KR102364374B1 - Recycling Method for Copper Sulfate Waste Liquid Generated during Build-Up Process and Agricultural Copper Sulfate Fertilizer produced by the Recycling Method - Google Patents

Recycling Method for Copper Sulfate Waste Liquid Generated during Build-Up Process and Agricultural Copper Sulfate Fertilizer produced by the Recycling Method Download PDF

Info

Publication number
KR102364374B1
KR102364374B1 KR1020200010535A KR20200010535A KR102364374B1 KR 102364374 B1 KR102364374 B1 KR 102364374B1 KR 1020200010535 A KR1020200010535 A KR 1020200010535A KR 20200010535 A KR20200010535 A KR 20200010535A KR 102364374 B1 KR102364374 B1 KR 102364374B1
Authority
KR
South Korea
Prior art keywords
copper sulfate
concentration
build
impurities
copper
Prior art date
Application number
KR1020200010535A
Other languages
Korean (ko)
Other versions
KR20210096896A (en
Inventor
서태권
정인경
인 김
홍세철
Original Assignee
(주)성은
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)성은 filed Critical (주)성은
Priority to KR1020200010535A priority Critical patent/KR102364374B1/en
Publication of KR20210096896A publication Critical patent/KR20210096896A/en
Application granted granted Critical
Publication of KR102364374B1 publication Critical patent/KR102364374B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G3/00Compounds of copper
    • C01G3/10Sulfates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D35/00Filtering devices having features not specifically covered by groups B01D24/00 - B01D33/00, or for applications not specifically covered by groups B01D24/00 - B01D33/00; Auxiliary devices for filtration; Filter housing constructions
    • B01D35/02Filters adapted for location in special places, e.g. pipe-lines, pumps, stop-cocks
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • C02F1/043Details
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/26Treatment of water, waste water, or sewage by extraction
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/66Treatment of water, waste water, or sewage by neutralisation; pH adjustment
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05DINORGANIC FERTILISERS NOT COVERED BY SUBCLASSES C05B, C05C; FERTILISERS PRODUCING CARBON DIOXIDE
    • C05D9/00Other inorganic fertilisers
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B15/00Obtaining copper
    • C22B15/0026Pyrometallurgy
    • C22B15/0056Scrap treating
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

본 발명은 Build-Up 제조공정에서 발생되는 황산구리 폐기물의 재활용 방법 및 이로부터 제조되는 농업용 황산구리 비료에 관한 것으로서, 보다 상세하게는 빌드업 제조공정에서 발생되는 황산구리 폐기물에 포함된 불순물을 제거하고, 증발농축공정 및 여과탈수를 통해 고순도·고농도의 황산구리를 수득하여 농업용 황산구리 비료로 활용하기 위한 방법에 관한 것이다.
본 발명에 따른 빌드업 제조공정에서 발생되는 황산구리 폐기물의 재활용 방법은 황산구리 폐기물에 포함된 불순물을 제거하는 불순물 제거단계(S100);와 증발농축기에 불순물이 제거된 황산구리 폐기물을 피딩하면서 증발농축시켜 과립이 형성된 증발농축물을 제조하는 증발농축단계(S200);와 상기 증발농축물을 여과 및 탈수하여 황산구리 결정을 석출하는 여과 및 탈수단계(S300)를 포함한다.
The present invention relates to a method for recycling copper sulfate waste generated in the build-up manufacturing process and agricultural copper sulfate fertilizer produced therefrom, and more particularly, to remove impurities contained in copper sulfate waste generated in the build-up manufacturing process, and evaporate It relates to a method for obtaining high-purity and high-concentration copper sulfate through a concentration process and filtration and dehydration and using it as an agricultural copper sulfate fertilizer.
The recycling method of copper sulfate waste generated in the build-up manufacturing process according to the present invention includes an impurity removal step (S100) of removing impurities contained in the copper sulfate waste; It includes an evaporation-concentration step (S200) of preparing the formed evaporated concentrate; and a filtering and dehydration step (S300) of filtering and dehydrating the evaporated concentrate to precipitate copper sulfate crystals.

Figure 112020009565225-pat00011
Figure 112020009565225-pat00011

Description

Build-Up 제조공정에서 발생되는 황산구리 폐기물의 재활용 방법 및 이로부터 제조되는 농업용 황산구리 비료{Recycling Method for Copper Sulfate Waste Liquid Generated during Build-Up Process and Agricultural Copper Sulfate Fertilizer produced by the Recycling Method}Recycling Method for Copper Sulfate Waste Liquid Generated during Build-Up Process and Agricultural Copper Sulfate Fertilizer produced by the Recycling Method

본 발명은 Build-Up 제조공정에서 발생되는 황산구리 폐기물의 재활용 방법 및 이로부터 제조되는 농업용 황산구리 비료에 관한 것으로서, 보다 상세하게는 빌드업 제조공정에서 발생되는 황산구리 폐기물에 포함된 불순물을 제거하고, 증발농축공정 및 여과탈수를 통해 고순도·고농도의 황산구리를 수득하여 농업용 황산구리 비료로 활용하기 위한 방법에 관한 것이다. The present invention relates to a method for recycling copper sulfate waste generated in the build-up manufacturing process and to an agricultural copper sulfate fertilizer produced therefrom, and more particularly, to remove impurities contained in copper sulfate waste generated in the build-up manufacturing process, and evaporate It relates to a method for obtaining high-purity and high-concentration copper sulfate through a concentration process and filtration and dehydration and using it as an agricultural copper sulfate fertilizer.

인쇄회로기판(Printed Circuit Board; PCB)은 전자기기의 핵심부품으로 도금, 프린트 등에 의해 차례로 도체층 절연층을 쌓아 올리는 Build-Up (빌드-업)공정에 의해 제조된다.Printed Circuit Board (PCB) is a core component of electronic devices, and is manufactured by a Build-Up process in which conductor layers and insulating layers are sequentially stacked by plating, printing, etc.

상기 빌드-업 공정에서는 황산 등의 산을 이용하여 의해 표면 에칭과정, 수세과정이 필수적으로 수반되며 이 과정에서 황산구리 폐액이 발생되는데, 황산구리 폐액에는 중금속 등의 불순물을 포함하고 있어 그대로 배출될 경우 인체는 물론이고 환경에 매우 유해한 영향을 주기 때문에 중금속 등의 유해물질을 제거하는 처리공정을 거친 후 배출되어야 한다.In the build-up process, a surface etching process and a water washing process are necessarily accompanied by using an acid such as sulfuric acid, and copper sulfate waste liquid is generated in this process. As it has a very harmful effect on the environment, it must be discharged after going through a treatment process that removes harmful substances such as heavy metals.

종래 황산구리 폐기물을 재활용 및 처리하기 위한 기술로, 국내등록특허 제10-1386701호에서는 무전해 도금폐액 또는 이의 농축액인 구리를 포함하는 처리전용액과 황산을 혼합하고, 치오설페이트 화합물을 포함하는 처리용액을 제조한 후 전기분해를 이용하여 상기 처리용액으로부터 금속구리를 회수하는 회수하는 무전해 도금폐액으로부터 고순도 구리의 회수방법을 제시하고 있다.As a technology for recycling and processing conventional copper sulfate wastes, in Korean Patent Registration No. 10-1386701, a treatment solution containing a thiosulfate compound by mixing an electroless plating waste solution or a concentrated solution thereof, an exclusive treatment solution containing copper, and sulfuric acid A method for recovering high-purity copper from an electroless plating waste solution for recovering metallic copper from the treatment solution by using electrolysis after manufacturing is presented.

또한, 국내등록특허 제10-1965748호에서는 크롬, 니켈 및 구리가 도금된 폐ABS수지를 파쇄한 후, 묽은 황산용액에 담가 니켈과 구리를 용해시키고, 물리적 교반 및 초음파를 가하여 도금된 크롬입자를 박리시키는 공정을 포함하는 크롬, 니켈 및 구리가 도금된 폐ABS수지를 재활용하는 방법을 제시하고 있다.In addition, in Korea Patent No. 10-1965748, after crushing the waste ABS resin plated with chromium, nickel and copper, immersing it in a dilute sulfuric acid solution to dissolve nickel and copper, and applying physical stirring and ultrasonic waves to the plated chrome particles A method for recycling waste ABS resin plated with chromium, nickel and copper including a peeling process is presented.

한편, 황산구리는 작물의 물질 대사 및 엽록소의 작용과도 관련이 있어 황산구리가 결핍되면 잎이 퇴색되고 뒤틀리며 싹 생장이 저해되며, 잎맥에는 괴사성 병반이 발생되거나 꽃이 개화되지 않게 된다. 또한, 황산구리가 부족한 토양은 대부분이 pH가 낮아져 결과적으로는 인산, 붕소 등의 다른 성분들의 흡수방해 및 결핍을 유발한다. On the other hand, copper sulfate is also related to the metabolism of crops and the action of chlorophyll, so when copper sulfate is deficient, leaves are discolored and twisted, and shoot growth is inhibited, and necrotic lesions occur in leaf veins or flowers do not bloom. In addition, most of the soils lacking copper sulfate have a low pH, which in turn causes absorption and deficiency of other components such as phosphoric acid and boron.

본 발명은 빌드업 제조공정에서 발생되는 황산구리 함유 폐기물로부터 황산구리를 수득하고 농업용 비료로 활용하기 위한 연구의 일환으로 황산구리 폐기물의 중금속 등의 불순물을 최적의 조건 하에서 제거하고 이를 증발농축하여 고순도·고농도의 황산구리를 수득할 수 있음을 확인하여 본 발명에 이르게 되었다. The present invention is a part of research to obtain copper sulfate from copper sulfate-containing waste generated in the build-up manufacturing process and use it as agricultural fertilizer under optimal conditions to remove impurities such as heavy metals from copper sulfate waste under optimal conditions and evaporate it to obtain high purity and high concentration It was confirmed that copper sulfate can be obtained, leading to the present invention.

국내등록특허 제10-1386701호Domestic Registered Patent No. 10-1386701 국내등록특허 제10-1965748호Domestic Registered Patent No. 10-1965748

상기와 같은 문제점을 해결하기 위한 본 발명의 목적은 빌드업 제조공정에서 발생되는 황산구리 폐기물의 불순물을 제거하고 증발농축공정 및 여과탈수공정을 통해 고순도·고농도의 황산구리를 수득하여 농업용 황산구리 비료로 활용하기 위한 방법을 제공하는 것이다.An object of the present invention to solve the above problems is to remove impurities of copper sulfate waste generated in the build-up manufacturing process and to obtain high-purity and high-concentration copper sulfate through an evaporation concentration process and a filtration and dehydration process to utilize it as an agricultural copper sulfate fertilizer. to provide a way for

상기 과제를 해결하기 위한 본 발명의 빌드업 제조공정에서 발생되는 황산구리 폐기물의 재활용 방법은 황산구리 폐기물에 포함된 불순물을 제거하는 불순물 제거단계(S100);와 증발농축기에 불순물이 제거된 황산구리 폐기물을 피딩하면서 증발농축시켜 과립이 형성된 증발농축물을 제조하는 증발농축단계(S200);와 상기 증발농축물을 여과 및 탈수하여 황산구리 결정을 석출하는 여과 및 탈수단계(S300)를 포함한다. The recycling method of copper sulfate waste generated in the build-up manufacturing process of the present invention for solving the above problems is an impurity removal step (S100) of removing impurities contained in the copper sulfate waste; and feeding the copper sulfate waste from which impurities are removed to an evaporator. It includes an evaporation concentration step (S200) of preparing an evaporation concentrate in which granules are formed by evaporation while concentrating; and a filtering and dehydration step (S300) of filtering and dehydrating the evaporation concentrate to precipitate copper sulfate crystals.

상기 불순물 제거단계(S100)는 pH 제어, 용매추출법 및 이들의 조합 중 어느 하나의 방법을 이용하여 불순물을 제거하는 것을 특징으로 한다.The impurity removal step (S100) is characterized in that the impurities are removed using any one of pH control, solvent extraction, and a combination thereof.

상기 불순물 제거단계(S100)에서 pH는 2 내지 5로 제어되는 것을 특징으로 한다.In the impurity removal step (S100), the pH is controlled to 2 to 5.

상기 불순물 제거단계(S100)의 용매추출법은 인산계 용매, 트리알킬포스핀계 용매, 옥심계 용매 및 이들의 조합 중 어느 하나의 용매를 이용하는 것을 특징으로 한다.The solvent extraction method of the impurity removal step (S100) is characterized in that any one of a phosphoric acid solvent, a trialkylphosphine solvent, an oxime solvent, and a combination thereof is used.

상기 불순물 제거단계(S100)에서 용매추출법은 연속식 용매추출법을 이용한 것임을 특징으로 한다.The solvent extraction method in the impurity removal step (S100) is characterized in that it uses a continuous solvent extraction method.

상기 증발농축단계(S200)는 40 에서 100℃ 까지 단계적으로 승온하면서 증발농축시키는 것을 특징으로 한다.The evaporation and concentration step (S200) is characterized in that the evaporation concentration while raising the temperature stepwise from 40 to 100 ℃.

상술한 바와 같이, 본 발명에 따른 빌드업 제조공정에서 발생되는 황산구리 폐기물의 재활용 방법에 의하면, 빌드업 제조공정에서 발생되는 황산구리 폐기물의 불순물을 제거하고 증발농축공정 및 여과탈수공정을 통해 고순도·고농도의 황산구리를 수득하여 황산구리를 재활용하고 농업용 비료로 활용할 수 있는 효과가 있다. As described above, according to the recycling method of copper sulfate waste generated in the build-up manufacturing process according to the present invention, impurities in the copper sulfate waste generated in the build-up manufacturing process are removed and high-purity and high-concentration processes are performed through evaporation and dehydration and filtration. It has the effect of recycling copper sulfate by obtaining copper sulfate and using it as agricultural fertilizer.

도 1은 본 발명에 따른 빌드업 제조공정에서 발생되는 황산구리 폐기물의 재활용 방법을 보여주는 순서도.
도 2는 본 발명의 일 실시예에 따른 연속식 용매추출 시스템 공정도.
도 3은 본 발명의 일 실시예에 따른 결정화 조건에 따른 황산구리 결정으로 (A)는 상온조건 하의 황산구리 결정, (B)는 고온조건 하에서 황산구리 결정사진.
도 4는 본 발명의 일 실시예에 따른 황산구리 Pilot 시스템 공정 순서도.
1 is a flow chart showing a recycling method of copper sulfate waste generated in the build-up manufacturing process according to the present invention.
2 is a process diagram of a continuous solvent extraction system according to an embodiment of the present invention.
3 is a copper sulfate crystal according to the crystallization conditions according to an embodiment of the present invention, (A) is a copper sulfate crystal under room temperature conditions, (B) is a photograph of copper sulfate crystals under a high temperature condition.
Figure 4 is a process flow chart of a copper sulfate pilot system according to an embodiment of the present invention.

본 발명의 구체적 특징 및 이점들은 이하에서 첨부도면을 참조하여 상세히 설명한다. 이에 앞서 본 발명에 관련된 기능 및 그 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 구체적인 설명을 생략하기로 한다.Specific features and advantages of the present invention will be described in detail below with reference to the accompanying drawings. Prior to this, when it is determined that a detailed description of a function and a configuration related to the present invention may unnecessarily obscure the gist of the present invention, a detailed description thereof will be omitted.

본 발명은 Build-Up 제조공정에서 발생되는 황산구리 폐기물의 재활용 방법 및 이로부터 제조되는 농업용 황산구리 비료에 관한 것으로서, 보다 상세하게는 빌드업 제조공정에서 발생되는 황산구리 폐기물에 포함된 불순물을 제거하고, 증발농축공정 및 여과탈수를 통해 고순도·고농도의 황산구리를 수득하여 농업용 황산구리 비료로 활용하기 위한 방법에 관한 것이다. The present invention relates to a method for recycling copper sulfate waste generated in the build-up manufacturing process and to an agricultural copper sulfate fertilizer produced therefrom, and more particularly, to remove impurities contained in copper sulfate waste generated in the build-up manufacturing process, and evaporate It relates to a method for obtaining high-purity and high-concentration copper sulfate through a concentration process and filtration and dehydration and using it as an agricultural copper sulfate fertilizer.

도 1은 본 발명에 따른 빌드업 제조공정에서 발생되는 황산구리 폐기물의 재활용 방법을 보여주는 순서도이다.1 is a flowchart showing a recycling method of copper sulfate waste generated in a build-up manufacturing process according to the present invention.

본 발명에 따른 빌드업 제조공정에서 발생되는 황산구리 폐기물의 재활용 방법은 황산구리 폐기물에 포함된 불순물을 제거하는 불순물 제거단계(S100)와 증발농축기에 불순물이 제거된 황산구리 폐기물을 피딩하면서 증발농축시켜 과립이 형성된 증발농축물을 제조하는 증발농축단계(S200)와 상기 증발농축물을 여과 및 탈수하여 황산구리 결정을 석출하는 여과 및 탈수단계(S300)를 포함한다.The recycling method of copper sulfate waste generated in the build-up manufacturing process according to the present invention includes an impurity removal step (S100) of removing impurities contained in the copper sulfate waste and evaporative concentration while feeding the copper sulfate waste from which impurities have been removed to an evaporator to obtain granules. It includes an evaporation-concentration step (S200) of preparing the formed evaporated concentrate, and a filtration and dehydration step (S300) of filtering and dehydrating the evaporated concentrate to precipitate copper sulfate crystals.

불순물 제거단계(S100)에서는 황산구리 폐기물에 포함된 중금속 및 불순물을 제거하는 단계로, 구리를 제외한 카드뮴, 납, 크롬, 니켈, 아연 등의 불순물을 제거할 수 있다.In the impurity removal step ( S100 ), heavy metals and impurities contained in the copper sulfate waste are removed, and impurities such as cadmium, lead, chromium, nickel, and zinc may be removed except for copper.

상기 불순물 제거단계(S100)는 pH 제어, 용매추출법, 계면활성제를 이용한 흡착제거 및 이들의 조합 중 어느 하나의 방법을 이용하여 황산구리 폐기물에 포함된 불순물을 제거할 수 있다. In the impurity removal step (S100), impurities contained in the copper sulfate waste may be removed using any one of pH control, solvent extraction, adsorption removal using a surfactant, and a combination thereof.

제 1실시예에 따른 불순물 제거단계(S100-A)는 1차로 pH 제어를 통해 불순물을 제거하고, 2차로 용매추출법을 통해 불순물을 제거 및 구리를 분리하는 것으로, pH 제어를 통해 구리를 제외한 불순물을 침전 및 여과시켜 제어할 수 있으며, 이때 pH는 2 내지 5로 제어되는데 pH 2 미만에서는 불순물을 침전시키기가 어렵고, pH 5를 초과할 경우에는 구리의 침전까지 함께 수반되어 구리의 수득함량을 감소시키기 때문에 상기 pH 범위를 벗어나지 않는 것이 바람직하다.The impurity removal step (S100-A) according to the first embodiment is to first remove impurities through pH control, and secondly to remove impurities and separate copper through solvent extraction. Impurities other than copper through pH control can be controlled by precipitation and filtration, where the pH is controlled to 2 to 5. If the pH is less than 2, it is difficult to precipitate impurities. Therefore, it is preferable not to deviate from the above pH range.

상기 pH 제어는 알칼리 용액을 이용하여 제어할 수 있으며, 상기 알칼리 용액의 종류는 알칼리성을 갖는 것이라면 한정하지 않지만, 구체적인 예로는, 수산화나트륨, 수산화칼륨, 수산화칼슘, 탄산나트륨, 탄산수소나트륨 및 이들의 조합 중 어느 하나를 사용할 수 있고, 알칼리 용액의 농도는 0.1 내지 2M의 농도를 갖는 것을 사용할 수 있다.The pH control may be controlled using an alkali solution, and the type of the alkali solution is not limited as long as it has alkalinity, but specific examples include sodium hydroxide, potassium hydroxide, calcium hydroxide, sodium carbonate, sodium hydrogen carbonate, and combinations thereof. Any one may be used, and the alkali solution may have a concentration of 0.1 to 2M.

용매추출법은 인산계 용매, 트리알킬포스핀계 용매, 옥심계 용매 및 이들의 조합 중 어느 하나의 용매추출용 용매를 이용할 수 있다. For the solvent extraction method, any one of a phosphoric acid-based solvent, a trialkylphosphine-based solvent, an oxime-based solvent, and a combination thereof may be used.

보다 상세하게는, 인산계 용매로는 미국 사이텍(SYTEK)사의 D2EHPA(di(2-ethylhexyl)phosphate acid), 트리알킬포스핀계 용매로는 미국 사이텍(SYTEK)사의 Cyanex 932(Trialkylphosohine oxide), 옥심계 용매로는 독일 헨켈(Henkel)사의 Lix 973(5-dodecyl-salicylad oxime)를 사용할 수 있으며, 이에 한정하는 것은 아니다. 바람직하게는, 인산계 용매인 D2EHPA(di(2-ethylhexyl)phosphate acid)를 사용할 수 있다. More specifically, as a phosphoric acid-based solvent, D2EHPA (di(2-ethylhexyl)phosphate acid) of SYTEK, USA, Cyanex 932 (Trialkylphosohine oxide) of SYTEK, an oxime-based solvent as a trialkylphosphine-based solvent As the solvent, Lix 973 (5-dodecyl-salicylad oxime) manufactured by Henkel, Germany, may be used, but is not limited thereto. Preferably, a phosphoric acid solvent, D2EHPA (di(2-ethylhexyl)phosphate acid) may be used.

용매추출제를 이용하여 Cu를 추출하기에 앞서 용매 추출 효율을 향상시키기 위하여 불순물이 제거된 황산구리 폐액의 pH를 1 내지 2로 제어할 수 있다. Prior to extracting Cu using a solvent extractant, the pH of the copper sulfate waste liquid from which impurities are removed may be controlled to 1 to 2 in order to improve the solvent extraction efficiency.

또한, 용매 추출 효율을 향상시키기 위하여 황산구리 폐액과 용매추출제는 1~2: 1의 부피비로 혼합될 수 있다. In addition, in order to improve the solvent extraction efficiency, the copper sulfate waste liquid and the solvent extractant may be mixed in a volume ratio of 1-2: 1.

용매추출법을 이용할 경우, 연속식 용매추출법을 이용하여 황산구리의 순도 및 수득함량을 향상시킬 수 있다.When the solvent extraction method is used, the purity and yield content of copper sulfate can be improved by using the continuous solvent extraction method.

연속식 용매추출법은 연속식 용매추출 장치를 이용하여 수행되며, 상기 연속식 용매추출 장치는 용매추출용 용매와 황산구리 폐기물을 혼합 및 반응시키는 제1분리조와 제 2분리조, 제 1분리조로부터 분리된 수상이 저장되는 제 1수상저장조, 제 2분리조로부터 분리된 수상이 저장되는 제 2수상저장조, 제 1분리조와 제 2분리조에서 분리된 유기상을 보관하는 유기상 저장조 및 분리된 유기상와 탈거액을 혼합 및 반응시켜 황산구리를 분리하기 위한 탈거조를 포함한다. 이때, 탈거액은 구리 및 구리화합물을 분리하기 위한 것이라면 한정하지 않으나, 바람직하게는, 황산수용액을 사용할 수 있다. The continuous solvent extraction method is performed using a continuous solvent extraction device, which is separated from the first separation tank, the second separation tank, and the first separation tank for mixing and reacting the solvent for solvent extraction and the copper sulfate waste The first aqueous phase storage tank in which the dried aqueous phase is stored, the second aqueous phase storage tank in which the aqueous phase separated from the second separation tank is stored, the organic phase storage tank that stores the organic phase separated in the first and second separation tanks, and the separated organic phase and the stripping solution. and a stripping tank for separating copper sulfate by mixing and reacting. At this time, the stripping solution is not limited as long as it is for separating copper and copper compounds, but preferably, a sulfuric acid aqueous solution may be used.

연속식 용매추출 장치를 이용한 용매추출법은 제 1분리조에 용매추출용 용매와 황산구리 폐기물을 혼합 및 반응시켜 제 1수상과 제 1유기상을 분리하여 제1수상은 제 1수상저장조로 이송하고, 제 1유기상은 유기상 저장조로 이송하는 1차 용매추출단계와 제 2분리조에 용매추출용 용매와 제 1수상을 혼합 및 반응시켜 제 2수상과 제 2유기상을 분리하여 제2수상은 제 2수상저장조로 이송하고, 제 2유기상은 유기상 저장조로 이송하는 2차 용매추출단계와 탈거조에서 상기 제 1유기상과 제 2유기상을 탈거액과 혼합 및 반응시켜 황산구리를 수득하기 위한 탈거단계를 포함한다. In the solvent extraction method using a continuous solvent extraction device, a solvent for solvent extraction and copper sulfate waste are mixed and reacted in a first separation tank to separate a first aqueous phase and a first organic phase, and the first aqueous phase is transferred to the first aqueous phase storage tank, and the first The first solvent extraction step of transferring the organic phase to the organic phase storage tank and the mixing and reaction of the solvent for solvent extraction and the first aqueous phase in the second separation tank to separate the second aqueous phase and the second organic phase, and transfer the second aqueous phase to the second aqueous phase storage tank and a second solvent extraction step of transferring the second organic phase to an organic phase storage tank, and a stripping step for obtaining copper sulfate by mixing and reacting the first organic phase and the second organic phase with a stripping solution in the stripping tank.

일 실시예로 1, 2차 용매추출단계까지 수행됨을 설명하였으나, 이에 한정하는 것은 아니며, 용매추출공정은 n차 수행될 수 있으며, 구리를 포함하는 유기상은 스크러빙 및 역추출을 통해 황산구리로 수득될 수 있다.As an example, it has been described that the first and second solvent extraction steps are performed, but it is not limited thereto, and the solvent extraction process may be performed n-th, and the organic phase containing copper is to be obtained as copper sulfate through scrubbing and back extraction. can

바람직하게는, 용매추출 장치에 투입되는 황산구리 폐기물의 pH를 1 내지 3으로 조정 후 용매추출함으로써 불순물 분리 및 구리의 추출률을 향상시킬 수 있다.Preferably, by adjusting the pH of the copper sulfate waste input to the solvent extraction device to 1 to 3 and then solvent extraction, it is possible to improve the separation of impurities and the extraction rate of copper.

제 2실시예에 따른 불순물 제거단계(S100-B)는 1차로 pH 제어를 통해 불순물을 제거하고, 2차로 계면활성제를 이용하여 불순물이 흡착된 응집체를 형성 및 냉각침전 후 침전물을 여과시켜 불순물을 제거하고, 3차로 용매추출법을 통해 잔여 불순물을 제거 및 구리를 분리시킬 수 있다. In the impurity removal step (S100-B) according to the second embodiment, impurities are firstly removed through pH control, and impurities are removed by secondly filtering the precipitate after cooling and precipitation to form an agglomerate to which impurities are adsorbed using a surfactant. removed, and the remaining impurities may be removed and copper may be separated through a third solvent extraction method.

1차의 pH제어를 통한 불순물의 제거 및 3차의 용매추출법을 이용한 불순물을 제거 공정의 경우 상술된 바와 동일한 바, 이에 대한 설명은 생략하도록 한다. In the case of the removal of impurities through the first pH control and the removal of impurities using the third solvent extraction method, the same as described above, a description thereof will be omitted.

계면활성제를 이용한 흡착제거에서는 1차 pH 제어를 통해 불순물을 포함하는 침전물을 제거하고 남은 여액에 계면활성제를 투입하여 미셸에 중금속이 흡착된 형태의 응집체를 형성하고, 상기 응집체를 냉각침전하여 침전물을 여과시킴으로써 Cu를 제외한 중금속 및 불순물을 제거할 수 있다.In the adsorption removal using a surfactant, the precipitate containing impurities is removed through the primary pH control, and a surfactant is added to the remaining filtrate to form an aggregate in which heavy metal is adsorbed to the micelles, and the aggregate is cooled and precipitated to remove the precipitate By filtration, heavy metals and impurities other than Cu can be removed.

이때, 상기 계면활성제는 음이온 계면활성제, 비이온 계면활성제, 양이온 계면활성제, 양성 계면활성제 및 이들의 조합 중 어느 하나를 사용할 수 있으나, 보다 바람직하게는, 정전기적 인력에 의하여 효과적으로 양이온의 중금속 성분을 용이하게 흡착 및 응집체를 형성하여 침전분리가 가능한 음이온 계면활성제를 사용할 수 있다. At this time, as the surfactant, any one of anionic surfactants, nonionic surfactants, cationic surfactants, amphoteric surfactants, and combinations thereof may be used, but more preferably, the heavy metal component of the cation effectively by electrostatic attraction Anionic surfactants that can easily adsorb and form aggregates can be used for precipitation separation.

상기 음이온 계면활성제는 카르복시산 염(RCOO-M+), 설폰산 염(RSO3-M+), 황산에스테르 염(ROSO3-M+), 인산 에스테르 염(RPO3-Na2+) 및 이들의 조합 중 어느 하나로 선택될 수 있으며, 구체적인 예로는, 소듐 도데실 설페이트(Sodium Dodecyl Sulfate;SDS), 암모늄 라우릴 설페이트(Ammonium Lauryl Sulfate;ALS), 소듐 라우릴 에틸렌 설페이트(Sodium Lauryl Ethylene Sulfate;SLES), 리니어 알킬벤젠 설포네이트(Linear Alkylbenzene Sulfonate;LAS), 알파-올레핀 설포네이트(α-Olefin Sulfonate;AOS) 알킬 설페이트(Alkyl Sulfate; AS), 알킬 에테르 설페이트(Alkyl Ether Sulfate; AES), 소듐 알칸 설포네이트(Sodium Alkane Sulfonate;SAS) 및 이들의 조합 중 어느 하나를 포함할 수 있으나, 이에 한정하는 것은 아니다. 보다 바람직하게는, 소듐 도데실 설페이트(Sodium Dodecyl Sulfate;SDS)를 사용할 수 있다.The anionic surfactant may be selected from any one of carboxylic acid salts (RCOO - M + ), sulfonic acid salts (RSO3 - M + ), sulfuric acid ester salts (ROSO3 - M + ), phosphoric acid ester salts (RPO3 - Na2 + ), and combinations thereof. may be selected, and specific examples include sodium dodecyl sulfate (SDS), ammonium lauryl sulfate (ALS), sodium lauryl ethylene sulfate (SLES), and linear alkylbenzene. Linear Alkylbenzene Sulfonate (LAS), Alpha-Olefin Sulfonate (AOS) Alkyl Sulfate (AS), Alkyl Ether Sulfate (AES), Sodium Alkane Sulfonate (AES) Sulfonate; SAS) and any one of combinations thereof, but is not limited thereto. More preferably, sodium dodecyl sulfate (Sodium Dodecyl Sulfate; SDS) may be used.

계면활성제의 첨가량은 S/M (surfactant/metal) 몰비 6 내지 10: 1 를 갖도록 투입하는데, 계면활성제의 첨가량이 상기 범위 미만이면(적게 첨가되면) 중금속의 흡착 및 분리 수득이 어려우며, 상기 범위를 초과할 경우에는(많이 첨가되면) 함량 증대에 따른 중금속의 흡착 및 분리 수득 효과가 미미하기 때문에 공정 효율상 상기 범위를 벗어나지 않는 것이 바람직하다.The addition amount of the surfactant is added to have a S/M (surfactant/metal) molar ratio of 6 to 10: 1, and if the amount of the surfactant is less than the above range (if it is added less), it is difficult to obtain adsorption and separation of heavy metals, If it exceeds (if a lot is added), it is preferable not to deviate from the above range in terms of process efficiency because the effect of adsorption and separation of heavy metals according to the content increase is insignificant.

이때, 계면활성제와 반응 및 수산화나트륨을 주입하면서 pH 6 내지 8을 유지하면서 1차로 슬러지를 걸러내고, 여과액을 3 내지 5℃에서 3시간 내지 6시간 냉각시켜 중금속이 흡착된 응집체를 냉각침전시킨 후 여과시키게 된다. At this time, the sludge was first filtered while maintaining pH 6 to 8 while reacting with the surfactant and injecting sodium hydroxide, and the filtrate was cooled at 3 to 5 ° C. for 3 to 6 hours to cool and precipitate the aggregates adsorbed with heavy metals. then filtered.

계면활성제는 투입한 시점부터 응집체의 여과분리까지는 6시간 내지 15시간 수행될 수 있으며, 보다 바람직하게는, 전체 반응시간 중 투입 초기(시작부터 전체 반응시간의 20%)는 30 내지 35℃에서 150 내지 300 rpm으로 교반하여 계면활성제를 여액 내부에 균일하게 분산시키고, 수산화나트륨을 주입하면서 pH 6 내지 8을 유지하면서 1차로 불순물 슬러지를 걸러내고, 전체 반응시간 20% 초과 내지 50% 까지는 교반을 멈추고, 상온(20 내지 25℃)에서 정치(定置)함으로써 계면활성제의 미셸에 중금속 성분이 안정적으로 흡착되어 응집체를 형성하기 위한 시간을 가지며, 전체 반응시간 50% 초과 내지 종료시점까지는 3 내지 5℃에서 응집체를 냉각침전시키게 된다. 바람직하게는, 상기 냉각침전공정은 3시간 내지 6시간 수행될 수 있다.The surfactant may be carried out for 6 hours to 15 hours from the time of input to the filtration separation of the aggregates, and more preferably, the initial input of the total reaction time (20% of the total reaction time from the start) is 150 at 30 to 35 ° C. The surfactant is uniformly dispersed in the filtrate by stirring at 300 rpm, and the impurity sludge is first filtered while maintaining pH 6 to 8 while injecting sodium hydroxide, and stirring is stopped until the total reaction time exceeds 20% to 50% , by standing at room temperature (20 to 25 ° C.), the heavy metal component is stably adsorbed to the micelles of the surfactant and has a time to form an aggregate, and from 3 to 5 ° C. The agglomerates are cooled and precipitated. Preferably, the cooling precipitation process may be performed for 3 to 6 hours.

중금속을 포함하는 응집체는 Cu를 제외한 Pd, Fe, Cd 등의 중금속을 포함하는 것으로 용매에 용해 및 세척하거나 고액분리 및 이온교환수지를 이용하여 상기 중금속을 분리 및 특정 중금속을 추출하여 자원으로 재활용할 수 있다.Aggregates containing heavy metals contain heavy metals such as Pd, Fe, and Cd except Cu. Dissolve and wash in a solvent, or use solid-liquid separation and ion exchange resin to separate the heavy metals and extract specific heavy metals to be recycled as resources. can

증발농축단계(S200)에서는 증발농축기에 불순물이 제거된 황산구리 폐기물 및 용매추출된 황산구리수용액(이하, 황산구리 수용액)을 1 내지 10회 피딩(feeding)하면서 증발농축시켜 과립이 형성된 증발농축물을 제조하게 된다.In the evaporative concentration step (S200), the copper sulfate waste from which impurities have been removed and the solvent-extracted copper sulfate aqueous solution (hereinafter, copper sulfate aqueous solution) are fed 1 to 10 times in the evaporative concentrator to evaporate and concentrate to produce granules. do.

이때, 증발농축은 30분 내지 10시간 수행될 수 있으며, 40℃ 에서 100℃ 에서 수행될 수 있다. 보다 바람직하게는, 40℃ 에서 100℃ 에서 단계적으로 승온하면서 황산구리 폐기물 과립을 형성할 수 있다. 이때, 승온온도는 끓는 점에 도달할 경우 0.1 내지 2 ℃/min가 되도록 서서히 승온시키거나, 5분 내지 30분 간격으로 3 내지 10 ℃ 승온시켜 황산구리 결정이 생기기 시작하는 황산구리 농도 230,000 내지 260,000 ppm 까지 증발농축 공정을 수행할 수 있다.At this time, evaporation and concentration may be performed for 30 minutes to 10 hours, and may be performed at 40°C to 100°C. More preferably, copper sulfate waste granules can be formed while the temperature is raised stepwise from 40°C to 100°C. At this time, when the temperature rises to the boiling point, the temperature is gradually increased to 0.1 to 2 °C/min, or by 3 to 10 °C at intervals of 5 to 30 minutes to a copper sulfate concentration of 230,000 to 260,000 ppm at which copper sulfate crystals begin to form. An evaporative concentration process may be performed.

이때, 증발농축기 내에 황산구리 수용액을 단일공급하지 않고, 2 내지 10회 다단공급하는데, 다단공급시 pH 구배, 농도 구배 및 이들의 조합을 산출하여 황산구리 수용액의 공급여부 및 공급량을 결정할 수 있다. 이를 위해 증발농축기 내부의 황산구리 수용액의 pH를 측정하기 위한 pH 측정수단 및 황산구리의 농도를 측정하기 위한 농도 측정수단을 더 포함할 수 있다.At this time, the copper sulfate aqueous solution is not supplied singly in the evaporator, but is supplied in multiple stages 2 to 10 times, and when the multistage supply is performed, the pH gradient, the concentration gradient, and combinations thereof are calculated to determine whether the copper sulfate aqueous solution is supplied and the supply amount. To this end, it may further include a pH measuring means for measuring the pH of the aqueous copper sulfate solution inside the evaporator and a concentration measuring means for measuring the concentration of copper sulfate.

보다 상세하게는, 증발농축시 증발농축기 내 수용된 황산구리 폐기물 및 수용액 내의 황산구리가 농축될 수록 황산구리의 농도가 높아지고 증발농축기 내 pH는 낮아지는데, 황산구리 수용액의 증발농축이 원활하게 이루어질 경우, 소정 범위의 pH 구배 및 농도 구배를 가지며 증발농축이 진행되나 농축되는 황산구리의 함량이 적을 경우, pH 구배 및 농도 구배가 상기 범위를 벗어나게 된다. More specifically, as the copper sulfate waste contained in the evaporator and the copper sulfate in the aqueous solution are concentrated during evaporative concentration, the concentration of copper sulfate increases and the pH in the evaporator decreases. When evaporative concentration proceeds with a gradient and a concentration gradient, but the content of the concentrated copper sulfate is small, the pH gradient and the concentration gradient are out of the above ranges.

구체적인 예를 들자면, 증발농축시 황산구리 수용액 내의 황산구리 농도가 5,000 내지 6,000 ppm/hr 증가되어야 하나, 5000ppm/hr 미만으로 측정될 때 황산구리 수용액을 추가공급하며, 이때, 초기 투입 후 산출된 농도 구배 또는 기설정된 농도 구배 값과의 차이를 산출하여 공급량을 제어하는 것도 가능하다.As a specific example, the copper sulfate concentration in the copper sulfate aqueous solution should be increased by 5,000 to 6,000 ppm/hr during evaporation and concentration, but when it is measured to be less than 5000 ppm/hr, the copper sulfate aqueous solution is additionally supplied, and at this time, the concentration gradient or group calculated after the initial input It is also possible to control the supply amount by calculating the difference from the set concentration gradient value.

단일공급하여 황산구리 수용액을 증발농축시키는 것 보다 증발 농축기 내 황산구리 수용액의 pH 및 농도에 따라 황산구리 수용액을 공급함으로써 시간 대비 생산량이 1.5 내지 3배이며, 증발농축기의 대형화가 요구되지 않는 이점이 있다.By supplying an aqueous solution of copper sulfate according to the pH and concentration of the aqueous solution of copper sulfate in the evaporator rather than evaporating and concentrating the aqueous solution of copper sulfate through a single supply, the production volume is 1.5 to 3 times compared to the time, and there is an advantage that the enlargement of the evaporator is not required.

여과 및 탈수단계(S300)에서는 상기 증발농축물을 여과 및 탈수하여 황산구리 결정을 석출한다. In the filtration and dehydration step (S300), The evaporated concentrate is filtered and dehydrated to precipitate copper sulfate crystals.

여과 및 탈수는 필터프레스를 이용할 수 있으며, 여과 및 탈수를 위한 목적이라면 이에 한정하는 것은 아니다. 필터프레스는 여과포 사이즈 50 내지 200 mesh, 압력 1 내지 15 kgf/㎠ 하에서 수행되며, 상기 여과포 사이즈 및 압력 조건에서 여과 및 탈수 효율이 우수하다.For filtration and dehydration, a filter press may be used, and if the purpose is for filtration and dehydration, the present invention is not limited thereto. The filter press is performed under a filter cloth size of 50 to 200 mesh and a pressure of 1 to 15 kgf/cm 2 , and filtration and dehydration efficiency is excellent under the filter cloth size and pressure conditions.

본 발명에 따른 빌드업 제조공정에서 발생되는 황산구리 폐기물로부터 수득되는 황산구리 분말은 상술된 재활용 방법에 의해 수득되며, 상기 황산구리 분말은 순도 98~99%를 갖는 황산구리 5수화물(CuSO4·5H2O)을 약 23~26% 포함하며, 비료의 중금속 함유 허용 기준치 이내의 중금속을 포함하는 바, 농업용 비료로 사용하기 적합하다. Copper sulfate powder obtained from copper sulfate waste generated in the buildup manufacturing process according to the present invention is obtained by the above-described recycling method, and the copper sulfate powder is copper sulfate pentahydrate (CuSO 4 ·5H 2 O) having a purity of 98 to 99%. It contains about 23 to 26%, and contains heavy metals within the allowable standards for heavy metals in fertilizers, so it is suitable for use as agricultural fertilizers.

이하, 본 발명을 바람직한 일 실시예를 참조하여 다음에서 구체적으로 상세하게 설명한다. 단, 다음의 실시예는 본 발명을 구체적으로 예시하기 위한 것이며, 이것만으로 한정하는 것은 아니다.Hereinafter, the present invention will be described in detail below with reference to a preferred embodiment. However, the following examples are intended to specifically illustrate the present invention, and are not limited thereto.

1. 황산구리 폐기물 성분분석1. Copper sulfate waste component analysis

원료는 구미·경북지역의 Build-up 제조기업으로부터 Build-up 폐기물을 수급받았다. The raw materials were supplied with build-up waste from build-up manufacturers in Gumi and Gyeongbuk.

황산, 염산, 질산 함유량을 측정하기 위하여 IC(Ion Chromatography)와 25항목 원소 성분분석하기 위하여 ICP-OES(Inductively Coupled Plasma)를 측정하였으며, 하기의 표 1은 IC 측정값, 표 2는 ICP-OES(Inductively Coupled Plasma-Optical Emission Spectrometer)측정값을 보여준다.Ion Chromatography (IC) to measure the content of sulfuric acid, hydrochloric acid, and nitric acid and ICP-OES (Inductively Coupled Plasma) were measured for elemental analysis of 25 items. Table 1 below shows IC measurement values, Table 2 shows ICP-OES (Inductively Coupled Plasma-Optical Emission Spectrometer) measurement value is shown.

ICP-OES를 통한 원료 내 무기물 성분분석 시료를 15±0.2 g의 시료를 취하여 질산 6 mL에 12시간 동안 반응시킨 후 과산화수소 2 mL를 첨가하여 microwave(Ethos1, Milestone, Italy)로 산분해 하였으며, ICP Spectrometer(OPTIMA 5300 DV, Perkin-Elmer,USA)를 이용하여 성분 함량을 측정하였으며, 기기조건은 표 3과 같다. Analysis of inorganic substances in raw materials through ICP-OES A sample of 15±0.2 g was taken, reacted in 6 mL of nitric acid for 12 hours, and then 2 mL of hydrogen peroxide was added and acid-decomposed with a microwave (Ethos1, Milestone, Italy). Component content was measured using a spectrometer (OPTIMA 5300 DV, Perkin-Elmer, USA), and the device conditions are shown in Table 3.

Figure 112020009565225-pat00001
Figure 112020009565225-pat00001

Figure 112020009565225-pat00002
Figure 112020009565225-pat00002

Figure 112020009565225-pat00003
Figure 112020009565225-pat00003

황산구리 폐액 중 황산 이외 다른 산들이 혼합되어 있는 원료가 있었으며(표 1), 구리함량이 낮더라도 다른 산이 혼입되지 않은 원료선정이 바람직하다고 사료되었다. 특히 염산이 함유되었을 경우 농작물에 치명적일 수 있기 때문에 염산이 든 황산구리 폐액은 별도의 공정을 통해 염산을 제거하거나 염산이 포함되지 않은 시료를 사용하는 것이 바람직할 것으로 판단하였다.There was a raw material containing acids other than sulfuric acid in the copper sulfate waste liquid (Table 1), and it was considered desirable to select a raw material that did not contain other acids even if the copper content was low. In particular, since hydrochloric acid can be fatal to crops, it was determined that it would be preferable to remove hydrochloric acid through a separate process or use a sample that does not contain hydrochloric acid from copper sulfate waste liquid containing hydrochloric acid.

황산구리 폐액에는 구리성분 이외에 불순물 및 중금속 Cd, Pb, As, Cr, Ni, Zn 등을 포함하고 있으며(표 2), 비료원료로 사용하기 위해서는 중금속을 제거하는 기술이 필요하다. 비록 황산구리 폐액의 중금속은 비료원료 기준보다 낮은 함량을 함유하고 있으나, 원료의 농축 및 가공공정을 거치면 같이 함량이 증가될 것으로 사료되었다.Copper sulfate waste liquid contains impurities and heavy metals Cd, Pb, As, Cr, Ni, Zn, etc. in addition to copper components (Table 2), and technology to remove heavy metals is required for use as a fertilizer raw material. Although the content of heavy metals in the copper sulfate waste liquid is lower than the standard for fertilizer raw materials, it is thought that the content will increase as the raw materials are concentrated and processed.

2. 중금속의 제거2. Removal of heavy metals

2-1. pH 조절에 의한 중금속 제거 조건설정2-1. Heavy metal removal condition setting by pH adjustment

수급된 원료 중 염산이 포함된 원료를 제외한 C원료와 D원료를 1:1의 중량비율로 혼합하여 원료로 사용하였다. 원료의 pH는 1.2 이였으며, pH에 따른 함량분석은 ICP-OES를 통하여 분석하였다(표 4).Raw materials C and D, excluding those containing hydrochloric acid among the supplied raw materials, were mixed in a weight ratio of 1:1 and used as raw materials. The pH of the raw material was 1.2, and the content analysis according to pH was analyzed through ICP-OES (Table 4).

Figure 112020009565225-pat00004
Figure 112020009565225-pat00004

pH의 상승에 따라 불순물 중금속들이 결합되어 침전되기 시작하였으나, 구리의 감소도 동반되는 경향을 보였다. pH 2부터 pH 5까지는 구리의 함량이 반응 전과 비교하여 서서히 약 25% 감소하였으나, pH 6에서는 급격하게 구리의 함량이 감소하여 pH 는 pH 2 내지 5로 제어되는 것이 바람직할 것으로 판단하였다. As the pH increased, impurity heavy metals were bound and started to precipitate, but copper also showed a tendency to decrease. From pH 2 to pH 5, the copper content was gradually decreased by about 25% compared to before the reaction, but at pH 6, the copper content was abruptly decreased, so it was determined that it would be preferable to control the pH to pH 2 to 5.

2-2. 용매추출을 이용한 중금속의 제거2-2. Removal of heavy metals using solvent extraction

2-2-1. pH제어에 따른 Cu의 추출2-2-1. Extraction of Cu according to pH control

용매추출에 따른 불순물 제거효과를 확인하기 위하여 도 2와 같이 연속식 용매추출 장치를 설계하였다. 이때, 교반조는 overhead 교반방식의 유효용적 5.2L를 갖는 것을 준비하고, 분리조는 유효용적 10L를 갖는 것을 준비하였다. In order to confirm the effect of removing impurities according to solvent extraction, a continuous solvent extraction apparatus was designed as shown in FIG. 2 . At this time, a stirring tank having an effective volume of 5.2L of an overhead stirring method was prepared, and a separation tank having an effective volume of 10L was prepared.

용매추출제 D2EPHA를 준비하여 용매추출제 20 vol% 와 희석제 kerosene 80vol%로 비율로 혼합하여 용매추출액을 준비하였다. 황산구리액의 pH 조정에 따른 Cu 의 추출함량을 확인하기 위하여 pH 0.5, 1 및 2 하에서 수상과 유기상을 1: 1 의 부피비로 혼합하였다. 교반조에서 교반속도는 500rpm 으로 수행되었고, 체류시간은 30분 분리조에서는 65분간 체류시켰다. Solvent extractant D2EPHA was prepared, and solvent extract was prepared by mixing 20 vol% of solvent extractant and 80 vol% of diluent kerosene. In order to check the extraction content of Cu according to the pH adjustment of the copper sulfate solution, the aqueous phase and the organic phase were mixed in a volume ratio of 1:1 under pH 0.5, 1 and 2. The stirring speed was performed at 500 rpm in the stirring tank, and the residence time was 30 minutes in the separation tank and 65 minutes in the separation tank.

pH 증가함에 따라 Cu 가 1.2 ~2.0% 침전되었고, Fe, Al 등의 불순물은 침전되지 않았다. 특히, pH 1에서 Cu 가 18.6%로써 높은 추출률을 나타내었다. As the pH increased, Cu was precipitated by 1.2 to 2.0%, and impurities such as Fe and Al were not precipitated. In particular, at pH 1, Cu was 18.6%, indicating a high extraction rate.

이를 통해 용매추출을 통한 Cu의 추출시 pH가 추출률에 영향을 줌을 확인할 수 있었고, pH는 0.5 내지 2 로 제어되는 것이 바람직하며, 더욱 바람직하게는 pH 1로 제어되는 것이 바람직할 것으로 판단하였다. Through this, it was confirmed that the pH affects the extraction rate during extraction of Cu through solvent extraction, and it was determined that the pH is preferably controlled to be 0.5 to 2, and more preferably controlled to pH 1.

2-2-2. 용매추출제의 종류와 배합비에 따른 중금속의 제거능2-2-2. Removal of heavy metals according to the type and mixing ratio of the solvent extractant

용매추출제 종류와 배합비에 따른 중금속의 제거능을 확인하여 최적의 조건을 탐색하였다. The optimal conditions were searched for by confirming the ability to remove heavy metals according to the solvent extractant type and mixing ratio.

용매추출제로 Cyanex272, D2EHPA, Lix-841, PC-88A 를 선정하고, 중금속 Fe, Zn, Cd, Pb, Al 을 제거대상으로 선정하였고, 추가적으로 용매추출시 Cu가 제거되는지도 확인하였다.Cyanex272, D2EHPA, Lix-841, and PC-88A were selected as solvent extractors, and heavy metals Fe, Zn, Cd, Pb, and Al were selected as removal targets. Additionally, it was confirmed whether Cu was removed during solvent extraction.

도 3은 용매추출제의 종류와 배합비 따른 불순물제거능을 보여주는 것으로서, (A)는 용매추출제의 종류에 따른 중금속 제거효율, (B)는 용매추출제 비율별 중금속 제거효율을 보여준다.3 shows the impurity removal ability according to the type and mixing ratio of the solvent extractant, (A) shows the heavy metal removal efficiency according to the type of the solvent extractant, and (B) shows the heavy metal removal efficiency according to the solvent extractant ratio.

4가지 용매별 제거조건을 확인한 결과, D2EHPA 와 Cyanex-923이 약 80%이상의 제거효율을 나타냈으나, Lix-841, PC-88A 용매는 약 50% 미만의 효율을 나타내는 것으로 나타냈다. 한편, Cu의 경우 모든 용매에서 다소 5~15% 감소되는 결과를 보였으나, D2EHPA 와 Cyanex-923 에서 Cu 손실율이 낮게 측정되었으며, 특히, D2EHPA 는 Fe, Zn, Al에 대한 제거효율이 각각 96.01%, 99.9%, 86.7% 이고, Cd, Pb에 대해서는 71.9%, 61.7% 로 우수한 중금속 제거효율을 보여주었다. 원료와 용매의 최적의 추출비율을 확인하고자 비율별로 추출하여 분석한 결과 큰차이를 보이지 않았으나, 1:1 비율 이상에서 분리가 분획이 잘 이루어지고 효율도 좋은 것으로 확인되었다. 따라서 본 실험을 통하여 용매 D2EHPA 와 Cyanex-923 선정하고 비율은 1:1로 하여 불순물을 제거하는 것이 가장 효율적이라 사료된다.As a result of checking the removal conditions for each of the four solvents, D2EHPA and Cyanex-923 showed more than about 80% removal efficiency, but Lix-841 and PC-88A solvents showed less than about 50% efficiency. On the other hand, in the case of Cu, a decrease of 5~15% was shown in all solvents, but Cu loss was measured to be low in D2EHPA and Cyanex-923. In particular, in D2EHPA, the removal efficiency for Fe, Zn and Al was 96.01% , 99.9%, and 86.7%, and for Cd and Pb, 71.9% and 61.7%, showing excellent heavy metal removal efficiency. In order to confirm the optimal extraction ratio of raw material and solvent, extraction by ratio was analyzed and there was no significant difference. Therefore, it is considered that it is most efficient to remove impurities by selecting solvent D2EHPA and Cyanex-923 through this experiment and setting the ratio to 1:1.

2-2-3. 용매추출제의 농도에 따른 중금속의 제거능2-2-3. Removal of heavy metals according to the concentration of the solvent extractant

선정된 D2EHPA 와 Cyanex-923의 농도별 불순물 제거효율을 평가한 결과 D2EHPA는 0.7M 농도에서 80% 이상 효율을 나타냈으며, 0.7 M을 초과할 경우에는 약 2~4% 효율 차이가 났으나, 경제성과 효율성을 고려할 때, 최종 0.7 M 농도로 선정하였다. As a result of evaluating the impurity removal efficiency by concentration of the selected D2EHPA and Cyanex-923, D2EHPA showed more than 80% efficiency at 0.7 M concentration. Considering the efficiency and efficiency, the final concentration of 0.7 M was selected.

Cyanex-923 용매는 0.5 M 농도에서 약 85% 효율을 나타냈으며, 0.5 M를 초과할 경우에는 불순물효율이 약간 감소하는 것으로 확인되었다. Cyanex-923 solvent showed about 85% efficiency at a concentration of 0.5 M, and when it exceeded 0.5 M, it was confirmed that the impurity efficiency was slightly decreased.

용매추출제의 농도에 따른 중금속의 제거능 실험을 통해 용매추출제의 농도가 중금속 제거능에 영향을 끼치며, 적절한 농도의 용매추출제를 사용하여 중금속 제거효율을 극대화할 수 있음을 확인하였다. 0.7 M D2EHPA 와 0.5 M Cyanex-923로 분획을 1:1 비율로 하는 것이 가장 효율적인 것으로 사료되었으며, 불순물 제거 기준이 만족할시에는 경제성을 고려하여 용매농도를 낮추는 것도 가능할 것으로 판단되었다. Through an experiment on the heavy metal removal ability according to the concentration of the solvent extractant, it was confirmed that the concentration of the solvent extractant affects the heavy metal removal ability, and the heavy metal removal efficiency can be maximized by using the solvent extractant of an appropriate concentration. A 1:1 ratio of 0.7 M D2EHPA and 0.5 M Cyanex-923 was considered to be the most effective, and when the impurity removal criteria were satisfied, it was judged that it was possible to lower the solvent concentration in consideration of economic feasibility.

3. 황산구리 결정화 3. Copper Sulfate Crystallization

농축 및 냉각시켜 황산구리 결정을 형성하였다. 총 1200ml의 황산구리액을 농축기에 200 ml, 500ml, 500ml 단계별로 투입하고, 온도를 40℃에서 70℃까지 끓는점 도달시마다 (약 10분~20분간격으로) 5 내지 10℃씩 승온시켜 약 82분간 농축시켰다. 농축시 황산구리액 내 Cu 농도 약 20~25 wt% (200,000~250,000ppm)구간, 약 65℃부터 미립 결정이 생기기 시작하는 것을 확인할 수 있었으며, 상기 결정농도를 가질 때까지 원료를 추가적으로 공급함과 동시에 농축 공정을 수행하는 것이 바람직할 것으로 판단하였다. Concentrated and cooled to form copper sulfate crystals. A total of 1200 ml of copper sulfate solution was put into the concentrator in 200 ml, 500 ml, and 500 ml steps, and the temperature was raised from 40° C. to 70° C. by 5 to 10° C. for about 82 minutes each time the boiling point was reached (at intervals of about 10 to 20 minutes) for about 82 minutes. concentrated. At the time of concentration, it was confirmed that the Cu concentration in the copper sulfate solution was about 20-25 wt% (200,000-250,000 ppm), and fine crystals started to form from about 65 ° C. It was determined that it would be desirable to carry out the process.

도 4는 결정화 조건에 따른 황산구리 결정을 보여주는 것으로, (A)는 상온조건 하의 황산구리 결정, (B)는 고온조건 하에서 황산구리 결정을 보여준다.4 shows copper sulfate crystals according to crystallization conditions, (A) shows copper sulfate crystals under room temperature conditions, and (B) shows copper sulfate crystals under high temperature conditions.

구리함량이 약 25%부터 결정화되기 시작하였고 구리 결정을 여과한 후 상온건조(20±5℃), 고온건조(95±5℃)조건 하에서 고상화시켰다. 그 결과, 고온건조 조건 하에서는 황산구리 색이 옅어지고 연소로 인한 손실이 발생하여 상온의 온도에서 냉각 및 고상화시켜 결정을 형성하는 것이 바람직할 것으로 판단하였다. The copper content started to crystallize from about 25%, and the copper crystals were filtered and then solidified under the conditions of drying at room temperature (20±5° C.) and drying at high temperature (95±5° C.). As a result, it was determined that it would be preferable to form crystals by cooling and solidifying at room temperature because the copper sulfate color became pale under high-temperature drying conditions and loss due to combustion occurred.

4. 황산구리 Pilot 시스템4. Copper Sulfate Pilot System

원료를 무게를 측정 후 반응기에 넣고 pH 조절을 통하여 불순물을 1차 제거하고 증발농축 반응기의 온도를 94±5 ℃ 조정 후 1시간 간격으로 5회 Feeding 실시 하였으며, 도 5는 황산구리 Pilot 시스템 공정 순서도를 보여준다. After weighing the raw material, put it into the reactor, remove impurities first through pH adjustment, adjust the temperature of the evaporation and concentration reactor to 94±5 ℃ , and feed 5 times at 1 hour intervals. FIG. 5 is a copper sulfate pilot system process flowchart show

증발농축기는 1500(W)×1500(H)×1500(D)mm의 SUS304 재질로 내부는 부식방지를 위해 FRP 코팅처리하여 설계되었다. 이때, 전력은 15kW, 히터는 SUS 316 재질에 테프론 코팅된 것을 사용하였다.The evaporator is made of SUS304 material of 1500(W)×1500(H)×1500(D)mm, and the inside is designed with FRP coating to prevent corrosion. In this case, the power was 15 kW, and the heater was SUS 316 and Teflon coated.

초기 투입량은 2100ml(2399 kg) 초기 투입 1시간 후 매시간당 피딩하여 총 5회차 Feeding하였으며, 각 회차 공급량은 하기의 표 6과 같다. 이송은 Air Diaphragm 펌프를 사용하였으며, 여과/탈수는 2㎥/h의 필터프레스, 진공 60 psi, 30 L/min 하에서 수행되었고, 이송 및 여과/탈수에는 약 1시간이 소요되었다. The initial input amount was 2100ml (2399 kg), and after 1 hour of initial input, feeding was performed every hour for a total of 5 feedings, and the supply amount for each round is shown in Table 6 below. The transfer was performed using an Air Diaphragm pump, and filtration/dehydration was performed under a filter press of 2 m3/h, vacuum 60 psi, and 30 L/min, and it took about 1 hour for transfer and filtration/dehydration.

여과/탈수 후 최종 황산구리 회수하여 무게를 측정한 결과 102.5 kg/hr 생산할 수 있음을 확인할 수 있었다(표 7). After filtration/dehydration, the final copper sulfate was recovered, and as a result of measuring the weight, it was confirmed that 102.5 kg/hr could be produced (Table 7).

Figure 112020009565225-pat00005
Figure 112020009565225-pat00005

Figure 112020009565225-pat00006
Figure 112020009565225-pat00006

원료의 단일공급시, 시간당 황산구리 생산량은 약 53.4kg/hr 인 반면, 다단공급시에는 102.5 kg/hr로 약 다단공급시 생산량이 2배 높은 것으로 확인되었다. 상기 결과를 통해 증발농축기에 원료를 투입시 단일공급하는 것보다 다단공급이 황산구리의 생산효율이 월등히 우수함을 확인할 수 있었다. In case of single supply of raw material, copper sulfate production per hour was about 53.4 kg/hr, while in case of multi-stage supply, it was 102.5 kg/hr. Through the above results, it was confirmed that the production efficiency of copper sulfate in the multi-stage supply is significantly superior to that in the single supply when the raw material is input to the evaporator.

5. 황산구리 농촌진흥청 고시 비료 기준관련 분석결과5. Analysis result related to the fertilizer standards announced by the Rural Development Administration for copper sulfate

제조된 황산구리 분말을 비료의 원료로 사용하기 위하여 농촌진흥청고시 비료의 품질검사방법에 준하여 분석한 결과, 수용성구리(%)함량은 25.54%로 기준치를 만족하는 결과를 나타냈다. As a result of analyzing the prepared copper sulfate powder according to the quality inspection method of fertilizer notified by the Rural Development Administration to use it as a raw material for fertilizer, the water-soluble copper (%) content was 25.54%, which satisfies the standard value.

비료의 중금속 허용기준으로 분석한 결과 6가지 중금속(As, Cd, Pb, Cr, Ni, Zn)을 분석한 결과 허용치 이내의 중금속을 포함하는 것으로 나타났다. 황산구리 5수화물(CuSO4·5H2O)순도를 분석한 결과 98.2%의 순도를 나타냈다.As a result of analyzing the fertilizer's heavy metal acceptance criteria, it was found that 6 types of heavy metals (As, Cd, Pb, Cr, Ni, Zn) contained heavy metals within the allowable range. As a result of analyzing the purity of copper sulfate pentahydrate (CuSO 4 ·5H 2 O), the purity was 98.2%.

중금속 종류heavy metal type 비료의 중금속함유 허용량(mg/kg)Permissible amount of heavy metals in fertilizers (mg/kg) 개발품 결과
(mg/kg)
development results
(mg/kg)
비소(As)Arsenic (As) 5050 N.D.N.D. 카드뮴(Cd)Cadmium (Cd) 55 N.D.N.D. 납(Pb)Lead (Pb) 150150 22.422.4 크롬(Cr)Chromium (Cr) 300300 N.D.N.D. 니켈(Ni)Nickel (Ni) 5050 N.D.N.D. 아연(Zn)Zinc (Zn) 900900 123.0123.0 N.D. = Not detected(0.1 mg/kg 이하) N.D. = Not detected (0.1 mg/kg or less)

이상과 같이 본 발명은 첨부된 도면을 참조하여 바람직한 실시예를 중심으로 설명하였지만 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 본 발명의 특허청구범위에 기재된 기술적 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 또는 변형하여 실시할 수 있다. 따라서 본 발명의 범주는 이러한 많은 변형의 예들을 포함하도록 기술된 청구범위에 의해서 해석되어야 한다.As described above, the present invention has been mainly described with reference to the accompanying drawings, but those of ordinary skill in the art to which the present invention pertains within the scope not departing from the technical spirit and scope described in the claims of the present invention Various modifications or variations of the present invention can be practiced. Accordingly, the scope of the present invention should be construed by the appended claims including examples of many such modifications.

Claims (8)

빌드업 제조공정에서 발생되는 황산구리 폐기물의 재활용 방법에 있어서,
황산구리 폐기물에 포함된 불순물을 제거하는 불순물 제거단계(S100);와
증발농축기에 불순물이 제거된 황산구리 폐기물을 피딩하면서 증발농축시켜 과립이 형성된 증발농축물을 제조하는 증발농축단계(S200);와
상기 증발농축물을 여과 및 탈수하여 황산구리 결정을 석출하는 여과 및 탈수단계(S300)를 포함하며,
상기 불순물 제거단계(S100)는
pH를 2 내지 5 로 제어하여 침전된 불순물을 제거하는 1차 공정, 계면활성제를 중금속과 몰비 6~10: 1로 첨가하여 냉각침전된 침전물을 제거하는 2차 공정, pH를 0.5 내지 2로 제어한 후, 인산계 용매 또는 트리알킬포스핀계 용매를 이용하여 연속식 용매추출하여 불순물을 제거 및 구리를 분리하는 3차 공정을 순차적으로 진행하며,
상기 증발농축단계(S200)에서는
40 에서 100℃ 까지 단계적으로 승온하면서 증발농축시키며, 증발농축기 내 pH 구배, 황산구리의 농도 구배 또는 이들의 조합 중 어느 하나의 값을 산출하여 공급량을 제어하면서 불순물이 제거된 황산구리 폐기물을 증발농축기에 피딩하는 것을 특징으로 하는
빌드업 제조공정에서 발생되는 황산구리 폐기물의 재활용 방법.
In the recycling method of copper sulfate waste generated in the build-up manufacturing process,
An impurity removal step of removing impurities contained in copper sulfate waste (S100); and
An evaporative concentration step (S200) of producing an evaporative concentrate with granules formed by evaporating and concentrating while feeding the copper sulfate waste from which impurities have been removed to the evaporative concentrator (S200); and
It includes a filtration and dehydration step (S300) of filtration and dehydration of the evaporated concentrate to precipitate copper sulfate crystals,
The impurity removal step (S100) is
The primary process of removing the precipitated impurities by controlling the pH to 2 to 5, the secondary process of removing the precipitated precipitate by adding a surfactant in a molar ratio of 6 to 10: 1 with the heavy metal, controlling the pH to 0.5 to 2 After that, the tertiary process of removing impurities and separating copper by continuous solvent extraction using a phosphoric acid-based solvent or a trialkylphosphine-based solvent is sequentially performed,
In the evaporation and concentration step (S200),
Concentrate by evaporating while raising the temperature stepwise from 40 to 100°C, and by calculating any one of the pH gradient in the evaporator, the concentration gradient of copper sulfate, or a combination thereof, the copper sulfate waste from which impurities have been removed is fed to the evaporator while controlling the supply amount characterized by
A method of recycling copper sulfate waste generated in the build-up manufacturing process.
삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 제 1항의 빌드업 제조공정에서 발생되는 황산구리 폐기물의 재활용 방법에 의해 수득되는 황산구리 분말.
The copper sulfate powder obtained by the recycling method of the copper sulfate waste generated in the build-up manufacturing process of claim 1.
제 7항의 황산구리 분말을 포함하는 농업용 황산구리 비료.



An agricultural copper sulfate fertilizer comprising the copper sulfate powder of claim 7.



KR1020200010535A 2020-01-29 2020-01-29 Recycling Method for Copper Sulfate Waste Liquid Generated during Build-Up Process and Agricultural Copper Sulfate Fertilizer produced by the Recycling Method KR102364374B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020200010535A KR102364374B1 (en) 2020-01-29 2020-01-29 Recycling Method for Copper Sulfate Waste Liquid Generated during Build-Up Process and Agricultural Copper Sulfate Fertilizer produced by the Recycling Method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200010535A KR102364374B1 (en) 2020-01-29 2020-01-29 Recycling Method for Copper Sulfate Waste Liquid Generated during Build-Up Process and Agricultural Copper Sulfate Fertilizer produced by the Recycling Method

Publications (2)

Publication Number Publication Date
KR20210096896A KR20210096896A (en) 2021-08-06
KR102364374B1 true KR102364374B1 (en) 2022-02-17

Family

ID=77315363

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200010535A KR102364374B1 (en) 2020-01-29 2020-01-29 Recycling Method for Copper Sulfate Waste Liquid Generated during Build-Up Process and Agricultural Copper Sulfate Fertilizer produced by the Recycling Method

Country Status (1)

Country Link
KR (1) KR102364374B1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012036058A (en) * 2010-08-11 2012-02-23 Japan Organo Co Ltd Method for recovering copper sulfate and apparatus for recovering copper sulfate
KR101966063B1 (en) * 2018-10-31 2019-04-05 주황윤 Manufacturing method of multi-mineral comprising Zinc sulfate, Iron sulfate, Copper sulfate and manganese sulphate from electric arc furnace dust, copper waste and Manganese waste

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101386701B1 (en) 2012-03-28 2014-04-18 한국과학기술연구원 Recovery of high purity copper from spent electroless plating solutions
KR101514377B1 (en) * 2012-06-19 2015-04-30 주식회사 시로미 Composite fertilizer including ion activation composite and making process thereof
KR101965748B1 (en) 2018-02-21 2019-04-04 리콤 주식회사 Recycling method of waste abs resin coated chromium, nickel and copper

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012036058A (en) * 2010-08-11 2012-02-23 Japan Organo Co Ltd Method for recovering copper sulfate and apparatus for recovering copper sulfate
KR101966063B1 (en) * 2018-10-31 2019-04-05 주황윤 Manufacturing method of multi-mineral comprising Zinc sulfate, Iron sulfate, Copper sulfate and manganese sulphate from electric arc furnace dust, copper waste and Manganese waste

Also Published As

Publication number Publication date
KR20210096896A (en) 2021-08-06

Similar Documents

Publication Publication Date Title
US10118224B2 (en) Method for producing nickel powder
US20220372592A1 (en) Method for extracting lithium by means of extraction-back extraction separation and purification
KR101535250B1 (en) Highly purified nickel sulfate from the raw materials of nickel and cobalt mixed hydroxide precipitates through the unique atmospheric pressure leachingprocess and the manufacturing method of the same
JP5598778B2 (en) Method for producing high-purity nickel sulfate and method for removing impurity element from solution containing nickel
KR102152923B1 (en) Manufacturing Method of Highly Purified Nickel Sulfate from the raw materials of Nickel, Cobalt and Manganese Mixed Sulfide Precipitation
CN104445424A (en) Method for preparing high-purity manganese sulfate from manganese-containing waste liquid
KR101979419B1 (en) Manufacturing Method of Highly Purified Nickel Sulfate from the raw materials of high Calcium Content Nickel, Cobalt and Manganese Mixed Hydroxide Precipitation
JP2006057142A (en) Method for recovering lithium
CN106103360A (en) The method of sulfate is removed from waste water
CN109678196B (en) Method for fully recycling anions and cations in microetching waste liquid
CN101928084B (en) Treatment method and device of liquid waste containing inorganic salt
US20180056399A1 (en) Cobalt powder production method
KR101562263B1 (en) Method for preparing sodium nitrate using a waste solution containing nitric acid
KR102364374B1 (en) Recycling Method for Copper Sulfate Waste Liquid Generated during Build-Up Process and Agricultural Copper Sulfate Fertilizer produced by the Recycling Method
CN102774870A (en) Method for removing impurity of iron in copper sulphate
CN113336260A (en) Method for recovering copper sulfate in acidic copper sulfate waste liquid
AU2016345951B2 (en) Method for producing seed crystal of cobalt powder
US20190047052A1 (en) Method for producing nickel powder
KR102132191B1 (en) Manufacturing mehtod of fertillzer from ammonium nitrate waste
KR20100092676A (en) Manufacturing of ammonium phosphate from mixed waste acid
JP5079631B2 (en) Waste liquid reduction method and waste liquid treatment method
JP2000212658A (en) Solvent extraction of gallium and indium
EP0189831A1 (en) Cobalt recovery method
CN109970094B (en) Process method for preparing silver nitrate for wave-absorbing shielding special material
CN106396195A (en) Cycle treatment method for waste liquid produced during refining of cobalt and nickel by virtue of acid leaching process

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant