KR102363199B1 - Parallax barrier and stereoscopic display apparatus including the same - Google Patents

Parallax barrier and stereoscopic display apparatus including the same Download PDF

Info

Publication number
KR102363199B1
KR102363199B1 KR1020190054974A KR20190054974A KR102363199B1 KR 102363199 B1 KR102363199 B1 KR 102363199B1 KR 1020190054974 A KR1020190054974 A KR 1020190054974A KR 20190054974 A KR20190054974 A KR 20190054974A KR 102363199 B1 KR102363199 B1 KR 102363199B1
Authority
KR
South Korea
Prior art keywords
refractive index
coating film
light emitting
emitting device
device assembly
Prior art date
Application number
KR1020190054974A
Other languages
Korean (ko)
Other versions
KR20200129898A (en
Inventor
장진탁
이태현
오희봉
이찬규
박윤재
김민우
편민욱
유영조
Original Assignee
덕산하이메탈(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 덕산하이메탈(주) filed Critical 덕산하이메탈(주)
Priority to KR1020190054974A priority Critical patent/KR102363199B1/en
Publication of KR20200129898A publication Critical patent/KR20200129898A/en
Application granted granted Critical
Publication of KR102363199B1 publication Critical patent/KR102363199B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/66Additives characterised by particle size
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D163/00Coating compositions based on epoxy resins; Coating compositions based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D179/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09D161/00 - C09D177/00
    • C09D179/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/004Reflecting paints; Signal paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L51/5262
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Paints Or Removers (AREA)

Abstract

본 발명의 일 실시예에 따른 복합 굴절율 도막 조성물은,
굴절율 a를 가지는 제1굴절율 물질; 및 상기 a와 다른 굴절율인 b를 가지는 제2굴절율 물질을 포함하고, 상기 제2굴절율 물질의 평균직경은 20nm 내지 1000nm로 이루어지는 것을 특징으로 한다.
A composite refractive index coating film composition according to an embodiment of the present invention,
a first refractive index material having a refractive index a; and a second refractive index material having a refractive index b that is different from a, wherein an average diameter of the second refractive index material is 20 nm to 1000 nm.

Description

복합 굴절율 도막 조성물 및 이를 이용한 도막{PARALLAX BARRIER AND STEREOSCOPIC DISPLAY APPARATUS INCLUDING THE SAME}Composite refractive index coating film composition and coating film using the same

본 발명은 복합 굴절율 도막 조성물에 관한 것으로, 보다 상세하게는 높은 반사율과 동시에 높은 산란특성이 요구되는 발광장치의 광원 주변에 적용되는 복합 굴절율 도막 조성물에 관한 것이다.The present invention relates to a composite refractive index coating film composition, and more particularly, to a composite refractive index coating film composition applied around a light source of a light emitting device that requires high reflectance and high scattering characteristics at the same time.

디스플레이 장치의 광원 주변부에는 광원에서 나오는 광을 효율적으로 방사하기 위하여 광원이나 디스플레이 장치의 종류에 따라 다양한 형태의 반사막 또는 산란막등을 형성한다. In order to efficiently radiate light emitted from the light source in the peripheral portion of the light source of the display device, various types of reflective or scattering layers are formed depending on the type of light source or display device.

특히 자발광 광원 예를 들면, 마이크로 엘이디(micro led), 미니 엘이디(mini led), OLED(organic led), QLED(quantum dot led)등의 경우 발광층에서 생성되는 광의 일부만이 발광소자 외부로 방출되므로 광추출효율을 높이기 위하여 광추출구조를 구비해야 한다. In particular, in the case of a self-luminous light source, for example, micro LED, mini LED, OLED (organic LED), QLED (quantum dot led), etc., only a part of the light generated in the light emitting layer is emitted to the outside of the light emitting device. In order to increase the light extraction efficiency, a light extraction structure should be provided.

이 때, 사용되는 반사막의 재료로서는 일반적으로 금속재료를 사용하는 것을 고려하고 있지만, 금속재료의 경우 전기전도도가 높고, 코팅 및 형상에 제약이 많다. 특히 크기가 미세한 자체 발광 광원을 이용한 디스플레이의 경우 광원의 주변부를 감싸야 하므로 코팅형상에 대한 제한을 가지는 금속재료를 대용하여 반사기능을 가지면서도 동시에 산란특성을 가지고, 도막형성능이 좋은 복합 굴절율 도막 조성물의 개발이 요구되고 있다.At this time, as a material of the reflective film used, it is generally considered to use a metallic material, but in the case of a metallic material, electrical conductivity is high, and there are many restrictions on coating and shape. In particular, in the case of a display using a small-sized self-luminous light source, it is necessary to cover the periphery of the light source, so a composite refractive index coating film composition that has a reflective function and a scattering characteristic and has good coating film forming performance by substituting a metal material having restrictions on the coating shape development is required.

본 발명의 실시예들은 높은 반사율과 동시에 높은 산란특성을 가지는 복합 굴절율 도막 조성물을 제공하는 것을 목적으로 한다. An object of the present invention is to provide a composite refractive index coating film composition having high reflectance and high scattering properties at the same time.

이 때 또한 제1굴절율 물질과 제2굴절율 물질의 특성을 조절하여 복합굴절율 반사렌즈의 다양한 기능을 부가할 수 있는 복합 굴절율 도막 조성물을 제공하는 것을 목적으로 한다.At this time, it is also an object of the present invention to provide a composite refractive index coating film composition capable of adding various functions of a composite refractive index reflective lens by adjusting the properties of the first refractive index material and the second refractive index material.

본 발명에 따른 복합 굴절율 도막 조성물은,The composite refractive index coating film composition according to the present invention,

굴절율 a를 가지는 제1굴절율 물질; 및a first refractive index material having a refractive index a; and

상기 a와 다른 굴절율인 b를 가지는 제2굴절율 물질을 포함하고,and a second refractive index material having a refractive index b that is different from a,

상기 굴절율 a와 b의 차이 값이 0.3 내지 1.5이며, 상기 제2굴절율 물질의 평균직경은 20nm 내지 1000nm로 이루어지는 것을 특징으로 한다.The difference between the refractive indices a and b is 0.3 to 1.5, and the second refractive index material has an average diameter of 20 nm to 1000 nm.

이 때, 상기 제1굴절율 물질과 상기 제2굴절율 물질의 중량비는 1 : 4 내지 1:0.05 인 것을 특징으로 한다.In this case, the weight ratio of the first refractive index material to the second refractive index material is 1: 4 to 1: 0.05.

상기 a는 1.3 내지 1.6이고, 상기 b는 1.0 내지 3.5로 이루어지는 것이 바람직하다.Preferably, a is 1.3 to 1.6, and b is 1.0 to 3.5.

또한, 상기 제2굴절율 물질의 열전도도가 1 내지 6000로 이루어질 수 있고, 상기 제2굴절율 물질은 검은색으로 이루어지는 경우도 포함한다. In addition, the second refractive index material may have a thermal conductivity of 1 to 6000, and includes a case in which the second refractive index material is black.

상기 제2굴절율 물질은 X, 또는 Y 또는 XY로 이루어지는 군에서 선택되는 적어도 하나 이상의 물질이며, X는 모든 금속 및 란타넘족, 탄소, Si, B, P, S, 및 그 조합으로 구성되는 군에서 선택되는 1종이상의 물질이고, Y는 O, N, S, Se, Te, As, C 및 그 조합으로 구성되는 군에서 선택되는 1종이상의 물질일 수 있다. The second refractive index material is at least one material selected from the group consisting of X, or Y or XY, and X is all metals and lanthanides, carbon, Si, B, P, S, and combinations thereof. One or more substances selected from Y may be one or more substances selected from the group consisting of O, N, S, Se, Te, As, C, and combinations thereof.

상기 제1굴절율 물질은 에폭시계, 실리콘계, 아크릴계, 멜라민계수지로 이루어지는 군에서 선택되는 1종 또는 2종이상의 수지를 포함할 수 있다. The first refractive index material may include one or more resins selected from the group consisting of epoxy-based, silicone-based, acrylic-based, and melamine-based resins.

본 발명의 또 다른 구성으로는,In another configuration of the present invention,

굴절율 a를 가지는 제1굴절율 물질; 및a first refractive index material having a refractive index a; and

상기 a와 다른 굴절율인 b를 가지는 제2굴절율 물질을 포함하고, 상기 굴절율 a와 b의 차이 값이 0.3 내지 1.5이고, 상기 제2굴절율 물질의 평균직경은 20nm 내지 1000nm로 이루어지는 복합 굴절율 도막 조성물을 경화하여 형성하여 두께가 3 내지 200㎛이고, 반사율이 30%이상인 복합 굴절율 도막이 있다.A composite refractive index coating film composition comprising a second refractive index material having a refractive index b that is different from a, wherein the difference between the refractive indices a and b is 0.3 to 1.5, and the average diameter of the second refractive index material is 20 nm to 1000 nm There is a composite refractive index coating film having a thickness of 3 to 200 μm and a reflectance of 30% or more by curing.

또한, 본 발명에 따른 복합 굴절율 도막 조성물은,In addition, the composite refractive index coating film composition according to the present invention,

기판;Board;

상기 기판 상에 구비된 전극,an electrode provided on the substrate;

상기 전극 상에 구비된 발광소자, 및a light emitting device provided on the electrode, and

상기 기판의 상면 및 상기 발광소자의 측면에 구비되는 복합 굴절율 도막;을 구비하는 발광소자 어셈블리에 사용되는 복합 굴절율 도막 조성물로서,A composite refractive index coating film composition used in a light emitting device assembly comprising; a composite refractive index coating film provided on the upper surface of the substrate and a side surface of the light emitting device,

상기 복합 굴절율 도막 조성물은 굴절율 a를 가지는 제1굴절율 물질; 및The composite refractive index coating film composition may include a first refractive index material having a refractive index a; and

상기 a와 다른 굴절율인 b를 가지는 제2굴절율 물질을 포함하고,and a second refractive index material having a refractive index b that is different from a,

상기 제2굴절율 물질의 평균직경은 20nm 내지 1000nm로 이루어 지는 것을 특징으로 한다.The second refractive index material has an average diameter of 20 nm to 1000 nm.

또, also,

상기 제2굴절율 물질의 열전도도가 1 내지 6000 일 수도 있으며, The second refractive index material may have a thermal conductivity of 1 to 6000,

상기 제2굴절율 물질은 검은색으로 이루어지는 것을 포함한다. The second refractive index material includes a black material.

이 때,At this time,

상기 제1굴절율 물질과 상기 제2굴절율 물질의 중량비는 1 : 4 내지 1:0.05 일 수 있다.A weight ratio of the first refractive index material to the second refractive index material may be 1:4 to 1:0.05.

본 발명의 일 실시예에 따른 광산란 도막 조성물로 반사막을 형성할 경우 높은 반사율과 동시에 높은 산란특성을 가지므로 광추출 및 광포집을 필요로 하는 태양전지, OLED 조명, OLED디스플레이, 다양한 사이즈의 LED조명 및 LED 디스플레이등에 적용가능하다.When a reflective film is formed with the light scattering coating composition according to an embodiment of the present invention, it has high reflectance and high scattering characteristics at the same time, so solar cells, OLED lighting, OLED display, LED lighting of various sizes and Applicable to LED displays, etc.

도 1은 발광소자 어셈블리의 모식도를 도시한다.
도 2는 BM이 형성된 발광소자 어셈블리의 모식도를 도시한다.
도 3은 본 발명의 실시예 1에 따른 조성물의 사진이다.
도 4는 본 발명의 실시예 2에 따른 조성물의 사진이다.
도 5는 본 발명의 실시예 1과 비교예 1, 2의 반사도를 측정한 그래프이다.
도 6은 본 발명의 실시예 6에 따른 조성물로 형성한 도막의 방열기능을 측정한 그래프이다.
1 shows a schematic diagram of a light emitting device assembly.
2 shows a schematic diagram of a light emitting device assembly in which BM is formed.
3 is a photograph of a composition according to Example 1 of the present invention.
4 is a photograph of a composition according to Example 2 of the present invention.
5 is a graph of measuring the reflectivity of Example 1 and Comparative Examples 1 and 2 of the present invention.
6 is a graph measuring the heat dissipation function of the coating film formed of the composition according to Example 6 of the present invention.

이하, 본 발명의 일 실시예에 따른 복합 굴절율 도막 조성물 및 이의 제조방법 상세하게 설명하면 다음과 같다. Hereinafter, the composite refractive index coating film composition and the manufacturing method thereof according to an embodiment of the present invention will be described in detail as follows.

본 발명의 일측면에 따른 복합 굴절율 도막 조성물은 제1굴절율 물질 및 제2굴절율 물질을 포함한다. A composite refractive index coating film composition according to an aspect of the present invention includes a first refractive index material and a second refractive index material.

제1굴절율 물질은 굴절율 a가 1.2 내지 1.6의 물질로 이루어지는 고분자 수지로 이루어진다. 이 때 굴절율은 고분자 수지가 경화된 후의 굴절율이며, 사용되는 고분자 수지는 에폭시계, 실리콘계, 아크릴계, 멜라민계수지를 1종 또는 2종이상 포함한다. The first refractive index material is made of a polymer resin comprising a material having a refractive index a of 1.2 to 1.6. In this case, the refractive index is the refractive index after the polymer resin is cured, and the polymer resin used includes one or two or more epoxy-based, silicone-based, acrylic-based, and melamine-based resins.

에폭시계는 Bisphenol A type epoxy, Bisphenol F type epoxy, Bisphenol E type, Bisphenol A/F type, Phenol novolac, Phenoxy, Cycloaliphatic epoxy 수지 등이 바람직하게 사용될 수 있으며, 실리콘계는 Methyl Phnyl silicone, Alkyd modified silicone, Methyl silicone, Phenyl silicone, Silicone polyester, Silicone urethan, Silicone acryl 수지 등이 바람직하게 사용될 수 있으며, 아크릴계는 Methacrylate 계, Acrylate 계, Polyacrylate 계, Oligoacrylate 계 아크릴 monomer 및 oligomer, polyol 수지 바람직하게 사용될 수 있으며, 멜라민계는 N-butyl화 멜라민, Iso-butyl화 멜라민, Methyl롸 멜라민, 우레아-멜라민, 벤조구아나민 수지 등이바람직하게 사용될 수 있다. Bisphenol A type epoxy, Bisphenol F type epoxy, Bisphenol E type, Bisphenol A/F type, Phenol novolac, Phenoxy, Cycloaliphatic epoxy resin, etc. may be preferably used for the epoxy resin, and Methyl Phnyl silicone, Alkyd modified silicone, Methyl Silicone, Phenyl silicone, Silicone polyester, Silicone urethan, Silicone acryl resin, etc. may be preferably used, and the acrylic type may be preferably used with Methacrylate type, Acrylate type, Polyacrylate type, Oligoacrylate type acrylic monomer and oligomer, polyol resin, and melamine type. N-butylated melamine, iso-butylated melamine, methylated melamine, urea-melamine, benzoguanamine resin, etc. can be preferably used.

제2굴절율 물질은 제1굴절율 물질과 다른 굴절율 b를 가지는 물질로서, 1.4 내지 3.5의 굴절율, 바람직하게 1.4 내지 3.0의 굴절율, 보다 바람직하게 1.4 내지 2.8의 굴절율을 가진다. The second refractive index material is a material having a refractive index b different from that of the first refractive index material, and has a refractive index of 1.4 to 3.5, preferably a refractive index of 1.4 to 3.0, and more preferably a refractive index of 1.4 to 2.8.

제2굴절율 물질은 X, 또는 Y 또는 XY로 이루어질 수 있으며, X는 모든 금속 및 란타넘족, 탄소, Si, B, P, S, 및 그 조합으로 구성되는 군에서 선택되는 1종이상의 물질이고, Y는 O, N, S, Se, Te, As, C 및 그 조합으로 구성되는 군에서 선택되는 1종이상의 물질이다. The second refractive index material may consist of X, or Y or XY, and X is at least one material selected from the group consisting of all metals and lanthanides, carbon, Si, B, P, S, and combinations thereof, Y is at least one material selected from the group consisting of O, N, S, Se, Te, As, C, and combinations thereof.

이 때 제2굴절율 물질의 평균직경은 20nm 내지 1000nm이고, 바람직하게 50 내지 1000 보다 바람직하게 100 내지 800nm의 직경을 가진다. 상기 범위 내에서 굴절율 차이로 인한 광반사 효과를 가진다. 이 때 직경은 D50을 기준으로 한 평균직경을 의미한다. At this time, the average diameter of the second refractive index material is 20 nm to 1000 nm, preferably 50 to 1000, more preferably 100 to 800 nm. It has a light reflection effect due to a difference in refractive index within the above range. In this case, the diameter means the average diameter based on D50.

본 실시예에서 제2굴절율 물질의 평균직경이 매우 작아서 피도막면에 복합 굴절율 도막을 형성하는 경우 피도막면에 매우 밀착되어, 계면에서의 밀도 및 평탄도 매우 국소적으로 향상되어 광을 산란하면서 동시에 반사율을 높일수가 있다. In this embodiment, when the composite refractive index coating film is formed on the surface of the coating film because the average diameter of the second refractive index material is very small, the density and flatness at the interface are very locally improved to scatter the light. At the same time, it is possible to increase the reflectivity.

제2굴절율이 2개 이상인 경우는 굴절율 차이로 인하여 더욱 강한 산란을 기대할 수 있다. When there are two or more second refractive indices, stronger scattering can be expected due to the difference in refractive indices.

제2굴절율 물질의 형상은 구형, 판상형, 플레이크등이 바람직하게 이용될 수 있으나 이에 제한되지 않는다. The shape of the second refractive index material may preferably be a spherical shape, a plate shape, or a flake shape, but is not limited thereto.

제1굴절율과 제2굴절율의 차이(b-a 또는 a-b)는 사용되는 조건에 따라 다르나 0.1 내지 2.1 바람직하게 0.1 내지 1.8, 보다 바람직하게 0.3 내지 1.5 이 바람직하다. The difference (b-a or a-b) between the first refractive index and the second refractive index varies depending on the conditions used, but is preferably 0.1 to 2.1, preferably 0.1 to 1.8, more preferably 0.3 to 1.5.

제1굴절율 물질과 제2굴절율 물질의 중량비는 1:0.05 내지 1:4이고, 바람직하게 1: 0.3 내지 1:1, 보다 바람직하게 1:0.3 내지 1:0.8 사용될 수 있다. The weight ratio of the first refractive index material to the second refractive index material is 1:0.05 to 1:4, preferably 1:0.3 to 1:1, more preferably 1:0.3 to 1:0.8.

이와 같이 2개의 굴절율을 가진 물질을 사용하고, 제2굴절율의 입자크기 및 함유량을 조절함으로써, 단일 굴절율의 재료와 달리 반사 및 굴절율을 조절하고, 코팅 및 형상에 제약을 극복할 수 있다. As described above, by using a material having two refractive indices and controlling the particle size and content of the second refractive index, it is possible to control reflection and refractive index, and to overcome restrictions on coating and shape, unlike a material having a single refractive index.

한편 제2굴절율 물질로서 열전도도가 1 내지 6000인 경우 광산란 도막에 방열기능을 추가로 부여할 수도 있다. 또한 제2굴절율 물질로서 검은색을 사용할 경우 블랙매트릭스 기능과 동시에 반사기능을 가질 수 있다. 이 때 제2굴절율 물질은 예를 들면, BN(Boron Nitride), 그래핀, Carbon black, Graphite, Carbon nanotube, Black Silica(Metal doped SiO2), CuO, SiC, Fe3O4, Ag2O, Si, Diamond 를 사용할 수 있다. Meanwhile, when the second refractive index material has a thermal conductivity of 1 to 6000, a heat dissipation function may be additionally provided to the light scattering coating film. In addition, when black is used as the second refractive index material, it may have a reflection function as well as a black matrix function. In this case, the second refractive index material may be, for example, BN (Boron Nitride), graphene, Carbon black, Graphite, Carbon nanotube, Black Silica (Metal doped SiO2), CuO, SiC, Fe3O4, Ag2O, Si, or Diamond. have.

특히 복합굴절율 도막 조성물이 필요한 반사기능을 가지기 위한 적정 두께를 요구하므로, 점도가 낮은 잉크타입으로 제조되는 것이 필요하므로, 입자크기, 종류 및 제1굴절율물질과 제2굴절율물질 사이의 상호관계가 중요한 의미를 가진다.In particular, since the composite refractive index coating composition requires an appropriate thickness to have a necessary reflective function, it is necessary to be prepared in an ink type with low viscosity, so the particle size, type, and the interrelationship between the first and second refractive index materials are important. have meaning

제2굴절율 물질의 평균 입자크기가 1000nm 이상인 입자의 경우 도막의 치밀성(fill factor) 저하, 입자의 침강, 공정 중 노즐의 막힘 현상 등의 문제가 발생할 수 있으며, 입자 크기가 20 nm 이하인 입자의 경우 점도 증가, 분산성, 반사기능의 저하 등의 문제가 발생하므로 제 2 굴절율물질의 평균입도는 20nm 내지 1000nm 인 것이 바람직 하다. In the case of particles having an average particle size of 1000 nm or more of the second refractive index material, problems such as a decrease in the fill factor of the coating film, sedimentation of particles, and clogging of the nozzle during the process may occur, and in the case of particles having a particle size of 20 nm or less Since problems such as increase in viscosity, dispersibility, and decrease in reflection function occur, the average particle size of the second refractive index material is preferably 20 nm to 1000 nm.

입자의 결정구조 (예를 들어 TiO2의 경우 Anatase, Rutile, Brookite의 3가지 상의 형태를 가짐, ZnO의 경우 Wurtzite, Zincblende의 2가지 상)에 따라서도 복합굴절률 도막의 특성이 달라진다. 이 때, 제1굴절율과의 굴절율 관계와 도막형성능을 고려할 경우, TiO2의 경우 Rutile 상이 제2굴절율 물질로 바람직하고, ZnO의 경우 Wurtzite 상이 제2굴절율 물질로 바람직하다. The properties of the composite refractive index coating film also vary depending on the crystal structure of the particle (for example, TiO2 has three phases of Anatase, Rutile, and Brookite, and ZnO has two phases of Wurtzite and Zincblende). At this time, when considering the relationship of the refractive index with the first refractive index and the coating film forming ability, in the case of TiO2, the rutile phase is preferable as the second refractive index material, and in the case of ZnO, the Wurtzite phase is preferable as the second refractive index material.

입자의 형상은 반사에는 판상 형태가 바람직하나 공정성, 분산성 등을 고려하여 입자의 형상은 적절히 분배할 필요가 있다. 예를들어, 입자 중 판상은 5 내지 50 중량%, 구상은 50 내지 95 중량%로 포함되는 것이 바람직하다. The shape of the particle is preferably a plate shape for reflection, but it is necessary to properly distribute the shape of the particle in consideration of fairness and dispersibility. For example, it is preferable that the plate-like particles be included in an amount of 5 to 50% by weight, and the spherical particles are included in an amount of 50 to 95% by weight.

한편, 상기 본 발명의 실시예에 따른 복합 굴절율 도막 조성물은 공정 조건 또는 필요에 따라 용매와 첨가물질이 포함될 수 있다. On the other hand, the composite refractive index coating film composition according to the embodiment of the present invention may include a solvent and an additive material according to process conditions or needs.

용매로는 프로필렌 글리콜 모노메틸 에테르(Propylene Glycol Monomethyl Ether, PGME), 디프로필렌 글리콜 모노메틸 에테르(Dipropylene Glycol Monomethyl Ether, DGME)와 같은 에테르계 용매; 메틸 아세테이트(Methyl Acetate), 에틸 아세테이트(Ethyl Acetate), 프로필아세테이트(Propyl Acetate), 부틸 아세테이트(Butyl Acetate)과 같은 에스테르계 용매; 메틸알코올(Methyl Alcohol), 에틸 알코올(Ethyl Alcohol), 이소프로필 알코올(Isopropyl Alcohol), 부틸 알코올(Butyl Alcohol), 메틸에틸케톤(Methylethylketone, MEK), 메틸이소부틸케톤(Methylisobutylketone, MIBK), 아세톤(Acetone)과 같은 알코올계 용매; 및 메틸 셀로솔브(Methyl Cellosolve), 에틸셀로솔브(Ethyl Cellosolve), 부틸 셀로솔브(Butyl Cellosolve)과 같은 셀로솔브계 용매 등을 상황에 맞게 적어도 하나를 선택하여 사용할 수 있다.Examples of the solvent include ether-based solvents such as Propylene Glycol Monomethyl Ether (PGME) and Dipropylene Glycol Monomethyl Ether (DGME); ester-based solvents such as methyl acetate, ethyl acetate, propyl acetate, and butyl acetate; Methyl Alcohol, Ethyl Alcohol, Isopropyl Alcohol, Butyl Alcohol, Methylethylketone (MEK), Methylisobutylketone (MIBK), Acetone ( alcohol-based solvents such as acetone); and cellosolve-based solvents such as Methyl Cellosolve, Ethyl Cellosolve, and Butyl Cellosolve may be selected and used according to the situation.

흐름성 개선제로는 폴리디메틸실록산(polydimethylsiloxane), 폴리에테르변성 폴리디메틸실록산(polyether modified polydimethylsiloxane), 폴리메틸알킬실록산(polymehtylalkylsiloxane, alkyl=methyl, ethyl, butyl, etc.) 등의 실록산(siloxane)계 첨가제 및 폴리메틸메타아크릴레이트(PMMA), 폴리메틸아크릴레이트(PMA), 폴리에틸메타아크릴레이트(PEMA) 등의 폴리아크릴레이트(polyacrylate)계 첨가제 상황게 맞게 적어도 하나를 선택하여 사용할 수 있다.As the flowability improving agent, siloxane-based additives such as polydimethylsiloxane, polyether modified polydimethylsiloxane, and polymethylalkylsiloxane (alkyl=methyl, ethyl, butyl, etc.) and polyacrylate-based additives such as polymethyl methacrylate (PMMA), polymethyl acrylate (PMA), and polyethyl methacrylate (PEMA).

계면활성제로는 실란계 커플링제, 티타네이트계 커플링제, 알루미네이트계 커플링제가 사용될 수 있고, 실리콘유도체, 불소유도체들이 더 포함될 수 있다. As the surfactant, a silane-based coupling agent, a titanate-based coupling agent, and an aluminate-based coupling agent may be used, and silicone derivatives and fluorine derivatives may be further included.

한편, 전술한 용매는 제1굴절율 물질 100중량부에 대해서 20중량부 이하로 포함되는 것이 바람직하다. 상기 범위를 초과하는 경우 필러의 침강, 상분리와 같은 문제점이 있을 수 있다. 또한 , 흐름성개선제는 0.1 내지 10중량부로 포함되는 것이 바람직하다. 상기 범위를 초과하는 경우 필러와 수지의 상분리가 일어날 수 있고, 상기 범위 미만인 경우 흐름성 개선효과가 충분하지 못하여 분산성에 악영향을 미칠 수 있다. 계면활성제는 0.1 내지 7중량부로 포함되는 것이 바람직하다. 상기 범위를 초과하는 경우 기포 발생, 물성 저하, 경화 불량 등의 문제점이 있고, 상기 범위 미만인 경우 점도 증가 및 분산성 저하 등의 문제점이 있다. On the other hand, the above-described solvent is preferably included in an amount of 20 parts by weight or less based on 100 parts by weight of the first refractive index material. When it exceeds the above range, there may be problems such as sedimentation of the filler and phase separation. In addition, the flowability improving agent is preferably included in an amount of 0.1 to 10 parts by weight. If it exceeds the above range, phase separation between the filler and the resin may occur, and if it is below the above range, the flowability improvement effect may not be sufficient, and thus the dispersibility may be adversely affected. The surfactant is preferably included in an amount of 0.1 to 7 parts by weight. When it exceeds the above range, there are problems such as bubble generation, deterioration of physical properties, and poor curing, and when it is less than the above range, there are problems such as increased viscosity and decreased dispersibility.

본 발명의 다른 측면에 따른 복합 굴절율 도막은 제1굴절율 물질 및 제2굴절율 물질을 포함한 도막을 포함한다. The composite refractive index coating film according to another aspect of the present invention includes a coating film including a first refractive index material and a second refractive index material.

본 발명의 일실시예에 따른 도막의 두께는 3 내지 200㎛로 형성되고, 바람직하게 3 내지 100로 형성되고, 보다 바람직하게 3 내지 80㎛ 로 형성된다. 본 실시예에 따른 복합 굴절율 도막 조성물의 반사율은 550nm의 파장에서 30%이상이고, 바람직하게 30 내지 90%, 보다 바람직하게 30 내지 80%, 보다 바람직하게 30 내지 70%일 수 있다. The thickness of the coating film according to an embodiment of the present invention is formed in a range of 3 to 200 μm, preferably in a range of 3 to 100, and more preferably in a range of 3 to 80 μm. The reflectance of the composite refractive index coating film composition according to this embodiment may be 30% or more at a wavelength of 550 nm, preferably 30 to 90%, more preferably 30 to 80%, more preferably 30 to 70%.

이 때 복합굴절율 도막은 반사를 가지는 적정두께를 취하고 스프레이, 디스펜싱, 잉크젯, 스크린 프린팅등과 같은 액상 코팅방법으로 형성될 수 있다. In this case, the composite refractive index coating film may be formed by a liquid coating method such as spraying, dispensing, inkjet, screen printing, etc. taking an appropriate thickness having reflection.

본 발명의 또 다른 측면은 복합 굴절율 도막을 가지는 발광소자 어셈블리이다. 본 실시예에서 발광소자는 기판, 발광소자, 전극, 및 복합 굴절율 도막을 포함한다. Another aspect of the present invention is a light emitting device assembly having a composite refractive index coating film. In this embodiment, the light emitting device includes a substrate, a light emitting device, an electrode, and a composite refractive index coating film.

도 1은 발광소자 어셈블리의 모식도를 도시한다. 이에 따르면 발광소자는 기판상(10)에 형성된 전극상(20)에 형성된다. 이 때, 기판의 상면 및 발광소자의 측면에 전술한 복합 굴절율 도막(30)이 구비된다. 복합 굴절율 도막은 발광소자에서 발광되는 광을 반사 또는 굴절시켜 발광소자의 광을 효율적으로 추출할 수 있다. 1 shows a schematic diagram of a light emitting device assembly. According to this, the light emitting device is formed on the electrode 20 formed on the substrate 10 . At this time, the composite refractive index coating film 30 is provided on the upper surface of the substrate and the side surface of the light emitting device. The composite refractive index coating film reflects or refracts light emitted from the light emitting device to efficiently extract the light from the light emitting device.

발광소자는 OLED, QLED, 초소형 LED(micro-LED, mini-LED)일 수 있다. The light emitting device may be OLED, QLED, or micro-LED (micro-LED, mini-LED).

또한 발광소자는 선택적으로 복합 굴절율 도막 상에 블랙 매트릭스(BM)를 더 포함할 수 있다. 블랙매트릭스는 각 발광소자에서 발광된 광이 서로 혼합되지 않게 기능한다. 도 2는 BM이 형성된 발광소자 어셈블리의 모식도를 도시한다. In addition, the light emitting device may optionally further include a black matrix (BM) on the composite refractive index coating film. The black matrix functions to prevent the light emitted from each light emitting device from being mixed with each other. 2 shows a schematic diagram of a light emitting device assembly in which BM is formed.

한편 복합 굴절율 도막에 포함되는 제2굴절율 물질을 열전도 특성이 좋은 Al2O3, BN, MgO, ZnO 등의 물질로 하는 경우 발광소자에서 발생하는 열을 방열하는 기능을 가질 수 있다. On the other hand, when the second refractive index material included in the composite refractive index coating film is made of a material such as Al2O3, BN, MgO, or ZnO having good thermal conductivity, it may have a function of dissipating heat generated from the light emitting device.

또한 제2굴절율 물질을 CuO, Graphene, Carbon black, Fe2O3, Ag2O, Black silica 등 검은색으로 하는 경우 별도의 블랙매트릭스의 형성없이 블랙매트릭스 기능을 가질 수 있다.In addition, when the second refractive index material is black, such as CuO, Graphene, Carbon black, Fe2O3, Ag2O, or Black silica, it is possible to have a black matrix function without forming a separate black matrix.

<실시예><Example>

<실시예 1> 복합 굴절율 도막 조성물의 제조<Example 1> Preparation of composite refractive index coating film composition

Methyl silicone 수지(제1굴절율 물질) 100 중량부에 평균직경이 500nm인 제2굴절율 물질 TiO2를 50 중량부로 혼합하여 점도 2,000 cPs인 복합 굴절율 도막 조성물을 제조하였다. A composite refractive index coating composition having a viscosity of 2,000 cPs was prepared by mixing 50 parts by weight of a second refractive index material TiO2 having an average diameter of 500 nm to 100 parts by weight of a methyl silicone resin (first refractive index material).

<실시예 2> 복합 굴절율 도막 조성물의 제조<Example 2> Preparation of composite refractive index coating film composition

Methyl silicone 수지(제1굴절율 물질) 100 중량부에 평균직경이 300nm 인 제2굴절율 물질 BN를 20 중량부로 혼합하여 점도 2,000 cPs인 복합 굴절율 도막 조성물을 제조하였다. A composite refractive index coating film composition having a viscosity of 2,000 cPs was prepared by mixing 20 parts by weight of a second refractive index material BN having an average diameter of 300 nm to 100 parts by weight of methyl silicone resin (first refractive index material).

<실시예 3> 복합 굴절율 도막 조성물의 제조<Example 3> Preparation of composite refractive index coating film composition

Methyl silicone 수지(제1굴절율 물질) 100 중량부에 평균직경이 1㎛인 제2굴절율 물질 Al2O3를 50 중량부로 혼합하여 점도가 2,000 cPs인 복합 굴절율 도막 조성물을 제조하였다. A composite refractive index coating composition having a viscosity of 2,000 cPs was prepared by mixing 50 parts by weight of a second refractive index material Al2O3 having an average diameter of 1 μm to 100 parts by weight of a methyl silicone resin (first refractive index material).

<실시예 4> 복합 굴절율 도막의 제조<Example 4> Preparation of composite refractive index coating film

전술한 실시예 1의 복합굴절률 도막 조성물로 도막을 두께 20㎛로 형성하였다. 도막 형성방법은 스크린프린팅으로 하였다. A coating film was formed to a thickness of 20 μm using the composite refractive index coating film composition of Example 1 described above. The coating film formation method was screen printing.

<실시예 5> 복합 굴절율 도막의 제조<Example 5> Preparation of composite refractive index coating film

전술한 실시예 1의 복합굴절률 도막 조성물로 도막을 두께 20㎛로 형성하였다. 도막 형성방법은 스크린프린팅으로 하였다. A coating film was formed to a thickness of 20 μm using the composite refractive index coating film composition of Example 1 described above. The coating film formation method was screen printing.

<실시예 6><Example 6>

Methyl silicone 수지(제1굴절율 물질) 100 중량부에 평균직경이 500nm인 제2굴절율 물질 Al2O3를 50 중량부로 혼합하여 점도 2,000 cPs인 복합 굴절율 도막 조성물을 제조하여, 2mm 도막복합 굴절율 도막을 형성하였다. 도막 형성방법은 스크린프린팅으로 하였다. A composite refractive index coating composition having a viscosity of 2,000 cPs was prepared by mixing 50 parts by weight of a second refractive index material Al2O3 having an average diameter of 500 nm to 100 parts by weight of methyl silicone resin (first refractive index material), and a 2mm coating film composite refractive index coating film was formed. The coating film formation method was screen printing.

<비교예><Comparative example>

<비교예 1> 복합 굴절율 도막 조성물의 제조<Comparative Example 1> Preparation of composite refractive index coating film composition

Methyl silicone 수지(제1굴절율 물질) 100 중량부에 평균직경이 15nm인 제2굴절율 물질 TiO2를 50 중량부로 혼합하여 점도 2,000 cPs의 복합 굴절율 도막 조성물을 제조하였다. A composite refractive index coating film composition having a viscosity of 2,000 cPs was prepared by mixing 50 parts by weight of a second refractive index material TiO2 having an average diameter of 15 nm in 100 parts by weight of methyl silicone resin (first refractive index material).

<비교예 2> 복합 굴절율 도막 조성물의 제조<Comparative Example 2> Preparation of composite refractive index coating film composition

Methyl silicone 수지(제1굴절율 물질) 100 중량부에 평균직경이 500nm인 제2굴절율 물질 TiO2를 9.9 중량부로 혼합하여 점도 2,000 cPs의 복합 굴절율 도막 조성물을 제조하였다.A composite refractive index coating film composition having a viscosity of 2,000 cPs was prepared by mixing 9.9 parts by weight of a second refractive index material TiO2 having an average diameter of 500 nm in 100 parts by weight of methyl silicone resin (first refractive index material).

<비교예 3> 복합 굴절율 도막의 제조<Comparative Example 3> Preparation of composite refractive index coating film

Methyl silicone 수지(제1굴절율 물질) 100 중량부에 평균직경이 15nm인 제2굴절율 물질 TiO2를 50 중량부로 혼합하여 두께 20㎛를 형성복합 굴절율 도막을 제조하였다. 도막 형성방법은 스크린프린팅으로 하였다. To 100 parts by weight of methyl silicone resin (first refractive index material), 50 parts by weight of TiO2, a second refractive index material having an average diameter of 15 nm, was mixed to form a 20 μm thick composite refractive index coating film. The coating film formation method was screen printing.

<비교예 4> 복합 굴절율 도막의 제조<Comparative Example 4> Preparation of composite refractive index coating film

Methyl silicone 수지(제1굴절율 물질) 100 중량부에 평균직경이 500nm인 제2굴절율 물질 TiO2를 9.9 중량부로 혼합하여 복합 굴절율 도막을 제조하였다. 도막 형성방법은 스크린프린팅으로 하였다. A composite refractive index coating film was prepared by mixing 9.9 parts by weight of a second refractive index material TiO2 having an average diameter of 500 nm in 100 parts by weight of methyl silicone resin (first refractive index material). The coating film formation method was screen printing.

표 1은 전술한 실시예들 및 비교예들의 전술한 조성과 기타 첨가제들의 조성을 정리한 표이다. Table 1 is a table summarizing the compositions of the above-described compositions and other additives of the above-described Examples and Comparative Examples.

성분ingredient 실시예1Example 1 실시예2Example 2 실시예3Example 3 비교예1Comparative Example 1 비교예2Comparative Example 2 실리콘 수지silicone resin 100100 100100 100100 100100 100100 용매(Popyleneglycol monomethylether)Solvent (Poyleneglycol monomethylether) 1010 1010 55 2020 -- 흐름성개선제
(Polydimethylsiloxane)
flow improver
(Polydimethylsiloxane)
55 22 55 55 1One
실란커플링제
(3-Glycidoxypropylmethyldiethoxysilane)
Silane coupling agent
(3-Glycidoxypropylmethyldiethoxysilane)
2.52.5 1One 2.52.5 2.52.5 0.50.5
TiO2 500nmTiO2 500nm 5050   9.99.9 BN 300nmBN 300nm 2020 TiO2 15nmTiO2 15nm   5050   Al2O3 1㎛Al2O3 1 5050

<실험예> <실험예 1> 필러함량에 따른 반사도 측정<Experimental Example> <Experimental Example 1> Measurement of reflectance according to filler content

전술한 실시예 1 및 비교예 1, 비교예 2의 복합굴절률 도막 조성물로 도막을 형성하여 두께 20㎛를 형성하고, 200 ~ 800nm의 광을 조사하여 필러의 함량에 따른 반사도를 측정하였다. 반사도 측정은 Agilent Cary 5000을 이용하여 입사각 7°의 광선을 도막에 조사한 후 반사되는 빛을 분석하여 반사율을 측정하여 도 5에 도시하였다. A coating film was formed with the composite refractive index coating film composition of Example 1 and Comparative Example 1 and Comparative Example 2 to form a thickness of 20 μm, and reflectance according to the filler content was measured by irradiating light of 200 to 800 nm. The reflectivity measurement is shown in FIG. 5 by measuring the reflectance by analyzing the reflected light after irradiating a light beam having an incident angle of 7° to the coating film using an Agilent Cary 5000.

비교예 1은 400~800nm 파장대에서 반사율이 실시예 1과 비교하여 50% 이상 감소하였고, 반사면적의 감소로 인한 투과도 증가가 원인인 것으로 판단된다. 또 비교예 2는 반사율이 실시예 1에 비하여 400~800nm 파장대에서 감소하였다. In Comparative Example 1, the reflectance was reduced by 50% or more compared to Example 1 in the wavelength band of 400 to 800 nm, and it is determined that the increase in transmittance due to the decrease in the reflective area is the cause. In Comparative Example 2, the reflectance was decreased in the 400-800 nm wavelength band compared to Example 1.

<실험예 2> 방열기능 측정<Experimental Example 2> Measurement of heat dissipation function

실시예 6의 도막을 열선법을 이용하여 필러 함량에 따른 열전도도를 측정하여 도 6에 도시하였다. The coating film of Example 6 was shown in FIG. 6 by measuring the thermal conductivity according to the filler content using a hot wire method.

이 때 열선법은 도막표면에 접촉된 열선의 온도증가곡선을 측정한 후, 곡선으로부터 열확산도, 열전도도를 계산하는 방법으로, ASTM D7984의 방법으로 계산하였다. At this time, the hot wire method is a method of measuring the temperature increase curve of the hot wire in contact with the surface of the coating film, and then calculating the thermal diffusivity and thermal conductivity from the curve, and it was calculated by the method of ASTM D7984.

구체적으로 측정센서로 부터 나오는 열이 도막표면에서 일정량이 흡수되므로, 서의 표면에서 보존되고 있는 일정량의 열이 도막표면의 온도를 증가시킨다. 이때, 온도증가율은 물질의 열전도능력에 반비례하기 때문에 샘플을 측정하는 동안 약 2 ~ 3 ˚C 의 열을 흘려 온도가 증가하는 시간을 측정하여 열전도도를 계산하였다. Specifically, since a certain amount of heat from the measurement sensor is absorbed by the surface of the coating film, a certain amount of heat stored on the surface of the surface increases the temperature of the surface of the coating film. At this time, since the rate of temperature increase is inversely proportional to the thermal conductivity of the material, the thermal conductivity was calculated by measuring the time the temperature was increased by flowing about 2-3 ˚C of heat while measuring the sample.

상술한 바에 따른 특징, 구조, 효과 등은 본 발명의 적어도 하나의 실시예에 포함되며, 반드시 하나의 실시예에만 한정되는 것은 아니다. 나아가, 각 실시예에서 예시된 특징, 구조, 효과 등은 실시예들이 속하는 분야의 통상의 지식을 가지는 자에 의하여 다른 실시예들에 대해서도 조합 또는 변형되어 실시 가능하다. 따라서 이러한 조합과 변형에 관계된 내용들은 본 발명의 범위에 포함되는 것으로 해석되어야 할 것이다.The features, structures, effects, etc. as described above are included in at least one embodiment of the present invention, and are not necessarily limited to only one embodiment. Furthermore, the features, structures, effects, etc. illustrated in each embodiment can be combined or modified for other embodiments by those of ordinary skill in the art to which the embodiments belong. Accordingly, the contents related to such combinations and modifications should be interpreted as being included in the scope of the present invention.

Claims (12)

기판;
상기 기판 상에 구비된 전극;
상기 전극 상에 구비된 초소형 엘이디(LED); 및
상기 초소형 엘이디의 측면 및 상기 기판의 상면에 구비되며 두께가 20 내지 200㎛인 복합 굴절율 도막;을 포함하고,
상기 복합 굴절율 도막은,
굴절율 a를 가지는 고분자수지와, 상기 고분자수지에 분산되며, 평균입경이 500 내지 1000nm이고, 상기 굴절율 a 보다 큰 굴절율 b를 가지는 입자를 포함하고,
상기 입자 중 판상은 5 내지 50중량%, 구상은 50 내지 95 중량%로 포함되며,
상기 굴절율 a와 상기 굴절율 b의 차이는 0.3 내지 1.5이고,
상기 복합 굴절율 도막은 550nm의 파장에서 반사율이 30% 이상인 발광소자 어셈블리.
Board;
an electrode provided on the substrate;
a miniature LED (LED) provided on the electrode; and
It includes; a composite refractive index coating film provided on the side surface of the micro LED and the upper surface of the substrate and having a thickness of 20 to 200 μm;
The composite refractive index coating film,
A polymer resin having a refractive index a, and particles dispersed in the polymer resin, having an average particle diameter of 500 to 1000 nm, and having a refractive index b greater than the refractive index a,
Among the particles, 5 to 50% by weight of the plate shape, 50 to 95% by weight of the spherical shape,
The difference between the refractive index a and the refractive index b is 0.3 to 1.5,
The composite refractive index coating film is a light emitting device assembly having a reflectance of 30% or more at a wavelength of 550 nm.
제1항에 있어서,
상기 초소형 엘이디는 마이크로 엘이디(micro LED) 또는 미니 엘이디(mini LED)인 발광소자 어셈블리.
According to claim 1,
The miniature LED is a light emitting device assembly that is a micro LED or a mini LED.
제2항에 있어서,
상기 굴절율 a는 1.3 내지 1.6이고,
상기 굴절율 b는 3.0 이하인 발광소자 어셈블리.
3. The method of claim 2,
The refractive index a is 1.3 to 1.6,
The refractive index b is 3.0 or less light emitting device assembly.
삭제delete 제3항에 있어서,
상기 고분자수지와 상기 입자의 중량비는 1 : 0.05 내지 1 : 4인 발광소자 어셈블리.
4. The method of claim 3,
A weight ratio of the polymer resin and the particles is 1:0.05 to 1:4 in a light emitting device assembly.
제5항에 있어서,
상기 복합 굴절율 도막 상에 블랙 매트릭스를 더 구비하는 발광소자 어셈블리.
6. The method of claim 5,
A light emitting device assembly further comprising a black matrix on the composite refractive index coating film.
제6항에 있어서,
상기 입자는 BN(Boron Nitride), 그래핀, 카본블랙, 흑연, 탄소나노튜브, 블랙실리카(Black Silica), TiO2, CuO, SiC, Fe3O4, Ag2O, Si, Al2O3 및 다이아몬드로 이루어지는 군에서 선택되는 적어도 어느 하나이상의 물질로 이루어지는 발광소자 어셈블리.
7. The method of claim 6,
The particles are BN (Boron Nitride), graphene, carbon black, graphite, carbon nanotubes, black silica (Black Silica), TiO 2 , CuO, SiC, Fe 3 O 4 , Ag 2 O, Si, Al 2 O 3 and a light emitting device assembly made of at least one material selected from the group consisting of diamond.
제7항에 있어서,
상기 입자는 검은색 입자인 발광소자 어셈블리.
8. The method of claim 7,
The light emitting device assembly wherein the particles are black particles.
제7항에 있어서,
상기 입자는 열전도도가 1 내지 6000 W/mK 인 발광소자 어셈블리.
8. The method of claim 7,
The particle has a thermal conductivity of 1 to 6000 W / mK light emitting device assembly.
제9항에 있어서,
상기 복합 굴절율 도막은,
상기 고분자수지와 상기 입자를 포함하는 복합 굴절율 도막 조성물을 경화하여 구비되는 발광소자 어셈블리.
10. The method of claim 9,
The composite refractive index coating film,
A light emitting device assembly provided by curing a composite refractive index coating film composition comprising the polymer resin and the particles.
제10항에 있어서,
상기 복합 굴절율 도막 조성물은 용매 및 첨가물질을 더 포함하는 발광소자 어셈블리.
11. The method of claim 10,
The composite refractive index coating film composition is a light emitting device assembly further comprising a solvent and an additive material.
삭제delete
KR1020190054974A 2019-05-10 2019-05-10 Parallax barrier and stereoscopic display apparatus including the same KR102363199B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190054974A KR102363199B1 (en) 2019-05-10 2019-05-10 Parallax barrier and stereoscopic display apparatus including the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190054974A KR102363199B1 (en) 2019-05-10 2019-05-10 Parallax barrier and stereoscopic display apparatus including the same

Publications (2)

Publication Number Publication Date
KR20200129898A KR20200129898A (en) 2020-11-18
KR102363199B1 true KR102363199B1 (en) 2022-02-15

Family

ID=73698143

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190054974A KR102363199B1 (en) 2019-05-10 2019-05-10 Parallax barrier and stereoscopic display apparatus including the same

Country Status (1)

Country Link
KR (1) KR102363199B1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014208748A (en) 2012-01-10 2014-11-06 三菱化学株式会社 Coating composition, porous film, light scattering film, and organic electroluminescent element
JP2017175118A (en) 2016-02-05 2017-09-28 マブン オプトロニックス カンパニー リミテッドMaven Optronics Co., Ltd. Light emitting element with beam shaping structure and manufacturing method of the same
KR101787215B1 (en) 2011-03-14 2017-10-18 아사히 가세이 케미칼즈 가부시키가이샤 Organic/inorganic composite, manufacturing method therefor, organic/inorganic composite film, manufacturing method therefor, photonic crystal, coating material, thermoplastic composition, micro-structure, optical material, antireflection member, and optical lens

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160078127A (en) * 2014-12-24 2016-07-04 솔브레인 주식회사 Composition for light scattering layer and light scattering layer and organic light emmiting device using the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101787215B1 (en) 2011-03-14 2017-10-18 아사히 가세이 케미칼즈 가부시키가이샤 Organic/inorganic composite, manufacturing method therefor, organic/inorganic composite film, manufacturing method therefor, photonic crystal, coating material, thermoplastic composition, micro-structure, optical material, antireflection member, and optical lens
JP2014208748A (en) 2012-01-10 2014-11-06 三菱化学株式会社 Coating composition, porous film, light scattering film, and organic electroluminescent element
JP2017175118A (en) 2016-02-05 2017-09-28 マブン オプトロニックス カンパニー リミテッドMaven Optronics Co., Ltd. Light emitting element with beam shaping structure and manufacturing method of the same

Also Published As

Publication number Publication date
KR20200129898A (en) 2020-11-18

Similar Documents

Publication Publication Date Title
JP4142734B2 (en) Diffractive optical element
KR102064886B1 (en) Wavelength conversion device and related light-emitting device thereof
CN104595852B (en) A kind of Wavelength converter, diffusing reflection layer, light-source system and optical projection system
JP6432416B2 (en) Semiconductor device
KR102332012B1 (en) Double-sided translucent conductive film, roll thereof, and touch panel
KR101302277B1 (en) Transparent inorganic-oxide dispersion, resin composition containing inorganic oxide particles, composition for encapsulating luminescent element, luminescent element, hard coat, optical functional film, optical part, and process for producing resin composition containing inorganic oxide particles
TWI761689B (en) Method of manufacturing light emitting device
JP5066814B2 (en) ELECTROLUMINESCENT ELEMENT AND LIGHTING DEVICE
JP5432624B2 (en) Base material with transparent conductive film
JP5372417B2 (en) Antireflection film
US20110186811A1 (en) Optical components, systems including an optical component, and devices
JPWO2003026357A1 (en) Transparent substrate for organic electroluminescence device and organic electroluminescence device
JP2004258267A (en) Antireflection film, method for manufacturing antireflection film, and antireflection member
JP5741811B2 (en) Composition for enhanced reflective transparent film for light emitting device, light emitting device, and method for producing light emitting device
JP2007308345A (en) Transparent particle having high refractive index and transparent composite having high refractive index using it as well as light emitting element
JP2006235125A (en) Anti-reflection film and manufacturing method thereof
US9753277B2 (en) Wavelength conversion device
WO2020070863A1 (en) Heat dissipating material, heat dissipating material production method, composition, and heat-generating element
CN112782924A (en) Reflective color wheel
KR102363199B1 (en) Parallax barrier and stereoscopic display apparatus including the same
JP6558007B2 (en) Antireflection film, display device using the antireflection film, and method for selecting antireflection film
JP2007291291A (en) Composite material and optical component obtained using the same
JP5982790B2 (en) Light emitting device
JP2020064326A (en) Polarizer and optical apparatus equipped with the same
CN112578552A (en) Wavelength conversion device

Legal Events

Date Code Title Description
AMND Amendment
E601 Decision to refuse application
X091 Application refused [patent]
AMND Amendment
E90F Notification of reason for final refusal
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant