었다. 그러나 본 발명의 일 구체예에 따른 중화석고 제조방법에서는 별도의 공정수를 요구하지 않는 바, 이러한 물 처리 공정이 요구되지 않아 중화석고의 제조비용을 낮출 수 있다. 또한 폐황산에 포함되는 미량의 과산화수소를 제거함과 동시에 중화석고를 형성하게 되므로 제조되는 중화석고의 품질을 높일 수 있다. The method for producing neutralized gypsum according to an embodiment of the present invention is to prepare a neutralized gypsum by adding spent sulfuric acid to a mixture existing in powder form and reacting it to prepare a neutralized gypsum, and a separate process number is not required. In the existing methods for producing neutralized gypsum using waste sulfuric acid, it was common to proceed in a water-soluble atmosphere. Accordingly, excess water was generated and a separate treatment process had to be added, and the treated water exceeded the effluent water quality standard. In this case, a separate wastewater treatment process is required, and there is a limitation in that the total number of manufacturing processes is increased. However, in the method for producing neutralized gypsum according to an embodiment of the present invention, a separate process water is not required, and since such a water treatment process is not required, the manufacturing cost of neutralized gypsum can be lowered. In addition, since a small amount of hydrogen peroxide contained in waste sulfuric acid is removed and neutralized gypsum is formed at the same time, the quality of the produced neutralized gypsum can be improved.

한편, [반응식 1]에서 알 수 있듯이 부산물로 이산화탄소가 발생하는데, 이 때 단계 b)는상기 이산화탄소를 대기오염방지시설로 포집시키는 단계를 더 포함할 수 있다. 대기오염방지시설은 일반적으로 사용 가능한 장치 등을 이용할 수 있으므로 구체적인 설명은 생략하도록 한다. On the other hand, as can be seen in [Reaction Formula 1], carbon dioxide is generated as a by-product, and in this case, step b) may further include the step of collecting the carbon dioxide to an air pollution prevention facility. Since air pollution prevention facilities can use generally available devices, a detailed description thereof will be omitted.

또한 단계 a)와 단계 b)는 동일한 믹서(mixer) 내에서 이루어질 수 있다. 일 구체예에 있어서 믹서(mixer)의 몸체부에는 폐황산을 몸체부 내부로 투입시킬 수 있는 구성이 마련되어 있고, 단계 a) 이후 폐황산을 혼합물에 투입함으로써 중단 없이 단계 b)가 수행될 수 있다. 이 때 믹서(mixer)의 내부에는 믹싱을 위한 패들(paddle) 등이 장착되어 있고 폐황산이 이들 패들에 직접 접촉하는 경우에는 패들이 손상될 수 있으므로, 폐황산이 믹서의 몸체부 내부면을 따라 흘러 내리게 하는 방식이나 폐황산을 혼합물에 직접 분사하는 방식의 구성이 마련되는 것이 바람직하다. Also, steps a) and b) may be performed in the same mixer. In one embodiment, the body of the mixer is provided with a configuration capable of introducing spent sulfuric acid into the body, and after step a), step b) can be performed without interruption by introducing the spent sulfuric acid into the mixture. . At this time, a paddle for mixing is mounted inside the mixer and the paddle may be damaged if the spent sulfuric acid comes in direct contact with these paddles. It is preferable that a configuration of a method of flowing down or a method of directly spraying waste sulfuric acid to the mixture is provided.

단계 c)는 생성된 석고 화합물을 대기 온도로 숙성시키는 단계다. 단계 b)에서 석고가 생성되므로 기 결정된 온도 및 시간 동안 숙성과정을 진행하여 상품화 할 수 있으며, 일 구체예에 있어서 석고 화합물을 실온에서 48시간 가량 숙성과정을 진행할 수 있다. Step c) is a step of aging the resulting gypsum compound at ambient temperature. Since gypsum is generated in step b), it can be commercialized by performing the aging process for a predetermined temperature and time, and in one embodiment, the gypsum compound can be aged for about 48 hours at room temperature.

이하, 본 발명의 시험예에 대하여 설명한다. 그러나 하기 시험예는 본 발명을 보다 구체적으로 설명하기 위한 것일 뿐, 본 발명의 권리범위를 제한하지 않음은 자명하다.Hereinafter, test examples of the present invention will be described. However, it is obvious that the following test examples are only for explaining the present invention in more detail, and do not limit the scope of the present invention.

시험예test example

시멘트용 중화석고 기준Based on neutralized gypsum for cement

수요처에서 요구하는 시멘트용 중화석고의 기준은 [표 1]과 같다. [Table 1] shows the standard of neutralized gypsum for cement required by customers.

구분division SO3 (%)SO 3 (%) Cl (ppm)Cl (ppm) S-P2O5 (%)SP 2 O 5 (%) Cr6+ (ppm)Cr 6+ (ppm) 표면수분surface moisture pHpH LOI(%)LOI (%) 시멘트용 중화석고neutralized gypsum for cement > 38> 38 < 1000< 1000 < 0.1< 0.1 < 15< 15 < 20< 20 > 7.0> 7.0 < 22.5< 22.5

폐황산의 결정농도 결정Determination of crystalline concentration of spent sulfuric acid

폐황산의 결정농도를 40wt%, 50wt%, 60wt%, 70wt%로 달리하여 준비하고(폐황산은 과산화수소 1.2wt%를 함유함), 탄산칼슘과 반응시켜 중화석고를 제조하였다. 구체적으로 탄산칼슘(CaO 52%)을 몰탈믹서날이 장착된 스텐드형 교반기(SS-11D, 유유계기교역상사)에 투입하여 5분간 믹싱하고, 탄산칼슘과 황산의 당량비가 1:1이 되도록 폐황산을 투입하여 중화반응시켰다(탄산칼슘의 투입량은 100g 이었음). 이후 최종 반응물인 석고 화합물을 실온에서 48시간 숙성시켰다. 이후, 각 석고 화합물 샘플에 대해 함수율, LOI(limited oxygen index), 표면수분, SO3, pH를 측정하였고, 그 결과를 [표 2]에 정리하였다. Prepared by varying the crystal concentration of spent sulfuric acid at 40wt%, 50wt%, 60wt%, and 70wt% (waste sulfuric acid contains 1.2wt% of hydrogen peroxide), and reacted with calcium carbonate to prepare neutralized gypsum. Specifically, calcium carbonate (CaO 52%) is put into a stand-type stirrer (SS-11D, Yuyu-gye Trading Co., Ltd.) equipped with a mortar mixer blade and mixed for 5 minutes, and spent sulfuric acid is used so that the equivalent ratio of calcium carbonate to sulfuric acid is 1:1. was added to the neutralization reaction (the amount of calcium carbonate added was 100 g). Thereafter, the final reactant, the gypsum compound, was aged at room temperature for 48 hours. Thereafter, moisture content, LOI (limited oxygen index), surface moisture, SO 3 , and pH were measured for each gypsum compound sample, and the results are summarized in [Table 2].

구분division 폐황산 결정농도(wt%)Waste sulfuric acid crystal concentration (wt%) CaSO2H2O(g)CaSO 2H 2 O (g) 함수율(%)Moisture content (%) LOI(%)LOI (%) 표면수분(%)Surface moisture (%) SO3(%)SO 3 (%) pHpH 샘플1sample 1 40wt%40wt% 149149 51.851.8 22.1622.16 35.3035.30 42.1642.16 7.147.14 샘플2sample 2 50wt%50wt% 143143 43.043.0 21.8721.87 23.9023.90 42.5442.54 7.327.32 샘플3sample 3 60wt%60wt% 140140 35.235.2 23.3323.33 17.3017.30 39.7239.72 7.507.50 샘플4sample 4 70wt%70wt% 147147 28.128.1 20.6520.65 4.04.0 42.3542.35 5.395.39

[표 2]에서 확인되듯, 샘플 1~4 중에서 SO3, pH, 표면수분, LOI 항목에서 가장 우수한 품질을 보인 것은 샘플 2였다. 이에 따라 최적 폐황산 결정농도는 45wt% 내지 55wt%로 결정되었다. 한편, [표 2]에서 샘플 2는 '표면수분' 항목에서 수요처에서 요구하는 시멘트용 중화석고의 기준을 충족하지 못한것으로 나타났으나 표면수분은 측정시마다 다소 오차가 발생하는 점을 감안할 때, 나머지 SO3, pH, LOI 항목을 모두 충족하고 있는 점이 고려되었다. As confirmed in [Table 2], sample 2 showed the best quality in SO 3 , pH, surface moisture, and LOI among Samples 1-4. Accordingly, the optimum spent sulfuric acid crystal concentration was determined to be 45 wt% to 55 wt%. On the other hand, in [Table 2], Sample 2 did not meet the criteria for neutralized gypsum for cement required by the consumer in the 'Surface Moisture' category. It was considered that SO 3 , pH, and LOI were all satisfied.

과산화수소 분해제 투입량 결정Determination of dosage of hydrogen peroxide decomposing agent

다음으로 최적 과산화수소 분해제 투입량을 결정하기 위해 샘플 2에 해당하는 폐황산(결정농도 50wt%)을 선택하여 4개의 샘플을 새로 마련하고, 본 발명에 따라 중화석고를 제조하되 과산화수소 분해제 투입량을 달리하였다. 구체적으로 탄산칼슘(CaO 52%)과 과산화수소 분해제를 몰탈믹서날이 장착된 스텐드형 교반기(SS-11D, 유유계기교역상사)에 투입하여 5분간 믹싱하여 혼합물을 형성하고, 탄산칼슘과 황산의 당량비가 1:1이 되도록 폐황산을 투입하여 중화반응시켰다(탄산칼슘의 투입량은 100g 이었음). 이후 최종 반응물인 석고 화합물을 실온에서 48시간 숙성시켰다. 이후, 각 석고 화합물 샘플에 대해 pH와 H2O2함량을 측정하였고, 그 결과를 [표 3]에 정리하였다. [표 3]에서 과산화수소 분해제 투입량 및 H2O2 함량의 wt% 표기는 탄산칼슘 중량을 기준으로 한다. Next, in order to determine the optimal amount of hydrogen peroxide decomposing agent input, four samples were newly prepared by selecting waste sulfuric acid (crystal concentration of 50 wt%) corresponding to sample 2, and neutralized gypsum was prepared according to the present invention, but the amount of hydrogen peroxide decomposing agent input was different did Specifically, calcium carbonate (CaO 52%) and hydrogen peroxide decomposing agent are put into a stand-type stirrer (SS-11D, Yuyu-gye Trading Co., Ltd.) equipped with a mortar mixer blade and mixed for 5 minutes to form a mixture, and the equivalent ratio of calcium carbonate and sulfuric acid Spent sulfuric acid was added to neutralize the reaction so that is 1:1 (the amount of calcium carbonate added was 100 g). Thereafter, the final reactant, the gypsum compound, was aged at room temperature for 48 hours. Thereafter, pH and H 2 O 2 content were measured for each gypsum compound sample, and the results are summarized in [Table 3]. In [Table 3], the amount of hydrogen peroxide decomposing agent input and the wt% of H 2 O 2 content are based on the weight of calcium carbonate.

구분division 과산화수소 분해제 투입량Hydrogen peroxide decomposition agent dosage pHpH H2O2 함량H 2 O 2 content 샘플 2-1Sample 2-1 0.05wt%0.05 wt% 7.457.45 0.3wt%0.3wt% 샘플 2-2Sample 2-2 0.12wt%0.12 wt% 7.527.52 0.0wt%0.0wt% 샘플 2-3Sample 2-3 0.24wt%0.24 wt% 7.427.42 0.0wt%0.0wt% 샘플 2-4Sample 2-4 없음does not exist 7.627.62 0.8wt%0.8wt%

[표 3]에서 확인 되듯, 샘플 2-1 ~ 샘플 2-4 중에서 H2O2가 검출되지 않은 샘플은 2-2, 2-3이고, 샘플 2-2가 과산화수소 분해제 투입량이 샘플 2-3의 절반 정도밖에 되지 않으므로, 최적 과산화수소 분해제 투입량은 0.1wt% 내지 0.15wt%로 결정되었다(과산화수소 분해제 투입량이 많아질수록 제조원가가 높아짐). As can be seen in [Table 3], samples in which H 2 O 2 was not detected among samples 2-1 to 2-4 were 2-2 and 2-3, and the amount of hydrogen peroxide decomposing agent input in Sample 2-2 was Sample 2- Since it is only about half of 3, the optimal amount of hydrogen peroxide decomposing agent input was determined to be 0.1 wt% to 0.15 wt% (the higher the amount of hydrogen peroxide decomposing agent added, the higher the manufacturing cost).

상술한 바와 같이, 시험을 통해 폐황산의 결정농도는 50wt%, 과산화수소 분해제 투입량은 0.1wt%~0.15wt%(탄산칼슘 중량 기준)일 때 최적의 제조원가로 수요처에서 요구하는 품질을 충족시키는 시멘트용 중화석고를 제조할 수 있음을 확인하였다. As described above, according to the test, when the crystal concentration of spent sulfuric acid is 50wt% and the amount of hydrogen peroxide decomposing agent is 0.1wt% to 0.15wt% (based on the weight of calcium carbonate), the optimal manufacturing cost is a cement that meets the quality required by the customer. It was confirmed that neutralized gypsum for use can be prepared.

이상, 본 발명의 구현예들에 대하여 설명하였다. 그러나 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자라면 청구범위에 기재된 본 발명의 기술적 사상의 범위 내에서 기술의 구체적 적용에 따른 단순한 설계변경, 일부 구성요소의 생략, 단순한 용도의 변경 등 본 발명을 다양하게 변형할 수 있을 것이며, 이러한 변형 역시 본 발명의 권리범위 내에 포함됨은 자명하다.In the above, embodiments of the present invention have been described. However, those of ordinary skill in the art to which the present invention pertains, within the scope of the technical idea of the present invention described in the claims, such as simple design change, omission of some components, simple change of use, etc. It is apparent that the invention may be variously modified, and such modifications are also included within the scope of the present invention.

Claims (5)

a) 분말상의 칼슘 화합물과 분말상의 과산화수소 분해제를 혼합하여 혼합물을 생성하는 단계;
b) 생성된 혼합물에 결정농도 45wt% 내지 55wt%인 폐황산을 첨가하고 반응시켜 석고 화합물을 생성하는 단계; 및
c) 생성된 석고 화합물을 대기 온도로 숙성시키는 단계를 포함하고,
상기 석고 화합물에서 황산과 탄산칼슘의 당량비는 1:1이고, 상기 혼합물에서 과산화수소 분해제는 칼슘 화합물 100 중량부를 기준으로 0.1 내지 0.15 중량부를 포함하고, 상기 과산화수소 분해제는 과망간산나트륨, 수산화알루미늄 및 알루민산나트륨으로 구성되는 군에서 1이상 선택되는 것을 특징으로 하는 시멘트용 중화석고 제조방법.
a) mixing a powdered calcium compound and a powdered hydrogen peroxide decomposing agent to form a mixture;
b) adding and reacting spent sulfuric acid having a crystal concentration of 45 wt% to 55 wt% to the resulting mixture to produce a gypsum compound; and
c) aging the resulting gypsum compound to ambient temperature;
The equivalent ratio of sulfuric acid and calcium carbonate in the gypsum compound is 1:1, the hydrogen peroxide decomposing agent in the mixture includes 0.1 to 0.15 parts by weight based on 100 parts by weight of the calcium compound, and the hydrogen peroxide decomposing agent is sodium permanganate, aluminum hydroxide and alu A method for producing neutralized gypsum for cement, characterized in that at least one selected from the group consisting of sodium nitrate.
삭제delete 삭제delete 청구항 1에 있어서,
상기 칼슘 화합물은 탄산칼슘, 소석회, 소다회 및 생석회로 구성되는 군에서 1이상 선택되는 것을 특징으로 하는 시멘트용 중화석고 제조방법.
The method according to claim 1,
The calcium compound is a method for producing neutralized gypsum for cement, characterized in that at least one selected from the group consisting of calcium carbonate, slaked lime, soda ash and quicklime.
청구항 1에 있어서,
상기 단계 b)에서 발생하는 이산화탄소를 대기오염방지시설로 포집시키는 단계를 더 포함하는 시멘트용 중화석고 제조방법.
The method according to claim 1,
The method for producing neutralized gypsum for cement further comprising the step of collecting the carbon dioxide generated in step b) to an air pollution prevention facility.
KR1020210056761A 2021-04-30 2021-04-30 Manufaturing method of neutralized gypsum for cement using waste sulfuric acid KR102365351B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020210056761A KR102365351B1 (en) 2021-04-30 2021-04-30 Manufaturing method of neutralized gypsum for cement using waste sulfuric acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020210056761A KR102365351B1 (en) 2021-04-30 2021-04-30 Manufaturing method of neutralized gypsum for cement using waste sulfuric acid

Publications (2)

Publication Number Publication Date
KR102365351B1 true KR102365351B1 (en) 2022-02-23
KR102365351B9 KR102365351B9 (en) 2022-05-23

Family

ID=80495744

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210056761A KR102365351B1 (en) 2021-04-30 2021-04-30 Manufaturing method of neutralized gypsum for cement using waste sulfuric acid

Country Status (1)

Country Link
KR (1) KR102365351B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102632611B1 (en) * 2023-02-15 2024-02-01 최윤진 Method of preparing gypsum and gypsum prepared thereby

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0967118A (en) * 1995-08-28 1997-03-11 Sumitomo Metal Mining Co Ltd Production of gypsum from sulfuric acid waste liquid
KR101388084B1 (en) * 2013-11-04 2014-04-22 최윤진 Method for obtaining purified sulfuric acid from waste sulfuric acid
KR101865882B1 (en) * 2017-05-23 2018-06-12 주식회사 태원 Method of manufacturing gypsum from waste sulfuric acid by dry neutralization
KR20190112616A (en) * 2018-03-26 2019-10-07 신유근 Manufacturing method of Neutralized gypsum for Cement using Sulfuric acid wastewater

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0967118A (en) * 1995-08-28 1997-03-11 Sumitomo Metal Mining Co Ltd Production of gypsum from sulfuric acid waste liquid
KR101388084B1 (en) * 2013-11-04 2014-04-22 최윤진 Method for obtaining purified sulfuric acid from waste sulfuric acid
KR101865882B1 (en) * 2017-05-23 2018-06-12 주식회사 태원 Method of manufacturing gypsum from waste sulfuric acid by dry neutralization
KR20190112616A (en) * 2018-03-26 2019-10-07 신유근 Manufacturing method of Neutralized gypsum for Cement using Sulfuric acid wastewater
KR102038327B1 (en) 2018-03-26 2019-10-30 신유근 Manufacturing method of Neutralized gypsum for Cement using Sulfuric acid wastewater

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102632611B1 (en) * 2023-02-15 2024-02-01 최윤진 Method of preparing gypsum and gypsum prepared thereby

Also Published As

Publication number Publication date
KR102365351B9 (en) 2022-05-23

Similar Documents

Publication Publication Date Title
KR101865882B1 (en) Method of manufacturing gypsum from waste sulfuric acid by dry neutralization
KR102365351B1 (en) Manufaturing method of neutralized gypsum for cement using waste sulfuric acid
KR20200100218A (en) Methods To manufacture alkaline waste neutralizer of solids containing large amounts of active calcium oxide by mixing raw lime with bauxite residues and neutralizing sulfuric acid as industrial materials such as cement condensation retardant
EP0705638A2 (en) Method for desulfurizing exhaust gas
US20200239325A1 (en) Systems and Methods to Treat Flue Gas Desulfurization Waste to Produce Ammonium Sulfate and Calcium Carbonate Products
CN108975475A (en) A kind of preparation method of bodied ferric sulfate
US11220437B2 (en) Procedure for obtaining scorodite with a high arsenic content from acidic solutions with high content of sulfuric acid
KR102027999B1 (en) Method of treating waste water including fluorine compound of ammonium ion having improved environmental friendliness and solid-liquid separation
KR102273096B1 (en) Manufacturing method of anhydrous gypsum using byproduct gypsum
KR101324548B1 (en) Cement composition using cement admixtures for enhancing compressive strength
JPH0657354B2 (en) Simultaneous removal method of arsenic and silicon
JP3382202B2 (en) Fluorine-insoluble gypsum composition and method for producing the same
KR102218339B1 (en) Method for producing high purity slaked lime and using by-product gypsum
KR20130107580A (en) Cement admixtures for enhancing compressive strength and cement composition using the same
EP1314696A1 (en) Method for preparing aluminum sulfate, aluminum sulfate and waste water treatment using the obtained aluminum sulfate
KR102631442B1 (en) A method of recycling BOE waste liquid
KR102530614B1 (en) Manufacturing method of gypsum by using biosulfur and oxidation reaction and uses of the gypsum
CN109626656A (en) A kind of administering method vulcanizing waste water
KR20180014119A (en) Improved ability to remove fluoride method of producing a coagulant for water treatment and its preparation method of manufacturing a coagulant for water treatment
CN108689728A (en) A kind of new process of carbide slag solid waste comprehensive utilization production calcium base manure material
KR102657750B1 (en) Manufacturing Process for Cement Aid
JPS5939756A (en) Manufacture of hardenable composition from waste sulfuric acid
JP2000233134A (en) Photocatalyst supporting composition
CN115896815A (en) Method for synchronously preparing sulfuric acid and cementing material by using phosphogypsum and aluminum ash
KR19980049994A (en) Method for preparing magnesium hydroxide aqueous solution

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
G170 Re-publication after modification of scope of protection [patent]