KR102346076B1 - Transformed methanotrophs for producing α-bisabolene production from methane and uses thereof - Google Patents

Transformed methanotrophs for producing α-bisabolene production from methane and uses thereof Download PDF

Info

Publication number
KR102346076B1
KR102346076B1 KR1020190130147A KR20190130147A KR102346076B1 KR 102346076 B1 KR102346076 B1 KR 102346076B1 KR 1020190130147 A KR1020190130147 A KR 1020190130147A KR 20190130147 A KR20190130147 A KR 20190130147A KR 102346076 B1 KR102346076 B1 KR 102346076B1
Authority
KR
South Korea
Prior art keywords
bisabolene
methane
alpha
seq
deoxy
Prior art date
Application number
KR1020190130147A
Other languages
Korean (ko)
Other versions
KR20210046912A (en
Inventor
이은열
덕 안 뉴엔
이옥경
Original Assignee
경희대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 경희대학교 산학협력단 filed Critical 경희대학교 산학협력단
Priority to KR1020190130147A priority Critical patent/KR102346076B1/en
Publication of KR20210046912A publication Critical patent/KR20210046912A/en
Application granted granted Critical
Publication of KR102346076B1 publication Critical patent/KR102346076B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0006Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0093Oxidoreductases (1.) acting on CH or CH2 groups (1.17)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1022Transferases (2.) transferring aldehyde or ketonic groups (2.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1085Transferases (2.) transferring alkyl or aryl groups other than methyl groups (2.5)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/88Lyases (4.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P5/00Preparation of hydrocarbons or halogenated hydrocarbons
    • C12P5/002Preparation of hydrocarbons or halogenated hydrocarbons cyclic
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/01Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
    • C12Y101/012671-Deoxy-D-xylulose-5-phosphate reductoisomerase (1.1.1.267)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y117/00Oxidoreductases acting on CH or CH2 groups (1.17)
    • C12Y117/07Oxidoreductases acting on CH or CH2 groups (1.17) with an iron-sulfur protein as acceptor (1.17.7)
    • C12Y117/07001(E)-4-Hydroxy-3-methylbut-2-enyl-diphosphate synthase (1.17.7.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y202/00Transferases transferring aldehyde or ketonic groups (2.2)
    • C12Y202/01Transketolases and transaldolases (2.2.1)
    • C12Y202/010071-Deoxy-D-xylulose-5-phosphate synthase (2.2.1.7)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y205/00Transferases transferring alkyl or aryl groups, other than methyl groups (2.5)
    • C12Y205/01Transferases transferring alkyl or aryl groups, other than methyl groups (2.5) transferring alkyl or aryl groups, other than methyl groups (2.5.1)
    • C12Y205/0101(2E,6E)-Farnesyl diphosphate synthase (2.5.1.10), i.e. geranyltranstransferase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y402/00Carbon-oxygen lyases (4.2)
    • C12Y402/03Carbon-oxygen lyases (4.2) acting on phosphates (4.2.3)
    • C12Y402/03038Alpha-bisabolene synthase (4.2.3.38)

Abstract

본 발명은 알파-비사볼렌의 생산능을 가지는 형질전환 메탄자화균 및 이를 이용한 알파-비사볼렌의 생산 방법에 관한 것으로서, 본 발명의 형질 전환 메탄자화균은 메탄으로부터 알파-비사볼렌을 생산할 수 있으므로 친환경적이고 경제적으로 알파-비사볼렌을 생산함으로서 산업 전반에 활용 가능하다.The present invention relates to a transgenic methanogen having the ability to produce alpha-bisabolene and a method for producing alpha-bisabolene using the same. It can be used throughout the industry by producing alpha-bisabolene in an environmentally friendly and economical way.

Description

α-bisabolene 생산용 형질전환 메탄자화균 및 이의 용도 {Transformed methanotrophs for producing α-bisabolene production from methane and uses thereof}Transformed methanotrophs for producing α-bisabolene production from methane and uses thereof}

본 발명은 메탄으로부터의 알파-비사볼렌(α-bisabolene) 생산성을 향상시킨 메탄자화균 개발에 관한 것으로서, 더욱 상세하게는 D2 바이오디젤로 사용되는 비사볼란 (bisabolane)의 직접 전구체인 비사볼렌(bisabolene)을 생산하는 방법에 관한 것이다.The present invention relates to the development of methanogenic bacteria with improved productivity of α-bisabolene from methane, and more particularly, bisabolene, a direct precursor of bisabolane used as D2 biodiesel. ) to how to produce it.

최근, C1 화합물의 바이오전환을 통한 화학물질 및 연료 생산에 대한 연구가 활발히 진행되고 있으며, 이는 향후 산업 현장에서 화학물질 및 연료 생산 방법의 변화를 가져올 것으로 기대된다. 특히, 메탄자화균(Methanotrophs)은 메탄을 유일 탄소원 및 에너지원으로 사용하는 미생물로써 메탄의 생물학적 전환을 위한 유망한 생물촉매로 평가받고 있다.Recently, research on the production of chemicals and fuels through bioconversion of C1 compounds is being actively conducted, which is expected to bring about changes in the production methods of chemicals and fuels in industrial fields in the future. In particular, Methanotrophs are microorganisms that use methane as the sole carbon and energy source, and are evaluated as promising biocatalysts for the biological conversion of methane.

메탄자화균(Methanotrophs)을 이용하여 다양한 고부가치 화합물을 생산하려는 시도가 꾸준히 있어 왔으나, 메탄자화균(Methanotrophs)의 생리학적 특성에 대한 이해 부족, 낮은 성장 속도 및 유전자 도구의 부족 등은 메탄자화균을 산업용 균주로 발전시키는데 한계점으로 작용하였다. 그러나 최근, 몇몇 연구를 통해 type I 메탄자화균에 대하여 대사공학적 개량이 가능해졌고, 이를 이용하여 젖산, 2,3-부탄디올 등이 성공적으로 생산되었으나 역가 및 생산성은 여전히 낮아 개선이 필요하다.Attempts have been made to produce various high-value compounds using methanotrophs, but the lack of understanding of the physiological properties of methanotrophs, low growth rate and lack of genetic tools, etc. acted as a limiting point in developing it into an industrial strain. However, recently, through several studies, metabolic engineering improvement has been made possible for type I methanogenic bacteria, and lactic acid and 2,3-butanediol have been successfully produced using this, but the potency and productivity are still low, so improvement is needed.

이소프레노이드(Isoprenoides)란 자연계에 존재하는 가장 방대한 탄화수소 화합물 군으로 의약품, 화장품 및 바이오 연료에 광범위하게 적용할 수 있다. 이소프레노이드 중, C15계열 세스퀴터펜(sesquiterpenes)인 비사볼렌(Bisabolene)은 대부분 레몬유, 라임유, 베르가모트유, 캄퍼유, 솔잎유, 대회향유, 장유, 백단향유와 같은 천연 식물성 유지류에 포함되어 있다. D2 바이오디젤로 사용되는 비사볼란 (bisabolane)의 직접 전구체인 알파-비사볼렌(α-bisabolene)은 화학적 합성 이외에 다양한 미생물을 이용한 바이오 생합성이 연구 중에 있으나, 아직까지 메탄자화균을 이용한 생합성 방법은 공지된 바 없다.Isoprenoids are the most extensive group of hydrocarbon compounds that exist in nature, and can be widely applied to pharmaceuticals, cosmetics and biofuels. Of the isoprenoids, Bisabolene, a C15-series sesquiterpenes, is mostly contained in natural vegetable oils such as lemon oil, lime oil, bergamot oil, camphor oil, pine needle oil, sesame oil, enteric oil, and sandalwood oil. have. α-bisabolene, a direct precursor of bisabolane used as D2 biodiesel, is being studied for biosynthesis using various microorganisms in addition to chemical synthesis. has never been

KRKR 10-2019-004957510-2019-0049575 AA

본 발명의 목적은, 전나무(Abies hrandis) 유래의 알파-비사볼렌 합성효소(α-bisabolene synthaes, agBs), 파네실 디포스페이트 합성 효소(farnesyl diphosphate synthase, ispA)를 코딩하는 유전자가 도입 또는 증폭되어, 알파-비사볼렌(α-bisabolene) 생산능을 가지는 형질전환된 메탄자화균을 제공하는 것이다.An object of the present invention, fir tree (Abies hrandis)-derived alpha-bisabolene synthaes (α-bisabolene synthaes, agBs), farnesyl diphosphate synthase (farnesyl diphosphate synthase, ispA ) Genes encoding the introduced or amplified , to provide a transformed methanogen having the ability to produce α-bisabolene.

본 발명의 다른 목적은 상기 형질전환된 메탄자화균을 1-데옥시-덱실룰로스-5-포스페이트 합성효 (1-deoxy-Dxylulose-5-phosphate synthase : dxs), (E)-4-하이드록시-3-메틸부트-2-에닐-디포스페이트 합성효소 ((E)-4-hydroxy-3-methylbut-2-enyl-diphosphate synthase, IspG), nDXP 효소 (RibB-G108S) 및 링커 DSAGSAGSAG와 결합된 1-데옥시-D-자일룰로스-5-포스페이트 환원효소(1-deoxy-D-xylulos 5-phosphate reductase, ispC)를 코딩하는 유전자를 추가로 도입 또는 증폭시켜, MEP 경로가 강화된 것을 특징으로 하는 형질전환된 메탄자화균을 제공하는 것이다.Another object of the present invention is to convert the transformed methanogen to 1-deoxy-Dxylulose-5-phosphate synthase ( dxs ), (E)-4-hyde Combines with roxy-3-methylbut-2-enyl-diphosphate synthase ((E)-4-hydroxy-3-methylbut-2-enyl-diphosphate synthase, IspG), nDXP enzyme (RibB-G108S) and linker DSAGSAGSAG By further introducing or amplifying the gene encoding the 1-deoxy-D-xylulose-5-phosphate reductase (ispC), the MEP pathway was enhanced It is to provide a transformed methanogenic bacteria characterized in that.

본 발명의 또 다른 목적은 상기 형질전환 메탄자화균을 메탄이 포함하는 배양액에서 배양하여 알파-비사볼렌(α-bisabolene) 생산용 조성물을 제공하는 것이다.Another object of the present invention is to provide a composition for producing alpha-bisabolene by culturing the transformed methanogen in a culture medium containing methane.

본 발명의 또 다른 목정은 상기 형질전환 메탄자화균을 이용한 메탄기질로부터 알파-비사볼렌(α-bisabolene)의 제조방법을 제공하는 것이다.Another object of the present invention is to provide a method for producing alpha-bisabolene from a methane substrate using the transformed methanogen.

상기와 같은 본 발명의 목적을 달성하기 위하여, 본 발명은 알파-비사볼렌 합성효소(α-bisabolene syntase, agBs); 파네실 디포스페이트 합성 효소(farnesyl diphosphate synthase, ispA); 1- 데 옥시-덱실룰로스-5-포스페이트 합성효소(1-deoxy-Dxylulose-5-phosphate synthase : dxs), (E) -4- 하이드 록시 -3- 메틸부트 -2- 에닐-디포스페이트 합성효소 ((E)-4-hydroxy-3-methylbut-2-enyl-diphosphate synthase, IspG); nDXP 경로 효소 (ribB) 및 1- 데 옥시 -D- 자일룰로스 -5- 포스페이트 환원 효소 1-deoxy-D-xylulose-5-phosphate reductoisomerase, IspC) 활성이 강화된 메탄알파-비사볼렌(α-bisabolene) 생산용 형질전환 메탄자화균을 제공한다. In order to achieve the object of the present invention as described above, the present invention is an alpha-bisabolene synthase (α-bisabolene syntase, agBs ); farnesyl diphosphate synthase ( ispA ); 1-deoxy-Dxylulose-5-phosphate synthase ( dxs ), (E) -4- Hydroxy-3-methylbut-2-enyl-diphosphate synthesis enzyme ((E)-4-hydroxy-3-methylbut-2-enyl-diphosphate synthase, IspG); Methanealpha-bisabolene ( α- ) with enhanced nDXP pathway enzyme (ribB) and 1-deoxy-D-xylulose-5-phosphate reductoisomerase (IspC) activity. bisabolene) for producing transformed methanogens.

더욱 상세하게는, 야생형 메탄자화균, Methylomicrobium alcaliphilum 20Z내에 전나무(Abies hrandis) 유래의 알파-비사볼렌 합성효소(α-bisabolene synthaes, agBs)와 파네실 디포스페이트 합성 효소(farnesyl diphosphate synthase, ispA)의 활성이 강화된 알파-비사볼렌 생산용 형질전환 메탄자화균을 제공한다. More specifically, Wild-type methane magnetization bacteria, fir (Abies hrandis) derived from the alpha into the Methylomicrobium alcaliphilum 20Z - Ibiza Vollenhoven synthase (α-bisabolene synthaes, agBs) and Ipanema chamber diphosphate synthase The activity-enhanced alpha (farnesyl diphosphate synthase, ispA) -Provides a transformed methanogen for production of bisabolene.

또한, 본 발명은, 상기 알파-비사볼렌 합성효소(α-bisabolene synthaes, agBs)와 파네실 디포스페이트 합성 효소의 활성이 강화된 형질전환 메탄자화균의 알파-비사볼렌(α-bisabolene)의 상위 전구체 1- 데옥시-덱실룰로스-5-포스페이트 (1-deoxy-Dxylulose-5-phosphate)의 풀을 향상시키기 위하여 1- 데 옥시-덱실룰로스-5-포스페이트 합성효소(1-deoxy-Dxylulose-5-phosphate synthase : dxs), (E)-4-하이드록시-3-메틸부트-2-에닐-디포스페이트 합성효소 ((E)-4-hydroxy-3-methylbut-2-enyl-diphosphate synthase, IspG)의 활성이 강화된, 오탄당 대사경로의 대사물질인 리브로즈-5-포스페이트(ribose-5-phosphate, Ru5P)로부터 1- 데옥시-덱실룰로스-5-포스페이트 (1-deoxy-Dxylulose-5-phosphate, DXP)를 직접 전환하는 nDXP 효소( RibB, G108S) 및 링커 DSAGSAGSAG를 붙인 1-데옥시-D-자일룰로스-5-포스페이트 환원효소(1-deoxy-D-xylulos 5-phosphate reductase, ispC)의 활성이 강화된 형질 전환 메탄자화균을 제공한다In addition, the present invention provides a higher level of α-bisabolene of a transformed methanogen with enhanced activity of the α-bisabolene synthaes (agBs) and farnesyl diphosphate synthetase. 1-deoxy-Dxylulose-5-phosphate synthase (1-deoxy-Dxylulose) to enhance the pool of precursor 1-deoxy-Dxylulose-5-phosphate -5-phosphate synthase: dxs ), (E)-4-hydroxy-3-methylbut-2-enyl-diphosphate synthase ((E)-4-hydroxy-3-methylbut-2-enyl-diphosphate synthase , IspG) from ribose-5-phosphate (Ru5P), a metabolite of the pentose metabolic pathway, with enhanced activity of 1-deoxy-dexylulose-5-phosphate (1-deoxy-Dxylulose) nDXP enzyme (RibB, G108S) that directly converts -5-phosphate (DXP) and 1-deoxy-D-xylulose-5-phosphate reductase (1-deoxy-D-xylulos 5-phosphate) with linker DSAGSAGSAG reductase, ispC) provides a transformed methanogen with enhanced activity

또한, 본 발명은, 상기 형질전환된 메탄자화균(Methanotrophs)을 이용하여 알파-비사볼렌(α-bisabolene)의 생산용 조성물을 제공한다. 상기 알파-비사볼렌(α-bisabolene) 생산용 조성물은, 1 내지 50 부피%의 메탄을 탄소원으로 포함할 수 있다.In addition, the present invention provides a composition for the production of alpha-bisabolene using the transformed methanotrophs. The composition for producing α-bisabolene may include 1 to 50% by volume of methane as a carbon source.

또한, 본 발명은, 1 내지 50 부피%의 메탄을 포함하는 배양배지에서, 상기 형질전환된 메탄자화균을 이용한 알파-비사볼렌 생산 방법을 제공한다.In addition, the present invention provides a method for producing alpha-bisabolene using the transformed methanogen in a culture medium containing 1 to 50% by volume of methane.

이하, 본 발명에서 사용한 용어를 설명한다.Hereinafter, terms used in the present invention will be described.

본 발명에서 사용되는 용어 “메탄자화균(Methanotrophs)”은 메탄을 주요 탄소원 또는 에너지원으로 사용하는 세균을 의미하며, 상기 메탄자화균은 본 발명에서 형질전환의 대상이 되는 숙주 균주를 의미한다. As used herein, the term “methanotrophs” refers to bacteria using methane as a major carbon source or energy source, and the methanotrophs refer to host strains to be transformed in the present invention.

본 발명에서 사용되는 용어 “벡터”는 DNA 재조합 실험에 있어서, 목적하는 DNA 단편을 숙주균 등에 도입시켜 증폭할 수 있는 원형의 DNA로서, 클로닝 운반체를 의미한다.As used herein, the term “vector” refers to a circular DNA that can be amplified by introducing a desired DNA fragment into a host bacteria in a DNA recombination experiment, and refers to a cloning carrier.

본 발명에서 사용되는 용어 “형질전환”은 미생물이 외부로부터 주어진 DNA를 받아들여 미생물의 유전적 성질이 변하는 것을 의미한다.The term “transformation” used in the present invention means that a microorganism receives DNA given from the outside and the genetic properties of the microorganism are changed.

본 발명에서 사용되는 용어 “대사경로”는 효소 매개 생화학 반응으로 단백질, 핵산 아미노산 등과 같은 유기분자를 생합성하는 동화작용과 유기분자를 분해하는 이화작용을 유도하는 일련의 과정을 의미한다.As used herein, the term “metabolic pathway” refers to a series of processes leading to anabolic action of biosynthesis of organic molecules such as proteins, nucleic acids, amino acids, etc. and catabolism of decomposing organic molecules through enzyme-mediated biochemical reactions.

본 발명에서 사용되는 용어 “조성물”은 목적 물질을 생산하기 위한 다양한 물질을 혼합한 것으로서, 미생물 배양배지, 탄소원, 미량 원소 및 미생물 종균이 포함된 것을 의미한다. As used in the present invention, the term “composition” is a mixture of various materials for producing a target material, and it means that a microbial culture medium, a carbon source, a trace element and a microbial seed are included.

이하, 본 발명을 더욱 상세히 설명한다.Hereinafter, the present invention will be described in more detail.

상기 본 발명의 메탄자화균(Methanotroph)은 배양 시 메탄(혹은 메탄올)을 탄소원 혹은 영양원으로 사용하는 세균을 말하는 것으로서, 본 발명에 사용된 상기 메탄자화균은 이에 제한되는 것은 아니나, 메틸로모나스 속(Methylomonas), 메틸로마이크로비움 속(Methylomicrobium), 메틸로박터 속(Methylobacter), 메틸로코커스 속(Methylococcus), 메틸로스페라 속(Methylosphaera), 메틸로칼덤 속(Methylocaldum), 메틸로글로버스 속(Methyloglobus), 메틸로사르시나 속(Methylosarcina), 메틸로프로펀더스 속(Methyloprofundus), 메틸로썰머스 속(Methylothermus), 메틸로할로비우스 속(Methylohalobius), 메틸로게아 속(Methylogaea), 메틸로마리넘 속(Methylomarinum), 메틸로벌럼 속(Methylovulum), 메틸로마리노범 속(Methylomarinovum), 메틸로러브럼 속(Methylorubrum), 메틸로파라코커스 속(Methyloparacoccus), 메틸로시너스 속(Methylosinus), 메틸로시스티스 속(Methylocystis), 메틸로셀라 속(Methylocella), 메틸로캡사 속(Methylocapsa), 메틸로퍼룰라 속(Methylofurula), 메틸아시디필럼 속(Methylacidiphilum) 및 메틸아시디마이크로비움 속(Methylacidimicrobium)으로 이루어진 군으로부터 선택되는 1종 이상일 수 있으며, 보다 바람직하게는 메틸로마이크로비움 속(Methylomicrobium)일 수 있다. 본 발명의 실시예에서는 메틸로마아크로비움 알칼리필리움 20Z(Methylomicrobium alcaliphilum 20Z)를 이용하여 실험하였으나, 반드시 이에 제한되는 것은 아니다.Methanotroph of the present invention refers to bacteria that use methane (or methanol) as a carbon source or nutrient source during culture, and the methanotroph used in the present invention is not limited thereto, but the genus Methylomonas (Methylomonas), Methylomicrobium, Methylobacter, Methylococcus, Methylosphaera, Methylocaldum, Methyloglobus Methyloglobus, Methylosarcina, Methyloprofundus, Methylothermus, Methylohalobius, Methylogaea , genus Methylomarinum, genus Methylovulum, genus Methylomarinovum, genus Methylorubrum, genus Methyloparacoccus, genus Methylocinus ( Methylosinus), Methylocystis, Methylocella, Methylocapsa, Methylofurula, Methylacidiphilum and Methylacidiphilum It may be at least one selected from the group consisting of the genus (Methylacidimicrobium), and more preferably, may be the genus Methylomicrobium. In an embodiment of the present invention, an experiment was performed using Methylomicrobium alcaliphilum 20Z, but the present invention is not limited thereto.

본 발명의 상기 메탄자화균(Methanotrophs)은, 알파-비사볼렌(α-bisabolene) 생산을 위하여, 전나무(Abies hrandis) 유래의 알파-비사볼렌 합성효소(α-bisabolene synthaes, agBs, 서열번호 1)와 파네실 디포스페이트 합성 효소(farnesyl diphosphate synthase, ispA, 서열번호 2)를 과발현시켜 형질전환 메탄자화균 20Z-Bs-1를 얻었다. The methanotrophs of the present invention, for the production of alpha-bisabolene, alpha-bisabolene synthaes, agBs, SEQ ID NO: 1 from fir tree (Abies hrandis) and farnesyl diphosphate synthase ( ispA, SEQ ID NO: 2) were overexpressed to obtain a transformed methanogen 20Z-Bs-1.

또한, 형질전환 메탄자화균 20Z-Bs-1의 알파-비사볼렌(α-bisabolene)의 상위 전구체인 1- 데옥시-덱실룰로스-5-포스페이트 (1-deoxy-Dxylulose-5-phosphate, DXP)의 풀을 향상시키기 위하여, 1- 데 옥시-덱실룰로스-5-포스페이트 합성효소(1-deoxy-Dxylulose-5-phosphate synthase : dxs, 서열번호 3), (E)-4-하이드록시-3-메틸부트-2-에닐-디포스페이트 합성효소 ((E)-4-hydroxy-3-methylbut-2-enyl-diphosphate synthase, ispG, 서열번호 4), 오탄당 대사경로의 대사물질인 리브로즈-5-포스페이트(ribose-5-phosphate, Ru5P)로부터 1- 데옥시-덱실룰로스-5-포스페이트 (1-deoxy-Dxylulose-5-phosphate, DXP)를 직접 전환하는 nDXP 효소( RibB, G108S, 서열번호 5) 및 링커 DSAGSAGSAG를 붙인 1-데옥시-D-자일룰로스-5-포스페이트 환원효소(1-deoxy-D-xylulos 5-phosphate reductase, ispC, 서열번호 6)를 과발현시킨 형질전환 메탄자화균 20Z-Bs-2 균주를 얻었다.In addition, 1-deoxy-Dxylulose-5-phosphate, DXP, which is an upper precursor of α-bisabolene of the transformed methanogen 20Z-Bs-1 ) to improve the pool, 1-deoxy-dexylulose-5-phosphate synthase (1-deoxy-Dxylulose-5-phosphate synthase: dxs, SEQ ID NO: 3), (E) -4-hydroxy- 3-methylbut-2-enyl-diphosphate synthase ((E)-4-hydroxy-3-methylbut-2-enyl-diphosphate synthase, isp G, SEQ ID NO: 4), librose, a metabolite of the pentose metabolic pathway nDXP enzymes (RibB, G108S, SEQ ID NO: 5) and 1-deoxy-D-xylulose-5-phosphate reductase (1-deoxy-D-xylulos 5-phosphate reductase, ispC, SEQ ID NO: 6) to which the linker DSAGSAGSAG was attached. A magnetobacter 20Z-Bs-2 strain was obtained.

본 발명은 알파-비사볼렌(α-bisabolene)의 생산능을 가지는 형질전환된 메탄자화균 및 이를 이용한 알파-비사볼렌(α-bisabolene)의 생산 방법에 관한 것으로, 보다 구체적으로 메탄을 탄소원으로 이용하는 형질전환 메탄자화균을 이용하여 알파-비사볼렌(α-bisabolene)을 생산하는 방법으로써, 경제성과 효율성이 향상된 알파-비사볼렌(α-bisabolene)의 생산 방법은 산업 전반에 활용 가능하다. The present invention relates to a transformed methanogenic bacterium having the ability to produce α-bisabolene and a method for producing α-bisabolene using the same, and more specifically, to a method for producing α-bisabolene using methane as a carbon source. As a method of producing α-bisabolene using a transformed methanogen, the production method of α-bisabolene with improved economic efficiency and efficiency can be used throughout the industry.

도 1은 야생형 메탄자화균 20Z-WT와, agBs 및 ispA가 과발현된 형질전환된 형질전환 메탄자화균 20Z-Bs-1 균주을 이용한 알파-비사볼렌(α-bisabolene) 생산 유무를 가스크로마토그래피-질량분석기(gas chromatograph mass, GC-MS)를 통해 분석한 결과를 나타낸 것이다.
도 2는 야생형 메탄자화균 20Z-WT와, 형질전환 메탄자화균 20Z-Bs-1의 알파-비사볼렌(α-bisabolene) 생성량을 비교한 결과를 나타낸 것이다.
도 3은 MEP 경로와 nDXP경로의 효소들을 과발현시킨 형질전환 메탄자화균 20Z-Bs-2의 알파-비사볼렌(α-bisabolene) 생합성 경로를 나타낸 것이다.
도 4는 야생형 메탄자화균(20Z-WT), agBs 및 ispA가 과발현된 형질전환 메탄자화균(20Z-Bs-1) 및 MEP 경로와 nDXP경로의 효소들을 과발현시킨 형질 전환 메탄자화균(20Z-Bs-2)에서 알파-비사볼렌 생성량을 비교한 결과를 나타낸 것이다.
1 is a gas chromatography-mass of alpha-bisabolene production using wild-type methanogen 20Z-WT and a transformed transgenic methanogen 20Z-Bs-1 strain overexpressed with agBs and ispA. The results of analysis through a gas chromatograph mass (GC-MS) are shown.
FIG. 2 shows the results of comparison of the amount of alpha-bisabolene produced by wild-type methanogen 20Z-WT and transformed methanogen 20Z-Bs-1.
3 shows the alpha-bisabolene biosynthetic pathway of the transformed methanogen 20Z-Bs-2 overexpressing the enzymes of the MEP pathway and the nDXP pathway.
4 shows wild-type methanocytes (20Z-WT), transformed methanogens overexpressed with agBs and ispA (20Z-Bs-1), and transformed methanocytes overexpressed with enzymes of the MEP and nDXP pathways (20Z- Bs-2) shows the results of comparing the amount of alpha-bisabolene produced.

이하, 본 발명을 실시예에 의하여 더욱 상세하게 설명한다. 이들 실시예는 단지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 범위가 이들 실시예에 국한되지 않는다는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.Hereinafter, the present invention will be described in more detail by way of Examples. These examples are merely for illustrating the present invention in more detail, and it will be apparent to those of ordinary skill in the art that the scope of the present invention is not limited to these examples.

<실험 방법><Experiment method>

(1) 균주의 준비 및 배양 조건(1) strain preparation and culture conditions

본 발명에서 사용한 균주는 하기 표 1에 나타내었다. M. alcaliphilum 20Z 균주는 500 ml의 베플 플라스크(baffled flask)에서 50 ml NMS를 제공하고 스크류 캡을 이용하여 입구가 밀봉된 상태로 배양되었다. 탄소원으로는 가스치환기를 이용하여 배양배지의 1 내지 50 부피%로 메탄을 첨가하였으며, 바람직하게는 25 내지 50 부피%, 더욱 바람직 하게는 45 내지 50 부피%로 첨가 된다. 메탄의 대체제로는 메탄올을 배양배지의 0.1 내지 1 중량%로 첨가 가능하며, 바람직하게는 0.5 내지 1 중량%, 더욱 바람직 하게는 0.9 내지 1 중량%로 첨가되어 진다. 상기와 같은 배양 배지 및 탄소원의 농도로, 30℃, 230 rpm으로 진탕배양하였다. 세포배양액은 1.5 ml의 큐벳을 이용하여 흡광도를 측정하였으며, 측정된 흡광도를 이용하여 세포농도를 확인하였다. 배양된 균주는 카나마이신이 50 μg/ml의 농도로 포함된 평판 배지에 접종하여, 재조합 플라스미드를 함유하는 메탄자화균 및 대장균을 선택하였다.The strains used in the present invention are shown in Table 1 below. The M. alcaliphilum 20Z strain was cultured in a 500 ml baffled flask with 50 ml NMS provided and the inlet was sealed using a screw cap. As a carbon source, methane was added in an amount of 1 to 50% by volume of the culture medium using a gas substituent, preferably 25 to 50% by volume, more preferably 45 to 50% by volume. As a substitute for methane, methanol may be added in an amount of 0.1 to 1% by weight of the culture medium, preferably 0.5 to 1% by weight, more preferably 0.9 to 1% by weight. With the same concentration of the culture medium and carbon source as described above, the culture was performed with shaking at 30°C and 230 rpm. The absorbance of the cell culture medium was measured using a 1.5 ml cuvette, and the cell concentration was confirmed using the measured absorbance. The cultured strain was inoculated into a plate medium containing kanamycin at a concentration of 50 μg/ml, and methanogenic bacteria and Escherichia coli containing the recombinant plasmid were selected.

균주strain 특성characteristic 참조Reference Escherichia coliEscherichia coli NovagenNovagen M. alcaliphilum 20Z M. alcaliphilum 20Z 주 사용 균주strains for injection DMSZDMSZ 20Z-Bs-120Z-Bs-1 agBs 도입 및 ispA 과발현agBs introduction and ispA overexpression 본 발명the present invention 20Z-Bs-220Z-Bs-2 ispC-DSAG-RibB(G108S) 및 ispA, dxs, ispG, agBs 과발현Overexpression of ispC-DSAG-RibB (G108S) and ispA, dxs, ispG, and agBs 본 발명the present invention

(2) 형질전환을 위한 재료 및 도구(2) Materials and tools for transformation

M. alcaliphilum 20Z의 gDNA는 Wizard Genomic DNA Purification kit(Promega)를 이용하여 분리하였고, 표 2의 프라이머와 Lamp Pfu polymerase (BioFACT)를 사용하여 PCR을 수행하였으며, PCR 정제 키트 및 겔 추출 키트는 Gene all 제품을 사용하였다. 올리고머 합성 및 DNA 서열 분석은 Macrogen에 의뢰하여 합성하였다. gDNA of M. alcaliphilum 20Z was isolated using the Wizard Genomic DNA Purification kit (Promega), and PCR was performed using the primers in Table 2 and Lamp Pfu polymerase (BioFACT). product was used. Oligomer synthesis and DNA sequence analysis were commissioned by Macrogen.

프라이머primer 염기서열base sequence 특징Characteristic pAWP89-ForpAWP89-For TAGTTGTCGGGAAGATGCGTTAGTTGTCGGGAAGATGCGT For amplifying pAWP89 backbone which contained Ptac promoter and SD sequenceFor amplifying pAWP89 backbone which contained P tac promoter and SD sequence pAWP89-RevpAWP89-Rev AGCTGTTTCCTGTGTGAATAAGCTGTTTCCTGTGTGAATA agB.s-ForagB.s-For TTCACACAGGAAACAGCTATGGCGGGTGTTTCTGCGTTCACACAGGAAACAGCTATGGCGGGTGTTTCTGCG For construction of pBS01 vector. AgB.s and ispA from 20Z were amplified and ligated into pAWP89 backboneFor construction of pBS01 vector. AgB.s and ispA from 20Z were amplified and ligated into pAWP89 backbone agB.s-RevagB.s-Rev ACTCAGATCTTACAGCGGCAGCGGTTCACTCAGATCTTACAGCGGCAGCGGTTC ispA-20Z-ForispA-20Z-For CCGCTGTAAGATCTGAGTACCTCTAGAAAATAAGGACCGCTGTAAGATCTGAGTACCTCTAGAAAATAAGGA ispA-20Z-RevispA-20Z-Rev GCATCTTCCCGACAACTATTAATGATCTCGCTGGATAAGCATCTTCCCGACAACTATTAATGATCTCGCTGGATAA ribB-KpnI-ForribB-KpnI-For CTGGTCTGTTTGTGGTACAGGAAACAGCTATGAATCAGACGCTACTT
TCCTCT
CTGGTCTGTTTGTGGTACAGGAAACAGCTATGAATCAGACGCTACTT
TCCTCT
For construction of ribB-G108S via site-directed mutagenesisFor construction of ribB-G108S via site-directed mutagenesis
ribB-KpnI-RevribB-KpnI-Rev CGTAGATCTTCTAGAGGTACTCAGCTGGCTTTACGCTCATCGTAGATCTTCTAGAGGTACTCAGCTGGCTTTACGCTCAT ribB-G108S-RevribB-G108S-Rev GGCAGAAACCGAGGTAGTCAGGCAGAAACCGAGGTAGTCA ribB-G108S-ForribB-G108S-For TGACTACCTCGGTTTCTGCCTGACTACCTCGGTTTCTGCC ispG-ForispG-For TTGCGCGTGATACGCGTACAGCAATAGAGAATATAAACACTAAGGAG
GTCAAACATGTCAATCAGCCCAAGAAA
TTCGCGTGATACCGGTACAGCAATAGAGAATATAAACACTAAGGAG
GTCAAACATGTCAATCAGCCCAAGAAA
For construction of pBS02 vector, ispG, dxs, ribB-G108S and ispC were amplified and ligated into pBS01 vector. ribB-108S and ispC was fused by DSAGSAGSAG linker)For construction of pBS02 vector, ispG, dxs, ribB-G108S and ispC were amplified and ligated into pBS01 vector. ribB-108S and ispC was fused by DSAGSAGSAG linker)
ispG-RevispG-Rev CCGGTGAGCTCGCATGCACTACTGAGCTGTGGTTCCGTCCGGTGAGCTCGCATGCACTACTGAGCTGTGGTTTCCGT dxs-20Z-Fordxs-20Z-For GAGATCATTAATACGCGTACAATCCCCATATCTCACAAAATATATAAGGAGGTCAACATGAAAATCACAGGAAATTTCCCCCGAGATCATTAATACGCGTACAATCCCCATATCTCACAAAATATATAAGGAGGTCAACATGAAAATCACAGGAAATTTCCCCC dxs-20Z-Revdxs-20Z-Rev CCGGTGAGCTCGCATGCATCACGCGCAAAATTGCTCGCCGGTGAGCTCGCATGCATCACGCGCAAAATTGCTCG ribB-89-ForribB-89-For CGGAACCACAGCCAGTAGAGGAAACAGCTATGAATCAGACGCTACTTTCCGGAACCACAGCCAGTAGAGGAAACAGCTATGAATCAGACGCTACTTTC ribB-DSAG-RevribB-DSAG-Rev ACCAGCACTACCAGCACTACCAGCACTATCGCTGGCTTTACGCTCATGTGACCAGCACTACCAGCACTACCAGCACTATCGCTGGCTTTACGCTCATGTG ispC-DSGA-ForispC-DSGA-For GATAGTGCTGGTAGTGCTGGTAGTGCTGGTAAAGGTATTTGTATTTTGGGCGCGATAGTGCTGGTAGTGCTGGTAGTGCTGGTAAAGGTATTTGTATTTTGGGCGC ispC-89-RevispC-89-Rev GCATCTTCCCGACAACTATTAACGCTTAAGTTCTTCGACGAGCATCTTCCCGACAACTATTAACGCTTAAGTTCTTCGACGA

(3) (3) M. alcaliphilumM. alcaliphilum 20Z의 전기천공법 기반 유전자 조작 방법 Electroporation-based genetic manipulation method of 20Z

50 ml의 배양액을 OD600= 0.4 내지 0.6 정도로 배양하고 배양된 균주는 5000 ×g, 4℃에서 10분 동안 원심분리하여 회수된 세포는 50ml의 멸균수로 재현탁하였다 (2회 반복). 회수된 세포 펠렛은 100μL의 멸균주로 재현탁시키고 50㎕ 의 세포 현탁액에 500ng DNA 플라스미드를 넣어 혼합한 후 전기침공법을 이용한 형질전환을 실시하였다. Gene Pulser Xcell ™ 전기 천공 시스템 (Bio-Rad)을 사용하여 1.3kV, 25μF 및 200Ω에서 전기천공을 수행하였다. 전기천공 후 즉시, 1ml의 NMS를 세포에 첨가하여 회수된 세포를 0.1 % 메탄올을 함유하는 10ml NMS 배지옮겨 30℃에서 24시간 배양한 후, 세포를 원심분리기 5000g에서 10분동안 원심분리하여 얻은 세포를 항생제가 첨가된 NMS 한천 배지에 평판 도말하였다.50 ml of the culture medium was cultured to OD 600 = 0.4 to 0.6, and the cultured strains were centrifuged at 5000 × g, 4° C. for 10 minutes, and the recovered cells were resuspended in 50 ml of sterile water (repeated twice). The recovered cell pellet was resuspended in 100 μL of sterile strain, and 500 ng DNA plasmid was added to 50 μL of cell suspension and mixed, followed by transformation using the electroporation method. Electroporation was performed at 1.3 kV, 25 μF and 200 Ω using a Gene Pulser Xcell™ electroporation system (Bio-Rad). Immediately after electroporation, 1 ml of NMS was added to the cells, and the recovered cells were transferred to 10 ml of NMS medium containing 0.1% methanol, incubated at 30° C. for 24 hours, and then the cells were centrifuged at 5000 g in a centrifuge for 10 minutes. were plated on NMS agar medium supplemented with antibiotics.

(3) 분석 방법(3) Analysis method

알파-비사볼렌의 분석은 HP-5MS 컬럼이 장착된 GC-MS(gaschromatograph-mass spectrometer, Agilent, USA)를 이용하였다. 이동상은 헬륨을 사용하였으며 분할비는 8:1로 사용하였으며, 유속은 2.2 ml/분였다. 주입구 및 검출기 온도는 250℃였으며, 오븐온도는 초기 3분 80℃로 유지, 분당 16℃/분의 속도로 240℃까지 승온시킨 후, 240℃에서 2분간 유지하였다. 정량을 위해 표준품 알파-비사볼렌(α-bisabolene)을 사용하였다.Alpha-bisabolene was analyzed using GC-MS (gaschromatograph-mass spectrometer, Agilent, USA) equipped with an HP-5MS column. Helium was used as the mobile phase, the split ratio was 8:1, and the flow rate was 2.2 ml/min. The inlet and detector temperatures were 250° C., and the oven temperature was maintained at 80° C. for 3 minutes, raised to 240° C. at a rate of 16° C./minute per minute, and then maintained at 240° C. for 2 minutes. For quantification, standard alpha-bisabolene was used.

실험예 1. 알파-비사볼렌 생산을 위한 Experimental Example 1. For the production of alpha-bisabolene M. alcaliphilumM. alcaliphilum 20Z의 대사공학 Metabolic Engineering of 20Z

M. alcaliphilum 20Z은 자연적으로 프레닐 포스페이트(FPP)를 생산하여 알파-비사볼렌 합성효소의 이종 발현을 통해 알파-비사볼렌을 생산할 수 있다. 프레닐 포스페이트(FPP)는 두 분자의 이소펜테닐 피로포스페이트(isopentenyl pyrophosphate, IPP)와 한 분자의 디메틸 아릴 피로포스페이트에(dimethylallyl pyrophosphate, DMAPP)가 ispA에 의해 축합되어 생성됨으로, IPP 및 DMAPP의 형성 또한 MEP 대사경로에서 중요한 중간체이다. M. alcaliphilum 20Z를 숙주로 사용하여 알파-비사볼렌(α-bisabolene)을 생합성하기 위해, 전나무(Abies hrandis) 유래의 알파-비사볼렌(α-bisabolene) 합성효소를 M. alcaliphilum 20Z에 적합하도록 코돈 최적화시킨 agBs (α-bisabolene synthaes, agBs)와 ispA가 도입된 pBS01 벡터 구축하고 이를 야생형 균주에 형질전환시켜 20Z-Bs-1를 얻었다. M. alcaliphilum 20Z naturally produces prenyl phosphate (FPP) and can produce alpha-bisabolene through heterologous expression of alpha-bisabolene synthetase. Prenyl phosphate (FPP) is produced by condensing two molecules of isopentenyl pyrophosphate (IPP) and one molecule of dimethylallyl pyrophosphate (DMAPP) with ispA, so that IPP and DMAPP are formed. It is also an important intermediate in the MEP metabolic pathway. To biosynthesize α-bisabolene using M. alcaliphilum 20Z as a host, α-bisabolene synthetase from Abies hrandis was codoned to fit M. alcaliphilum 20Z. A pBS01 vector introduced with optimized agBs (α-bisabolene synthaes, agBs) and ispA was constructed and transformed into a wild-type strain to obtain 20Z-Bs-1.

탄소원으로 메탄이 제공된 배양 배지에 20 중량%의 도데칸(dodecane)을 첨가하여 이상계 시스템으로 비사볼렌 생성을 확인하였다. 야생형 균주와 형질전환 메탄자화균 20Z-Bs-1균주를 배양하여 GC-MS로 분석한 결과, 형질전환된 균주에서만 알파-비사볼렌이 생성되는 것을 확인하였고 (도 1 및 도 2), 생성된 알파-비사볼렌은 12.8 mg/L 였다 (도 2).Bisabolene production was confirmed as a two-phase system by adding 20 wt% of dodecane to a culture medium provided with methane as a carbon source. As a result of GC-MS analysis by culturing the wild-type strain and the transformed methanogen 20Z-Bs-1 strain, it was confirmed that alpha-bisabolene was produced only in the transformed strain ( FIGS. 1 and 2 ), and the Alpha-bisabolene was 12.8 mg/L ( FIG. 2 ).

실험예 2. 알파-비사볼렌 생산성 향상을 위한 MEP 경로 재설계 및 nDXP 경로의 도입Experimental Example 2. Redesign of MEP pathway and introduction of nDXP pathway for alpha-bisabolene productivity improvement

1-deoxy-Dxylulose-5-phosphate synthase (Dxs)는 프레닐 포스페이트에(FPP) 의해서 전사 및 번역이 억제되는 것으로 알려져 있어, 이소프레노이드의 전구체인 FPP로 인해 전사 및 번역이 억제되는 것을 막기 위해 Dxs 및 MEP 경로를관련 효소를 과발현키고자 하였다. 또한, 오탄단 경로의 대사물질인 Ru5P로부터1-deoxy-Dxylulose-5-phosphate (DXP)로의 직접 전환이 가능한 nDXP 경로의 도입을 통하여 효소는 상기와 같은 억제문제를 해결하고자 하였다. 1-deoxy-Dxylulose-5-phosphate synthase (Dxs) is known to inhibit transcription and translation by prenyl phosphate (FPP). We tried to overexpress Dxs and MEP pathway-related enzymes. In addition, through the introduction of the nDXP pathway capable of direct conversion from Ru5P, a metabolite of the pentdandan pathway, to 1-deoxy-Dxylulose-5-phosphate (DXP), the enzyme tried to solve the above-mentioned inhibition problem.

도 3에 나타낸 것과 같이, 본 발명은 MEP경로와 관련된 dxs, lspG와 RibB(G108S) 유전자 및 링커 DSAGSAGSAG를 붙인 ispC 유전자를 pBS01 벡터에 추가 도입한 후, 이를 야생형 메탄자화균에 형질전환시켜 형질전환 메탄자화균 20Z-Bs-2를 얻었다. 형질전환 메탄자화균 20Z-Bs-2의 알파-비사볼렌 생산성은 20Z-Bs-1 균주보다 2배 증가하여 24.55 mg/L의 알파-비사볼렌을 생산하였다(도 4). As shown in FIG. 3, the present invention further introduces the dxs, lspG and RibB (G108S) genes related to the MEP pathway and the ispC gene to which the linker DSAGSAGSAG is attached into the pBS01 vector, and then transforms it into a wild-type methanogen. A methanogen 20Z-Bs-2 was obtained. The alpha-bisabolene productivity of the transformed methanogenic bacterium 20Z-Bs-2 was increased twice that of the 20Z-Bs-1 strain, producing 24.55 mg/L of alpha-bisabolene (FIG. 4).

<110> University-Industry Cooperation Group of Kyung Hee University <120> Transformed methanotrophs for producing alpha bisabolene production from methane and uses thereof <130> PN1910-469 <160> 24 <170> KoPatentIn 3.0 <210> 1 <211> 2454 <212> DNA <213> Unknown <220> <223> A. grandis agBs gene <400> 1 atggcgggtg tttctgcggt ttctaaagtt tcttctctgg tttgcgacct gtcttctacc 60 tctggtctga tccgtcgtac cgcgaacccg cacccgaacg tttggggtta cgacctggtt 120 cactctctga aatctccgta catcgactct tcttaccgtg aacgtgcgga agttctggtt 180 tctgaaatca aagcgatgct gaacccggcg atcaccggtg acggtgaatc tatgatcacc 240 ccgtctgcgt acgacaccgc gtgggttgcg cgtgttccgg cgatcgacgg ttctgcgcgt 300 ccgcagttcc cgcagaccgt tgactggatt ctgaaaaacc agctgaaaga cggttcttgg 360 ggtatccagt ctcacttcct gctgtctgac cgtctgctgg cgaccctgtc ttgcgttctg 420 gttctgctga aatggaacgt tggtgacctg caggttgaac agggtatcga gttcatcaaa 480 tctaacctgg aactggttaa agacgaaacc gaccaggact ctctggttac cgacttcgaa 540 atcatcttcc cgtctctgct gcgtgaagcg cagtctctgc gtctgggtct gccgtacgac 600 ctgccgtaca tccacctgct gcagaccaaa cgtcaggaac gtctggcgaa actgtctcgt 660 gaagaaatct acgcggttcc gtctccgctg ctgtactctc tggaaggtat ccaggacatc 720 gttgaatggg aacgtatcat ggaagttcag tctcaggacg gttctttcct gtcttctccg 780 gcgtctaccg cgtgcgtttt catgcacacc ggtgacgcga aatgcctgga gttcctgaac 840 tctgttatga tcaaattcgg taacttcgtt ccgtgcctgt acccggttga cctgctggaa 900 cgtctgctga tcgttgacaa catcgttcgt ctgggtatct accgtcactt cgaaaaagaa 960 atcaaagaag cgctggacta cgtttaccgt cactggaacg aacgtggtat cggttggggt 1020 cgtctgaacc cgatcgcgga cctggaaacc accgcgctgg gtttccgtct gctgcgtctg 1080 caccgttaca acgtttctcc ggcgatcttc gacaacttca aagacgcgaa cggtaaattc 1140 atctgctcta ccggtcagtt caacaaagac gttgcgtcta tgctgaacct gtaccgtgcg 1200 tctcagctgg cgtttccggg tgaaaacatc ctggacgaag cgaaatcttt cgcgaccaaa 1260 tacctgcgtg aagcgctgga aaaatctgaa acctcttctg cgtggaacaa caaacagaac 1320 ctgtctcagg aaatcaaata cgcgctgaaa acctcttggc acgcgtctgt tccgcgtgtt 1380 gaagcgaaac gttactgcca ggtttaccgt ccggactacg cgcgtatcgc gaaatgcgtt 1440 tacaaactgc cgtacgttaa caacgaaaaa ttcctggaac tgggtaaact ggacttcaac 1500 atcatccagt ctatccacca ggaagaaatg aaaaacgtta cctcttggtt ccgtgactct 1560 ggtctgccgc tgttcacctt cgcgcgtgaa cgtccgctgg agttctactt cctggttgcg 1620 gcgggtacct acgaaccgca gtacgcgaaa tgccgtttcc tgttcaccaa agttgcgtgc 1680 ctgcagaccg ttctggacga catgtacgac acctacggta ccctggacga actgaaactg 1740 ttcaccgaag cggttcgtcg ttgggacctg tctttcaccg aaaacctgcc ggactacatg 1800 aaactgtgct accagattta ctacgacatc gttcacgaag ttgcgtggga agcggaaaaa 1860 gaacagggtc gtgaactggt ttctttcttc cgtaaaggtt gggaagacta cctgctgggt 1920 tactacgaag aagcggaatg gctggcggcg gaatacgttc cgaccctgga cgaatacatc 1980 aaaaacggta tcacctctat cggtcagcgt atcctgctgc tgtctggtgt tctgatcatg 2040 gacggtcagc tgctgtctca ggaagcgctg gaaaaagttg actatccggg tcgtcgtgtt 2100 ctgaccgaac tgaactctct gatctctcgt ctggcggacg acaccaaaac ctacaaagcg 2160 gaaaaagcgc gtggtgaact ggcgtcttct atcgaatgct acatgaaaga ccacccggaa 2220 tgcaccgaag aagaagcgct ggaccacatc tactctatcc tggaaccggc ggttaaagaa 2280 ctgacccgtg agttcctgaa accggacgac gttccgttcg cgtgcaaaaa aatgctgttc 2340 gaagaaaccc gtgttactat ggttatcttc aaagacggtg acggtttcgg tgtttctaaa 2400 ctggaagtta aagaccacat caaagaatgc ctgatcgaac cgctgccgct gtaa 2454 <210> 2 <211> 897 <212> DNA <213> Unknown <220> <223> M. alcaliphilum 20Z ispA gene <400> 2 atgagtaacg cactgaaaga ctatctctcc ttttgtcaaa accgtgtcga aagagccttg 60 gaagcccgac tgccaagcga aaaccaaatt ccgacaaaat tgcacgaagc gatgcgctat 120 tgcgtgctgg acggcggtaa acgcatgcgt ccgatgctaa cctactgtac aggaaaagcc 180 gtgggcattg caccggaaga tttagatggc gcggcctgtg cggttgaatt cattcatgtt 240 tattcgttga tacatgacga tttgccggcc atggacgacg acgacctcag acgcggaaag 300 ccgacctgtc atatcgctta tgatgaagcg accgccattt tgaccggcga cgctttacaa 360 gcattggcat tcaaggtctt ggctgacgac cctaccatcc gagccgatgc cgaaagccgt 420 ctaaaaatga ttacgttgct ggctaaggct agcggctctc aaggcatggt cggcggccaa 480 gccatcgatt tagaatcggt cggcacgatg ctgacgctgc ctcagcttga aaatatgcat 540 atccacaaga ccggagcgtt aattcgagcc agcgtcaaca tggcgacgtt aacgagaccc 600 gatatcgacc cgaaacaggc cgaagggctc gatcattacg caaaatgcat cggcctatcc 660 ttccaagtca aggatgatat tttggacgaa gaaagcgata ccgcaacact cggcaaaacc 720 caaggcaagg acaaagacaa cgacaagccg acttaccctg ccttactcgg cttggccggc 780 gcaaagcaaa aagctcagga acttcatgag caagccattg aaagcttaaa cggattcggc 840 cccgaagccg atctgcttcg tgacttgtcg ctttatatta tccagcgaga tcattaa 897 <210> 3 <211> 1863 <212> DNA <213> Unknown <220> <223> M. alcaliphilum 20Z dxs gene <400> 3 atgaaaatca caggaaattt ccccctacta gacagcatca agctcccctc cgaccttaga 60 aaactgccaa aggaacgatt aaaaccgctt gccaaagaac ttcgcgagtt tctgacccac 120 acagtcagta tttccggcgg gcatttttcg gcaggcctcg gcaccgtaga gttgactgtg 180 gcgctgcatt acgtattcga cacgccgcgc gatcaattgg tttgggatgt cggccatcag 240 gcctatccgc ataagatcct gaccggacgc aaggagcgca tgacgacaat tcgcacccgc 300 gacggctttt gcccctttcc aaaccgttcc aagagcgaat acaatgcctt cggcgtcggc 360 cattcgagca cgtcaattag cgcggcctta ggcatggcga tcgcatccgg tttacgcggc 420 gaggacaagc actgtgtcgc gatcattggc gacggcagca tcaccggcgg catggccttc 480 aaagcaatga accatgccgg tgcgatcgat gcaaatctgt tggtgatctt gaacgacaac 540 aatttgtcaa tttctccaaa tgtcggcccg ttgaaaaatt atctgactaa aattctgtcg 600 agtaaaattt attcttcggt acgcgaaaaa agcaaaaaag ctctcaccag catgccaagc 660 gtctgggagc tggcgcgcaa aaccaaaaag cacatgaaag gcatggtcgt gcccggcacc 720 ttgttcaagg aaatggggtt caattatatc ggtccaatcg acggccatga cctggacatg 780 ctggtgtcaa ccctggaaaa tctaaaacac atttccggcc cgcgtttctt gcatatcgtc 840 accaagaaag gcaagggcta tgcgccggcc gagaaagacc cgctcgccta tcacggcgtg 900 ccggccttcg acccgagccg cgattgtctg ccgaaatcgg ccccttctcc gcacccgacg 960 tatacgcagg tattcggaca atggctctgc gacatggccg agcaggacga gcgcttgttg 1020 ggcattaccc cggcaatgcg cgaaggctcg ggcctggtcg ctttttccga acgctttccg 1080 aagcgttatt tcgatgtcgc catcgccgag cagcatgccg tgaccttagc ggcgggcctg 1140 gcctgcgagg gcggcaaacc ggtcgtcgcg atctattcaa ccttcttaca acgcggctac 1200 gatcaattga tacacgatgt ggtcttgcag gacctggacg tattgtttgc gctcgaccgc 1260 gcaggtttag tcggcccgga cggcccgacc catgccggca gtttcgatta cacctacatg 1320 cgctgcctgc cgaacatgct aatcatggca ccggccgacg agaacgaatg ccggcagatg 1380 ctctataccg gttatctgca taaaggcccg gcttcggtac gctatccgcg cggcaaaggc 1440 ccgggcgtgc cggtcgattg caccatgacc gcgctaccga tcggcaaggc cgaattgcgc 1500 catcaaggcg gccgcatcgc gattctggcg ttcggcagca tggttacgcc gtcggtcgag 1560 gtcggtaagc agctcggcgc gaccgtcgtc aatatgcgct tcgtcaagcc gctcgatgaa 1620 gcgttgattc tggaactggc caagagtcac gatatcatcg tcacggtcga agaaaacgtc 1680 attgccggcg gcgccggcag cgcggtcaac gaatttctgc aggcacaaag aatcgtgatg 1740 ccggtcttga atatcggtct gcccgatgcc ttcatcgaac aaggcacgcg cgaagaatta 1800 ctgagttttt gcggattaga tacccaaggc atattgcaga gcatcgagca attttgcgcg 1860 tga 1863 <210> 4 <211> 1227 <212> DNA <213> Unknown <220> <223> M. alcaliphilum 20Z ispG gene <400> 4 atgtcaatca gcccaagaaa aattacccat caagttcaaa tcggcgacat caaagtgggc 60 ggcggcgcgc caatcgtcgt tcaatcaatg accaataccg ataccgccga tatcaaagca 120 acagtcaacc aagtcatgga actgtcgaag gccggatcgg aaatcgtccg tattaccgtc 180 aactccgaag acgcggctaa agccgttcct gaaatccgca accaactcaa tcaaaaaggc 240 tttaccgttc cgatcgtcgg cgatttccat tttaacggac ataaattact cgaaaaatac 300 cccgcctgcg ccgaagcctt agataaatat cgcatcaatc ccggaaatgt cggacgaggt 360 aaaaaccgcg atccacaatt tcaacaaatg atcgagttcg cttgccgcta cgacaagccc 420 gttcgaatcg gcgttaacgg cggtagcctg gatcaagcgg ttttaacgcg ccttttggat 480 gaaaacagac aaaaagaaaa tccggacgaa ctacctgccg ttactcgaga agcaatcatc 540 gtttcggcac tcgaaagcgc ggcccgcgcc gaagaaatag gcctacccgc caacaaaatt 600 ttattgtctt gtaaaatcag caacgttcag gaattgatca gaatttatca agatctaagt 660 aaacgctgcg attacgcgtt acacctcggc ctaaccgaag ccggcatggg ctcgaaaggc 720 atcgtggcat cttcggccgc tctatccgtg cttatgcaac agggcatcgg agacacgatt 780 cgcatctcgc taacaccgga acccggcacg gccagaaccc aagaagttgt agtcgcacag 840 gaaatcttgc aaaccatggg ctttcgttcc tttactccga tggttatcgc ctgcccaggc 900 tgcggccgaa caaccagcga ctatttccaa aaattggcga tggaaattca aaattatcta 960 cgcgtcagta tgccgtcttg gcgcactaaa tatcccggcg tcgaagaaat ggaagtcgcg 1020 gtcatgggtt gtgtcgtcaa tggtcccgga gaaagtaaga atgccagcat cggcatcagc 1080 ttgcccggca ccggagaaac cccggttgct ccggtttatg aagacggtgt caaaacagtg 1140 accttgaaag gcgatcatat agccgaagaa tttcaagcgc tggtcgaacg ctatattgaa 1200 acgcactacg gaaccacagc tcagtag 1227 <210> 5 <211> 654 <212> DNA <213> Unknown <220> <223> Mutated ribB encoding RibB-G108S gene <400> 5 atgaatcaga cgctactttc ctcttttggt acgcctttcg aacgtgttga aaatgcactg 60 gctgcgctgc gtgaaggacg cggtgtaatg gtgcttgatg atgaagaccg tgaaaacgaa 120 ggtgatatga tcttcccggc agaaaccatg actgttgagc agatggcgct gaccattcgc 180 cacggtagcg gtattgtttg cctgtgcatt actgaagatc gccgtaaaca actcgatctg 240 ccaatgatgg tagaaaataa caccagcgcc tatggcaccg gttttaccgt gaccattgaa 300 gcagctgaag gtgtgactac cggtgtttct gccgctgacc gtattacgac cgttcgcgca 360 gcgattgccg atggcgcaaa accgtcagat ctgaatcgtc ctggccacgt tttcccactt 420 cgcgctcagg caggtggtgt actgacgcgt ggcggtcata ctgaagcaac tattgatctg 480 atgacgctgg caggctttaa accggctggt gtactgtgtg agctgactaa tgacgatggc 540 acgatggcgc gtgcaccaga gtgtattgag tttgccaata aacacaatat ggcgctcgtg 600 actattgaag acctggtggc ataccgtcag gcacatgagc gtaaagccag ctga 654 <210> 6 <211> 1181 <212> DNA <213> Unknown <220> <223> M. alcaliphilum 20Z ispC gene <400> 6 atgaaaggta tttgtatttt gggcgcgacc ggttctatcg gtgtcagcac gctggatgtg 60 gttgctcgcc attcgaatcg gtatagagtc gttgcgttga ccgcgaacaa taatatcgac 120 ctgctgtacg accaatgcat cgtccatcgt cctgactatg ttgtcgtggt tgatgaaaat 180 aaggctaaac aatttgcaga gcgcattgct acatcgccgg tatccgatat aaaggtgtta 240 tcgggagccg aatcgttgca gcaagtagct acactggata gtgttgattc ggtaatggcg 300 gcaatcgtcg gcgcggctgg tctattacca actttggcgg ctgctaaagc cggtaaaacc 360 gtattgctgg caaataaaga agcgttggtg atgtccggcg atatttttat gaaagcggtt 420 accgagtccg gtgcccattt gctgccgatc gatagcgagc ataatgccat ttttcaatgc 480 atgccggcag attactgtgc gggtcaagag gctaaggagg cgcggcgaat tttgttgact 540 gcctcgggtg gcccgttcag aactaagccg gtagaagagt tggtcgatgt cactccggat 600 caagccgtcg cgcatccgaa ttgggatatg gggcgtaaga tttctgtcga ttctgcgacg 660 atgatgaata aagggcttga attgattgaa gcctgtttat tgttcaatat gtcgccggat 720 aaaattcagg tggtgatcca tccgcaaagc gtgattcatt caatggtcga ttatgtcgac 780 ggcactgtgt tggcgcaaat gggtaacccc gatatgcgaa tacccattgc gcatgcgatg 840 gcgtggccgg aacgcttcga ctccggtgcg gcgccgctga atatattcga cgttaagcac 900 atggatttcg aacaacccga tcttcagcgt ttcccttgtt tacgcttggc gattgaagcc 960 gtcgaggcag gcggtattat gccggctgtg ttaaatgccg ctaatgaaat cgcggttgct 1020 gcctttttgg acgagaaagt ccgttttacc gacatccctt acattattga acggagcatg 1080 catcaattcg aagccgatcc ggcggatacg ctggatattg tattggcagc cgatagcaaa 1140 gcccgggaag tggctgagcg tatcgtcgaa gaacttaagg t 1181 <210> 7 <211> 20 <212> DNA <213> Unknown <220> <223> pAWP89-For <400> 7 tagttgtcgg gaagatgcgt 20 <210> 8 <211> 20 <212> DNA <213> Unknown <220> <223> pAWP89-Rev <400> 8 agctgtttcc tgtgtgaata 20 <210> 9 <211> 36 <212> DNA <213> Unknown <220> <223> agB.s-For <400> 9 ttcacacagg aaacagctat ggcgggtgtt tctgcg 36 <210> 10 <211> 27 <212> DNA <213> Unknown <220> <223> agB.s-Rev <400> 10 actcagatct tacagcggca gcggttc 27 <210> 11 <211> 36 <212> DNA <213> Unknown <220> <223> ispA-20Z-For <400> 11 ccgctgtaag atctgagtac ctctagaaaa taagga 36 <210> 12 <211> 38 <212> DNA <213> Unknown <220> <223> ispA-20Z-Rev <400> 12 gcatcttccc gacaactatt aatgatctcg ctggataa 38 <210> 13 <211> 53 <212> DNA <213> Unknown <220> <223> ribB-KpnI-For <400> 13 ctggtctgtt tgtggtacag gaaacagcta tgaatcagac gctactttcc tct 53 <210> 14 <211> 40 <212> DNA <213> Unknown <220> <223> ribB-KpnI-Rev <400> 14 cgtagatctt ctagaggtac tcagctggct ttacgctcat 40 <210> 15 <211> 20 <212> DNA <213> Unknown <220> <223> ribB-G108S-Rev <400> 15 ggcagaaacc gaggtagtca 20 <210> 16 <211> 20 <212> DNA <213> Unknown <220> <223> ribB-G108S-For <400> 16 tgactacctc ggtttctgcc 20 <210> 17 <211> 74 <212> DNA <213> Unknown <220> <223> ispG-For <400> 17 ttgcgcgtga tacgcgtaca gcaatagaga atataaacac taaggaggtc aaacatgtca 60 atcagcccaa gaaa 74 <210> 18 <211> 38 <212> DNA <213> Unknown <220> <223> ispG-Rev <400> 18 ccggtgagct cgcatgcact actgagctgt ggttccgt 38 <210> 19 <211> 82 <212> DNA <213> Unknown <220> <223> dxs-20Z-For <400> 19 gagatcatta atacgcgtac aatccccata tctcacaaaa tatataagga ggtcaacatg 60 aaaatcacag gaaatttccc cc 82 <210> 20 <211> 37 <212> DNA <213> Unknown <220> <223> dxs-20Z-Rev <400> 20 ccggtgagct cgcatgcatc acgcgcaaaa ttgctcg 37 <210> 21 <211> 49 <212> DNA <213> Unknown <220> <223> ribB-89-For <400> 21 cggaaccaca gccagtagag gaaacagcta tgaatcagac gctactttc 49 <210> 22 <211> 50 <212> DNA <213> Unknown <220> <223> ribB-DSAG-Rev <400> 22 accagcacta ccagcactac cagcactatc gctggcttta cgctcatgtg 50 <210> 23 <211> 53 <212> DNA <213> Unknown <220> <223> ispC-DSGA-For <400> 23 gatagtgctg gtagtgctgg tagtgctggt aaaggtattt gtattttggg cgc 53 <210> 24 <211> 41 <212> DNA <213> Unknown <220> <223> ispC-89-Rev <400> 24 gcatcttccc gacaactatt aacgcttaag ttcttcgacg a 41 <110> University-Industry Cooperation Group of Kyung Hee University <120> Transformed methanotrophs for producing alpha bisabolene production from methane and uses thereof <130> PN1910-469 <160> 24 <170> KoPatentIn 3.0 <210> 1 <211> 2454 <212> DNA <213> Unknown <220> <223> A. grandis agBs gene <400> 1 atggcgggtg tttctgcggt ttctaaagtt tcttctctgg tttgcgacct gtcttctacc 60 tctggtctga tccgtcgtac cgcgaacccg cacccgaacg tttggggtta cgacctggtt 120 cactctctga aatctccgta catcgactct tcttaccgtg aacgtgcgga agttctggtt 180 tctgaaatca aagcgatgct gaacccggcg atcaccggtg acggtgaatc tatgatcacc 240 ccgtctgcgt acgacaccgc gtgggttgcg cgtgttccgg cgatcgacgg ttctgcgcgt 300 ccgcagttcc cgcagaccgt tgactggatt ctgaaaaacc agctgaaaga cggttcttgg 360 ggtatccagt ctcacttcct gctgtctgac cgtctgctgg cgaccctgtc ttgcgttctg 420 gttctgctga aatggaacgt tggtgacctg caggttgaac agggtatcga gttcatcaaa 480 tctaacctgg aactggttaa aagacgaaacc gaccaggact ctctggttac cgacttcgaa 540 atcatcttcc cgtctctgct gcgtgaagcg cagtctctgc gtctgggtct gccgtacgac 600 ctgccgtaca tccacctgct gcagaccaaa cgtcaggaac gtctggcgaa actgtctcgt 660 gaagaaatct acgcggttcc gtctccgctg ctgtactctc tggaaggtat ccaggacatc 720 gttgaatggg aacgtatcat ggaagttcag tctcaggacg gttctttcct gtcttctccg 780 gcgtctaccg cgtgcgtttt catgcacacc ggtgacgcga aatgcctgga gttcctgaac 840 tctgttatga tcaaattcgg taacttcgtt ccgtgcctgt acccggttga cctgctggaa 900 cgtctgctga tcgttgacaa catcgttcgt ctgggtatct accgtcactt cgaaaaagaa 960 atcaaagaag cgctggacta cgtttaccgt cactggaacg aacgtggtat cggttggggt 1020 cgtctgaacc cgatcgcgga cctggaaacc accgcgctgg gtttccgtct gctgcgtctg 1080 caccgttaca acgtttctcc ggcgatcttc gacaacttca aagacgcgaa cggtaaattc 1140 atctgctcta ccggtcagtt caacaaagac gttgcgtcta tgctgaacct gtaccgtgcg 1200 tctcagctgg cgtttccggg tgaaaacatc ctggacgaag cgaaatcttt cgcgaccaaa 1260 tacctgcgtg aagcgctgga aaaatctgaa acctcttctg cgtggaacaa caaacagaac 1320 ctgtctcagg aaatcaaata cgcgctgaaa acctcttggc acgcgtctgt tccgcgtgtt 1380 gaagcgaaac gttactgcca ggtttaccgt ccggactacg cgcgtatcgc gaaatgcgtt 1440 tacaaactgc cgtacgttaa caacgaaaaa ttcctggaac tgggtaaact ggacttcaac 1500 atcatccagt ctatccacca ggaagaaatg aaaaacgtta cctcttggtt ccgtgactct 1560 ggtctgccgc tgttcacctt cgcgcgtgaa cgtccgctgg agttctactt cctggttgcg 1620 gcgggtacct acgaaccgca gtacgcgaaa tgccgtttcc tgttcaccaa agttgcgtgc 1680 ctgcagaccg ttctggacga catgtacgac acctacggta ccctggacga actgaaactg 1740 ttcaccgaag cggttcgtcg ttgggacctg tctttcaccg aaaacctgcc ggactacatg 1800 aaactgtgct accagattta ctacgacatc gttcacgaag ttgcgtggga agcggaaaaa 1860 gaacagggtc gtgaactggt ttctttcttc cgtaaaggtt gggaagacta cctgctgggt 1920 tactacgaag aagcggaatg gctggcggcg gaatacgttc cgaccctgga cgaatacatc 1980 aaaaacggta tcacctctat cggtcagcgt atcctgctgc tgtctggtgt tctgatcatg 2040 gacggtcagc tgctgtctca ggaagcgctg gaaaaagttg actatccggg tcgtcgtgtt 2100 ctgaccgaac tgaactctct gatctctcgt ctggcggacg acaccaaaac ctacaaagcg 2160 gaaaaagcgc gtggtgaact ggcgtcttct atcgaatgct acatgaaaga ccacccggaa 2220 tgcaccgaag aagaagcgct ggaccacatc tactctatcc tggaaccggc ggttaaagaa 2280 ctgacccgtg agttcctgaa accggacgac gttccgttcg cgtgcaaaaa aatgctgttc 2340 gaagaaaccc gtgttactat ggttatcttc aaagacggtg acggtttcgg tgtttctaaa 2400 ctggaagtta aagaccacat caaagaatgc ctgatcgaac cgctgccgct gtaa 2454 <210> 2 <211> 897 <212> DNA <213> Unknown <220> <223> M. alcaliphilum 20Z ispA gene <400> 2 atgagtaacg cactgaaaga ctatctctcc ttttgtcaaa accgtgtcga aagagccttg 60 gaagcccgac tgccaagcga aaaccaaatt ccgacaaaat tgcacgaagc gatgcgctat 120 tgcgtgctgg acggcggtaa acgcatgcgt ccgatgctaa cctactgtac aggaaaagcc 180 gtgggcattg caccggaaga tttagatggc gcggcctgtg cggttgaatt cattcatgtt 240 tattcgttga tacatgacga tttgccggcc atggacgacg acgacctcag acgcggaaag 300 ccgacctgtc atatcgctta tgatgaagcg accgccattt tgaccggcga cgctttacaa 360 gcattggcat tcaaggtctt ggctgacgac cctaccatcc gagccgatgc cgaaagccgt 420 ctaaaaatga ttacgttgct ggctaaggct agcggctctc aaggcatggt cggcggccaa 480 gccatcgatt tagaatcggt cggcacgatg ctgacgctgc ctcagcttga aaatatgcat 540 atccacaaga ccggagcgtt aattcgagcc agcgtcaaca tggcgacgtt aacgagaccc 600 gatatcgacc cgaaacaggc cgaagggctc gatcattacg caaaatgcat cggcctatcc 660 ttccaagtca aggatgatat tttggacgaa gaaagcgata ccgcaacact cggcaaaacc 720 caaggcaagg acaaagacaa cgacaagccg acttaccctg ccttactcgg cttggccggc 780 gcaaagcaaa aagctcagga acttcatgag caagccattg aaagcttaaa cggattcggc 840 cccgaagccg atctgcttcg tgacttgtcg ctttatatta tccagcgaga tcattaa 897 <210> 3 <211> 1863 <212> DNA <213> Unknown <220> <223> M. alcaliphilum 20Z dxs gene <400> 3 atgaaaatca caggaaattt ccccctacta gacagcatca agctcccctc cgaccttaga 60 aaactgccaa aggaacgatt aaaaccgctt gccaaagaac ttcgcgagtt tctgacccac 120 acagtcagta tttccggcgg gcatttttcg gcaggcctcg gcaccgtaga gttgactgtg 180 gcgctgcatt acgtattcga cacgccgcgc gatcaattgg tttgggatgt cggccatcag 240 gcctatccgc ataagatcct gaccggacgc aaggagcgca tgacgacaat tcgcacccgc 300 gacggctttt gcccctttcc aaaccgttcc aagagcgaat acaatgcctt cggcgtcggc 360 cattcgagca cgtcaattag cgcggcctta ggcatggcga tcgcatccgg tttacgcggc 420 gaggacaagc actgtgtcgc gatcattggc gacggcagca tcaccggcgg catggccttc 480 aaagcaatga accatgccgg tgcgatcgat gcaaatctgt tggtgatctt gaacgacaac 540 aatttgtcaa tttctccaaa tgtcggcccg ttgaaaaatt atctgactaa aattctgtcg 600 agtaaaattt attcttcggt acgcgaaaaa agcaaaaaag ctctcaccag catgccaagc 660 gtctgggagc tggcgcgcaa aaccaaaaag cacatgaaag gcatggtcgt gcccggcacc 720 ttgttcaagg aaatggggtt caattatatc ggtccaatcg acggccatga cctggacatg 780 ctggtgtcaa ccctggaaaa tctaaaacac atttccggcc cgcgtttctt gcatatcgtc 840 accaagaaag gcaagggcta tgcgccggcc gagaaagacc cgctcgccta tcacggcgtg 900 ccggccttcg acccgagccg cgattgtctg ccgaaatcgg ccccttctcc gcacccgacg 960 tatacgcagg tattcggaca atggctctgc gacatggccg agcaggacga gcgcttgttg 1020 ggcattaccc cggcaatgcg cgaaggctcg ggcctggtcg ctttttccga acgctttccg 1080 aagcgttatt tcgatgtcgc catcgccgag cagcatgccg tgaccttagc ggcgggcctg 1140 gcctgcgagg gcggcaaacc ggtcgtcgcg atctattcaa ccttcttaca acgcggctac 1200 gatcaattga tacacgatgt ggtcttgcag gacctggacg tattgtttgc gctcgaccgc 1260 gcaggtttag tcggcccgga cggcccgacc catgccggca gtttcgatta cacctacat 1320 cgctgcctgc cgaacatgct aatcatggca ccggccgacg agaacgaatg ccggcagatg 1380 ctctataccg gttatctgca taaaggcccg gcttcggtac gctatccgcg cggcaaaggc 1440 ccgggcgtgc cggtcgattg caccatgacc gcgctaccga tcggcaaggc cgaattgcgc 1500 catcaaggcg gccgcatcgc gattctggcg ttcggcagca tggttacgcc gtcggtcgag 1560 gtcggtaagc agctcggcgc gaccgtcgtc aatatgcgct tcgtcaagcc gctcgatgaa 1620 gcgttgattc tggaactggc caagagtcac gatatcatcg tcacggtcga agaaaacgtc 1680 attgccggcg gcgccggcag cgcggtcaac gaatttctgc aggcacaaag aatcgtgatg 1740 ccggtcttga atatcggtct gcccgatgcc ttcatcgaac aaggcacgcg cgaagaatta 1800 ctgagttttt gcggattaga tacccaaggc atattgcaga gcatcgagca attttgcgcg 1860 tga 1863 <210> 4 <211> 1227 <212> DNA <213> Unknown <220> <223> M. alcaliphilum 20Z ispG gene <400> 4 atgtcaatca gcccaagaaa aattacccat caagttcaaa tcggcgacat caaagtgggc 60 ggcggcgcgc caatcgtcgt tcaatcaatg accaataccg ataccgccga tatcaaagca 120 acagtcaacc aagtcatgga actgtcgaag gccggatcgg aaatcgtccg tattaccgtc 180 aactccgaag acgcggctaa agccgttcct gaaatccgca accaactcaa tcaaaaaggc 240 tttaccgttc cgatcgtcgg cgatttccat tttaacggac ataaattact cgaaaaatac 300 cccgcctgcg ccgaagcctt agataaatat cgcatcaatc ccggaaatgt cggacgaggt 360 aaaaaccgcg atccacaatt tcaacaaatg atcgagttcg cttgccgcta cgacaagccc 420 gttcgaatcg gcgttaacgg cggtagcctg gatcaagcgg ttttaacgcg ccttttggat 480 gaaaacagac aaaaagaaaa tccggacgaa ctacctgccg ttactcgaga agcaatcatc 540 gtttcggcac tcgaaagcgc ggcccgcgcc gaagaaatag gcctacccgc caacaaaatt 600 ttattgtctt gtaaaatcag caacgttcag gaattgatca gaatttatca agatctaagt 660 aaacgctgcg attacgcgtt acacctcggc ctaaccgaag ccggcatggg ctcgaaaggc 720 atcgtggcat cttcggccgc tctatccgtg cttatgcaac agggcatcgg agacacgatt 780 cgcatctcgc taacaccgga acccggcacg gccagaaccc aagaagttgt agtcgcacag 840 gaaatcttgc aaaccatggg ctttcgttcc tttactccga tggttatcgc ctgcccaggc 900 tgcggccgaa caaccagcga ctatttccaa aaattggcga tggaaattca aaattatcta 960 cgcgtcagta tgccgtcttg gcgcactaaa tatcccggcg tcgaagaaat ggaagtcgcg 1020 gtcatgggtt gtgtcgtcaa tggtcccgga gaaagtaaga atgccagcat cggcatcagc 1080 ttgcccggca ccggagaaac cccggttgct ccggtttatg aagacggtgt caaaacagtg 1140 accttgaaag gcgatcatat agccgaagaa tttcaagcgc tggtcgaacg ctatattgaa 1200 acgcactacg gaaccacagc tcagtag 1227 <210> 5 <211> 654 <212> DNA <213> Unknown <220> <223> Mutated ribB encoding RibB-G108S gene <400> 5 atgaatcaga cgctactttc ctcttttggt acgcctttcg aacgtgttga aaatgcactg 60 gctgcgctgc gtgaaggacg cggtgtaatg gtgcttgatg atgaagaccg tgaaaacgaa 120 ggtgatatga tcttcccggc agaaaccatg actgttgagc agatggcgct gaccattcgc 180 cacggtagcg gtattgtttg cctgtgcatt actgaagatc gccgtaaaca actcgatctg 240 ccaatgatgg tagaaaataa caccagcgcc tatggcaccg gttttaccgt gaccattgaa 300 gcagctgaag gtgtgactac cggtgtttct gccgctgacc gtattacgac cgttcgcgca 360 gcgattgccg atggcgcaaa accgtcagat ctgaatcgtc ctggccacgt tttcccactt 420 cgcgctcagg caggtggtgt actgacgcgt ggcggtcata ctgaagcaac tattgatctg 480 atgacgctgg caggctttaa accggctggt gtactgtgtg agctgactaa tgacgatggc 540 acgatggcgc gtgcaccaga gtgtattgag tttgccaata aacaaatat ggcgctcgtg 600 actattgaag acctggtggc ataccgtcag gcacatgagc gtaaagccag ctga 654 <210> 6 <211> 1181 <212> DNA <213> Unknown <220> <223> M. alcaliphilum 20Z ispC gene <400> 6 atgaaaggta tttgtatttt gggcgcgacc ggttctatcg gtgtcagcac gctggatgtg 60 gttgctcgcc attcgaatcg gtatagagtc gttgcgttga ccgcgaacaa taatatcgac 120 ctgctgtacg accaatgcat cgtccatcgt cctgactatg ttgtcgtggt tgatgaaaat 180 aaggctaaac aatttgcaga gcgcattgct acatcgccgg tatccgatat aaaggtgtta 240 tcgggagccg aatcgttgca gcaagtagct acactggata gtgttgattc ggtaatggcg 300 gcaatcgtcg gcgcggctgg tctattacca actttggcgg ctgctaaagc cggtaaaacc 360 gtattgctgg caaataaaga agcgttggtg atgtccggcg atatttttat gaaagcggtt 420 accgagtccg gtgcccattt gctgccgatc gatagcgagc ataatgccat ttttcaatgc 480 atgccggcag attactgtgc gggtcaagag gctaaggagg cgcggcgaat tttgttgact 540 gcctcgggtg gcccgttcag aactaagccg gtagaagagt tggtcgatgt cactccggat 600 caagccgtcg cgcatccgaa ttgggatatg gggcgtaaga tttctgtcga ttctgcgacg 660 atgatgaata aagggcttga attgattgaa gcctgtttat tgttcaatat gtcgccggat 720 aaaattcagg tggtgatcca tccgcaaagc gtgattcatt caatggtcga ttatgtcgac 780 ggcactgtgt tggcgcaaat gggtaacccc gatatgcgaa tacccattgc gcatgcgatg 840 gcgtggccgg aacgcttcga ctccggtgcg gcgccgctga atatattcga cgttaagcac 900 atggatttcg aacaacccga tcttcagcgt ttcccttgtt tacgcttggc gattgaagcc 960 gtcgaggcag gcggtattat gccggctgtg ttaaatgccg ctaatgaaat cgcggttgct 1020 gcctttttgg acgagaaagt ccgttttacc gacatccctt acattatga acggagcatg 1080 catcaattcg aagccgatcc ggcggatacg ctggatattg tattggcagc cgatagcaaa 1140 gcccgggaag tggctgagcg tatcgtcgaa gaacttaagg t 1181 <210> 7 <211> 20 <212> DNA <213> Unknown <220> <223> pAWP89-For <400> 7 tagttgtcgg gaagatgcgt 20 <210> 8 <211> 20 <212> DNA <213> Unknown <220> <223> pAWP89-Rev <400> 8 agctgtttcc tgtgtgaata 20 <210> 9 <211> 36 <212> DNA <213> Unknown <220> <223> agB.s-For <400> 9 ttcacacagg aaacagctat ggcgggtgtt tctgcg 36 <210> 10 <211> 27 <212> DNA <213> Unknown <220> <223> agB.s-Rev <400> 10 actcagatct tacagcggca gcggttc 27 <210> 11 <211> 36 <212> DNA <213> Unknown <220> <223> ispA-20Z-For <400> 11 ccgctgtaag atctgagtac ctctagaaaa taagga 36 <210> 12 <211> 38 <212> DNA <213> Unknown <220> <223> ispA-20Z-Rev <400> 12 gcatcttccc gacaactatt aatgatctcg ctggataa 38 <210> 13 <211> 53 <212> DNA <213> Unknown <220> <223> ribB-KpnI-For <400> 13 ctggtctgtt tgtggtacag gaaacagcta tgaatcagac gctactttcc tct 53 <210> 14 <211> 40 <212> DNA <213> Unknown <220> <223> ribB-KpnI-Rev <400> 14 cgtagatctt ctagaggtac tcagctggct ttacgctcat 40 <210> 15 <211> 20 <212> DNA <213> Unknown <220> <223> ribB-G108S-Rev <400> 15 ggcagaaacc gaggtagtca 20 <210> 16 <211> 20 <212> DNA <213> Unknown <220> <223> ribB-G108S-For <400> 16 tgactacctc ggtttctgcc 20 <210> 17 <211> 74 <212> DNA <213> Unknown <220> <223> ispG-For <400> 17 ttgcgcgtga tacgcgtaca gcaatagaga atataaacac taaggaggtc aaacatgtca 60 atcagcccaa gaaa 74 <210> 18 <211> 38 <212> DNA <213> Unknown <220> <223> ispG-Rev <400> 18 ccggtgagct cgcatgcact actgagctgt ggttccgt 38 <210> 19 <211> 82 <212> DNA <213> Unknown <220> <223> dxs-20Z-For <400> 19 gagatcatta atacgcgtac aatccccata tctcacaaaa tatataagga ggtcaacatg 60 aaaatcacag gaaatttccc cc 82 <210> 20 <211> 37 <212> DNA <213> Unknown <220> <223> dxs-20Z-Rev <400> 20 ccggtgagct cgcatgcatc acgcgcaaaa ttgctcg 37 <210> 21 <211> 49 <212> DNA <213> Unknown <220> <223> ribB-89-For <400> 21 cggaaccaca gccagtagag gaaacagcta tgaatcagac gctactttc 49 <210> 22 <211> 50 <212> DNA <213> Unknown <220> <223> ribB-DSAG-Rev <400> 22 accagcacta ccagcactac cagcactatc gctggcttta cgctcatgtg 50 <210> 23 <211> 53 <212> DNA <213> Unknown <220> <223> ispC-DSGA-For <400> 23 gatagtgctg gtagtgctgg tagtgctggt aaaggtattt gtattttggg cgc 53 <210> 24 <211> 41 <212> DNA <213> Unknown <220> <223> ispC-89-Rev <400> 24 gcatcttccc gacaactatt aacgcttaag ttcttcgacg a 41

Claims (10)

전나무(Abies hrandis) 유래의 서열번호 1의 염기서열로 이루어진 알파-비사볼렌 합성효소(α-bisabolene synthaes, agBs); 서열번호 2의 염기서열로 이루어진 파네실 디포스페이트 합성 효소(farnesyl diphosphate synthase, ispA); 서열번호 3의 염기서열로 이루어진 1-데옥시-덱실룰로스-5-포스페이트 합성효소 (1-deoxy-Dxylulose-5-phosphate synthase : dxs); 서열번호 4의 염기서열로 이루어진 (E)-4-하이드록시-3-메틸부트-2-에닐-디포스페이트 합성효소 ((E)-4-hydroxy-3-methylbut-2-enyl-diphosphate synthase, ispG); 서열번호 5의 염기서열로 이루어진 nDXP 효소 (RibB-G108S); 및 서열번호 6으로 이루어진 링커 DSAGSAGSAG와 결합된 1-데옥시-D-자일룰로스-5-포스페이트 환원효소(1-deoxy-Dxylulos 5-phosphate reductase, ispC);를 코딩하는 유전자가 도입 또는 증폭되어, 알파-비사볼렌(α-bisabolene) 생산능을 가지는 형질전환된 메탄자화균 메틸로마이크로비움 알칼리필리움 20Z(Methylomicrobium alcaliphilum 20Z).alpha-bisabolene synthaes (a-bisabolene synthaes, agBs) consisting of the nucleotide sequence of SEQ ID NO: 1 derived from fir trees ( Abies hrandis); Farnesyl diphosphate synthase (ispA) consisting of the nucleotide sequence of SEQ ID NO: 2; 1-deoxy-dexylulose-5-phosphate synthase consisting of the nucleotide sequence of SEQ ID NO: 3 (1-deoxy-Dxylulose-5-phosphate synthase: dxs); (E)-4-hydroxy-3-methylbut-2-enyl-diphosphate synthase ((E)-4-hydroxy-3-methylbut-2-enyl-diphosphate synthase consisting of the nucleotide sequence of SEQ ID NO: 4; ispG); nDXP enzyme consisting of the nucleotide sequence of SEQ ID NO: 5 (RibB-G108S); And 1-deoxy-D-xylulose-5-phosphate reductase (1-deoxy-Dxylulos 5-phosphate reductase, ispC) coupled to the linker DSAGSAGSAG consisting of SEQ ID NO: 6; a gene encoding a gene is introduced or amplified , , alpha-bisabolene (α-bisabolene) transformed methanogenic bacterium Methylomicrobium alkaline phyllium 20Z (Methylomicrobium alcaliphilum 20Z) having a production ability. 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 제 1항의 메탄자화균 또는 이의 배양액; 및 기질로서 메탄 또는 메탄올을 포함하는 알파-비사볼렌(α-bisabolene) 생산용 조성물.The methanogen of claim 1 or a culture solution thereof; And alpha-bisabolene (α-bisabolene) production composition comprising methane or methanol as a substrate. 제 7항에 있어서,
상기 조성물은 1 내지 50 부피%의 메탄 또는 0.1 내지 1 중량%로 메탄올을 기질로 포함하는 것을 특징으로 하는 알파-비사볼렌(α-bisabolene) 생산용 조성물.
8. The method of claim 7,
The composition is alpha-bisabolene (α-bisabolene) production composition, characterized in that it contains 1 to 50% by volume of methane or 0.1 to 1% by weight of methanol as a substrate.
제 1항의 메탄자화균을, 메탄 또는 메탄올이 포함된 배지에서 배양하여, 메탄 기질로 부터의 알파-비사볼렌(α-bisabolene) 생산 방법.The method for producing alpha-bisabolene from a methane substrate by culturing the methanogen of claim 1 in a medium containing methane or methanol. 제 9항에 있어서,
상기 메탄 또는 메탄올은 배양액에 1 내지 50 부피%의 메탄 또는 0.1 내지 1 중량%의 메탄올을 첨가하여 수행하는 것인 알파-비사볼렌(α-bisabolene)의 생산 방법.
10. The method of claim 9,
The methane or methanol is a method of producing alpha-bisabolene (α-bisabolene) by adding 1 to 50% by volume of methane or 0.1 to 1% by weight of methanol to the culture medium.
KR1020190130147A 2019-10-18 2019-10-18 Transformed methanotrophs for producing α-bisabolene production from methane and uses thereof KR102346076B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190130147A KR102346076B1 (en) 2019-10-18 2019-10-18 Transformed methanotrophs for producing α-bisabolene production from methane and uses thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190130147A KR102346076B1 (en) 2019-10-18 2019-10-18 Transformed methanotrophs for producing α-bisabolene production from methane and uses thereof

Publications (2)

Publication Number Publication Date
KR20210046912A KR20210046912A (en) 2021-04-29
KR102346076B1 true KR102346076B1 (en) 2022-01-04

Family

ID=75728156

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190130147A KR102346076B1 (en) 2019-10-18 2019-10-18 Transformed methanotrophs for producing α-bisabolene production from methane and uses thereof

Country Status (1)

Country Link
KR (1) KR102346076B1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150315599A1 (en) * 2012-12-07 2015-11-05 Ginkgo Bioworks, Inc Methods and Systems for Methylotrophic Production of Organic Compounds

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102165641B1 (en) 2017-10-30 2020-10-15 서강대학교산학협력단 Composition for the production of propanol containing methanotroph and propanol production method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150315599A1 (en) * 2012-12-07 2015-11-05 Ginkgo Bioworks, Inc Methods and Systems for Methylotrophic Production of Organic Compounds

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BOHLMANN et al., Proc. Natl. Acad. Sci. USA, Vol. 95, pp. 6756-6761 (1998)*
Lee et al., Biofuels, Bioprod. Bioref. Vol.10, pp.848-863 (2016)*

Also Published As

Publication number Publication date
KR20210046912A (en) 2021-04-29

Similar Documents

Publication Publication Date Title
EP2024504B1 (en) Production of isoprenoids
DK2021486T3 (en) System for the production of bio-organic compounds
US9969999B2 (en) Method for producing alpha-santalene
CN103243065B (en) Bacterial strain for producing farnesene and application of bacterial strain
US8703454B2 (en) Method for producing (+)-zizaene
US20160017374A1 (en) Compositions and methods for biological production of isoprene
BRPI0713105A2 (en) method to produce an isoprenoid, and, host cell
EP2152854A2 (en) Methods for the direct conversion of carbon dioxide into a hydrocarbon using a metabolically engineered photosynthetic microorganism
WO2012135591A2 (en) Microbial isoprenoid production using a heterologous dxp pathway
CN106906201A (en) A kind of Terpene synthase for producing nerolidol and its application
WO2013096863A1 (en) Constructs and methods for improved isoprene biosynthesis
CN106987578B (en) Terpene synthase for producing koraiol and application thereof
KR102346076B1 (en) Transformed methanotrophs for producing α-bisabolene production from methane and uses thereof
KR102286815B1 (en) Transformed methanotrophs for producing a-humulene production from methane and uses thereof
CN107083378A (en) A kind of Terpene synthase for producing Longiborneol and its application
AU2012202630B2 (en) Production of isoprenoids
CN113025546B (en) Method for producing tyrosol by converting L-tyrosine through multienzyme cascade
KR20210045640A (en) Method for producing gamma-butyric acid using methanotrophic bacteria
Melis Andreas Zurbriggen, Henning Kirst &

Legal Events

Date Code Title Description
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant