KR102363212B1 - Aggregate for refractory materials, manufacturing method thereof, and refractory materials using same - Google Patents

Aggregate for refractory materials, manufacturing method thereof, and refractory materials using same Download PDF

Info

Publication number
KR102363212B1
KR102363212B1 KR1020187029495A KR20187029495A KR102363212B1 KR 102363212 B1 KR102363212 B1 KR 102363212B1 KR 1020187029495 A KR1020187029495 A KR 1020187029495A KR 20187029495 A KR20187029495 A KR 20187029495A KR 102363212 B1 KR102363212 B1 KR 102363212B1
Authority
KR
South Korea
Prior art keywords
aggregate
less
particles
refractory material
mass
Prior art date
Application number
KR1020187029495A
Other languages
Korean (ko)
Other versions
KR20180132691A (en
Inventor
료조 노노가키
사토시 히라타
아츠노리 고야마
다츠야 이케다
Original Assignee
덴카 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 덴카 주식회사 filed Critical 덴카 주식회사
Publication of KR20180132691A publication Critical patent/KR20180132691A/en
Application granted granted Critical
Publication of KR102363212B1 publication Critical patent/KR102363212B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/44Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/02Agglomerated materials, e.g. artificial aggregates
    • C04B18/027Lightweight materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/06Aluminous cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/6303Inorganic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/66Monolithic refractories or refractory mortars, including those whether or not containing clay
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D1/00Casings; Linings; Walls; Roofs
    • F27D1/0003Linings or walls
    • F27D1/0006Linings or walls formed from bricks or layers with a particular composition or specific characteristics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D1/00Casings; Linings; Walls; Roofs
    • F27D1/10Monolithic linings; Supports therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D1/00Casings; Linings; Walls; Roofs
    • F27D1/16Making or repairing linings increasing the durability of linings or breaking away linings
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/30Oxides other than silica
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00431Refractory materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2201/00Mortars, concrete or artificial stone characterised by specific physical values
    • C04B2201/50Mortars, concrete or artificial stone characterised by specific physical values for the mechanical strength
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3409Boron oxide, borates, boric acids, or oxide forming salts thereof, e.g. borax
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5427Particle size related information expressed by the size of the particles or aggregates thereof millimeter or submillimeter sized, i.e. larger than 0,1 mm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Civil Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Ceramic Products (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)

Abstract

과제 : CaOㆍ6Al2O3 (CA6) 을 결정상으로 하는 다공질인 단열성 골재를 사용하여 제조한 부정형 내화물에 있어서, 충분한 강도를 확보하여, 박리나 붕괴를 억제한다.
해결 수단 : 입경 3 ㎜ 이상 6 ㎜ 미만으로 분급했을 때의, JIS R 2205 : 1992 에 정해지는 자비법(煮沸法)에 의한 흡수율이 50 % 이상 100 % 이하이고, 또한 부피 밀도를 0.40 g/㎤ 이상 0.60 g/㎤ 이하로 함으로써, CA6 입자의 파괴 강도가 개선됨과 함께, 이 CA6 입자를 사용하여 내화물을 제조한 경우에, 내화물 내의 CA6 입자와 매트릭스 물질의 계면의 면적이 커 결합력이 강해져, 내화물의 강도가 개선된다.
Problem: An amorphous refractory material manufactured using a porous heat insulating aggregate having CaO·6Al 2 O 3 (CA6) as a crystalline phase WHEREIN: Sufficient strength is ensured and peeling and disintegration are suppressed.
Solution: The water absorption by the boiling method specified in JIS R 2205:1992 when classified into particle sizes of 3 mm or more and less than 6 mm is 50% or more and 100% or less, and the bulk density is 0.40 g/cm 3 By setting it to 0.60 g/cm 3 or less, the breaking strength of CA6 particles is improved, and when a refractory material is manufactured using the CA6 particles, the area of the interface between the CA6 particles in the refractory material and the matrix material is large, the bonding strength is strong, and the refractory material is strength is improved.

Description

내화물용 골재, 그 제조 방법, 및 그것을 사용한 내화물Aggregate for refractory materials, manufacturing method thereof, and refractory materials using same

본 발명은, 철강 관련 노재 등의 내화물 분야 등으로의 이용이 가능한, 내화물용 골재, 그 제조 방법, 및 그것을 사용한 내화물에 관한 것이고, 특히 단열성, 시공성, 장기 안정성을 갖는 내화물용 골재와 그 제조 방법에 관한 것이다.The present invention relates to an aggregate for refractories that can be used in the field of refractory materials such as steel-related furnace materials, a method for manufacturing the same, and a refractory material using the same, and particularly, an aggregate for refractories having thermal insulation properties, workability and long-term stability, and a method for manufacturing the same is about

내화물용 골재의 큰 이용 분야의 하나인 철강 관련 내화물 분야에 있어서, 종래의 정형 내화물에 의한 축로 공법은, 최근의 기계화에 의한 시공의 생력화 (省力化) 를 위해, 또 보수의 자원 절약화를 위해, 부정형 내화물을 사용한 축로 방법으로 변환되고 있다. 부정형 내화물을 사용한 축로 방법에 있어서, 압송 펌프를 이용한 대량 시공의 필요성이 생기고 있다.In the field of steel-related refractories, which is one of the major fields of use of refractory aggregates, the conventional shaft furnace construction method using fixed refractories has recently been mechanized for cost saving and maintenance resource saving. , is being converted to a shaft furnace method using an irregular refractory material. In the shaft furnace method using an irregular refractory material, the necessity of mass construction using a pressure-feeding pump is arisen.

한편, 최근, 환경 문제로부터 CO2 배출 삭감에 임해야 하는 상황이 되었고, 철강 관련에서의 가열로 등에 사용되는 내화물의 단열성을 높임으로써, CO2 배출량을 삭감하는 것이 검토되고 있다.On the other hand, in recent years, it has come to be a situation where it is necessary to work on CO2 emission reduction from an environmental problem, and reducing CO2 emission is considered by improving the heat insulation property of the refractory material used for the heating furnace etc. in steel-related.

종래의 철강 관련에서 사용되는 단열재로는, 단열성을 높이기 위해 내화물과 지지체 사이에 세라믹 파이버를 삽입하는 방법이 주류였지만, 2015년 11월부터 노동 안전 관련법에 있어서 리프랙터리 세라믹 파이버 (RCF) 가 「특정 화학 물질 ( 제 2 류 물질)」의 「관리 제 2 류 물질」에 추가되는 개정이 시행된 적도 있어, 세라믹 파이버를 사용하지 않아도 단열성이 높은 내화물의 개발이 진행되고 있다.As a conventional heat insulator used in the steel industry, a method of inserting a ceramic fiber between a refractory material and a support body to improve thermal insulation has been the mainstream, but from November 2015, in the Labor Safety Act, refractory ceramic fiber (RCF) has become " Revisions have been implemented to add to the "Management Class 2 Substances" of "Specified Chemical Substances (Category 2 Substances)", and development of refractory materials with high thermal insulation properties is progressing even without the use of ceramic fibers.

특허문헌 1 에서는, 내화물용 골재에 CaOㆍ6Al2O3 (칼슘헥사알루미네이트, 이후 CA6 이라고도 기재) 을 사용함으로써 단열성이 우수한 내화물을 제공하는 것이 제안되어 있다. 제안되어 있는 내화물용 골재는 다공질의 CA6 입자로, 단열성이 높고, 내열성이나 기계적 강도가 우수하여, 세라믹 파이버를 사용하지 않아도 단열성이 높은 내화물용의 골재로서 유망하다. 골재의 단위 중량당 기공의 체적이 클수록 단열성이 높아진다. 단위 중량당 기공의 체적은 JIS R 2205 : 1992 「내화 벽돌의 겉보기 기공률ㆍ흡수율ㆍ비중의 측정 방법」에 정해지는 자비법(煮沸法)에 의한 흡수율의 측정 방법으로 평가할 수 있다.In Patent Document 1, it is proposed to provide a refractory material excellent in heat insulating properties by using CaO·6Al 2 O 3 (calcium hexaaluminate, also referred to as CA6 hereafter) for the aggregate for refractories. The proposed aggregate for refractories is porous CA6 grains, which have high thermal insulation properties, are excellent in heat resistance and mechanical strength, and are promising as aggregates for refractories with high thermal insulation properties even without the use of ceramic fibers. The higher the volume of pores per unit weight of the aggregate, the higher the thermal insulation properties. The volume of pores per unit weight can be evaluated by the method for measuring the water absorption by the boiling method specified in JIS R 2205: 1992 "Method for Measuring Apparent Porosity, Water Absorption Rate, and Specific Gravity of Refractory Bricks".

특허문헌 2 에서는, CaOㆍ6Al2O3 을 결정상으로 한 다공질인 단열성 골재가 조립역 (粗粒域) 에 배합되고 미립역에는 알루미나질 원료 및 알루미나 시멘트가 배합된 내화성 분체 조성물과, 시공수를 포함하는 단열 내화물이 제안되어 있으며, 강편 가열로나 균열로의 스키드 파이프 또는 그것을 지지하는 서포트 파이프 등을 피복하는 단열재에 이용 가능하다고 하고 있다.In Patent Document 2, a porous heat insulating aggregate having CaO·6Al 2 O 3 as a crystalline phase is blended in a granulation zone, and a refractory powder composition in which an alumina raw material and alumina cement are blended in a fine-grained zone, and an application water. Insulation refractory materials containing the has been proposed, and it is said that it can be used as a heat insulating material covering a skid pipe of a steel piece heating furnace or a crack furnace, or a support pipe supporting the same.

PCT/WO00/30999호 공보Publication No. PCT/WO00/30999 일본 공개특허공보 2009-203090호Japanese Patent Laid-Open No. 2009-203090

부정형 내화물의 시공 방법의 하나로서, 내화물용 골재 및 알루미나 시멘트를 포함하는 캐스터블과 물을 혼합한 부정형 내화물용 재료를, 형틀에 흘려 넣는 시공 방법이 실시되고 있다. 시공 후의 강도가 불충분하면, 내화물에 박리나 붕괴가 발생하여, 단열성이 불충분해짐에 따른 CO2 배출량의 증대 외에, 내화물의 보수에 의한 비용 상승이 발생한다.As one of the construction methods of irregular refractories, a construction method in which a castable containing aggregate for refractories and alumina cement and water are mixed with a material for irregular refractories is poured into a mold. When the strength after construction is insufficient, peeling or disintegration occurs in the refractory material, and CO 2 emission increases due to insufficient thermal insulation, and an increase in cost due to repair of the refractory material occurs.

CA6 입자를 골재로 한 내화물은, 다공체인 CA6 입자가 주위의 알루미나질 원료와 알루미나 시멘트로 이루어지는 매트릭스부에 분산된 구조가 된다. CA6 입자의 파괴 강도가 불충분한 경우, 또는 CA6 입자와 매트릭스의 계면의 결합이 불충분한 경우에, 내화물의 박리나 붕괴가 일어난다고 생각된다.A refractory material using CA6 particles as an aggregate has a structure in which porous CA6 particles are dispersed in a matrix portion composed of an alumina material and alumina cement surrounding it. It is considered that peeling or disintegration of the refractory material occurs when the breaking strength of the CA6 particles is insufficient or when the bonding between the CA6 particles and the matrix is insufficient.

본 발명자는, 상기 과제를 해소하기 위해 예의 검토한 결과, 기공률을 높게 유지하면서, 또한 부피 밀도가 낮은 파쇄상의 CA6 입자를 사용하여 내화물을 제조한 경우에, 내화물 내의 CA6 입자와 매트릭스 물질의 계면의 면적이 커 결합력이 강해져, 내화물의 강도가 개선되는 지견을 얻어, 본 발명을 완성하기에 이르렀다.As a result of intensive studies to solve the above problems, the present inventors have found that when a refractory material is manufactured using crushed CA6 particles with a high porosity and a low bulk density, the interface between the CA6 particles in the refractory material and the matrix material The area is large, the bonding force is strong, and the knowledge that the strength of the refractory material is improved was obtained, and the present invention was completed.

또, 본 발명자는, CA6 입자의 제조에 있어서, 원료에 붕사를 적당량 첨가함으로써, 부피 밀도가 낮은 파쇄상의 CA6 입자가 얻어지기 쉬워지고, 이 CA6 입자를 사용하여 내화물을 제조한 경우에, 파괴 강도가 개선되는 지견을 얻어, 본 발명에 이른 것이다.In addition, the present inventors have found that, in the production of CA6 particles, by adding an appropriate amount of borax to the raw material, crushed CA6 particles having a low bulk density are easily obtained. obtained the knowledge to improve, leading to the present invention.

즉, 본 발명은, 결정상이 CA6 으로서, 입경 3 ㎜ 이상 6 ㎜ 미만으로 분급했을 때의, JIS R 2205 : 1992 에 정해지는 자비법(煮沸法)에 의한 흡수율이 50 % 이상 100 % 이하이고, 또한 부피 밀도가 0.40 g/㎤ 이상 0.60 g/㎤ 이하인 것을 특징으로 하는 내화물용 골재이고, 바람직하게는 0.02 질량% 이상 0.4 질량% 이하의 붕소가 함유되어 이루어지는 부정형 내화물용 골재에 관한 것이다.That is, in the present invention, when the crystal phase is CA6 and the particle size is classified into 3 mm or more and less than 6 mm, the water absorption by the boiling method specified in JIS R 2205: 1992 is 50% or more and 100% or less, Further, it is an aggregate for refractories having a bulk density of 0.40 g/cm 3 or more and 0.60 g/cm 3 or less, and preferably contains 0.02 mass% or more and 0.4 mass% or less of boron. It relates to an aggregate for irregular refractories.

또, 본 발명은, 상기 내화물용 골재를 사용하여, 알루미나 시멘트를 결합재로 한 내화물에 관한 것이기도 하다.Moreover, this invention also relates to the refractory body which used the said aggregate for refractories and made alumina cement as a binder.

또한, 본 발명은, 칼시아 원료 및 알루미나 원료를 포함하는 골재 원료를 물과 혼합, 성형 후, 1000 ℃ ∼ 1700 ℃ 에서 소성하여 얻어지는 상기 내화물용 골재의 제조 방법으로서, 상기 골재 원료에 붕사를 첨가하는 것을 특징으로 하는 내화물용 골재의 제조 방법에 관한 것이기도 하다. 이 제조 방법은, 바람직하게는 상기 골재 원료에 첨가하는 붕사의 첨가량이 0.1 질량% 이상 4.0 질량% 이하인 내화물용 골재의 제조 방법이다.In addition, the present invention is a method for producing the aggregate for refractory materials obtained by mixing and molding an aggregate raw material comprising a calcia raw material and an alumina raw material with water, and then calcining at 1000 ° C. to 1700 ° C., wherein borax is added to the aggregate raw material It also relates to a method for manufacturing an aggregate for refractories, characterized in that. This manufacturing method is a manufacturing method of the aggregate for refractories, Preferably the addition amount of the borax added to the said aggregate raw material is 0.1 mass % or more and 4.0 mass % or less.

본 발명에 의해, 결정상이 CA6 인 내화물용 골재에 있어서, 기공률을 높게 유지하면서, 또한 부피 밀도가 낮은 파쇄상의 CA6 입자로 한 경우에, 내화물 내의 CA6 입자와 매트릭스 물질의 계면의 면적이 커 결합력이 강해져, 내화물의 강도 개선이 가능해진다.According to the present invention, in an aggregate for refractory materials having a crystalline phase of CA6, when crushed CA6 particles having a high porosity and a low bulk density are used, the area of the interface between the CA6 particles in the refractory material and the matrix material is large and the bonding strength is high. It becomes strong, and the strength improvement of a refractory material becomes possible.

도 1 은 본 발명의 실시예인 CA6 입자의 X 선 회절 분석 결과를 비교예와 대비하여 나타낸 것이다.1 shows the results of X-ray diffraction analysis of CA6 particles, which are Examples of the present invention, in comparison with Comparative Examples.

이하, 본 발명을 상세하게 설명한다.Hereinafter, the present invention will be described in detail.

CA6 입자의 제조에 있어서는, 칼시아 원료와 알루미나 원료 등의 골재 원료 외에, 붕사를 혼합 혹은 혼합 분쇄하여, 최종적으로 합성되는 칼슘알루미네이트의 CaO 와 Al2O3 의 몰비가 대체로 1 : 6 의 성분 비율이 되도록 배합하고, 물과 혼련하여 성형 후, 1000 ℃ ∼ 1700 ℃ 의 온도에서 소성하여 얻어진 것을, 분쇄기에 의해 분쇄하여 제조되는 것이 바람직하다.In the production of CA6 particles, in addition to aggregate raw materials such as calcia raw material and alumina raw material, borax is mixed or mixed and pulverized, and the molar ratio of CaO and Al 2 O 3 of calcium aluminate finally synthesized is approximately 1:6. It is preferable to mix|blend so that it may become a ratio, knead|mix with water, and to grind|pulverize what was obtained by baking at the temperature of 1000 degreeC - 1700 degreeC after shaping|molding with a grinder, and to manufacture.

칼시아 원료로는, 분말상의 석회석이나 생석회, 혹은 CaOㆍAl2O3 (CA), CaOㆍ2Al2O3 (CA2), 12CaOㆍ7Al2O3 (C12A7), 3CaOㆍAl2O3 (C3A) 등을 사용하는 것이 가능하고, 이들 원료를 복수 종 조합하여 사용해도 상관없다.As calcia raw materials, powdered limestone or quicklime, or CaO·Al 2 O 3 (CA), CaO·2Al 2 O 3 (CA2), 12CaO·7Al 2 O 3 (C12A7), 3CaO·Al 2 O 3 ( C3A) etc. can be used and you may use these raw materials in combination of multiple types.

알루미나 원료로는, 알루미나 (Al2O3), 깁사이트 (Al(OH)3), 베마이트 (AlO(OH)) 등을 사용하는 것이 가능하고, 이들 원료를 복수 종 조합하여 사용해도 상관없다. 단, 다공체의 CA6 입자를 합성하려면 알루미늄의 수화물인 깁사이트를 사용하는 것이 우위인 것이 알려져 있다. 깁사이트를 포함하는 알루미나 원료를 사용함으로써, 인편상의 CA6 의 1 차 결정이 응집된 다공체 구조인 것이 얻어지기 쉬워 바람직하다.As the alumina raw material, alumina (Al 2 O 3 ), gibbsite (Al(OH) 3 ), boehmite (AlO(OH)), etc. can be used, and a combination of a plurality of these raw materials may be used. . However, it is known that the use of gibbsite, which is a hydrate of aluminum, is advantageous in synthesizing porous CA6 particles. By using the alumina raw material containing gibbsite, it is easy to obtain that it is a porous body structure in which flaky primary crystals of CA6 aggregated, and it is preferable.

또, 보다 높은 단열성을 발현시키기 위해서는, 보다 기공이 많은 CA6 의 다공체를 합성하는 것이 유효하다. 이를 위해, 원료에 조공제를 첨가하는 것이 바람직하다. 예를 들어, 가연성 물질을 조공제로서 원료에 첨가함으로써, 소성시에 조공제가 연소ㆍ기화되고, 합성된 CA6 입자에 공극이 형성되어, 기공이 많은 CA6 입자가 형성된다. 조공제로는, 전분 (콘스타치), 폴리비닐알코올, 메틸셀룰로오스, 아크릴 수지, 라텍스 등을 사용하는 것이 가능하다. 그 중에서도 전분 (콘스타치) 을 사용하면, 비교적 저렴하게 수십 ㎛ 크기의 공극을 형성하는 것이 가능하여 바람직하다.Moreover, in order to express higher thermal insulation properties, it is effective to synthesize a porous body of CA6 having more pores. For this purpose, it is preferable to add a pore-forming agent to the raw material. For example, by adding a combustible substance to a raw material as a pore-forming agent, the pore-forming agent is burned and vaporized during firing, voids are formed in the synthesized CA6 particles, and CA6 particles with many pores are formed. As a pore-forming agent, it is possible to use starch (corn starch), polyvinyl alcohol, methyl cellulose, an acrylic resin, latex, etc. Among them, the use of starch (corn starch) is preferable because it is possible to form pores having a size of several tens of μm at a relatively low cost.

조공제로 콘스타치를 사용하는 경우, 그 첨가량은 총 원료 중의 5 질량% 이상 50 질량% 이하인 것이 바람직하다. 첨가량이 5 질량% 보다 적으면 조공제로서의 충분한 효과가 얻어지지 않고, 50 질량% 보다 많은 경우에는 기공의 체적이 지나치게 커져, 내화물용 골재로서의 충분한 기계적 강도가 얻어지지 않는 것 외에, 비용 상승의 요인이 되기도 하기 때문이다.When using corn starch as a pore-forming agent, it is preferable that the addition amount is 5 mass % or more and 50 mass % or less in total raw materials. When the addition amount is less than 5 mass%, sufficient effect as a pore-forming agent cannot be obtained, and when more than 50 mass%, the volume of pores becomes too large, and sufficient mechanical strength as an aggregate for refractory materials is not obtained, and a factor of cost increase because it can be

본 발명의 내화물용 골재의 제조 방법에 있어서, 바람직하게는 골재 원료에 붕사 (Na2B4O5(OH)4ㆍ8H2O) 를 첨가한다. 붕사를 첨가함으로써, 소성시에 플럭스로서 작용하고, 형성된 액상을 통해 각종 원료의 물질 확산을 재촉하여, 미반응 원료의 잔류가 억제되고, 또, 인편상의 CA6 의 1 차 결정 간의 결합이 강해져, CA6 입자로서의 강도가 높아진다고 하는 효과가 얻어진다.In the method for producing an aggregate for a refractory material of the present invention, preferably borax (Na 2 B 4 O 5 (OH) 4 ·8H 2 O) is added to the raw material of the aggregate. By adding borax, it acts as a flux during firing and accelerates the diffusion of substances of various raw materials through the formed liquid phase, the residual unreacted raw materials are suppressed, and the bond between the primary crystals of flaky CA6 is strengthened, and CA6 The effect that the intensity|strength as particle|grains becomes high is acquired.

골재 원료에 첨가하는 붕사의 첨가량은, 0.1 질량% 이상 4.0 질량% 이하인 것이 바람직하다. 첨가량이 0.1 질량% 보다 적으면 강도 개선의 효과가 충분히 얻어지지 않고, 또, 4.0 질량% 보다 많으면 소결의 진행에 의한 고밀화가 일어나, 골재의 단위 중량당 기공의 체적이 저감되어 충분한 단열성이 얻어지지 않게 되기 때문이다.It is preferable that the addition amount of borax added to aggregate raw material is 0.1 mass % or more and 4.0 mass % or less. When the amount added is less than 0.1 mass %, the effect of improving strength cannot be sufficiently obtained, and when it is more than 4.0 mass %, densification occurs due to the progress of sintering, the volume of pores per unit weight of the aggregate is reduced, and sufficient heat insulation is not obtained. because it will not

칼시아 원료, 알루미나 원료, 조공제, 붕사 등의 원료를 혼합하는 방법으로는, 특별히 한정되는 것은 아니며, 각 재료를 소정의 비율이 되도록 배합하고, V 형 블렌더, 콘 블렌더, 나우터 믹서, 팬형 믹서 및 옴니 믹서 등의 혼합기를 사용하여, 균일하게 혼합하는 것이 가능하다. 혼합 시간은, 특별히 한정되는 것은 아니며, 혼합기에 따라 최적값은 있지만, 5 분 이상이 바람직하고, 15 분 이상이 보다 바람직하다. 혼합 시간의 상한의 지정은 없다.A method of mixing raw materials such as calcia raw material, alumina raw material, pore-forming agent, borax, etc. is not particularly limited, and each material is blended in a predetermined ratio, and a V-type blender, a cone blender, a Nauter mixer, a pan-type It is possible to uniformly mix by using a mixer, such as a mixer and an omni mixer. Mixing time is not specifically limited, Although there exists an optimal value according to a mixer, 5 minutes or more are preferable, and 15 minutes or more are more preferable. There is no designation of the upper limit of the mixing time.

본 발명의 내화물용 골재의 제조 방법에서는, 칼시아 원료 및 알루미나 원료를 포함하는 혼합 원료를 물과 혼합, 성형 후, 소성로에 투입하고, 1000 ℃ ∼ 1700 ℃ 에서 소성하는 것이 바람직하다. 소성 온도가 1000 ℃ 보다 낮으면 소성이 불충분해져, 미반응 원료가 잔류하여 내화물로서의 강도 부족이나 고온 사용에서의 안정성 불량의 원인이 된다. 또, 소성 온도를 1700 ℃ 보다 높게 하려고 하면 설비적으로 대규모가 되어 버리는 한편, CA6 입자의 물성은 1700 ℃ 에서 소성한 것과 거의 변함없다. 소성 방법으로는, 전기로, 셔틀 킬른, 로터리 킬른 등의 설비를 사용하는 것이 가능하다.In the manufacturing method of the aggregate for refractories of this invention, it is preferable to mix raw material containing calcia raw material and an alumina raw material with water, and to inject|throw-in to a kiln after shaping|molding, and to bake at 1000 degreeC - 1700 degreeC. When the firing temperature is lower than 1000°C, the firing becomes insufficient, and unreacted raw materials remain, which causes insufficient strength as a refractory material or poor stability in high temperature use. Further, if the calcination temperature is set to be higher than 1700°C, the equipment becomes large-scale, while the physical properties of the CA6 particles are almost unchanged from that of calcination at 1700°C. As a firing method, it is possible to use facilities, such as an electric furnace, a shuttle kiln, and a rotary kiln.

본 발명의 내화물용 골재의 제조 방법에서는, 소성한 CA6 소성물이 분쇄기에 의해 적절한 입도로 분쇄된다. 사용하는 분쇄기로는, 한정되는 것은 아니지만, 볼 밀, 해머 밀, 진동 밀, 타워 밀, 롤러 밀, 제트 밀 등의 분쇄기가 바람직하다.In the method for producing an aggregate for a refractory material of the present invention, the calcined CA6 calcined product is pulverized to an appropriate particle size with a pulverizer. Although it does not limit as a grinder to be used, Grinders, such as a ball mill, a hammer mill, a vibrating mill, a tower mill, a roller mill, and a jet mill, are preferable.

본 발명자는, 붕사를 첨가하여 제조된 CA6 소성물을 사용하여 목적으로 하는 입도로 분쇄했을 때에, 부피 밀도가 낮은 파쇄상의 CA6 입자가 얻어지기 쉽고, 이 CA6 입자를 사용하여 내화물을 제조한 경우에, 내화물 내의 CA6 입자와 매트릭스 물질의 계면의 면적이 커 결합력이 강해져, 내화물의 강도가 개선되는 것을 알아냈다.The present inventors have found that when a calcined CA6 product prepared by adding borax is pulverized to a desired particle size, crushed CA6 particles having a low bulk density are easily obtained, and when a refractory material is manufactured using the CA6 particles , found that the area of the interface between the CA6 particles and the matrix material in the refractory material was large, so that the bonding force was strong, and the strength of the refractory material was improved.

CA6 소성물의 기계적 강도를 강하게 함으로써, 분쇄시의 파면의 마모가 억제되게 되기 때문에, 분쇄 후에 부피 밀도가 낮은 파쇄상의 CA6 입자의 제조가 가능해진다고 생각된다. CA6 입자의 부정형 내화물용 골재에 포함되는 붕소의 양은 0.02 질량% 이상 0.4 질량% 이하인 것이 바람직하다. 0.02 질량% 보다 적으면 강도 개선의 효과가 충분히 얻어지기 어렵고, 또, 0.4 질량% 보다 많으면 소결의 진행에 의한 고밀화가 일어나, 골재의 단위 중량당 기공의 체적이 저감되어 충분한 단열성이 잘 얻어지지 않기 때문이다.By strengthening the mechanical strength of the CA6 calcined product, wear of the fracture surface at the time of pulverization is suppressed, so it is thought that the production of crushed CA6 particles having a low bulk density after pulverization becomes possible. It is preferable that the quantity of boron contained in the aggregate for irregular refractories of CA6 particle|grains is 0.02 mass % or more and 0.4 mass % or less. When it is less than 0.02 mass %, the effect of improving strength cannot be sufficiently obtained, and when it is more than 0.4 mass %, densification occurs due to the progress of sintering, the volume of pores per unit weight of the aggregate is reduced, and sufficient thermal insulation is not easily obtained. Because.

단지 부피 밀도가 낮은 CA6 입자를 제조하는 것만이라면, 예를 들어, 조공제의 양을 늘려, CA6 입자의 기공의 체적을 높임으로써 달성할 수 있지만, 기공이 많으면 CA6 입자 그 자체의 기계적 강도가 저해되기 때문에, 내화물용 골재에 사용했을 때의 내화물의 강도가 저해되어 버린다. 따라서, 골재의 단위 중량당 기공의 체적을 어느 범위 내로 억제한 채, 부피 밀도를 낮게 하는 것이 내화물의 강도 개선에 필요하다.If only producing CA6 particles with low bulk density, it can be achieved, for example, by increasing the amount of pore-forming agent to increase the volume of pores of CA6 particles, but if there are many pores, the mechanical strength of CA6 particles themselves is inhibited Therefore, the intensity|strength of a refractory material at the time of using it for the aggregate for refractories will be impaired. Therefore, it is necessary to improve the strength of the refractory material to lower the bulk density while suppressing the volume of pores per unit weight of the aggregate within a certain range.

또한, 본 발명자는, 붕사를 첨가하여 제조된 CA6 소성물을 사용하여 분쇄했을 때에, 원하는 흡수율 (기공률) 과 부피 밀도의 CA6 입자가 얻어지기 쉽다는 것을 알아냈지만, 붕사 이외에도 동일한 흡수율을 유지하면서 경도가 높아지는 첨가제를 첨가하거나, 혹은 원하는 부피 밀도가 얻어지는 분쇄 방법이 있으면, 본 발명의 효과는 실현 가능하다.In addition, the present inventors have found that CA6 particles having a desired water absorption (porosity) and bulk density are easily obtained when a CA6 calcined product prepared by adding borax is pulverized, but hardness while maintaining the same water absorption rate in addition to borax The effect of the present invention can be realized by adding an additive that increases

골재의 단위 중량당 기공의 체적의 기준으로서, JIS R 2205 : 1992 에 정해지는 자비법(煮沸法)에 의한 흡수율의 측정 방법으로 평가하는 것이 가능하다. 본 발명자가, 내화물로서 충분한 강도를 얻기 위해 필요한 CA6 입자의 흡수율과 부피 밀도의 범위를 조사한 결과, 입경 3 ㎜ 이상 6 ㎜ 미만으로 분급했을 때의, JIS R 2205 : 1992 에 정해지는 자비법(煮沸法)에 의한 흡수율이 50 % 이상 100 % 이하로서, 부피 밀도가 0.40 g/㎤ 이상 0.60 g/㎤ 이하의 범위인 경우에, 내화물로서의 강도와 단열성의 밸런스가 우수한 것을 알아냈다. 흡수율이 50 % 보다 낮으면 기공의 체적이 작아 단열성이 낮아지고, 흡수율이 100 % 보다 크면 CA6 입자의 강도가 낮아져 내화물의 강도가 약해진다. 마찬가지로, 부피 밀도가 0.40 g/㎤ 보다 작으면 내화물의 강도가 약해지고, 부피 밀도가 0.60 g/㎤ 보다 크면 단열성이 낮아진다.As a criterion for the volume of pores per unit weight of aggregate, it is possible to evaluate the water absorption by the boiling method specified in JIS R 2205:1992. As a result of the present inventor investigating the range of the water absorption rate and bulk density of CA6 particles required to obtain sufficient strength as a refractory material, the boiling method specified in JIS R 2205: 1992 when classifying to a particle size of 3 mm or more and less than 6 mm (煮沸) Law), when the water absorption is 50% or more and 100% or less, and the bulk density is in the range of 0.40 g/cm 3 or more and 0.60 g/cm 3 or less, it is found that the balance between strength and heat insulation as a refractory material is excellent. When the water absorption rate is lower than 50%, the pore volume is small and the thermal insulation property is lowered. When the water absorption rate is larger than 100%, the strength of CA6 particles is lowered and the strength of the refractory material is weakened. Similarly, when the bulk density is smaller than 0.40 g/cm 3 , the strength of the refractory material is weakened, and when the bulk density is larger than 0.60 g/cm 3 , the thermal insulation property is lowered.

본 발명의 부정형 단열 내화물은, 결정상이 CA6 으로서, 입경 3 ㎜ 이상 6 ㎜ 미만으로 분급했을 때의, JIS R 2205 : 1992 에 정해지는 자비법(煮沸法)에 의한 흡수율이 50 % 이상 100 % 이하이고, 또한 부피 밀도가 0.40 g/㎤ 이상 0.60 g/㎤ 이하인 내화물용 골재와, 알루미나 시멘트를 포함하는 캐스터블에 소정량의 물을 첨가하고, 혼련한 것을 형틀에 흘려 넣음으로써 성형된다.The amorphous heat insulation refractory material of the present invention has a water absorption rate of 50% or more and 100% or less by the boiling method defined in JIS R2205:1992 when the crystal phase is CA6, and the particle size is 3 mm or more and less than 6 mm. In addition, a predetermined amount of water is added to a castable containing aggregate for refractories having a bulk density of 0.40 g/cm 3 or more and 0.60 g/cm 3 or less, and alumina cement, and the kneaded is molded by pouring it into a mold.

예를 들어, 본 발명의 CA6 입자를 40 ∼ 70 질량%, 알루미나 시멘트를 40 ∼ 60 질량%, 입경 45 ㎛ 미만의 알루미나 미분을 0 ∼ 10 질량% 를 포함하는 캐스터블을 사용한다. CA6 입자의 배합량이 70 질량% 보다 많으면 내화물로서의 강도가 부족하고, 40 질량% 보다 적으면 충분한 단열성이 얻어지지 않는다. 또, 알루미나 시멘트의 배합량이 60 질량% 보다 많으면 충분한 단열성이 얻어지지 않고, 40 질량% 보다 적으면 내화물로서의 강도가 부족하다. 입경 45 ㎛ 미만의 알루미나 미분은 알루미나 시멘트와의 반응에 의해 단열 내화물의 매트릭스 성분이 되어, 알루미나 미분을 배합하지 않는 경우와 비교하여 강도가 개선되지만, 알루미나 미분을 10 질량% 보다 많게 해도 그 이상 강도는 개선되지 않는다.For example, a castable containing 40 to 70 mass% of CA6 particles of the present invention, 40 to 60 mass% of alumina cement, and 0 to 10 mass% of alumina fine powder having a particle size of less than 45 µm is used. When the compounding quantity of CA6 particle|grains is more than 70 mass %, the intensity|strength as a refractory material runs short, and when less than 40 mass %, sufficient heat insulation property is not acquired. Moreover, when there is more compounding quantity of alumina cement than 60 mass %, sufficient heat insulation property will not be acquired, and when less than 40 mass %, the intensity|strength as a refractory material is insufficient. Alumina fine powder having a particle size of less than 45 μm becomes a matrix component of a heat insulating refractory material by reaction with alumina cement, and the strength is improved compared to the case where alumina fine powder is not blended is not improved.

본 발명의 부정형 단열 내화물의 제조 방법에 있어서의 각 재료의 혼합 방법은, 특별히 한정되는 것은 아니지만, 통상의 부정형 내화물의 제조 방법에 준하여, 각 구성 원료를 소정의 비율이 되도록 배합하고, 볼 밀, V 형 블렌더, 콘 블렌더, 나우터 믹서, 팬형 믹서 및 옴니 믹서 등의 혼합기를 사용하여 균일 혼합하는 방법이 가능하다.Although the mixing method of each material in the manufacturing method of the irregular heat insulation refractory body of this invention is not specifically limited, According to the manufacturing method of a normal irregular shape refractory body, each component raw material is mix|blended so that it may become a predetermined ratio, and a ball mill, A method of uniformly mixing using a mixer such as a V-type blender, a cone blender, a Nauter mixer, a pan-type mixer, and an omni mixer is possible.

본 발명의 부정형 단열 내화물의 시공에 있어서, 상기 캐스터블에 소정량의 물을 첨가하고, 배합, 혼련한다. 첨가하는 물의 배합량은, 캐스터블의 합계량 에 대해 외부 백분율로 40 ∼ 60 질량% 인 것이 바람직하다. 40 질량% 보다 적으면 충분한 유동성을 확보하지 못해 시공 불량이 되기 쉽고, 또 60 질량% 보다 많으면 내화물의 밀도의 저하에 의한 강도 저하를 일으키기 때문이다.In the construction of the amorphous insulating refractory material of the present invention, a predetermined amount of water is added to the castable, blended, and kneaded. It is preferable that the compounding quantity of the water to be added is 40-60 mass % in external percentage with respect to the total amount of castable. It is because when less than 40 mass %, sufficient fluidity|liquidity cannot be ensured and it becomes easy to become defective in construction, and when more than 60 mass %, the intensity|strength fall by the fall of the density of a refractory body will arise.

이하, 실시예에 기초하여 본 발명을 더욱 설명한다.Hereinafter, the present invention will be further described based on Examples.

[실시예 1 ∼ 5, 비교예 1 ∼ 3][Examples 1 to 5, Comparative Examples 1 to 3]

칼시아 원료로서 탄산칼슘 또는 수산화칼슘을, 알루미나 원료로서 수산화알루미늄을, 조공제로서 콘스타치를, 첨가제로서 붕사를, 표 1 에 나타내는 배합으로 계량 후, 나우터 믹서를 사용하여 혼합하였다. 또한, 표 1 에 나타내는 칼시아 원료와 알루미나 원료의 비율은, CaOㆍ6Al2O3 이 되도록 설정되어 있다.Calcium carbonate or calcium hydroxide as a calcia raw material, aluminum hydroxide as an alumina raw material, corn starch as a pore-forming agent, and borax as an additive were weighed in the formulation shown in Table 1, and then mixed using a Nauter mixer. In addition, the ratio of the calcia raw material and alumina raw material shown in Table 1 is set so that it may become CaO/ 6Al2O3 .

<사용 재료><Materials used>

탄산칼슘 : 후나오 광산 제조 후나오 석회석Calcium carbonate: Funao Limestone manufactured by Funao Mine

수산화칼슘 : 이토 산업 제조 Calcium hydroxide: manufactured by Ito Industries

수산화알루미늄 : 스미토모 화학 제조 C301N Aluminum hydroxide: C301N manufactured by Sumitomo Chemical

콘스타치 : 니혼 콘스타치 제조 Y-3P Cornstarch: Y-3P manufactured by Japanese cornstarch

붕사 : 와코 순약 공업 제조 DehyborBorax: Wako Pure Chemical Industry Manufacturing Dehybor

혼합된 원료를 팬형 조립기로 약 φ20 ㎜ 이하로 성형하고, 알루미나제 용기에 넣고, 전기로 중 (대기 분위기) 에서 표 1 에 나타내는 온도에서 소성을 실시하였다. 그 후, 방랭하여 얻어진 CA6 소성물을 롤러 밀로 분쇄하여 CA6 을 결정상으로 하는 부정형 내화물용 골재를 제조하였다. 얻어진 CA6 입자의 골재의 붕소 함유량은 ICP (유도 결합 플라즈마 (Inductively Coupled Plasma)) 발광 분석법에 의해 측정하였다. 또, 얻어진 CA6 입자의 골재를, 입경 3 ㎜ 이상 6 ㎜ 미만으로 분급하여, 흡수율, 부피 밀도, 골재 내하중을 측정하였다. 결과를 표 1 에 나타낸다.The mixed raw material was shape|molded to about (phi) 20 mm or less with a pan-type granulator, put into an alumina container, and baked at the temperature shown in Table 1 in an electric furnace (atmospheric atmosphere). Then, the CA6 calcined material obtained by standing to cool was grind|pulverized with the roller mill, and the aggregate for irregular refractories which uses CA6 as a crystalline phase was manufactured. The boron content of the aggregate of the obtained CA6 particles was measured by ICP (Inductively Coupled Plasma) emission spectrometry. Moreover, the obtained aggregate of CA6 particle|grains was classified into 3 mm or more and less than 6 mm of particle diameters, and the water absorption rate, bulk density, and aggregate load carrying capacity were measured. A result is shown in Table 1.

<흡수율 측정 방법><Measuring method of water absorption>

JIS R 2205 : 1992 「내화 벽돌의 겉보기 기공률ㆍ흡수율ㆍ비중의 측정 방법」에 정해지는 자비법(煮沸法)에 의한 흡수율의 측정 방법으로 측정하였다. 골재의 흡수율은, 그것을 사용하여 제조되는 내화물의 열전도율과 부 (負) 의 상관 관계에 있기 때문에, 충분히 낮은 열전도율의 내화물이 얻어지는 흡수율이 50 % 이상을 ○ (합격), 50 % 미만을 × (불합격) 로 하였다.It measured by the measuring method of the water absorption by the boiling method specified in JIS R 2205:1992 "Measuring method of apparent porosity, water absorption, and specific gravity of fire brick". Since the water absorption of the aggregate has a negative correlation with the thermal conductivity of the refractory material manufactured using it, the water absorption rate at which a refractory material with sufficiently low thermal conductivity is obtained is 50% or more ○ (pass), less than 50% × (rejected) ) was set.

<부피 밀도 측정 방법><Method for measuring bulk density>

내용적 15.8 ㎤ 의 유리병에 얻어진 CA6 입자의 골재를 유리병 주둥이로부터 흘러넘칠 때까지 담은 후, 수회 탭핑 (높이 1 ㎝ 로부터 낙하) 후, 유리병 주둥이로부터 흘러 넘치고 있는 골재를 밀어서 고르게 하여, 유리병의 중량 증분을 내용적으로 나눈 값을 부피 밀도로 하였다.After loading the aggregate of CA6 particles obtained in a glass bottle with an internal volume of 15.8 ㎤ until it overflows from the spout of the glass bottle, tap it several times (falling from a height of 1 cm), and then push the overflowing aggregate from the spout of the glass bottle to even out the glass The value obtained by dividing the weight increment of the bottle by the internal volume was taken as the bulk density.

<골재 내하중 측정 방법><Method for measuring aggregate load carrying capacity>

3 ∼ 6 ㎜ 의 CA6 입자의 골재 1 입 (粒) 을 수평한 정반 위에 놓고, 정반과 평행한 면을 갖는 하중 계측기로 CA6 입자의 골재를 밀어넣어, 골재가 파괴될 때까지의 최대 하중을 골재 내하중으로 하였다. 여기에서, 골재 내하중의 합격 여부 판정 기준으로서, 10 N 이상을 ○ (합격), 10 N 미만을 × (불합격) 로 하였다.1 grain of CA6 grain of 3 to 6 mm is placed on a horizontal surface plate, the CA6 grain aggregate is pushed in with a load measuring instrument having a plane parallel to the surface plate, and the maximum load until the aggregate is destroyed load-bearing. Here, 10 N or more was made into (circle) (pass), and less than 10 N was made into X (failure) as a criterion for the pass/failure determination of aggregate load carrying capacity.

표 1 의 실시예 1 ∼ 5 로부터, 붕소 함유량이 0.02 ∼ 0.4 질량% 의 범위 내에 있는 경우에, 골재 내하중이 10 N 이상으로 높아져 있는 것을 알 수 있다. 한편, 붕사를 첨가하지 않고 CA6 입자를 제조한 경우, 흡수율이 100 % 를 초과하는 만큼 기공이 많기 때문에 골재 내하중이 10 N 보다 낮은 값이 되었다. 또, 비교예 2 와 같이 붕소 함유량이 0.4 질량% 를 초과한 경우, 골재 내하중이 66.3 N 으로 높기는 하지만, 흡수율이 50 % 이하의 낮은 값을 나타내어, 단열 특성으로서 불리해진다고 생각된다. 비교예 3 의 CA6 입자의 골재는 0.02 질량% 이상의 붕소를 함유하고, 흡수율 50 % 이상의 기공을 가지고 있음에도 불구하고, 부피 밀도가 0.6 g/㎤ 이상의 높은 값을 나타내고 있다. 이것은 소성 온도가 낮아 붕소 첨가의 효과가 불충분해져, CA6 소성물의 분쇄시에 파쇄상의 CA6 입자가 얻어지기 어려워졌기 때문으로 생각된다.From Examples 1-5 of Table 1, when boron content exists in the range of 0.02-0.4 mass %, it turns out that aggregate load capacity is high to 10N or more. On the other hand, when CA6 particles were produced without adding borax, the aggregate load carrying capacity was lower than 10 N because the water absorption exceeded 100% and there were many pores. Moreover, when boron content exceeds 0.4 mass % like Comparative Example 2, although the aggregate load capacity is high as 66.3 N, water absorption shows a low value of 50 % or less, It is thought that it becomes disadvantageous as a heat insulation characteristic. Although the aggregate of CA6 particles of Comparative Example 3 contained boron of 0.02 mass% or more and had pores having an absorption rate of 50% or more, the bulk density showed a high value of 0.6 g/cm 3 or more. This is considered to be because the effect of boron addition became insufficient because the calcination temperature was low, and it became difficult to obtain crushed CA6 particles at the time of pulverization of the CA6 calcined product.

실시예 1 ∼ 5 및 비교예 1 ∼ 3 의 CA6 입자의 골재의 X 선 회절 분석 평가 결과를 표 1 에, 실시예 1, 실시예 3, 비교예 3 의 CA6 입자의 골재의 X 선 회절 스펙트럼을 도 1 에 나타낸다. 실시예 1 ∼ 실시예 5 및 비교예 1, 2 와 같이, 소성 온도가 1450 ℃ 인 경우, 칼시아 원료로서 탄산칼슘을 사용해도 수산화칼슘을 사용해도, 거의 단상의 CA6 이 형성되어 있는 것을 알 수 있다. 한편, 비교예 3 으로부터, 소성 온도가 1000 ℃ 보다 낮은 경우, 미반응 원료인 Al2O3 이나 CaO, 및 반응 중간체인 CaOㆍ2Al2O3 (CA2) 가 많이 잔류하고 있어, 소성 온도가 지나치게 낮은 것을 알 수 있다.The X-ray diffraction analysis evaluation results of the aggregates of CA6 particles of Examples 1 to 5 and Comparative Examples 1 to 3 are shown in Table 1, and the X-ray diffraction spectra of the aggregates of CA6 particles of Examples 1, 3, and 3 are shown. 1 shows. As in Examples 1 to 5 and Comparative Examples 1 and 2, when the calcination temperature is 1450° C., it can be seen that even if calcium carbonate or calcium hydroxide is used as the calcia raw material, almost single-phase CA6 is formed. . On the other hand, from Comparative Example 3, when the sintering temperature is lower than 1000° C., a large amount of unreacted raw material Al 2 O 3 or CaO and a reaction intermediate CaO·2Al 2 O 3 (CA2) remain, and the sintering temperature is too high. It can be seen that the low

Figure 112018100553298-pct00001
Figure 112018100553298-pct00001

[실시예 6 ∼ 10, 비교예 4 ∼ 6][Examples 6 to 10, Comparative Examples 4 to 6]

실시예 1 ∼ 5 및 비교예 1 ∼ 3 에서 얻어진 CA6 입자의 골재를, 입경 3 ㎜ 이상 6 ㎜ 미만 (조립), 1 ㎜ 이상 3 ㎜ 미만 (중립), 입경 1 ㎜ 미만 (미립) 으로 분급한 것, 평균 입경 2 ㎛ 의 알루미나 미분, 알루미나 시멘트를, 표 2 에 나타내는 배합으로 계량 후, 소정량의 물을 첨가하고, 만능 믹서를 사용하여 혼합한 후, 40 ㎜ × 40 ㎜ × 160 ㎜ 의 형틀에 흘려 넣고, 온도 20 ℃ 에서 경화, 틀에서 분리 후, 110 ℃ 에서 24 시간 건조시켜, CA6 입자를 골재로 하는 내화물을 얻었다.The aggregates of CA6 particles obtained in Examples 1 to 5 and Comparative Examples 1 to 3 were classified into particle sizes of 3 mm or more and less than 6 mm (granular), 1 mm or more and less than 3 mm (neutral), and less than 1 mm of particle diameter (fine). , alumina fine powder having an average particle diameter of 2 µm, and alumina cement are weighed in the formulation shown in Table 2, a predetermined amount of water is added, mixed using a universal mixer, and then a 40 mm × 40 mm × 160 mm mold After pouring in, hardening at the temperature of 20 degreeC, and isolation|separation from a mold, it was made to dry at 110 degreeC for 24 hours, and the refractory body which uses CA6 particle|grains as an aggregate was obtained.

<사용 재료><Materials used>

알루미나 미분 : 쇼와 전공 제조 AL-170Alumina fine powder: Showa Denko Manufactured AL-170

알루미나 시멘트 : 덴카 제조 하이 알루미나 시멘트 수퍼Alumina Cement: High Alumina Cement Super manufactured by Denka

내화물의 실로 (實爐) 사용 조건을 상정하고, 얻어진 내화물을, 전기로를 사용하여 1400 ℃ 의 가열 처리를 실시한 후의 굽힘 강도를 측정하였다. 결과를 표 2 에 나타낸다.The bending strength after heat-processing 1400 degreeC for the refractory material obtained by supposing the thread use conditions of a refractory body using an electric furnace was measured. A result is shown in Table 2.

<굽힘 강도의 측정 방법><Measuring method of bending strength>

JIS R 2553 : 1992 「캐스터블 내화물의 강도 시험 방법」에 기재되는 방법으로 측정. 여기에서, 굽힘 강도의 합격 여부 판정 기준으로서, 1.5 ㎫ 이상을 ○ (합격), 1.5 ㎫ 미만을 × (불합격) 로 하였다.JIS R 2553: 1992 Measured by the method described in "Strength test method of castable refractories". Here, 1.5 MPa or more was made into ○ (pass), and less than 1.5 MPa was made into X (failed) as a pass/fail judgment criterion of bending strength here.

표 2 의 실시예 6 ∼ 10 으로부터, 실시예 1 ∼ 5 의 CA6 입자의 골재를 사용하여 제조한 내화물에서는, 굽힘 강도가 1.5 ㎫ 이상으로 높아져 있는 것을 알 수 있다. 한편, 붕사를 첨가하지 않은 비교예 1 의 CA6 입자의 골재를 사용한 비교예 4 의 내화물의 경우, 굽힘 강도가 1.5 ㎫ 보다 낮은 값이 되었다. 또, 붕소 함유량이 0.5 질량% 를 초과해 있는 비교예 2 의 CA6 입자의 골재를 사용하여 제조한 비교예 5 의 내화물의 경우, 굽힘 강도가 2.5 ㎫ 로 높기는 하지만, 전술한 바와 같이, 비교예 2 의 흡수율이 50 % 이하의 낮은 값으로, 단열 특성으로서 불리해진다고 생각된다. 비교예 3 의 CA6 입자의 골재를 사용하여 제조한 비교예 6 의 내화물의 경우, 골재 내하중이 10 N 이상이었음에도 불구하고 굽힘 강도가 1.5 ㎫ 보다 낮은 값이 되었다. 비교예 3 과 같이 CA6 입자의 골재의 흡수율이 50 % 이상이고, 부피 밀도가 0.60 g/㎤ 보다 높은 경우에 있어서, 파쇄 형상의 CA6 입자가 얻어지지 않았고, 내화물로 한 경우에 매트릭스 물질과 CA6 입자의 계면의 면적이 작아 결합력이 약해져, 내화물의 강도가 약해졌다고 생각된다.From Examples 6-10 of Table 2, in the refractory body manufactured using the aggregate of CA6 particle|grains of Examples 1-5, it turns out that bending strength is as high as 1.5 Mpa or more. On the other hand, in the case of the refractory material of Comparative Example 4 using the aggregate of CA6 particles of Comparative Example 1 to which borax was not added, the bending strength was lower than 1.5 MPa. Further, in the case of the refractory material of Comparative Example 5 produced using the aggregate of CA6 particles of Comparative Example 2 in which the boron content exceeds 0.5 mass%, the flexural strength is as high as 2.5 MPa, but as described above, the Comparative Example The water absorption of 2 is a low value of 50 % or less, and it is thought that it becomes disadvantageous as a heat insulation characteristic. In the case of the refractory material of Comparative Example 6 prepared using the CA6 particle aggregate of Comparative Example 3, the bending strength was lower than 1.5 MPa despite the aggregate load carrying capacity of 10 N or more. As in Comparative Example 3, when the CA6 particle aggregate absorption rate was 50% or more and the bulk density was higher than 0.60 g/cm 3 , crushed CA6 particles were not obtained, and when a refractory material was used, the matrix material and CA6 particles It is thought that the area of the interface of is small and the bonding force is weak, and the strength of the refractory material is weakened.

Figure 112018100553298-pct00002
Figure 112018100553298-pct00002

산업상 이용가능성Industrial Applicability

CA6 입자의 제조에 있어서 원료에 붕사를 적당량 첨가함으로써, CA6 입자의 파괴 강도가 개선됨과 함께, 붕사를 첨가하여 제조된 CA6 소성물을 사용하여 목적으로 하는 입도로 분쇄했을 때에, 부피 밀도가 낮은 파쇄상의 CA6 입자가 제조 가능하고, 이 CA6 입자를 사용하여 내화물을 제조한 경우에, 내화물 내의 CA6 입자와 매트릭스 물질의 계면의 면적이 커 결합력이 강해져, 내화물의 강도가 개선된다. 그 때문에, 본 발명은 산업상 매우 유용하다.When an appropriate amount of borax is added to the raw material in the production of CA6 particles, the breaking strength of CA6 particles is improved, and when a CA6 calcined product prepared by adding borax is pulverized to a desired particle size, crushing with a low bulk density Phase CA6 particles can be produced, and when a refractory material is manufactured using the CA6 particles, the area of the interface between the CA6 particles in the refractory material and the matrix material is large, so that the bonding force is strong, and the strength of the refractory material is improved. Therefore, this invention is very useful industrially.

Claims (5)

결정상이 CaOㆍ6Al2O3 으로서, 입경 3 ㎜ 이상 6 ㎜ 미만으로 분급했을 때의, JIS R 2205 : 1992 에 정해지는 자비법(煮沸法)에 의한 흡수율이 50 % 이상 100 % 이하이고, 또한 부피 밀도가 0.40 g/㎤ 이상 0.60 g/㎤ 이하인 것을 특징으로 하는 내화물용 골재.When the crystal phase is CaO·6Al 2 O 3 and the particle size is 3 mm or more and less than 6 mm, the water absorption by the boiling method specified in JIS R 2205: 1992 is 50% or more and 100% or less, and Aggregate for refractories, characterized in that the bulk density is 0.40 g/cm 3 or more and 0.60 g/cm 3 or less. 제 1 항에 있어서,
0.02 질량% 이상 0.4 질량% 이하의 붕소가 함유되어 이루어지는 내화물용 골재.
The method of claim 1,
An aggregate for refractories containing boron of 0.02 mass% or more and 0.4 mass% or less.
제 1 항 또는 제 2 항에 기재된 내화물용 골재를 골재로 하고, 알루미나 시멘트를 결합재로 한 내화물.The refractory material which used the aggregate for refractory materials of Claim 1 or 2 as an aggregate, and used alumina cement as a binder. 칼시아 원료 및 알루미나 원료를 포함하는 골재 원료를 물과 혼합, 성형 후, 1000 ℃ ∼ 1700 ℃ 에서 소성하여 얻어지는 제 2 항에 기재된 내화물용 골재의 제조 방법으로서, 상기 골재 원료에 붕사를 첨가하는 것을 특징으로 하는 제 2 항에 기재된 내화물용 골재의 제조 방법.In the method for producing the aggregate for refractory materials according to claim 2 obtained by mixing and molding an aggregate raw material containing a calcia raw material and an alumina raw material with water, and then calcining at 1000 ° C. to 1700 ° C., adding borax to the aggregate raw material The manufacturing method of the aggregate for refractory materials of Claim 2 characterized by the above-mentioned. 제 4 항에 있어서,
상기 골재 원료에 첨가하는 붕사의 첨가량이 0.1 질량% 이상 4.0 질량% 이하인 내화물용 골재의 제조 방법.
5. The method of claim 4,
The manufacturing method of the aggregate for refractories whose addition amount of borax added to the said aggregate raw material is 0.1 mass % or more and 4.0 mass % or less.
KR1020187029495A 2016-04-01 2017-03-30 Aggregate for refractory materials, manufacturing method thereof, and refractory materials using same KR102363212B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016074343 2016-04-01
JPJP-P-2016-074343 2016-04-01
PCT/JP2017/013189 WO2017170840A1 (en) 2016-04-01 2017-03-30 Refractory aggregate, method for manufacturing same, and refractory employing same

Publications (2)

Publication Number Publication Date
KR20180132691A KR20180132691A (en) 2018-12-12
KR102363212B1 true KR102363212B1 (en) 2022-02-14

Family

ID=59964696

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020187029495A KR102363212B1 (en) 2016-04-01 2017-03-30 Aggregate for refractory materials, manufacturing method thereof, and refractory materials using same

Country Status (5)

Country Link
JP (1) JP6869229B2 (en)
KR (1) KR102363212B1 (en)
CN (1) CN109071360B (en)
DE (1) DE112017001697T5 (en)
WO (1) WO2017170840A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230144922A (en) 2022-04-08 2023-10-17 영남대학교 산학협력단 Lightweight aggregate for the application of insulation in steelmaking facilities and the manufacturing method thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7089448B2 (en) * 2018-09-13 2022-06-22 デンカ株式会社 Aggregate for refractory, its manufacturing method, and refractory using it
CN114644518A (en) * 2022-04-15 2022-06-21 天津金耐达筑炉衬里有限公司 Lining material for high wear-resisting cyclone separator

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002179471A (en) 2000-12-14 2002-06-26 Towa Taika Kogyo Kk Heat-insulating refractory composition
JP2012072014A (en) 2010-09-28 2012-04-12 Shinagawa Refractories Co Ltd Lightweight heat insulating castable
JP2014037327A (en) 2012-08-14 2014-02-27 Towa Taika Kogyo Kk Low thermal expansion heat insulating castable
CN104086192A (en) * 2014-06-24 2014-10-08 河南竹林耐材有限公司 Lightweight insulated calcium hexaluminate castable

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1137611A1 (en) 1998-11-24 2001-10-04 Alcoa Chemie GmbH Insulating raw material for high temperature applications
JP4096096B2 (en) * 2002-12-25 2008-06-04 独立行政法人産業技術総合研究所 Hexaluminate porous ceramics and method for producing the same
CA2663798C (en) * 2006-09-21 2016-01-19 Kenneth A. Mcgowan Methods of use of calcium hexa aluminate refractory linings and/or chemical barriers in high alkali or alkaline environments
JP4834012B2 (en) 2008-02-26 2011-12-07 黒崎播磨株式会社 Insulated castable refractories
CN105036167A (en) * 2015-09-11 2015-11-11 浙江自立氧化铝材料科技有限公司 Calcium hexaluminate and preparation method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002179471A (en) 2000-12-14 2002-06-26 Towa Taika Kogyo Kk Heat-insulating refractory composition
JP2012072014A (en) 2010-09-28 2012-04-12 Shinagawa Refractories Co Ltd Lightweight heat insulating castable
JP2014037327A (en) 2012-08-14 2014-02-27 Towa Taika Kogyo Kk Low thermal expansion heat insulating castable
CN104086192A (en) * 2014-06-24 2014-10-08 河南竹林耐材有限公司 Lightweight insulated calcium hexaluminate castable

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230144922A (en) 2022-04-08 2023-10-17 영남대학교 산학협력단 Lightweight aggregate for the application of insulation in steelmaking facilities and the manufacturing method thereof

Also Published As

Publication number Publication date
JP6869229B2 (en) 2021-05-12
JPWO2017170840A1 (en) 2019-02-14
CN109071360A (en) 2018-12-21
CN109071360B (en) 2021-12-21
KR20180132691A (en) 2018-12-12
DE112017001697T5 (en) 2018-12-13
WO2017170840A1 (en) 2017-10-05

Similar Documents

Publication Publication Date Title
CN102351547B (en) High strength high temperature resistance semi-lightweight high alumina castable and its preparation method
Obregón et al. MgO–CaZrO3-based refractories for cement kilns
CN101805198B (en) Mullite steel fiber castable
KR102360147B1 (en) Magnesium oxide-containing spinel powder and manufacturing method thereof
CN103553689B (en) High-strength, alkali-proof and fireproof pouring material
CN110325487A (en) The liner and industrial furnace of the preparation method of porous sintered magnesia, the backfill material for producing the heavy clay refractory product with sintering oxidation magnesium granules, such product and preparation method thereof, industrial furnace
CN104086198B (en) A kind of glass furnace Apyre flame-proof material and goods thereof
KR102363212B1 (en) Aggregate for refractory materials, manufacturing method thereof, and refractory materials using same
Gogtas et al. Effect of nano-YSZ and nano-ZrO2 additions on the strength and toughness behavior of self-flowing alumina castables
US8821633B2 (en) Cast bodies, castable compositions, and methods for their production
JP5943032B2 (en) Manufacturing method of lightweight heat-insulating alumina / magnesia refractory
CN106810282B (en) Method for producing ramming mass by using waste fused zirconia corundum bricks
CN107903040A (en) A kind of magnesium chromium matter ramming mass and production method for liquid steel refining stove furnace bottom
JP6752074B2 (en) Aggregates for refractories, their manufacturing methods, and refractories using them
CN103508740A (en) Ramming mass for repairing gap bridge magnesia-alumina spinel bricks of sleeve lime kiln
Long et al. Microstructure and physical properties of steel-ladle purging plug refractory materials
Kumar et al. Low temperature synthesis of high alumina cements by gel‐trapped Co‐precipitation process and their implementation as castables
CN104311048A (en) High-strength alkali-resisting refractory castable
JP7089448B2 (en) Aggregate for refractory, its manufacturing method, and refractory using it
CN101768004B (en) Low-pore in situ oriental topaz brick and preparation method thereof
JP2009096658A (en) Alumina cement composition, and monolithic refractory using the same
CN102765947A (en) Lip tile
CN105924191A (en) Potassium aluminate raw material of refractory brick preparation and preparation method of refractory brick
CN104944981A (en) Firebrick used for rotary kiln
CN115353397A (en) High-strength light acid-resistant castable and preparation method thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant