KR102331951B1 - Methods for manufacturing nanostructured tungsten oxide thin film and nanostructured tungsten oxide thin film made by the same - Google Patents

Methods for manufacturing nanostructured tungsten oxide thin film and nanostructured tungsten oxide thin film made by the same Download PDF

Info

Publication number
KR102331951B1
KR102331951B1 KR1020190103703A KR20190103703A KR102331951B1 KR 102331951 B1 KR102331951 B1 KR 102331951B1 KR 1020190103703 A KR1020190103703 A KR 1020190103703A KR 20190103703 A KR20190103703 A KR 20190103703A KR 102331951 B1 KR102331951 B1 KR 102331951B1
Authority
KR
South Korea
Prior art keywords
thin film
tungsten oxide
oxide thin
nanostructured
manufacturing
Prior art date
Application number
KR1020190103703A
Other languages
Korean (ko)
Other versions
KR20210023471A (en
Inventor
이지혜
김정민
이호영
최준혁
최대근
정주연
전소희
이응숙
정준호
Original Assignee
한국기계연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국기계연구원 filed Critical 한국기계연구원
Priority to KR1020190103703A priority Critical patent/KR102331951B1/en
Publication of KR20210023471A publication Critical patent/KR20210023471A/en
Application granted granted Critical
Publication of KR102331951B1 publication Critical patent/KR102331951B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1295Process of deposition of the inorganic material with after-treatment of the deposited inorganic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • B82B3/0009Forming specific nanostructures
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J129/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Adhesives based on hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Adhesives based on derivatives of such polymers
    • C09J129/02Homopolymers or copolymers of unsaturated alcohols
    • C09J129/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/06Coating on selected surface areas, e.g. using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1216Metal oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Thermal Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Laminated Bodies (AREA)

Abstract

본 명세서에 개시된 기술은 일정한 형상을 가지고 소결시 변형량이 적은 나노구조 텅스텐옥사이드 박막을 제조방법을 제공한다. 본 명세서에 개시된 기술의 실시예에 따른 나노구조 텅스텐옥사이드 박막 제조방법에 의하면, 일정한 형상의 나노구조를 갖는 텅스텐 옥사이드 박막을 재현성있게 제공할 수 있으며, 반복 공정을 통해 3차원 나노구조 형성이 가능하다.
본 명세서에 개시된 나노구조 텅스텐옥사이드의 넓은 표면적으로 인해 전기변색, 디스플레이, 수소생산, 물분해, 이차전지, 화학센서, 가스센서 등의 효율향상에 기여하는 효과가 있다.
The technology disclosed herein provides a method for manufacturing a nanostructured tungsten oxide thin film having a predetermined shape and a small amount of deformation during sintering. According to the method for manufacturing a nanostructured tungsten oxide thin film according to an embodiment of the technology disclosed herein, it is possible to reproducibly provide a tungsten oxide thin film having a nanostructure of a certain shape, and it is possible to form a three-dimensional nanostructure through an iterative process .
Due to the large surface area of the nanostructured tungsten oxide disclosed herein, there is an effect of contributing to the improvement of the efficiency of electrochromic, display, hydrogen production, water decomposition, secondary battery, chemical sensor, gas sensor, and the like.

Description

나노구조 텅스텐옥사이드 박막 제조방법 및 이에 의하여 제조된 나노구조 텅스텐옥사이드 박막{Methods for manufacturing nanostructured tungsten oxide thin film and nanostructured tungsten oxide thin film made by the same}Nanostructured tungsten oxide thin film manufacturing method and nanostructured tungsten oxide thin film manufactured thereby

본 발명은 나노구조 텅스텐옥사이드 박막 제조방법에 관한 것으로서, 더욱 상세하게는 일정한 형상을 가지고 소결시 변형량이 적은 나노구조 텅스텐옥사이드 박막을 제조하는 방법 및 이에 의하여 제조된 나노구조 텅스텐옥사이드 박막에 관한 것이다.The present invention relates to a method for manufacturing a nanostructured tungsten oxide thin film, and more particularly, to a method for manufacturing a nanostructured tungsten oxide thin film having a predetermined shape and a small amount of deformation during sintering, and to a nanostructured tungsten oxide thin film manufactured thereby.

텅스텐 옥사이드는 2.8eV의 밴드갭을 갖는 금속산화물 반도체로써, 최근 물분해를 통한 수소생산 전극용 소재, 전기변색 디스플레이 또는 스마트윈도우용 전극용 소재, 가스센서전극용 소재, 화학센서, 이차전지 등으로 응용되고 있다. Tungsten oxide is a metal oxide semiconductor with a band gap of 2.8 eV. Recently, it has been used as a material for hydrogen production electrodes through water decomposition, an electrode material for an electrochromic display or smart window, a material for a gas sensor electrode, a chemical sensor, and a secondary battery. is being applied

텅스텐 옥사이드를 나노구조로 제조하게 되면, 반응물질과의 표면적이 크게 되어 수소생산 효율, 전기변색 반응속도, 가스센싱의 민감도 등이 증가하는 장점이 있다. When tungsten oxide is manufactured in a nanostructure, the surface area with the reactant becomes large, so that hydrogen production efficiency, electrochromic reaction rate, sensitivity of gas sensing, etc. are increased.

기존의 경우 나노구조 텅스텐 옥사이드를 수열합성 방식으로 제작하였다(J. Mater. Chem. A, 2013, 1,3479). 씨드층이 형성된 기판을 수열합성용액에 침지시킨 후 고온에서 일정시간 유지시킴으로써 기판 위에 나노막대 또는 나노시트 구조를 갖는 텅스텐 옥사이드를 제조하였다. 그러나, 이 경우 나노구조가 기판상에 무작위로 배열되고, 나노구조의 크기가 일정하지 않으며 재현성이 낮은 문제점이 있다. In the conventional case, nanostructured tungsten oxide was prepared by hydrothermal synthesis (J. Mater. Chem. A, 2013, 1,3479). A tungsten oxide having a nanorod or nanosheet structure was prepared on the substrate by immersing the substrate on which the seed layer was formed in a hydrothermal synthesis solution and maintaining it at a high temperature for a certain period of time. However, in this case, there is a problem in that the nanostructures are randomly arranged on the substrate, the size of the nanostructures is not constant, and the reproducibility is low.

다른 방식으로 나노임프린트 방법을 통해 나노구조 텅스텐 옥사이드를 제작하였다(Advanced Functional Materials 23(17):2201-2211). 텅스텐 옥사이드용 전구체를 기판위에 도포하여 전구체 박막을 형성한 후, 나노구조가 각인된 몰드를 박막에 접촉시켰다. 몰드와 접촉한 기판에 온도, 압력, 자외선 등을 가하여 몰드에 각인된 나노구조의 상보구조를 전구체 박막에 형성하는 방법으로 나노구조를 갖는 텅스텐 옥사이드를 제조하였다. 그러나, 이 경우 기판에 형성된 전구체 박막에 솔벤트가 다량 함유되어 있어 소결 이후 텅스텐 옥사이드의 나노구조의 형상이 심하게 변형되는 문제점이 있다. In another method, nanostructured tungsten oxide was fabricated through a nanoimprint method (Advanced Functional Materials 23(17):2201-2211). After forming a precursor thin film by applying a precursor for tungsten oxide on a substrate, a mold engraved with nanostructures was brought into contact with the thin film. A tungsten oxide having a nanostructure was prepared by applying temperature, pressure, ultraviolet light, etc. to the substrate in contact with the mold to form the complementary structure of the nanostructure engraved on the mold on the precursor thin film. However, in this case, since a large amount of solvent is contained in the precursor thin film formed on the substrate, there is a problem in that the shape of the nanostructure of the tungsten oxide is severely deformed after sintering.

따라서, 일정한 형상을 가지고 소결시 변형량이 적은 나노구조 텅스텐옥사이드 박막을 제조하는 방법이 필요하다.Therefore, there is a need for a method for manufacturing a nanostructured tungsten oxide thin film having a certain shape and having a small amount of deformation during sintering.

본 발명은 일정한 형상을 가지고 소결시 변형량이 적은 나노구조 텅스텐옥사이드 박막의 제조방법 및 이에 의하여 제조된 나노구조 텅스텐옥사이드 박막을 제공하는 것을 목적들 중 하나로 하며, 본 명세서에 개시된 기술의 기술적 사상에 따른 나노구조 텅스텐옥사이드 박막의 제조방법이 이루고자 하는 기술적 과제는 이상에서 언급한 문제점을 해결하기 위한 과제로 제한되지 않으며, 언급되지 않은 또 다른 과제는 아래의 기재로부터 통상의 기술자에게 명확하게 이해될 수 있을 것이다.One of the objects of the present invention is to provide a method for manufacturing a nanostructured tungsten oxide thin film having a certain shape and a small amount of deformation during sintering and to provide a nanostructured tungsten oxide thin film prepared thereby, according to the technical spirit of the technology disclosed in the present specification. The technical task to be achieved by the method for manufacturing the nanostructured tungsten oxide thin film is not limited to the task for solving the above-mentioned problems, and another task not mentioned can be clearly understood by those skilled in the art from the following description will be.

상술한 예시적 과제를 달성하기 위하여 본 명세서에 개시된 기술의 일 실시예는 나노구조 텅스텐옥사이드 박막 제조방법을 제공한다. 이러한 나노구조 텅스텐옥사이드 박막 제조방법은, 나노몰드 상에 텅스텐옥사이드 전구체 박막을 형성하는 제1 단계; 기판 상에 접착층(Adhesive layer)을 형성하는 제2 단계; 및 상기 나노몰드 상에 형성된 전구체 박막을 상기 접착층이 형성된 기판 상에 전사하는 제3 단계를 포함할 수 있다. In order to achieve the above-described exemplary task, an embodiment of the technology disclosed herein provides a method for manufacturing a nanostructured tungsten oxide thin film. The method for manufacturing the nanostructured tungsten oxide thin film includes: a first step of forming a tungsten oxide precursor thin film on a nanomold; a second step of forming an adhesive layer on the substrate; and a third step of transferring the precursor thin film formed on the nano-mold onto the substrate on which the adhesive layer is formed.

일 실시예에 있어서, 상기 제1 단계는, 텅스텐산을 포함하는 전구체 레진을 준비하는 단계; 나노구조가 각인된 나노몰드를 준비하는 단계; 및 상기 나노몰드에 상기 전구체 레진을 도포하는 단계를 포함할 수 있다.In one embodiment, the first step, preparing a precursor resin containing tungstic acid; Preparing a nano-mold imprinted with a nano structure; and applying the precursor resin to the nano-mold.

일 실시예에 있어서, 상기 나노구조 텅스텐옥사이드 박막 제조방법은, 상기 나노몰드를 분리하는 제4 단계; 및 소결하는 제5 단계를 더 포함할 수 있으며, 상기 제1 단계 내지 제5 단계를 반복할 수 있다.In one embodiment, the method for manufacturing the nanostructured tungsten oxide thin film comprises: a fourth step of separating the nanomold; and a fifth step of sintering, and repeating the first to fifth steps.

앞서 상술한 예시적 과제를 이루기 위하여 본 발명의 다른 실시예는 나노구조 텅스텐옥사이드 박막을 제공한다. 이러한 나노구조 텅스텐옥사이드 박막은, 상기 제1 단계 내지 제5 단계에 의해 제조된 것이며일 실시예에 있어서, 상기 나노구조 텅스텐옥사이드 박막은, 상기 제1 단계 내지 제5 단계의 반복 공정에 의해 제조된 것이다.Another embodiment of the present invention provides a nanostructured tungsten oxide thin film in order to achieve the above-described exemplary task. This nanostructured tungsten oxide thin film is prepared by the first to fifth steps and in one embodiment, the nanostructured tungsten oxide thin film is manufactured by the repeating process of the first to fifth steps. will be.

본 명세서에 개시된 기술의 실시예에 따른 나노구조 텅스텐옥사이드 박막 제조방법에 의하면, 일정한 형상의 나노구조를 갖는 텅스텐 옥사이드 박막을 재현성있게 제공할 수 있다. 또한, 반복 공정을 통해 3차원 나노구조 형성이 가능하다. According to the method for manufacturing a nanostructured tungsten oxide thin film according to an embodiment of the technology disclosed herein, it is possible to reproducibly provide a tungsten oxide thin film having a nanostructure of a certain shape. In addition, it is possible to form a three-dimensional nanostructure through an iterative process.

또한, 본 명세서에 개시된 기술의 실시예에 따르면, 나노구조 텅스텐옥사이드의 넓은 표면적으로 인해 전기변색, 디스플레이, 수소생산, 물분해, 이차전지, 화학센서, 가스센서 등의 효율향상에 기여하는 효과가 있다.In addition, according to the embodiment of the technology disclosed in the present specification, due to the large surface area of the nanostructured tungsten oxide, the effect of contributing to the improvement of the efficiency of electrochromic, display, hydrogen production, water decomposition, secondary battery, chemical sensor, gas sensor, etc. have.

한편, 본 명세서에 개시된 기술의 실시예에 따른 나노구조 텅스텐옥사이드 박막 제조방법이 달성할 수 있는 효과는 이상에서 언급한 것들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 통상의 기술자에게 명확하게 이해될 수 있을 것이다.On the other hand, the effect that can be achieved by the method for manufacturing a nanostructured tungsten oxide thin film according to an embodiment of the technology disclosed in the present specification is not limited to those mentioned above, and other effects not mentioned can be obtained from those skilled in the art from the description below. can be clearly understood by

본 명세서에서 인용되는 도면을 보다 충분히 이해하기 위하여 각 도면의 간단한 설명이 제공된다.
도 1은 본 명세서에 개시된 기술의 실시예에 따른 나노구조 텅스텐옥사이드 박막 제조방법의 순서도이다.
도 2는 본 명세서에 개시된 기술의 실시예에 따른 나노구조 텅스텐옥사이드 박막 제조방법의 공정을 단면으로 도시한 공정도이다.
도 3은 본 명세서에 개시된 기술의 실시예에 따른 나노구조 텅스텐옥사이드 박막 제조방법의 반복 공정을 단면으로 도시한 공정도이다.
도 4 내지 6은 본 명세서에 개시된 기술의 실시예에 따른 나노구조 텅스텐옥사이드 박막 제조방법에 의한 나노구조 텅스텐옥사이드 박막의 사진이다.
도 7은 본 명세서에 개시된 기술의 실시예에 따른 나노구조 텅스텐옥사이드 박막의 헥사홀 패턴을 나타낸 사진이다.
도 8은 본 명세서에 개시된 기술의 실시예에 따른 나노구조 텅스텐옥사이드 박막과 비교예의 자외선-가시광선 흡수 스펙트럼을 나타낸 그래프이다.
도 9는 본 명세서에 개시된 기술의 실시예에 따른 나노구조 텅스텐옥사이드 박막의 X선회절분석(XRD) 그래프이다.
In order to more fully understand the drawings cited herein, a brief description of each drawing is provided.
1 is a flowchart of a method for manufacturing a nanostructured tungsten oxide thin film according to an embodiment of the technology disclosed herein.
Figure 2 is a process diagram showing in cross section the process of the nanostructure tungsten oxide thin film manufacturing method according to an embodiment of the technology disclosed herein.
Figure 3 is a process diagram showing a cross-section of the repeating process of the nanostructure tungsten oxide thin film manufacturing method according to an embodiment of the technology disclosed herein.
4 to 6 are photographs of a nanostructured tungsten oxide thin film by a method for manufacturing a nanostructured tungsten oxide thin film according to an embodiment of the technology disclosed herein.
7 is a photograph showing a hexa-hole pattern of a nanostructured tungsten oxide thin film according to an embodiment of the technology disclosed herein.
8 is a graph showing an ultraviolet-visible light absorption spectrum of a nanostructured tungsten oxide thin film and a comparative example according to an embodiment of the technology disclosed herein.
9 is an X-ray diffraction analysis (XRD) graph of a nanostructured tungsten oxide thin film according to an embodiment of the technology disclosed herein.

본 명세서에 개시된 기술은 다양한 변경을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고, 이를 상세한 설명을 통해 상세히 설명하고자 한다. 그러나, 이는 본 명세서에 개시된 기술을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 명세서에 개시된 기술은 본 명세서에 개시된 기술의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.Since the technology disclosed in this specification can have various changes and can have various embodiments, specific embodiments are illustrated in the drawings, and this will be described in detail through the detailed description. However, this is not intended to limit the technology disclosed herein to specific embodiments, and it is understood that the technology disclosed herein includes all modifications, equivalents and substitutes included in the spirit and scope of the technology disclosed herein. should be

본 명세서에 개시된 기술을 설명함에 있어서, 관련된 공지 기술에 대한 구체적인 설명이 본 명세서에 개시된 기술의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다. In describing the technology disclosed in the present specification, if it is determined that a detailed description of a related known technology may unnecessarily obscure the subject matter of the technology disclosed in the present specification, the detailed description thereof will be omitted.

본 개시에서 층, 영역 또는 기판과 같은 요소가 다른 구성요소 "상(on)"에 존재하는 것으로 언급될 때, 이것은 직접적으로 다른 요소 상에 존재하거나 또는 그 사이에 중간 요소가 존재할 수도 있다는 것을 이해할 수 있을 것이다.It will be understood that when an element, such as a layer, region, or substrate, is referred to as being “on” another component in the present disclosure, it may be directly on the other element or intervening elements may be present therebetween. will be able

본 개시에서 나노구조(nanostructure)란, 일반적인 구형 또는 응집체 형태의 입자형태가 아니라, 나노미터 크기의 특정한 형상을 가지는 형태를 포함하는 개념이다. 나노몰드는 Al, Cr, Ag, Cu, Ni, Co, Mo 등의 금속 또는 이들의 합금으로 이루어질 수 있으며, 이외에도 다양한 금속산화물로 이루어질 수 있다. 또한 실리콘 웨이퍼 또는 PDMS, h-PDMS, PVC, PFPE, PUA 등과 같은 고분자 소재 등 다양한 재질로 이루어질 수 있다. In the present disclosure, the nanostructure is a concept including a shape having a specific shape of a nanometer size, not a general spherical or aggregated particle shape. The nano-mold may be formed of a metal such as Al, Cr, Ag, Cu, Ni, Co, Mo, or an alloy thereof, and in addition to various metal oxides. In addition, it may be made of various materials such as a silicon wafer or a polymer material such as PDMS, h-PDMS, PVC, PFPE, and PUA.

도 1은 본 명세서에 개시된 기술의 실시예에 따른 나노구조 텅스텐옥사이드 박막 제조방법의 순서도이고, 도 2는 본 명세서에 개시된 기술의 실시예에 따른 나노구조 텅스텐옥사이드 박막 제조방법의 공정을 단면으로 도시한 공정도이다. 1 is a flowchart of a method for manufacturing a nanostructured tungsten oxide thin film according to an embodiment of the technology disclosed herein, and FIG. 2 is a cross-sectional view showing the process of a method for manufacturing a nanostructured tungsten oxide thin film according to an embodiment of the technology disclosed herein It is a process diagram.

도 1을 참조하면, 본 명세서에 개시된 기술의 실시예에 따른 나노구조 텅스텐옥사이드 박막 제조방법(S100, 이하, 나노구조 텅스텐옥사이드 박막 제조방법)은, 나노몰드 상에 텅스텐옥사이드 전구체 박막을 형성하는 제1 단계(S110)와 기판 상에 접착층(adhesive layer)을 형성하는 제2 단계(S120) 및 상기 나노몰드 상에 형성된 전구체 박막을 상기 접착층이 형성된 기판 상에 전사하는 제3 단계(S130)를 포함할 수 있으며, 상기 나노몰드를 분리하는 제4 단계(S140); 및 소결하는 제5 단계(S150)를 더 포함할 수 있으며, 상기 제1 단계(S110) 내지 제5 단계(S150)를 반복할 수 있다.Referring to FIG. 1 , a method for manufacturing a nanostructured tungsten oxide thin film (S100, hereinafter, a nanostructured tungsten oxide thin film manufacturing method) according to an embodiment of the technology disclosed herein is a method for forming a tungsten oxide precursor thin film on a nanomold A first step (S110), a second step (S120) of forming an adhesive layer on the substrate, and a third step (S130) of transferring the precursor thin film formed on the nano-mold onto the substrate on which the adhesive layer is formed a fourth step of separating the nano-mold (S140); and a fifth step (S150) of sintering may be further included, and the first step (S110) to the fifth step (S150) may be repeated.

이하 각각의 단계에 대해 설명한다. Each step will be described below.

제1 단계(S110)First step (S110)

도 2를 참조하면, 나노몰드(110) 상에 텅스텐옥사이드 전구체 박막을 형성하는 제1 단계(S110)는, 텅스텐산을 포함하는 전구체 레진(A)을 준비하는 단계와, 나노구조가 각인된 나노몰드(110)를 준비하는 단계 및 상기 나노몰드(110)에 상기 전구체 레진(A)을 도포하는 단계를 포함할 수 있다.Referring to FIG. 2 , the first step (S110) of forming a tungsten oxide precursor thin film on the nanomold 110 includes preparing a precursor resin (A) containing tungstic acid, and the nanostructure imprinted with the nanostructure. It may include preparing the mold 110 and applying the precursor resin (A) to the nano-mold 110 .

상기 텅스텐산을 포함하는 전구체 레진(A)은 예를 들면, 텅스텐옥사이드(H2WO4) 2~30%, 폴리비닐알콜(PVA) 1~10%를 포함하는 과산화수소 용액일 수 있으나 반드시 이에 한정되는 것은 아니다.The precursor resin (A) containing tungstic acid may be, for example, a hydrogen peroxide solution containing 2 to 30% of tungsten oxide (H 2 WO 4 ) and 1 to 10% of polyvinyl alcohol (PVA), but must be limited thereto it's not going to be

본 실시예에 있어서의 전구체 레진(A)은 솔벤트(solvent) 함량이 낮은 것을 특징으로 하며, 소결 이후에도 나노구조의 형상이 유지될 수 있는 장점이 있다. 상기 전구체 레진(A)의 솔벤트 함량은 바람직하게 95%이하일 수 있다.The precursor resin (A) in this embodiment is characterized in that the solvent content is low, and there is an advantage that the shape of the nanostructure can be maintained even after sintering. The solvent content of the precursor resin (A) may be preferably 95% or less.

상기 나노몰드(110) 상에 전구체 박막을 형성하는 방법으로는 스핀코팅(Spin Coating), 바코팅(Bar Coating), 스프레이코팅(Spray Coating), 잉크젯프린팅 방법에 의해 형성되는 것일 수 있으나, 반드시 이에 한정되는 것은 아니다.As a method of forming the precursor thin film on the nano-mold 110 , it may be formed by spin coating, bar coating, spray coating, or inkjet printing method, but it must be It is not limited.

제2 단계(S120)Second step (S120)

기판(120) 상에 접착층(140)(adhesive layer)을 형성하는 제2 단계로서, 도 2에 예시적으로 도시된 바와 같이, 기판(120) 상에 접착층(140)을 형성한다.As a second step of forming an adhesive layer 140 on the substrate 120 , as exemplarily shown in FIG. 2 , an adhesive layer 140 is formed on the substrate 120 .

상기 기판(120)은 절연체이면서 상기 접착층(140)이 용이하게 증착될 수 있는 기판이면 특별히 한정되지 않으며, 원하는 층수만큼 증착하여 사용할 수 있다.The substrate 120 is not particularly limited as long as it is an insulator and on which the adhesive layer 140 can be easily deposited, and may be used by depositing a desired number of layers.

이러한 기판은 예를 들어, SiO2 기판, ITO 기판, SnO2 기판, TiO2 기판, Al2O3 기판 등의 산화물 기판; Cu, Ni, Fe, Pt, Al, Co, Ru, Pd, Cr, Mn, Au, Ag, Mo, Rh, Ta, Ti, W, U, V, Zr, Ir 및 이들의 조합들로 이루어진 군에서 선택된 금속 기판; 폴리에틸렌 테레트탈레이트(Polyethylene Terephthalate; PET), 폴리에틸렌 술폰(Polyethylene Sulfone; PES), 폴리메틸 메타크릴레이트(Polymethyl Methacrylate; PMMA), 폴리이미드(Polyimide), 폴리에틸렌 나프탈레이트(Polyehylene Naphthalate; PEN), 폴리카보네이트(Polycarbonate; PC) 등의 유연 기판; 또는 유리 기판; 등일 수 있다.Such substrates include, for example, oxide substrates such as SiO 2 substrates, ITO substrates, SnO 2 substrates, TiO 2 substrates, Al 2 O 3 substrates; From the group consisting of Cu, Ni, Fe, Pt, Al, Co, Ru, Pd, Cr, Mn, Au, Ag, Mo, Rh, Ta, Ti, W, U, V, Zr, Ir and combinations thereof a selected metal substrate; Polyethylene Terephthalate (PET), Polyethylene Sulfone (PES), Polymethyl Methacrylate (PMMA), Polyimide, Polyehylene Naphthalate (PEN), Polycarbonate flexible substrates such as (Polycarbonate; PC); or a glass substrate; etc.

본 실시예에 있어서, 상기 접착층(140)은 대략 50nm ~ 500nm 두께로 형성할 수 있다. 접착층의 두께가 상기 범위 내일 경우, 눌림에 의한 불량 발생이 방지되고 접착층의 접착력이 적절하게 유지될 수 있다. 상기 접착층(140)의 조성은 폴리비닐알콜(PVA) 6~25%, 과산화수소 1.25%~50%를 포함하는 수용액일 수 있다.In this embodiment, the adhesive layer 140 may be formed to have a thickness of approximately 50 nm to 500 nm. When the thickness of the adhesive layer is within the above range, the occurrence of defects due to pressing may be prevented and the adhesive strength of the adhesive layer may be properly maintained. The composition of the adhesive layer 140 may be an aqueous solution containing 6 to 25% of polyvinyl alcohol (PVA) and 1.25% to 50% of hydrogen peroxide.

상기 접착층(140)은 기판(120)과 기판(120) 상에 형성될 나노구조 텅스텐옥사이드 박막, 또는 기판(120) 상에 형성된 텅스텐옥사이드 박막과 기판(120) 상에 형성될 나노구조 텅스텐옥사이드 박막 사이에 존재할 수 있다.The adhesive layer 140 may include the substrate 120 and the nanostructured tungsten oxide thin film to be formed on the substrate 120 , or the tungsten oxide thin film formed on the substrate 120 and the nanostructured tungsten oxide thin film to be formed on the substrate 120 . may exist in between.

이러한 접착층은 예를 들어, 폴리비닐알콜(polyvinyl alcohol, PVA), 폴리비닐피롤리돈(poly(vinylpyrrolidone), PVP), 폴리아닐린(polyaniline, PANI), 폴리디알릴디메틸 암모늄클로라이드(poly(diallyldimethylammonium chloride), PDDA), 폴리에틸렌 옥사이드(poly(ethylene oxide), PEO), 폴리에틸렌 이민(poly(ethylene imine), PEI), 폴리알릴아민염소산(poly(allylamine hydrochloride), PAH), 폴리아크릴 산(poly(acrylic acid)), 내피온(Nafion, tetrafluoroethylene-perfluoro-3,6-dioxa-4-methyl-7-octenesulfonic acid copolymer) 등일 수 있다.Such an adhesive layer may be, for example, polyvinyl alcohol (PVA), polyvinylpyrrolidone (poly(vinylpyrrolidone), PVP), polyaniline (PANI), poly(diallyldimethylammonium chloride) , PDDA), polyethylene oxide (poly(ethylene oxide), PEO), polyethylene imine (poly(ethylene imine), PEI), poly(allylamine hydrochloride), PAH), poly(acrylic acid) )), Nafion (Nafion, tetrafluoroethylene-perfluoro-3,6-dioxa-4-methyl-7-octenesulfonic acid copolymer), and the like.

상기 기판(120) 상에 접착층(140)을 형성하는 방법으로는 스핀코팅(Spin Coating), 딥코팅(Dip Coating), 바코팅(Bar Coating), 스프레이코팅(Spray Coating), 닥터블레이드(Doctor Blade), 잉크젯프린팅 방법에 의해 형성되는 것일 수 있으나, 반드시 이에 한정되는 것은 아니다.As a method of forming the adhesive layer 140 on the substrate 120 , spin coating, dip coating, bar coating, spray coating, doctor blade ), may be formed by an inkjet printing method, but is not necessarily limited thereto.

제3 단계(S130)Third step (S130)

도 2를 참조하면, 상기 제1 단계(S110)에서 전구체 레진(A)이 도포된 몰드를 상기 제2 단계(S120)에서 접착층(140)이 형성된 기판(120)에 접촉시켜 전구체 박막을 전사(transfer)한다.Referring to FIG. 2, in the first step (S110), the mold coated with the precursor resin (A) is brought into contact with the substrate 120 on which the adhesive layer 140 is formed in the second step (S120) to transfer the precursor thin film ( transfer).

이러한 전사 방법으로서는, 한쪽 면에 롤을 사용하고, 롤과 반대측 면으로부터 공기, 질소 등의 기압으로 시트 등을 롤 등에 압착하는 에어 나이프 방식; 정전기 등을 인가하여 전기적인 힘으로 롤 등에 시트 등을 부착시키는 방법; 가압 롤에 기계적으로 접촉시키는 방법 등이 있다. Examples of such a transfer method include an air knife method in which a roll is used on one side and a sheet or the like is pressed onto a roll or the like by air pressure such as air or nitrogen from the side opposite to the roll; a method of attaching a sheet or the like to a roll or the like with an electric force by applying static electricity or the like; and a method of mechanically contacting the pressure roll.

바람직하게는 200℃ 이하의 온도와 4 bar 이하의 압력을 약 3분 동안 인가할 수 있다.Preferably, a temperature of 200° C. or less and a pressure of 4 bar or less may be applied for about 3 minutes.

제4 단계(S140) 및 제5 단계(S150)Fourth step (S140) and fifth step (S150)

도 2에 도시된 바와 같이, 전구체 박막이 전사된 기판(120)으로부터 나노몰드(110)를 분리한다. 상기 분리된 나노몰드(110)는 제1 단계(S110)의 나노몰드(110)로서 재 사용될 수 있다.As shown in FIG. 2 , the nano-mold 110 is separated from the substrate 120 to which the precursor thin film is transferred. The separated nano-mold 110 may be reused as the nano-mold 110 in the first step ( S110 ).

도 2를 참조하면, 상기 전구체 입자가 빛 에너지를 받아 온도가 높게 올라가면서 소결(sintering)되며, 이때 기판(120) 상에 존재하는 접착층(140)은 반대로 열에 의해 분해된다. Referring to FIG. 2 , the precursor particles receive light energy and are sintered while the temperature rises high. At this time, the adhesive layer 140 present on the substrate 120 is decomposed by heat on the contrary.

이러한 소결 온도는 300 ℃ ~ 1,000 ℃인 것을 특징으로 한다.This sintering temperature is characterized in that 300 ℃ ~ 1,000 ℃.

반복 공정iterative process

도 3을 참조하면, 상기 제1 단계(S110) 내지 제5 단계(S150)에 의해 제조된 나노구조 텅스텐옥사이드 박막은 상기 제2 단계(S120)의 기판(120)으로 사용되어 상기 제1 단계(S110) 내지 제5 단계(S150)를 반복할 수 있다.Referring to FIG. 3 , the nanostructured tungsten oxide thin film prepared by the first step (S110) to the fifth step (S150) is used as the substrate 120 of the second step (S120) in the first step ( S110) to the fifth step (S150) may be repeated.

이러한 반복 공정을 통해 3차원 나노구조 형성이 가능하다.Through this repeated process, it is possible to form a three-dimensional nanostructure.

나노구조 텅스텐옥사이드 박막Nanostructured Tungsten Oxide Thin Film

도 2를 참조하면, 상기 나노구조 텅스텐옥사이드 박막은 상기 제1 단계(S110) 내지 제5 단계(S150)에 의하여 제조된다.Referring to FIG. 2 , the nanostructured tungsten oxide thin film is manufactured by the first steps ( S110 ) to the fifth steps ( S150 ).

상기 나노구조 텅스텐옥사이드 박막은, 상기 제2 단계(S120)의 기판(120)으로 사용되어 상기 제1 단계(S110) 내지 제5 단계(S150)의 반복 공정에 의해 제조될 수 있다.The nanostructured tungsten oxide thin film may be used as the substrate 120 in the second step (S120) and manufactured by repeating the first steps (S110) to the fifth step (S150).

이러한 공정을 통해 제조된 나노구조 텅스텐옥사이드 박막에 대한 사진이 도 4 내지 6에 도시되어 있다. 도 4는 제4 단계(S140)의 나노몰드 분리 후의 사진이고, 도 5는 제5 단계(S150)의 소결 후의 선 모양 텅스텐옥사이드의 단면 사진이고, 도 6은 나노구조 텅스텐옥사이드 박막의 접착층을 나타낸 사진이다.Pictures of the nanostructured tungsten oxide thin film prepared through this process are shown in FIGS. 4 to 6 . 4 is a photograph after separation of the nano-mold in the fourth step (S140), FIG. 5 is a cross-sectional photograph of the linear tungsten oxide after sintering in the fifth step (S150), and FIG. 6 is an adhesive layer of the nanostructured tungsten oxide thin film It's a photo.

상기 나노구조 텅스텐옥사이드 박막의 넓은 표면적으로 인해 전기변색, 디스플레이, 수소생산, 물분해, 이차전지, 화학센서, 가스센서 등의 효율향상에 기여하는 효과가 있다.Due to the large surface area of the nanostructured tungsten oxide thin film, there is an effect of contributing to the improvement of the efficiency of electrochromic, display, hydrogen production, water decomposition, secondary battery, chemical sensor, gas sensor, and the like.

이하, 본 명세서에 개시된 기술의 이해를 돕기 위하여 실시예를 들어 상세하게 설명하기로 한다. 다만 하기의 실시예는 본 명세서에 개시된 기술의 내용을 예시하는 것일 뿐 본 명세서에 개시된 기술의 범위가 하기 실시예에 한정되는 것은 아니다. 본 명세서에 개시된 기술의 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해 제공되는 것이다.Hereinafter, examples will be described in detail to help the understanding of the technology disclosed in the present specification. However, the following examples only illustrate the content of the technology disclosed in the present specification, and the scope of the technology disclosed in the present specification is not limited to the following examples. The embodiments of the technology disclosed herein are provided to more completely explain the present invention to those of ordinary skill in the art.

실시예 1: 나노구조 텅스텐옥사이드 박막 제조Example 1: Preparation of nanostructured tungsten oxide thin film

과산화수소에 H2WO4 0.2~3g, PVA 0.1~1g을 용해시켜 전구체 레진을 준비하였다. 나노구조가 각인된 나노몰드(PFPE;perfluoropolyether)를 사용하였다. 상기 전구체 레진을 1500rpm으로 15초 동안 스핀코팅하여 상기 나노몰드에 형성하였다.A precursor resin was prepared by dissolving 0.2 to 3 g of H 2 WO 4 and 0.1 to 1 g of PVA in hydrogen peroxide. A nano-mold (PFPE; perfluoropolyether) imprinted with a nanostructure was used. The precursor resin was spin-coated at 1500 rpm for 15 seconds to form the nano-mold.

물에 PVA 0.5~2.0g, 과산화수소 0~4ml를 용해시킨 조성물을 3000rpm으로 45초 동안 스핀코팅하여 실리콘 기판(두께: 200um, SK실트론사 제품) 위에 접착층을 50-500nm 두께로 형성하고, 레진이 도포된 나노몰드와 접착층이 형성된 기판을 100℃, 에서 10분 동안 접촉시켜 전구체 박막을 전사하였다.A composition obtained by dissolving 0.5 to 2.0 g of PVA and 0 to 4 ml of hydrogen peroxide in water was spin-coated at 3000 rpm for 45 seconds to form an adhesive layer to a thickness of 50-500 nm on a silicon substrate (thickness: 200 um, manufactured by SK Siltron), and the resin The precursor thin film was transferred by contacting the applied nano-mold and the substrate on which the adhesive layer was formed at 100° C. for 10 minutes.

그런 다음, 나노몰드를 분리하였다. 도 4는 나노 몰드가 분리된 구조의 사진이다. 나노몰드 분리 후, 500 ℃에서 소결시켜 일정한 형상의 나노구조를 갖는 텅스텐옥사이드 박막을 제조하였다.Then, the nanomold was separated. 4 is a photograph of a structure in which the nano-mold is separated. After separation of the nano mold, sintered at 500 ° C. to prepare a tungsten oxide thin film having a nanostructure of a certain shape.

실시예 2: 3차원 나노구조 텅스텐옥사이드 박막 제조Example 2: Preparation of a three-dimensional nanostructured tungsten oxide thin film

실시예 1과 동일한 조건 및 공정으로 제조된 나노구조 텅스텐옥사이드 박막 위에, 상기 실시예 1의 조성물을 3000rpm으로 45초 동안 스핀코팅하여 접착층을 150nm 두께로 형성하고, 상기 실시예 1의 레진이 도포된 나노몰드와 접착층이 형성된 기판을 100℃, 0.4bar에서 10분 동안 접촉시켜 전구체 박막을 전사하였다.On the nanostructured tungsten oxide thin film prepared under the same conditions and process as in Example 1, the composition of Example 1 was spin-coated at 3000 rpm for 45 seconds to form an adhesive layer to a thickness of 150 nm, and the resin of Example 1 was applied The precursor thin film was transferred by contacting the nano-mold and the substrate on which the adhesive layer was formed at 100° C. and 0.4 bar for 10 minutes.

그런 다음, 나노몰드를 분리 후, 500 ℃에서 소결시키고, 상기 공정을 반복하여, 3차원 나노구조를 갖는 텅스텐옥사이드 박막을 제조하였다.Then, after separating the nano-mold, sintering at 500 ℃, and repeating the above process to prepare a tungsten oxide thin film having a three-dimensional nanostructure.

나노구조 텅스텐옥사이드 박막의 넓은 표면적 특성 확인Confirmation of large surface area characteristics of nanostructured tungsten oxide thin film

도 7을 참조하면, 실시예 1로부터 제조된 나노구조 텅스텐옥사이드 박막에 헥사홀 패턴이 형성된 것을 확인할 수 있다. 이러한 패터닝된 나노구조의 텅스텐옥사이드 박막의 흡광(light apsorption)은 패터닝되지 않은 텅스텐옥사이드 박막(비교예) 보다 높다는 것을 알 수 있다(도 8 참조). 나노패턴에 의해 증가된 표면적을 기하학적 방식으로 계산해 보면, 실시예 1로부터 제조된 나노구조 텅스텐옥사이드 박막의 표면적은 비교예의 텅스텐 옥사이드 박막 대비 약 1.1256배 넓다는 것을 확인하였다.Referring to FIG. 7 , it can be seen that a hexahole pattern is formed in the nanostructured tungsten oxide thin film prepared in Example 1. It can be seen that the light absorption of the patterned nanostructured tungsten oxide thin film is higher than that of the unpatterned tungsten oxide thin film (comparative example) (see FIG. 8 ). When the surface area increased by the nanopattern was calculated in a geometric way, it was confirmed that the surface area of the nanostructured tungsten oxide thin film prepared in Example 1 was about 1.1256 times wider than that of the tungsten oxide thin film of Comparative Example.

나노구조 텅스텐옥사이드 박막의 결정구조 확인Confirmation of crystal structure of nanostructured tungsten oxide thin film

도 9를 참조하면, 실시예 1로부터 제조된 나노구조 텅스텐옥사이드 박막이 WO3 모노클리닉(monoclinic) 결정구조임을 확인할 수 있다.Referring to FIG. 9 , it can be confirmed that the nanostructured tungsten oxide thin film prepared in Example 1 has a WO 3 monoclinic crystal structure.

이상에서 본 발명에 대하여 상세하게 설명하였지만 본 명세서에 개시된 기술의 권리범위는 이에 한정되는 것은 아니고, 청구범위에 기재된 본 명세서에 개시된 기술의 기술적 사상을 벗어나지 않는 범위 내에서 다양한 수정 및 변형이 가능하다는 것은 당 기술분야의 통상의 지식을 가진 자에게는 자명할 것이다.Although the present invention has been described in detail above, the scope of the technology disclosed in the present specification is not limited thereto, and various modifications and variations are possible within the scope without departing from the technical spirit of the technology disclosed in the present specification as described in the claims. It will be apparent to one of ordinary skill in the art.

110: 나노몰드
120: 기판
A: 전구체 레진
B: 접착층
110: nano mold
120: substrate
A: Precursor resin
B: adhesive layer

Claims (12)

나노구조 텅스텐옥사이드 박막 제조방법으로서,
나노몰드 상에 텅스텐옥사이드 전구체 박막을 형성하는 제1 단계;
기판 상에 접착층을 형성하는 제2 단계;
상기 나노몰드 상에 형성된 전구체 박막을 상기 접착층이 형성된 기판 상에 전사하는 제3 단계;
상기 나노몰드를 분리하는 제4 단계; 및
소결하는 제5 단계를 포함하고,
상기 제1 단계 내지 제5 단계를 반복하는 것을 특징으로 하며,
상기 접착층의 조성은 폴리비닐알콜(PVA) 6~25%, 과산화수소 1.25%~50%를 포함하는 수용액인 것을 특징으로 하고,
상기 제1 단계는,
텅스텐산을 포함하는 전구체 레진을 준비하는 단계를 포함하며,
상기 텅스텐산을 포함하는 전구체 레진은 텅스텐산 2~30%, 폴리비닐알콜(PVA) 1~10%를 포함하는 과산화수소 용액인 것을 특징으로 하는,
나노구조 텅스텐옥사이드 박막 제조방법.
A method for manufacturing a nanostructured tungsten oxide thin film, comprising:
A first step of forming a tungsten oxide precursor thin film on the nano-mold;
a second step of forming an adhesive layer on the substrate;
a third step of transferring the precursor thin film formed on the nano-mold onto the substrate on which the adhesive layer is formed;
a fourth step of separating the nano-mold; and
a fifth step of sintering;
It is characterized in that the first to fifth steps are repeated,
The composition of the adhesive layer is characterized in that it is an aqueous solution containing 6 to 25% of polyvinyl alcohol (PVA) and 1.25% to 50% of hydrogen peroxide,
The first step is
Comprising the step of preparing a precursor resin containing tungstic acid,
The precursor resin containing tungstic acid is characterized in that it is a hydrogen peroxide solution containing 2 to 30% tungstic acid and 1 to 10% polyvinyl alcohol (PVA),
A method for manufacturing a nanostructured tungsten oxide thin film.
제 1 항에 있어서,
상기 접착층의 두께는 50nm ~ 500nm인 것을 특징으로 하는
나노구조 텅스텐옥사이드 박막 제조방법.
The method of claim 1,
The thickness of the adhesive layer, characterized in that 50nm ~ 500nm
A method for manufacturing a nanostructured tungsten oxide thin film.
삭제delete 제 1 항에 있어서,
상기 접착층은 기판과 기판 상에 형성될 나노구조 텅스텐옥사이드 박막, 또는 기판 상에 형성된 텅스텐옥사이드 박막과 기판 상에 형성될 나노구조 텅스텐옥사이드 박막 사이에 존재하는 것을 특징으로 하는
나노구조 텅스텐옥사이드 박막 제조방법.
The method of claim 1,
wherein the adhesive layer is present between the substrate and the nanostructured tungsten oxide thin film to be formed on the substrate, or between the tungsten oxide thin film formed on the substrate and the nanostructured tungsten oxide thin film to be formed on the substrate
A method for manufacturing a nanostructured tungsten oxide thin film.
제 1 항에 있어서,
상기 제1 단계는,
나노구조가 각인된 나노몰드를 준비하는 단계; 및
상기 나노몰드에 상기 전구체 레진을 도포하는 단계를 더 포함하는
나노구조 텅스텐옥사이드 박막 제조방법.
The method of claim 1,
The first step is
Preparing a nano-mold imprinted with a nano structure; and
Further comprising the step of applying the precursor resin to the nano-mold
A method for manufacturing a nanostructured tungsten oxide thin film.
제 1 항에 있어서,
상기 텅스텐산을 포함하는 전구체 레진은 솔벤트(solvent) 함량이 95%이하인 것을 특징으로 하는
나노구조 텅스텐옥사이드 박막 제조방법.
The method of claim 1,
The precursor resin containing tungstic acid is characterized in that the solvent content is 95% or less.
A method for manufacturing a nanostructured tungsten oxide thin film.
삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete
KR1020190103703A 2019-08-23 2019-08-23 Methods for manufacturing nanostructured tungsten oxide thin film and nanostructured tungsten oxide thin film made by the same KR102331951B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190103703A KR102331951B1 (en) 2019-08-23 2019-08-23 Methods for manufacturing nanostructured tungsten oxide thin film and nanostructured tungsten oxide thin film made by the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190103703A KR102331951B1 (en) 2019-08-23 2019-08-23 Methods for manufacturing nanostructured tungsten oxide thin film and nanostructured tungsten oxide thin film made by the same

Publications (2)

Publication Number Publication Date
KR20210023471A KR20210023471A (en) 2021-03-04
KR102331951B1 true KR102331951B1 (en) 2021-11-29

Family

ID=75174631

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190103703A KR102331951B1 (en) 2019-08-23 2019-08-23 Methods for manufacturing nanostructured tungsten oxide thin film and nanostructured tungsten oxide thin film made by the same

Country Status (1)

Country Link
KR (1) KR102331951B1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009221061A (en) * 2008-03-18 2009-10-01 Kanagawa Acad Of Sci & Technol Method for manufacturing inorganic material having fine surface pattern

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101855942B1 (en) * 2016-05-04 2018-05-10 한국기계연구원 Method for manufacturing a nano pattern having high slenderness ratio

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009221061A (en) * 2008-03-18 2009-10-01 Kanagawa Acad Of Sci & Technol Method for manufacturing inorganic material having fine surface pattern

Also Published As

Publication number Publication date
KR20210023471A (en) 2021-03-04

Similar Documents

Publication Publication Date Title
US11961628B2 (en) Patterned nanoparticle structures
US10760162B2 (en) Electroless copper plating polydopamine nanoparticles
EP3187473B1 (en) Graphene-based electrical conductors and method for manufacturing the same
US8974889B2 (en) Nanostructured thin film and method for controlling surface properties thereof
KR101462864B1 (en) Flexible conductive film and method of fabricating the same
US20190243237A1 (en) Patterning of nanostructures using imprint lithography
US20190011412A1 (en) Hydrogen sensor production method and hydrogen sensor produced thereby
KR101651108B1 (en) Fabrication method for electrode using sensor and the sensor thereby
CN107073518B (en) Scalable, printable, patterned sheet of high mobility graphene on flexible substrates
TW201123513A (en) Method for preparing patterned metal oxide layer or patterned metal layer by using solution type precursor or sol-gel precursor
TW201102189A (en) Method for forming modified metal layer
Singh et al. Universal method for the fabrication of detachable ultrathin films of several transition metal oxides
KR102331951B1 (en) Methods for manufacturing nanostructured tungsten oxide thin film and nanostructured tungsten oxide thin film made by the same
CN109941961A (en) A kind of multi-function membrane preparation method with micro nano structure
KR101857647B1 (en) forming method of hybrid pattern by vacuum deposition, manufacturing method of sensor device and sensor device thereby
KR101886056B1 (en) forming method of nanostructure pattern by vacuum deposition and sensor device thereby
Yuan et al. Thin Film Prepared by Gas–Liquid Interfacial Self‐Assembly Method and its Applications in Semiconductor Gas Sensors
US12002861B2 (en) Method of forming conductive contacts on graphene
CN103275339B (en) A kind of polymer micro-processing method
US10679764B2 (en) Metal nanowire electrode and manufacturing method of the same
Zhang et al. Gas-Flow-Assisted Wrinkle-Free Transfer of a Centimeter-Scale Ultrathin Alumina Membrane onto Arbitrary Substrates
JP2009297837A (en) Manufacturing method for film containing nano-structure, and film containing nano-structure
KR101888150B1 (en) Nanocomposite comprising organic/inorganic alternate ultrathin films having metal nanoparticles, preparation method thereof, and electroactive device comprising the same
Choi et al. Reaction-Based Scalable Inorganic Patterning on Rigid and Soft Substrates for Photovoltaic Roofs with Minimal Optical Loss and Sustainable Sunlight-Driven-Cleaning Windows
WO2024058858A2 (en) Dielectric elastomer actuators and methods of manufacturing thereof

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
X091 Application refused [patent]
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant