KR102363531B1 - 인덕티브 센싱과 정전용량형 센싱을 이용하는 터치 포스 센서 및 그 동작 방법 - Google Patents

인덕티브 센싱과 정전용량형 센싱을 이용하는 터치 포스 센서 및 그 동작 방법 Download PDF

Info

Publication number
KR102363531B1
KR102363531B1 KR1020210135494A KR20210135494A KR102363531B1 KR 102363531 B1 KR102363531 B1 KR 102363531B1 KR 1020210135494 A KR1020210135494 A KR 1020210135494A KR 20210135494 A KR20210135494 A KR 20210135494A KR 102363531 B1 KR102363531 B1 KR 102363531B1
Authority
KR
South Korea
Prior art keywords
inductive
capacitive
touch
channel
circuit
Prior art date
Application number
KR1020210135494A
Other languages
English (en)
Other versions
KR20210127667A (ko
Inventor
정후민
Original Assignee
주식회사 다모아텍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 다모아텍 filed Critical 주식회사 다모아텍
Priority to KR1020210135494A priority Critical patent/KR102363531B1/ko
Publication of KR20210127667A publication Critical patent/KR20210127667A/ko
Application granted granted Critical
Publication of KR102363531B1 publication Critical patent/KR102363531B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/046Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by electromagnetic means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/20Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature
    • G01D5/2006Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the self-induction of one or more coils
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/24Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying capacitance
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0414Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using force sensing means to determine a position
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/94Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the way in which the control signals are generated
    • H03K17/96Touch switches
    • H03K17/962Capacitive touch switches
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04105Pressure sensors for measuring the pressure or force exerted on the touch surface without providing the touch position
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04108Touchless 2D- digitiser, i.e. digitiser detecting the X/Y position of the input means, finger or stylus, also when it does not touch, but is proximate to the digitiser's interaction surface without distance measurement in the Z direction

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Electromagnetism (AREA)
  • Electronic Switches (AREA)
  • Position Input By Displaying (AREA)

Abstract

터치 포스 센서 및 그 동작 방법이 개시된다. 본 발명의 일 실시예에 따른 터치 포스 센서는 레퍼런스 공진 회로, 인덕티브 코일과 커플링되는 제1 공진 회로, 터치 전극과 연결되는 제2 공진 회로를 포함하고, Z축 방향을 따라 입력되는 외력에 의하여 형성되는 타겟과 인덕티브 코일 간의 변위에 기반하여 인덕티브 코일 및 제1 공진 회로에 형성되는 제1 인덕턴스에 기인하는 제1 공진 주파수, 터치 전극에 핑거가 접촉하였는지 여부에 따라 변화하는 정전용량에 기인하는 제2 공진 회로의 제2 공진 주파수, 및 레퍼런스 공진 주파수에 관한 정보를 획득하는 판정 회로를 포함한다. 판정 회로는 제1 공진 주파수 및 레퍼런스 공진 주파수에 기반하여 상기 타겟의 변위 및 상기 Z축 방향의 상기 외력을 판정하고, 제2 공진 주파수 및 레퍼런스 공진 주파수에 기반하여 핑거가 접촉하였는지 여부, 및 핑거가 인체의 핑거인지를 검증한다.

Description

인덕티브 센싱과 정전용량형 센싱을 이용하는 터치 포스 센서 및 그 동작 방법 {TOUCH FORCE SENSOR USING INDUCTIVE SENSING AND CAPACITIVE SENSING AND METHOD OF OPERATION THEREOF}
본 발명은 터치 포스 센서 및 그 동작 방법에 관한 것으로, 구체적으로는 외부 힘에 의하여 타겟 레이어와 인쇄 회로 기판(PCB, Printed Circuit Board), 또는 유연 인쇄 회로 기판(FBCB) 상에 형성되거나, 투명 전극으로 형성된 코일 사이의 거리 변화에 따라 가변하는 인덕턴스를 이용하여 가해지는 힘의 정도를 감지하는 인덕티브 포스 센서 및 그 동작 방법에 관한 것이다.
본 발명은 중소벤처기업부 및 창업진흥원의 창업도약 패키지 지원사업의 일환으로 수행한 연구로부터 도출된 것이다[과제관리번호: 10221619, 과제명: 스마트기기의 외장 메탈에서도 동작 가능한 Force sensor 모듈 개발]
최근의 터치 인식 기술은 급속한 발전을 이루었으며, X축과 Y축 상의 좌표를 이용하여 터치 위치를 인식하는 2차원 터치 인식 기술에서, 단순히 터치 여부가 아닌 터치의 강도(Z축 방향으로 가해진 힘의 크기)를 감지하여 사용자 인터페이스를 풍부하게 하는 3D 터치 인식 기능이 대두되었다.
APPLE INC 사의 3D 터치는 터치 센서와 압력 센서를 결합하여, 터치의 강도를 차등화하여 인식하는 기술을 도입한 바 있다. 그러나 압력센서를 터치센서와 결합하는 방식은 하드웨어 제조 비용을 증가시키고, 압력센서의 감도가 높지 않아 사용자의 터치 강도를 정확히 인식하는 데에 어려움이 있다.
Texas Instruments Inc 사의 미국공개특허 US 2017/0269754 "Dual Touch Sensor Architecture With XY-Position And Z-Force Sensing For Touch-On-Surface Button"는 정전용량형 터치 센서와 인덕티브 센서를 결합하여, 터치 여부 및 터치의 XY 평면 상의 위치는 정전용량형 터치 센서로 인식하고, 터치 위치에서의 Z축 방향의 터치 힘(touch force)은 인덕티브 센서로 인식한다.
Texas Instruments Inc 사의 또 다른 미국공개특허 US 2018/0180450 "Inductive Touch Input"는 복수개의 인덕티브 터치 센서를 이용하여, 서로 다른 위치에서 터치 여부 및 터치 힘을 감지하고, 터치 여부 및 터치 힘의 이동 패턴을 인식하여 터치 스크롤 제스쳐를 인식한다.
이러한 3D 터치 힘 인식 기술을 응용하여 자동차 도어에 가해지는 힘을 감지하여 자동차 도어를 로킹 또는 언로킹하려는 사용자의 의도를 검출하는 선행기술로서 한국공개특허 KR 10-2017-0007127 및 미국공개특허 US 2017/0016255 "Device for Detecting a User's Intention to Lock or Unlock a Motor Vehicle Door" 등이 있고, 플렉시블 인쇄 회로 기판(FPCB, Flexible Printed Circuit Board) 상에 코일을 구현하여 인덕티브 포스 센서를 구현하는 선행문헌으로서 한국등록특허 KR 10-1920440 "3D 터치 구현을 위한 셀프 인덕티브 포스 센서 모듈", 한국등록특허 KR 10-1954368 "3D 터치 구현을 위한 뮤추얼 인덕티브 포스 센서 모듈" 등이 소개된 바 있다.
인덕티브 센서를 이용하여 터치 힘을 감지하는 선행문헌들은 부품 및 요소의 배치, FPCB 등 새로운 재료 또는 부품을 선택하여 터치 힘을 인식하는 기술을 소개하고 있으나, 인덕티브 센서만을 이용하는 경우 터치 위치 및 터치 힘을 감지하는 정밀도가 낮고, 인덕티브 센서와 다른 센서를 결합하는 경우 하드웨어 비용이 증가하는 문제점이 있다.
또한 최근 모바일 디바이스, 스마트 디바이스의 대두로 인하여 사용자 인터페이스 및 사용자 경험에 대한 다양한 니즈가 존재하고, 이를 충족하기 위하여 미세 영역 별로 터치 힘을 구분하여 인식하는 기술이 필요하며 이를 위해서는 터치 센서/터치 포스 센서를 밀집하여 배치하되, 각 센서를 구분하여 인식하는 기술도 필요한데, 상기 선행기술들로 이러한 요구를 충족하기 어려움이 있다.
미국공개특허 US 2017/0269754 "Dual Touch Sensor Architecture With XY-Position And Z-Force Sensing For Touch-On-Surface Button" (2017년 9월 21일) 미국공개특허 US 2018/0180450 "Inductive Touch Input" (2018년 6월 28일) 한국공개특허 KR 10-2017-0007127 "자동차 도어를 로킹 또는 언로킹하려는 사용자의 의도를 검출하는 디바이스" (2017년 1월 18일) 미국공개특허 US 2017/0016255 "Device for Detecting a User's Intention to Lock or Unlock a Motor Vehicle Door" (2017년 1월 19일) 한국등록특허 KR 10-1920440 "3D 터치 구현을 위한 셀프 인덕티브 포스 센서 모듈" (2018년 11월 14일) 한국등록특허 KR 10-1954368 "3D 터치 구현을 위한 뮤추얼 인덕티브 포스 센서 모듈" (2019년 2월 26일)
상기 선행기술들은 부품 및 요소의 배치, 부품 또는 재료의 선택을 통하여 센서의 감도를 개선하거나, 인덕티브 센서와 다른 센서를 결합하여 터치 힘과 터치 위치를 분담하여 감지하거나, 인덕티브 센서를 복수 개 구현하고, 인덕티브 센서들의 센싱 정보를 추적하여 사용자 제스쳐 패턴을 인식하는 기술들이다.
또한 선행 기술들은 공진 회로에 인가되는 입력 전기 신호의 주파수를 가변하여 입력 전기 신호에 대한 응답으로 공진 회로에 형성되는 출력 전기 신호의 크기를 스캔하여 최대 크기를 가지는 경우의 주파수를 공진 주파수로 산출하는 구성을 취한다. 이로 인하여 상기 선행기술은 입력 전기 신호의 가변 주파수의 해상도 만큼의 오차를 가지며, 전기 신호의 크기를 검출하여 공진 주파수를 산출하는 간접적인 방법으로 정확도가 떨어지고, 입력 전기 신호의 주파수를 가변해야 하므로 측정에 상당한 시간이 소요되는 문제점이 있다.
또한 선행 기술들은 전기 신호의 크기를 검출하여 공진 주파수 및 인덕턴스를 산출하므로 정밀한 측정이 어려우며, 이로 인하여 인덕턴스 변화가 어떤 임계값을 넘어서는지 여부를 주로 판정할 뿐, 그 인덕턴스의 변화를 정량적으로 분석할 수 있을 정도의 정확도를 제공하지 못한다.
본 발명은 상기의 종래 기술에서 나타나는 문제점을 해결하기 위하여 도출된 것으로서, 인덕티브 센서의 성능을 향상하여 인덕티브 센서가 터치 위치 및 터치 힘을 감지하고, 정전용량형 센서는 터치된 핑거가 실제로 인체의 핑거인지를 검출함으로써 우연히 외부로부터 힘이 가해져 오동작하는 경우를 방지할 수 있는 터치 포스 센서 및 그 동작 방법을 제공하는 것을 목적으로 한다.
선행기술 중 미국공개특허 US 2017/0269754은 정전용량형 터치 센서가 터치 여부 및 XY 평면 상의 터치 위치를 인식하고 터치 위치에서의 Z축 방향의 터치 힘(touch force)은 인덕티브 센서가 인식한다. 상기 선행기술에서는 정밀한 위치 인식은 정전용량형 센서가 수행하므로, 인덕티브 센서는 터치 힘만을 인식할 뿐이고, 주된 동작은 정전용량형 센서가 수행하며 인덕티브 센서는 정전용량형 센서에 종속된다. 상기 선행기술에서는 인덕티브 센서의 동작에 긴 시간이 소요되므로, 정전용량형 센서가 먼저 터치 여부 및 터치 위치를 인식한 경우에 비로소 인덕티브 센서가 동작한다. 이 방식에서는 정전용량형 센서의 터치 인식과 인덕티브 센서의 터치 힘 인식 간의 시간 차이가 존재할 수 있고, 인덕티브 센서가 터치 힘을 인식할 때까지 긴 시간이 소요되어 터치 힘에 기반한 3D 터치 제스쳐의 인식이 쉽지 않다.
본 발명은 인덕티브 센서의 동작 시간을 단축하고, 정전용량형 센서와 인덕티브 센서를 실질적으로 동시에 동작시키며 정전용량형 센서와 인덕티브 센서의 검출 정보를 교차 검증하여 핑거의 터치 여부, 터치된 핑거가 인체의 핑거인지 여부, 터치 위치, 터치 힘에 대하여 감지된 정보가 유효한 터치 이벤트로서 인식될 수 있으며 터치 힘에 기반한 3D 터치 제스쳐를 용이하게 인식할 수 있는 터치 포스 센서 및 그 동작 방법을 제공하는 것을 목적으로 한다.
본 발명은 상호 독립적으로 동작하는 정전용량형 센서와 인덕티브 센서를 이용하여 터치 및 터치 힘의 검출의 정밀도 및 신뢰도를 높이는 터치 포스 센서 및 그 동작 방법을 제공하는 것을 목적으로 한다.
또한 본 발명은 주파수의 변동이나 서로 다른 주파수 성분의 입력 없이 단일 측정만으로도 정전용량 및 인덕턴스의 변화를 감지함으로써, 다채널 터치 포스 센서의 경우에도 신속하게 터치 위치 및 터치 힘을 감지하고, 사용자의 의도를 인식할 수 있는 인덕티브 포스 센서 및 그 동작 방법을 제공하는 것을 목적으로 한다.
본 발명은 주파수의 변동이나 서로 다른 주파수 성분의 입력을 필요로 하지 않으므로, 터치 위치 및 터치 힘을 감지하는 데 소요되는 소비 전력을 절감하고, 다채널 터치 포스 센서인 경우에도 소비 전력을 크게 절감할 수 있는 인덕티브 포스 센서 및 그 동작 방법을 제공하는 것을 목적으로 한다.
본 발명에 따른 터치 포스 센서는 공진 주파수의 편이(shift)를 효과적으로 검출할 수 있는 회로 및 동작 방법을 제안하는 것을 목적으로 한다. 또한 본 발명에 따른 터치 포스 센서는 입력 전기 신호의 주파수를 가변하는 과정이 필요하지 않으므로 터치 위치 및 터치 힘의 센싱 시간을 단축하는 것을 목적으로 한다.
본 발명은 단일 레퍼런스 공진 회로를 정전용량형 센서와 인덕티브 센서가 공유함으로써 터치 포스 센서의 크기 및 폼 팩터를 줄일 수 있는 구조를 제안하는 것을 목적으로 한다. 또한 본 발명은 단일 레퍼런스 공진 회로를 멀티 채널의 정전용량형 센서와 인덕티브 센서가 공유함으로써 하드웨어 비용을 절감할 수 있는 터치 포스 센서 구조를 제안하는 것을 목적으로 한다.
본 발명은 상기의 목적을 달성하기 위하여 도출된 구성으로서, 본 발명의 일 실시예에 따른 터치 포스 센서는 핑거가 접촉하는 접촉부에 배치되는 터치 전극과 연결되는 제1 정전용량형 채널 공진 회로; 상기 제1 정전용량형 채널 공진 회로에 제1 교류 신호를 인가하는 제1 오실레이터; 상기 제1 정전용량형 채널 공진 회로에 형성되는 제1 전기 신호의 제1 정전용량형 공진 주파수를 검출하고 상기 검출된 제1 정전용량형 공진 주파수에 기반하여 상기 접촉부에 핑거가 접촉하였는지 여부 및 상기 접촉부에 접촉된 핑거가 인체의 핑거인지 여부를 판정하는 정전용량형 판정 회로; Z축 방향의 외력에 노출되며, 상기 Z축 방향의 상기 외력에 의하여 상기 Z축 방향을 따라 탄성적으로 변형 가능한 제1 부품; 상기 제1 부품과 이격되어 배치되는 기판 상에 형성되는 인덕티브 코일; 상기 인덕티브 코일과 결합하며 상기 인덕티브 코일에 대한 상기 제1 부품의 변위에 기반하여 상기 인덕티브 코일에 형성되는 제1 인덕턴스에 기인하는 제1 인덕티브 공진 주파수를 가지는 제1 인덕티브 채널 공진 회로; 상기 제1 인덕티브 채널 공진 회로에 제2 교류 신호를 인가하는 제2오실레이터; 및 상기 제1 인덕티브 채널 공진 회로에 형성되는 제2 전기 신호를 수신하고, 상기 제2 전기 신호의 상기 제1 인덕티브 공진 주파수에 기반하여 상기 제1 부품의 변위 및 상기 Z축 방향의 상기 외력을 판정하는 인덕티브 판정 회로를 포함한다.
이때 본 발명의 일 실시예에 따른 터치 포스 센서는 레퍼런스 공진 회로; 및 상기 제1 오실레이터 및 상기 제2 오실레이터와 동일한 특성을 가지며 상기 레퍼런스 공진 회로에 레퍼런스 교류 신호를 인가하는 레퍼런스 오실레이터를 더 포함할 수 있다. 상기 정전용량형 판정 회로는 상기 레퍼런스 공진 회로에 인가되는 상기 레퍼런스 교류 신호의 영향으로 상기 레퍼런스 공진 회로에 형성되는 레퍼런스 전기 신호의 레퍼런스 공진 주파수와 상기 제1 정전용량형 공진 주파수 간의 차이를 검출하고, 상기 레퍼런스 공진 주파수와 상기 제1 정전용량형 공진 주파수 간의 차이에 기반하여 상기 접촉부에 핑거가 접촉하였는지 여부 및 상기 접촉부에 접촉된 핑거가 인체의 핑거인지 여부를 판정할 수 있다. 상기 인덕티브 판정 회로는 상기 레퍼런스 공진 주파수와 상기 제1 인덕티브 공진 주파수 간의 차이를 검출하고, 상기 레퍼런스 공진 주파수와 상기 제1 인덕티브 공진 주파수 간의 차이에 기반하여 상기 제1 부품의 변위 및 상기 Z축 방향의 상기 외력을 판정할 수 있다.
이때 본 발명의 일 실시예에 따른 터치 포스 센서는 외부로부터 인체의 핑거가 상기 접촉부에 접촉되고 상기 핑거의 접촉에 의하여 상기 Z축 방향의 상기 외력이 인가된 경우, 상기 정전용량형 판정 회로가 상기 핑거의 터치 위치를 검출하거나, 상기 인덕티브 판정 회로가 상기 핑거의 터치 위치를 검출하거나, 상기 정전용량형 판정 회로 및 상기 인덕티브 판정 회로 각각이 상기 핑거의 터치 위치를 검출하여 교차 검증할 수 있다.
이때 인덕티브 판정 회로는 상기 레퍼런스 공진 주파수와 상기 제1 인덕티브 공진 주파수 간의 차이가 제1 임계값 이상이면 상기 제1 인덕티브 공진 주파수가 유의미한 변화를 일으킨 것으로 간주하여 상기 Z축 방향의 상기 외력이 입력된 것으로 판정할 수 있다.
이때 정전용량형 판정 회로는 상기 레퍼런스 공진 주파수와 상기 제1 정전용량형 공진 주파수 간의 차이가 제2 임계값 이상이면 제1 정전용량형 공진 주파수가 유의미한 변화를 일으킨 것으로 간주하여 상기 접촉부에 핑거가 접촉한 것으로 판정할 수 있다.
이때 정전용량형 판정 회로는 상기 레퍼런스 공진 주파수와 상기 제1 정전용량형 공진 주파수 간의 차이가 제3 임계값 이상인지 여부에 기반하여 상기 접촉부에 접촉된 핑거가 인체의 핑거인지 여부를 판정할 수 있다.
이때 인덕티브 판정 회로는 상기 제1 인덕티브 공진 주파수와 상기 레퍼런스 공진 주파수의 차이를 구하는 연산기(operator); 상기 연산기의 출력단에 연결되어 고주파 성분을 제거하는 저역통과필터(Low pass filter); 및 상기 저역통과필터의 출력단에 연결되어 상기 제1 인덕티브 공진 주파수와 상기 레퍼런스 공진 주파수 간의 차이에 해당하는 차동 주파수 성분 신호의 주파수를 디지털 카운트하는 타임-투-디지털 변환기(Time-to-Digital Converter)를 포함할 수 있다.
이때 정전용량형 판정 회로는 상기 제1 정전용량형 공진 주파수와 상기 레퍼런스 공진 주파수의 차이를 구하는 연산기(operator); 상기 연산기의 출력단에 연결되어 고주파 성분을 제거하는 저역통과필터(Low pass filter); 및 상기 저역통과필터의 출력단에 연결되어 상기 제1 정전용량형 공진 주파수와 상기 레퍼런스 공진 주파수 간의 차이에 해당하는 차동 주파수 성분 신호의 주파수를 디지털 카운트하는 타임-투-디지털 변환기(Time-to-Digital Converter)를 포함할 수 있다.
이때 인덕티브 판정 회로는 상기 제1 인덕티브 채널 공진 회로가 상기 레퍼런스 공진 회로와 동일한 임피던스를 가지는 제1 상태에 있도록 외부에서 강제로 조정된 상태에서 상기 제1 인덕티브 공진 주파수 및 상기 레퍼런스 공진 주파수 간의 차이에 기반하여 캘리브레이션 과정을 수행할 수 있다.
이때 정전용량형 판정 회로는 상기 제1 정전용량형 공진 회로가 상기 레퍼런스 공진 회로와 동일한 임피던스를 가지는 제2 상태에 있도록 외부에서 강제로 조정된 상태에서 상기 제1 정전용량형 공진 주파수 및 상기 레퍼런스 공진 주파수 간의 차이에 기반하여 캘리브레이션 과정을 수행할 수 있다.
레퍼런스 공진 회로는 제1 인덕티브 채널 공진 회로가 가질 수 있는 상태 중 미리 결정된 제1 상태와 동일한 임피던스를 가지도록 설계되고, 제1 정전용량형 공진 회로가 가질 수 있는 상태 중 미리 결정된 제2 상태와 동일한 임피던스를 가지도록 설계될 수 있다. 이때 제1 상태는 상기 Z축 방향의 외력이 인가되지 않은 상태일 수 있고, 제2 상태는 핑거가 접촉부에 접촉하지 않은 상태일 수 있다.
본 발명의 일 실시예에 따른 터치 포스 센서는 핑거가 접촉하는 접촉부에 배치되는 복수개의 터치 전극들 중 제1 터치 전극과 연결되는 제1 정전용량형 채널 공진 회로; 상기 핑거가 접촉하는 상기 접촉부에 배치되는 복수개의 터치 전극들 중 제2 터치 전극과 연결되는 제2 정전용량형 채널 공진 회로; 상기 제1 정전용량형 채널 공진 회로에 제1 교류 신호가 인가됨으로써 형성되는 제1 전기 신호의 제1 정전용량형 공진 주파수를 검출하고, 상기 제2 정전용량형 채널 공진 회로에 제2 교류 신호가 인가됨으로써 형성되는 제2 전기 신호의 제2 정전용량형 공진 주파수를 검출하고, 상기 검출된 제1 정전용량형 공진 주파수에 기반하여 상기 접촉부의 상기 제1 터치 전극에 대응하는 제1 터치 전극 위치에 상기 핑거가 접촉하였는지 여부를 판정하고, 상기 검출된 제2 정전용량형 공진 주파수에 기반하여 상기 접촉부의 상기 제2 터치 전극에 대응하는 제2 터치 전극 위치에 상기 핑거가 접촉하였는지 여부를 판정하고, 상기 제1 정전용량형 공진 주파수 및 상기 제2 정전용량형 공진 주파수에 기반하여 상기 접촉부에 접촉된 상기 핑거가 인체의 핑거인지 여부를 판정하는 정전용량형 판정 회로; Z축 방향의 외력에 노출되며, 상기 Z축 방향의 상기 외력에 의하여 상기 Z축 방향을 따라 탄성적으로 변형 가능한 복수 개의 개별 영역들을 포함하는 제2 부품; 상기 제2 부품과 이격되어 배치되는 기판 상에 형성되며, 상기 복수 개의 개별 영역들 각각에 대응하고, 상기 복수 개의 개별 영역들 각각과 대향하여 배치되는 복수 개의 인덕티브 코일들; 상기 복수 개의 인덕티브 코일들 중 제1 인덕티브 코일과 결합하며 상기 제1 인덕티브 코일에 대응하는 제1 개별 영역의 제1 변위에 기반하여 상기 제1 인덕티브 코일에 형성되는 제1 인덕턴스에 기인하는 제1 인덕티브 공진 주파수를 가지는 제1 인덕티브 채널 공진 회로; 상기 복수 개의 인덕티브 코일들 중 제2 인덕티브 코일과 결합하며 상기 제2 인덕티브 코일에 대응하는 제2 개별 영역의 제2 변위에 기반하여 상기 제2 인덕티브 코일에 형성되는 제2 인덕턴스에 기인하는 제2 인덕티브 공진 주파수를 가지는 제2 인덕티브 채널 공진 회로; 및 상기 제1 인덕티브 채널 공진 회로에 제3 교류 신호가 인가됨으로써 형성되는 제3 전기 신호, 상기 제2 인덕티브 채널 공진 회로에 제4 교류 신호가 인가됨으로써 형성되는 제4 전기 신호를 수신하고, 상기 제3 전기 신호의 상기 제1 인덕티브 공진 주파수, 상기 제4 전기 신호의 상기 제2 인덕티브 공진 주파수에 기반하여 상기 제1 변위, 상기 제2 변위, 및 상기 Z축 방향의 상기 외력이 입력된 위치 및 상기 외력을 판정하는 인덕티브 판정 회로를 포함한다.
이때 본 발명의 일 실시예에 따른 터치 포스 센서는 레퍼런스 공진 회로를 더 포함할 수 있다. 상기 정전용량형 판정 회로는 상기 레퍼런스 공진 회로에 인가되는 상기 레퍼런스 교류 신호의 영향으로 상기 레퍼런스 공진 회로에 형성되는 레퍼런스 전기 신호의 레퍼런스 공진 주파수와 상기 제1 정전용량형 공진 주파수 간의 차이를 검출하고, 상기 레퍼런스 공진 주파수와 상기 제1 정전용량형 공진 주파수 간의 차이에 기반하여 상기 제1 터치 전극 위치에 상기 핑거가 접촉하였는지 여부 및 상기 제1 터치 전극 위치에 접촉된 핑거가 인체의 핑거인지 여부를 판정할 수 있다. 상기 정전용량형 판정 회로는 상기 레퍼런스 공진 주파수와 상기 제2 정전용량형 공진 주파수 간의 차이를 검출하고, 상기 레퍼런스 공진 주파수와 상기 제2 정전용량형 공진 주파수 간의 차이에 기반하여 상기 제2 터치 전극 위치에 상기 핑거가 접촉하였는지 여부 및 상기 제2 터치 전극 위치에 접촉된 핑거가 인체의 핑거인지 여부를 판정할 수 있다.
인덕티브 판정 회로는 상기 레퍼런스 공진 주파수와 상기 제1 인덕티브 공진 주파수 간의 차이를 검출하고, 상기 레퍼런스 공진 주파수와 상기 제1 인덕티브 공진 주파수 간의 차이에 기반하여 상기 제1 변위 및 상기 제1 개별 영역에서 나타나는 상기 Z축 방향의 상기 외력에 대한 정량화된 감지 정보를 획득할 수 있다. 상기 인덕티브 판정 회로는 상기 레퍼런스 공진 주파수와 상기 제2 인덕티브 공진 주파수 간의 차이를 검출하고, 상기 레퍼런스 공진 주파수와 상기 제2 인덕티브 공진 주파수 간의 차이에 기반하여 상기 제2 변위 및 상기 제2 개별 영역에서 나타나는 상기 Z축 방향의 상기 외력에 대한 정량화된 감지 정보를 획득할 수 있다.
이때 본 발명의 일 실시예에 따른 터치 포스 센서는 외부로부터 인체의 핑거가 상기 접촉부에 접촉되고 상기 핑거의 접촉에 의하여 상기 Z축 방향의 상기 외력이 인가된 경우, 상기 정전용량형 판정 회로가 상기 핑거가 상기 제1 터치 전극 위치 또는 상기 제2 터치 전극 위치에 접촉하였는지에 기반하여 상기 핑거가 상기 접촉부에 접촉된 터치 위치를 검출하거나, 상기 인덕티브 판정 회로가 상기 핑거가 상기 제1 개별 영역 또는 상기 제2 개별 영역에 근접하였는지에 기반하여 상기 터치 위치를 검출하거나, 상기 정전용량형 판정 회로 및 상기 인덕티브 판정 회로 각각이 상기 터치 위치를 검출하여 교차 검증할 수 있다.
인덕티브 판정 회로는 상기 레퍼런스 공진 주파수와 상기 제1 인덕티브 공진 주파수 간의 차이, 또는 상기 레퍼런스 공진 주파수와 상기 제2 인덕티브 공진 주파수 간의 차이 중 적어도 하나 이상이 제1 임계값 이상이면 상기 제1 인덕티브 공진 주파수 또는 상기 제2 인덕티브 공진 주파수 중 적어도 하나 이상이 유의미한 변화를 일으킨 것으로 간주하여 상기 Z축 방향의 상기 외력이 입력된 것으로 판정할 수 있다.
정전용량형 판정 회로는 상기 레퍼런스 공진 주파수와 상기 제1 정전용량형 공진 주파수 간의 차이 또는 상기 레퍼런스 공진 주파수와 상기 제2 정전용량형 공진 주파수 간의 차이 중 적어도 하나 이상이 제2 임계값 이상이면 상기 제1 정전용량형 공진 주파수 또는 상기 제2 정전용량형 공진 주파수 중 적어도 하나 이상이 유의미한 변화를 일으킨 것으로 간주하여 상기 접촉부에 핑거가 접촉한 것으로 판정할 수 있다. 정전용량형 판정 회로는 상기 레퍼런스 공진 주파수와 상기 제1 정전용량형 공진 주파수 간의 차이 또는 상기 레퍼런스 공진 주파수와 상기 제2 정전용량형 공진 주파수 간의 차이 중 적어도 하나 이상이 제3 임계값 이상인지 여부에 기반하여 상기 접촉부에 접촉된 핑거가 인체의 핑거인지 여부를 판정할 수 있다.
본 발명의 일 실시예에 따른 터치 포스 센서의 상기 제1 터치 전극은 상기 복수개의 개별 영역들 중 제1 그룹의 복수개의 개별 영역들을 포함하는 제1 그룹 영역을 커버하고, 상기 제2 터치 전극은 상기 복수개의 개별 영역들 중 제2 그룹의 복수개의 개별 영역들을 포함할 수 있다.
본 발명의 일 실시예에 따른 터치 포스 센서의 상기 제1 개별 영역은 상기 복수개의 터치 전극들 중 제3 그룹의 복수개의 터치 전극들의 터치 전극 위치들을 포함하는 제3 그룹 영역을 커버하고, 상기 제2 개별 영역은 상기 복수개의 터치 전극들 중 제4 그룹의 복수개의 터치 전극들의 터치 전극 위치들을 포함하는 제4 그룹 영역을 커버할 수 있다.
인덕티브 판정 회로는 상기 제1 인덕티브 공진 주파수와 상기 레퍼런스 공진 주파수의 차이를 구하고, 상기 제2 인덕티브 공진 주파수와 상기 레퍼런스 공진 주파수의 차이를 구하는 연산기(operator); 상기 연산기의 출력단에 연결되어 고주파 성분을 제거하는 저역통과필터(Low pass filter); 및 상기 저역통과필터의 출력단에 연결되어 상기 제1 인덕티브 공진 주파수와 상기 레퍼런스 공진 주파수 간의 차이에 해당하는 제1 차동 주파수 성분 신호의 주파수를 디지털 카운트하고, 상기 제2 인덕티브 공진 주파수와 상기 레퍼런스 공진 주파수 간의 차이에 해당하는 제2 차동 주파수 성분 신호의 주파수를 디지털 카운트하는 타임-투-디지털 변환기(Time-to-Digital Converter)를 포함할 수 있다.
정전용량형 판정 회로는 상기 제1 정전용량형 공진 주파수와 상기 레퍼런스 공진 주파수의 차이를 구하고, 상기 제2 정전용량형 공진 주파수와 상기 레퍼런스 공진 주파수의 차이를 구하는 연산기(operator); 상기 연산기의 출력단에 연결되어 고주파 성분을 제거하는 저역통과필터(Low pass filter); 및 상기 저역통과필터의 출력단에 연결되어 상기 제1 정전용량형 공진 주파수와 상기 레퍼런스 공진 주파수 간의 차이에 해당하는 제1 정전용량형 차동 주파수 성분 신호의 주파수를 디지털 카운트하고, 상기 제2 정전용량형 공진 주파수와 상기 레퍼런스 공진 주파수 간의 차이에 해당하는 제2 정전용량형 차동 주파수 성분 신호의 주파수를 디지털 카운트하는 타임-투-디지털 변환기(Time-to-Digital Converter)를 포함할 수 있다.
본 발명의 일 실시예에 따른 터치 포스 센서의 동작 방법은 핑거가 접촉하는 접촉부에 배치되는 터치 전극; Z축 방향의 외력에 노출되며 상기 Z축 방향의 상기 외력에 의하여 상기 Z축 방향을 따라 탄성적으로 변형 가능한 제1 부품; 및 상기 제1 부품과 이격되어 배치되는 기판 상에 형성되는 인덕티브 코일을 포함하는 터치 포스 센서에서 실행된다.
본 발명의 일 실시예에 따른 터치 포스 센서의 동작 방법은 상기 터치 전극과 연결되는 제1 정전용량형 채널 공진 회로에 제1 교류 신호가 인가되는 단계; 상기 인덕티브 코일과 결합하여 상기 인덕티브 코일에 대한 상기 제1 부품의 변위에 기반하여 상기 인덕티브 코일에 형성되는 제1 인덕턴스에 기인하는 제1 공진 주파수를 가지는 제1 인덕티브 채널 공진 회로에 제2 교류 신호가 인가되는 단계; 레퍼런스 공진 회로에 레퍼런스 교류 신호가 인가되는 단계; 정전용량형 판정 회로가 상기 제1 교류 신호의 영향으로 상기 제1 정전용량형 공진 회로에 형성되는 제1 전기 신호를 수신하는 단계; 인덕티브 판정 회로가 상기 제2 교류 신호의 영향으로 상기 제1 인덕티브 채널 공진 회로에 형성되는 제2 전기 신호를 수신하는 단계; 상기 정전용량형 판정 회로 및 상기 인덕티브 판정 회로가 상기 레퍼런스 공진 회로에 형성되는 레퍼런스 전기 신호를 수신하는 단계; 상기 정전용량형 판정 회로가 상기 제1 전기 신호의 제1 정전용량형 공진 주파수 및 상기 레퍼런스 전기 신호의 레퍼런스 공진 주파수에 기반하여 상기 접촉부에 핑거가 접촉하였는지 여부 및 상기 접촉부에 접촉된 핑거가 인체의 핑거인지 여부를 판정하는 단계; 및 상기 인덕티브 판정 회로가 상기 제2 전기 신호의 상기 제1 인덕티브 공진 주파수 및 상기 레퍼런스 공진 주파수에 기반하여 상기 제1 부품의 변위 및 상기 Z축 방향의 상기 외력을 판정하는 단계를 포함한다.
이때 상기 인덕티브 판정 회로가 상기 제1 부품의 변위 및 상기 Z축 방향의 상기 외력을 판정하는 단계는 상기 레퍼런스 공진 주파수와 상기 제1 인덕티브 공진 주파수 간의 차이를 검출하는 단계; 및 상기 레퍼런스 공진 주파수와 상기 제1 인덕티브 공진 주파수 간의 차이에 기반하여 상기 제1 인덕티브 채널 공진 회로가 상기 레퍼런스 공진 회로와 동일한 임피던스를 가지는 제1 상태에서 벗어난 정도, 상기 제1 부품이 상기 인덕티브 코일에 대하여 움직인 상대적인 변위, 및 상기 Z축 방향의 상기 외력에 대한 정량화된 감지 정보를 획득하는 단계를 포함할 수 있다.
본 발명에 따르면 인덕티브 센서의 성능이 향상되어 인덕티브 센서가 터치 힘을 감지하고, 정전용량형 센서는 터치된 핑거가 실제로 인체의 핑거인지를 검출할 수 있다. 터치의 위치는 정전용량형 센서와 인덕티브 센서가 상호 독립적으로 검출할 수 있으며, 터치 위치 정보는 교차 검증될 수 있다.
본 발명에 따르면 인덕티브 센서가 검출한 터치 힘이 실제로 인체의 핑거에 의한 터치 힘인지 여부를 정전용량형 센서가 검출한 정보에 기반하여 확인할 수 있으므로, 우연히 외부로부터 힘이 가해져 오동작하는 경우를 방지할 수 있다.
본 발명에 따르면 상호 독립적으로 동작하는 정전용량형 센서와 인덕티브 센서를 이용하여 터치 및 터치 힘의 검출의 정밀도 및 신뢰도를 높일 수 있다.
이 때 본 발명의 인덕티브 센서가 검출한 터치 위치, 및/또는 터치 힘은 하나의 출력값에 의하여 동시에 나타내어질 수 있다. 본 발명의 정전용량형 센서가 검출한 터치 위치, 터치 여부, 터치된 핑거가 실제로 인체의 핑거인지 여부에 대한 정보 또한 하나의 출력값에 의하여 동시에 나타내어질 수도 있다.
본 발명에 따르면 주파수 성분의 스캔 없이 단일 측정으로 인덕턴스의 변화를 감지할 수 있어 소비 전력을 절감하고 센싱 시간을 단축할 수 있다.
본 발명에 따르면 주파수 성분의 스캔 없이 센서 별 단일 측정으로 인덕턴스의 변화를 정밀하게 감지할 수 있으므로, 인덕티브 센서 어레이 또는 인덕티브 센서 매트릭스를 형성하여 동작하더라도 소비 전력과 센싱 시간의 제약에서 상대적으로 자유로우며, 어레이 또는 매트릭스를 이용하여 다양한 터치 패턴, 터치 제스쳐, 및 터치 상황을 정밀하게 판정할 수 있다.
본 발명의 일 실시예에 따르면 싱글 채널 또는 싱글 코일의 인덕티브 센서를 이용하여 시간 도메인에서의 변화를 검출하고 제스쳐를 인식할 수 있다.
본 발명의 일 실시예에 따르면 복수 개의 채널들 또는 코일들에 대해서 동시에 검출된 센싱 결과를 조합하여 센싱 결과에 오류가 없는지 검증할 수 있다. 복수 개의 코일들에 대하여 동시에 검출된 센싱 결과와 코일들이 커버하는 영역들의 위치 관계를 고려하여 센싱 결과 도출된 터치 포스가 사용자의 의도에 의한 것인지 여부, 또는 오류에 의한 것인지 여부를 검증할 수 있다.
종래 기술들은 공진 신호의 진폭을 검출하거나, 아날로그 교류 신호의 진폭을 검출하기 때문에, 검출된 결과가 소정의 임계값을 초과하는 지 여부만을 검출할 수 있다. 그러나 본 발명은 차동 신호의 공진 주파수 차이를 산출하고, 이를 디지털 카운트하므로 정량화된 감지 정보를 얻을 수 있고, 이를 이용하여 시간-공간 상의 터치 포스의 변화를 정밀하게 검출할 수 있다.
본 발명에 따르면 단일 레퍼런스 공진 회로를 정전용량형 센서와 인덕티브 센서가 공유함으로써 터치 포스 센서의 크기 및 폼 팩터를 줄일 수 있다. 또한 본 발명은 단일 레퍼런스 공진 회로를 멀티 채널의 정전용량형 센서와 인덕티브 센서가 공유함으로써 하드웨어 비용을 절감할 수 있다.
본 발명에 따르면 정전용량형 센서와 인덕티브 센서는 독립적으로 터치 위치를 검출할 수 있으므로, 하나의 정전용량형 센서가 다수의 채널의 인덕티브 센서와 동일한 면적을 커버하도록 배치되거나, 반대로 하나의 인덕티브 센서가 다수의 채널의 정전용량형 센서와 동일한 면적을 커버하도록 배치될 수 있다. 즉, 본 발명에 따르면 디바이스에 의하여 요구되는 성능 지표에 맞추어 정전용량형 센서와 인덕티브 센서의 어레이를 적응적으로 조절하여 배치할 수 있는 장점이 있다.
도 1은 종래 기술의 듀얼 터치 포스 센서를 도시하는 도면이다.
도 2는 본 발명의 일 실시예에 따른 터치 포스 센서를 도시하는 도면이다.
도 3은 본 발명의 일 실시예에 따른 터치 포스 센서를 도시하는 도면이다.
도 4는 도 2 및/또는 도 3의 인덕티브 센싱 파트의 일 실시예를 도시하는 도면이다.
도 5는 도 2 및/또는 도 3의 인덕티브 센싱 파트의 다른 일 실시예를 도시하는 도면이다.
도 6은 도 5의 인덕티브 센싱 파트의 일 실시예를 도시하는 도면이다.
도 7은 본 발명의 일 실시예에 따른 터치 포스 센서의 멀티 채널 인덕티브 센싱 파트 및 그 동작 방법을 도시하는 도면이다.
도 8은 본 발명의 일 실시예에 따른 터치 포스 센서의 멀티 채널 인덕티브 센싱 파트 및 그 동작 방법을 도시하는 도면이다.
도 9는 본 발명의 일 실시예에 따른 멀티 채널 터치 포스 센서를 도시하는 도면이다.
도 10은 본 발명의 일 실시예에 따른 멀티 채널 터치 포스 센서를 도시하는 도면이다.
도 11은 본 발명의 일 실시예에 따른 터치 포스 센서의 회로 및 동작 방법을 도시하는 도면이다.
도 12는 본 발명의 일 실시예에 따른 터치 포스 센서의 회로 및 동작 방법을 도시하는 도면이다.
도 13은 본 발명의 일 실시예에 따른 터치 포스 센서의 회로 및 동작 방법을 도시하는 도면이다.
도 14는 본 발명의 일 실시예에 따른 터치 포스 센서의 회로 및 동작 방법을 도시하는 도면이다.
도 15는 본 발명의 일 실시예에 따른 터치 포스 센서의 동작 방법을 도시하는 동작 흐름도이다.
도 16은 본 발명의 일 실시예에 따른 터치 포스 센서의 동작 방법을 도시하는 동작 흐름도이다.
도 17은 본 발명의 일 실시예에 따른 터치 포스 센서의 동작 방법을 도시하는 동작 흐름도이다.
상기 목적 외에 본 발명의 다른 목적 및 특징들은 첨부 도면을 참조한 실시예에 대한 설명을 통하여 명백히 드러나게 될 것이다. 본 발명의 바람직한 실시예를 첨부된 도면들을 참조하여 상세히 설명한다. 본 발명을 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략한다. 이하에서는, 본 발명의 일 실시예에 따른 터치 포스 센서 및 그 동작 방법을 첨부된 도 1 내지 도 17을 참조하여 상세히 설명한다.
정전용량식 근접 센서를 대신하여 임피던스의 변화를 측정하여 터치 압력을 인식하고자 하는 방식으로 자기장의 변화를 일으켜 인덕턴스를 측정하는 인덕티브 터치 센서가 제안된 바 있다. 인덕티브 센서가 정전용량식 센서에 비하여 외부 교란에 민감하지 않은 점도 인덕티브 센서의 사용이 확산되는 원인이 된다.
인덕티브 터치 센서를 이용하여 터치 포스 센서를 구현하는 방식은 이미 앞서 언급한 선행문헌들, 예를 들어, 미국공개특허 US 2018/0180450 "Inductive Touch Input", 미국공개특허 US 2017/0016255 "Device for Detecting a User's Intention to Lock or Unlock a Motor Vehicle Door", 또는 한국등록특허 KR 10-1920440 "3D 터치 구현을 위한 셀프 인덕티브 포스 센서 모듈" 등에서 언급되고 있다.
한편, 전기적 신호를 이용하여 정밀한 검출이 가능한 정전용량식 센서에 비하여 자기장의 변화를 이용해야 하는 인덕티브 센서는 검출 정밀도를 높이기 쉽지 않다. 상기 선행문헌들의 인덕티브 센싱 기술 또한 정밀한 측정보다는 어떤 임계값 이상인지 여부를 검출하는 정도로, 특정 이벤트를 검출하는 용도로 주로 활용되고 있다.
도 1은 종래 기술의 듀얼 터치 포스 센서를 도시하는 도면이다.
도 1은 미국공개특허 US 2017/0269754 "Dual Touch Sensor Architecture With XY-Position And Z-Force Sensing For Touch-On-Surface Button"에 개시된 내용이다.
도 1에서 디바이스(10)는 듀얼 터치 센서 부분(20)을 포함한다. 디바이스(10)는 케이스(11) 상에 배치된 인덕티브 코일(25)과 연결되는 인덕티브 Z-포스 센서(29), 터치 패널(12)에 접하면서 핑거 터치(19)의 반대편에 배치되는 XY 정전용량형 전극(21)과 연결되는 정전용량형 XY 위치 센서(28)을 포함한다.
핑거 터치(19)의 터치 접촉 위치(15)의 XY 평면 상의 위치 판단은 XY 정전용량형 전극(21)에 나타난 정전용량의 변화를 정전용량형 XY 위치 센서(28)가 검출함으로써 실행된다.
인덕티브 센싱은 핑거 터치(19)의 압력에 의하여 유전체 폼(26, 27)이 Z 방향으로 압축되고 전도성 타겟(25A)과 인덕티브 코일(25) 간의 거리 d가 가변함에 따라 인덕티브 코일(25)에 유도되는 신호의 변화를 인덕티브 Z-포스 센서(29)가 검출함으로써 수행된다.
도 1의 구성 및 상기 선행문헌들은 본 발명의 구성의 일부로서 포함될 수 있으며, 이후에 언급될 본 발명의 새로운 구성들과 결합하여 본 발명의 고유한 효과를 달성하게 될 것이다.
본 발명은 특히 최근 모바일 디바이스, 스마트 디바이스, 가상 현실, 증강 현실 등과 결합하여 사용자 인터페이스는 정밀한 터치 포스를 인식할 것과 사용자 제스쳐를 정확히 인식하고, 사용자의 의도를 파악할 것을 목표로 하고 있다. 본 발명은 종래 기술의 인덕티브 센싱을 개선하여 터치 포스, 터치 포스에 기인한 타겟의 변위, 인덕턴스의 변화를 정밀하게 측정하고 정량화하여, 사용자의 의도를 파악하고 사용자 제스쳐를 정확히 인식하는 기술을 제안한다.
도 2는 본 발명의 일 실시예에 따른 터치 포스 센서(200)를 도시하는 도면이다. 도 2에서는 싱글 버튼/채널/코일을 가정한 터치 포스 센서(200)가 도시된다.
도 2를 참조하면, 본 발명의 일 실시예에 따른 터치 포스 센서(200)는 Z축 방향의 외력(250)에 노출되며, 상기 Z축 방향의 상기 외력(250)에 의하여 상기 Z축 방향을 따라 탄성적으로 변형 가능한 제1 부품(230); 제1 부품(230)과 이격되어 배치되는 기판(210) 상에 형성되는 인덕티브 코일(212); 및 제1 부품(230)을 지지하고 터치 포스 센서(200)를 다른 센서 또는 센싱 채널과 구분하는 스페이서 레이어(152)를 포함한다.
도 2에 도시된 터치 포스 센서(200)는 싱글 채널을 형성한다. 실시예에 따라서는 도 2와 같은 터치 포스 센서(200)를 복수 개 병렬 배치하여 어레이 또는 매트릭스를 구현할 수 있다.
Z축 방향을 따라 인가되는 외력(250)에 의하여 제1 부품(230)이 탄성적으로 변형하면, 제1 부품(230)의 변형 정도에 따라서 제1 부품(230)의 중심 위치가 Z축 방향을 따라 이동할 수 있다. 이때 인쇄 회로 기판(210) 상에 형성된 인덕티브 코일(212)과 제1 부품(230)은 인덕티브 결합(inductive coupled)되어 있다.
Z축 방향의 외력(250)에 의하여 제1 부품(230)이 변형되면 제1 부품(230)의 변형에 따른 제1 부품(230)의 Z축 방향의 변위가, 인덕티브 코일(212)과 제1 부품(230) 간의 인덕티브 결합에 의하여 나타나는 인덕턴스의 변화와 공진 주파수의 변화를 통하여 검출될 수 있다.
제1 부품(230)과 인덕티브 코일(212) 간에는 탄성복원력을 가지는 소재, 예를 들어 탄성 폼(foam)(238)이 배치될 수 있다. 외력(250)이 가해지면 제1 부품(230)의 중심 위치가 인덕티브 코일(212)에 가까워지고, 이에 따라 제1 부품(230)과 인덕티브 결합된 인덕티브 코일(212)에 형성되는 인덕턴스가 변화한다.
외력(250)이 제거되면 탄성 폼(238)이 가지는 탄성복원력에 의하여, 제1 부품(230)은 변형 전의 위치로 돌아간다. 즉, 외력(250)이 가해지는 동안에만 인덕턴스의 변화가 나타나며, 이를 감지하면 Z축 방향의 외력(250)을 감지할 수 있다.
외력(250)이 인가되지 않은 제1 상태에서 제1 부품(230)이 인덕티브 코일(212)과 이격되는 거리를 d0라 하고, 외력(250)이 인가된 상태에서 제1 부품(230)이 인덕티브 코일(212)과 이격되는 거리를 d라 하면, 변위 △d = |d-d0|는 제1 부품(230)과 인덕티브 결합된 인덕티브 코일(212)에 형성되는 인덕턴스의 변화를 일으키는 원인이다. 따라서 인덕턴스의 변화를 검출하면 변위 △d를 검출할 수 있고, 외력(250)의 크기를 정량화할 수 있다.
터치 포스 센서(200)는 외력(250)을 인가하는 핑거와 접촉하는 접촉부(도시되지 않음)에 배치되는 터치 전극(216)을 포함한다. 터치 전극(216)과 제1 부품(230) 사이에는 유전체층 또는 절연체층(218)이 배치된다. 실시예에 따라서는 터치 전극(216)과 유전체층 또는 절연체층(218)은 탄성을 가지도록 구현될 수 있다. 외부의 핑거에 의하여 외력(250)이 인가되면, Z축 방향으로 터치 전극(216), 유전체층 또는 절연체층(218), 및 제1 부품(230)은 변형될 수 있다.
외부의 핑거가 터치 전극(216)과 접촉하거나, 외부의 핑거가 터치 전극(216)과 접촉부를 사이에 두고 근접하면, 터치 전극(216)에 형성되는 정전 용량이 가변하고, 가변된 정전용량에 따르는 전기 신호의 변화를 검출하여 외부의 핑거가 터치 전극(216)에 접촉 또는 근접하였는지 여부, 외부의 핑거가 터치 전극(2160에 접촉 또는 근접한 XY 평면 상의 위치를 식별할 수 있다.
본 명세서에서는 설명의 편의상 하나의 인덕티브 코일(212) 및 그 인덕티브 코일(212)이 커버하는 영역 또는 터치 전극(216)에 의하여 외력(250)을 감지하거나 외부의 핑거의 접촉 또는 근접을 감지하는 단위를 채널(channel)로 칭하기로 한다.
본 발명의 일 실시예에 따른 터치 포스 센서(200)의 인덕티브 코일(212)은 복수 개의 단위 코일 권선들이 동심 구조로 중첩되어 형성될 수 있다.
대부분의 웨어러블 장치는 외부와의 경계를 형성하는 인클로저(enclosure)에 컷 아웃이 필요한 기계식 버튼을 사용하므로 장치를 밀봉하기가 어려워지고 방진 방수 기능을 의미하는 IP 레이팅(IP Rating)이 낮아질 수 있다. 또한 기계식 버튼은 움직이는 부품(moving parts), 금속 접점(metallic contacts), 및 개스킷(gaskests)을 사용하게 되는데, 이들은 장기적으로 신뢰성 문제를 안고 있으며, 비용 증가의 원인이 되고, 환경 요인에 대한 내성이 낮은 문제점을 가진다.
컷 아웃이 필요하지 않은 인클로저(cut out free enclosure)를 구현할 수 있으면 높은 IP 레이팅을 구현할 수 있으며, 보다 높은 IP 레이팅을 가지는 웨어러블 장치는 이전에 활용되지 못한 다양한 용도로 활용될 수 있다. 개스킷을 사용하지 않고(gasket-less), 움직이는 부품을 사용하지 않는다면(no moving parts), 웨어러블 장치는 물리적으로 더욱 강인해질(robust) 수 있으며, 예를 들면 장갑(gloves)과 같은 웨어러블 요소에 임베디드될 수 있고, 수중(under water)에서 투입되었다가도 수중을 벗어나면 정상적으로 동작될 수 있을 것이다.
이러한 높은 IP 레이팅을 달성하기 위하여 기계식 버튼 대신 터치 압력을 인식하는 전자기적 장치를 활용하고자 하는 시도가 있다. 터치 압력을 인식하기 위해서 본 발명에서는 인덕티브 센싱을 이용하며, 후술할 도 11 및 도 13의 회로의 구성과 결합하여 정밀한 터치 압력 인식 및 터치 위치 인식이 가능하다.
도 2에서 터치 전극(216)은 도 1에서와 같이 터치 전극(216)의 정전 용량의 변화를 검출하는 정전용량형 판정 회로와 연결될 수 있다. 본 발명에서 정전용량형 판정 회로의 일 실시예는 도 12 및 도 14에서 상세히 개시된다.
도 2에서 인덕티브 코일(212)은 도 1에서와 같이 인덕티브 코일(212)의 인덕턴스의 변화를 검출하는 인덕티브 판정 회로와 연결될 수 있다. 본 발명에서 인덕티브 판정 회로의 일 실시예는 도 11 및 도 13에서 상세히 개시된다.
도 3은 본 발명의 일 실시예에 따른 터치 포스 센서를 도시하는 도면이다.
도 3의 인덕티브 센싱 파트인 인쇄 회로 기판(310), 인덕티브 코일(312), 변형 가능한 제1 부품(330), 탄성 폼(338), 스페이서 레이어(352)는 각각 도 2의 인쇄 회로 기판(210), 인덕티브 코일(212), 변형 가능한 제1 부품(230), 탄성 폼(238), 및 스페이서 레이어(252)와 동일하므로 중복되는 설명은 생략한다.
도 3에 도시된 터치 전극(316) 및 유전체층/절연체층(318)은 탄성을 가지지 않는다. 터치 전극(316)의 유전체층/절연체층(318)이 배치된 부분을 제외한 스페이서/탄성 폼(354)은 탄성을 가지는 재료로 구현된다. 외부의 핑거에 의하여 외력(350)이 인가되면, 터치 전극(316) 및 유전체층/절연체층(318)은 제1 부품(330)의 중심 위치를 압박하여 제1 부품(330)의 중심 위치가 인덕티브 코일(312)에 가까워지도록 제1 부품(330)을 변형시킨다. 스페이서 레이어(352)는 탄성을 가지지 않으므로 제1 부품(330)이 스페이서 레이어(352)와 접촉하는 영역에서는 제1 부품(330)의 변형이 이루어지지 않을 수 있다.
도 3에서 터치 전극(316)은 도 1에서와 같이 터치 전극(316)의 정전 용량의 변화를 검출하는 정전용량형 판정 회로와 연결될 수 있다. 본 발명에서 정전용량형 판정 회로의 일 실시예는 도 12 및 도 14에서 상세히 개시된다.
도 3에서 인덕티브 코일(312)은 도 1에서와 같이 인덕티브 코일(312)의 인덕턴스의 변화를 검출하는 인덕티브 판정 회로와 연결될 수 있다. 본 발명에서 인덕티브 판정 회로의 일 실시예는 도 11 및 도 13에서 상세히 개시된다.
도 4는 도 2 및/또는 도 3의 인덕티브 센싱 파트의 일 실시예를 도시하는 도면이다. 도 4에서는 도 2 및/또는 도 3의 싱글 채널 센서(200, 300)가 어레이 또는 매트릭스 형태로 배열되어 멀티 채널 센서들로 구현된 경우가 도시된다.
본 발명의 일 실시예에 따른 터치 포스 센서(400)의 인덕티브 센싱 파트는 Z축 방향의 외력에 노출되며, 상기 Z축 방향의 상기 외력에 의하여 상기 Z축 방향을 따라 탄성적으로 변형 가능한 복수 개의 개별 영역들(432)을 포함하는 제2 부품(430); 상기 제2 부품(430)의 상기 복수 개의 개별 영역들(432) 중 적어도 하나 이상이 변형하는 경우에 상기 Z 축 방향을 따라 이동 가능하도록 배치되고, 상기 제2 부품(430)과 이격되어 배치되는 기판(410) 상에 형성되며, 상기 복수 개의 개별 영역들(432) 각각에 대응하고, 상기 복수 개의 개별 영역들(432) 각각과 대향하여 배치되는 복수 개의 인덕티브 코일들(412)을 포함한다.
제2 부품(430)은 탄성적으로 변형 가능한 소재로 이루어지며, 개별 영역들(432)은 제2 부품(430)의 개별 영역들(432)을 제외한 나머지 영역과 동일한 소재로 이루어질 수 있다. 즉, 제2 부품(430)은 도 4에 도시된 인덕티브 포스 센서(400)의 전체 영역을 하나의 외피로 둘러쌀 수 있으므로, 인덕티브 포스 센서(400)의 IP 레이팅을 높일 수 있다. 예를 들어, 도 4와 같이 개별 영역들(432)이 독립된 번호를 가지는 스마트 워치 등을 가정해 보면, 스마트 워치에서 노출되는 개별 영역들(432)은 하나의 외피로 둘러싸여 있으므로 우수한 방진 방수 성능이 기대된다. 개별 영역들(432)은 스페이서 레이어(452)의 hole에 대응하여 배치되므로 개별 영역들(432) 중 어느 하나 이상의 영역에 외력이 가해지면 제2 부품(430)의 탄성에 기반하여 해당 영역은 탄성적으로 변형될 수 있다. 스페이서 레이어(452)의 hole 부분은 도 2 및/또는 도 3에 도시된 것처럼 탄성 폼으로 채워질 수 있다.
본 발명의 일 실시예에 따라서는 개별 영역들(432)은 제2 부품(430)의 개별 영역들(432)을 제외한 나머지 영역들과 완전히 동일한 소재로 구현될 수도 있다. 본 발명의 다른 일 실시예에 따라서는 개별 영역들(432)은 제2 부품(430)의 나머지 영역들보다 높은 전기 전도성을 가지는 물질로 구현되거나, 제2 부품(430)의 개별 영역들(432)에 대응하는 부분에만 전기 전도성 물질의 얇은 포일(thin foil)을 부착함으로써 구현될 수도 있다. 즉, 개별 영역들(432)은 제2 부품(430)의 나머지 영역들보다 높은 전기 전도성을 가지고 에디 전류(Eddy current)를 효과적으로 흘려 인덕티브 결합의 감도를 높일 수 있다.
도 4에서는 도시되지 않았으나, 도 4의 개별 영역들(432) 각각은 도 2 및/또는 도 3의 터치 전극(216, 316) 및 유전체층/절연체층(218, 318)과 결합될 수 있다.
도 4에서 인덕티브 코일들 각각(412)은 도 1에서와 같이 인덕티브 코일들(412) 각각의 인덕턴스의 변화를 검출하는 인덕티브 판정 회로와 연결될 수 있다. 본 발명에서 인덕티브 판정 회로의 일 실시예는 도 11 및 도 13에서 상세히 개시된다.
본 발명의 실시예에 따라서는 도 4의 터치 포스 센서(400)는 모바일 디바이스의 베젤, 사이드, 또는 뒷면에 위치할 수 있으며, 개별 영역들(432)은 사용자에 의하여 식별되지 않도록 작은 크기를 가지고 밀집하여 배치될 수도 있다. 이때의 터치 포스 센서(400)는 사용자가 해당 디바이스를 잡고 있는지, 또는 해당 디바이스의 터치 포스 센서(400) 영역에 소정의 사용자 제스쳐를 입력하였는지 여부를 판정하는 수단으로 활용될 수도 있다.
종래 기술들에서는 복수 개의 채널들의 인덕턴스를 동시에 검출하기 용이하지 않았다. 본 발명에서는 복수 개의 채널들의 인덕턴스를 실질적으로 시간 차이 없이 동시에 검출 가능하며, 정량화된 데이터를 얻을 수 있으므로 멀티 채널 터치 포스 센서(400)가 커버하는 개별 영역들(432) 내의 터치 포스의 공간 분포를 얻을 수 있고, 정확한 사용자의 의도를 파악할 수 있다.
제2 부품(430)의 개별 영역들(432)는 비자성 금속일 수도 있고, 자성을 띠는 금속일 수도 있다. 개별 영역들(432)에는 에디 전류(Eddy current)가 형성될 수 있도록 전도성을 띠는 도체가 선호된다. 앞서 설명한 것처럼 개별 영역들(432)에 도체의 얇은 포일(thin foil)이 부착되어 개별 영역들(432)의 감도를 높일 수 있다. 개별 영역들(432)의 도체가 자성을 가지는지 여부에 따라서, Z축 방향의 외력이 가해졌을 때 인덕턴스가 증가할 지, 감소할 지 여부가 결정될 수 있다. 개별 영역들(432)의 자성/비자성, 및 채널의 하드웨어적 설계에 기반하여 변위 대비 인덕턴스 검출 감도 등의 변수가 최적화된 재료가 개별 영역들(432)을 구성하도록 선택될 수 있다.
도 2 내지 도 4를 함께 참조하면, 종래의 인덕티브 센싱 기술들은 외력에 의한 제1 부품(230, 330)의 Z축 방향의 변위 또는 개별 영역들(432)의 Z축 방향의 변위를 정밀하게 측정하기 어려우므로, 측정의 정확도를 높이기 위한 노력의 일환으로 후술할 도 5 및 도 6에서처럼 제1 부품(530)의 아래에 타겟 레이어(5345)를 별도로 배치하는 구성을 채택하기도 하였다. 그러나 본 발명의 실시예에서는 도 11 및 도 13의 회로를 이용하여 인덕턴스의 변화를 차동 신호의 공진 주파수의 차이를 통하여 검출하므로, 측정값의 정량화 및 디지털화가 용이하여 변위의 감도가 높다. 따라서 도 2 및 도 3에서와 같이 하나의 제1 부품(230, 330)을 싱글 채널에 적용하여 Z축 방향의 외력(250, 350)을 검출하고 정량화할 수 있으며, 도 4에서와 같이 멀티 채널에서 개별 영역들(432) 각각의 Z축 방향의 변위를 직접 검출하여 Z축 방향의 외력을 검출하고 정량화할 수 있다.
이때, 제1 부품(230, 330)과 인덕티브 코일(212, 312) 간의 Z축 방향의 거리에 따라 제1 부품(230, 330)과 인덕티브 코일(212, 312) 간의 인덕티브 결합에 의하여 인덕티브 코일(212, 312)에 연결되는 공진 회로의 인덕턴스가 변동된다. 따라서 제1 부품(230, 330)의 Z축 방향의 변위만으로도 인덕턴스의 변화 및 공진 주파수의 변화가 검출되며, Z축 방향의 외력(250, 350)의 검출 및 정량화가 가능하다. 이때 제1 부품(230, 330)이 변형되어 인덕티브 코일(212, 312)에 보다 가까워지는 부분에 에디 전류(Eddy Current)가 유도되면 제1 부품(230, 330)의 Z축 방향의 변위에 의한 합성 인덕턴스의 변화가 검출된다. 제1 부품(230, 330)은 에디 전류가 유도되어야 하므로 전기 전도성을 띠도록 구현될 수 있다.
개별 영역들(432) 각각도 대향하는 인덕티브 코일들(412) 각각과 이루는 Z축 방향의 거리에 따라 인덕티브 코일들(412) 각각과 연결되는 개별 채널 공진 회로의 인덕턴스가 변동된다. 이로 인하여 개별 영역들(432) 중 하나 또는 복수의 영역에 인가되는 외력이 개별 채널 공진 회로의 인덕턴스의 변화 및 개별 채널 공진 회로의 공진 주파수의 변화에 기반하여 검출되고 정량화될 수 있다.
도 5는 도 2 및/또는 도 3의 인덕티브 센싱 파트의 다른 일 실시예를 도시하는 도면이다. 도 5에 도시된 외력(550)을 인가하는 핑거, 기판(510), 인덕티브 코일(512), 제1 부품(530), 스페이서 레이어(552) 각각은 도 2 및/또는 도 3에 도시된 외력(250, 350)을 인가하는 핑거, 기판(210, 310), 인덕티브 코일(212, 312), 제1 부품(230, 330), 스페이서 레이어(252, 352)와 동일하므로 중복되는 설명은 생략한다.
도 5의 싱글 채널 센서(500)의 인덕티브 센싱 파트는 상기 제1 부품(530)의 변형에 기반하여 상기 Z축 방향을 따라 이동 가능하도록 배치되는 타겟 레이어(534)를 더 포함한다. Z축 방향을 따라 인가되는 외력(550)에 의하여 제1 부품(530)이 탄성적으로 변형하면, 제1 부품(530)의 변형 정도에 따라서 타겟 레이어(534)가 Z축 방향을 따라 이동할 수 있다. 이때 인쇄 회로 기판(510) 상에 형성된 인덕티브 코일(512)과 타겟 레이어(534)가 인덕티브 결합(inductive coupled)되어 있다.
이때, 타겟 레이어(534)와 인덕티브 코일(512) 간에는 탄성복원력을 가지는 소재, 예를 들어 탄성 폼(foam)이 배치될 수 있다. 외력(550)이 가해지면 타겟 레이어(534)가 인덕티브 코일(512)에 가까워지고, 이에 따라 타겟 레이어(534)와 인덕티브 결합된 인덕티브 코일(512)에 형성되는 인덕턴스가 변화한다. 즉, 도 5의 실시예에서는 인덕티브 코일(512)과 인덕티브 결합되는 타겟 레이어(534)가 도 2 및/또는 도 3의 제1 부품(230, 330)을 대신하여 외력(550)을 검출하는 기능을 수행한다.
본 발명의 일 실시예에 따라서는 타겟 레이어(534)는 도 5에 도시된 것처럼 다른 채널과 분리되어 하나의 채널마다 배치될 수도 있고, 후술할 도 6에 도시된 것처럼 복수 개의 채널들로 이루어진 그룹에 공통적으로 배치될 수도 있다. 도 5에서는 개별 채널마다 타겟 레이어(534)가 배치되며, 각 채널은 스페이서 레이어(552)에 의하여 다른 채널과 물리적으로 구분되는 실시예가 도시된다.
타겟 레이어(534)는 비자성 금속일 수도 있고, 자성을 띠는 금속일 수도 있다. 타겟 레이어(534)는 에디 전류(Eddy current)가 형성될 수 있도록 전도성을 띠는 도체가 선호된다. 타겟 레이어(534)가 자성을 가지는지 여부에 따라서, 외력(550)이 가해졌을 때 인덕턴스가 증가할 지, 감소할 지 여부가 결정될 수 있다. 타겟 레이어(534)의 자성/비자성, 및 채널의 하드웨어적 설계에 기반하여 변위 대비 인덕턴스 검출 감도 등의 변수가 최적화된 재료가 타겟 레이어(534)로 선택될 수 있다.
타겟 레이어(534)는 외력(550)에 의하여 Z축 방향으로 이동하되, 타겟 레이어(534)가 인덕티브 코일(512)과 평행한 상태를 유지하도록 구현될 수도 있으나, 본 발명의 실시예에 따라서는 타겟 레이어(534)가 인덕티브 코일(512)과 평행하지 않은 상태로 외력(550)이 집중되는 XY 평면 상의 위치에 따라서 인덕티브 코일(512)과 약간의 경사를 형성하면서 이동할 수도 있다. 이러한 경우, 종래 기술에서는 측정 상의 오차 요인이 되어 정확한 터치 포스 센싱이 어려운 요인이 되었으나, 본 발명에서는 후술할 도 11 및 도 13의 회로에 의한 인덕턴스의 차동 검출에 기반하여 인덕턴스의 변화를 정밀하게 정량화할 수 있으므로, 터치 포스를 정확하게 검출하는 것은 물론이고, 실시예에 따라서는 외력(550)이 집중되는 XY 평면 상의 위치를 세밀하게 검출할 수도 있다.
본 발명의 실시예들 중 일 실시예에 따르면 타겟 레이어(534)에 별도의 코일이 배치되지 않은 경우에는 인덕티브 코일(512)과 타겟 레이어(534)의 에디 전류가 호응하여 셀프 인덕티브 방식으로 타겟 레이어(534)의 변위를 측정할 수 있다.
본 발명의 다른 일 실시예에 따르면 타겟 레이어(534)에 뮤추얼 인덕티브 코일(도시되지 않음)이 배치되고, 타겟 레이어(534)의 뮤추얼 인덕티브 코일과 기판(510) 상의 인덕티브 코일(512)이 호응하여 뮤추얼 인덕티브 방식으로 타겟 레이어(534)의 변위를 측정할 수 있다.
도 5에서 인덕티브 코일(512)은 도 1에서와 같이 인덕티브 코일(512)의 인덕턴스의 변화를 검출하는 인덕티브 판정 회로와 연결될 수 있다. 본 발명에서 인덕티브 판정 회로의 일 실시예는 도 11 및 도 13에서 상세히 개시된다.
도 5에서는 도시되지 않았으나, 도 5의 제1 부품(530)은 도 2 및/또는 도 3의 터치 전극(216, 316) 및 유전체층/절연체층(218, 318)과 결합될 수 있다.
도 6은 도 5의 인덕티브 센싱 파트로 이루어진 멀티 채널 센서의 일 실시예를 도시하는 도면이다.
도 6에서 기판(610), 개별 채널 인덕티브 코일들(612), 제2 부품(630), 개별 영역들(632), 및 스페이서 레이어(652)는 도 4의 기판(410), 개별 채널 인덕티브 코일들(412), 제2 부품(430), 개별 영역들(432), 및 스페이서 레이어(452)와 동일하므로 중복되는 설명은 생략한다.
타겟 레이어(634)는 제2 부품(630)과 스페이서 레이어(652) 상에 배치되며, 경우에 따라서는 스페이서 레이어(652)가 탄성을 가지도록 구현될 수도 있다. 도 6에서는 타겟 레이어(634)가 복수 개의 개별 영역들(632)와 인덕티브 코일들(612)로 이루어진 모듈에 공통적으로 배치된다. 스페이서 레이어(652)도 약한 탄성복원력을 가진다고 가정하면, 개별 영역들(632) 중 어느 영역에 터치 포스가 인가되었는지에 따라 타겟 레이어(634)는 XYZ 공간 상에서 뒤틀리며 인덕티브 코일들(612)에 비대칭적인 변위를 제공하게 될 것이다. 예를 들어, 1번 버튼이 눌린 경우와 6번 버튼이 눌린 경우의 인덕티브 코일들(612)에 형성되는 인덕턴스 분포는 상이할 것이며, 이러한 패턴을 사전에 테스트 과정을 거쳐 터치 포스 센서(600)의 컨트롤러가 저장해 둘 수 있다. 터치 포스 센서(600)는 실제로 외력이 인가되어 복수의 인덕티브 코일들(612) 각각에 나타난 인덕턴스의 분포와 사전에 저장된 인덕턴스 분포 패턴을 비교하여 사용자가 의도한 입력은 무엇인지를 추출해 낼 수 있다.
도 6에서 인덕티브 코일들 각각(612)은 도 1에서와 같이 인덕티브 코일들(612) 각각의 인덕턴스의 변화를 검출하는 인덕티브 판정 회로와 연결될 수 있다. 본 발명에서 인덕티브 판정 회로의 일 실시예는 도 11 및 도 13에서 상세히 개시된다.
도 6에서는 도시되지 않았으나, 도 6의 개별 영역들(632) 각각은 도 2 및/또는 도 3의 터치 전극(216, 316) 및 유전체층/절연체층(218, 318)과 결합될 수 있다.
도 7은 본 발명의 일 실시예에 따른 터치 포스 센서(700)의 멀티 채널 인덕티브 센싱 파트 및 그 동작 방법을 도시하는 도면이다.
도 7을 참조하면, 터치 포스 센서(700) 내의 복수 개의 코일들(712)의 집합으로 이루어진 한 세트로서, 하나의 모듈(710a)이 도시된다.
모듈(710a) 내에서 복수 개의 코일들(712)에 나타나는 인덕턴스의 XY 평면 상에서의 공간적 분포를 시간 도메인에서 추적함으로써 모듈(710a)에 의하여 커버되는 영역 내에서 사용자의 터치 포스가 시간-공간적으로 변화하는 패턴을 추적할 수 있다.
터치 포스 센서(700)는 복수 개의 코일들(712) 각각이 커버하는 개별 영역들에서 인식되는 Z축 방향의 외력의 XY 평면 상에서의 공간적 분포를 시간 도메인에서 추적하여, 외력의 중심이 XY 평면 상에서 시간 도메인에서 이동하는 방향과 속도를 분석할 수 있다. 이에 따르면 터치 포스 센서(700)는 사용자가 터치 포스 센서(700)가 커버하는 영역에서 가해지는 터치 포스의 패턴, 예를 들어 두드리거나, 슬라이드/스크롤/스와이프하거나, 줌 인/줌 아웃하는 등의 사용자 제스쳐를 인덕티브 센싱 기법으로 인식할 수 있다.
터치 포스 센서(700)는 X축 방향을 따라 터치 포스의 중심 위치가 이동하는 X축 이동 정보, 및 Y축 방향을 따라 터치 포스의 중심 위치가 이동하는 Y축 이동 정보를 결합하여 XY 평면 상에서 터치 포스의 중심 위치가 이동하는 XY 평면 상의 이동 정보를 도출할 수도 있다. 또 다른 실시예에서는 터치 포스 센서(700)는 복수 개의 코일들(712) 각각이 커버하는 개별 영역들에서 얻어지는 터치 포스의 변동 패턴으로부터 직접적으로 XY 평면 상에서 터치 포스의 중심 위치가 이동하는 제스쳐 정보를 얻을 수도 있다. 또한 각 채널 정보는 독립적으로 얻어지므로, 터치 포스 센서(700)는 복수 개의 코일들(712)에 의하여 커버되는 센싱 영역 내에서 멀티 터치에 의한 사용자 제스쳐가 입력되더라도 혼동 없이 사용자 제스쳐를 인식할 수 있다.
도 7에서 복수개의 코일들(712) 각각은 코일들(712) 각각의 인덕턴스의 변화를 검출하는 인덕티브 판정 회로(도 11 및 도 13에서 후술)와 연결될 수 있다.
도 8은 본 발명의 일 실시예에 따른 터치 포스 센서(800)의 멀티 채널 인덕티브 센싱 파트 및 그 동작 방법을 도시하는 도면이다.
도 8을 참조하면, 인덕티브 포스 센서(800) 내의 복수 개의 코일들(812)의 집합으로 이루어진 한 세트로서, 하나의 모듈(810a)이 도시된다.
예를 들어, 모듈(810a)이 각 개별 영역들에 번호가 부여되어 외부에 표시되는 인터페이스인 경우, 도 8에 도시된 것처럼 외력이 입력되는 범위(852) 내에서 개별 영역을 특정하기 어려운 정도로 외력이 균등하게 측정되는 경우에는, 사용자가 특정한 번호 영역을 터치할 것을 의도한 것이 아니라 단지 디바이스를 손에 들고 있거나 외부에서 다른 요인으로 압력이 가해진 것으로 측정할 수도 있어서 디바이스의 오동작을 방지할 수 있다.
이를 위해서는 모듈(810a) 내에 포함되는 개별 영역들 및 복수 개의 코일들(812)에 대한 실질적으로 동 시간의 인덕턴스 분포 패턴을 검출해야 하는데, 본 발명에서는 레퍼런스 인덕턴스와의 차동 공진 신호에 기반하여 인덕턴스의 변화 및 각 코일들(812)에 관련된 개별 영역들의 터치 포스를 검출함으로써 이를 달성한다. 도 8에서 복수개의 코일들(812) 각각은 코일들(812) 각각의 인덕턴스의 변화를 검출하는 인덕티브 판정 회로와 연결될 수 있다. 인덕턴스 검출 및 판정과 관련된 사항은 도 11과 도 13의 설명에서 후술하기로 한다.
도 9는 본 발명의 일 실시예에 따른 멀티 채널 터치 포스 센서(900)를 도시하는 도면이다.
도 9에서는 하나의 터치 전극(916)이 복수 개의 개별 채널 인덕티브 코일들(912)의 영역을 커버하고, 하나의 터치 전극(916)이 하나의 모듈(910a)에 대응한다. 하나의 모듈(910a)은 복수 개의 채널을 포함한다.
즉, 개별 모듈(910a)은 하나의 정전용량형 센싱 모듈에 대응하고, 하나의 모듈(910a)의 영역은 복수 개의 개별 채널을 포함하며, 각 개별 채널은 하나의 인덕티브 코일(912) 및 그 대향하는 개별 영역에 대응한다.
도 9의 실시예를 확장하면, 본 발명의 일 실시예에 따른 터치 포스 센서(900)의 제1 터치 전극은 복수개의 개별 영역들 중 제1 그룹의 복수개의 개별 영역들을 포함하는 제1 그룹 영역(하나의 모듈에 대응함)을 커버하고, 제2 터치 전극은 복수개의 개별 영역들 중 제2 그룹의 복수개의 개별 영역들을 포함할 수 있다.
도 9의 실시예에서는 하나의 터치 전극(916)은 모듈(910a) 영역 내에서 터치가 이루어졌는지, 터치된 핑거가 실제로 인체의 핑거인지 여부를 판정하는 근거를 제공한다. 이때 정밀한 터치 위치, 및 Z축 방향의 터치 힘은 복수개의 코일들(912) 각각의 인덕턴스 변화에 기반하여 검출된다. 또한 사용자의 터치의 의도 및 터치 제스쳐는 정밀한 터치 위치, Z축 방향의 터치 힘의 공간적 분포, 및 Z축 방향의 터치 힘의 시간 도메인에서의 공간적 변화에 기반하므로 복수개의 코일들(912) 각각의 시간-공간 상의 인덕턴스 변화에 기반하여 검출된다.
도 10은 본 발명의 일 실시예에 따른 멀티 채널 터치 포스 센서(1000)를 도시하는 도면이다.
도 10에서는 하나의 인덕티브 코일(1012) 및 변형 가능한 부품(1030)이 하나의 모듈(1010a)에 대응하고, 복수 개의 개별 채널 정전용량형 터치 전극들(1016)의 영역을 커버할 수 있다. 하나의 개별 채널에는 하나의 정전용량형 터치 전극(1016)이 대응한다. 하나의 모듈(1010a)은 복수 개의 채널을 포함한다.
즉, 개별 모듈(1010a)은 하나의 인덕티브 센싱 모듈에 대응하고, 하나의 모듈(1010a)의 영역은 복수 개의 개별 채널을 포함하며, 각 개별 채널은 하나의 정전용량형 터치 전극(1016) 에 대응한다.
도 10의 실시예를 확장하면, 본 발명의 일 실시예에 따른 터치 포스 센서(1000)의 제1 개별 영역(개별 코일 영역)은 복수개의 터치 전극들 중 제3 그룹의 복수개의 터치 전극들의 터치 전극 위치들을 포함하는 제3 그룹 영역을 커버하고, 제2 개별 영역(개별 코일 영역)은 복수개의 터치 전극들 중 제4 그룹의 복수개의 터치 전극들의 터치 전극 위치들을 포함하는 제4 그룹 영역을 커버할 수 있다.
도 10의 실시예에서는 하나의 인덕티브 코일(1012) 및 변형 가능한 부품(1030)은 모듈(1010a) 영역 내에서 터치가 이루어졌는지, 터치된 핑거에 의한 터치 힘을 정량화하는 근거를 제공한다. 이때 정밀한 터치 위치는 복수개의 개별 채널 터치 전극들(1012) 각각의 정전 용량 변화에 기반하여 검출된다.
또한 개별 채널 터치 전극들(1012)은 터치된 핑거가 실제 인체의 핑거인지, 또는 우연히 어떤 다른 물체에 의하여 모듈(1010a) 영역 내에서 터치 힘이 인가된 것인지에 대해서 판단할 수 있는 근거를 제공한다.
사용자의 터치의 의도 및 터치 제스쳐는 정밀한 터치 위치의 시간-공간 상의 변화, Z축 방향의 터치 힘의 정량화된 정도, Z축 방향의 터치 힘의 시간 도메인에서의 변화, 및 터치된 핑거가 실제 인체의 핑거인지 여부에 기반하여 판단되므로 모듈(1010a)에 대응하는 인덕티브 코일(1012)의 시간 도메인에서의 인덕턴스 변화 및 모듈(1010a) 내의 개별 채널 터치 전극들(1016) 각각의 시간-공간 상의 정전용량의 변화를 종합적으로 고려하여 판정될 수 있다.
도 10에서 하나의 모듈(1010a)에 하나의 변경 가능한 부품(1030)이 도시되었으나, 실시예에 따라서는 변경 가능한 부품(1030)과 인덕티브 코일(1012) 사이에 모듈(1010a) 별로 하나의 타겟 레이어가 배치될 수도 있다.
도 11은 본 발명의 일 실시예에 따른 터치 포스 센서(1100)의 회로 및 동작 방법을 도시하는 도면이다.
본 발명의 일 실시예에 따른 도 2, 및 도 3의 터치 포스 센서(200, 300)와 도 11의 회로를 함께 참조하면, 터치 포스 센서(200, 300, 1100)는 인덕티브 코일(212, 312, 1112)과 결합하며 상기 인덕티브 코일(212, 312, 1112)에 대한 변형 가능한 제1 부품(230, 330, 1130)의 변위에 기반하여 상기 인덕티브 코일(212, 312, 1112)에 형성되는 제1 인덕턴스에 기인하는 제1 인덕티브 공진 주파수(ω_L1)를 가지는 제1 인덕티브 채널 공진 회로(1120)를 포함한다.
이때 본 발명의 일 실시예에 따른 터치 포스 센서(200, 300, 1100)는 상기 제1 인덕티브 채널 공진 회로(1120)에 제2 교류 신호를 인가하는 제2 오실레이터(722); 상기 제1 인덕티브 채널 공진 회로(1120)가 가질 수 있는 상태 중 미리 결정된 제1 상태(외력(250, 350, 1150)이 인가되지 않는 상태가 선호됨)와 동일한 임피던스를 가지는 레퍼런스 공진 회로(도 11에서는 도시되지 않음); 상기 제2 오실레이터(1122)와 동일한 특성을 가지며 상기 레퍼런스 공진 회로에 레퍼런스 교류 신호를 인가하는 레퍼런스 오실레이터(도 7에서는 도시되지 않음); 및 상기 제1 인덕티브 채널 공진 회로(1120)에 형성되는 제2 전기 신호를 수신하고, 상기 레퍼런스 공진 회로에 형성되는 레퍼런스 전기 신호를 수신하고, 상기 제2 전기 신호의 상기 제1 인덕티브 공진 주파수(ω_L1)와 상기 레퍼런스 전기 신호의 레퍼런스 공진 주파수(ω_ref)에 기반하여 상기 제1 부품(230, 330, 1130)의 변위 △d = |d-d0| 및 상기 Z축 방향의 상기 외력(250, 350, 1150)을 판정하는 인덕티브 판정 회로(1170)를 포함한다.
본 발명의 일 실시예에 따른 터치 포스 센서(200, 300, 1100)의 인덕티브 판정 회로(1170)는 상기 레퍼런스 공진 회로에 인가되는 상기 레퍼런스 교류 신호의 영향으로 상기 레퍼런스 공진 회로에 형성되는 상기 레퍼런스 전기 신호의 상기 레퍼런스 공진 주파수(ω_ref)와 상기 제1 인덕티브 공진 주파수(ω_L1) 간의 차이를 검출하고, 상기 레퍼런스 공진 주파수(ω_ref)와 상기 제1 인덕티브 공진 주파수(ω_L1) 간의 차이에 기반하여 상기 제1 인덕티브 채널 공진 회로(1120)가 상기 제1 상태에서 벗어난 정도, 상기 제1 부품(230, 330, 1130)이 상기 인덕티브 코일(212, 312, 1112)에 대하여 움직인 상대적인 변위 △d = |d-d0|, 및 상기 Z축 방향의 상기 외력(250, 350, 1150)에 대한 정량화된 감지 정보를 획득할 수 있다.
도 11에 도시된 제1 인덕티브 채널 공진 회로(1120)는 등가 회로를 나타낸 것이며, 반드시 lumped RLC 요소를 포함해야 하는 것은 아니다. 예를 들어 정전 용량 C(1124)과 저항 R(1126)은 독립적인 소자일 수도 있고, 기생 성분을 나타낸 것일 수도 있다. 또한 독립적인 소자를 이용하여 제1 인덕티브 채널 공진 회로(1120)를 구현한 경우에도, 소자의 배치가 반드시 도 11을 따를 필요는 없으며 등가적으로 제1 인덕티브 채널 공진 회로(1120)에 대응할 수 있으면 충분하다.
본 발명의 일 실시예에 따른 터치 포스 센서(200, 300, 1100)의 인덕티브 판정 회로(1170)는 상기 레퍼런스 공진 주파수(ω_ref)와 상기 제1 인덕티브 공진 주파수(ω_L1) 간의 차이가 제1 임계값 이상이면 상기 제1 인덕티브 공진 주파수(ω_L1)가 유의미한 변화를 일으킨 것으로 간주하여 상기 Z축 방향의 상기 외력(150)이 입력된 것으로 판정할 수 있다. 즉, 노이즈, 의도하지 않은 움직임, 의도하지 않은 접촉, 의도하지 않은 진동에 의하여 제1 인덕티브 공진 주파수(ω_L1)의 변화가 감지되었으나 제1 임계값 미만인 경우에는 제1 인덕티브 공진 주파수(ω_L1)가 유의미한 변화를 일으키지 않은 것으로 간주할 수 있다.
본 발명의 일 실시예에 따른 터치 포스 센서(200, 300, 1100)의 인덕티브 판정 회로(1170)는 캘리브레이션 과정을 수행할 수 있다. 인덕티브 판정 회로(1170)는 제1 상태(예를 들어 외력(250, 350, 1150)이 인가되지 않은 상태가 선호됨)에서 캘리브레이션 과정을 수행할 수 있다. 이때 캘리브레이션 과정을 통해 제1 인덕티브 공진 주파수(ω_L1) 및 레퍼런스 공진 주파수(ω_ref) 간의 차이가 zero가 되도록 제1 인덕티브 채널 공진 회로(1120) 또는 레퍼런스 공진 회로가 조정될 수 있다. 또한 캘리브레이션 과정을 통해 외력(250, 350, 1150)이 인가되지 않은 제1 상태에서 검출되는 제1 인덕티브 공진 주파수(ω_L1) 및 레퍼런스 공진 주파수(ω_ref) 간의 차이가 별도의 메모리 또는 스토리지(storage)에 저장되어 향후 인덕티브 포스 센싱 과정에서 오프셋 정보로 처리될 수 있다. 캘리브레이션을 거친 후 제1 인덕티브 공진 주파수(ω_L1) 및 레퍼런스 공진 주파수(ω_ref) 간의 차이에 대한 조정은 제1 인덕티브 채널 공진 회로(1120)에 부가될 수 있는 가변 저항기 R' 의 값을 조정하는 등의 수단을 이용하여 실행될 수 있다.
일반적으로 현재까지 알려진 인덕티브 센싱 기술은 가변 주파수 스캔을 통하여 복수의 주파수 신호를 순차적으로 입력한 이후 임피던스의 변화를 측정하는 것이었는데, 이 같은 방법은 신호의 크기를 정확히 검출하고 비교해야 하는 전제 조건이 있었다. 그런데 일반적인 인덕티브 센서에서 노이즈에도 불구하고 신호들의 크기를 정확히 검출하는 것은 대단히 어려운 일이다.
본 발명은 신호들의 진폭을 주된 검출 대상으로 삼는 대신 공진 주파수의 변화를 주된 검출 대상으로 삼았으며, 또한 가변 주파수 스캔과 같은 방식을 채택하지 않고 동일 주파수의 교류 신호를 인가하는 수단만으로도 충분히 소기의 목적을 달성할 수 있다. 따라서 이러한 방식을 이용하여 본 발명은 신속하게 해당 시점의 인덕턴스의 변화를 감지하고, 이를 정량화할 수 있다. 후술할 도 13의 방식에 의하여 공진 신호의 진폭과 관련 없이 제1 인덕티브 공진 주파수(ω_L1)의 실시간 변화가 검출될 수 있다. 또한 제1 인덕티브 공진 주파수(ω_L1)가 간접적인 방법으로 검출되는 것이 아니라 주파수의 값이 직접적으로 검출되므로, 이를 이용하여 디지털화하기 용이하며, 디지털화된 값을 이용하여 인덕턴스의 변화 및 터치 포스의 변화를 정밀하게 검출할 수 있는 장점이 있다. 또한 가변 주파수 스캔과 같은 과정이 없으므로 센싱 과정이 빠르고 소비 전력이 적다. 하나의 코일 및 채널에 대한 인덕티브 센싱 과정이 신속하면서 센싱 결과는 디지털화된 값으로 얻어지므로, 다수의 채널을 구현한 경우에도 실질적으로 동시에 인덕턴스의 변화 및 터치 포스의 변화를 검출할 수 있다. 각각의 채널 및 코일이 XY 평면 상의 위치에 대응할 경우, 신속하게 얻어진 터치 포스의 XY 평면 상에서의 공간적 변화는 터치 포스가 사용자의 의도에 의한 것인지, 오류 또는 다른 원인에 의한 것인지를 용이하게 식별할 수 있게 한다. 또한 터치 포스의 XY 평면 상에서의 공간적 변화를 시간 도메인 상에서 추적함으로써 사용자의 의도에 의한 제스쳐를 용이하게 인식할 수 있다.
본 발명의 다른 일 실시예를 설명하기 위해 도 11의 회로를 도 4의 실시예와 함께 참조하면, 도 4의 개별 영역들(432)이 도 11의 제1 부품(1130)에 대응하는 것으로 이해될 수 있다. 이때 개별 영역들(432) 각각과 대응하는 개별 인덕티브 채널의 인덕티브 코일(412)은 도 11의 코일(1112)에 대응하는 것으로 이해될 수 있다. 도 11의 인덕티브 채널 공진 회로(1120)는 개별 인덕티브 채널의 인덕티브 코일(412)과 결합하며, 개별 인덕티브 채널에 대한 외력(1150)을 감지하는 수단으로 활용된다. 도 11의 오실레이터(1122)는 개별 인덕티브 채널 별로 구비되며, 개별 인덕티브 채널의 인덕티브 채널 공진 회로(1120)에 개별 인덕티브 교류 신호를 인가한다.
인덕티브 판정 회로(1170)와 레퍼런스 공진 회로는 복수 개의 개별 인덕티브 채널 공진 회로(1120)에 공통적으로 연결되고, 복수 개의 개별 인덕티브 채널은 인덕티브 판정 회로(1170)와 레퍼런스 공진 회로를 공유할 수 있다.
본 발명은 교류 신호의 주파수 스캔 과정 없이 단일 스캔에 의하여 즉각적으로 개별 인덕티브 채널의 공진 주파수의 변화를 검출할 수 있으므로, 인덕티브 판정 회로(1170)와 레퍼런스 공진 회로는 복수 개의 개별 인덕티브 채널 공진 회로(1120)와 시분할적으로 교차 연결되고, 복수 개의 개별 인덕티브 채널 공진 회로(1120)에서 출력되는 개별 인덕티브 채널의 공진 주파수 정보는 인덕티브 판정 회로(1170)에 의하여 검출되어 개별 인덕티브 채널 별/개별 영역들(432)에 대한 외력을 검출할 수 있다. 즉, 개별 인덕티브 채널에 대한 외력의 검출 시간이 크게 단축되었으므로, 시분할 멀티플렉싱에 의하여 복수 개의 개별 인덕티브 채널의 출력 정보(채널 별 공진 주파수에 관한 정량적 정보)가 공유되는 인덕티브 판정 회로(1170)에 전달되고 인덕티브 판정 회로(1170)는 복수 개의 개별 인덕티브 채널 각각을 식별하면서 복수 개의 개별 인덕티브 채널 각각의 개별 변위 정보, 터치 힘 정보를 검출할 수 있다.
인체의 핑거에 의한 터치, 및 일련의 터치 움직임에 의한 제스쳐 식별 시에도 인덕티브 판정 회로(1170)는 개별 인덕티브 채널 별로 위치 정보를 인지하고, 실질적으로 동일한(인체의 핑거의 터치 지속 시간과 비교할 때 실질적으로 동일한 시간임을 의미함) 시간에서 터치 힘의 공간적 분포를 산출할 수 있다. 이로 인하여 앞서 설명된 도 7 내지 도 10의 실시예와 결합하여 Z축 방향의 외력에 의하여 의도되는 사용자 제스쳐를 인식할 수 있다. 또한 유사한 방법으로 Z축 방향의 외력이 사용자에 의하여 의도된 입력인지 여부를 식별할 수 있다.
인덕티브 판정 회로(1170) 및 레퍼런스 공진 회로는 복수 개의 개별 채널들과 연관되는 하나의 모듈마다 배치되거나, 칩 전체에 공통적으로 하나의 인덕티브 판정 회로(1170) 및 레퍼런스 공진 회로가 구현되더라도 개별 인덕티브 채널들의 터치 힘의 분포를 실질적으로 시간 차이 없이 측정할 수 있다.
도 12는 본 발명의 일 실시예에 따른 터치 포스 센서(1100)의 회로 및 동작 방법을 도시하는 도면이다.
본 발명의 일 실시예에 따른 터치 포스 센서(1100)는 핑거가 접촉하는 접촉부(도시되지 않음)에 배치되는 터치 전극(1116)과 연결되는 제1 정전용량형 채널 공진 회로(1140); 상기 제1 정전용량형 채널 공진 회로(1140)에 제1 교류 신호를 인가하는 제1 오실레이터(1142); 상기 제1 정전용량형 채널 공진 회로(1140)에 형성되는 제1 전기 신호의 제1 정전용량형 공진 주파수(ω_C1)를 검출하고 상기 검출된 제1 정전용량형 공진 주파수(ω_C1)에 기반하여 상기 접촉부에 핑거가 접촉하였는지 여부 및 상기 접촉부에 접촉된 핑거가 인체의 핑거인지 여부를 판정하는 정전용량형 판정 회로(1180)를 포함한다.
이때 정전용량형 판정 회로(1180)는 상기 레퍼런스 공진 주파수(ω_ref)와 상기 제1 정전용량형 공진 주파수(ω_C1) 간의 차이가 제2 임계값 이상이면 제1 정전용량형 공진 주파수(ω_C1)가 유의미한 변화를 일으킨 것으로 간주하여 상기 접촉부에 핑거가 접촉한 것으로 판정할 수 있다.
이때 정전용량형 판정 회로(1180)는 상기 레퍼런스 공진 주파수(ω_ref)와 상기 제1 정전용량형 공진 주파수(ω_C1) 간의 차이가 제3 임계값 이상인지 여부에 기반하여 상기 접촉부에 접촉된 핑거가 인체의 핑거인지 여부를 판정할 수 있다.
이때 정전용량형 판정 회로(1180)는 상기 제1 정전용량형 채널 공진 회로(1140)가 상기 레퍼런스 공진 회로와 동일한 임피던스를 가지는 제2 상태에 있도록 외부에서 강제로 조정된 상태에서 상기 제1 정전용량형 공진 주파수(ω_C1) 및 상기 레퍼런스 공진 주파수(ω_ref) 간의 차이에 기반하여 캘리브레이션 과정을 수행할 수 있다. 제2 상태는 접촉부에 핑거가 접촉하거나 근접하지 않은 상태일 수 있다. 이때 캘리브레이션 과정을 통해 제1 정전용량형 공진 주파수(ω_C1) 및 레퍼런스 공진 주파수(ω_ref) 간의 차이가 zero가 되도록 제1 정전용량형 채널 공진 회로(1140)가 조정될 수 있다. 또한 캘리브레이션 과정을 통해 접촉부에 핑거가 접촉하거나 근접하지 않은 상태에서 검출되는 제1 정전용량형 공진 주파수(ω_C1) 및 레퍼런스 공진 주파수(ω_ref) 간의 차이가 별도의 메모리 또는 스토리지(storage)에 저장되어 향후 채널 별 정전용량 검출 과정에서 오프셋 정보로 처리될 수 있다. 캘리브레이션을 거친 후 제1 정전용량형 채널 공진 회로(1140)에 대한 조정은 가변 저항기 R' 의 값을 조정하는 등의 수단을 이용하여 실행될 수 있다.
외부에서 접근하는 인체의 핑거와 터치 전극(1116) 사이에서 형성하는 기생 정전 용량의 변화로 인하여 제1 정전용량형 채널 공진 회로(1140)의 임피던스 및 기생 정전 용량(parasitic capacitance)이 합성된 합성 임피던스가 변화한다.
정전용량형 판정 회로(1180)는 정전용량형 채널의 공진 주파수에 대한 복수개의 기준값을 가질 수 있다. 이 때의 기준값들은 접촉부에 외부의 핑거가 접촉하거나 근접하지 않은 경우의 제1 정전용량형 공진 주파수(ω_C1)의 제1 범위, 핑거가 접촉부에 접촉하거나 근접한 경우의 제1 정전용량형 공진 주파수(ω_C1)의 제2 범위, 접촉부에 접촉하거나 근접한 경우의 외부 물체가 인체가 아닌 경우의 제1 정전용량형 공진 주파수(ω_C1)의 제3 범위, 및 접촉부에 접촉하거나 근접한 핑거가 실제 인체의 거인 경우의 제1 정전용량형 공진 주파수(ω_C1)의 제4 범위에 대한 경계값들을 의미할 수 있다.
정전용량형 채널에 대한 외부 물체의 접근에 의한 정전용량형 채널의 공진 주파수의 shift(레퍼런스 공진 주파수와의 차이)가 제2 임계값 이상이면 정전용량형 채널의 공진 주파수가 유의미한 shift를 일으킨 것으로 간주하고 어떤 물체가 접촉부에 접촉하거나 근접한 것으로 인식할 수 있다.
정전용량형 채널에 대한 외부 물체의 접근에 의한 정전용량형 채널의 공진 주파수의 shift(레퍼런스 공진 주파수와의 차이)가 제3 임계값 이상이면 접근하거나 접촉한 외부 물체가 인체의 핑거인 것으로 인식할 수 있다. 이 때 정전용량형 채널과 동시에, 정전용량형 채널과 공간적으로 동일하거나 중첩되는 인덕티브 채널에서 터치 힘이 인식되는 경우 유효한 터치 힘으로 인식할 수 있다.
예를 들어 인체의 핑거가 접근하였을 때 정전용량형 채널의 공진 주파수의 shift(레퍼런스 공진 주파수와의 차이)가 100 ~ 1000 kHz 범위 내에서 동작하는 점을 데이터베이스에서 참조할 수 있다면, 상기 범위 이외의 정전용량형 채널의 공진 주파수 shift는 인체의 터치가 아닌 것으로 인식될 수 있다. 또는 인체의 핑거는 100 ~ 1000 kHz, 스타일러스 등 알려진 터치 기구는 20 ~ 50 kHz 의 정전용량형 채널의 공진 주파수 shift를 유도한다고 가정하면, 이 이외의 범위의 shift는 사용자가 의도한 터치가 아닌 것으로 인식하고, 이 때와 동일한 시간의 인덕티브 채널의 터치 힘 감지 정보는 유효하지 않은 것으로 판정하고 cancel할 수 있다. 물론 이 같은 실시예들은 본 발명의 사상을 구현하기 위한 실시예들 중 하나로서, 본 발명의 사상이 이와 같은 실시예들에 의하여 국한되는 것은 아니다.
본 발명의 실시예에서는 정전용량형 채널의 공진 주파수 shift를 인식함에 있어서도 가변 주파수 스캔을 필요로 하지 않고 단일 스캔 과정에 의하여 즉각적으로 공진 주파수 shift를 인식할 수 있으므로 접촉되거나 접근한 물체의 종류를 빠르게 인식하여 인덕티브 채널의 터치 힘을 오인하여 장치가 오동작하는 것을 빠르게 방지할 수 있다. 또한 이러한 단일 스캔에 의한 공진 주파수 shift 인식은 공진 신호의 진폭을 측정할 필요 없이 주파수 성분만을 식별할 수 있으므로 노이즈에 강인하고(robust) 미약한 신호의 변화에도 강인하다.
도 12에 도시된 제1 정전용량형 채널 공진 회로(1124)는 등가 회로를 나타낸 것이며, 반드시 lumped RLC 요소를 포함해야 하는 것은 아니다. 예를 들어 정전 용량 C(1146)과 저항 R(1148)은 독립적인 소자일 수도 있고, 기생 성분을 나타낸 것일 수도 있다. 또한 독립적인 소자를 이용하여 제1 정전용량형 채널 공진 회로(1140)를 구현한 경우에도, 소자의 배치가 반드시 도 12를 따를 필요는 없으며 등가적으로 제1 정전용량형 채널 공진 회로(1140)에 대응할 수 있으면 충분하다.
본 발명의 다른 일 실시예를 설명하기 위해 도 12의 회로를 도 4의 실시예와 함께 참조하면, 도 4의 개별 영역들(432)에 결합된 개별 채널의 터치 전극들 각각이 도 12의 터치 전극(1116)에 대응하는 것으로 이해될 수 있다.
개별 채널의 오실레이터(1142)는 개별 채널의 공진 회로(1140)마다 배치되고 개별 채널의 교류 신호를 개별 채널의 공진 회로(1140) 각각에 인가한다.
정전용량형 판정 회로(1180) 및 레퍼런스 공진 회로는 복수 개의 개별 채널의 공진 회로(1140)에 공통적으로 연결되고 시분할 멀티플렉싱에 의하여 복수 개의 개별 채널의 공진 회로(1140) 각각의 개별 채널 공진 주파수 shift를 검출할 수 있다. 정전용량형 판정 회로(1180) 및 레퍼런스 공진 회로는 복수 개의 개별 채널들과 연관되는 하나의 모듈마다 배치되거나, 칩 전체에 공통적으로 하나의 정전용량형 판정 회로(1180) 및 레퍼런스 공진 회로가 구현되더라도 복수 개의 개별 정전용량형 채널들 각각의 터치 여부, 터치된 물체가 인체의 핑거 또는 스타일러스 등 의도된 입력인지 여부를 시간 차이 없이 실질적으로 동시에 측정할 수 있다.
본 발명의 일 실시예에 따른 터치 포스 센서(1100)는 도 11과 도 12를 함께 참조하여 설명할 수 있다.
이때 본 발명의 일 실시예에 따른 터치 포스 센서(1100)는 인덕티브 판정 회로(1170)와 정전용량형 판정 회로(1180)가 하나의 레퍼런스 공진 회로를 공유할 수 있다. 레퍼런스 공진 회로에는 레퍼런스 교류 신호를 인가하는 레퍼런스 오실레이터가 단독으로 결합된다.
정전용량형 판정 회로(1180)는 상기 레퍼런스 공진 회로에 인가되는 상기 레퍼런스 교류 신호의 영향으로 상기 레퍼런스 공진 회로에 형성되는 레퍼런스 전기 신호의 레퍼런스 공진 주파수(ω_ref)와 상기 제1 정전용량형 공진 주파수(ω_C1) 간의 차이를 검출하고, 상기 레퍼런스 공진 주파수(ω_ref)와 상기 제1 정전용량형 공진 주파수(ω_C1) 간의 차이에 기반하여 상기 접촉부/터치 전극(1116)에 핑거가 접촉하였는지 여부 및 상기 접촉부/터치 전극(1116)에 접촉된 핑거가 인체의 핑거인지 여부를 판정할 수 있다. 상기 인덕티브 판정 회로(1170)는 상기 레퍼런스 공진 주파수(ω_ref)와 상기 제1 인덕티브 공진 주파수(ω_L1) 간의 차이를 검출하고, 상기 레퍼런스 공진 주파수(ω_ref)와 상기 제1 인덕티브 공진 주파수(ω_L1) 간의 차이에 기반하여 상기 제1 부품(1130)의 변위 및 상기 Z축 방향의 상기 외력(1150)을 판정할 수 있다.
이때 본 발명의 일 실시예에 따른 터치 포스 센서(1100)는 외부로부터 인체의 핑거가 상기 접촉부/터치 전극(1116)에 접촉되고 상기 핑거의 접촉에 의하여 상기 Z축 방향의 상기 외력이 인가된 경우, 상기 정전용량형 판정 회로(1180)가 상기 핑거의 터치 위치를 검출하거나, 상기 인덕티브 판정 회로(1170)가 상기 핑거의 터치 위치를 검출하거나, 상기 정전용량형 판정 회로(1180) 및 상기 인덕티브 판정 회로(1170) 각각이 상기 핑거의 터치 위치를 검출하여 교차 검증할 수 있다. 즉, 인덕티브 채널과 정전용량형 채널 각각으로부터 핑거의 터치 위치가 인식되므로, 둘 중 한쪽을 기준으로 하여 핑거의 터치 위치가 인식되어도 무방하고, 인덕티브 채널과 정전용량형 채널 각각으로부터 인식된 핑거의 터치 위치를 서로 교차 검증할 수도 있다.
레퍼런스 공진 회로는 제1 인덕티브 채널 공진 회로(1120)가 가질 수 있는 상태 중 미리 결정된 제1 상태와 동일한 임피던스를 가지도록 설계되고, 제1 정전용량형 공진 회로(1140)가 가질 수 있는 상태 중 미리 결정된 제2 상태와 동일한 임피던스를 가지도록 설계될 수 있다. 이때 제1 상태는 상기 Z축 방향의 외력(1150)이 인가되지 않은 상태일 수 있고, 제2 상태는 핑거가 접촉부에 접촉하지 않은 상태일 수 있다.
본 발명의 다른 일 실시예에 따른 터치 포스 센서(1100)는 도 4의 멀티 채널 구조와 함께 참조될 수 있다. 즉, 도 4, 도 11, 및 도 12를 함께 참조하면, 복수 개의 개별 인덕티브 채널들 및 개별 정전용량형 채널들에 대해서 하나의 레퍼런스 공진 회로 및 하나의 레퍼런스 오실레이터가 공유될 수 있다.
레퍼런스 공진 회로는 정전용량형 판정 회로(1180) 및 인덕티브 판정 회로(1170)에 의하여 공유되고, 정전용량형 판정 회로(1180)는 복수 개의 개별 정전용량형 채널들에 의하여 공유되며, 인덕티브 판정 회로(1170)는 복수 개의 개별 인덕티브 채널들에 의하여 공유될 수 있다.
도 13은 본 발명의 일 실시예에 따른 터치 포스 센서(1300)의 회로 및 동작 방법을 도시하는 도면이다.
도 13의 제1 인덕티브 채널 공진 회로(1320), 오실레이터(1322), 제1 부품(1330)는 도 11의 제1 인덕티브 채널 공진 회로(1120), 오실레이터(1122), 및 제1 부품(1130)과 동일하므로 중복되는 설명은 생략한다.
본 발명의 일 실시예에 따른 인덕티브 포스 센서(1300)의 인덕티브 판정 회로(1370)는 상기 제1 인덕티브 공진 주파수(ω_L1)와 상기 레퍼런스 공진 주파수(ω_ref) 간의 차이를 구하는 연산기(operator) 회로(1372), 상기 연산기 회로(1372)의 출력단에 연결되어 고주파 성분을 제거하는 저역통과필터(Low pass filter)(1374), 및 상기 저역통과필터(1374)의 출력단에 연결되어 상기 제1 인덕티브 공진 주파수(ω_L1)와 상기 레퍼런스 공진 주파수(ω_ref) 간의 차이에 해당하는 차동 주파수 성분 신호의 주파수를 디지털 카운트하는(차동 주파수 성분 신호의 주파수에 비례하는 디지털화된 값을 출력하는) 타임-투-디지털 변환기(Time-to-Digital Converter)(1376)를 포함할 수 있다.
연산기 회로(1372)는 제2 전기 신호와 레퍼런스 전기 신호 간의 산술 연산(가산, 감산, 승산)을 이용하여 즉각적으로 차동 주파수 성분 신호를 획득할 수 있다. 타임-투-디지털 변환기(1376)는 차동 주파수(또는 차동 주파수에 비례하는 주파수)를 가지는 펄스 신호의 펄스 개수를 일정 시간 구간 동안 카운트하거나, 차동 주파수(또는 차동 주파수에 비례하는 주파수)를 가지는 펄스 신호의 펄스폭 또는 주기에 대한 디지털 카운트 값을 생성할 수 있다.
인덕티브 판정 회로(1370)의 실시예에 따라서는 차동 주파수 성분 신호에 대한 샘플러 및 비교기(comparator)를 포함할 수 있는데, 이때 인덕티브 판정 회로(1370)의 원활한 동작을 위하여 샘플러 및 비교기는 제1 임계값보다 충분히 크고, 감지 대상 변위에 대응하는 공진 주파수 성분의 동작 범위보다 충분히 큰 동작 주파수를 선택하여 설계될 수 있다. 이때 레퍼런스 공진 회로(1390) 및 레퍼런스 오실레이터(1392)는 외부의 영향으로부터 차단되어 초기화된 설정을 계속 유지할 수 있도록 관리된다.
본 발명의 다른 일 실시예로서 도 13과 도 4의 멀티 채널 구조의 실시예를 함께 참고하면, 복수 개의 개별 영역들(432) 각각은 도 13의 제1 부품(1330)에 대응하고, 복수 개의 개별 인덕티브 채널의 인덕티브 코일들(412) 각각은 도 13의 개별 채널 인덕티브 공진 회로(1320)에 연결된다.
레퍼런스 공진 회로(1390)와 인덕티브 판정 회로(1370)는 지속적으로 연결되고, 인덕티브 판정 회로(1370)는 미리 정해진 스케줄에 의하여 순차적으로 개별 인덕티브 채널의 인덕티브 코일들(412) 각각과 연결된 개별 인덕티브 채널 공진 회로(1320)와 시분할 멀티플렉싱에 의하여 연결될 수 있다.
미리 정해진 스케줄에 의하여 개별 인덕티브 채널들 각각의 개별 영역들(432)의 Z축 방향의 변위가 순차적으로 인덕티브 판정 회로(1370)에 의하여 식별될 수 있다. 인덕티브 판정 회로(1370)는 공간적 위치가 식별되는 개별 인덕티브 채널들 각각의 터치 위치 및 터치 힘을 검출하고, 터치 힘의 공간적 분포가 시간 도메인에서 변화하는 패턴을 검출할 수 있다.
본 발명의 실시예들에서는 인덕티브 판정 회로(1370)에서 즉각적으로 각 개별 인덕티브 채널(L_i)의 공진 주파수(ω_L_i)와 레퍼런스 공진 주파수(ω_ref) 간의 차동 주파수 성분을 구할 수 있으므로, 시간 지연 없이 실질적으로 동시에 다수의 개별 인덕티브 채널들의 인덕턴스, 변위, 터치 포스를 식별할 수 있다.
본 발명의 실시예들에서는 인덕티브 판정 회로(1370)에서 각 개별 인덕티브 채널들의 전기 신호 및 레퍼런스 전기 신호의 진폭과 독립적으로(진폭의 검출 없이) 각 개별 인덕티브 채널(L_i)의 공진 주파수(ω_L_i) 정보를 검출할 수 있다. 이때 실시예에 따라서는 공진 주파수(ω_L_i)와 독립적으로 진폭을 검출하는 종래의 기술을 병행적으로 적용하고, 서로 독립적으로 얻어진 두 개의 감지 정보(진폭의 검출에 기반한 제1 감지 정보, 진폭과 독립적으로 공진 주파수의 검출에 기반한 제2 감지 정보)를 상호 교차 검증할 수도 있다.
도 14는 본 발명의 일 실시예에 따른 터치 포스 센서(1300)의 회로 및 동작 방법을 도시하는 도면이다.
도 14의 제1 정전용량형 채널 공진 회로(1340), 오실레이터(1342), 터치 전극(1316)은 도 12의 제1 정전용량형 채널 공진 회로(1140), 오실레이터(1142), 및 터치 전극(1116)과 동일하므로 중복되는 설명은 생략한다.
본 발명의 일 실시예에 따른 터치 포스 센서(1300)의 정전용량형 판정 회로(1380)는 상기 제1 정전용량형 공진 주파수(ω_C1)와 상기 레퍼런스 공진 주파수(ω_ref)의 차이를 구하는 연산기(operator)(1382); 상기 연산기(1382)의 출력단에 연결되어 고주파 성분을 제거하는 저역통과필터(Low pass filter)(1384); 및 상기 저역통과필터(1384)의 출력단에 연결되어 상기 제1 정전용량형 공진 주파수(ω_C1)와 상기 레퍼런스 공진 주파수(ω_ref) 간의 차이에 해당하는 차동 주파수 성분 신호의 주파수를 디지털 카운트하는 타임-투-디지털 변환기(Time-to-Digital Converter)(1386)를 포함할 수 있다.
연산기 회로(1382)는 제1 전기 신호와 레퍼런스 전기 신호 간의 산술 연산(가산, 감산, 승산)을 이용하여 즉각적으로 차동 주파수 성분 신호를 획득할 수 있다. 타임-투-디지털 변환기(1386)는 차동 주파수(또는 차동 주파수에 비례하는 주파수)를 가지는 펄스 신호의 펄스 개수를 일정 시간 구간 동안 카운트하거나, 차동 주파수(또는 차동 주파수에 비례하는 주파수)를 가지는 펄스 신호의 펄스폭 또는 주기에 대한 디지털 카운트 값을 생성할 수 있음은 도 13의 연산기 회로(1372) 및 타임-투-디지털 변환기(1376)의 동작과 유사하다.
본 발명의 다른 일 실시예로서 도 14와 도 4의 멀티 채널 구조의 실시예를 함께 참고하면, 복수 개의 개별 영역들(432) 각각과 결합하는 터치 전극들(도 4에서는 도시되지 않음) 각각은 복수 개의 개별 정전용량 채널을 구성하며 도 14의 터치 전극(1316)에 대응하고, 도 14의 개별 채널 정전용량형 공진 회로(1340)에 연결된다.
레퍼런스 공진 회로(1390)와 정전용량형 판정 회로(1380)는 지속적으로 연결되고, 정전용량형 판정 회로(1380)는 미리 정해진 스케줄에 의하여 순차적으로 개별 정전용량형 채널의 터치 전극들 각각과 연결된 개별 정전용량형 채널 공진 회로(1340)와 시분할 멀티플렉싱에 의하여 연결될 수 있다.
미리 정해진 스케줄에 의하여 개별 정전용량형 채널들 각각의 터치 전극에 외부의 핑거가 접촉하였는지, 접촉한 핑거는 인체의 핑거인 지가 순차적으로 정전용량형 판정 회로(1380)에 의하여 식별될 수 있다. 정전용량형 판정 회로(1380)는 공간적 위치가 식별되는 개별 정전용량형 채널들 각각의 터치 위치 및 터치된 핑거가 실제 인체의 핑거인 지를 검출할 수 있다.
본 발명의 실시예들에서는 정전용량형 판정 회로(1380)에서 즉각적으로 각 개별 정전용량형 채널(C_i)의 공진 주파수(ω_C_i)와 레퍼런스 공진 주파수(ω_ref) 간의 차동 주파수 성분을 구할 수 있으므로, 시간 지연 없이 실질적으로 동시에 다수의 개별 정전용량형 채널들의 정전용량, 터치 여부, 터치 위치, 터치된 핑거가 실제 인체의 핑거인 지를 식별할 수 있다.
본 발명의 실시예들에서는 정전용량형 판정 회로(1380)에서 각 개별 정전용량형 채널들의 전기 신호 및 레퍼런스 전기 신호의 진폭과 독립적으로(진폭의 검출 없이) 각 개별 정전용량형 채널(C_i)의 공진 주파수(ω_C_i) 정보를 검출할 수 있다. 이때 실시예에 따라서는 공진 주파수(ω_C_i)와 독립적으로 진폭을 검출하는 종래의 기술을 병행적으로 적용하고, 서로 독립적으로 얻어진 두 개의 감지 정보(진폭의 검출에 기반한 제3 감지 정보, 진폭과 독립적으로 공진 주파수의 검출에 기반한 제3 감지 정보)를 상호 교차 검증할 수도 있다.
본 발명의 일 실시예에 따른 터치 포스 센서(1300)는 도 13과 도 14를 함께 참조하여 설명할 수 있다.
이때 본 발명의 일 실시예에 따른 터치 포스 센서(1300)는 인덕티브 판정 회로(1370)와 정전용량형 판정 회로(1380)가 하나의 레퍼런스 공진 회로(1390) 및 하나의 레퍼런스 오실레이터(1392)를 공유할 수 있다.
본 발명의 다른 일 실시예에 따른 터치 포스 센서(1300)는 도 4의 멀티 채널 구조와 함께 참조될 수 있다. 즉, 도 4, 도 13, 및 도 14를 함께 참조하면, 복수 개의 개별 인덕티브 채널들 및 개별 정전용량형 채널들에 대해서 하나의 레퍼런스 공진 회로(1390) 및 하나의 레퍼런스 오실레이터(1392)가 공유될 수 있다.
레퍼런스 공진 회로(1390)는 정전용량형 판정 회로(1380) 및 인덕티브 판정 회로(1370)에 의하여 공유되고, 정전용량형 판정 회로(1380)는 복수 개의 개별 정전용량형 채널들에 의하여 공유되며, 인덕티브 판정 회로(1370)는 복수 개의 개별 인덕티브 채널들에 의하여 공유될 수 있다.
도 15는 본 발명의 일 실시예에 따른 터치 포스 센서(200, 300, 1100, 1300)의 동작 방법을 도시하는 동작 흐름도이다.
도 16은 본 발명의 일 실시예에 따른 터치 포스 센서(200, 300, 1100, 1300)의 동작 방법을 도시하는 동작 흐름도이다.
도 15와 도 16의 동작 방법은 도 2, 도 3, 도 11, 도 12, 도 13, 및 도 14와 함께 참조될 수 있다.
본 발명의 일 실시예에 따른 터치 포스 센서(200, 300, 1100, 1300)의 동작 방법은 핑거가 접촉하는 접촉부에 배치되는 터치 전극(216, 316, 1116, 1316); Z축 방향의 외력(250, 350, 1150, 1350)에 노출되며 상기 Z축 방향의 상기 외력(250, 350, 1150, 1350)에 의하여 상기 Z축 방향을 따라 탄성적으로 변형 가능한 제1 부품(230, 330, 1130, 1330); 및 상기 제1 부품(230, 330, 1130, 1330)과 이격되어 배치되는 기판(210, 310) 상에 형성되는 인덕티브 코일(212, 312, 1112)을 포함하는 터치 포스 센서(200, 300, 1100, 1300)에서 실행된다.
본 발명의 일 실시예에 따른 터치 포스 센서(200, 300, 1100, 1300)의 동작 방법은 상기 터치 전극(216, 316, 1116, 1316)과 연결되는 제1 정전용량형 채널 공진 회로(1140, 1340)에 제1 교류 신호가 인가되는 단계(S1510); 상기 인덕티브 코일(212, 312, 1112)과 결합하여 상기 인덕티브 코일(212, 312, 1112)에 대한 상기 제1 부품(230, 330, 1130, 1330)의 변위에 기반하여 상기 인덕티브 코일(212, 312, 1112)에 형성되는 제1 인덕턴스에 기인하는 제1 인덕티브 공진 주파수(ω_L1)를 가지는 제1 인덕티브 채널 공진 회로(1120, 1320)에 제2 교류 신호가 인가되는 단계(S1610); 레퍼런스 공진 회로(1390)에 레퍼런스 교류 신호가 인가되는 단계(S1520, S1620); 정전용량형 판정 회로(1180, 1380)가 상기 제1 교류 신호의 영향으로 상기 제1 정전용량형 채널 공진 회로(1140, 1340)에 형성되는 제1 전기 신호를 수신하는 단계(S1530); 인덕티브 판정 회로(1170, 1370)가 상기 제2 교류 신호의 영향으로 상기 제1 인덕티브 채널 공진 회로(1120, 1320)에 형성되는 제2 전기 신호를 수신하는 단계(S1630); 상기 정전용량형 판정 회로(1180, 1380) 및 상기 인덕티브 판정 회로(1170, 1370)가 상기 레퍼런스 공진 회로(1390)에 형성되는 레퍼런스 전기 신호를 수신하는 단계(S1530, S1630); 상기 정전용량형 판정 회로(1180, 1380)가 상기 제1 전기 신호의 제1 정전용량형 공진 주파수(ω_C1) 및 상기 레퍼런스 전기 신호의 레퍼런스 공진 주파수(ω_ref)에 기반하여(S1540) 상기 접촉부에 핑거가 접촉하였는지 여부 및 상기 접촉부에 접촉된 핑거가 인체의 핑거인 지 여부를 판정하는 단계(S1560); 및 상기 인덕티브 판정 회로(1170, 1370)가 상기 제2 전기 신호의 상기 제1 인덕티브 공진 주파수(ω_L1) 및 상기 레퍼런스 공진 주파수(ω_ref)에 기반하여(S1640) 상기 제1 부품(230, 330, 1130, 1330)의 변위 및 상기 Z축 방향의 상기 외력을 판정하는 단계(S1660)를 포함한다.
이때 단계(S1540)에서 검출된 제1 정전용량형 공진 주파수(ω_C1) 및 레퍼런스 공진 주파수(ω_ref) 간의 차이가 제2 임계값 이상이면 제1 정전용량형 공진 주파수(ω_C1)가 유의미한 변화를 일으킨 것으로 판정된다(S1550).
이때 단계(S1640)에서 검출된 제1 인덕티브 공진 주파수(ω_L1) 및 레퍼런스 공진 주파수(ω_ref) 간의 차이가 제1 임계값 이상이면 제1 인덕티브 공진 주파수(ω_L1)가 유의미한 변화를 일으킨 것으로 판정된다(S1650).
이때 상기 인덕티브 판정 회로(1170, 1370)가 상기 제1 부품(230, 330, 1130, 1330)의 변위 및 상기 Z축 방향의 상기 외력을 판정하는 단계(S1660)는 상기 레퍼런스 공진 주파수(ω_ref)와 상기 제1 인덕티브 공진 주파수(ω_L1) 간의 차이를 검출하는 단계(S1640); 및 상기 레퍼런스 공진 주파수(ω_ref)와 상기 제1 인덕티브 공진 주파수(ω_L1) 간의 차이에 기반하여 상기 제1 인덕티브 채널 공진 회로(1120, 1320)가 상기 레퍼런스 공진 회로(1390)와 동일한 임피던스를 가지는 제1 상태에서 벗어난 정도, 상기 제1 부품(230, 330, 1130, 1330)이 상기 인덕티브 코일(212, 312, 1112)에 대하여 움직인 상대적인 변위, 및 상기 Z축 방향의 상기 외력에 대한 정량화된 감지 정보를 획득하는 단계를 포함할 수 있다.
도 17은 본 발명의 일 실시예에 따른 터치 포스 센서(400, 1100, 1300)의 동작 방법을 도시하는 동작 흐름도이다.
도 17의 동작 방법은 도 4, 도 11, 및 도 13 이 함께 참조되는 멀티 채널 터치 포스 센서(400, 1100, 1300)에서 실행될 수 있다.
본 발명의 일 실시예에 따른 터치 포스 센서(400, 1100, 1300)의 동작 방법에서는 제1 인덕티브 채널에 대하여 도 16의 단계 S1610 내지 S1630이 수행되고, 특히 인덕티브 판정 회로(1170, 1370)가 단계 S1630을 수행한다. 또한 제2 인덕티브 채널에 대해서도 개별적으로 도 16의 단계 S1610 내지 S1630이 수행된다. 단계 S1630은 복수 개의 인덕티브 채널에 의하여 공유되는 인덕티브 판정 회로(1170, 1370)가 수행한다.
인덕티브 판정 회로(1170, 1370)가 레퍼런스 공진 주파수(ω_ref)와 제1 인덕티브 공진 주파수(ω_L1) 간의 차이(S1710), 및 레퍼런스 공진 주파수(ω_ref)와 제2 인덕티브 공진 주파수(ω_L2) 간의 차이(S1730)에 기반하여 제1 인덕티브 채널의 제1 변위, 제2 인덕티브 채널의 제2 변위, 및 Z축 방향의 외력이 입력된 위치 및 상기 외력을 판정하는 단계(S1720, S1740)를 수행한다.
인덕티브 판정 회로(1170, 1370)는 단계 S1720 및 S1740의 결과에 기반하여, 제1 인덕티브 채널과 제2 인덕티브 채널에 대하여 감지된 터치 포스가 사용자가 의도한 입력인지를 판정하고, 오류 또는 사용자가 의도하지 않은 다른 요인에 의한 신호 변동은 아닌지를 판정한다(S1750).
단계 S1750의 수행 결과 터치 포스가 사용자가 의도한 입력으로 판정되면, 인덕티브 판정 회로(1170, 1370)는 제1 인덕티브 채널과 제2 인덕티브 채널을 포함하는 영역에 대하여 터치 힘이 입력된 위치 및 터치 힘의 크기를 디지털화하고 정량화한다(S1760).
본 발명의 일 실시예에 따른 회로의 동작 방법은 다양한 컴퓨터 수단을 통하여 수행될 수 있는 프로그램 명령 형태로 구현되어 컴퓨터 판독 가능 매체에 기록될 수 있다. 상기 컴퓨터 판독 가능 매체는 프로그램 명령, 데이터 파일, 데이터 구조 등을 단독으로 또는 조합하여 포함할 수 있다. 상기 매체에 기록되는 프로그램 명령은 본 발명을 위하여 특별히 설계되고 구성된 것들이거나 컴퓨터 소프트웨어 당업자에게 공지되어 사용 가능한 것일 수도 있다. 컴퓨터 판독 가능 기록 매체의 예에는 하드 디스크, 플로피 디스크 및 자기 테이프와 같은 자기 매체(magnetic media), CD-ROM, DVD와 같은 광기록 매체(optical media), 플롭티컬 디스크(floptical disk)와 같은 자기-광 매체(magneto-optical media), 및 롬(ROM), 램(RAM), 플래시 메모리 등과 같은 프로그램 명령을 저장하고 수행하도록 특별히 구성된 하드웨어 장치가 포함된다. 프로그램 명령의 예에는 컴파일러에 의해 만들어지는 것과 같은 기계어 코드뿐만 아니라 인터프리터 등을 사용해서 컴퓨터에 의해서 실행될 수 있는 고급 언어 코드를 포함한다. 상기된 하드웨어 장치는 본 발명의 동작을 수행하기 위해 하나 이상의 소프트웨어 모듈로서 작동하도록 구성될 수 있으며, 그 역도 마찬가지이다.
그러나, 본 발명이 실시예들에 의해 제한되거나 한정되는 것은 아니다. 각 도면에 제시된 동일한 참조 부호는 동일한 부재를 나타낸다. 본 발명의 실시예와 도면에 소개된 길이, 높이, 크기, 폭 등은 이해를 돕기 위해 과장된 것일 수 있다.
이상과 같이 본 발명에서는 구체적인 구성 요소 등과 같은 특정 사항들과 한정된 실시예 및 도면에 의해 설명되었으나 이는 본 발명의 보다 전반적인 이해를 돕기 위해서 제공된 것일 뿐, 본 발명은 상기의 실시예에 한정되는 것은 아니며, 본 발명이 속하는 분야에서 통상적인 지식을 가진 자라면 이러한 기재로부터 다양한 수정 및 변형이 가능하다.
따라서, 본 발명의 사상은 설명된 실시예에 국한되어 정해져서는 아니 되며, 후술하는 특허청구범위뿐 아니라 이 특허청구범위와 균등하거나 등가적 변형이 있는 모든 것들은 본 발명 사상의 범주에 속한다고 할 것이다.
200, 300, 400, 500, 600, 700, 800, 900, 1000, 1100, 1300: 인덕티브 포스 센서
210, 310, 410, 510, 610: PCB
710a, 810a, 910a, 1010a: 복수 개의 센싱 채널들의 집합으로 이루어진 하나의 모듈
212, 312, 412, 512, 612, 712, 812, 912, 1012: 인덕티브 코일
230, 330, 430, 530, 630, 1030: 변형 가능한 부품
432, 632: 개별 영역
534, 634, 1134, 1334: 타겟 레이어
250, 350, 550, 1150, 1350: 외부로부터의 힘(외력)
852: 외력이 입력되는 범위
216, 316, 916, 1016, 1116, 1316: 터치 전극
218, 318: 유전체층/절연체층
238, 338: 탄성 폼(foam)
252, 352, 452, 552, 652: 스페이서 레이어
1120, 1320: 인덕티브 채널 공진 회로
1170, 1370: 인덕티브 판정 회로
1140, 1340: 정전용량형 공진 회로
1180, 1380: 정전용량형 판정 회로
1390: 레퍼런스 공진 회로

Claims (4)

  1. 레퍼런스 공진 회로;
    핑거가 접촉하는 접촉부에 배치되는 터치 전극과 연결되는 제1 정전용량형 채널 공진 회로;
    상기 제1 정전용량형 채널 공진 회로에 형성되는 제1 전기 신호를 수신하고, 상기 레퍼런스 공진 회로에 형성되는 레퍼런스 전기 신호의 레퍼런스 공진 주파수 및 상기 제1 전기 신호의 제1 정전용량형 공진 주파수 간의 차이에 기반하여 상기 접촉부에 핑거가 접촉하였는지 여부를 판정하는 기준이 되는 정전용량형 채널 출력 신호를 생성하는 정전용량형 채널 출력 회로;
    Z축 방향의 외력에 노출되며, 상기 Z축 방향의 상기 외력에 의하여 상기 Z축 방향을 따라 탄성적으로 변형 가능한 제1 부품;
    상기 제1 부품과 이격되어 배치되는 기판 상에 형성되는 인덕티브 코일;
    상기 인덕티브 코일과 결합하며 상기 인덕티브 코일에 대한 상기 제1 부품의 변위에 기반하여 상기 인덕티브 코일에 형성되는 제1 인덕턴스에 기인하는 제1 인덕티브 공진 주파수를 가지는 제1 인덕티브 채널 공진 회로; 및
    상기 제1 인덕티브 채널 공진 회로에 형성되는 제2 전기 신호를 수신하고, 상기 레퍼런스 공진 주파수 및 상기 제2 전기 신호의 상기 제1 인덕티브 공진 주파수 간의 차이에 기반하여 상기 제1 부품의 변위 및 상기 Z축 방향의 상기 외력을 판정하는 기준이 되는 인덕티브 채널 출력 신호를 생성하는 인덕티브 채널 출력 회로;
    를 포함하는 터치 포스 센서.
  2. 제1항에 있어서,
    상기 인덕티브 채널 출력 회로는
    상기 제1 인덕티브 공진 주파수와 상기 레퍼런스 공진 주파수 간의 차이에 대응하는 차동 주파수 성분 신호를 생성하는 연산기(operator); 및
    상기 차동 주파수 성분 신호의 주파수에 대응하는 크기를 가지는 상기 인덕티브 채널 출력 신호를 생성하는 변환기(Converter);
    를 포함하는 터치 포스 센서.
  3. 핑거가 접촉하는 접촉부에 배치되는 복수개의 터치 전극들 중 제1 터치 전극과 연결되는 제1 정전용량형 채널 공진 회로;
    상기 핑거가 접촉하는 상기 접촉부에 배치되는 복수개의 터치 전극들 중 제2 터치 전극과 연결되는 제2 정전용량형 채널 공진 회로;
    상기 제1 정전용량형 채널 공진 회로에 제1 교류 신호가 인가됨으로써 형성되는 제1 전기 신호의 제1 정전용량형 공진 주파수를 검출하고, 상기 제2 정전용량형 채널 공진 회로에 제2 교류 신호가 인가됨으로써 형성되는 제2 전기 신호의 제2 정전용량형 공진 주파수를 검출하고, 상기 검출된 제1 정전용량형 공진 주파수에 기반하여 상기 접촉부의 상기 제1 터치 전극에 대응하는 제1 터치 전극 위치에 상기 핑거가 접촉하였는지 여부를 판정하는 기준이 되는 제1 정전용량형 채널 출력 신호를 생성하고, 상기 검출된 제2 정전용량형 공진 주파수에 기반하여 상기 접촉부의 상기 제2 터치 전극에 대응하는 제2 터치 전극 위치에 상기 핑거가 접촉하였는지 여부를 판정하는 기준이 되는 제2 정전용량형 채널 출력 신호를 생성하는 정전용량형 채널 출력 회로;
    Z축 방향의 외력에 노출되며, 상기 Z축 방향의 상기 외력에 의하여 상기 Z축 방향을 따라 탄성적으로 변형 가능한 복수 개의 개별 영역들을 포함하는 제2 부품;
    상기 제2 부품과 이격되어 배치되는 기판 상에 형성되며, 상기 복수 개의 개별 영역들 각각에 대응하고, 상기 복수 개의 개별 영역들 각각과 대향하여 배치되는 복수 개의 인덕티브 코일들;
    상기 복수 개의 인덕티브 코일들 중 제1 인덕티브 코일과 결합하며 상기 제1 인덕티브 코일에 대응하는 제1 개별 영역의 제1 변위에 기반하여 상기 제1 인덕티브 코일에 형성되는 제1 인덕턴스에 기인하는 제1 인덕티브 공진 주파수를 가지는 제1 인덕티브 채널 공진 회로;
    상기 복수 개의 인덕티브 코일들 중 제2 인덕티브 코일과 결합하며 상기 제2 인덕티브 코일에 대응하는 제2 개별 영역의 제2 변위에 기반하여 상기 제2 인덕티브 코일에 형성되는 제2 인덕턴스에 기인하는 제2 인덕티브 공진 주파수를 가지는 제2 인덕티브 채널 공진 회로; 및
    상기 제1 인덕티브 채널 공진 회로에 제3 교류 신호가 인가됨으로써 형성되는 제3 전기 신호, 및 상기 제2 인덕티브 채널 공진 회로에 제4 교류 신호가 인가됨으로써 형성되는 제4 전기 신호를 수신하고, 상기 제3 전기 신호의 상기 제1 인덕티브 공진 주파수, 및 상기 제4 전기 신호의 상기 제2 인덕티브 공진 주파수에 기반하여 상기 제1 변위, 상기 제2 변위, 및 상기 Z축 방향의 상기 외력이 입력된 위치 및 상기 외력을 판정하는 기준이 되는 제1 인덕티브 채널 출력 신호 및 제2 인덕티브 채널 출력 신호를 생성하는 인덕티브 채널 출력 회로;
    를 포함하는 터치 포스 센서.
  4. 정전용량형 채널 출력 회로가, 핑거가 접촉하는 접촉부에 배치되는 터치 전극과 연결되는 제1 정전용량형 채널 공진 회로에 형성되며 제1 정전용량형 공진 주파수를 가지는 제1 전기 신호를 수신하는 단계;
    인덕티브 채널 출력 회로가, 인덕티브 코일과 결합하는 제1 인덕티브 채널 공진 회로에 Z축 방향의 외력에 노출되며 상기 Z축 방향의 상기 외력에 의하여 상기 Z축 방향을 따라 탄성적으로 변형 가능한 제1 부품의 변위의 영향으로 형성되며 제1 인덕티브 공진 주파수를 가지는 제2 전기 신호를 수신하는 단계;
    상기 정전용량형 채널 출력 회로 및 상기 인덕티브 채널 출력 회로가 레퍼런스 공진 회로에 형성되며 레퍼런스 공진 주파수를 가지는 레퍼런스 전기 신호를 수신하는 단계;
    상기 정전용량형 채널 출력 회로가 상기 제1 정전용량형 공진 주파수 및 상기 레퍼런스 공진 주파수 간의 차이에 기반하여 상기 접촉부에 핑거가 접촉하였는지 여부를 판정하는 기준이 되는 정전용량형 채널 출력 신호를 생성하는 단계; 및
    상기 인덕티브 채널 출력 회로가 상기 제1 인덕티브 공진 주파수 및 상기 레퍼런스 공진 주파수 간의 차이에 기반하여 상기 제1 부품의 변위 및 상기 Z축 방향의 상기 외력을 판정하는 기준이 되는 인덕티브 채널 출력 신호를 생성하는 단계;
    를 포함하는 터치 포스 센서의 동작 방법.
KR1020210135494A 2019-07-18 2021-10-13 인덕티브 센싱과 정전용량형 센싱을 이용하는 터치 포스 센서 및 그 동작 방법 KR102363531B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020210135494A KR102363531B1 (ko) 2019-07-18 2021-10-13 인덕티브 센싱과 정전용량형 센싱을 이용하는 터치 포스 센서 및 그 동작 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020190086776A KR102315414B1 (ko) 2019-07-18 2019-07-18 인덕티브 센싱과 정전용량형 센싱을 이용하는 터치 포스 센서 및 그 동작 방법
KR1020210135494A KR102363531B1 (ko) 2019-07-18 2021-10-13 인덕티브 센싱과 정전용량형 센싱을 이용하는 터치 포스 센서 및 그 동작 방법

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020190086776A Division KR102315414B1 (ko) 2019-07-18 2019-07-18 인덕티브 센싱과 정전용량형 센싱을 이용하는 터치 포스 센서 및 그 동작 방법

Publications (2)

Publication Number Publication Date
KR20210127667A KR20210127667A (ko) 2021-10-22
KR102363531B1 true KR102363531B1 (ko) 2022-02-16

Family

ID=74238546

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020190086776A KR102315414B1 (ko) 2019-07-18 2019-07-18 인덕티브 센싱과 정전용량형 센싱을 이용하는 터치 포스 센서 및 그 동작 방법
KR1020210135494A KR102363531B1 (ko) 2019-07-18 2021-10-13 인덕티브 센싱과 정전용량형 센싱을 이용하는 터치 포스 센서 및 그 동작 방법

Family Applications Before (1)

Application Number Title Priority Date Filing Date
KR1020190086776A KR102315414B1 (ko) 2019-07-18 2019-07-18 인덕티브 센싱과 정전용량형 센싱을 이용하는 터치 포스 센서 및 그 동작 방법

Country Status (2)

Country Link
US (1) US11392236B2 (ko)
KR (2) KR102315414B1 (ko)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11604106B2 (en) * 2013-10-05 2023-03-14 Bertec Limited Force measurement assembly
KR102236099B1 (ko) * 2019-10-25 2021-04-05 삼성전기주식회사 멀티 터치의 위치 식별이 가능한 터치 센싱 장치 및 전자 기기
KR102333088B1 (ko) * 2019-12-23 2021-12-01 삼성전기주식회사 터치 조작 센싱 장치, 이에 적용 가능한 센싱 코일, 및 이를 포함하는 전기 기기
US11850078B1 (en) 2020-01-04 2023-12-26 Bertec Corporation Force measurement system
US11703983B2 (en) * 2020-03-25 2023-07-18 Sensortek Technology Corp Capacitance sensing circuit
KR20220005740A (ko) * 2020-07-07 2022-01-14 삼성전기주식회사 전자 기기의 동작 신호를 발생시키는 방법, 컴퓨터 프로그램 및 그 전자 기기
KR20220019996A (ko) * 2020-08-11 2022-02-18 삼성전기주식회사 터치 센싱 장치 및 터치 센싱 방법
US11570911B2 (en) * 2020-08-20 2023-01-31 Samsung Display Co., Ltd. Display device
US11775099B2 (en) * 2020-10-16 2023-10-03 Samsung Electro-Mechanics Co., Ltd. Touch sensing module and electronic device including the same
CN113031770B (zh) * 2021-03-22 2024-02-27 联想(北京)有限公司 一种处理方法及电子设备
US11527126B1 (en) * 2021-07-13 2022-12-13 Igt Artificial skin on gaming devices
CN115580283B (zh) * 2022-11-09 2023-03-21 深圳市美矽微半导体有限公司 一种具有触摸感应结构的控制芯片

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170269754A1 (en) * 2016-03-16 2017-09-21 Texas Instruments Incorporated Dual Touch Sensor Architecture With XY-Position And Z-Force Sensing For Touch-On-Surface Button
KR101920440B1 (ko) 2017-08-21 2018-11-20 (주)실리콘인사이드 3d 터치 구현을 위한 셀프 인덕티브 포스 센서 모듈
KR101954368B1 (ko) 2017-08-31 2019-03-05 (주)실리콘인사이드 3d 터치 구현을 위한 뮤추얼 인덕티브 포스 센서 모듈

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007059074A (ja) 2005-08-22 2007-03-08 Funai Electric Co Ltd 入力装置
KR20100039012A (ko) 2008-10-07 2010-04-15 엘지전자 주식회사 터치 센서가 구비된 디스플레이장치 및 그의 제어 방법
US8408723B2 (en) 2009-09-01 2013-04-02 Microchip Technology Incorporated Backlighting inductive touch buttons
US20110187204A1 (en) * 2010-01-29 2011-08-04 Diehl Ako Stiftung & Co. Kg Inductive touch key switch system, assembly and circuit
KR101147607B1 (ko) * 2010-03-19 2012-05-23 한국과학기술원 공진을 이용한 인체 접촉 감지 장치
TWI469023B (zh) * 2011-07-21 2015-01-11 Ind Tech Res Inst 觸控感應裝置
TW201604746A (zh) * 2014-07-18 2016-02-01 凌通科技股份有限公司 增加訊號雜訊比之方法及使用其之電容感測器與觸控面板
KR101697975B1 (ko) 2015-03-10 2017-01-19 주식회사 트루윈 주파수 변조를 이용한 인덕턴스 방식의 변위센서
FR3038642B1 (fr) 2015-07-08 2017-07-14 Continental Automotive France Dispositif de detection d'intention de verrouillage ou de deverrouillage d'une portiere de vehicule automobile par un utilisateur
WO2018027447A1 (en) * 2016-08-08 2018-02-15 Texas Instruments Incorporated Methods and apparatus for metal touch sensor
KR102628789B1 (ko) * 2016-09-09 2024-01-25 삼성전자주식회사 전자 장치 및 전자 장치의 제어 방법
JP2018054523A (ja) * 2016-09-30 2018-04-05 国立大学法人九州大学 生体の接近距離検出装置
KR102626773B1 (ko) 2016-11-09 2024-01-19 삼성전자주식회사 디스플레이 장치 및 이의 제어 방법
US10495486B2 (en) 2016-12-26 2019-12-03 Texas Instruments Incorporated Inductive touch input
KR20180084484A (ko) 2017-01-17 2018-07-25 주식회사 트루윈 주파수 변조를 이용한 인덕턴스방식의 변위센서
US10444916B2 (en) * 2017-03-10 2019-10-15 Cypress Semiconductor Corporation Combined inductive sensing and capacitive sensing
FR3065418B1 (fr) * 2017-04-25 2019-04-19 Continental Automotive France Procede d'activation d'une fonction vehicule a partir d'un dispositif d'acces portable d et module d'activation associe
DE102018211029A1 (de) * 2017-12-20 2019-06-27 Gerd Reime Verfahren und Sensor zur Erkennung einer Bewegung eines metallischen Gegenstandes mit extrem geringem Stromverbrauch
JP7107547B2 (ja) * 2018-02-16 2022-07-27 東京パーツ工業株式会社 静電容量式近接センサおよびこの静電容量式近接センサを用いた人体検知方法
FR3082219B1 (fr) * 2018-06-07 2020-06-05 Continental Automotive France Dispositif de detection d'intention de verrouillage ou de deverrouillage d'un ouvrant de vehicule automobile avec capteurs capacitif et inductif
US10946612B2 (en) * 2018-08-27 2021-03-16 Tactotek Oy Integrated multilayer structure for use in sensing applications and method for manufacturing thereof
US10990222B2 (en) * 2019-04-29 2021-04-27 Google Llc Calibration of trackpad

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170269754A1 (en) * 2016-03-16 2017-09-21 Texas Instruments Incorporated Dual Touch Sensor Architecture With XY-Position And Z-Force Sensing For Touch-On-Surface Button
KR101920440B1 (ko) 2017-08-21 2018-11-20 (주)실리콘인사이드 3d 터치 구현을 위한 셀프 인덕티브 포스 센서 모듈
KR101954368B1 (ko) 2017-08-31 2019-03-05 (주)실리콘인사이드 3d 터치 구현을 위한 뮤추얼 인덕티브 포스 센서 모듈

Also Published As

Publication number Publication date
KR20210009777A (ko) 2021-01-27
US20210019009A1 (en) 2021-01-21
KR20210127667A (ko) 2021-10-22
US11392236B2 (en) 2022-07-19
KR102315414B1 (ko) 2021-10-21

Similar Documents

Publication Publication Date Title
KR102363531B1 (ko) 인덕티브 센싱과 정전용량형 센싱을 이용하는 터치 포스 센서 및 그 동작 방법
US9110545B2 (en) Apparatus and associated methods
CN106471454B (zh) 用于手势检测及触摸检测的方法及系统
US8169421B2 (en) Apparatus and method for detecting a touch-sensor pad gesture
US8068097B2 (en) Apparatus for detecting conductive material of a pad layer of a sensing device
KR101769889B1 (ko) 수동 입력 동작과 연관된 신호의 생성 시스템 및 방법
US8717302B1 (en) Apparatus and method for recognizing a gesture on a sensing device
US8610686B1 (en) Apparatus and method for recognizing a tap gesture on a touch sensing device
US11460357B2 (en) Electronic device including power-on button and inductive touch force sensor
EP2162817B1 (en) Uniform threshold for capacitive sensing
JP2018005932A (ja) 身体又は物体の動きを感受する制御インタフェースのためのデバイス及び方法、並びに、前記デバイスを組み込む制御機器
US20070271399A1 (en) Tapered capsense structure
WO2009027629A1 (en) Capacitive sensor with reduced noise
US20080012832A1 (en) Multi-function touchpad
US11075634B2 (en) Switching operation sensing apparatus with touch input member identification
CN112187244B (zh) 开关操作感测设备和检测设备
CN112306279A (zh) 触摸感测装置以及包括所述触摸感测装置的电子装置
WO2012161843A2 (en) System and method for determining user input and interference on an input device
US8085252B1 (en) Method and apparatus to determine direction of motion in a sensor array of a touch sensing device
KR102340385B1 (ko) 전원 버튼 및 인덕티브 터치 포스 센서를 포함하는 전자 장치
KR102313316B1 (ko) 인덕티브 포스 센서 및 그 동작 방법
CN106155437A (zh) 操作模式判断方法、触碰点位置判断方法以及触控控制电路
US20220206602A1 (en) Hybrid sensor for detecting touch and touch force and method of operating same
KR20110137018A (ko) 캐패시티브 방식의 터치스크린의 터치 감지 패널

Legal Events

Date Code Title Description
A107 Divisional application of patent
E701 Decision to grant or registration of patent right