KR102364554B1 - Catalyst for preparation of ethylene carbonate and ethylene glycol, method for preparing the catalyst, method and apparatus for preparing ethylene glycol using thereof - Google Patents

Catalyst for preparation of ethylene carbonate and ethylene glycol, method for preparing the catalyst, method and apparatus for preparing ethylene glycol using thereof Download PDF

Info

Publication number
KR102364554B1
KR102364554B1 KR1020200024571A KR20200024571A KR102364554B1 KR 102364554 B1 KR102364554 B1 KR 102364554B1 KR 1020200024571 A KR1020200024571 A KR 1020200024571A KR 20200024571 A KR20200024571 A KR 20200024571A KR 102364554 B1 KR102364554 B1 KR 102364554B1
Authority
KR
South Korea
Prior art keywords
catalyst
ethylene
ethylene glycol
reaction
formula
Prior art date
Application number
KR1020200024571A
Other languages
Korean (ko)
Other versions
KR20210109360A (en
Inventor
김재익
오인환
곽순종
나인욱
Original Assignee
한국과학기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술연구원 filed Critical 한국과학기술연구원
Priority to KR1020200024571A priority Critical patent/KR102364554B1/en
Priority to CN202011320806.0A priority patent/CN113304774A/en
Publication of KR20210109360A publication Critical patent/KR20210109360A/en
Application granted granted Critical
Publication of KR102364554B1 publication Critical patent/KR102364554B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0234Nitrogen-, phosphorus-, arsenic- or antimony-containing compounds
    • B01J31/0271Nitrogen-, phosphorus-, arsenic- or antimony-containing compounds also containing elements or functional groups covered by B01J31/0201 - B01J31/0231
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0234Nitrogen-, phosphorus-, arsenic- or antimony-containing compounds
    • B01J31/0235Nitrogen containing compounds
    • B01J31/0245Nitrogen containing compounds being derivatives of carboxylic or carbonic acids
    • B01J31/0247Imides, amides or imidates (R-C=NR(OR))
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0234Nitrogen-, phosphorus-, arsenic- or antimony-containing compounds
    • B01J31/0235Nitrogen containing compounds
    • B01J31/0245Nitrogen containing compounds being derivatives of carboxylic or carbonic acids
    • B01J31/0251Guanidides (R2N-C(=NR)-NR2)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C279/00Derivatives of guanidine, i.e. compounds containing the group, the singly-bound nitrogen atoms not being part of nitro or nitroso groups
    • C07C279/20Derivatives of guanidine, i.e. compounds containing the group, the singly-bound nitrogen atoms not being part of nitro or nitroso groups containing any of the groups, X being a hetero atom, Y being any atom, e.g. acylguanidines
    • C07C279/22Y being a hydrogen or a carbon atom, e.g. benzoylguanidines
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/09Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by hydrolysis
    • C07C29/10Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by hydrolysis of ethers, including cyclic ethers, e.g. oxiranes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/09Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by hydrolysis
    • C07C29/12Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by hydrolysis of esters of mineral acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/132Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group
    • C07C29/136Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C31/00Saturated compounds having hydroxy or O-metal groups bound to acyclic carbon atoms
    • C07C31/18Polyhydroxylic acyclic alcohols
    • C07C31/20Dihydroxylic alcohols
    • C07C31/202Ethylene glycol
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D317/00Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms
    • C07D317/08Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3
    • C07D317/10Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3 not condensed with other rings
    • C07D317/32Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3 not condensed with other rings with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D317/34Oxygen atoms
    • C07D317/36Alkylene carbonates; Substituted alkylene carbonates
    • C07D317/38Ethylene carbonate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

에틸렌 카보네이트 및 에틸렌 글리콜 제조용 촉매로서, 카르보닐기(-C=O); 및 할라이드, 아민기(-NH2), 하이드록시기(-OH)를 포함하는 촉매, 그 제조 방법 및 상기 촉매를 이용하여 에틸렌 옥사이드 수용액 및 이산화탄소를 반응시켜 카보네이트화반응 및 가수분해반응을 통해 에틸렌 글리콜을 제조하는 방법 및 장치가 개시된다. 해당 촉매는 기존 촉매 대비 저가이면서 높은 수율로 에틸렌 카보네이트 및/또는 에틸렌 글리콜을 얻을 수 있다.As a catalyst for the production of ethylene carbonate and ethylene glycol, a carbonyl group (-C=O); And halide, an amine group (-NH 2 ), a catalyst containing a hydroxyl group (-OH), a method for preparing the same, and an aqueous solution of ethylene oxide and carbon dioxide using the catalyst to react with ethylene through carbonate reaction and hydrolysis reaction Methods and apparatus for preparing glycols are disclosed. The catalyst can obtain ethylene carbonate and/or ethylene glycol at a low cost and high yield compared to the existing catalyst.

Description

에틸렌 카보네이트 및 에틸렌 글리콜 제조용 촉매, 그 제조 방법 및 상기 촉매를 이용한 에틸렌 글리콜 제조 방법 및 장치{Catalyst for preparation of ethylene carbonate and ethylene glycol, method for preparing the catalyst, method and apparatus for preparing ethylene glycol using thereof}Catalyst for preparing ethylene carbonate and ethylene glycol, a method for preparing the same, and a method and apparatus for preparing ethylene glycol using the catalyst

본 발명은 에틸렌 카보네이트 및 에틸렌 글리콜 제조용 촉매, 그 제조 방법 및 상기 촉매를 이용한 에틸렌 글리콜 제조 방법 및 장치에 관한 것이다.The present invention relates to a catalyst for preparing ethylene carbonate and ethylene glycol, a method for preparing the same, and a method and apparatus for preparing ethylene glycol using the catalyst.

에틸렌 글리콜은 폴리에스테르 섬유 및 폴리에틸렌 테레프탈레이트(PET) 수지의 제조를 위한 출발물질로서 널리 사용되는 유용한 산업화합물이다. 또한, 자동차 부동액 및 유압 브레이크액, 항공기 제빙제 및 의약품 분야 등에도 적용된다.Ethylene glycol is a useful industrial compound widely used as a starting material for the production of polyester fibers and polyethylene terephthalate (PET) resins. In addition, it is applied to automobile antifreeze and hydraulic brake fluid, aircraft deicing agent and pharmaceutical field.

에틸렌 글리콜은 보통 2단계를 거쳐 생산되는데, 1단계로 에틸렌 옥사이드(ethylene oxide)를 촉매 존재 하에 이산화탄소와 반응하여 에틸렌 카보네이트를 생성하고, 2단계로 에틸렌 카보네이트가 가수분해되어 에틸렌 글리콜이 제조된다.Ethylene glycol is usually produced through two steps. In the first step, ethylene oxide is reacted with carbon dioxide in the presence of a catalyst to produce ethylene carbonate, and in the second step, ethylene carbonate is hydrolyzed to produce ethylene glycol.

에틸렌 카보네이트를 통한 반응은 에틸렌 옥사이드의 에틸렌 글리콜로의 전환 선택성이 높은 것으로 알려져 있다. The reaction via ethylene carbonate is known to have high selectivity for conversion of ethylene oxide to ethylene glycol.

그러나, 에틸렌 글리콜을 제조하는 공정은 고온 고압하에서의 반응이 요구되기 때문에 원료인 에틸렌 옥사이드가 분해 또는 중합하여 부산물이 다량 생성되는 문제와 함께 폭발의 위험성도 있다. However, since the process for producing ethylene glycol requires a reaction under high temperature and high pressure, there is a problem of decomposition or polymerization of ethylene oxide, a raw material, to generate a large amount of by-products, and there is also a risk of explosion.

이러한 문제점들을 해결하기 위하여 다양한 촉매를 개발하여 저온 저압에서 고효율로 전환하도록 하는 연구가 수행되어 왔다. 예를 들면, 특허문헌 1에서는 트리부틸메틸포스포늄요오다이드 등 4급 포스포늄 할라이드나 4급 암모늄 할라이드를 촉매로 이용하는 방법을 기술하고 있다. In order to solve these problems, research has been conducted to develop various catalysts to convert them from low temperature low pressure to high efficiency. For example, Patent Document 1 describes a method using a quaternary phosphonium halide such as tributylmethylphosphonium iodide or a quaternary ammonium halide as a catalyst.

그러나, 기존의 촉매는 이온성 액체들로 가격이 매우 고가이기 때문에, 상대적으로 저가이면서 성능이 개선된 고효율 촉매가 여전히 요구된다. However, since conventional catalysts are ionic liquids and are very expensive, there is still a need for a relatively inexpensive and high-efficiency catalyst with improved performance.

국제특허출원 공개 WO2011-065528호 공보International Patent Application Publication No. WO2011-065528

본 발명의 예시적인 구현예들에서는, 일측면에서, 에틸렌 글리콜 제조 시 제1 단계인 에틸렌 옥사이드와 이산화탄소간의 반응(카르보네이트화 반응)에서 기존 촉매 대비 저가이면서 높은 수율로 에틸렌 카보네이트 및 에틸렌글리콜을 생성할 수 있는 촉매, 그 제조 방법 및 상기 촉매를 이용한 에틸렌 글리콜 제조 방법 및 장치를 제공하는 것을 목적으로 한다.In exemplary embodiments of the present invention, in one aspect, ethylene carbonate and ethylene glycol are produced at a low cost and high yield compared to conventional catalysts in the reaction between ethylene oxide and carbon dioxide (carbonation reaction), which is the first step in preparing ethylene glycol. An object of the present invention is to provide a catalyst that can be produced, a method for producing the same, and a method and apparatus for producing ethylene glycol using the catalyst.

본 발명의 예시적인 구현예들에서는, 에틸렌 카보네이트 및 에틸렌 글리콜 제조용 촉매로서, 카르보닐기(-C=O); 및 할라이드, 아민기(-NH2), 하이드록시기(-OH)를 모두 포함하는 촉매를 제공한다.In exemplary embodiments of the present invention, as a catalyst for preparing ethylene carbonate and ethylene glycol, a carbonyl group (-C=O); And halide, an amine group (-NH 2 ), and provides a catalyst including all of the hydroxyl group (-OH).

본 발명의 예시적인 구현예들에서는 또한, 상기 촉매 제조 방법으로서, 할라이드, 아민기, 하이드록시기를 포함하는 화합물을 카르복시산 전구체(또는 에스테르 전구체)와 반응시키는 단계;를 포함하는 에틸렌 카보네이트 제조용 촉매 제조 방법을 제공한다.In exemplary embodiments of the present invention, as the method for preparing the catalyst, reacting a compound containing a halide, an amine group, and a hydroxyl group with a carboxylic acid precursor (or an ester precursor); A method for preparing a catalyst for preparing ethylene carbonate comprising; provides

본 발명의 예시적인 구현예들에서는, 또한, 촉매 존재 하에서 에틸렌 옥사이드 수용액과 이산화탄소를 반응시켜 에틸렌 카보네이트 및 에틸렌 글리콜을 포함하는 생성물을 제조하는 제1 단계; 및 상기 생성물의 에틸렌카보네이트를 가수분해하는 제2 단계;를 포함하는 에틸렌 글리콜 제조 방법 및 장치를 제공한다.In exemplary embodiments of the present invention, further, in the presence of a catalyst, a first step of reacting an aqueous solution of ethylene oxide with carbon dioxide to prepare a product comprising ethylene carbonate and ethylene glycol; and a second step of hydrolyzing the ethylene carbonate of the product; provides a method and apparatus for producing ethylene glycol comprising.

본 발명의 예시적인 구현예들에 의하면, 에틸렌 글리콜 제조의 제1 단계에서 에틸렌 옥사이드 수용액과 이산화탄소 반응을 촉진함으로써, 기존 인산형 촉매 등과 대비하여 저가이며 저온 및 저압의 온화한 반응 조건에서 빠른 시간에 높은 수율로 에틸렌 카보네이트 및 에틸렌 글리콜을 포함하는 생성물을 얻을 수 있다. 또한 상기 제1 단계에서 얻어진 생성물의 에틸렌카보네이트를 가수분해하여 제2 단계에서 높은 수율로 에틸렌 글리콜을 얻을 수 있다. According to exemplary embodiments of the present invention, by accelerating the reaction of ethylene oxide aqueous solution and carbon dioxide in the first step of ethylene glycol production, it is inexpensive compared to existing phosphoric acid catalysts, etc. A product comprising ethylene carbonate and ethylene glycol can be obtained in yield. In addition, ethylene glycol can be obtained in high yield in the second step by hydrolyzing the ethylene carbonate of the product obtained in the first step.

도 1은 본 발명의 실시예 1-3에서 제조된 촉매의 FT-IR 측정 결과이다.1 is an FT-IR measurement result of a catalyst prepared in Examples 1-3 of the present invention.

본 명세서에서 에틸렌 카보네이트 및 에틸렌 글리콜 제조용 촉매란 에틸렌 옥사이드 수용액과 이산화탄소를 반응 물질로 하고 에틸렌 카보네이트 및 에틸렌 글리콜이 생성되는 반응에서 사용되는 촉매를 의미한다. In the present specification, the catalyst for preparing ethylene carbonate and ethylene glycol refers to a catalyst used in a reaction in which an aqueous ethylene oxide solution and carbon dioxide are used as reactants and ethylene carbonate and ethylene glycol are produced.

해당 반응은 카보네이트화 반응이므로, 해당 촉매는 카보네이트화 촉매로 지칭될 수도 있다. 또한, 해당 반응의 생성물이 에틸렌 카보네이트 및 에틸렌 글리콜이라는 점에서, 상기 촉매는 에틸렌 카보네이트 제조용 촉매로 지칭될 수도 있고, 에틸렌 글리콜 제조용 촉매로도 지칭될 수도 있다.Since the reaction is a carbonate reaction, the catalyst may also be referred to as a carbonate catalyst. In addition, in that the products of the reaction are ethylene carbonate and ethylene glycol, the catalyst may be referred to as a catalyst for preparing ethylene carbonate or as a catalyst for preparing ethylene glycol.

이하 본 발명의 예시적인 구현예들을 상세히 설명한다.Exemplary embodiments of the present invention are described in detail below.

에틸렌 옥사이드를 이산화탄소와 반응시켜 에틸렌 카보네이트를 제조 시 고농도의 에틸렌 옥사이드를 사용하면 순수한 에틸렌 카보네이트가 얻어지는 반면, 물로 희석된 저농도의 에틸렌 옥사이드 수용액을 사용하면 에틸렌 카보네이트 외에 다른 생성물로서 에틸렌 글리콜이 함께 생성되고 그 외에도 디에틸렌글리콜, 트리에틸렌글리콜 등도 함께 생성된다. When a high concentration of ethylene oxide is used to prepare ethylene carbonate by reacting ethylene oxide with carbon dioxide, pure ethylene carbonate is obtained, whereas when an aqueous solution of ethylene oxide with a low concentration diluted with water is used, ethylene glycol is produced as a product other than ethylene carbonate. In addition, diethylene glycol and triethylene glycol are also produced.

본 발명자들은, 물로 희석된 알킬렌 옥사이드 수용액과 이산화탄소를 반응 시 본 발명의 예시적인 구현예들의 촉매를 사용하면 다른 부산물 없이 에틸렌 카보네이트와 에틸렌글리콜만을 선택도 높게 생성할 수 있음과, 나아가, 해당 에틸렌카보네이트를 가수분해하면 에틸렌글리콜이 생성되므로, 결국 에틸렌글리콜을 높은 수율로 얻을 수 있음을 확인하였다. 이하 상술한다.The present inventors have found that, when reacting an aqueous solution of alkylene oxide diluted with water and carbon dioxide, using the catalyst of exemplary embodiments of the present invention, only ethylene carbonate and ethylene glycol can be produced with high selectivity without other by-products, and further, the ethylene Since ethylene glycol is produced when carbonate is hydrolyzed, it was confirmed that ethylene glycol can be obtained in high yield. It will be detailed below.

촉매 및 그 제조 방법Catalyst and method for preparing the same

본 발명의 예시적인 구현예들에서는, 에틸렌 카보네이트 및/또는 에틸렌글리콜 제조용 촉매로서, 카르보닐기(-C=O-); 및 아민기(-NH2), 하이드록시기 (-OH), 할라이드 성분을 함께 포함한다. In exemplary embodiments of the present invention, as a catalyst for preparing ethylene carbonate and/or ethylene glycol, a carbonyl group (-C=O-); and an amine group (—NH 2 ), a hydroxyl group (—OH), and a halide component.

이 촉매에서 카르보닐기(-C=O)는 아민기, 하이드록시기, 할라이드 중 하나 이상의 화학 결합을 강하게 하는 역할을 하며, 기존 촉매와 달리, 촉매 내에 카르보닐기(-C=O)의 화학결합으로 고정화된 아민 그룹, 하이드록시 그룹, 할라이드 물질이 존재한다. In this catalyst, the carbonyl group (-C=O) serves to strengthen one or more chemical bonds among an amine group, a hydroxyl group, and a halide. amine groups, hydroxy groups, and halide substances are present.

상기 촉매는 카보네이트화 반응(에틸렌 글리콜 제조의 제1단계 반응)으로 이산화탄소 흡수 촉진, 에틸렌 옥사이드 내 O-ring을 opening해서 이산화탄소 첨가 반응이 용이하게 일어나게 한다(즉, 에틸렌 옥사이드 + 이산화탄소 →에틸렌 카보네이트).The catalyst promotes carbon dioxide absorption as a carbonation reaction (the first step reaction of ethylene glycol production), and opens an O-ring in ethylene oxide to facilitate the carbon dioxide addition reaction (ie, ethylene oxide + carbon dioxide → ethylene carbonate).

참고로, 상기 촉매는 본 발명의 에틸렌 글리콜 제조의 제1 단계에서 높은에틸렌 수율을 보일 뿐만 아니라, 알킬렌 카보네이트를 이산화탄소와 반응시켜 알킬렌 카보네이트를 얻는 경우에도 높은 수율을 나타낼 수 있다.For reference, the catalyst not only shows a high yield of ethylene in the first step of preparing ethylene glycol of the present invention, but also can exhibit a high yield even when the alkylene carbonate is obtained by reacting the alkylene carbonate with carbon dioxide.

예시적인 일 구현예에서, 상기 촉매는 다음 [화학식 1] 또는 [화학식 2] 또는 [화학식 3]으로 표시되는 촉매일 수 있다.In an exemplary embodiment, the catalyst may be a catalyst represented by the following [Formula 1] or [Formula 2] or [Formula 3].

[화학식 1] [Formula 1]

Figure 112020021061039-pat00001
Figure 112020021061039-pat00001

[화학식 2] [Formula 2]

Figure 112020021061039-pat00002
Figure 112020021061039-pat00002

[화학식 3][Formula 3]

Figure 112020021061039-pat00003
Figure 112020021061039-pat00003

[화학식 1] 내지 [화학식 3]에서 n은 각각 반복 단위이며, 1 내지 10의 정수일 수 있다. In [Formula 1] to [Formula 3], n is each a repeating unit, and may be an integer of 1 to 10.

위 [화학식 1] 내지 [화학식 3]에서 보듯이, 상기 촉매는 카르보닐기(-C=O)를 포함하고, 또한 아민기, 하이드록시기 (-OH), 할라이드 성분을 포함한다. As shown in the above [Formula 1] to [Formula 3], the catalyst includes a carbonyl group (-C=O), and also includes an amine group, a hydroxyl group (-OH), and a halide component.

상기 [화학식 1] 내지 [화학식 3]에서 할라이드(Halide)는 F, Cl, Br 또는 I이고, 에폭사이드 O ring opening 및 이산화탄소 첨가 반응 효과가 크다는 측면에서 바람직하게는 Br 또는 I 또는 Cl이다. In the [Formula 1] to [Formula 3], the halide is F, Cl, Br or I, and is preferably Br or I or Cl in terms of the large effect of the epoxide O ring opening and carbon dioxide addition reaction.

본 발명의 예시적인 구현예들에서는, 다른 일측면에서, 전술한 촉매의 제조 방법으로서, 할라이드, 아민기, 하이드록시기를 모두 포함하는 촉매 화합물을 중축합 반응 전구체인 카르복시산 전구체와 반응시키는 단계;를 포함하는 촉매 제조 방법을 제공한다.In exemplary embodiments of the present invention, in another aspect, as a method for preparing the catalyst described above, reacting a catalyst compound including all of halide, amine group, and hydroxyl group with a carboxylic acid precursor, which is a polycondensation reaction precursor; It provides a method for preparing a catalyst comprising.

예시적인 일 구현예에서, 상기 방법은, 아민 전구체, 알데히드 전구체 및 할라이드 전구체로부터 할라이드, 아민기, 하드록시기를 포함하는 촉매 화합물을 생성하는 단계; 및 상기 촉매 화합물을 카르복시산 전구체와 반응시켜 상기 촉매 화합물에 카르보닐기 또는 에스테르기를 생성하는 단계;를 더 포함할 수 있다. In an exemplary embodiment, the method includes: generating a catalyst compound including a halide, an amine group, and a hydroxyl group from an amine precursor, an aldehyde precursor, and a halide precursor; and reacting the catalyst compound with a carboxylic acid precursor to generate a carbonyl group or an ester group in the catalyst compound.

예시적인 일 구현예에서, 아민 전구체는 우레아(urea), 멜라민(melamine), 디시안아미드(dicyandiamide), 시안아미드(cyanamide), 구아니딘(guanidine), 바이구아니딘(biguanidine), 구아릴우레아(guanylurea), 폴리사이클릭 구아니딘(polycyclic guanidine) 등이 포함된 1종 이상의 물질이 사용될 수 있다. In an exemplary embodiment, the amine precursor is urea, melamine, dicyandiamide, cyanamide, guanidine, biguanidine, guanylurea) , one or more substances including polycyclic guanidine may be used.

예시적인 일 구현예에서, 알데히드 전구체로는 포름알데히드, 아세트알데히드, 프로피온알데히드, 부틸알데히드, 벤즈알데히드, 글루타르알데히드(glutaraldehyde), 글리옥살(glyoxal), 말론디알데히드(malondialdehyde), 숙신디알데히드(succindialdehyde), 프탈알데히드(phthalaldehyde) 등 알데히드류로 알려진 1종 이상의 물질이 사용될 수 있다.In an exemplary embodiment, the aldehyde precursor includes formaldehyde, acetaldehyde, propionaldehyde, butylaldehyde, benzaldehyde, glutaraldehyde, glyoxal, malondialdehyde, succindialdehyde ), one or more substances known as aldehydes such as phthalaldehyde may be used.

예시적인 일 구현예에서, 할라이드로는 예컨대 KI, KBr, KCl, HI, HBr, HCl, NH4I, NH4Br, NH4Cl 등에서 선택되는 1종 이상이 사용될 수 있다. In an exemplary embodiment, the halide may be one or more selected from, for example, KI, KBr, KCl, HI, HBr, HCl, NH 4 I, NH 4 Br, NH 4 Cl, and the like.

예시적인 일 구현예에서, 상기 카르복시산 전구체는 포름산, 아세트산, 프로피온산, n-부티르산, 이소부티르산, n-길초산, 헥산산, 헵탄산, 옥탄산, 노난산, 폴리아크릴산(polyacrylic acid, PAA), 그래핀 옥사이드(graphene oxide), 알긴산(alginic acid) 등 카르복시기를 포함하는 물질에서 선택되는 1종 이상일 수 있다.In an exemplary embodiment, the carboxylic acid precursor is formic acid, acetic acid, propionic acid, n-butyric acid, isobutyric acid, n-valeric acid, hexanoic acid, heptanoic acid, octanoic acid, nonanoic acid, polyacrylic acid (PAA), It may be at least one selected from a material containing a carboxyl group, such as graphene oxide and alginic acid.

에틸렌글리콜 제조 방법 및 장치Ethylene glycol manufacturing method and apparatus

한편, 본 발명의 예시적인 구현예들에서는, 또한, 촉매 존재 하에서 에틸렌 옥사이드 수용액과 이산화탄소를 반응시켜 에틸렌 카보네이트 및 에틸렌 글리콜을 포함하는 생성물을 제조하는 제1 단계; 및 상기 생성물의 에틸렌카보네이트를 가수분해하는 제2 단계;를 포함하는 에틸렌 글리콜 제조 방법을 제공한다.On the other hand, in exemplary embodiments of the present invention, also, in the presence of a catalyst, a first step of reacting an aqueous solution of ethylene oxide with carbon dioxide to prepare a product containing ethylene carbonate and ethylene glycol; and a second step of hydrolyzing the ethylene carbonate of the product; provides a method for producing ethylene glycol comprising.

즉, 상기 촉매 하에서 제1 단계로 에틸렌 옥사이드 수용액과 이산화탄소를 반응시켜 에틸렌 카보네이트 및 에틸렌 글리콜 혼합물을 제조하고, 제2단계로 가수분해반응을 통해 제조하는 에틸렌 글리콜을 제조한다. 이하 더 상술한다.That is, in the first step under the catalyst, an ethylene oxide aqueous solution and carbon dioxide are reacted to prepare a mixture of ethylene carbonate and ethylene glycol, and in the second step, ethylene glycol produced through a hydrolysis reaction is prepared. It will be further detailed below.

(1) 제1 단계: 카보네이트화 반응 (1) First Step: Carbonation Reaction

예시적인 일 구현예에서, 반응물질인 에틸렌 옥사이드 수용액에서 에틸렌 옥사이드와 물 혼합물을 원료로 사용하는 경우, 에틸렌 옥사이드에 대한 물의 공급 몰비는 통상적으로는 10 (에틸렌 옥사이드 농도로 환산하면 약 20중량%) 이하 이며, 바람직하게는 0.5-5.0 (에틸렌 옥사이드 농도로 환산하면 약 1~10 중량%) 일 수 있다. In an exemplary embodiment, when a mixture of ethylene oxide and water is used as a raw material in an aqueous ethylene oxide solution as a reactant, the molar ratio of supply of water to ethylene oxide is typically 10 (converted to ethylene oxide concentration, about 20% by weight) or less, preferably 0.5-5.0 (in terms of ethylene oxide concentration, about 1 to 10% by weight).

상기 촉매의 사용량은 에틸렌 옥사이드 100 중량부에 대해 바람직하게는 0.0001-20 중량부, 보다 바람직하게는 0.05-5 중량부로 사용될 수 있다. 0.0001 중량부 미만인 경우에는 반응속도가 너무 느려질 수 있고, 20 중량부 초과인 경우에는 더 이상 반응속도 및 선택성이 향상되지 않을 수 있으므로 경제적 이득이 없을 수 있다.The amount of the catalyst used is preferably 0.0001-20 parts by weight, more preferably 0.05-5 parts by weight based on 100 parts by weight of ethylene oxide. If it is less than 0.0001 parts by weight, the reaction rate may be too slow, and if it is more than 20 parts by weight, the reaction rate and selectivity may not be improved any more, so there may be no economic benefit.

예시적인 일 구현예에서, 상기 반응의 반응온도는 40~150℃ 또는 80~150℃ 일 수 있다. 반응온도가 너무 낮으면 반응속도가 느려질 수 있고, 반응온도가 너무 높으면 에틸렌 옥사이드가 자체 고분자화 반응(self-polymerization)을 일으키게 되므로 반응 선택성이 떨어질 수 있다.In an exemplary embodiment, the reaction temperature of the reaction may be 40 ~ 150 ℃ or 80 ~ 150 ℃. If the reaction temperature is too low, the reaction rate may be slowed, and if the reaction temperature is too high, ethylene oxide will self-polymerize, and thus the reaction selectivity may be reduced.

예시적인 일 구현예에서, 상기 반응의 이산화탄소 반응 압력은 10∼30기압이다. 반응압력이 10기압 미만이 되면 반응속도가 느려질 수 있으며, 30기압 초과인 경우에는 반응속도 향상 효과가 없는 반면, 장치비가 과다하게 소요될 수 있다. In an exemplary embodiment, the carbon dioxide reaction pressure of the reaction is 10 to 30 atmospheres. When the reaction pressure is less than 10 atmospheres, the reaction rate may be slowed, and if the reaction pressure is more than 30 atmospheres, there is no effect of improving the reaction rate, whereas the equipment cost may be excessive.

예시적인 일 구현예에서, 상기 제1 단계 반응의 에틸렌 카보네이트(EC) 수율은 5~15%일 수 있다. In an exemplary embodiment, the ethylene carbonate (EC) yield of the first step reaction may be 5 to 15%.

예시적인 일 구현예에서, 상기 반응의 반응 시간은 1~4시간일 수 있다. 반응 시간이 1시간 미만일 경우 반응이 일어나지 않을 수 있고, 반응 시간이 4시간이 넘을 경우에는 생성된 EG가 서로 반응하여 DEG(Diethylene glycol) 또는 TEG(Triethylene glycol)이 부산물로 생성될 수 있다.In an exemplary embodiment, the reaction time of the reaction may be 1 to 4 hours. If the reaction time is less than 1 hour, the reaction may not occur, and if the reaction time exceeds 4 hours, the generated EGs may react with each other to produce diethylene glycol (DEG) or triethylene glycol (TEG) as a by-product.

(2) 제 2단계: 가수분해 반응(2) Second step: hydrolysis reaction

한편, 에틸렐글리콜 제조를 위한 제2단계 반응은 가수분해 반응으로, 상기 제1 단계에서 생성된 생성물의 에틸렌 카보네이트를 물과 가수분해반응을 통해 높은 수율로 에틸렌 글리콜로 전환한다(즉, 에틸렌 카보네이트 + 물 →에틸렌 글리콜 + 이산화탄소). 다만, 제1 단계 후 에틸렌 카보네이트와 에틸렌글리콜에서 에틸렌카보네이트만을 분리하는 것은 아니고 에틸렌글리콜과 에틸렌카보네이트를 포함하는 생성물 자체를 가수분해 반응에 제공한다. On the other hand, the second step reaction for preparing ethylrel glycol is a hydrolysis reaction, and the ethylene carbonate of the product produced in the first step is converted into ethylene glycol in high yield through a hydrolysis reaction with water (that is, ethylene carbonate) + water → ethylene glycol + carbon dioxide). However, after the first step, not only ethylene carbonate is separated from ethylene carbonate and ethylene glycol, but the product itself including ethylene glycol and ethylene carbonate is provided for the hydrolysis reaction.

비제한적인 예시에서, 상기 가수분해 공정에서의 반응은 고온에서 실시하는 편이 반응속도면에서 유리하지만, 지나치게 고온으로 하면 부반응이 생겨 에틸렌 글리콜의 순도가 저하될 우려가 있으므로, 통상적으로 100~180℃에서 실시하는 것이 바람직하다. 반응압력은 액의 비점까지의 범위이면 임의이지만, 통상적으로 상압~30기압에서 실시하는 것이 바람직하다. In a non-limiting example, the reaction in the hydrolysis step is advantageous in terms of reaction rate to be carried out at a high temperature, but if the temperature is too high, a side reaction may occur and the purity of ethylene glycol may decrease, so it is usually 100 to 180 ° C. It is preferable to carry out in The reaction pressure is arbitrary as long as it is in the range up to the boiling point of the liquid, but it is usually preferable to carry out the reaction at normal pressure to 30 atm.

이와 같이 제1 단계 카르보네이트화 반응결과, 촉매의 존재 하에, 이산화탄소와 에틸렌 옥사이드 수용액을 반응시켜 에틸렌 카보네이트 및 에틸렌카보네이트 혼합물을 얻고, 제2 단계에서는 해당 혼합물에 추가로 물을 첨가하여 에틸렌 카보네이트를 에틸렌 글리콜로 변환하는 공정을 통하여 저가 촉매를 이용하여 높은 수율로 에틸렌 글리콜을 얻을 수 있게 된다. 이때, 제2 단계에서 물의 첨가량은 중량비로 에틸렌카보네이트의 2~3배 정도가 바람직하다. As a result of the carbonation reaction in the first step as described above, in the presence of a catalyst, carbon dioxide and an aqueous ethylene oxide solution are reacted to obtain a mixture of ethylene carbonate and ethylene carbonate, and in the second step, additional water is added to the mixture to obtain ethylene carbonate. Through the process of converting to ethylene glycol, it is possible to obtain ethylene glycol in high yield using a low-cost catalyst. In this case, the amount of water added in the second step is preferably about 2-3 times that of ethylene carbonate by weight.

이하, 본 발명의 구현예들에 따른 구체적인 실시예를 더욱 상세하게 설명한다. 그러나 본 발명이 하기 실시예에 한정되는 것은 아니며 첨부된 특허청구범위 내에서 다양한 형태의 실시예들이 구현될 수 있고, 단지 하기 실시예는 본 발명의 개시가 완전하도록 함과 동시에 당업계에서 통상의 지식을 가진 자에게 발명의 실시를 용이하게 하고자 하는 것임이 이해될 것이다. Hereinafter, specific examples according to embodiments of the present invention will be described in more detail. However, the present invention is not limited to the following examples, and various types of embodiments can be embodied within the scope of the appended claims, and only the following examples are provided to ensure that the disclosure of the present invention is complete and at the same time as common in the art. It will be understood that the intention is to facilitate practice of the invention to those skilled in the art.

[신규 촉매 제조예][New catalyst preparation example]

신규 촉매의 제조 실시예 1Preparation of novel catalyst Example 1

온도계, 환류 냉각기 및 적가장치가 설치된 3구 플라스크에 바이구아니딘 5g, 요오드칼륨 2.2g과 50% 글루타르알데히드 5.2g을 넣고 반응온도 75℃, pH 3에서 1시간 교반한다. 적가장치를 통해 50% 글루타르알데히드 5.2g을 추가로 가하고, 20% 염산용액으로 pH 4.0으로 조절한 후 12시간 반응시킨다.5 g of biguanidine, 2.2 g of potassium iodide and 5.2 g of 50% glutaraldehyde were put into a 3-neck flask equipped with a thermometer, a reflux condenser and a dropper, and stirred at a reaction temperature of 75° C., pH 3 for 1 hour. 5.2 g of 50% glutaraldehyde is additionally added through a dropper, and the pH is adjusted to 4.0 with 20% hydrochloric acid, followed by reaction for 12 hours.

환류 장치가 부착된 100mL 2구 플라스크에 상기한 방법에 의해 합성된 촉매 전구물질 1.5g과 증류수 50g, 폴리아크릴산 0.5g을 충진하고, 60℃에서 교반하면서 2시간 동안 반응을 진행하였다. 1.5 g of the catalyst precursor synthesized by the above method, 50 g of distilled water, and 0.5 g of polyacrylic acid were charged into a 100 mL two-neck flask equipped with a reflux device, and the reaction was carried out for 2 hours while stirring at 60°C.

반응 후 물은 회전식 증발기(Rotary Evaporator)를 이용하여 감압하에서 제거하였으며, 카르보닐기를 포함하는 신규 촉매 분말 ([화학식 1])을 합성하였다. After the reaction, water was removed under reduced pressure using a rotary evaporator, and a novel catalyst powder ([Formula 1]) containing a carbonyl group was synthesized.

신규 촉매의 제조 실시예 2Preparation of novel catalyst Example 2

온도계, 환류 냉각기 및 적가장치가 설치된 3구 플라스크에 우레아 3.6g, 요오드암모늄 2.2g과 글리옥살(glyoxal) 3.8g, 디에틸렌트리아민 0.05g을 넣고 반응온도 75℃, pH 3에서 1시간 교반한다. 적가장치를 통해 글리옥살 3.8g을 추가로 가하고, 20% 염산용액으로 pH 4.0으로 조절한 후 12시간 반응시킨다.Put urea 3.6g, ammonium iodide 2.2g, glyoxal 3.8g, and diethylenetriamine 0.05g into a 3-neck flask equipped with a thermometer, reflux condenser and dropping device, and stir at a reaction temperature of 75℃, pH 3 for 1 hour. . 3.8 g of glyoxal was additionally added through a dropping device, and the pH was adjusted to 4.0 with a 20% hydrochloric acid solution, followed by reaction for 12 hours.

환류 장치가 부착된 100mL 2구 플라스크에 상기한 방법에 의해 합성된 촉매 전구물질 1.5g과 증류수 50g, 그래핀 옥사이드 0.5g을 충진하고, 60℃에서 교반하면서 2시간 동안 반응을 진행하였다. 1.5 g of the catalyst precursor synthesized by the above method, 50 g of distilled water, and 0.5 g of graphene oxide were charged in a 100 mL two-necked flask equipped with a reflux device, and the reaction was carried out for 2 hours while stirring at 60°C.

반응 후 물은 회전식 증발기(Rotary Evaporator)를 이용하여 감압하에서 제거하였으며, 카르보닐기를 포함하는 신규 촉매 분말([화학식 2])을 합성하였다. After the reaction, water was removed under reduced pressure using a rotary evaporator, and a novel catalyst powder ([Formula 2]) containing a carbonyl group was synthesized.

신규 촉매의 제조 실시예 3Preparation of novel catalyst Example 3

온도계, 환류 냉각기 및 적가장치가 설치된 3구 플라스크에 디시안디아마이드 2.8g, 브롬암모늄 1.9g과 숙신디알데히드(succindialdehyde) 4.5g, 디에틸렌트리아민 0.05g을 넣고 반응온도 75℃, pH 3에서 1시간 교반한다. 적가장치를 통해 숙신디알데히드(succindialdehyde) 4.5g을 추가로 가하고, 20% 염산용액으로 pH 4.0으로 조절한 후 12시간 반응시킨다.In a three-neck flask equipped with a thermometer, reflux condenser and dropping device, 2.8 g of dicyandiamide, 1.9 g of ammonium bromide, 4.5 g of succindialdehyde, and 0.05 g of diethylenetriamine were placed at a reaction temperature of 75°C, pH 3, and 1 time to stir. 4.5 g of succindialdehyde was further added through a dropper, adjusted to pH 4.0 with 20% hydrochloric acid, and reacted for 12 hours.

환류 장치가 부착된 100mL 2구 플라스크에 상기한 방법에 의해 합성된 촉매 전구물질 1.5g과 증류수 50g, 프로피온산 0.5g을 충진하고, 60℃에서 교반하면서 2시간 동안 반응을 진행하였다. 1.5 g of the catalyst precursor synthesized by the above method, 50 g of distilled water, and 0.5 g of propionic acid were charged in a 100 mL two-neck flask equipped with a reflux device, and the reaction was carried out for 2 hours while stirring at 60°C.

반응 후 물은 회전식 증발기(Rotary Evaporator)를 이용하여 감압하에서 제거하였으며, 카르보닐기를 포함하는 신규 촉매 분말([화학식 3])을 합성하였다. After the reaction, water was removed under reduced pressure using a rotary evaporator, and a novel catalyst powder ([Formula 3]) containing a carbonyl group was synthesized.

[알킬렌 글리콜 제조예][Alkylene glycol production example]

(1) 카르보네이트화 반응 (에틸렌 카보네이트 및 에틸렌 글리콜 혼합물)의 제조(1) Preparation of carbonation reaction (ethylene carbonate and ethylene glycol mixture)

이산화탄소로 20기압으로 가압된 체류시간 4시간, 100℃의 제 1반응기에 예시된 신규촉매를 3중량%, 원료 에틸렌 옥사이드 수용액 (60 중량% 에틸렌 옥사이드)를 대상으로 반응시킴으로 에틸렌 카보네이트 및 에틸렌 글리콜을 함유하는 카보네이트화 반응액을 얻었다. Ethylene carbonate and ethylene glycol were produced by reacting 3 wt% of the new catalyst exemplified in the first reactor at 100 °C with a residence time of 4 hours pressurized to 20 atmospheres with carbon dioxide, and an aqueous raw material ethylene oxide solution (60 wt% ethylene oxide). The carbonated reaction liquid containing was obtained.

(2) 가수분해 반응 (에틸렌 글리콜 제조) (2) hydrolysis reaction (production of ethylene glycol)

상기 카보네이트화 반응액을 150℃, 체류시간 2시간, 질소 20기압으로 가수분해하여 에틸렌 카보네이트를 에틸렌 글리콜로 전환하였으며, 반응물 농도 및 전환율, 수율 분석은 GC/MS를 이용하였다. Ethylene carbonate was converted to ethylene glycol by hydrolysis of the carbonate reaction solution at 150° C., residence time of 2 hours, and nitrogen pressure of 20 atm. GC/MS was used to analyze reactant concentration, conversion, and yield.

이하 각 제조 단계에서의 반응 결과를 표 1에 표시하였다. 해당 표 1에서 EC는 에틸렌 카보네이트를 나타내고, EG는 에틸렌 글리콜을 나타낸다.The reaction results in each preparation step are shown in Table 1 below. In Table 1, EC represents ethylene carbonate and EG represents ethylene glycol.

1단계 카보네이트화 반응결과
(100도, 20기압, 4시간, 촉매량 3wt%)
Step 1 Carbonation Reaction Result
(100 degrees, 20 atmospheres, 4 hours, catalyst amount 3wt%)
2단계 가수분해 반응결과
(150도, 5기압, 2시간)
2nd step hydrolysis reaction result
(150 degrees, 5 atmospheres, 2 hours)
ECEC EGEG EGEG 촉매 제조 실시예 1Catalyst Preparation Example 1 13%13% 84%84% 97%97% 촉매 제조 실시예 2Catalyst Preparation Example 2 15%15% 82%82% 97%97% 촉매 제조 실시예 3Catalyst Preparation Example 3 5%5% 90%90% 95%95% 비교예 포스포늄요오드Comparative example phosphonium iodine 39%39% 56%56% 94%94%

이상 표 1에서 알 수 있듯이, 촉매 제조 실시예 1, 2, 3 촉매 모두 비교예인 상용 촉매 포스포늄요오드 대비 카보네이트화 속도가 빨라 생성된 EC가 EG로 더 빨리 전환된 것을 알 수 있으며, 제2 단계의 가수분해 반응에서도 최종 EG 수율이 상용 촉매 대비 더욱 높음을 알 수 있다.As can be seen from Table 1 above, it can be seen that the produced EC was converted to EG faster than the commercial catalyst phosphonium iodine, which is a comparative example, in all of the catalyst preparation Examples 1, 2, and 3 catalysts, so that the generated EC was converted to EG more quickly, the second step It can be seen that the final EG yield is higher than that of a commercial catalyst even in the hydrolysis reaction of

Claims (14)

삭제delete 에틸렌 카보네이트 및 에틸렌 글리콜 제조용 촉매로서,
상기 촉매는 다음 [화학식 1] 내지 [화학식 3] 중 어느 하나로 표시되는 것을 특징으로 하는 촉매.
[화학식 1]
Figure 112021091805404-pat00004

[화학식 2]
Figure 112021091805404-pat00005

[화학식 3]
Figure 112021091805404-pat00006

(상기 [화학식 1] 내지 [화학식 3]에서 n은 각각 반복 단위로서 1 내지 10의 정수이다)
A catalyst for the production of ethylene carbonate and ethylene glycol, comprising:
The catalyst is a catalyst, characterized in that represented by any one of the following [Formula 1] to [Formula 3].
[Formula 1]
Figure 112021091805404-pat00004

[Formula 2]
Figure 112021091805404-pat00005

[Formula 3]
Figure 112021091805404-pat00006

(In [Formula 1] to [Formula 3], n is an integer of 1 to 10 as a repeating unit, respectively)
제 2 항에 있어서,
[화학식 1] 내지 [화학식 3]에서 할라이드(halide)는 Br 또는 I 또는 Cl인 것을 특징으로 하는 촉매.
3. The method of claim 2,
[Formula 1] to [Formula 3] halide (halide) is a catalyst, characterized in that Br or I or Cl.
제 2 항 또는 제 3 항의 촉매 제조 방법으로서,
할라이드, 아민기, 하드록시기를 포함하는 촉매 화합물을 카르복시산 전구체와 반응시키는 단계;를 포함하는 것을 특징으로 하는 촉매 제조 방법.
A method for preparing the catalyst of claim 2 or 3, comprising:
A method for preparing a catalyst comprising: reacting a catalyst compound containing a halide, an amine group, and a hydroxyl group with a carboxylic acid precursor.
제 2 항 또는 제 3 항의 촉매 하에서 에틸렌 옥사이드 수용액과 이산화탄소를 반응시켜 에틸렌 카보네이트 및 에틸렌 글리콜을 포함하는 생성물을 제조하는 제1 단계; 및
상기 생성물의 에틸렌 카보네이트를 가수분해하는 제2 단계;를 포함하는 것을 특징으로 하는 에틸렌 글리콜 제조 방법.
A first step of preparing a product comprising ethylene carbonate and ethylene glycol by reacting an aqueous ethylene oxide solution with carbon dioxide under the catalyst of claim 2 or 3; and
A method for producing ethylene glycol comprising a; a second step of hydrolyzing the ethylene carbonate of the product.
제 5 항에 있어서,
상기 에틸렌 옥사이드 수용액은 에틸렌 옥사이드에 대한 물의 몰비가 10이하인 것을 특징으로 하는 방법.
6. The method of claim 5,
The ethylene oxide aqueous solution is characterized in that the molar ratio of water to ethylene oxide is 10 or less.
제 5 항에 있어서,
상기 촉매의 사용량은 에틸렌 옥사이드 100 중량부에 대해 0.0001-20 중량부인 것을 특징으로 하는 방법.
6. The method of claim 5,
The amount of the catalyst used is 0.0001-20 parts by weight based on 100 parts by weight of ethylene oxide.
제 5 항에 있어서,
상기 제1 단계 반응의 반응 온도는 40~150℃인 것을 특징으로 하는 방법.
6. The method of claim 5,
The reaction temperature of the first step reaction is a method, characterized in that 40 ~ 150 ℃.
제 5 항에 있어서,
상기 제1 단계 반응의 반응 압력은 10∼30기압인 것을 특징으로 하는 방법.
6. The method of claim 5,
Method, characterized in that the reaction pressure of the first step reaction is 10 to 30 atmospheres.
제 5 항에 있어서,
제1 단계에서 에틸렌 카보네이트 및 에틸렌 글리콜을 포함하는 생성물을 얻고, 제2 단계에서는 해당 생성물에 물을 혼합하여 가수 분해를 수행하는 것을 특징으로 하는 방법.
6. The method of claim 5,
A method, characterized in that in the first step, a product comprising ethylene carbonate and ethylene glycol is obtained, and in the second step, hydrolysis is performed by mixing the product with water.
제 5 항에 있어서,
제 2 단계의 가수 분해 반응은 100~180℃에서 수행하는 것을 특징으로 하는 방법.
6. The method of claim 5,
Method characterized in that the hydrolysis reaction of the second step is carried out at 100 ~ 180 ℃.
제 5 항에 있어서,
제 2 단계의 가수 분해 반응은 상압 내지 30기압에서 수행하는 것을 특징으로 하는 방법.
6. The method of claim 5,
The method characterized in that the hydrolysis reaction of the second step is carried out at atmospheric pressure to 30 atmospheres.
에틸렌 카보네이트 및 에틸렌 글리콜 중 하나 이상을 제조하는 장치로서,
제 2 항 또는 제 3 항의 촉매를 포함하는 것을 특징으로 하는 장치.
An apparatus for producing at least one of ethylene carbonate and ethylene glycol, comprising:
Device characterized in that it comprises the catalyst of claim 2 or 3 .
제 13 항에 있어서,
상기 장치는 에틸렌옥사이드 수용액 및 이산화탄소가 제공되고, 상기 촉매를 포함하면, 에틸렌 카보네이트 및 에틸렌 글리콜을 포함하는 생성물을 제조하는 제1 반응기; 및
상기 제1 반응 장치의 생성물과 물이 제공되고, 상기 생성물의 에틸렌카보네이트가 에틸렌글리콜로 가수분해되는 제2 반응기;를 포함하는 것을 특징으로 하는 장치.
14. The method of claim 13,
The apparatus comprises: a first reactor in which an aqueous ethylene oxide solution and carbon dioxide are provided, and when the catalyst is included, producing a product comprising ethylene carbonate and ethylene glycol; and
and a second reactor in which the product of the first reaction device and water are provided, and the ethylene carbonate of the product is hydrolyzed to ethylene glycol.
KR1020200024571A 2020-02-27 2020-02-27 Catalyst for preparation of ethylene carbonate and ethylene glycol, method for preparing the catalyst, method and apparatus for preparing ethylene glycol using thereof KR102364554B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020200024571A KR102364554B1 (en) 2020-02-27 2020-02-27 Catalyst for preparation of ethylene carbonate and ethylene glycol, method for preparing the catalyst, method and apparatus for preparing ethylene glycol using thereof
CN202011320806.0A CN113304774A (en) 2020-02-27 2020-11-23 Catalyst for ethylene carbonate and ethylene glycol production, method for producing the same, and method and apparatus for producing ethylene glycol using the catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200024571A KR102364554B1 (en) 2020-02-27 2020-02-27 Catalyst for preparation of ethylene carbonate and ethylene glycol, method for preparing the catalyst, method and apparatus for preparing ethylene glycol using thereof

Publications (2)

Publication Number Publication Date
KR20210109360A KR20210109360A (en) 2021-09-06
KR102364554B1 true KR102364554B1 (en) 2022-02-21

Family

ID=77370431

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200024571A KR102364554B1 (en) 2020-02-27 2020-02-27 Catalyst for preparation of ethylene carbonate and ethylene glycol, method for preparing the catalyst, method and apparatus for preparing ethylene glycol using thereof

Country Status (2)

Country Link
KR (1) KR102364554B1 (en)
CN (1) CN113304774A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101804762B1 (en) 2017-02-16 2017-12-05 한국과학기술연구원 Catalyst for preparing alkylene carbonate, method for preparing the catalyst, method and apparatus for preparing alkylene carbonate using the catalyst

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102656156B (en) * 2009-11-30 2014-03-12 三菱化学株式会社 Processes for producing ethylene carbonate and ethylene glycol
KR101431123B1 (en) * 2011-08-24 2014-08-19 롯데케미칼 주식회사 Method for regenerating catalysts used in the production of alkylene carbonate and/or alkylene glycol and preparation method of alkylene carbonate and/or alkylene glycol

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101804762B1 (en) 2017-02-16 2017-12-05 한국과학기술연구원 Catalyst for preparing alkylene carbonate, method for preparing the catalyst, method and apparatus for preparing alkylene carbonate using the catalyst

Also Published As

Publication number Publication date
CN113304774A (en) 2021-08-27
KR20210109360A (en) 2021-09-06

Similar Documents

Publication Publication Date Title
CN110105321B (en) Method for synthesizing cyclic carbonate by catalyzing carbon dioxide through eutectic ionic liquid
JP6861289B2 (en) A catalyst for producing alkylene carbonate, a method for producing the same, and a method and apparatus for producing alkylene carbonate using the catalyst.
CN100478338C (en) Process for preparing annular carbonate
JP2010507598A (en) Process for producing 1,2-propanediol by hydrogenolysis of glycerin
CN102336736A (en) Method for catalyzing and preparing annular carbonic ester by supported ionic liquid
KR101981391B1 (en) Method for preparation of alkyl lactate
EP0443758A1 (en) A process for preparing alkylene carbonates
JPH0446133A (en) Production of cyclohexane-1,2-diol
KR102364554B1 (en) Catalyst for preparation of ethylene carbonate and ethylene glycol, method for preparing the catalyst, method and apparatus for preparing ethylene glycol using thereof
US8969600B2 (en) Method for producing glycidol
US6916963B2 (en) Process using water tolerant Lewis acids in catalytic hydration of alkylene oxides to alkylene glycols
US9518035B2 (en) Method for preparing glycidol using glycerol and glycidol obtained thereby
EP2594549B1 (en) Method for preparing a composition of chlorohydrins
US9199950B2 (en) Method for producing glycidol by successive catalytic reactions
CN1250432A (en) Method for producing carboxylic acids or their esters by carbonylation of olefins
CN111097540B (en) Catalyst for synthesizing methyl glycolate and preparation method thereof
EP2589585B1 (en) Method for preparing chlorohydrins and method for preparing epichlorohydrin using chlorohydrins prepared thereby
KR102438038B1 (en) Homogeneous catalyst for preparing alkylene carbonate, method for preparing the catalyst, method for preparing alkylene carbonate using the catalyst
KR101316608B1 (en) Method for preparing glycerol carbonate using Zn catalysts and acid
JPS6133180A (en) Production of epoxy compound
EP1341607B1 (en) Novel antimony catalyst compositions
CN118218018A (en) Method for preparing propylene glycol monomethyl ether by catalyzing propylene liquid-phase oxidative alcoholysis with difunctional TiSn-MFI molecular sieve
RU2149864C1 (en) Method of synthesis of alkylene glycols
JP2003261553A (en) Method for producing epoxy compound
EP4098645A1 (en) Process for making biobased propylene glycol from lactic acid esters

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant