KR102340838B1 - 투과도 가변 디바이스 - Google Patents

투과도 가변 디바이스 Download PDF

Info

Publication number
KR102340838B1
KR102340838B1 KR1020180105601A KR20180105601A KR102340838B1 KR 102340838 B1 KR102340838 B1 KR 102340838B1 KR 1020180105601 A KR1020180105601 A KR 1020180105601A KR 20180105601 A KR20180105601 A KR 20180105601A KR 102340838 B1 KR102340838 B1 KR 102340838B1
Authority
KR
South Korea
Prior art keywords
liquid crystal
less
degrees
layer
transmittance
Prior art date
Application number
KR1020180105601A
Other languages
English (en)
Other versions
KR20200027373A (ko
Inventor
임은정
벨리아에프 세르게이
김민준
오동현
유정선
김남규
김진홍
이현준
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to KR1020180105601A priority Critical patent/KR102340838B1/ko
Priority to TW108131953A priority patent/TWI722556B/zh
Priority to PCT/KR2019/011380 priority patent/WO2020050612A1/ko
Priority to EP19857593.8A priority patent/EP3848738B1/en
Priority to CN201980056618.0A priority patent/CN112639551B/zh
Priority to US17/270,090 priority patent/US11630330B2/en
Priority to JP2021507680A priority patent/JP7222172B2/ja
Publication of KR20200027373A publication Critical patent/KR20200027373A/ko
Application granted granted Critical
Publication of KR102340838B1 publication Critical patent/KR102340838B1/ko
Priority to US18/119,416 priority patent/US20230213788A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Polarising Elements (AREA)

Abstract

본 출원은 투과도 가변 디바이스에 대한 것이다. 본 출원에서는 투과도 가변 특성이 우수하면서, 크로스톡(crosstalk) 현상, 레인보우(rainbow) 현상 또는 미러링(mirroring) 현상 등과 같은 문제를 유발하지 않아 다양한 용도로의 적용이 가능한 투과도 가변 디바이스를 제공할 수 있다.

Description

투과도 가변 디바이스{Transmission Variable Device}
본 출원은 투과도 가변 디바이스에 관한 것이다.
액정 화합물 등을 투과도를 가변시킬 수 잇는 디바이스가 알려져 있다. 예를 들면, 특허문헌 1은, 액정 호스트 물질(Liquid Crystal Host material)과 이색성 염료 게스트(dichroic dye guest)를 적용한 소위 GH셀(Guest host cell)을 사용한 투과도 가변 디바이스가 알려져 있다.
이러한 디바이스의 용도는 점차 확대되고 있으며, 예를 들면, 상기 디바이스는, 안경 또는 선글라스 등의 아이웨어(eyewear), 모바일 기기, 가상 현실(VR: Virtual Reality)용 기기나 증강 현실(AR: Augmented Reality)용 기기 또는 차량의 창문 등과 같은 웨어러블(wearable) 디바이스나 야외에서도 적용되는 기기에도 사용될 수 있다.
액정 화합물을 적용하여 투과도를 조절하는 기기의 경우 기본적으로 일정 수준 이상의 편광이 생성되게 되는데, 이러한 디바이스는 사용 환경에 따라서 노면 또는 구조물, 건물 등에 의한 반사광이 일부 편광성을 가지는 것에 의해서 크로스톡(crosstalk) 현상, 레인보우(rainbow) 현상 또는 미러링(mirroring) 현상 등과 같은 문제를 유발한다.
유럽 공개특허 제0022311호
본 출원은 투과도 가변 디바이스에 대한 것이다. 본 출원에서는 크로스톡(crosstalk) 현상, 레인보우(rainbow) 현상 또는 미러링(mirroring) 현상 등과 같은 문제를 유발하지 않아 다양한 용도로의 적용이 가능한 투과도 가변 디바이스를 제공하는 것을 목적으로 한다.
본 명세서에서 정의하는 각도는 제조 오차(error) 또는 편차(variation) 등의 오차를 감안하여 이해되어야 한다. 예를 들어, 본 명세서에서 용어 수직, 평행, 직교 또는 수평 등은, 목적 효과를 손상시키지 않는 범위에서의 실질적인 수직, 평행, 직교 또는 수평을 의미하고, 예를 들면, 상기 각각의 경우는, 약 ±10도 이내의 오차, 약 ±5도 이내의 오차, 약 ±3도 이내의 오차, 약 ±2도 이내의 오차, 약 ±1도 이내의 오차 또는 약 ±0.5도 이내의 오차를 포함할 수 있다.
본 명세서에서 언급하는 물성 중에서 측정 온도가 해당 물성에 영향을 미치는 경우에 특별히 달리 규정하지 않는 한, 상기 물성은 상온에서 측정한 물성이다.
본 명세서에서 용어 상온은 특별히 가온되거나 감온되지 않은 상태에서의 온도로서, 약 10℃ 내지 30℃의 범위 내의 어느 한 온도, 예를 들면, 약 15℃ 이상, 18℃ 이상, 20℃ 이상 또는 약 23℃ 이상이면서, 약 27℃ 이하의 온도를 의미할 수 있다. 또한, 특별히 달리 규정하지 않는 한, 본 명세서에서 언급하는 온도의 단위는 ℃이다.
본 명세서에서 언급하는 위상차, 굴절률 및 굴절률 이방성 등은, 특별히 달리 규정하지 않는 한 약 550 nm 파장의 광에 대한 물리량이다.
특별히 달리 규정하지 않는 한, 본 명세서에서 언급하는 어느 2개의 방향이 이루는 각도는 상기 두 개의 방향이 이루는 예각 내지 둔각 중 예각이거나, 또는 시계 방향 및 반시계 방향으로 측정된 각도 중에서 작은 각도일 수 있다. 따라서, 특별히 달리 규정하지 않는 한, 본 명세서에서 언급하는 각도는 양수이다. 다만, 경우에 따라서 시계 방향 또는 반시계 방향으로 측정된 각도간의 측정 방향을 표시하기 위해서 상기 시계 방향으로 측정된 각도를 양수로 표시하고, 반시계 방향으로 측정된 각도를 음수로 표기할 수도 있다.
본 출원에서는 특정 위상차 필름을 특정 배치로 적용함으로써, 전술한 크로스톡(crosstalk) 현상, 레인보우(rainbow) 현상 또는 미러링(mirroring) 현상 등과 같은 문제를 유발하지 않는 투과도 가변 디바이스를 제공할 수 있다.
본 출원에서 용어 투과도 가변 디바이스는, 적어도 2개 이상의 다른 광의 상태의 사이를 스위칭할 수 있는 디바이스를 의미할 수 있다. 상기에서 다른 광의 상태는, 적어도 투과도가 다른 상태를 의미할 수 있다.
상기 투과도 가변 디바이스가 구현할 수 있는 상태의 예로는, 투과 및 차단 모드 상태가 예시될 수 있다. 일 예시에서 본 출원의 투과도 가변 디바이스는 적어도 상기 투과 및 차단 모드 상태의 사이를 스위칭할 수 있는 디바이스일 수 있다.
상기 투과 모드 상태에서의 투과도 가변 디바이스의 투과도가 적어도 20% 이상, 25% 이상, 30% 이상, 35% 이상, 40% 이상, 45% 이상, 50% 이상, 55% 이상, 60% 이상, 65% 이상, 70% 이상, 75% 이상 또는 80% 이상 정도일 수 있다. 또한, 상기 차단 모드 상태에서 투과도 가변 디바이스의 투과도는 60% 이하, 55% 이하, 50% 이하, 45% 이하, 40% 이하, 35% 이하, 30% 이하, 25% 이하, 20% 이하, 15% 이하, 10% 이하 또는 5% 이하일 수 있다. 투과 모드에서 투과도는 높을수록 유리하며, 차단 모드에서는 투과도가 낮을수록 유리하기 때문에, 상기 투과 모드 상태의 투과도의 상한과 차단 모드 상태의 투과도의 하한은 특별히 제한되지 않고, 일 예시에서 상기 투과 모드 상태의 투과도의 상한은 약 100%이고, 차단 모드 상태에서의 투과도의 하한은 약 0%일 수 있다.
일 예시에서 상기 투과 모드 상태와 차단 모드 상태의 사이를 스위칭할 수 있는 투과도 가변 디바이스에서 상기 투과 모드 상태에서의 투과도와 차단 모드 상태에서의 투과도의 차이(투과 모드 - 차단 모드)는, 15% 이상, 20% 이상, 25% 이상, 30% 이상, 35% 이상 또는 40% 이상일 수 있거나, 90% 이하, 85% 이하, 80% 이하, 75% 이하, 70% 이하, 65% 이하, 60% 이하, 55% 이하, 50% 이하 또는 45% 이하일 수 있다.
또한, 일 예시에서 상기 투과 모드 상태에서의 최대 투과도(Tmax)과 상기 차단 모드 상태에서의 최소 투과도(Tmin)의 비율(Tmax/Tmin)은, 약 1.5 내지 10의 범위 내일 수 있다. 상기 비율은 다른 예시에서 약 2 이상, 2.5 이상, 3 이상, 3.5 이상, 4 이상, 4.5 이상, 5 이상, 6 이상 또는 6.5 이상이거나, 약 9.5 이하, 약 9 이하, 약 8.5 이하, 약 8 이하, 약 7.5 이하, 약 7 이하, 약 6.5 이하, 약 6 이하, 약 5.5 이하, 약 5 이하, 약 4.5 이하, 약 4 이하, 약 3.5 이하, 약 3 이하, 약 2.5 이하 또는 약 2 이하일 수 있다.
상기 투과도는, 예를 들면, 직진광 투과도일 수 있다. 직진광 투과도는, 상기 디바이스로 입사한 광에 대한 상기 입사 방향과 동일 방향으로 투과된 광의 비율의 백분율이다. 예를 들어, 상기 디바이스가 필름 또는 시트 형태라면, 상기 필름 또는 시트 표면의 법선 방향과 나란한 방향으로 입사한 광 중에서 역시 상기 법선 방향과 나란한 방향으로 상기 디바이스를 투과한 광의 백분율을 상기 투과도로 정의할 수 있다.
상기 투과도는, 각각 가시광 영역, 예를 들면, 약 400 내지 700 nm 또는 약 380 내지 780 nm 범위 내의 어느 한 파장에 대한 투과도 또는 반사율이거나, 상기 가시광 영역 전체에 대한 투과도 또는 반사율이거나, 상기 가시광 영역 전체에 대한 투과도 또는 반사율 중에서 최대 또는 최소 투과도 또는 반사율이거나, 상기 가시광 영역 내의 투과도의 평균치 또는 반사율의 평균치일 수 있다. 또한, 다른 예시에서 상기 투과도는 약 550 nm 파장의 광에 대한 투과도일 수 있다.
본 출원의 투과도 가변 디바이스는, 상기 투과 및 차단 모드 상태에서 선택된 어느 한 상태 및 다른 한 상태의 적어도 2개 이상의 상태의 사이를 스위칭할 수 있도록 설계될 수 있다. 필요하다면, 상기 상태 외에 다른 상태, 예를 들면, 상기 투과 모드 및 차단 모드 상태의 중간 투과도의 상태 등을 포함한 기타 제 3의 상태 또는 그 이상의 상태도 구현될 수 있다.
상기와 같은 투과도 가변 디바이스의 스위칭은, 외부 신호의 인가, 예를 들면, 전압 신호의 인가 여부에 따라 조절할 수 있다. 예를 들면, 전압과 같은 외부 신호의 인가가 없는 상태에서 투과도 가변 디바이스는 상기 기술한 상태 중에서 어느 한 상태를 유지하다가, 전압이 인가되면 다른 상태로 스위칭될 수 있다. 인가되는 전압의 세기, 주파수 및/또는 형태를 변경함으로써 또 모드의 상태를 변경하거나, 혹은 상기 제 3 의 다른 모드 상태를 구현할 수도 있다.
본 출원의 투과도 가변 디바이스는, 상기와 같은 스위칭을 위해서 적어도 투과도 가변층을 포함할 수 있다. 상기 투과도 가변층은, 일 예시에서 편광 성분을 생성하는 층일 수 있다. 이러한 투과도 가변층의 예로는, 능동 액정층이 있다.
본 출원에서 용어 능동 액정층은, 액정 화합물을 적어도 포함하는 층으로서, 상기 액정 화합물의 배향 상태를 외부 신호 인기 등을 통해 제어할 수 있는 액정층을 의미할 수 있다. 다만, 능동 액정층의 적용은 본 출원의 하나의 예시이며, 필요하다면, 다른 공지의 투과도 가변층, 예를 들면, 전기 변색 물질층, 광 변색 물질층, 전기 영동 물질층 또는 분산 입자 배향층 등이 사용될 수도 있다.
능동 액정층은 액정 화합물을 포함하는 층이다. 본 명세서에서 용어 능동 액정층의 범위에는, 외부 신호 인가 등을 통해 그 배향을 제어할 수 있는 액정 화합물을 포함하고 있는 층이 모드 포함되며, 예를 들어 후술하는 바와 같이 액정 화합물(액정 호스트)과 이색성 염료를 포함하는 소위 게스트 호스트층도 본 명세서에서 규정하는 액정층의 일종이다. 액정 화합물로는 외부 신호의 인가에 의하여 그 배향 방향이 변경될 수 있는 것이라면 모든 종류의 액정 화합물을 사용할 수 있다. 예를 들며, 액정 화합물로는 스멕틱(smectic) 액정 화합물, 네마틱(nematic) 액정 화합물 또는 콜레스테릭(cholesteric) 액정 화합물 등을 사용할 수 있다. 또한, 외부 신호의 인가에 의하여 그 배향 방향이 변경될 수 있도록, 액정 화합물은 예를 들어 중합성기 또는 가교성기를 가지지 않는 화합물일 수 있다.
상기 액정층은 유전율 이방성이 양수 또는 음수인 액정 화합물을 포함하건, 혹은 상기 액정층은 상기 언급된 유전율 이방성을 나타낼 수 있다. 유전율 이방성의 절대값은 본 출원의 목적을 고려하여 적절히 선택될 수 있다. 용어 「유전율 이방성(△ε)」은 수평 유전율(ε//)과 수직 유전율(ε⊥)의 차이(ε// - ε⊥)를 의미할 수 있다. 본 명세서에서 용어수평 유전율(ε//)은 액정 분자의 방향자와 인가 전압에 의한 전기장의 방향이 실질적으로 수평하도록 전압을 인가한 상태에서 상기 전기장의 방향을 따라 측정한 유전율 값을 의미하고, 수직 유전율(ε⊥)은 액정 분자의 방향자와 인가 전압에 의한 전기장의 방향이 실질적으로 수직하도록 전압을 인가한 상태에서 상기 전기장의 방향을 따라 측정한 유전율 값을 의미한다.
상기 액정층은 굴절률 이방성(n△)이 약 0.03 내지 0.2의 범위 내인 액정 화합물을 포함하거나, 상기 액정층이 상기 언급된 굴절률 이방성을 나타낼 수 있다. 본 출원에서 말하는 굴절률 이방성(n△)은 이상 굴절률(ne, extraordinary refractive index) 및 정상 굴절률(no, ordinary refractive index)의 차이(ne-no)이고, 이는 Abbe 굴절계를 이용하여 확인할 수 있는데, 그 구체적인 방식은 하기 실시예에 개시된 방법에 따른다.
액정층의 구동 모드는, 예를 들어, DS(Dynamic Scattering) 모드, ECB(Electrically Controllable Birefringence) 모드, IPS(In-Plane Switching) 모드, FFS(Fringe-Field Wwitching)모드, OCB(Optially Compensated Bend) 모드, VA(Vertical Alignment) 모드, MVA(Multi-domain Vertical Alignment) 모드, PVA(Patterned Vertical Alignment) 모드, HAN(Hybrid Aligned Nematic) 모드, TN(Twisted Nematic) 모드, STN (Super Twisted Nematic) 모드 등을 예시할 수 있다.
투과도 가변층인 능동 액정층은, 광투과도 가변 특성을 조절한다는 측면에서, 상기 액정 화합물과 함께 이색성 염료를 추가로 포함할 수 있다. 이러한 경우에 능동 액정층은, 후술하는 게스트호스트 액정층(Guest host liquid crystal cell)으로 불릴 수 있다. 본 명세서에서 용어 「염료」는, 가시광 영역, 예를 들면, 400 nm 내지 700 nm 파장 범위 내에서 적어도 일부 또는 전체 범위 내의 광을 집중적으로 흡수 및/또는 변형시킬 수 있는 물질을 의미할 수 있고, 용어 「이색성 염료」는 상기 가시광 영역의 적어도 일부 또는 전체 범위에서 광의 이방성 흡수가 가능한 물질을 의미할 수 있다. 이러한 염료로는, 예를 들면, 아조 염료 또는 안트라퀴논 염료 등으로 공지되어 있으나, 이에 제한되는 것은 아니다.
하나의 예시에서, 상기 투과도 가변층은 액정 및 이색성 염료를 포함하는 액정층으로서, 소위 게스트호스트 액정층(Guest host liquid crystal cell)일 수 있다. 용어 「GHLC층」은, 액정의 배열에 따라 이색성 염료가 함께 배열되어, 이색성 염료의 정렬 방향과 상기 정렬 방향의 수직한 방향에 대하여 각각 비등방성 광 흡수 특성을 나타내는 기능성 층을 의미할 수 있다. 예를 들어, 이색성 염료는 빛의 흡수율이 편광 방향에 따라서 달라지는 물질로서, 장축 방향으로 편광된 빛의 흡수율이 크면 p형 염료로 호칭하고 단축 방향으로 편광된 빛의 흡수율이 크면 n형 염료라고 호칭할 수 있다. 하나의 예시에서, p형 염료가 사용되는 경우, 염료의 장축 방향으로 진동하는 편광은 흡수되고 염료의 단축 방향으로 진동하는 편광은 흡수가 적어 투과시킬 수 있다. 이하 특별한 언급이 없는 한 이색성 염료는 p형 염료인 것으로 가정한다.
상기 게스트호스트 액정층 내에 포함되는 이색성 염료의 비율은 특별히 제한되지 않고, 목적하는 투과도를 고려하여 적정 범위로 설정될 수 있다. 통상 이색성 염료 및 액정 화합물의 혼화성 등을 고려하여 상기 이색성 염료는 약 0.1 중량% 내지 4 중량% 정도의 비율로 액정층 내에 포함될 수 있다.
게스트호스트 액정층을 투과도 가변층으로 포함하는 광변조 필름층은 능동형 편광자(Active Polarizer)로 기능할 수 있다. 본 명세서에서 용어 「능동형 편광자(Active Polarizer)」는 외부 신호 인가에 따라 비등방성 광흡수를 조절할 수 있는 기능성 소자를 의미할 수 있다. 이러한 능동형 편광자는 후술하는 수동형 편광자가 외부 신호 인가와 무관하게 일정한 광흡수 내지 광반사 특성을 가지는 것과 구별될 수 있다. 상기 게스트호스트 액정층은 액정 및 이색성 염료의 배열을 조절함으로써 상기 이색성 염료의 배열 방향과 평행한 방향의 편광 및 수직한 방향의 편광에 대한 비등방성 광 흡수를 조절할 수 있다. 액정 및 이색성 염료의 배열은 자기장 또는 전기장과 같은 외부 신호의 인가에 의하여 조절될 수 있으므로, 게스트호스트 액정층은 외부 신호 인가에 따라 비등방성 광 흡수를 조절할 수 있다.
일 예시에서 상기 능동 액정층은, 적어도 수직 배향 모드, 수평 배향 모드 및 경사 배향 모드 중 어느 하나의 상태와 다른 상태의 사이를 스위칭할 수 있도록 구성될 수 있다. 상기 수직, 수평 및 경사 배향 모드의 의미는 공지된 내용에 따른다.
따라서, 예를 들어, 용어 수평 배향 상태는 투과도 가변층인 능동 액정층의 방향자 또는 상기 액정층 내의 액정 화합물의 방향자가 상기 가변층(액정층)에 대략 평행하게 배열된 상태를 의미할 수 있다. 이러한 경우에 상기 가변층(액정층)의 측면에서 상기 방향자와 상기 가변층이 이루는 각도는 대략 0도 내지 10도 또는 대략 0도 내지 5도의 범위 내이거나, 또는 약 0도일 수 있다.
또한, 예를 들어, 용어 수직 배향 상태는 투과도 가변층인 능동 액정층의 방향자 또는 상기 액정층 내의 액정 화합물의 방향자가 상기 가변층(액정층)의 평면에 대하여 대략 수직하게 배열된 상태이고, 예를 들면, 상기 가변층(액정층)의 측면에서 상기 방향자와 상기 가변층(액정층)이 이루는 각도는, 예를 들어, 약 80도 내지 100도 또는 85도 내지 95도의 범위 내이거나, 대략 약 90도를 이룰 수 있다.
또한, 예를 들어, 용어 경사 배향 상태는, 상기 수직 배향 상태 및 수평 배향 상태의 중간 상태의 배향 상태로서, 상기 가변층(액정층)의 측면에서 상기 가변층(액정층)의 방향자 또는 상기 액정층 내의 액정 화합물의 방향자가 상기 가변층(액정층)과 이루는 각도가 0도 초과이면서 90도 미만인 경우, 혹은 대략 10도 내지 80도의 범위 내인 경우를 의미할 수 있다.
본 명세서에서 액정 분자 또는 액정 화합물의 방향자는 능동 액정층의 광축(Optical axis) 또는 지상축(Slow axis)을 의미할 수 있다. 상기 액정 분자의 방향자는 액정 분자가 막대(rod) 모양인 경우 장축 방향을 의미할 수 있고, 액정 분자가 원판(discotic) 모양인 경우 원판 평면의 법선 방향의 축을 의미할 수 있다. 능동 액정층 내에 서로 방향자가 상이한 액정 화합물이 복수 존재하는 경우에 상기 방향자는 벡터합이다.
하나의 예시에서 상기 투과도 가변층인 능동 액정층은 적어도 트위스트 배향 모드를 구현할 수 있도록 설계될 수 있다. 용어 트위스트 배향 모드는 액정층 내에서 액정 화합물들의 방향자가 가상의 나선축을 따라서 꼬이면서 층을 이루며 배향한 나선형의 구조를 의미할 수 있다. 상기 트위스트 배향 모드는, 전술한 수직, 수평 또는 경사 배향 모드에서 구현될 수 있는데, 즉, 수직 트위스트 배향 모드는 개개의 액정 화합물이 수직 배향된 상태로 나선축을 따라 꼬이면서 층을 이루는 상태이고, 수평 트위스트 배향 모드는 개개의 액정 화합물이 수평 배향된 상태로 나선축을 따라 꼬이면서 층을 이루는 상태이며, 경사 트위스트 배향 모드는 개개의 액정 화합물이 경사 배향된 상태로 나선축을 따라 꼬이면서 층을 이루는 상태이다.
상기 트위스트 배향 모드에서 액정층의 두께(d)와 피치(p)의 비율(d/p)은 1 이하일 수 있다. 상기 비율(d/p)이 1을 초과하면, 핑거 도메인(finger domain) 등이 발생하는 문제가 있을 수 있기 때문에 가급적 상기 범위로 조절될 수 있다. 상기 비율(d/p)의 하한은, 특별히 제한되지 않지만, 약 0.6 이상 또는 약 0.6 초과일 수 있다. 상기에서 액정층의 두께(d)는 액정셀의 셀 갭 (cell gap)과 같은 의미일 수 있다.
트위스트 배향 모드의 액정층의 피치(p)는, Wedge cell을 이용한 계측 방법으로 측정할 수 있고, 구체적으로는 D. Podolskyy 등의 Simple method for accurate measurements of the cholesteric pitch using a stripe-wedge Grandjean-Cano cell (Liquid Crystals, Vol. 35, No. 7, July 2008, 789-791)에 기재된 방식으로 측정할 수 있다.
상기 액정층이 트위스트 모드를 구현할 수 있도록 상기 액정층은 소위 키랄제를 추가로 포함할 수 있다. 즉, 상기 능동 액정층은, 액정 화합물과 키랄제를 적어도 포함하거나, 액정 화합물과 이색성 염료와 키랄제를 적어도 포함할 수 있다. 액정층에 포함될 수 있는 키랄제(chiral agent 혹은 chiral dopant)로는, 액정성, 예를 들면, 네마틱 규칙성을 손상시키지 않고, 목적하는 회전(twisting)을 유도할 수 있는 것이라면, 특별히 제한되지 않고 사용될 수 있다. 액정 분자에 회전을 유도하기 위한 키랄제는 분자 구조 중에 키랄리티(chirality)를 적어도 포함할 필요가 있다. 키랄제로는, 예를 들면, 1개 또는 2개 이상의 비대칭 탄소(asymmetric carbon)를 가지는 화합물, 키랄 아민 또는 키랄 술폭시드 등의 헤테로원자 상에 비대칭점(asymmetric point)이 있는 화합물 또는 크물렌(cumulene) 또는 비나프톨(binaphthol) 등의 축부제를 가지는 광학 활성인 부위(axially asymmetric, optically active site)를 가지는 화합물이 예시될 수 있다. 키랄제는 예를 들면 분자량이 1,500 이하인 저분자 화합물일 수 있다. 키랄제로는, 시판되는 키랄 네마틱 액정, 예를 들면, Merck사에서 시판되는 키랄 도판트 액정 S-811 또는 BASF사의 LC756 등을 사용할 수도 있다.
키랄제의 적용 비율은, 목적하는 상기 비율(d/p)을 달성할 수 있도록 선택되는 것으로 특별히 제한되지 않는다. 일반적으로 키랄제의 함량(중량%)은, 100 / (HTP (Helixcal Twisting power) × 피치(nm)의 수식으로 계산되고, 이러한 방식을 참조하여 목적하는 피치를 고려하여 적정 비율이 선택될 수 있다.
투과도 가변층의 두께는 각각 본 출원의 목적을 고려하여 적절히 선택될 수 있다. 일 예시에서 상기 투과도 가변층의 두께는, 약 0.01㎛ 이상, 0.1㎛ 이상, 1㎛ 이상, 2㎛ 이상, 3㎛이상, 4㎛이상, 5㎛ 이상, 6㎛ 이상, 7㎛ 이상, 8㎛ 이상, 9㎛ 이상 또는 10㎛ 이상일 수 있다. 이와 같이 두께를 제어함으로써, 모드 상태에 따른 투과도의 차이가 큰 디바이스를 구현할 수 있다. 상기 두께는 두꺼울수록 높은 투과도 및/또는 반사율의 차이를 구현할 수 있어서 특별히 제한되는 것은 아니지만, 일반적으로 약 30㎛이하, 25㎛ 이하, 20㎛ 이하 또는 15㎛ 이하일 수 있다.
본 출원의 디바이스는, 상기 언급된 투과도 가변층의 적어도 일면에 배치된 위상차 필름을 추가로 포함한다. 도 1은 본 출원의 일 예시에 따른 디바이스의 모식도로서 순치 배치된 상기 위상차 필름(100) 및 가변층(200)을 나타낸다.
본 출원에서는 상기 위상차 필름으로서, 광학적으로 큰 비등방성을 가지는 필름을 특정 위치로 배치시킴으로써 소위 레인보우 현상이나, 미러링 현상 및 크로스토크 현상이 없는 디바이스를 제공할 수 있다. 부수적으로 상기 위상차 필름으로서, 기계적 물성 측면에서도 비등방성인 필름을 적용함으로써, 기계적 물성도 우수한 디바이스를 구성할 수 있다.
본 명세서에서 상기 광학적 및 기계적 물성 측면에서 비등방성인 위상차 필름은 비대칭 기판 또는 비대칭 위상차 필름으로 호칭될 수 있다. 상기에서 위상차 필름이 광학적으로 비등방성이라는 것은 후술하는 면내 위상차를 가지는 경우이고, 기계적 물성 측면에서 비등방성이라는 것은 후술하는 물성을 가지는 경우이다.
이하 본 명세서에서 언급하는 위상차 필름의 물성은, 상기 위상차 필름 자체의 물성이거나, 혹은 상기 위상차 필름의 일면에 전극층이 형성된 상태에서의 물성일 수 있다. 이 때 상기 전극층은 상기 위상차 필름이 광학 디바이스에 포함되어 있는 상태에서 형성되어 있는 전극층일 수 있다.
본 명세서에서 언급하는 각 위상차 필름의 물성의 측정은, 본 명세서의 실시예 항목에 기술한 방식에 따라 측정한다.
일 예시에서 상기 위상차 필름의 면내 위상차는, 약 4,000 nm 이상일 수 있다. 상기 면내 위상차는, 550 nm 파장의 광에 대한 값이다.
본 명세서에서 면내 위상차(Rin)는 하기 수식 A로 계산된 값을 의미할 수 있다.
[수식 A]
Rin = d × (nx - ny)
수식 A에서 Rin은 면내 위상차이고, d는 위상차 필름의 두께이며, nx는 위상차 필름의 지상축 방향의 굴절률이고, ny는 진상축 방향의 굴절률로서, 상기 지상축 방향과 직교하는 면내 방향의 굴절률이다.
상기 위상차 필름의 면내 위상차는, 각각 4,500 nm 이상, 5,000nm 이상, 6,000nm 이상, 7,000nm 이상, 8,000nm 이상, 9,000m 이상, 10,000m 이상, 11,000m 이상, 12,000m 이상, 13,000m 이상, 14,000m 이상 또는 15,000m 이상 정도일 수 있다. 또한, 상기 위상차 필름 각각의 면내 위상차는, 약 50,000 nm 이하, 약 40,000 nm 이하, 약 30,000 nm 이하, 20,000 nm이하, 18,000nm 이하, 16,000nm 이하, 15,000 nm이하 또는 12,000 nm이하 정도일 수 있다.
상기와 같은 큰 위상차를 가지는 필름으로는, 소위 고연신 PET(poly(ethylene terephthalate)) 필름 또는 SRF(Super Retardation Film) 등으로 알려진 필름이 대표적으로 알려져 있다. 따라서, 본 출원에서 상기 위상차 필름은, 예를 들면, 폴리에스테르 필름일 수 있다.
상기와 같이 극히 높은 위상차를 가지는 필름은 업계에 공지이고, 이러한 필름은 광학적으로 큰 비등방성은 물론 제조 과정에서의 고연신 등에 의해 기계적 물성도 큰 비대칭성을 나타낸다. 업계에 공지된 상태 상기 위상차 필름의 대표적인 예로는, PET(poly(ethylene terephthalate)) 필름 등과 같은 폴리에스테르 필름이며, 예를 들면, Toyobo사에서 공급되는 상품명 SRF(Super Retardation Film) 계열의 필름이 있다.
일 예시에서 상기 위상차 필름은 면내의 임의의 제 1 방향에서의 연신율(E1)과 상기 제 1 방향과 수직을 이루는 제 2 방향에서의 연신율(E2)의 비율(E1/E2)이 3 이상일 수 있다. 상기 비율(E1/E2)은 다른 예시에서 약 3.5 이상, 4 이상, 4.5 이상, 5 이상, 5.5 이상, 6 이상 또는 6.5 이상일 수 있다. 상기 비율(E1/E2)은 다른 예시에서 약 20 이하, 18 이하, 16 이하, 14 이하, 12 이하, 10 이하, 8 이하 또는 7.5 이하일 수 있다.
본 명세서에서 용어 위상차 필름의 제 1 방향, 제 2 방향 및 제 3 방향은 상기 필름의 면내의 임의의 방향이다. 예를 들어, 위상차 필름이 연신 위상차 필름인 경우에 상기 면내의 방향은 상기 위상차 필름의 MD(Machine Direction) 및 TD(transverse direction) 방향에 의해 형성되는 면내의 방향일 수 있다. 하나의 예시에서 본 명세서에서 기술하는 제 1 방향은, 위상차 필름의 지상축 및 진상축 방향 중 어느 한 방향이고, 제 2 방향은 지상축 및 진상축 방향 중 다른 한 방향일 수 있다. 다른 예시에서 상기 제 1 방향은, 위상차 필름이 연신 위상차 필름인 경우에 MD(Machine Direction) 및 TD(transverse direction) 방향 중 어느 한 방향이고, 제 2 방향은 MD(Machine Direction) 및 TD(transverse direction) 방향 중 다른 한 방향일 수 있다.
하나의 예시에서 본 명세서에서 언급하는 위상차 필름의 제 1 방향은, 상기 TD 방향 또는 지상축 방향일 수 있다.
상기 위상차 필름의 상기 제 1 방향(예를 들면, 전술한 지상축 방향 또는 TD 방향)에서의 연신율이 15% 이상 또는 20% 이상일 수 있다. 상기 연신율은 다른 예시에서 약 25% 이상, 30% 이상, 35% 이상 또는 40% 이상일 수 있거나, 약 60% 이하, 55% 이하, 50% 이하 또는 45% 이하일 수 있다.
하나의 예시에서 상기 위상차 필름은 상기 제 1 및 제 2 방향과 각각 40도 내지 50도의 범위 내의 각도 또는 약 45도를 이루는 제 3 방향에서의 연신율(E3)이 상기 제 1 방향에서의 연신율(E1)에 비해서 크고, 상기 제 3 방향에서의 연신율(E3)과 상기 제 2 방향에서의 연신율(E2)의 비율(E3/E2)이 5 이상일 수 있다.
상기 비율(E3/E2)은 다른 예시에서 5.5 이상, 6 이상, 6.5 이상, 7 이상, 7.5 이상, 8 이상 또는 8.5 이상일 수 있고, 약 20 이하, 18 이하, 16 이하, 14 이하, 12 이하 또는 10 이하일 수 있다.
위상차 필름의 상기 제 3 방향에서의 연신율이 30% 이상일 수 있다. 상기 연신율은 다른 예시에서 약 35% 이상, 40% 이상, 45% 이상, 50% 이상 또는 55% 이상일 수 있거나, 약 80% 이하, 75% 이하, 70% 이하 또는 65% 이하일 수 있다.
상기 위상차 필름은, 상기 제 2 방향에서의 열팽창 계수(CTE2)와 상기 제 1 방향에서의 열팽창 계수(CTE1)의 비율(CTE2/CTE1)이 1.5 이상일 수 있다. 상기 열팽창 계수(CTE1, CTE2)는 각각 40℃ 내지 80℃ 의 온도 범위 내에서 확인되는 값이다. 상기 비율(CTE2/CTE1)은, 다른 예시에서 약 2 이상, 약 2.5 이상, 3 이상 또는 3.5 이상이거나, 10 이하, 9 이하, 8 이하, 7 이하, 6 이하, 5 이하 또는 4 이하일 수 있다.
상기 제 2 방향에서의 열팽창 계수(CTE2)는 5 내지 150 ppm/℃의 범위 내일 수 있다. 상기 열팽창 계수는, 약 10 ppm/℃ 이상, 15 ppm/℃ 이상, 20 ppm/℃ 이상, 25 ppm/℃ 이상, 30 ppm/℃ 이상, 35 ppm/℃ 이상, 40 ppm/℃ 이상, 45 ppm/℃ 이상, 50 ppm/℃ 이상, 약 55ppm/℃ 이상, 60 ppm/℃ 이상, 65 ppm/℃ 이상, 70 ppm/℃ 이상, 75 ppm/℃ 이상 또는 80 ppm/℃ 이상이거나, 140 ppm/℃ 이하, 130 ppm/℃ 이하, 120 ppm/℃ 이하, 100 ppm/℃ 이하, 95 ppm/℃ 이하, 90 ppm/℃ 이하, 85 ppm/℃ 이하, 80 ppm/℃ 이하, 40 ppm/℃ 이하, 30 ppm/℃ 이하 또는 25 ppm/℃ 이하일 수 있다.
상기 위상차 필름은, 상기 제 2 방향에서의 탄성률(YM2)과 상기 제 1 방향에서의 탄성률(YM1)의 비율(YM1/YM2)이 1.5 이상일 수 있다. 상기 비율(YM1/YM2)은, 다른 예시에서 약 2 이상이거나, 10 이하, 9 이하, 8 이하, 7 이하, 6 이하, 5 이하, 4 이하, 3 이하 또는 2.5 이하일 수 있다.
상기 제 1 방향에서의 탄성률(YM1)은, 약 2 내지 10 GPa의 범위 내일 수 있다. 상기 탄성률(YM1)은, 다른 예시에서 약 2.5GPa 이상, 3GPa 이상, 3.5GPa 이상, 4GPa 이상, 4.5GPa 이상, 5GPa 이상 또는 5.5 GPa 이상이거나, 약 9.5GPa 이하, 9GPa 이하, 8.5GPa 이하, 8GPa 이하, 7.5GPa 이하, 7GPa 이하, 6.5GPa 이하 또는 6GPa 이하일 수도 있다.
상기 탄성률은 소위 영률(Young's modulus)을 의미할 수 있다.
상기 위상차 필름은, 상기 제 2 방향에서의 최대 응력(MS2)과 상기 제 1 방향에서의 최대 응력(MS1)의 비율(MS1/MS2)이 1.5 이상일 수 있다. 상기 비율(MS1/MS2)은, 다른 예시에서 약 2 이상이거나, 10 이하, 9 이하, 8 이하, 7 이하, 6 이하, 5 이하, 4 이하, 3 이하 또는 2.5 이하일 수 있다.
상기 제 1 방향(예를 들면, 전술한 지상축 방향 또는 TD 방향)에서의 최대 응력(MS1)은, 약 80 내지 300 MPa의 범위 내일 수 있다. 상기 최대 응력(MS1)은, 다른 예시에서 약 90 MPa 이상, 약 100 MPa 이상, 약 110 MPa 이상, 약 120 MPa 이상, 약 130 MPa 이상, 약 140 MPa 이상, 약 150 MPa 이상, 약 155MPa 이상, 160MPa 이상, 165MPa 이상, 170MPa 이상, 175MPa 이상 또는 180MPa 이상이거나, 약 300 MPa 이하, 약 290 MPa 이하, 약 280 MPa 이하, 약 270 MPa 이하, 약 260 MPa 이하, 약 250 MPa 이하, 약 245MPa 이하, 240MPa 이하, 235MPa 이하, 230MPa 이하, 225MPa 이하, 220MPa 이하, 215MPa 이하, 210MPa 이하, 205 MPa 이하, 200 MPa 이하, 195 MPa 이하 또는 190MPa 이하일 수도 있다.
전술한 바와 같이 상기와 같은 큰 광학적 및 기계적 비대칭성을 가지는 고분자 필름의 대표적인 예는 소위 고연신 폴리에스테르 필름 등으로 알려진 연신 PET(polyethyleneterephtalate) 필름이고, 이러한 필름은 업계에서 쉽게 입수할 수 있다.
통상 연신 PET 필름은 PET계 수지를 용융/압출로 제막하고, 연신하여 제조한 1층 이상의 일축 연신 필름 또는 제막 후 세로 및 가로 연신하여 제조한 1층 이상의 이축 연신 필름이다.
PET계 수지는 통상 반복 단위의 80 몰% 이상이 에틸렌테레프탈레이트로 되는 수지를 의미하고, 다른 디카르복실산 성분과 디올 성분을 포함할 수도 있다. 다른 디카르복실산 성분으로서는, 특별히 한정되는 것은 아니지만, 예를 들면 이소프탈산, p-베타-옥시에톡시벤조산, 4,4'-디카르복시디페닐, 4,4'-디카르복시벤조페논, 비스(4-카르복시페닐)에탄, 아디프산, 세박산 및/또는 1,4-디카르복시시클로헥산 등을 들 수 있다.
다른 디올 성분으로서는, 특별히 한정되는 것은 아니지만, 프로필렌글리콜, 부탄디올, 네오펜틸글리콜, 디에틸렌글리콜, 시클로헥산디올, 비스페놀 A의 에틸렌옥사이드 부가물, 폴리에틸렌글리콜, 폴리프로필렌글리콜 및/또는 폴리테트라메틸렌글리콜 등을 들 수 있다.
상기 디카르복실산 성분이나 디올 성분은 필요에 따라서 2종 이상을 조합하여 사용할 수 있다. 또한, p-옥시벤조산 등의 옥시카르복실산을 병용할 수도 있다. 또한, 다른 공중합 성분으로서, 소량의 아미드 결합, 우레탄 결합, 에테르 결합 및 카르보네이트 결합 등을 함유하는 디카르복실산 성분, 또는 디올 성분이 이용될 수도 있다.
PET계 수지의 제조 방법으로서는, 테레프탈산, 에틸렌글리콜 및/또는 필요에 따라서 다른 디카르복실산 또는 다른 디올을 직접 중축합시키는 방법, 테레프탈산의 디알킬에스테르 및 에틸렌글리콜 및/또는 필요에 따라서 다른 디카르복실산의 디알킬에스테르 또는 다른 디올을 에스테르 교환 반응시킨 후 중축합시키는 방법, 및 테레프탈산 및/또는 필요에 따라서 다른 디카르복실산의 에틸렌글리콜에스테르 및/또는 필요에 따라서 다른 디올에스테르를 중축합시키는 방법 등이 채용된다.
각각의 중합 반응에는, 안티몬계, 티탄계, 게르마늄계 또는 알루미늄계 화합물을 포함하는 중합 촉매, 또는 상기 복합 화합물을 포함하는 중합 촉매를 사용할 수 있다.
중합 반응 조건은 사용되는 단량체, 촉매, 반응 장치 및 목적으로 하는 수지 물성에 따라서 적절하게 선택할 수 있고, 특별히 제한되는 것은 아니지만, 예를 들면 반응 온도는 통상 약 150℃ 내지 약300℃, 약 200℃ 내지 약 300℃ 또는 약 260℃ 내지 약 300℃이다. 또한, 반응 압력은 통상 대기압 내지 약 2.7 Pa이고, 반응 후반에는 감압측일 수 있다.
중합 반응은 디올, 알킬 화합물 또는 물 등의 이탈 반응물을 휘발시킴으로써 진행된다.
중합 장치는 반응조가 하나로 완결되는 것일 수도 있고, 또는 복수의 반응조를 연결한 것일 수도 있다. 이 경우, 통상 중합도에 따라서 반응물은 반응조 사이를 이송되면서 중합된다. 또한, 중합 후반에 횡형 반응 장치를 구비하고, 가열/혼련하면서 휘발시키는 방법도 채용할 수 있다.
중합 종료 후의 수지는 용융 상태에서 반응조나 횡형 반응 장치로부터 방출된 후, 냉각 드럼이나 냉각 벨트 등에서 냉각ㆍ분쇄된 플레이크상의 형태로, 또는 압출기에 도입되어 끈 형상으로 압출된 후에 재단된 펠릿상의 형태로 얻어진다. 또한, 필요에 따라서 고상 중합을 행하여, 분자량을 향상시키거나 저분자량 성분을 감소시키거나 할 수도 있다. PET계 수지에 포함될 수 있는 저분자량 성분으로서는, 환상 3량체 성분을 들 수 있지만, 이러한 환상 3량체 성분의 수지 중에서의 함유량은 통상 5000 ppm 이하 또는 3000 ppm 이하로 조절된다.
PET계 수지의 분자량은, 페놀/테트라클로로에탄=50/50(중량비)의 혼합 용매에 수지를 용해시키고, 30℃에서 측정한 극한 점도로 나타내었 때, 통상 0.45 내지 1.0 dL/g, 0.50 내지 10dL/g 또는 0.52 내지 0.80 dL/g의 범위이다.
또한, PET계 수지는 필요에 따라서 첨가제를 함유할 수 있다. 첨가제로서는, 예를 들면 윤활제, 블로킹 방지제, 열 안정제, 산화 방지제, 대전 방지제, 내광제 및 내충격성 개량제 등을 들 수 있다. 그의 첨가량은 광학 물성에 악영향을 미치지 않는 범위로 하는 것이 바람직하다.
PET계 수지는 이러한 첨가제의 배합을 위해서, 및 후술하는 필름 성형을 위해서, 통상 압출기에 의해 조립된 펠릿 형상으로 이용된다. 펠릿의 크기나 형상은 특별히 제한되는 것은 아니지만, 통상 높이, 직경 모두 5 mm 이하인 원주상, 구상 또는 편평 구상이다. 이와 같이 하여 얻어지는 PET계 수지는 필름상으로 성형하고, 연신 처리함으로써, 투명하고 균질한 기계적 강도가 높은 PET 필름으로 할 수 있다. 그의 제조 방법으로서는, 특별히 한정되는 것은 아니지만, 예를 들면 다음에 기재하는 방법이 채용된다.
건조시킨 PET 수지로 이루어지는 펠릿을 용융 압출 장치에 공급하고, 융점 이상으로 가열하여 용융시킨다. 다음에, 용융된 수지를 다이로부터 압출, 회전 냉각 드럼 상에서 유리전이온도 이하의 온도가 되도록 급냉 고화시켜, 실질적으로 비결정 상태의 미연신 필름을 얻는다. 이 용융 온도는 사용되는 PET계 수지의 융점이나 압출기에 따라서 정해지는 것이고, 특별히 제한되는 것은 아니지만, 통상 250℃ 내지 350℃이다. 또한, 필름의 평면성을 향상시키기 위해서는, 필름과 회전 냉각 드럼과의 밀착성을 높이는 것이 바람직하고, 정 전 인가 밀착법 또는 액체 도포 밀착법이 바람직하게 채용된다. 정전 인가 밀착법이란, 통상 필름의 상면측에 필름의 흐름과 직교하는 방향으로 선상 전극을 설치하고, 그 전극에 약 5 내지 10 kV의 직류 전압을 인가함으로써 필름에 정전하를 제공하여, 회전 냉각 드럼과 필름과의 밀착성을 향상시키는 방법이다. 또한, 액체 도포 밀착법이란, 회전 냉각 드럼 표면의 전체 또는 일부(예를 들면 필름 양단부와 접촉하는 부분만)에 액체를 균일하게 도포함으로써, 회전 냉각 드럼과 필름과의 밀착성을 향상시키는 방법이다. 필요에 따라서 양자를 병용할 수 도 있다. 사용되는 PET계 수지는 필요에 따라서 2종 이상의 수지, 구조나 조성이 다른 수지를 혼합할 수도 있다. 예를 들면, 블로킹 방지제로서의 입상 충전재, 자외선 흡수제 또는 대전 방지제 등이 배합된 펠릿과, 무배합의 펠릿을 혼합하여 이용하는 것 등을 들 수 있다.
또한, 압출시키는 필름의 적층수는 필요에 따라서 2층 이상으로 할 수도 있다. 예를 들면, 블로킹 방지제로의 입상 충전재를 배합한 펠릿과 무배합의 펠릿을 준비하고, 다른 압출기로부터 동일한 다이로 공급하여 「충전재 배합/무배합/충전재 배합」의 2종 3층으로 이루어지는 필름을 압출시키는 것 등을 들 수 있다.
상기 미연신 필름은 유리 전이 온도 이상의 온도에서 통상, 우선 압출 방향으로 세로 연신된다. 연신 온도는 통상 70℃ 내지 150℃, 80 내지 130℃ 또는 90 내지 120℃이다. 또한, 연신 배율은 통상 1.1 내지 6배 또는 2 내지 5.5배이다. 연신은 1회로 끝낼 수도, 필요에 따라서 복수회로 나누어 행할수도 있다.
이렇게 하여 얻어지는 세로 연신 필름은, 이 후에 열 처리를 행할 수 있다. 이어서, 필요에 따라서 이완 처리를 행할 수도 있다. 이 열 처리 온도는 통상 150℃ 내지 250℃, 180 내지 245℃ 또는 200 내지 230℃이다. 또한, 열 처리 시간은 통상 1 내지 600 초간 또는 1 내지 300 초간 또는 1 내지 60 초간이다.
이완 처리의 온도는 통상 90 내지 200℃ 또는 120 내지 180℃이다. 또한, 이완량은 통상 0.1내지 20% 또는 2 내지 5%이다. 이 이완 처리의 온도 및 이완량은, 이완 처리 후의 PET 필름의 150℃에서의 열수축률이 2 % 이하가 되도록, 이완량 및 이완 처리시의 온도를 설정할 수 있다.
일축 연신 및 이축 연신 필름을 얻는 경우, 통상 세로 연신 처리 후에, 또는 필요에 따라서 열 처리 또는 이완처리를 거친 후에, 텐터에 의해서 가로 연신이 행해진다. 이 연신 온도는 통상 70℃ 내지 150℃, 80℃ 내지 130℃ 또는 90℃ 내지 120℃이다. 또한, 연신 배율은 통상 1.1 내지 6배 또는 2 내지 5.5배이다. 이 후, 열 처리 및 필요에 따라서 이완 처리를 행할 수 있다. 열 처리 온도는 통상 150℃ 내지 250℃ 또는 180℃ 내지 245℃ 또는 200 내지 230℃이다. 열 처리 시간은 통상 1 내지 600초간, 1 내지 300 초간 또는 1 내지 60 초간이다.
이완 처리의 온도는 통상 100 내지 230℃, 110 내지 210℃ 또는 120 내지 180℃이다. 또한, 이완량은 통상 01 내지 20 %, 1 내지 10 % 또는 2 내지 5 %이다. 이 이완 처리의 온도 및 이완량은, 이완 처리 후의 PET필름의 150℃에서의 열수축률이 2 % 이하가 되도록, 그의 이완량 및 이완 처리시의 온도를 설정할 수 있다.
일축 연신 및 이축 연신 처리에 있어서는, 가로 연신 후, 보잉으로 대표되는 것과 같은 배향 주축의 변형을 완화시키기 위해서, 재차 열 처리를 행하거나 연신 처리를 행하거나 할 수 있다. 보잉에 의한 배향 주축의연신 방향에 대한 변형의 최대값은 통상 45도 이내, 30도 이내 또는 15도 이내이다. 또한, 여기서 연신 방향이란, 세로 연신 또는 가로 연신에 있어서의 연신 큰 방향을 말한다.
PET 필름의 이축 연신에서는, 통상 가로 연신 배율의 경우가 세로 연신 배율보다 약간 크게 행해지고, 이 경우, 연신 방향이란, 상기 필름의 긴 방향에 대하여 수직 방향을 말한다. 또한, 일축 연신에 서는, 통상 상기한 바와 같이 가로 방향으로 연신되며, 이 경우, 연신 방향이란, 동일하게 긴 방향에 대하여 수직 방향을 말한다.
또한, 배향 주축이란, 연신 PET 필름 상의 임의의 점에서의 분자 배향 방향을 말한다. 또한, 배향 주축의 연신 방향에 대한 변형이란, 배향 주축과 연신 방향과의 각도차를 말한다. 또한, 그의 최대값이란, 긴 방향에 대하여 수직 방향 상에서의 값의 최대값을 말한다.
상기 배향 주축의 확인 방향은 공지이고, 예를 들면 위상차 필름ㆍ광학 재료 검사 장치 RETS(오오쯔까 덴시 가부시끼가이샤 제조) 또는 분자 배향계 MOA(오지 게이소꾸 기끼 가부시끼가이샤 제조)를 이용하여 측정할 수 있다.
상기 연신 PET 필름에는, 본 출원의 효과를 방해하지 않는 한, 상기 방현층 등 이외의 기능층을 한쪽면 또는 양면에 적층할 수 있다. 적층되는 기능층에는, 예를 들면 도전층, 하드코팅층, 평활화층, 이활화(易滑化)층, 블로킹 방지층 및 이접착(易接着)층 등을 들 수 있다.
상기 설명한 제조 방법은 본 출원의 위상차 필름을 얻기 위한 하나의 예시적인 방법이며, 본 출원에서 적용 가능한 위상차 필름은 상기 기술한 물성을 가진다면, 어떤 종류의 시판품도 사용될 수 있다.
본 출원의 디바이스에서는 상기 위상차 필름은, 상기 필름의 지상축이 특정 위치 관계를 가지도록 디바이스 내에 포함된다.
하나의 예시에서 상기 디바이스는 후술하는 액정 배향막을 상기 위상차 필름과 상기 투과도 가변층의 사이에 포함할 수 있는데, 이러한 경우에 상기 위상차 필름의 지상축과 상기 액정 배향막의 배향 방향이 이루는 각도는 0도 내지 70도의 범위 내일 수 있다. 도 2는 상기 예시에 있어서 위상차 필름(100), 액정 배향막(300) 및 투과도 가변층(200)이 순차 배치된 경우의 모식도이다. 상기 각도는 상기 배향 방향과 지상축이 이루는 각도 중에서 작은 각도이며, 일 예시에서 0도 내지 360도 정도의 범위 내일 수 있다. 상기 각도는 다른 예시에서 0도 초과, 2도 이상, 4도 이상, 6도 이상, 8도 이상, 10도 이상, 12도 이상, 14도 이상, 16도 이상, 18도 이상, 20도 이상, 22도 이상, 24도 이상, 26도 이상, 28도 이상, 30도 이상, 32도 이상, 34도 이상, 36도 이상, 38도 이상, 40도 이상, 42도 이상, 44도 이상, 46도 이상, 48도 이상 또는 50도 이상이거나, 360도 미만, 350도 이하, 340도 이하, 330도 이하, 320도 이하, 310도 이하, 300도 이하, 290도 이하, 280도 이하, 270도 이하, 260도 이하, 250도 이하, 240도 이하, 230도 이하, 220도 이하, 210도 이하, 200도 이하, 190도 이하, 180도 이하, 170도 이하, 160도 이하, 150도 이하, 140도 이하, 130도 이하, 120도 이하, 110도 이하, 100도 이하, 90도 이하, 80도 이하, 70도 이하 또는 60도 이하 정도일 수도 있다. 상기 액정 배향막은, 상기 투과도 가변층이 능동 액정층인 경우에 상기 액정층 내의 액정의 초기 배향을 결정하기 위해서 사용될 수 있다. 이 때 적용되는 액정 배향막의 종류는 특별히 제한되지 않고, 예를 들면, 공지의 러빙 배향막 또는 광배향막일 수 있다. 후술하는 것과 같이 능동 액정층의 양측에 배향막이 존재하는 경우도 있는데, 이러한 경우에 위상차 필름의 지상축과 상기 각도의 배향 방향을 가지는 배향막은 상기 위상차 필름과 가깝게 위치한 배향막의 배향 방향이다. 배향 방향은 러빙 배향막의 경우는 러빙 방향, 광배향막인 경우는 조사되는 편광의 방향일 수 있는데, 이러한 배향 방향은, 선형 편광자를 사용한 검출 방식으로 확인할 수 있다. 예를 들어, 액정층(투과도 가변층)이 STN(Super Twisted Nematic) 모드 등과 같은 트위스트 배향 모드인 경우에 일면에 선형 편광자를 배치하고, 그 편광자의 흡수축을 변경하면서 투과율을 측정하면, 상기 흡수축 또는 투과축과 액정 배향막의 배향 방향이 일치하는 경우에 투과율이 낮게 되는 경향을 보이는데, 적용된 액정 화합물의 굴절률 이방성 등을 반영한 모사(simulation)를 통해 배향 방향을 확인할 수 있다. 액정층(투과율 가변층)의 모드에 따라서 배향 방향을 확인하는 방식은 공지이며, 본 출원에서는 이러한 공지의 방식으로 액정 배향막의 배향 방향과 지상축이 이루는 각도를 확인할 수 있다.
다른 예시에서 상기 투과도 가변층이 전술한 트위스트 배향 모드를 구현할 수 있는 능동 액정층인 경우에 상기 위상차 필름의 지상축과 상기 액정 배향막의 배향 방향이 이루는 각도를 상기 액정 배향막의 배향 방향 에서 상기 트위스트 배향 모드의 트위스팅 방향을 따라서 측정한 경우에 0도 내지 360도의 범위 내가 되도록 상기 위상차 필름이 배치될 수 있다. 상기 각도는 다른 예시에서 0도 초과, 2도 이상, 4도 이상, 6도 이상, 8도 이상, 10도 이상, 12도 이상, 14도 이상, 16도 이상, 18도 이상, 20도 이상, 22도 이상, 24도 이상, 26도 이상, 28도 이상, 30도 이상, 32도 이상, 34도 이상, 36도 이상, 38도 이상, 40도 이상, 42도 이상, 44도 이상, 46도 이상, 48도 이상 또는 50도 이상이거나, 360도 미만, 350도 이하, 340도 이하, 330도 이하, 320도 이하, 310도 이하, 300도 이하, 290도 이하, 280도 이하, 270도 이하, 260도 이하, 250도 이하, 240도 이하, 230도 이하, 220도 이하, 210도 이하, 200도 이하, 190도 이하, 180도 이하, 170도 이하, 160도 이하, 150도 이하, 140도 이하, 130도 이하, 120도 이하, 110도 이하, 100도 이하, 90도 이하, 80도 이하, 70도 이하 또는 60도 이하 정도일 수도 있다. 상기에서 액정 배향막의 배향 방향의 의미 및 그를 결정하는 방식은 전술한 바와 같고, 트위스트 모드의 액정층에서 트위스팅 방향은 Exoscan 등의 계측 기기를 사용하여 투과도 가변층에서 출광하는 편광원의 회전 방향 해석을 통해서 측정할 수 있다. 상기와 같은 경우에 있어서 트위스팅 방향은 시계 방향일 수도 있고, 반시계 방향일 수도 있다.
상기 위상차 필름의 배치는 다른 예시에서 상기 트위스트 배향 모드의 트위스팅 각도, 상기 투과도 가변층(능동 액정층)의 굴절률 이방성 및/또는 상기 가변층(능동 액정층)의 두께를 고려하여 제어될 수도 있다.
예를 들면, 상기 가변층의 트위스트 배향 모드의 트위스트 각도가 50도 내지 180도의 범위 내 또는 80도 내지 180도의 범위 내인 경우에 상기 위상차 필름의 지상축과 상기 액정 배향막의 배향 방향이 이루는 각도 중에서 작은 각도 또는 상기 액정 배향막의 배향 방향에서 상기 트위스트 배향 모드의 트위스팅 방향을 따라서 측정한 상기 지상축과 상기 배향 방향이 이루는 각도는 하기 수식 1을 만족할 수 있다.
[수식 1]
0.05×△nd×T/㎛ + 10 ≤ A ≤ 0.16 ×△nd×T/㎛ + 60
수식 1에서 A는, 상기 액정 배향막의 배향 방향이 이루는 각도 중에서 작은 각도 또는 상기 액정 배향막의 배향 방향에서 상기 트위스트 배향 모드의 트위스팅 방향을 따라서 측정한 상기 지상축과 상기 배향 방향이 이루는 각도(단위: 도)이며, △n은, 상기 가변층(능동 액정층)의 550 nm 파장의 광에 대한 굴절률 이방성이고, d는 상기 액정층의 두께(단위: ㎛)이며, T는 상기 트위스트 배향 모드의 트위스트 각도(단위: 도)이다.
상기 수식의 만족 여부의 확인을 위한 트위스트 배향 모드의 트위스팅 방향의 확인 방식은 상기 언급한 바와 같고, 트위스트 각도는 Exoscan 등의 공지의 측정 방법을 통해서 액정 화합물의 굴절률 이방성과 셀갭(cell gap)을 반영한 편광 분석을 통해 역산 및 추정하거나, Wedge Cell을 이용하여 액정층의 피치를 확인한 후에 셀갭 대비 피치값을 통해 추정이 가능하다.
상기 수식 1을 만족하는 경우에 상기 액정층의 550 nm 파장의 광에 대한 굴절률 이방성(△n)과 상기 액정층의 두께(d)의 곱(△nd)이 0.7㎛ 이하일 수 있다. 상기 굴절률 이방성(△n)과 상기 액정층의 두께(d)의 곱(△nd)은 다른 예시에서 약 0.2㎛ 이상, 0.25㎛ 이상, 0.3㎛ 이상, 0.35㎛ 이상, 0.4㎛ 이상 또는 0.45㎛ 이상일 수 있다.
또한, 상기 수식 1에서의 각도 A는 다른 예시에서 (0.05×△nd×T/㎛ + 11) 이상, (0.05×△nd×T/㎛+12) 이상, (0.05×△nd×T/㎛ + 13) 이상, (0.05×△nd×T/㎛ + 14) 이상, (0.05×△nd×T/㎛ + 15) 이상, (0.05×△nd×T/㎛ + 16) 이상, (0.05×△nd×T/㎛ + 17) 이상, (0.05×△nd×T/㎛ + 18) 이상, (0.05×△nd×T/㎛ + 19) 이상, (0.05×△nd×T/㎛ + 20) 이상 또는 (0.05×△nd×T/㎛ + 21) 이상일 수 있다.
상기 수식 1에서의 각도 A는, (0.16×△nd×T/㎛+55) 이하, (0.16×△nd×T/㎛ + 50) 이하, (0.16×△nd×T/㎛ + 45) 이하, (0.16×△nd×T/㎛ + 40) 이하, (0.16×△nd×T/㎛ + 35) 이하, (0.16×△nd×T/㎛ + 30) 이하, (0.16×△nd×T/㎛ + 25) 이하, (0.16×△nd×T/㎛ + 20) 이하, (0.16×△nd×T/㎛ + 15) 이하, (0.16×△nd×T/㎛ + 10) 이하, (0.16×△nd×T/㎛ + 5) 이하 또는 (0.16×△nd×T/㎛ + 1) 이하 정도일 수도 있다.
다른 예시에서 상기 가변층의 트위스트 배향 모드의 트위스트 각도가 50도 내지 180도 또는 80도 내지 180도의 범위 내인 경우에 상기 위상차 필름의 지상축과 상기 액정 배향막의 배향 방향이 이루는 각도 중에서 작은 각도 또는 상기 액정 배향막의 배향 방향에서 상기 트위스트 배향 모드의 트위스팅 방향을 따라서 측정한 상기 지상축과 상기 배향 방향이 이루는 각도는 하기 수식 2를 만족할 수도 있다.
[수식 2]
0.16×△nd×T/㎛ - 10 ≤ A ≤ 0.16 ×△nd×T/㎛ + 20
수식 2에서 A는, 상기 액정 배향막의 배향 방향이 이루는 각도 중에서 작은 각도 또는 상기 액정 배향막의 배향 방향에서 상기 트위스트 배향 모드의 트위스팅 방향을 따라서 측정한 상기 지상축과 상기 배향 방향이 이루는 각도(단위: 도)이며, △n은, 상기 가변층(능동 액정층)의 550 nm 파장의 광에 대한 굴절률 이방성이고, d는 상기 액정층의 두께(단위: ㎛)이며, T는 상기 트위스트 배향 모드의 트위스트 각도(단위: 도)이다.
상기 수식의 만족 여부의 확인을 위한 트위스트 배향 모드의 트위스팅 방향 및 트위스트 각도의 확인 방식은 상기 언급한 바와 같다.
수식 2을 만족하는 경우에 상기 액정층의 550 nm 파장의 광에 대한 굴절률 이방성(△n)과 상기 액정층의 두께(d)의 곱(△nd)이 0.7㎛ 초과일 수 있다. 상기 굴절률 이방성(△n)과 상기 액정층의 두께(d)의 곱(△nd)은 다른 예시에서 약 2㎛ 이하, 1.5㎛ 이하 또는 약 1㎛ 이하일 수 있다.
또한, 상기 수식 2에서의 각도 A는 다른 예시에서 (0.16×△nd×T/㎛ -8) 이상, (0.16×△nd×T/㎛-6) 이상, (0.16×△nd×T/㎛-4) 이상, (0.16×△nd×T/㎛-2) 이상, (0.16×△nd×T/㎛) 이상, (0.16×△nd×T/㎛+2) 이상, (0.16×△nd×T/㎛+4) 이상 또는 (0.16×△nd×T/㎛ + 6) 이상일 수 있다.
또한, 상기 수식 2에서의 각도 A는, (0.16×△nd×T/㎛+18) 이하, (0.16×△nd×T/㎛+16) 이하, (0.16×△nd×T/㎛+14) 이하, (0.16×△nd×T/㎛+12) 이하, (0.16×△nd×T/㎛+10) 이하, (0.16×△nd×T/㎛+8) 이하, (0.16×△nd×T/㎛+6) 이하, (0.16×△nd×T/㎛+4) 이하, (0.16×△nd×T/㎛+2) 이하 또는 (0.16×△nd×T/㎛) 이하 정도일 수도 있다.
다른 예시에서 상기 가변층의 트위스트 배향 모드의 트위스트 각도가 180도 이상 또는 180도 초과인 경우에 상기 위상차 필름의 지상축과 상기 액정 배향막의 배향 방향이 이루는 각도 중에서 작은 각도 또는 상기 액정 배향막의 배향 방향에서 상기 트위스트 배향 모드의 트위스팅 방향을 따라서 측정한 상기 지상축과 상기 배향 방향이 이루는 각도가 하기 수식 3을 만족하거나, 혹은 상기 위상차 필름의 지상축과 상기 액정 배향막의 배향 방향이 이루는 각도 중에서 큰 각도 또는 상기 액정 배향막의 배향 방향에서 상기 트위스트 배향 모드의 트위스팅 방향의 역방향을 따라서 측정한 상기 지상축과 상기 배향 방향이 이루는 각도가 하기 수식 4를 만족할 수 있다.
[수식 3]
A = (42±5) + (17±5)×sin(2△n×d×f)
[수식 4]
A = (132±5) + (17±5)×sin(2△n×d×f)
수식 3 및 4에서 △n은, 상기 액정층의 550 nm 파장의 광에 대한 굴절률 이방성이고, d는 상기 액정층의 두께(단위: ㎛)이며, f는 상기 트위스트 배향 모드의 트위스트 각도(단위: 도)이다.
또한, 수식 3에서 A는, 위상차 필름의 지상축과 상기 액정 배향막의 배향 방향이 이루는 각도 중에서 작은 각도 또는 상기 액정 배향막의 배향 방향에서 상기 트위스트 배향 모드의 트위스팅 방향을 따라서 측정한 상기 지상축과 상기 배향 방향이 이루는 각도(단위: 도)이며, 수식 4에서 A는, 상기 위상차 필름의 지상축과 상기 액정 배향막의 배향 방향이 이루는 각도 중에서 큰 각도 또는 상기 액정 배향막의 배향 방향에서 상기 트위스트 배향 모드의 트위스팅 방향과는 역방향을 따라서 측정한 상기 지상축과 상기 배향 방향이 이루는 각도(단위: 도)이다.
상기 수식의 만족 여부의 확인을 위한 트위스트 배향 모드의 트위스팅 방향 및 트위스트 각도의 확인 방식은 상기 언급한 바와 같다.
수식 3 또는 4를 만족하는 경우에 상기 트위스트 각도는 약 600 도 이하, 550 도 이하, 500 도 이하, 450 도 이하, 400 도 이하, 350 도 이하, 300 도 이하, 250 도 이하 또는 200도 이하 정도일 수 있다.
수식 3 또는 4를 만족하는 경우에 상기 액정층의 550 nm 파장의 광에 대한 굴절률 이방성(△n)과 상기 액정층의 두께(d)의 곱(△nd)이 0.2㎛ 내지 2㎛의 범위 내일 수 있다. 상기 굴절률 이방성(△n)과 상기 액정층의 두께(d)의 곱(△nd)은 다른 예시에서 약 0.25㎛ 이상, 0.3㎛ 이상, 0.35㎛ 이상, 0.4㎛ 이상 또는 0.45㎛ 이상이거나, 약 1.5㎛ 이하 또는 약 1㎛ 이하 정도일 수 있다.
또한, 수식 3에서의 각도 A는 다른 예시에서 (42±4) + (17±4)×sin(2△n×d×f), (42±3) + (17±3)×sin(2△n×d×f), (42±2) + (17±2)×sin(2△n×d×f), (42±1) + (17±1)×sin(2△n×d×f) 또는 (42 + 17×sin(2△n×d×f))일 수 있고, 수식 4에서 각도 A는 다른 예시에서 (132±4) + (17±4)×sin(2△n×d×f), (132±3) + (17±3)×sin(2△n×d×f), (132±2) + (17±2)×sin(2△n×d×f), (132±1) + (17±1)×sin(2△n×d×f) 또는 (132 + 17×sin(2△n×d×f))일 수 있다.
전술한 큰 광학 이방성을 가지는 위상차 필름을 상기 위치 관계로 배치함으로써, 투과도 가변 특성이 우수하면서도, 레인보우 현상, 미러링 현상 및 크로스토크 현상이 없는 디바이스의 제공이 가능할 수 있다.
이상 언급한 수식들에 적용되는 굴절률 이방성(△n)은 전술한 바와 같이, 실시예에 개시된 방식에 따라 Abbe 굴절계를 사용하여 측정한 것이며, 액정층의 두께(d), 즉 셀갭(cell gap)의 측정 방식도 실시예에 개시된 방식에 의한다.
본 출원의 투과도 가변 디바이스는 상기 투과도 가변층과 위상차 필름을 포함하고, 그들간의 배치가 상기 언급된 바와 같이 제어되는 한 다양한 방식으로 구성될 수 있다.
예를 들면, 기본적으로 투과도 가변층, 특히 능동 액정층은 2개의 대향 배치된 기판들의 사이에 위치하게 되는데, 본 출원의 디바이스를 구현하기 위해서 상기 2개의 기판 중에 어느 하나의 기판을 전술한 위상차 필름으로 형성할 수도 있다(제 1 방식).
다른 방식으로는, 2개의 대향 배치된 기판들의 사이에 위치하는 투과도 가변층을 포함하는 소자의 외측에 상기 위상차 필름을 부착하는 방식으로 본 출원의 디바이스를 구현할 수도 있다(제 2 방식).
도 3은, 상기 제 1 방식에 따라서 디바이스를 구현한 예이고, 이러한 디바이스는, 순차 배치된 상기 위상차 필름(100), 전극층(400), 상기 배향막(300), 능동 액정층(200), 배향막(500), 전극층(400) 및 기판(600)을 포함할 수 있다.
또한, 도 4는 상기 제 2 방식에 따라서 디바이스를 구현한 예이고, 이러한 디바이스는, 순차 배치된 상기 위상차 필름(100), 기판(600), 전극층(400), 상기 배향막(300), 능동 액정층(200), 배향막(500), 전극층(400) 및 기판(600)을 포함할 수 있다.
즉, 제 1 방식으로 디바이스를 구현할 때에는 상기 위상차 필름이 기판으로 적용되며, 해당 위상차 필름의 표면에 전술한 액정 배향막이 형성되어 있을 수 있고, 제 2 방식으로 디바이스를 구현할 때에는 상기 디바이스는, 상기 액정 배향막이 그 표면에 형성된 기판을 추가로 포함하고, 상기 위상차 필름은 상기 기판의 상기 액정 배향막이 형성되어 있지 않은 표면에 부착되어 있을 수 있다.
상기 디바이스에 포함될 수 있는 상기 전극층(400)은, 능동 액정층(200)에 전원을 외부 신호로서 인가하기 위한 구성이며, 이러한 전극층으로는, 공지의 투명 전극층이 적용될 수 있다. 예를 들면, 소위 전도성 고분자층, 전도성 금속층, 전도성 나노와이어층 또는 ITO(Indium Tin Oxide) 등의 금속 산화물층이 상기 전극층으로 사용될 수 있다. 이외에도 투명 전극층을 형성할 수 있는 다양한 소재 및 형성 방법이 공지되어 있고, 이를 제한없이 적용할 수 있다.
상기 디바이스에 포함되는 액정 배향막은 전술한 바와 같이 공지의 러빙 배향막 또는 광 배향막 등이 적용될 수 있고, 원하는 모드에 따라서 적용될 수 있는 배향막의 종류는 공지이다.
상기 디바이스에서 적용될 수 있는 기판(도 3 및 4에서의 부호 600)의 종류는 특별히 제한되지 않는다. 상기 기판으로는 전술한 위상차 필름 자체를 고분자 필름 기판으로 적용할 수도 있고, 기타 다른 공지의 기판을 적용할 수도 있다.
예를 들면, 상기 기판으로는, 유리 필름, 결정성 또는 비결정성 실리콘 필름, 석영 또는 ITO(Indium Tin Oxide) 필름 등의 무기 필름이나 플라스틱 필름 등을 사용할 수 있다. 플라스틱 기판으로는, TAC(triacetyl cellulose); 노르보르넨 유도체 등의 COP(cyclo olefin copolymer); PMMA(poly(methyl methacrylate); PC(polycarbonate); PE(polyethylene); PP(polypropylene); PVA(polyvinyl alcohol); DAC(diacetyl cellulose); Pac(Polyacrylate); PES(poly ether sulfone); PEEK(polyetheretherketon); PPS(polyphenylsulfone), PEI(polyetherimide); PEN(polyethylenemaphthatlate); PET(polyethyleneterephtalate); PI(polyimide); PSF(polysulfone); PAR(polyarylate) 또는 비정질 불소 수지 등을 포함하는 기판을 사용할 수 있지만 이에 제한되는 것은 아니다.
상기 디바이스는 전술한 위상차 필름, 액정 배향막 및 투과도 가변층을 기본적으로 포함하고, 그들의 위치 관계 등이 상기 언급한 바와 같이 설정되는 한 공지의 다양한 구성을 추가로 포함할 수도 있다.
예를 들면, 도면에는 도시되지 않았으나, 공지의 구성, 예를 들면, 전술한 기판, 투과도 가변층 등에 추가로 기판간의 간격을 유지하는 스페이서나 실런트 등도 포함할 수 있다.
또한 기타 구성으로서 상기 위상차 필름을 기판에 부착하기 위한 용도 또는 다른 용도로 적용되는 점착제나 접착제, 하드 코팅층, 반사 방지층, NIR (Near-Infrared) 차단(cut) 기능의 염료를 포함하는 층 등의 공지 구성을 추가로 포함할 수 있다. 또한, 필요한 경우에 상기 디바이스는 소위 수동 편광층, 예를 들면, PVA(poly(vinyl alcohol))계열의 편광층과 같은 수동 편광층을 포함하거나, 포함하지 않을 수 있다.
상기와 같은 투과도 가변 디바이스는 다양한 용도에 적용될 수 있다. 투과도 가변 디바이스가 적용될 수 있는 용도에는, 원도우 또는 선루프 등과 같은 건물, 용기 또는 차량 등을 포함하는 밀폐된 공간의 개구부나 아이웨어(eyewear) 등이나 창호용, OLED(organic light emitting deivce)의 차광판 등이 예시될 수 있다. 상기에서 아이웨어의 범위에는, 일반적인 안경, 선글라스, 스포츠용 고글 내지는 헬멧 또는 가상 현실 또는 증강 현실 체험용 기기 등과 같은 웨어러블 기기 등의 관찰자가 렌즈를 통하여 외부를 관찰할 수 있도록 형성된 모든 아이 웨어가 포함될 수 있다.
본 출원의 투과도 가변 디바이스가 적용될 수 있는 대표적인 용도에는 아이웨어가 있다. 최근 선글라스, 스포츠용 고글이나 증강 현실 체험용 기기 등은 관찰자의 정면 시선과는 경사지도록 렌즈가 장착되는 형태의 아이웨어가 시판되고 있다. 본 출원의 투과도 가변 디바이스는, 전술한 아이웨어에도 효과적으로 적용될 수 있다.
본 출원의 투과도 가변 디바이스가 아이웨어에 적용되는 경우에 그 아이웨어의 구조는 특별히 제한되지 않는다. 즉, 공지의 아이웨어 구조의 좌안용 및/또는 우안용 렌즈 내에 상기 투과도 가변 디바이스가 장착되어 적용될 수 있다.
예를 들면, 상기 아이웨어는, 좌안용 렌즈와 우안용 렌즈; 및 상기 좌안용 렌즈와 우안용 렌즈를 지지하는 프레임을 포함할 수 있다.
도 5는, 상기 아이웨어의 예시적인 모식도로서, 상기 프레임(82) 및 좌안용과 우안용 렌즈(84)를 포함하는 아이웨어의 모식도이나, 본 출원의 투과도 가변 디바이스가 적용될 수 있는 아이웨어의 구조가 도 5에 제한되는 것은 아니다.
상기 아이웨어에서 좌안용 렌즈 및 우안용 렌즈는 각각 상기 투과도 가변 디바이스를 포함할 수 있다. 이러한 렌즈는, 상기 투과도 가변 디바이스만을 포함하거나, 기타 다른 구성을 포함할 수도 있다.
상기 아이웨어는 기타 구성 내지 디자인은 특별히 제한되지 않고, 공지의 방식이 적용될 수 있다.
본 출원에서는 투과도 가변 특성이 우수하면서, 크로스톡(crosstalk) 현상, 레인보우(rainbow) 현상 또는 미러링(mirroring) 현상 등과 같은 문제를 유발하지 않아 다양한 용도로의 적용이 가능한 투과도 가변 디바이스를 제공할 수 있다.
도 1 내지 4는 본 출원의 예시적인 투과도 가변 디바이스의 모식도이다.
도 5는 아이웨어를 예시적으로 나타낸다.
도 6은 투과도 가변 필름의 두께(cell gap)를 측정하는 방법을 설명하기 위한 모식적인 도면이다.
도 7은, 투과도 가변 필름의 두께(cell gap) 측정 과정에서 활용하기 위한 도면이다.
도 8은 굴절률 이방성을 평가하기 위한 방법을 보여주는 도면이다.
도 9는 실시예 및 비교예의 결과를 비교하는 도면이다.
이하 실시예를 통하여 본 출원을 구체적으로 설명하지만, 본 출원의 범위가 하기 실시예에 의해 제한되는 것은 아니다.
1. 고분자 필름의 위상차 평가
고분자 필름의 면내 위상차 값(Rin)은 Agilent사의 UV/VIS spectroscope 8453 장비를 이용하여 550nm 파장의 광에 대하여 측정하였다. UV/VIS spectroscope에 2장의 편광자를 투과축이 서로 직교하도록 설치하고, 상기 2장의 편광자 사이에 고분자 필름의 지상축이 2장의 편광자의 투과축과 각각 45도를 이루도록 설치한 후, 파장에 따른 투과도를 측정하였다. 파장에 따른 투과도 그래프에서 각 피크(peak)들의 위상 지연 차수(Phase retardation order)를 구한다. 구체적으로, 파장에 따른 투과도 그래프에서 파형은 하기 수식 A를 만족하고, 사인(Sine) 파형에서 최대 피크(Tmax) 조건은 하기 수식 B을 만족한다. 수식 A에서 λmax인 경우, 수식 A의 T와 수식 B의 T는 동일하기 때문에 수식을 전개한다. n+1, n+2 및 n+3에 대해서도 수식을 전개하고, n과 n+1 수식을 정리해서 R을 소거하여 n을 λn 및 λn+1 수식으로 정리하면, 하기 수식 C가 도출된다. 수식 A의 T와 수식 B의 T가 동일함에 근거하여 n과 λ를 알 수 있으므로 각 λn, λn+1, λn+2 및 λn+3 대해 R을 구한다. 4 포인트에 대해 파장에 따른 R값의 직선 추세선을 구하고 수식 550 nm에 대한 R 값을 산정한다. 직선 추세선의 함수는 Y=ax+b이고, a 및 b는 상수이다. 상기 함수의 x에 550nm를 대입했을 때의 Y 값이 550 nm 파장의 광에 대한 Rin 값이다.
[수식 A]
T = sin2[(2πR/λ)]
[수식 B]
T = sin2[((2n+1)π/2)]
[수식 C]
n = (λn -3λn+1)/(2λn+1 +1-2λn)
상기에서 R은 면내 위상차(Rin)를 의미하고, λ는 파장을 의미하고, n은 사인파형의 꼭지 차수를 의미한다.
2. 투과도 가변층(액정층)의 두께 평가
투과도 가변층의 두께, 즉 셀갭(cell gap)은 스펙트로미터를 사용하여 하기의 방식으로 측정하였다. 도 6에 나타난 바와 같이 셀갭(cell gap) d를 가지는 투과도 가변층의 일면에서 광(II)을 조사하고, 다른 면에서 투과된 광(IT)을 계측한다. 상기 광의 조사 시에는 조사 각도를 투과도 가변층의 가상의 표면 법선 방향과 평행하게 한다. 이러한 방식으로 파장별 투과율을 확인하여 보면, 보강 간섭 등에 의해 도 7에 나타난 바와 같은 투과율 그래프가 얻어질 수 있다. 도 7과 같이 얻어진 그래프는, 투과도 가변층의 두께인 셀갭(cell gap)(d)과 하기 수식 E의 관계를 가지게 되는데, 하기 수식 E에서 κ는 도 7에서 파장 λ1와 파장 λ2의 사이에 존재하는 피크(peak)의 수이다. 즉, 도 7과 같이 구해진 그래프로부터, 상기 κ인 파장 λ1와 파장 λ2의 사이의 피크의 수를 구하고, 또한 상기 파장 λ1 및 λ2를 수식 E에 대입하여 셀갭(d)을 구할 수 있다.
[수식 E]
Figure 112018088011427-pat00001
3. 투과도 가변층(액정층)의 굴절률 이방성 평가
투과도 가변층의 굴절률 이방성(△n)은 Abbe 굴절계를 사용하여 다음의 방식으로 평가한다. Abbe 굴절계의 Measuring Prism과 illumination Prism의 면에 수직배향막을 코팅하고, 측정하고자 하는 액정 화합물을 Measuring Prism에 도포한 후에 illumination Prism으로 덮어 주면, 두 계면의 수직배향력에 의해 액정 화합물은 수직으로 배향된다. 상기 과정에서 적용되는 액정 화합물은, 이색성 염료 등 다른 물질과 혼합되지 않은 투과도 가변층에 적용될 액정 화합물만이다.
그 후, 도 8에 나타난 바와 같이 접안렌즈쪽에 선형 편광판을 적용하여, 광(Light)을 조사하여 관측하면, 도 8에 나타난 것과 같은 θe 및 θo를 구할 수 있고, Measuring prism의 굴절률(np)과 상기 각도(θe 및 θo)를 통해 이상 굴절율(ne=npsinθe)과 정상 굴절률(no=npsinθo)을 구할 수 있으며, 그 차이(ne-no)가 굴절률 이방성으로 규정될 수 있다. 상기 측정 시의 기준 파장은 대략 550 nm이다.
실시예 1.
고분자 필름 기판으로서, Toyobo社의 고연신 PET(Polyethylene terephthalate) 필름 기판(SRF 기판, 두께: 80㎛, 제조사: Toyobo, 제품명: TA044)을 사용하여 디바이스를 제작하였다. 상기 SRF 기판의 일면에 우선 ITO(Indium Tin Oxide)막(전극층)을 증착하고, 배향막을 형성하였다. 상기에서 적용된 SRF 기판은 상기 ITO막이 증착된 후에 면내 위상차가 550 nm 파장을 기준으로 대략 11,000 nm 내지 14,000 nm 수준이다. 배향막으로는 대략 300 nm 두께의 폴리이미드계 수평 배향막(SE-7492, Nissan)을 러빙 포로 러빙 처리하여 형성하였으며, 이 때 러빙 방향(배향 방향)과 SRF 기판의 지상축 방향은 대략 0도가 되도록 하였다(상부 기판, 시인측 기판의 제작). 동일하게 하부 기판을 제작하였다. 하부 기판의 제작 시에는 배향막의 러빙 방향(배향 방향)과 SRF 기판의 지상축 방향이 대략 0도가 되도록 하였다. 상기 상부 기판과 하부 기판을 각각의 배향막이 대향하도록 배치하고(cell gap: 12㎛), 그 내부에 액정 물질을 주입한 후에 밀봉하여 디바이스를 제작하였다.
상기 배치 시에는 상부 기판의 하부 기판의 배향 방향이 서로 평행하도록 하되, 러빙 방향은 서로 역방향이 되도록 배치하였다. 또한 상기 액정 물질로는, 굴절률 이방성(△n)이 대략 0.076인 양의 유전율 이방성을 갖는 액정 화합물(SHN-5011XX, JNC社) 및 이색성 염료를 포함하는 GHLC 혼합물(SHN-5011XX(JNC社)에 이색성 염료로서 LG 화학의 이색성 염료(JD 12, 영국 color systhesis solution상의 cyan, magenta, yellow color의 3종 dye를 혼합한 염료)를 대략 1.8 중량%의 농도로 배합한 혼합물)에 키랄 도펀트(S811, Merck)를 약 0.66 중량%의 농도로 배합한 조성물을 사용하였다. 얻어진 투과도 가변층(액정층)은 비틀림 각도(twisted angle)가 대략 360도인 STN 모드 액정층이다.
실시예 2.
실시예 1과 동일한 방식으로 디바이스를 제작하되, 상부 및 하부 기판 형성 시에 배향 방향(러빙 방향)이 SRF 기판의 지상축과 대략 30도를 이루도록 하여 디바이스를 제작하였다. 상기 상부 기판과 하부 기판을 각각의 배향막이 대향하도록 실시예 1과 동일 셀갭(cell gap)으로 배치하고, 그 내부에 실시예 1과 동일한 액정 물질을 주입한 후에 밀봉하여 디바이스를 제작하였다. 상기 배치 시에는 상부 기판의 하부 기판의 배향 방향이 서로 평행하도록 하되, 러빙 방향은 서로 역방향이 되도록 배치하였다. 얻어진 투과도 가변층(액정층)은 비틀림 각도(twisted angle)가 대략 360도인 STN 모드 액정층이다.
실시예 3.
실시예 1과 동일한 방식으로 디바이스를 제작하되, 상부 및 하부 기판 형성 시에 배향 방향(러빙 방향)이 SRF 기판의 지상축과 대략 50도를 이루도록 하여 디바이스를 제작하였다. 상기 상부 기판과 하부 기판을 각각의 배향막이 대향하도록 실시예 1과 동일 셀갭(cell gap)으로 배치하고, 그 내부에 실시예 1과 동일한 액정 물질을 주입한 후에 밀봉하여 디바이스를 제작하였다. 상기 배치 시에는 상부 기판의 하부 기판의 배향 방향이 서로 평행하도록 하되, 러빙 방향은 서로 역방향이 되도록 배치하였다. 얻어진 투과도 가변층(액정층)은 비틀림 각도(twisted angle)가 대략 360도인 STN 모드 액정층이다.
비교예 1.
고분자 필름 기판으로서, 등방성의 필름 기판인 PC(Polycarbonate) 필름 기판(PC 기판, 두께: 100㎛, 제조사: Teijin, 제품명: PFC100-D150)을 적용한 것을 제외하고는 실시예 1과 동일하게 디바이스를 제작하였다. 이 경우, 적용된 필름 기판이 등방성 필름 기판이므로, 배향막의 배향 방향과 기판의 지상축의 관계는 고려되지 않는다.
과 본 출원에 따른 비대칭 기판인 하기 물성은 각각의 필름 기판의 일면에 약 20 nm 두께의 ITO(Indium Tin Oxide)막이 형성된 상태에서의 측정 결과이다.
시험예
실시예 및 비교예에서 각각 제작된 디바이스의 일면에 흡수형 선형 PVA(poly(vinyl alcohol)) 편광자를 배치하고, 그 편광자의 흡수축을 0도에서 360도의 범위로 회전시키면서 출광되는 광의 색좌표(CIE La*b*) 변화를 측정하였다. 도 9는 상기와 같은 측정 결과이다. 도면으로부터 비교예 1의 경우에 비하여 실시예 1 내지 3의 경우가 색좌표(a*-b* color coordinate)의 변화가 확연히 적은 것을 확인할 수 있다.

Claims (9)

  1. 550 nm 파장의 광에 대한 면내 위상차가 4,000 nm 이상인 위상차 필름; 액정 배향막; 및 편광 성분을 생성하는 투과도 가변층을 순서대로 포함하고,
    상기 투과도 가변층은 중합성기 또는 가교성기를 가지지 않는 액정 화합물을 포함하며,
    상기 위상차 필름의 지상축과 상기 액정 배향막의 배향 방향이 이루는 각도 중 작은 각도가 0도 내지 70도의 범위 내 에 있는 투과도 가변 디바이스.
  2. 제 1 항에 있어서, 상기 투과도 가변 디바이스는 투과 모드 상태와 차단 모드 상태의 사이를 스위칭할 수 있으며, 상기 투과 모드 상태에서의 최대 투과도(Tmax)와 상기 차단 모드 상태에서의 최소 투과도(Tmin)의 비율(Tmax/Tmin)은 1.5 내지 10의 범위 내인 투과도 가변 디바이스.
  3. 제 1 항에 있어서, 상기 위상차 필름의 표면에 상기 액정 배향막이 형성되어 있는 투과도 가변 디바이스.
  4. 제 1 항에 있어서, 상기 투과도 가변 디바이스는 기판을 추가로 포함하고, 상기 기판의 표면에 상기 액정 배향막이 형성되어 있으며, 상기 위상차 필름은 상기 기판의 상기 액정 배향막이 형성되어 있지 않은 표면에 부착되어 있는 투과도 가변 디바이스.
  5. 제 1 항에 있어서, 투과도 가변층은, 수평 배향 모드 또는 경사 배향 모드를 형성할 수 있는 액정층인 투과도 가변 디바이스.
  6. 제 5 항에 있어서, 수평 배향 모드와 경사 배향 모드는 트위스트 모드인 투과도 가변 디바이스.
  7. 제 5 항에 있어서, 액정층은, 이색성 염료를 추가로 포함하는 투과도 가변 디바이스.
  8. 제 1 항에 있어서, 액정층의 두께가 20 ㎛ 이하인 투과도 가변 디바이스.
  9. 좌안용 렌즈와 우안용 렌즈; 및 상기 좌안용 렌즈와 우안용 렌즈를 지지하는 프레임을 포함하는 아이웨어로서,
    상기 좌안용 렌즈 및 우안용 렌즈는 각각 제 1 항의 투과도 가변 디바이스를 포함하는 아이웨어.
KR1020180105601A 2018-09-04 2018-09-04 투과도 가변 디바이스 KR102340838B1 (ko)

Priority Applications (8)

Application Number Priority Date Filing Date Title
KR1020180105601A KR102340838B1 (ko) 2018-09-04 2018-09-04 투과도 가변 디바이스
TW108131953A TWI722556B (zh) 2018-09-04 2019-09-04 透射率可變元件及包含其的目鏡
PCT/KR2019/011380 WO2020050612A1 (ko) 2018-09-04 2019-09-04 투과도 가변 디바이스
EP19857593.8A EP3848738B1 (en) 2018-09-04 2019-09-04 Device having variable transmittance
CN201980056618.0A CN112639551B (zh) 2018-09-04 2019-09-04 透射率可变装置
US17/270,090 US11630330B2 (en) 2018-09-04 2019-09-04 Transmittance-variable device
JP2021507680A JP7222172B2 (ja) 2018-09-04 2019-09-04 透過度可変デバイス
US18/119,416 US20230213788A1 (en) 2018-09-04 2023-03-09 Transmittance-Variable Device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180105601A KR102340838B1 (ko) 2018-09-04 2018-09-04 투과도 가변 디바이스

Publications (2)

Publication Number Publication Date
KR20200027373A KR20200027373A (ko) 2020-03-12
KR102340838B1 true KR102340838B1 (ko) 2021-12-17

Family

ID=69802921

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180105601A KR102340838B1 (ko) 2018-09-04 2018-09-04 투과도 가변 디바이스

Country Status (1)

Country Link
KR (1) KR102340838B1 (ko)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101839780B1 (ko) * 2015-03-31 2018-03-19 주식회사 엘지화학 액정 소자

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57195291A (en) 1981-05-25 1982-11-30 Matsushita Electric Ind Co Ltd Effect apparatus for electronic musical instrument
KR101292544B1 (ko) * 2010-07-15 2013-08-12 주식회사 엘지화학 시야각 및 색 특성이 우수한 ecb―lcd
KR101547384B1 (ko) * 2011-04-06 2015-08-27 주식회사 엘지화학 광학 필터용 필름
KR101665163B1 (ko) * 2013-10-18 2016-10-12 제일모직주식회사 광학 필름, 이를 포함하는 액정 표시 장치 및 이에 사용되는 보호필름의 제조방법

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101839780B1 (ko) * 2015-03-31 2018-03-19 주식회사 엘지화학 액정 소자

Also Published As

Publication number Publication date
KR20200027373A (ko) 2020-03-12

Similar Documents

Publication Publication Date Title
KR102176227B1 (ko) 광변조 디바이스
US11630330B2 (en) Transmittance-variable device
US11391991B2 (en) Transmittance-variable device
US11392006B2 (en) Transmittance-variable device
KR102340841B1 (ko) 투과도 가변 디바이스
KR102436925B1 (ko) 투과도 가변 디바이스
KR102437159B1 (ko) 투과도 가변 디바이스
KR102340838B1 (ko) 투과도 가변 디바이스
KR20210032699A (ko) 투과도 가변 디바이스

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant