KR102335973B1 - Process for Preparing Heteroatom-Doped Graphene - Google Patents

Process for Preparing Heteroatom-Doped Graphene Download PDF

Info

Publication number
KR102335973B1
KR102335973B1 KR1020150028476A KR20150028476A KR102335973B1 KR 102335973 B1 KR102335973 B1 KR 102335973B1 KR 1020150028476 A KR1020150028476 A KR 1020150028476A KR 20150028476 A KR20150028476 A KR 20150028476A KR 102335973 B1 KR102335973 B1 KR 102335973B1
Authority
KR
South Korea
Prior art keywords
graphene
doped
doped graphene
heteroatom
solvothermal
Prior art date
Application number
KR1020150028476A
Other languages
Korean (ko)
Other versions
KR20160105152A (en
Inventor
성영은
박원철
권파
유승호
Original Assignee
서울대학교산학협력단
기초과학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서울대학교산학협력단, 기초과학연구원 filed Critical 서울대학교산학협력단
Priority to KR1020150028476A priority Critical patent/KR102335973B1/en
Publication of KR20160105152A publication Critical patent/KR20160105152A/en
Application granted granted Critical
Publication of KR102335973B1 publication Critical patent/KR102335973B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/184Preparation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/194After-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • C01P2002/54Solid solutions containing elements as dopants one element only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Nanotechnology (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

본 발명은 헤테로원자로 도핑된 그래핀 제조 방법에 관한 것이다. 보다 상세하게는, 본 발명은 (i) 헤테로원자 전구체 및 알칼리금속 공급원의 혼합물을 비활성 분위기 하에서 가열하는 단계; 및 (ii) 헤테로원자로 도핑된 그래핀을 분리하는 단계를 포함하고, 상기 헤테로원자 전구체는 하이드록시기를 포함하지 아니하는 것임을 특징으로 하는, 헤테로원자로 도핑된 그래핀 제조 방법 및 이렇게 제조된 그래핀의 용도에 대한 것이다.The present invention relates to a method for preparing graphene doped with heteroatoms. More specifically, the present invention provides a method comprising the steps of: (i) heating a mixture of a heteroatom precursor and an alkali metal source under an inert atmosphere; and (ii) separating the graphene doped with a heteroatom, wherein the heteroatom precursor does not include a hydroxyl group. It's about use.

Description

헤테로원자로 도핑된 그래핀 제조 방법{Process for Preparing Heteroatom-Doped Graphene}Method for preparing heteroatom-doped graphene {Process for Preparing Heteroatom-Doped Graphene}

본 발명은 헤테로원자로 도핑된 그래핀 제조 방법에 관한 것이다. 보다 상세하게는, 본 발명은 헤테로원자 전구체 및 알칼리금속 공급원의 혼합물을 비활성 분위기 하에서 가열하는 단계를 포함하고, 상기 헤테로원자 전구체는 하이드록시기를 포함하지 아니하는 것임을 특징으로 하는, 헤테로원자로 도핑된 그래핀 제조 방법 및 이렇게 제조된 그래핀의 용도에 대한 것이다.The present invention relates to a method for preparing graphene doped with heteroatoms. More specifically, the present invention comprises the step of heating a mixture of a heteroatom precursor and an alkali metal source under an inert atmosphere, wherein the heteroatom precursor does not contain a hydroxyl group, graphene doped with a heteroatom It relates to a method for manufacturing a fin and to the use of the graphene thus produced.

그래핀은 이의 독특한 구조 및 튀어난 특성으로 인하여 다양한 연구 분야에서 큰 관심을 끌고 있다(Novoselov, K. S. et al. A roadmap for graphene. Nature 490, 192.200 (2012)).Graphene has attracted great attention in various research fields due to its unique structure and protruding properties (Novoselov, K. S. et al. A roadmap for graphene. Nature 490, 192.200 (2012)).

예를 들면, 2차원 구조의 그래핀을 전자장치(Wang, H. &Dai, H. Strongly coupled inorganic-nano-carbon hybrid materials for energy storage. Chem. Soc. Rev. 42, 3088.3113 (2013)), 나노의약(Mao, H. Y. et al. Graphene: Promises, Facts, Opportunities, and Challenges in Nanomedicine. Chem. Rev. 113, 3407.3424 (2013)), 센서(Bo, Z. et al. Green preparation of reduced graphene oxide for sensing and energy storage applications. Sci. Rep. 4, 4684 (2014)), 촉매(Dai, L. Functionalization of Graphene for Efficient Energy Conversion and Storage. Acc. Chem. Res. 46, 31.42 (2012)), 수퍼커패시터(supercapacitor)(Yoon, J.-C., Lee, J.-S., Kim, S.-I., Kim, K.-H. & Jang, J.-H. Three-Dimensional Graphene Nano-Networks with High Quality and Mass Production Capability via Precursor-Assisted Chemical Vapor Deposition. Sci. Rep. 3, 1788 (2013)), 및 리튬 이온 전지(Kan, J. & Wang, Y. Large and fast reversible Li-ion storages in Fe2O3-graphene sheet-on-sheet sandwich-like nanocomposites. Sci. Rep. 3, 3502 (2013); Kim, H. et al. Scalable functionalized graphene nano-platelets as tunable cathodes for high-performance lithium rechargeable batteries. Sci. Rep. 3, 1506 (2013))에 사용하기 위한 연구가 널리 진행되고 있다.For example, using graphene with a two-dimensional structure in electronic devices (Wang, H. &Dai, H. Strongly coupled inorganic-nano-carbon hybrid materials for energy storage. Chem. Soc. Rev. 42, 3088.3113 (2013)), nano Medicines (Mao, HY et al. Graphene: Promises, Facts, Opportunities, and Challenges in Nanomedicine. Chem. Rev. 113, 3407.3424 (2013)), sensors (Bo, Z. et al. Green preparation of reduced graphene oxide for sensing) and energy storage applications. Sci. Rep. 4, 4684 (2014)), catalysts (Dai, L. Functionalization of Graphene for Efficient Energy Conversion and Storage. Acc. Chem. Res. 46, 31.42 (2012)), supercapacitors ( supercapacitor) (Yoon, J.-C., Lee, J.-S., Kim, S.-I., Kim, K.-H. & Jang, J.-H. Three-Dimensional Graphene Nano-Networks with High Quality and Mass Production Capability via Precursor-Assisted Chemical Vapor Deposition. Sci. Rep. 3, 1788 (2013)), and lithium ion batteries (Kan, J. & Wang, Y. Large and fast reversible Li-ion storages in Fe2O3 -graphene sheet-on-sheet sandwich-like nanocomposites Sci. Rep. 3, 3502 (2013); Kim, H. et al. Scalable functionalized grap hene nano-platelets as tunable cathodes for high-performance lithium rechargeable batteries. Sci. Rep. 3, 1506 (2013)) are being widely studied.

그래핀의 새로운 기능 및 잠재적인 응용을 찾기 위해, 그래핀의 형태(morphology)를 조정하여, 0차원 그래핀 양자점, 2차원 그래핀 나노리본, 및 3차원 그래핀 구조와 같은 다양한 유형의 그래핀 아키텍처를 얻고 있다.In order to find new functions and potential applications of graphene, by tuning the morphology of graphene, various types of graphene such as zero-dimensional graphene quantum dots, two-dimensional graphene nanoribbons, and three-dimensional graphene structures getting architecture.

화학적 도핑이 그래핀의 전기적 특성 및 화학적 활성을 변화시키기 위한 또 다른 효과적인 방법으로 여겨지고 있는데, 이는 스핀 “I도 및 원자 전하 밀도가 도펀트(dopant)에 영향을 받기 때문이다.Chemical doping is believed to be another effective method for changing the electrical properties and chemical activity of graphene, since the spin “I” degree and atomic charge density are affected by the dopant.

탄소 골격(carbon framework) 내부로 도입하여 헤테로원자로 도핑된 그래핀을 얻기 위해 다양한 원소들(B, N, P, S 등)이 선택되었다.Various elements (B, N, P, S, etc.) were selected to be introduced into the carbon framework to obtain heteroatom-doped graphene.

종래 연구에 따르면, 질소로 도핑된 그래핀은, 화학적 증기 증착법(CVD), 아크-방전법(arc-discharge), 분리성장법(segregation growth), 및 용매열법(solvothermal method)과 같은 직접합성법, 그리고 가열법, 히드라진 하이드레이트법, 및 플라즈마 처리법과 같은 후처리법(post treatment)의 두 가지로 분류될 수 있는 다양한 방법에 의해 제조되고 있다(Wang, H., Maiyalagan, T. & Wang, X. Review on Recent Progress in Nitrogen-Doped Graphene: Synthesis, Characterization, and Its Potential Applications. ACS Catal. 2, 781.794 (2012); Wei, D. et al. Synthesis of N-Doped Graphene by Chemical Vapor Deposition and Its Electrical Properties. Nano Lett. 9, 1752.1758 (2009); Panchakarla, L. S. et al. Synthesis, Structure, and Properties of Boron- and Nitrogen-Doped Graphene. Adv. Mater. 21, 4726.4730 (2009); Zhang, C. et al. Synthesis of Nitrogen-Doped Graphene Using Embedded Carbon and Nitrogen Sources. Adv. Mater. 23, 1020.1024 (2011)).According to prior research, the graphene doped with nitrogen is a direct synthesis method such as chemical vapor deposition (CVD), arc-discharge, segregation growth, and solvothermal method, And it is manufactured by various methods that can be classified into two types of post treatment such as heating method, hydrazine hydrate method, and plasma treatment method (Wang, H., Maiyalagan, T. & Wang, X. Review on Recent Progress in Nitrogen-Doped Graphene: Synthesis, Characterization, and Its Potential Applications.ACS Catal.2, 781.794 (2012);Wei, D. et al.Synthesis of N-Doped Graphene by Chemical Vapor Deposition and Its Electrical Properties. Nano Lett. 9, 1752.1758 (2009); Panchakarla, LS et al. Synthesis, Structure, and Properties of Boron- and Nitrogen-Doped Graphene. Adv. Mater. 21, 4726.4730 (2009); Zhang, C. et al. Synthesis of Nitrogen-Doped Graphene Using Embedded Carbon and Nitrogen Sources. Adv. Mater. 23, 1020.1024 (2011)).

질소로 도핑된 그래핀은 이의 합성 방법에 따라 다른 특성을 보이는데, 이는 질소의 도핑량 및 질소-도핑의 유형이 다르기 때문이다.Graphene doped with nitrogen shows different properties depending on the synthesis method thereof, because the doping amount of nitrogen and the type of nitrogen-doping are different.

황으로 도핑된 그래핀을 효율적으로 제조하기 위해, 그리핀 옥사이드(graphene oxide)를 황 공급원으로 열처리할 수 있다. 황 공급원으로서 다양한 황함유 분자들(SO2, H2S, CS2, 및 벤질 디설파이드)이 연구되고 있고, 산소 환원 반응에 대한 황으로 도핑된 그래핀의 촉매적 활성이 연구되었다.In order to efficiently manufacture graphene doped with sulfur, graphene oxide may be heat-treated as a sulfur source. Various sulfur-containing molecules (SO 2 , H 2 S, CS 2 , and benzyl disulfide) have been studied as sulfur sources, and the catalytic activity of graphene doped with sulfur for oxygen reduction reaction has been studied.

그러나 간단하고, 저비용이며, 대규모로 헤테로원자로 도핑된 그래핀의 제조 방법의 개발이 여전히 중요한 문제로 남아 있다. 또한, 각 원소마다 다른 도핑 방법이 요구된다.However, the development of a simple, low-cost, large-scale, heteroatom-doped graphene preparation method remains an important problem. In addition, different doping methods are required for each element.

Stride 등은 탄소 공급원으로서 에탄올을 사용하는 용매열법을 통해 그래핀을 제조하였고(Choucair, M., Thordarson, P. & Stride, J. A. Gram-scale production of graphene based on solvothermal synthesis and sonication. Nat. Nanotechnol. 4, 30.33 (2009)), 상기 반응은 상대적으로 온화하고 간단하다.Stride et al. prepared graphene through a solvothermal method using ethanol as a carbon source (Choucair, M., Thordarson, P. & Stride, JA Gram-scale production of graphene based on solvothermal synthesis and sonication. Nat. Nanotechnol. 4, 30.33 (2009)), the reaction is relatively mild and straightforward.

일본 특허출원공개 제2012-153555호는 붕소, 규소, 질소, 인, 유황, 불소보다 되는 군으로부터 선택되는 1개 이상의 이질원자, 및 적어도 1개의 수산기를 가지는 전구체 화합물과 알칼리금속과의 소르보서말 반응물을, 열분해 하는 것에 의한 이질원자 함유 그래핀의 제조 방법을 개시하고 있다. 그러나 상기 일본 특허출원공개 제2012-153555호에서는, 출발물질로서 반드시 하이드록시기를 함유하는 전구체를 사용하고, 나트륨 금속을 사용해야 한다는 점에서 본 발명과 그 구성에 있어서 차이점이 존재한다.Japanese Patent Application Laid-Open No. 2012-153555 discloses a sorbothermal of an alkali metal and a precursor compound having at least one heteroatom selected from the group consisting of boron, silicon, nitrogen, phosphorus, sulfur, and fluorine, and at least one hydroxyl group. Disclosed is a method for producing graphene containing heteroatoms by thermally decomposing a reactant. However, in the Japanese Patent Application Laid-Open No. 2012-153555, a precursor containing a hydroxyl group must be used as a starting material and sodium metal must be used, and there is a difference in configuration from the present invention.

본 발명자들은 하이드록시기를 함유하지 아니하는 물질을 사용하고, 나트륨 금속이 아닌 NaOH만을 사용하고도, 헤테로원자로 도핑된 그래핀을 제조할 수 있다는 점을 확인함으로써 본 발명을 완성하기에 이르렀다.The present inventors have completed the present invention by confirming that graphene doped with heteroatoms can be prepared by using a material not containing a hydroxyl group and using only NaOH rather than sodium metal.

본 발명의 목적은 헤테로원자 전구체 및 알칼리금속 공급원의 혼합물을 비활성 분위기 하에서 가열하는 단계를 포함하고, 상기 헤테로원자 전구체는 하이드록시기를 포함하지 아니하는 것임을 특징으로 하는, 헤테로원자로 도핑된 그래핀 제조 방법을 제공하는 것이다.An object of the present invention is a method for producing graphene doped with heteroatoms, comprising heating a mixture of a heteroatom precursor and an alkali metal source under an inert atmosphere, wherein the heteroatom precursor does not contain a hydroxyl group is to provide

본 발명의 또 다른 목적은 상기 방법을 통해 제조된 헤테로원자로 도핑된 그래핀을 리튬 이온 전지의 음극 재료로서 사용하기 위한 용도 및 에너지 저장을 위한 산소 환원 반응의 촉매로서의 용도를 제공하는 것이다.Another object of the present invention is to provide a use for using the graphene doped with heteroatoms prepared through the above method as a negative electrode material for a lithium ion battery and as a catalyst for an oxygen reduction reaction for energy storage.

전술한 본 발명의 목적은 헤테로원자 전구체 및 알칼리금속 공급원의 혼합물을 비활성 분위기 하에서 가열하는 단계를 포함하고, 상기 헤테로원자 전구체는 하이드록시기를 포함하지 아니하는 것임을 특징으로 하는, 헤테로원자로 도핑된 그래핀 제조 방법을 제공함으로써 달성될 수 있다.The above-described object of the present invention comprises the step of heating a mixture of a heteroatom precursor and an alkali metal source under an inert atmosphere, wherein the heteroatom precursor does not contain a hydroxy group, graphene doped with a heteroatom This can be achieved by providing a manufacturing method.

상기 헤테로원자는 S, N, B, Si, P 또는 F로부터 선택될 수 있다. 또한, 상기 헤테로원자 전구체는 디메틸설폭사이드 또는 디메틸포름아미드일 수 있다. 더욱이, 상기 알칼리금속 공급원은 Na 또는 NaOH일 수 있다.The heteroatom may be selected from S, N, B, Si, P or F. In addition, the heteroatom precursor may be dimethylsulfoxide or dimethylformamide. Moreover, the alkali metal source may be Na or NaOH.

본 발명의 하나의 실시 태양에서, 상기 헤테로원자 전구체가 디메틸설폭사이드인 경우에, 황으로 도핑된 그래핀을 얻을 수 있다.In one embodiment of the present invention, when the heteroatom precursor is dimethyl sulfoxide, graphene doped with sulfur may be obtained.

본 발명의 또 다른 실시 태양에서, 상기 헤테로원자 전구체가 디메틸포름아미드인 경우에, 질소로 도핑된 그래핀을 얻을 수 있다.In another embodiment of the present invention, when the heteroatom precursor is dimethylformamide, graphene doped with nitrogen may be obtained.

본 발명의 방법에 있어서, 상기 (i)단계의 가열 온도는 150℃ 내지 300℃일 수 있다.In the method of the present invention, the heating temperature of step (i) may be 150 ℃ to 300 ℃.

본 발명의 방법에 따라 제조된 방법에 의해 제조된 헤테로원자로 도핑된 그래핀은 리튬 이온 전지의 음극 재료로서 사용될 수 있다.The graphene doped with heteroatoms prepared by the method prepared according to the method of the present invention can be used as a negative electrode material for a lithium ion battery.

또한, 본 발명의 방법에 따라 제조된 방법에 의해 제조된 헤테로원자로 도핑된 그래핀은 에너지 저장을 위한 산소 환원 반응의 촉매로 사용될 수 있다.In addition, the graphene doped with heteroatoms prepared by the method prepared according to the method of the present invention can be used as a catalyst for the oxygen reduction reaction for energy storage.

본 발명의 방법에 따르면, 간단한 공정 및 온화한 반응 조건을 통해 헤테로원자의 함량이 높은 헤테로원자로 도핑된 그래핀을 대량으로 제조할 수 있다.According to the method of the present invention, graphene doped with heteroatoms having a high content of heteroatoms can be prepared in large quantities through a simple process and mild reaction conditions.

본 발명의 방법에 따라 제조된 헤테로원자로 도핑된 그래핀은 높은 헤테로원자 함량으로 인하여, 종래의 방법에 의해 제조된 그래핀과 대비하여, 보다 더 우수한 전기화학적 특성을 보인다.The graphene doped with heteroatoms prepared according to the method of the present invention exhibits superior electrochemical properties compared to graphene prepared by the conventional method due to the high heteroatom content.

도 1a는 S-도핑된 그래핀의 형성을 예시하는 개략도이고, 도 1b는 상기 S-도핑된 그래핀의 TEM 사진이며, 도 1c는 상기 S-도핑된 그래핀의 고해상도 TEM 사진이고, 도 1d는 상기 S-도핑된 그래핀의 암시야(dark field) TEM 사진이며, 도 1e는 상기 S-도핑된 그래핀의 황 원소 매핑 결과이다.
도 2a는 S-도핑된 그래핀, N-도핑된 그래핀 및 용매열합성된 그래핀에 대한 라만 스펙트럼이고, 도 2b는 900℃에서 어닐링된 S-도핑된 그래핀, N-도핑된 그래핀 및 용매열합성된 그래핀의 N2-흡착/탈착 등온선이다.
도 3은 S-도핑된 그래핀, N-도핑된 그래핀, 용매열합성된 그래핀 및 흑연에 대한 XRD 패턴이다.
도 4는 S-도핑된 그래핀, N-도핑된 그래핀, S-도핑된 그래핀-900(900℃에서 어닐링), 및 N-도핑된 그래핀-900(900℃에서 어닐링)의 기공 분포를 보여 준다.
도 5a는 S-도핑된 그래핀, N-도핑된 그래핀 및 용매열합성된 그래핀의 XPS 스펙트럼이고, 도 5b는 S-도핑된 그래핀, N-도핑된 그래핀 및 용매열합성된 그래핀의 C1s XPS 스펙트럼이며, 도 5c는 S1(S2p3 /2), S2(S2p1 /2) 및 S3(산화된 황)을 가지는 S-도핑된 그래핀의 S2p XPS 스펙트럼이고, 도 5d는 N1(pyridinic-N), N2(pyrrolic-N) 및 N3(graphitic-N)을 가지는 N-도핑된 그래핀의 고해상도 N1s XPS 스펙트럼이다.
도 6은 200 mAg-1의 전류 밀도에서 S-도핑된 그래핀, N-도핑된 그래핀 및 용매열합성된 그래핀의 사이클 성능 및 쿨롱 효율을 보여 준다.
도 7은 200 mAg-1의 전류 밀도에서 초기 5 사이클 동안의 (a) 용매열합성된 그래핀, (b) S-도핑된 그래핀, 및 (c) N-도핑된 그래핀의 정전류적 충전 및 방전 프로파일, 그리고 0.1 mVs-1의 스캔 속도에서 (d) 용매열합성된 그래핀, (e) S-도핑된 그래핀, 및 (f) N-도핑된 그래핀의 사이클릭 볼타모그램(cyclic voltammogram), 그리고 다양한 전류 속도(current rate)에서 (g) 용매열합성된 그래핀, (h) S-도핑된 그래핀, 및 (i) N-도핑된 그래핀의 정전류적 충전 및 방전 프로파일이다.
도 8은 그래핀, N-도핑된 그래핀, 및 S-도핑된 그래핀의 전위-의존적 전자전달수를 보여 준다.
1a is a schematic diagram illustrating the formation of S-doped graphene, FIG. 1b is a TEM picture of the S-doped graphene, FIG. 1c is a high-resolution TEM picture of the S-doped graphene, and FIG. 1d is a dark field TEM photograph of the S-doped graphene, and FIG. 1E is a sulfur element mapping result of the S-doped graphene.
Figure 2a is Raman spectra of S-doped graphene, N-doped graphene and solvothermal graphene, and Figure 2b is S-doped graphene, N-doped graphene annealed at 900 °C. and N 2 -adsorption/desorption isotherms of solvothermal-synthesized graphene.
3 is an XRD pattern of S-doped graphene, N-doped graphene, solvothermal-synthesized graphene, and graphite.
Figure 4 shows the pore distribution of S-doped graphene, N-doped graphene, S-doped graphene-900 (annealed at 900°C), and N-doped graphene-900 (annealed at 900°C). shows
5a is XPS spectrum of S-doped graphene, N-doped graphene and solvothermal graphene, and FIG. 5b is S-doped graphene, N-doped graphene and solvothermal graphene. the C1s XPS spectra of the pin, Figure 5c S1 (S2p 3/2), S2 (S2p 1/2) and S3 having the (oxidized sulfur) S- doped yes and S2p XPS spectra of the pin, Figure 5d N1 A high-resolution N1s XPS spectrum of N-doped graphene with (pyridinic-N), N2 (pyrrolic-N) and N3 (graphitic-N).
6 shows the cycle performance and Coulombic efficiency of S-doped graphene, N-doped graphene, and solvothermal-synthesized graphene at a current density of 200 mAg −1 .
7 is a galvanostatic charging of (a) solvothermal graphene, (b) S-doped graphene, and (c) N-doped graphene during the initial 5 cycles at a current density of 200 mAg −1 . and discharge profiles, and cyclic voltammograms of (d) solvothermal graphene, (e) S-doped graphene, and (f) N-doped graphene at a scan rate of 0.1 mVs−1 ( cyclic voltammogram), and galvanostatic charge and discharge profiles of (g) solvothermal graphene, (h) S-doped graphene, and (i) N-doped graphene at various current rates am.
8 shows the potential-dependent electron transfer numbers of graphene, N-doped graphene, and S-doped graphene.

이하, 다음의 실시예 또는 도면을 들어 본 발명을 보다 구체적으로 설명하고자 한다. 그러나 다음의 실시예 또는 도면에 대한 설명은 본 발명의 구체적인 실시 태양을 특정하여 설명하고자 하는 것일 뿐이며, 본 발명의 권리 범위를 이들에 기재된 내용으로 한정하거나 제한해석하고자 의도하는 것은 아니다.
Hereinafter, the present invention will be described in more detail with reference to the following examples or drawings. However, the description of the following examples or drawings is only intended to specifically describe specific embodiments of the present invention, and is not intended to limit or interpret the scope of the present invention to the contents described therein.

실시예Example 1. S- 1. S- 도핑된doped 그래핀의graphene 합성 synthesis

2 g의 NaOH 및 10 mL의 디페일설폭사이드(DMSO)의 혼합물 용액을, 환류 응축기가 장착된 3구 플라스크에 첨가하였고 질소 기체 흐름하에서 가열하였다. 무색 혼합물이 약 250℃에서 끓었고 서서히 점도가 증가하였다. 약 24 시간 동안 끓인 후, 상기 액체가 흑색의 케익-유사 물질로 변했다. 마지막으로, 생성물을 염산(10 wt%) 및 탈이온수로 수차례 세척하였고, 90℃의 오븐 내에서 건조시켰다.A mixture solution of 2 g of NaOH and 10 mL of dipalesulfoxide (DMSO) was added to a three-necked flask equipped with a reflux condenser and heated under a flow of nitrogen gas. The colorless mixture boiled at about 250°C and gradually increased in viscosity. After boiling for about 24 hours, the liquid turned into a black, cake-like substance. Finally, the product was washed several times with hydrochloric acid (10 wt%) and deionized water and dried in an oven at 90°C.

탄소 및 황 원자들로 형성된 2차원의 쉬트유사(sheet-like) 구조체를 얻었다(도 1). 상기 S-도핑된 그래핀의 표면 형태를 원자력 현미경(AFM)을 사용하여 분석하였다. 상기 AFM 사진을 보면, 약 1 nm 두께의 쭈글쭈글한 실크 베일-유사(silk veil-like) 구조체가 나타나 있다.
A two-dimensional sheet-like structure formed of carbon and sulfur atoms was obtained (FIG. 1). The surface morphology of the S-doped graphene was analyzed using an atomic force microscope (AFM). Looking at the AFM photograph, a crumpled silk veil-like structure with a thickness of about 1 nm is shown.

실시예Example 2. N- 2. N- 도핑된doped 그래핀의graphene 합성 synthesis

50 mL의 디메틸포름아미드(DMF) 및 25 g의 나트륨 금속을 100 mL의 테프론-라이닝된 오토클레이브에 첨가하고 밀봉한 후 190℃에서 72 시간 동안 가열하였다. 실온으로 냉각시킨 후, 상기 오토클레이브를 개방하였다. 생성물을 즉시 10 wt% 염산을 함유하는 비커로 옮겼다. 상기 생성물을 탈이온수를 사용하여 추가로 세척하였고, 90℃의 오븐 내에서 건조시켰다.
50 mL of dimethylformamide (DMF) and 25 g of sodium metal were added to 100 mL of a Teflon-lined autoclave, sealed and heated at 190° C. for 72 hours. After cooling to room temperature, the autoclave was opened. The product was immediately transferred to a beaker containing 10 wt % hydrochloric acid. The product was further washed with deionized water and dried in an oven at 90°C.

비교예comparative example 1. One. 용매열법에in solvothermal 의한 by 그래핀graphene 합성 synthesis

50 mL의 메탄올 및 25 g의 나트륨 금속을 100 mL의 테프론-라이닝된 오토클레이브에 첨가하고 밀봉한 후 190℃에서 72 시간 동안 가열하였다. 상기 오토글레이브를 실온까지 냉각시킨 후, 고형분을 질소 기체 흐름하의 500℃에서 어닐링시켰다. 이렇게 얻은 생성물을 염산(10 wt%) 및 탈이온수로 수차례 세척하였고, 90℃의 오븐 내에서 건조시켰다.
50 mL of methanol and 25 g of sodium metal were added to 100 mL of Teflon-lined autoclave, sealed and heated at 190° C. for 72 hours. After cooling the autoclave to room temperature, the solids were annealed at 500° C. under a flow of nitrogen gas. The product thus obtained was washed several times with hydrochloric acid (10 wt%) and deionized water, and dried in an oven at 90°C.

실시예Example 3. 특성 분석 3. Characterization

JEOL JEM-1010 및 JEM-2100F를 사용하여 TEM 사진 및 TEM-EDS 사진을 각각 얻었다. Vecco 원자력 현미경(atomic force microscope (AFM))를 사용하여 AFM 사진을 얻었다. 녹색(514.5 nm) 레이저 여기를 사용하는 Dongwoo DM500i 라만 스펙트로미터를 사용하여 라만 스펙트럼 측정을 수행하였다. Micromeritics Tristar 3000을 사용하여 BET 표면적 및 BJH 기공 크기 분포를 측정하였다. Kratos AXIX-HSi를 사용하여 XPS를 수행하였다. Thermo Scientific Flash 2000 analyzer를 사용하여 원소 분석을 수행하였다.TEM pictures and TEM-EDS pictures were obtained using JEOL JEM-1010 and JEM-2100F, respectively. AFM pictures were obtained using a Vecco atomic force microscope (AFM). Raman spectral measurements were performed using a Dongwoo DM500i Raman spectrometer using green (514.5 nm) laser excitation. BET surface area and BJH pore size distribution were measured using Micromeritics Tristar 3000. XPS was performed using a Kratos AXIX-HSi. Elemental analysis was performed using a Thermo Scientific Flash 2000 analyzer.

원소 도펀트의 분포를 분석하기 위해, TEM 에너지 분산 X-선 분광법(energy-dispersive X-ray spectroscopy (EDS)) 매핑을 수행하였다. 도 1d는 상기 그래핀 쉬트 내에서 S 원소의 균질한 분포를 보여 준다. S-도핑된 그래핀, N-도핑된 그래핀 및 용매열법에 의해 제조된 그래핀에 대한 라만 스펙트럼을 조사하였다. 약 1350 및 1600 cm-1에서 넓은 D 및 G 밴드가 각각 관찰되었다(도 2). 본 발명의 실시예에서 합성된 그래핀의 스펙트럼은 문헌(Choucair, M., Thordarson, P. & Stride, J. A. Gram-scale production of graphene based on solvothermal synthesis and sonication. Nat. Nanotechnol. 4, 30.33 (2009))에 보고된 바와 잘 맞았다. 상기 용매열합성된 그래핀(solvothermal graphene) 및 흑연(graphite)의 X-선 회절(XRD) 패턴을 분석하였다(도 S4). 흑연은 26.3°에서 뾰족한 피크를 보였는데, 이는 (002) 회절 피크(d-spacing = 0.34 nm)에 해당한다. 상기 S-도핑된 그래핀, N-도핑된 그래핀 및 용매열합성된 그래핀의 (002) 피크는 각각 23.2°, 25.5° 및 23.4°에서 나타났다. 상기 S-도핑된 그래핀의 층간 거리(interlayer distance)는 0.40 nm이고, 이는 상기 N-도핑된 그래핀의 층간 거리(0.35 nm) 및 상기 용매열합성된 그래핀의 층간 거리(0.38 nm)보다 더 크다. 상기 S-도핑된 그래핀 및 상기 N-도핑된 그래핀의 전도도는 각각 0.607×10-3 Sm-1 및 0.416×10-3 Sm-1이고, 이는 상기 용매열합성된 그래핀의 전도도(0.121 Sm-1)보다 더 작다. 이러한 결과는 S 또는 N을 도핑함으로써 그래핀의 저항이 증가한다는 것을 보여 준다.To analyze the distribution of elemental dopants, TEM energy-dispersive X-ray spectroscopy (EDS) mapping was performed. Figure 1d shows the homogeneous distribution of S element in the graphene sheet. Raman spectra of S-doped graphene, N-doped graphene, and graphene prepared by a solvothermal method were investigated. Broad D and G bands were observed at about 1350 and 1600 cm −1 , respectively ( FIG. 2 ). The spectrum of graphene synthesized in the examples of the present invention is described in Choucair, M., Thordarson, P. & Stride, JA Gram-scale production of graphene based on solvothermal synthesis and sonication. Nat. Nanotechnol. 4, 30.33 (2009 )), which was in good agreement with that reported. X-ray diffraction (XRD) patterns of the solvothermal graphene and graphite were analyzed ( FIG. S4 ). Graphite showed a sharp peak at 26.3°, which corresponds to the (002) diffraction peak (d-spacing = 0.34 nm). The (002) peaks of the S-doped graphene, N-doped graphene and solvothermal graphene were shown at 23.2°, 25.5° and 23.4°, respectively. The interlayer distance of the S-doped graphene is 0.40 nm, which is greater than the interlayer distance of the N-doped graphene (0.35 nm) and the interlayer distance of the solvothermal-synthesized graphene (0.38 nm). bigger The conductivity of the S-doped graphene and the N-doped graphene is 0.607×10 −3 Sm −1 and 0.416×10 −3 Sm −1 , respectively, which is the conductivity of the solvothermal-synthesized graphene (0.121). Sm -1 ). These results show that the resistance of graphene is increased by doping with S or N.

헤테로원자로 도핑된 그래핀의 N2 흡착 및 탈착 등온선 및 기공 크기 분포를 분석하였다(도 2b 및 도 S5). 상기 S-도핑된 그래핀 및 N-도핑된 그래핀의 브루나우어-에멧-텔러(BET) 표면적은 754 m2g-1 및 317 m2g-1이고 기공 부피(PV)는 각각 0.82 cm3g-1 및 0.91 cm3g-1이었다. 비활성 분위기하의 고온(900℃)에서 어닐링한 후, 상기 S-도핑된 그래핀 및 N-도핑된 그래핀의 각 BET 표면적이 1564 m2g-1(PV = 1.53 cm3g-1) 및 2255 m2g- 1(PV = 1.73 cm3g-1)으로 증가하였다. The N 2 adsorption and desorption isotherms and pore size distributions of graphene doped with heteroatoms were analyzed ( FIGS. 2B and S5 ). Brunauer-Emmett-Teller (BET) surface areas of the S-doped graphene and N-doped graphene were 754 m 2 g -1 and 317 m 2 g -1 , and the pore volume (PV) was 0.82 cm, respectively. 3 g −1 and 0.91 cm 3 g −1 . After annealing at high temperature (900° C.) under an inert atmosphere, the respective BET surface areas of the S-doped graphene and N-doped graphene were 1564 m 2 g −1 (PV = 1.53 cm 3 g −1 ) and 2255 It was increased by 1 (PV = 1.73 cm 3 g -1) - m 2 g.

상기 S-도핑된 그래핀의 화학적 구조를 밝히기 위해, X-선 광전자 분광법(XPS)를 채택하였다. 메탄올로부터 유래한 상기 용매열합성된 그래핀의 XPS 스펙트럼은 탄소 및 산소 원자만이 존재한다는 사실을 확인시켰다. 그러나 상기 S-도핑된 그래핀 및 N-도핑된 그래핀의 XPS 스펙트럼에서는 각각 황 및 질소 원자의 신호가 명백하게 관찰되었다(도 3a). sp2-혼성화(C-C 결합, 284.5 eV)에 해당하는 고해상도 C1s 피크가 관찰되었고, 상기 샘플들은 C-O 결합, 카르보닐(C=O), 및 카르복실레이트(O-C=O)에 해당하는 작은 피크를 보였다(도 3b). 상기 S-도핑된 그래핀의 고해상도 S2p 스펙트럼은 3개의 다른 피크로 디컨볼루션될(deconvoluted) 수 있다(도 3c). 163.9, 165.1 및 168.5 eV에서의 선들은 각각 2p3 /2, 2p1 /2 및 산화된 황 작용기에 해당한다. 또한, 티올기(162.0 eV)에 해당하는 보이지 않는 피크가 존재하였다. 또한, 상기 N-도핑된 그래핀의 고해상도 N1s 스펙트럼도, 피리딘 N(pyridinic N: 398.0 eV), 피롤 N(pyrrolic N: 400.1 eV), 및 흑연 N(graphitic N: 401.3 eV)로 할당될 수 있는 3개의 다른 피크로 분해될 수 있다(도 3d). 이러한 결과는 상기 S 또는 N이 그래핀의 네트웍(network)에 공유결합되어 있다는 점을 암시한다. 원소분석에 따르면, 상기 S-도핑된 그래핀의 황 함량은 22.83 wt%이었고, 상기 N-도핑된 그래핀의 질소 함량은 12.25 wt%이었다. 상기 S-도핑된 그래핀의 황 함량은 종래에 보고된 문헌(Yang, Z. et al. Sulfur-Doped Graphene as an Efficient Metal-free Cathode Catalyst for Oxygen Reduction. ACS Nano 6, 205.211 (2012); Yang, S. et al. Efficient Synthesis of Heteroatom (N or S)-Doped Graphene Based on Ultrathin Graphene Oxide-Porous Silica Sheets for Oxygen Reduction Reactions. Adv. Funct. Mater. 22, 3634.3640 (2012))에서의 황 함량(< 5%) 보다 훨씬 더 크다.
To elucidate the chemical structure of the S-doped graphene, X-ray photoelectron spectroscopy (XPS) was adopted. The XPS spectrum of the solvothermal-synthesized graphene derived from methanol confirmed the fact that only carbon and oxygen atoms were present. However, signals of sulfur and nitrogen atoms were clearly observed in the XPS spectra of the S-doped graphene and N-doped graphene, respectively (FIG. 3a). A high-resolution Cls peak corresponding to sp 2 -hybridization (CC bond, 284.5 eV) was observed, and the samples showed small peaks corresponding to CO bond, carbonyl (C=O), and carboxylate (OC=O). was seen (Fig. 3b). The high-resolution S2p spectrum of the S-doped graphene can be deconvoluted into three different peaks (FIG. 3c). Lines at 163.9, 165.1 and 168.5 eV corresponds to the 2p 3/2, 2p 1/ 2 , and oxidized sulfur functional groups, respectively. In addition, there was an invisible peak corresponding to the thiol group (162.0 eV). In addition, the high-resolution N1s spectrum of the N-doped graphene can also be assigned to pyridine N (pyridinic N: 398.0 eV), pyrrolic N (400.1 eV), and graphite N (graphitic N: 401.3 eV). It can be resolved into three different peaks (Fig. 3d). These results suggest that the S or N is covalently bonded to the graphene network. According to elemental analysis, the sulfur content of the S-doped graphene was 22.83 wt%, and the nitrogen content of the N-doped graphene was 12.25 wt%. The sulfur content of the S-doped graphene has been previously reported (Yang, Z. et al. Sulfur-Doped Graphene as an Efficient Metal-free Cathode Catalyst for Oxygen Reduction. ACS Nano 6, 205.211 (2012); Yang , S. et al. Efficient Synthesis of Heteroatom (N or S)-Doped Graphene Based on Ultrathin Graphene Oxide-Porous Silica Sheets for Oxygen Reduction Reactions. Adv. Funct. Mater. 22, 3634.3640 (2012)) < 5%) is much greater than

실시예4Example 4 . 전기화학적 특성평가(배터리 용도). Electrochemical characterization (for battery use)

배터리에 응용하기 위해, N2 하의 600℃에서 열처리함으로써 샘플을 준비하였다. 작동 전극의 제조를 위해, 합성된 그래핀, 수퍼 P(Super P) 및 폴리(비닐리덴 플로라이드)(중량비 70:10:20)를 N-메틸-2-피롤리돈 내에서 잘 혼합한 슬러리를 구리 전류 집전기(current collector)에 코팅하였다. 건조 후에, 상기 전극들을 프레스처리 하였고 진공하의 120℃에서 다시 건조하였다. 아르곤으로 채운 글로브 박스(glove box) 내에서, 제조된 작동 전극들 및 리튬 호일(lithium foil)을 사용하여(상대 전극 및 기준 전극으로서), 두 개의 전극 2016-형 코인 셀을 제작하였다. 에틸렌 카보네이트(EC) 및 디에틸 카보네이트(DEC)(부피비 5:5) 내에 용해시킨 1.0 M의 LiPF6를 유기 전해질로서 사용하였다. 본 실시예에서 배터리 시험을 위한 모든 전압 범위를 3.0 내지 0.01 V(Li+/Li)로 설정하였다. 비용량(specific capacity)을 오직 상기 활성 물질의 중량에 따라서만 계산하였고 첨가제들(바인더 및 도전제(conductive agent))의 중량은 포함시키지 아니하였다.For battery application, samples were prepared by heat treatment at 600° C. under N 2 . For the preparation of the working electrode, a slurry in which the synthesized graphene, Super P and poly(vinylidene fluoride) (weight ratio 70:10:20) were well mixed in N-methyl-2-pyrrolidone was coated on a copper current collector. After drying, the electrodes were pressed and dried again at 120° C. under vacuum. In a glove box filled with argon, using the prepared working electrodes and lithium foil (as counter electrode and reference electrode), a two electrode 2016-type coin cell was fabricated. 1.0 M LiPF 6 dissolved in ethylene carbonate (EC) and diethyl carbonate (DEC) (volume ratio 5:5) was used as the organic electrolyte. In this embodiment, all voltage ranges for the battery test were set to 3.0 to 0.01 V (Li + /Li). The specific capacity was calculated only according to the weight of the active material and the weight of additives (binder and conductive agent) was not included.

상기 S-도핑된 그래핀, N-도핑된 그래핀 및 용매열합성된 그래핀의 음극(anode) 물질로서의 잠재적인 응용을 평가하기 위해, 그래핀 전극을 가지는 전기화학적 셀을 실온에서 전류밀도 200 mAg-1로 정전류적으로(galvanostatically) 충전 및 방전을 하였다(도 4). 상기 S-도핑된 그래핀, N-도핑된 그래핀 및 용매열합성된 그래핀의 가역 용량은 합리적으로 높다(500-800 mAhg-1). 상기 S-도핑된 그래핀 및 용매열합성된 그래핀에서 비용량은 처음 30 사이클 동안 감소하고 사이클 수가 증가할수록 점점 증가한다. 또한, 이러한 활성화 과정은 다른 그래핀 기반 전극에서도 관찰될 수 있다(Ai, W. et al. A novel graphene-polysulfide anode material for high-performance lithium-ion batteries. Sci. Rep. 3, 2341 (2013); Li, X. et al. Superior cycle stability of nitrogen-doped graphene nanosheets as anodes for lithium ion batteries. Electrochem. Comm. 13, 822.825 (2011)). 상기 S-도핑된 그래핀, N-도핑된 그래핀 및 용매열합성된 그래핀은, 오랜 사이클 동안에 발생할 수 있는 용량 변동(capacity fluctuation) 없이, 높은 사이클 안정성(cyclic stability)을 보였다. 상기 S-도핑된 그래핀, N-도핑된 그래핀 및 용매열합성된 그래핀의 초기 쿨롱 효율(Coulombic efficiency)은 각각 65.8%, 58.3% 및 45.8%이다. 상기 용매열합성된 그래핀의 30번째 내지 150번째 사이클에서의 평균 쿨롱 효율은 97.2%이었지만, 상기 S-도핑된 그래핀 및 N-도핑된 그래핀의 평균 쿨롱 효율은 훨씬 더 높았다(각각 99.8% 및 98.5%). 반쪽-셀(half-cell) 쿨롱 효율이 완전한 리튬 이온 셀에서의 사이클 보유(cycle retention)에 영향을 미칠 수 있다는 점을 보여 주었다. 또한, 전압 프로파일에서 약 1.0-0.7 V에서 발생하는 첫번째 방전 과정에서의 고평부(plateau)(CV 곡선에서 더 명백하게 보임)는 전해질의 분해 및 고체 전해질 상간(solid electrolyte interphase (SEI)) 층의 형성과 관련되고(도 S6), 상기 고평부는 용매열합성된 그래핀 전극에서 두드러진다. 이러한 발견은, 그래핀에 질소 및 황을 도핑하면, 전해질 분해를 포함하는 부반응을 억제할 수 있다는 점을 의미한다. 상기 N-도핑된 그래핀 및 용매열합성된 그래핀에서 충전 및 방전 프로파일의 모양은 다른 그래핀들의 경우(Ritter, K. A. & Lyding, J. W. The influence of edge structure on the electronic properties of graphene quantum dots and nanoribbons. Nat. Mater. 8, 235.242 (2009); Li, X. et al. Superior cycle stability of nitrogen-doped graphene nanosheets as anodes for lithium ion batteries. Electrochem. Comm. 13, 822.825 (2011))에서와 유사하지만, 상기 S-도핑된 그래핀의 프로파일은 약간 다르다. 상기 S-도핑된 그래핀의 CV 곡선에서 추가적으로 양극 피크(cathodic peak: ~1.4 V) 및 음극 피크(anodic peak: ~2.4 V)가 관찰되었고, 이는 각각 폴리설파이드의 리튬 설파이드로의 변환 및 리튬 설파이드의 폴리설파이드로의 변환에 기인한 것이다. 상기 N-도핑된 그래핀 전극은 가장 높은 속도능력(rate capability)을 보여 준다. 상기 S-도핑된 그래핀, N-도핑된 그래핀, 및 용매열합성된 그래핀 전극들은 2500 mAg-1의 전류밀도에서 각각 270.5, 278.9 및 267.5 mAhg-1의 비용량을 보였고, 이는 200 mAg-1의 전류밀도에서 각각 44.9%, 40.7% 및 53.1%의 용량에 해당한다. 모든 그래핀 층이 단일층으로 존재하는 조건에서 LiC3의 형성을 통해, 그래핀의 이론적 용량은 744 mAhg-1이다. 그래핀의 리튬 저장 특성은, 합성 방법 및 조건, 층간 거리(interlayer spacing), 무질서도(disorder degree), 및 표면 작용기와 같은 많은 요인에 민감하게 의존한다고 보고되었다. 그래핀의 가역 용량은 약 300 mAhg-1 내지 1500 mAhg-1 이상까지 변할 수 있다. 상기 S-도핑된 그래핀 및 N-도핑된 그래핀은 종래에 보고된 다른 그래핀 전극들에 비해, 뛰어난 쿨롱 효율을 가지는 높은 사이클 안정성을 보여준다.
In order to evaluate the potential applications of the S-doped graphene, N-doped graphene and solvothermal graphene as anode materials, an electrochemical cell with graphene electrodes was tested with a current density of 200 at room temperature. Charging and discharging were performed galvanostatically with mAg -1 (FIG. 4). The reversible capacity of the S-doped graphene, N-doped graphene and solvothermal - synthesized graphene is reasonably high (500-800 mAhg -1 ). In the S-doped graphene and solvothermal graphene, the specific capacity decreases during the first 30 cycles and gradually increases as the number of cycles increases. In addition, this activation process can also be observed in other graphene-based electrodes (Ai, W. et al. A novel graphene-polysulfide anode material for high-performance lithium-ion batteries. Sci. Rep. 3, 2341 (2013)) ;Li, X. et al. Superior cycle stability of nitrogen-doped graphene nanosheets as anodes for lithium ion batteries. Electrochem. Comm. 13, 822.825 (2011)). The S-doped graphene, N-doped graphene, and solvothermal synthesized graphene showed high cyclic stability without capacity fluctuation that may occur during a long cycle. The initial Coulombic efficiencies of the S-doped graphene, N-doped graphene, and solvothermal synthesized graphene are 65.8%, 58.3%, and 45.8%, respectively. The average Coulombic efficiency in the 30th to 150th cycle of the solvothermal graphene was 97.2%, but the average Coulombic efficiency of the S-doped graphene and N-doped graphene was much higher (99.8%, respectively). and 98.5%). It has been shown that half-cell Coulombic efficiency can affect cycle retention in complete Li-ion cells. Also, in the voltage profile, a plateau in the course of the first discharge occurring at about 1.0-0.7 V (more evident in the CV curve) is the decomposition of the electrolyte and the formation of a solid electrolyte interphase (SEI) layer. (Fig. S6), the high plateau is prominent in the solvothermal synthesized graphene electrode. This finding means that if graphene is doped with nitrogen and sulfur, side reactions including electrolyte decomposition can be suppressed. The shape of the charge and discharge profiles in the N-doped graphene and solvothermal-synthesized graphene is different in the case of other graphenes (Ritter, KA & Lyding, JW The influence of edge structure on the electronic properties of graphene quantum dots and nanoribbons) Nat. Mater. 8, 235.242 (2009); Li, X. et al. Superior cycle stability of nitrogen-doped graphene nanosheets as anodes for lithium ion batteries. Electrochem. Comm. 13, 822.825 (2011)). , the profile of the S-doped graphene is slightly different. In the CV curve of the S-doped graphene, a positive peak (cathodic peak: ~1.4 V) and a negative peak (anodic peak: ~2.4 V) were additionally observed, which are polysulfide conversion to lithium sulfide and lithium sulfide, respectively. is due to the conversion of polysulfides of The N-doped graphene electrode shows the highest rate capability. The S- doped graphene, N- doped graphene, and solvothermal synthesis graphene electrodes showed a specific capacity of each of 270.5, 278.9 and 267.5 in the mAhg -1 -1 2500 mAg current density, which is 200 mAg At a current density of -1, this corresponds to a capacity of 44.9%, 40.7% and 53.1%, respectively. Through the formation of LiC 3 under the condition that all graphene layers exist as a single layer, the theoretical capacity of graphene is 744 mAhg -1 . It has been reported that the lithium storage properties of graphene are sensitively dependent on many factors such as synthesis methods and conditions, interlayer spacing, disorder degree, and surface functional groups. The reversible capacity of graphene may vary from about 300 mAhg -1 to 1500 mAhg -1 or more. The S-doped graphene and N-doped graphene show high cycle stability with excellent Coulombic efficiency, compared to other graphene electrodes previously reported.

실시예Example 5. 전기화학적 특성평가( 5. Electrochemical characterization ( 전기촉매적electrocatalytic 거동) motion)

전기촉매적 응용을 위해, N2 하의 600℃에서 열처리함으로써 샘플을 준비하였다. 표준 3-분획 전기화학적 셀 내에서 Autolab PGSTAT 101을 사용하여 전기화학적 측정을 수행하였다. 모든 실험에서, 기준 전극으로서 Ag/AgCl 기준 전극을 사용하였고, Pt 와이어를 상대 전극으로서 사용하였다. 이러한 산소 환원 반응(oxygen reduction reaction (ORR)) 실험에서 언급된 모든 전위를, 수소 산화 반응을 사용하는 pH-비의존적 가역 수소 전극(reversible hydrogen electrode (RHE))으로 변환하였다. 3 종류의 그래핀 샘플(5 mg) 및 20 μL의 5 wt% 나피온 이오노머(Nafion ionomer)를 각각 10분간 초음파처리하여 0.4 mL의 2-이소프로필 알콜에 분산시켰다. 회전디스크 전극(rotating-disk electrode (RDE))를 위해, 7 μL의 촉매 잉크(catalyst ink)를 0.000196 m2의 유리상 탄소 디스크(glassy carbon disk)를 사용하여 RDE 위에 충전하였다. 상기 전극 회전 속도는 1600 rpm(스캔 속도, 5 mVs-1), 0.1 M KOH 전해질이었다. 전자전달수(electron transfer number)(0.6 VRHE)를 계산하기 위해, 다른 회전 속도인 400, 900, 1200 및 1600 rpm을 사용하여 RDE 측정을 수행하였다.For electrocatalytic applications, samples were prepared by heat treatment at 600° C. under N 2 . Electrochemical measurements were performed using an Autolab PGSTAT 101 in a standard 3-compartment electrochemical cell. In all experiments, an Ag/AgCl reference electrode was used as a reference electrode, and a Pt wire was used as a counter electrode. All potentials mentioned in this oxygen reduction reaction (ORR) experiment were converted to a pH-independent reversible hydrogen electrode (RHE) using a hydrogen oxidation reaction. Three types of graphene samples (5 mg) and 20 μL of 5 wt% Nafion ionomer were each sonicated for 10 minutes and dispersed in 0.4 mL of 2-isopropyl alcohol. For the rotating-disk electrode (RDE), 7 μL of catalyst ink was charged onto the RDE using a 0.000196 m 2 glassy carbon disk. The electrode rotation speed was 1600 rpm (scan speed, 5 mVs −1 ), 0.1 M KOH electrolyte. To calculate the electron transfer number (0.6 V RHE ), RDE measurements were performed using different rotational speeds of 400, 900, 1200 and 1600 rpm.

상기 S-도핑된 그래핀 및 N-도핑된 그래핀의 ORR에 대한 전기촉매적 활성을 조사하고 도핑 효과를 확인하기 위해, 0.1 M의 KOH 전해질(20 wt% Pt/C 상용 E-TEK 촉매) 내에서 회전-디스크 전극(RDE) 전압전류법(voltametry)을 수행하였다. 상기 N-도핑된 그래핀은 용매열합성된 새 그래핀보다 더 높은 ORR 활성을 보인다. 또한, N-도핑된 그래핀은 백금 전극과 유사한 개시 전위(onset potential: 0.9 VRHE)을 가진다. 상기 ORR을 위해 도핑된 탄소의 활성은 여러 가지 요인들의 조합에 의해 향상되었지만, 명백히 밝혀지지는 아니하였다. 그러나 상기 향상 요인은 도핑, 예를 들면, 탄소 내에 N, B, 및 S의 존재에 의해 설명될 수 있다. 이러한 결과는 상기 ORR에 대한 촉매의 전기촉매적 활성이 탄소의 전기음성도와 다른 전기음성도를 가지는 도펀트의 도입과 함께 증가한다는 점을 의미한다. 더욱이, 회전 속도를 변화시키는 Koutechy-Levich 분석법에 의해, 0.2 VRHE에서 전자전달수(electron transfer number)가 용매열합성된 새로운 그래핀의 2.8에서 N-도핑된 그래핀의 3.9로 변한다는 점이 밝혀졌다(도 S7). 실제 응용에 있어서 ORR 활성에 대한 적절한 도핑 효과의 중요성을 강조하기 위해, 도 5b에서 전자전달수를 비교하기 위한 전위(0.6 VRHE)를 선택하였고, 이는 일반적인 관점에서 매우 높은 전위이다. 용매열합성된 그래핀의 경우에, 상기 전자전달수는, ORR에 대해 비효율적인 지배적인 2-전자 경로를 의미한다. 그러나 N 및 S와 같은 원소로 도핑하면, 상기 ORR 경로는, 상기 ORR에 보다 더 친화적인 2-2-전자 및 4-전자 전달 모두를 포함한다. 용매열법의 헤테로원자(N, S)-도핑된 그래핀은 상향식 방법(bottom-up method)에 의해 합성되었다. 상기 상향식 방법은 하향식 방법(top-down method)과 다르고, 활성에 영향을 미칠 수 있는 금속성 불순물을 상당량 함유한다. 그러나 본 발명에서는 상기 활성에 영향을 주지 아니하는 NaOH 또는 Na 금속을 사용한다. 본 발명의 방법에 의해 합성된 그래핀에 다른 불순물이 없다는 점이 XPS 결과에 의해 확인되었다.To investigate the electrocatalytic activity of the S-doped graphene and N-doped graphene on the ORR and confirm the doping effect, 0.1 M KOH electrolyte (20 wt% Pt/C commercial E-TEK catalyst) Rotating-disk electrode (RDE) voltammetry was performed in The N-doped graphene exhibits higher ORR activity than the solvothermal-synthesized new graphene. In addition, N-doped graphene has an onset potential (0.9 V RHE ) similar to that of a platinum electrode. The activity of doped carbon for the ORR was improved by a combination of various factors, but it was not clearly revealed. However, the enhancement factor can be explained by doping, for example the presence of N, B, and S in the carbon. These results mean that the electrocatalytic activity of the catalyst for the ORR increases with the introduction of a dopant having an electronegativity different from that of carbon. Furthermore, by the Koutechy-Levich method of varying the rotational speed, it was revealed that the electron transfer number at 0.2 V RHE changed from 2.8 of solvothermal new graphene to 3.9 of N-doped graphene. lost (FIG. S7). To emphasize the importance of the effect of proper doping on ORR activity in practical applications, the potential (0.6 V RHE ) for comparing electron transport numbers was selected in Fig. 5b, which is a very high potential from a general point of view. In the case of solvothermal-synthesized graphene, the electron transport number means a dominant two-electron pathway that is inefficient for ORR. However, upon doping with elements such as N and S, the ORR pathway involves both 2-2-electron and 4-electron transport, which are more affinity for the ORR. Heteroatom (N, S)-doped graphene by solvothermal method was synthesized by a bottom-up method. The bottom-up method is different from the top-down method and contains a significant amount of metallic impurities that can affect the activity. However, in the present invention, NaOH or Na metal that does not affect the activity is used. It was confirmed by the XPS results that there were no other impurities in the graphene synthesized by the method of the present invention.

Claims (7)

헤테로원자 전구체 및 알칼리금속 공급원의 혼합물을 비활성 분위기 하에서 가열하는 단계를 포함하고,
상기 헤테로원자 전구체는 하이드록시기를 포함하지 아니하는 것임을 특징으로 하고,
상기 헤테로원자는 S, N, B, Si, P 및 F로 이루어진 군으로부터 선택되는 것임을 특징으로 하는, 헤테로원자로 도핑된 그래핀 제조 방법.
heating the mixture of the heteroatom precursor and the alkali metal source under an inert atmosphere;
The heteroatom precursor is characterized in that it does not contain a hydroxyl group,
The heteroatom is S, N, B, Si, P and F, characterized in that selected from the group consisting of, graphene doped with a heteroatom manufacturing method.
삭제delete 제1항에 있어서, 상기 헤테로원자 전구체가 디메틸설폭사이드 또는 디메틸포름아미드인 것임을 특징으로 하는 헤테로원자로 도핑된 그래핀 제조 방법.The method of claim 1, wherein the heteroatom precursor is dimethylsulfoxide or dimethylformamide. 제1항에 있어서, 상기 알칼리금속 공급원은 Na 또는 NaOH인 것임을 특징으로 하는 헤테로원자로 도핑된 그래핀 제조 방법.The method of claim 1 , wherein the alkali metal source is Na or NaOH. 제1항에 있어서, 상기 가열 온도가 150℃ 내지 300℃인 것임을 특징으로 하는 헤테로원자로 도핑된 그래핀 제조 방법.The method of claim 1, wherein the heating temperature is 150°C to 300°C. 삭제delete 삭제delete
KR1020150028476A 2015-02-27 2015-02-27 Process for Preparing Heteroatom-Doped Graphene KR102335973B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020150028476A KR102335973B1 (en) 2015-02-27 2015-02-27 Process for Preparing Heteroatom-Doped Graphene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020150028476A KR102335973B1 (en) 2015-02-27 2015-02-27 Process for Preparing Heteroatom-Doped Graphene

Publications (2)

Publication Number Publication Date
KR20160105152A KR20160105152A (en) 2016-09-06
KR102335973B1 true KR102335973B1 (en) 2021-12-07

Family

ID=56946040

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020150028476A KR102335973B1 (en) 2015-02-27 2015-02-27 Process for Preparing Heteroatom-Doped Graphene

Country Status (1)

Country Link
KR (1) KR102335973B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210206641A1 (en) * 2018-12-12 2021-07-08 Yuksel Yenilenebilir Enerji Anonim Sirketi Method for nitrogen-doped graphene production

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101934845B1 (en) 2017-03-21 2019-03-18 한국세라믹기술원 Analysis method for the determination of sulfur content in graphene
KR102357700B1 (en) * 2020-04-23 2022-02-04 재단법인대구경북과학기술원 S and n dual-doped graphitic porous carbon, a catalyst including the same and method for preparing the same
KR102546337B1 (en) 2021-05-21 2023-06-21 전남대학교산학협력단 Electrically conductive heteroatoms-doped graphenes and method for producing the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101451349B1 (en) 2012-11-14 2014-10-15 인하대학교 산학협력단 Sulfur-doped graphene-based nanosheets for lithium-ion battery anodes
JP5677589B2 (en) 2011-12-12 2015-02-25 パナソニック株式会社 Carbon-based material, electrode catalyst, oxygen reduction electrode catalyst, gas diffusion electrode, aqueous solution electrolysis device, and method for producing carbon-based material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5677589B2 (en) 2011-12-12 2015-02-25 パナソニック株式会社 Carbon-based material, electrode catalyst, oxygen reduction electrode catalyst, gas diffusion electrode, aqueous solution electrolysis device, and method for producing carbon-based material
KR101451349B1 (en) 2012-11-14 2014-10-15 인하대학교 산학협력단 Sulfur-doped graphene-based nanosheets for lithium-ion battery anodes

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Chem. Mater. 2011, Vol. 23, pp. 1188-1193 (2011.01.26.)*
한국공업화학회 2014년 가을 학술대회 발표논문집 (2014.11.14.)*

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210206641A1 (en) * 2018-12-12 2021-07-08 Yuksel Yenilenebilir Enerji Anonim Sirketi Method for nitrogen-doped graphene production

Also Published As

Publication number Publication date
KR20160105152A (en) 2016-09-06

Similar Documents

Publication Publication Date Title
Zhai et al. Layered birnessite cathode with a displacement/intercalation mechanism for high-performance aqueous zinc-ion batteries
Chang et al. Ultrafine Sn nanocrystals in a hierarchically porous N-doped carbon for lithium ion batteries
Chu et al. Thickness-control of ultrathin bimetallic Fe–Mo selenide@ N-doped carbon core/shell “nano-crisps” for high-performance potassium-ion batteries
Chen et al. Tuning interface bridging between MoSe 2 and three-dimensional carbon framework by incorporation of MoC intermediate to boost lithium storage capability
Zheng et al. High lithium anodic performance of highly nitrogen-doped porous carbon prepared from a metal-organic framework
Fayed et al. Carbon and nitrogen co-doped MoS2 nanoflakes as an electrode material for lithium-ion batteries and supercapacitors
Xie et al. Multi-functional bilayer carbon structures with micrometer-level physical encapsulation as a flexible cathode host for high-performance lithium-sulfur batteries
Zhao et al. MoSe2 nanoplatelets with enriched active edge sites for superior sodium-ion storage and enhanced alkaline hydrogen evolution activity
Saroha et al. Freestanding interlayers for Li–S batteries: design and synthesis of hierarchically porous N-doped C nanofibers comprising vanadium nitride quantum dots and MOF-derived hollow N-doped C nanocages
US9237658B2 (en) Strongly coupled inorganic-graphene hybrid materials, apparatuses, systems and methods
Li et al. MoS2-decorated coaxial nanocable carbon aerogel composites as cathode materials for high performance lithium-sulfur batteries
Huu et al. Facile synthesis of SnS2@ g-C3N4 composites as high performance anodes for lithium ion batteries
Sun et al. Size-controlled MoS 2 nanodots supported on reduced graphene oxide for hydrogen evolution reaction and sodium-ion batteries
Bindumadhavan et al. Silver nanoparticles embedded boron-doped reduced graphene oxide as anode material for high performance lithium ion battery
Zhou et al. High-rate and long-cycle silicon/porous nitrogen-doped carbon anode via a low-cost facile pre-template-coating approach for Li-ion batteries
Chen et al. In situ transformation of LDH into hollow cobalt-embedded and N-doped carbonaceous microflowers as polysulfide mediator for lithium-sulfur batteries
Zhang et al. N-doped crumpled graphene: bottom-up synthesis and its superior oxygen reduction performance
Li et al. CoSe nanoparticle embedded B, N-codoped carbon nanotube array as a dual-functional host for a high-performance Li-S full battery
Zhang et al. Densely pillared holey-graphene block with high-level nitrogen doping enabling ultra-high volumetric capacity for lithium ion storage
Zhang et al. Confine sulfur in polyaniline-decorated hollow carbon nanofiber hybrid nanostructure for lithium–sulfur batteries
Zhang et al. Proline-derived in situ synthesis of nitrogen-doped porous carbon nanosheets with encaged Fe 2 O 3@ Fe 3 C nanoparticles for lithium-ion battery anodes
KR102335973B1 (en) Process for Preparing Heteroatom-Doped Graphene
Wei et al. Ultrafast microwave synthesis of MoTe2@ graphene composites accelerating polysulfide conversion and promoting Li2S nucleation for high-performance Li-S batteries
Yang et al. Hollow porous carbon nanospheres containing polar cobalt sulfide (Co9S8) nanocrystals as electrocatalytic interlayers for the reutilization of polysulfide in lithium–sulfur batteries
Zhao et al. Nitrogen-doped hollow carbon@ tin disulfide as a bipolar dynamic host for lithium-sulfur batteries with enhanced kinetics and cyclability

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant