KR102331206B1 - 히스톤 탈아세틸효소 억제 활성을 갖는 신규 화합물 및 이의 의학적 용도 - Google Patents

히스톤 탈아세틸효소 억제 활성을 갖는 신규 화합물 및 이의 의학적 용도 Download PDF

Info

Publication number
KR102331206B1
KR102331206B1 KR1020190162597A KR20190162597A KR102331206B1 KR 102331206 B1 KR102331206 B1 KR 102331206B1 KR 1020190162597 A KR1020190162597 A KR 1020190162597A KR 20190162597 A KR20190162597 A KR 20190162597A KR 102331206 B1 KR102331206 B1 KR 102331206B1
Authority
KR
South Korea
Prior art keywords
methyl
compound
dioxothiazolidin
hydroxybenzamide
hdac6
Prior art date
Application number
KR1020190162597A
Other languages
English (en)
Other versions
KR20210072361A (ko
Inventor
서영호
Original Assignee
계명대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 계명대학교 산학협력단 filed Critical 계명대학교 산학협력단
Priority to KR1020190162597A priority Critical patent/KR102331206B1/ko
Publication of KR20210072361A publication Critical patent/KR20210072361A/ko
Application granted granted Critical
Publication of KR102331206B1 publication Critical patent/KR102331206B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D277/00Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings
    • C07D277/02Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings not condensed with other rings
    • C07D277/20Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D277/32Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D277/34Oxygen atoms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/425Thiazoles
    • A61K31/4261,3-Thiazoles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders

Abstract

본 발명은 히스톤 탈아세틸효소 억제 활성을 갖는 신규 화합물 및 이를 히스톤 탈아세틸효소 관련 질환 치료 또는 예방용 조성물에 관한 것으로, 보다 상세하게는 신규하게 합성된 티아졸리딘디온 기반의 화합물은 HDAC1 및 HDAC6 효소에 대한 우수한 억제 활성을 나타내었으며, 특히 HDAC6 효소에 대한 선택성이 탁월한 것으로 확인됨에 따라, 본 발명의 신규 화합물을 유효성분으로 함유하는 조성물은 HDAC 억제제로 제공될 수 있으며, HDAC 관련 질환에 대한 예방 또는 치료용 약학조성물 및 건강식품으로 제공될 수 있다.

Description

히스톤 탈아세틸효소 억제 활성을 갖는 신규 화합물 및 이의 의학적 용도{New compounds having histone deacetylases inhibitory activity and medical use thereof}
본 발명은 히스톤 탈아세틸효소 억제 활성을 갖는 신규 화합물 및 이를 히스톤 탈아세틸효소 관련 질환 치료 또는 예방용 조성물에 관한 것이다.
히스톤 탈아세틸효소(Histone deacetylases; HDACs)는 보조억제자(corepressors)나 다중-단백질 전사복합체(multi-protein transcriptional complexes)들에 의해 유전자 프로모터에 붙을 수 있으며, 그곳에서 DNA에 직접 결합하지 않고 크로마틴(chromatin) 변형을 통해 전사를 조절한다.
이러한 HDAC 효소는 다수의 세포 과정의 조절에 관여하는 데, 히스톤 아세틸전환효소(HAT) 및 HDAC 효소는 히스톤 단백질의 N-말단에서 라이신 잔기를 아세틸화하거나 탈아세틸화하여 전사 활성에 영향을 미치며, α-튜불린, Hsp90, p53, c-Myc, NF-κB 및 E2P와 같은 최소 50개의 비히스톤 단백질의 전사 후 아세틸화를 조절하는 것으로 알려져 있다.
암호화된 사람 HDACs는 18개가 있으며, 이들은 클래스 I (HDAC 1, 2, 3 및 8), 클래스 II (HDAC 4, 5, 6, 7, 9 및 10), 클래스 III (SIRT 1-7), 및 클래스 IV (HDAC11) 효소들로 분류된다.
최근에는 히스톤 탈아세틸효소(Histone deacetylases; HDACs)가 암, 알츠하이머 질환, 우울증, 약물 중독, 염증질환, 자가면역질환을 포함한 광범위한 질병들을 야기할 수 있다고 보고되어 짐에 따라, 다양한 질병들에 대한 중요한 약제학적 타겟으로 주목받고 있다.
HDAC 억제제는 일반적으로 화학적 구조에 따라 하이드록사믹 산(hydroxamic acids), 벤즈아미드(benzamides), 사이클릭 펩타이드 및 짧은 사슬 지방산과 같은 4가지 종류로 분류되는데, 지금까지 미국 FDA는 SAHA(vorinostat), FK-228 (romidepsin), PXD101 (belinostat) 및 LBH589 (panobinostat)와 같은 4개의 HDAC 억제제를 항암제로 승인하였으며, 중국 식품의약청에서는 HBI-8000 (chidamide)를 T-cell 림프종 치료제로 승인하였다.
이와 같은 대부분의 HDAC 억제제는 주로 혈액 악성종양 치료제로 개발되었으나, 알츠하이머 질환, 우울증 및 약물 중독 질환을 포함한 중추신경계(CNS) 질환 치료제로서 HDAC 억제제 사용에 대한 연구(Kazantsev and Thompson, 2008)가 보고되어 짐에 따라, 항암 치료 이외에 보다 넓은 질환에 효과적으로 적용될 수 있는 HDAC 억제제의 개발이 필요한 실정이다.
대한민국 공개특허 제10-2017-0017792호 (2017.02.15. 공개)
본 발명은 히스톤 탈아세틸효소 억제 활성을 갖는 신규 화합물 및 이를 히스톤 탈아세틸효소 관련 질환 치료 또는 예방용 조성물로 제공하고자 한다.
본 발명은 하기 화학식 1로 표시되는 화합물 또는 이의 약제학적으로 허용가능한 염:
[화학식 1]
Figure 112019126860467-pat00001
상기 화학식 1에 있어서, R은 수소, (C1~C4)알킬, (C1~C4)알콕시, 알릴, 벤질 또는 할로겐 중에서 선택됨.
본 발명은 상기 화학식 1로 표시되는 화합물 또는 이의 약제학적으로 허용가능한 염을 유효성분으로 함유하는 히스톤 탈아세틸효소(Histone deacetylase; HDACs) 관련 질환 예방 또는 치료용 약학조성물을 제공한다.
또한, 본 발명은 상기 화학식 1로 표시되는 화합물 또는 이의 약제학적으로 허용가능한 염을 유효성분으로 함유하는 히스톤 탈아세틸효소(Histone deacetylase; HDACs) 관련 질환 개선 또는 예방용 건강식품조성물을 제공한다.
본 발명에 따르면 신규하게 합성된 티아졸리딘디온 기반의 화합물은 HDAC1 및 HDAC6 효소에 대한 우수한 억제 활성을 나타내었으며, 특히 HDAC6 효소에 대한 선택성이 탁월한 것으로 확인됨에 따라, 본 발명의 신규 화합물을 유효성분으로 함유하는 조성물은 HDAC 억제제로 제공될 수 있으며, HDAC 관련 질환에 대한 예방 또는 치료용 약학조성물 및 건강식품으로 제공될 수 있다.
도 1은 티아졸리딘디온 기반의 HDAC6 억제제 약물 디자인 모식도이다.
도 2는 SH-SY5Y의 세포 생존율 및 α-튜불린과 히스톤 H3의 아세틸화에 대한 화합물 6b의 영향을 확인한 결과로, 도 2A는 SH-SY5Y 세포에 0, 1, 5, 10, 30, 50, 70 및 100 μM 농도의 화합물 6b를 24시간 동안 처리하고 세포 생존율을 비색법 MTS 분석으로 확인하고 데이터 값을 평균±표준편차 (n = 4)로 나타낸 결과이며, 도 2B는 0, 1, 5, 10 및 20 μM 농도의 화합물 6b 또는 Tubastatin A (Tub)를 SH-SY5Y 세포에 24시간 동안 처리하고 α-튜불린, Ac-α-튜불린, 히스톤 H3 및 Ac-히스톤 H3의 발현 수준을 확인한 웨스턴 블롯 분석 결과로, Tubastatin A를 양성 대조군으로 β-액틴을 로딩 대조군으로 사용하였으며, p 값은 Student t-test로 얻었다. * p < 0.01 as compared to vehicle.
도 3은 메스암페타민 (methamphetamine, METH)과 화합물 6b가 SH-SY5Y 세포의 세포 형태 및 생존도에 미치는 영향을 확인한 결과로, 도 3A는 SH-SY5Y의 세포 생존도에 미치는 메스암페타민의 영향을 확인한 결과로, 세포를 0, 0.1 및 1 μM 농도의 METH와 24시간 동안 인큐베이션한 후 비색법 MTS 분석으로 세포 생존율을 확인하고 데이터 값을 평균±표준편차 (n = 4)로 나타낸 결과이며, 도 3B는 SH-SY5Y 세포를 현미경으로 확인한 이미지로, 1 mM 농도의 METH을 세포에 4시간 동안 전처리한 후 5, 10 및 20 μM 농도의 화합물 6b와 24시간 동안 인큐베이션한 결과이다.
도 4는 메스암페타민 (METH)과 화합물 6b 처리 후 α-튜불린 아세틸화 상태를 확인한 웨스턴 블롯 분석 결과로, 도 4A는 SH-SY5Y 세포를 0, 0.5, 1, 2 및 3 μM 농도의 METH와 24시간 동안 인큐베이션하고 Ac-α-튜불린 및 α-튜불린의 발현 수준을 확인한 웨스턴 블롯 분석결과로 β-액틴이 로딩 대조군으로 사용되었으며, 도 4B는 3 mM 농도의 METH을 4시간 동안 전처리한 SH-SY5Y 세포에 화합물 6b (1 μM)를 24시간 동안 처리한 후 Ac-α-튜불린 및 α-튜불린의 발현 수준을 웨스턴 블롯 분석으로 확인하였으며, β-액틴을 로딩 대조군으로 사용하였다.
이하, 본 발명을 보다 상세하게 설명한다.
본 발명의 발명자들은 2개의 헤테로원자와 2개의 카보닐기를 함유한 5원자 고리 분자인 티아졸리딘디온 (Thiazolidinedione, TZD) 및 이의 유도체가 항균성, 항산화, 항염증, 항당뇨, 항암 및 항결핵 활성과 같은 다양한 생물학적 활성을 나타내며, 제2형 당뇨병의 치료를 위하여 임상적으로 승인된 트로글리타존 및 로시글리타존과 같은 약물에서 특화된 스캐폴드인 것으로 확인됨에 따라, 티아졸리딘 기반의 화합물을 연구하던 중 신규하게 합성된 티아졸리딘디온 기반의 화합물이 HDAC 억제 효과를 나타내는 것을 확인하고 본 발명을 완성하였다.
본 발명은 하기 화학식 1로 표시되는 화합물 또는 이의 약제학적으로 허용가능한 염을 제공할 수 있다.
[화학식 1]
Figure 112019126860467-pat00002
상기 화학식 1에 있어서, R은 수소, (C1~C4)알킬, (C1~C4)알콕시, 알릴, 벤질 또는 할로겐 중에서 선택될 수 있다.
보다 상세하게는 상기 화합물은 벤젠 고리의 파라(para) 위치에 하이드록시아마이드가 도입된 것일 수 있다.
보다 바람직하게는 상기 화합물은 3-((2,4-다이옥소티아졸리딘-3-일)메틸)-N-하이드록시벤즈아마이드[3-((2,4-Dioxothiazolidin-3-yl)methyl)-N-hydroxybenzamid];, 4-((2,4-다이옥소티아졸리딘-3-일)메틸)-N-하이드록시벤즈아마이드[4-((2,4-Dioxothiazolidin-3-yl)methyl)-N-hydroxybenzamide]; 4-((2,4-다이옥소-5-프로필티아졸리딘-3-일)메틸)-N-하이드록시벤즈아마이드[4-((2,4-Dioxo-5-propylthiazolidin-3-yl)methyl)-N-hydroxybenzamide]; 4-((5-알릴-2,4-다이옥소티아졸리딘-3-일)메틸)-N-하이드록시벤즈아마이드[4-((5-Allyl-2,4-dioxothiazolidin-3-yl)methyl)-N-hydroxybenzamide]; 및 4-((5-벤질-2,4-다이옥소티아졸리딘-3-일)메틸)-N-하이드록시벤즈아마이드[4-((5-Benzyl-2,4-dioxothiazolidin-3-yl)methyl)-N-hydroxybenzamide]로 이루어진 군에서 선택된 것일 수 있다.
상기 화합물 또는 이의 약제학적으로 허용가능한 염은 히스톤 탈아세틸효소(Histone deacetylases; HDACs) 활성을 억제하는 것일 수 있다.
상기 히스톤 탈아세틸효소는 HDAC1 및 HDAC6으로 이루어진 군에서 선택된 것일 수 있다.
본 발명은 하기 화학식 1로 표시되는 화합물 또는 이의 약제학적으로 허용가능한 염을 유효성분으로 함유하는 히스톤 탈아세틸효소(Histone deacetylase; HDACs) 관련 질환 예방 또는 치료용 약학조성물을 제공할 수 있다.
[화학식 1]
Figure 112019126860467-pat00003
상기 화학식 1에 있어서, R은 수소, (C1~C4)알킬, (C1~C4)알콕시, 알릴, 벤질 또는 할로겐 중에서 선택될 수 있다.
상기 히스톤 탈아세틸효소는 HDAC1 및 HDAC6으로 이루어진 군에서 선택된 것일 수 있다.
상기 히스톤 탈아세틸효소(Histone deacetylase; HDACs) 관련 질환은 암질환, 중추신경계 질환 및 염증성 또는 자가면역 질환으로 이루어진 군에서 선택될 수 있다.
상기 암질환은 유방암, 위암, 간암, 폐암, 대장암, 신장암, 방광암, 급성 골수성 백혈병, 급성 림프구성 백혈병, 자궁암, 난소암, 후두암, 전립선암, 갑상선암, 두부 또는 경부암, 뇌암 및 혈액암으로 이루어진 군에서 선택될 수 있다.
상기 중추신경계 질환은 알츠하이머, 루게릭병, 헌팅톤병, 파킨슨병, 약물 중독 및 우울증으로 이루어지는 군에서 선택된 것일 수 있다.
상기 약물 중독은 메스암페타민, 모르핀, 코케인, 아편, 대마, 필로폰 및 엑스터시로 이루어지는 군에서 선택된 약물 중독인 것일 수 있다.
상기 염증성 또는 자가면역 질환은 류마티스 관절염, 척추염 관절염, 건선성 관절염, 건선, 다발성 경화증, 전신홍반루푸스, 염증성 장질환, 이식편 대 숙주질환, 이식 거부 및 섬유증으로 이루어지는 군에서 선택된 것일 수 있다.
본 발명의 한 구체예에서, 상기 히스톤 탈아세틸효소(HDACs) 관련 질환 예방 또는 치료용 약학조성물은 통상적인 방법에 따라 주사제, 과립제, 산제, 정제, 환제, 캡슐제, 좌제, 겔, 현탁제, 유제, 점적제 또는 액제로 이루어진 군에서 선택된 어느 하나의 제형을 사용할 수 있다.
본 발명의 다른 구체예에서, 히스톤 탈아세틸효소(HDACs) 관련 질환 예방 또는 치료용 약학조성물은 약학조성물의 제조에 통상적으로 사용하는 적절한 담체, 부형제, 붕해제, 감미제, 피복제, 팽창제, 활택제, 향미제, 항산화제, 완충액, 정균제, 희석제, 분산제, 계면활성제, 결합제 및 윤활제로 이루어진 군에서 선택되는 하나 이상의 첨가제를 추가로 포함할 수 있다.
구체적으로 담체, 부형제 및 희석제는 락토즈, 덱스트로즈, 수크로스, 솔비톨, 만니톨, 자일리톨, 에리스리톨, 말티톨, 전분, 아카시아 고무, 알지네이트, 젤라틴, 칼슘 포스페이트, 칼슘 실리케이트, 셀룰로즈, 메틸 셀룰로즈, 미정질 셀룰로스, 폴리비닐 피롤리돈, 물, 메틸히드록시벤조에이트, 프로필히드록시벤조에이트, 탈크, 마그네슘 스테아레이트 및 광물유를 사용할 수 있으며, 경구투여를 위한 고형제제에는 정제, 환제, 산제, 과립제, 캡슐제 등이 포함되며, 이러한 고형제제는 상기 조성물에 적어도 하나 이상의 부형제, 예를 들면, 전분, 칼슘카보네이트, 수크로스 또는 락토오스, 젤라틴 등을 섞어 조제할 수 있다. 또한 단순한 부형제 이외에 마그네슘 스티레이트, 탈크 같은 윤활제들도 사용할 수 있다. 경구를 위한 액상제제로는 현탁제, 내용액제, 유제, 시럽제 등이 있으며 흔히 사용되는 단순 희석제인 물, 리퀴드 파라핀 이외에 여러 가지 부형제, 예를 들면 습윤제, 감미제, 방향제, 보존제 등이 포함될 수 있다. 비경구 투여를 위한 제제에는 멸균된 수용액, 비수성용제, 현탁제, 유제, 동결건조제제, 좌제 등이 포함된다. 비수성용제, 현탁제로는 프로필렌글리콜, 폴리에틸렌 글리콜, 올리브 오일과 같은 식물성 기름, 에틸올레이트와 같은 주사 가능한 에스테르 등이 사용될 수 있다. 좌제의 기재로는 위텝솔(witepsol), 마크로골, 트윈(tween) 61, 카카오지, 라우린지, 글리세로제라틴 등이 사용될 수 있다.
본 발명의 일실시예에 따르면 상기 약학 조성물은 정맥내, 동맥내, 복강내, 근육내, 흉골내, 경피, 비측내, 흡입, 국소, 직장, 경구, 안구내 또는 피내 경로를 통해 통상적인 방식으로 대상체로 투여할 수 있다.
상기 돌단풍 추출물의 바람직한 투여량은 대상체의 상태 및 체중, 질환의 종류 및 정도, 약물 형태, 투여경로 및 기간에 따라 달라질 수 있으며 당업자에 의해 적절하게 선택될 수 있다. 본 발명의 일실시예에 따르면 이에 제한되는 것은 아니지만 1일 투여량이 0.01 내지 200 mg/kg, 구체적으로는 0.1 내지 200 mg/kg, 보다 구체적으로는 0.1 내지 100 mg/kg 일 수 있다. 투여는 하루에 한 번 투여할 수도 있고 수회로 나누어 투여할 수도 있으며, 이에 의해 본 발명의 범위가 제한되는 것은 아니다.
본 발명에 있어서, 상기 '대상체'는 인간을 포함하는 포유동물일 수 있으나, 이들 예에 한정되는 것은 아니다.
또한, 본 발명은 하기 화학식 1로 표시되는 화합물 또는 이의 약제학적으로 허용가능한 염을 유효성분으로 함유하는 히스톤 탈아세틸효소(Histone deacetylase; HDACs) 관련 질환 개선 또는 예방용 건강식품조성물을 제공할 수 있다.
[화학식 1]
Figure 112019126860467-pat00004
상기 화학식 1에 있어서, R은 수소, (C1~C4)알킬, (C1~C4)알콕시, 알릴, 벤질 또는 할로겐 중에서 선택될 수 있다.
상기 건강식품은 상기 화학식 1로 표시되는 화합물 또는 이의 약제학적으로 허용가능한 염 이외에 다른 식품 또는 식품 첨가물과 함께 사용되고, 통상적인 방법에 따라 적절하게 사용될 수 있다. 유효성분의 혼합양은 그의 사용 목적 예를 들어 예방, 건강 또는 치료적 처치에 따라 적합하게 결정될 수 있다.
상기 건강식품에 함유된 화합물의 유효용량은 상기 치료제의 유효용량에 준해서 사용할 수 있으나, 건강 및 위생을 목적으로 하거나 또는 건강 조절을 목적으로 하는 장기간의 섭취의 경우에는 상기 범위 이하일 수 있으며, 유효성분은 안전성 면에서 아무런 문제가 없기 때문에 상기 범위 이상의 양으로도 사용될 수 있음은 확실하다.
상기 건강식품의 종류에는 특별한 제한이 없고, 예로는 육류, 소세지, 빵, 쵸코렛, 캔디류, 스넥류, 과자류, 피자, 라면, 기타 면류, 껌류, 아이스크림류를 포함한 낙농제품, 각종 스프, 음료수, 차, 드링크제, 알콜 음료 및 비타민 복합제등을 들 수 있다.
이하, 본 발명의 이해를 돕기 위하여 실시예를 들어 상세하게 설명하기로 한다. 다만 하기의 실시예는 본 발명의 내용을 예시하는 것일 뿐 본 발명의 범위가 하기 실시예에 한정되는 것은 아니다. 본 발명의 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해 제공되는 것이다.
<합성예> 신규한 HDAC 억제제 화합물 합성
1. 일반적인 합성방법
모든 시약 및 용액은 판매처에서 구입하여 추가 정제 없이 사용하였다. 모든 실험에서 수분 민감성 화합물 처리는 아르곤 대기하에서 수행되었다. 농축 또는 용매 제거는 갑압하에서 회전 증발기를 이용하여 수행되었다.
분석적 얇은층 크로마토그래피는 프리코트된 실리카겔 F254 TLC 플레이트 (E, Merck)에서 수행하였으며, UV 광 또는 아이오딘 염색으로 시각화하였다.
컬럼 크로마토그래피 및 중압 액체 크로마토그래피 (MPLC)를 silica (Merck Silica Gel 40-63 m)에서 수행하거나 실리카 겔 카트리지가 설치된 Biotage SP1 flash purification system (Biotage)을 이용하여 수행되었다.
NMR 분석은 Jeol resonance에서 제조한 JNM-ECZ500R (500 MHz)를 이용하여 수행하였다. 화학적 이동은 백만분의 일(δ) 기록되었다. 시료 용액의 deuterium lock 신호를 기준으로 사용하였으며, 결합상수(J)는 헤르츠 (Hz)로 표시되었다.
분열 양식 약어는 다음과 같다: s, singlet; d, doublet; t, triplet; q, quartet; dd, doublet of doublet; td, triplet of doublet; m, multiplet.
LC-QTOF-MS 분석은 Agilent 6530 Accurate-Mass Q-TOF LC/MS System과 Agilent 1290 Infinity LC (Agilent Technologies, Palo Alto, CA, USA)를 이용하여 수행하였다.
보호 컬럼 및 분석 컬럼은 Zorbax SB-C8 (3.5 μm, 2.1 × 30 mm, Agilent Technologies) 및 Zorbax SB-Aq (1.8 μm, 2.1 × 100 mm, Agilent Technologies)을 각각 사용하여 40℃에서 유지시켰다.
이동상은 0.1% 포름산이 포함된 물 (A) 및 0.1% 포름산이 포함된 아세토나이트릴 (B)로 구성되었으며, 구배 조건은 다음과 같다: 400 μL/min 유속으로 0-30 min, 1-20% B; 30-40 min, 20-90% B; 40-45 min, 90% B; 45-47 min, 90-1% B; 47-52 min 1% B.
ESI를 이용하여 양성 및 음성 이온화 모드에서 MS 시스템이 작동되었다.
두 이온화 모드에 대한 QTOF-MS 시스템의 최적 조건은 다음과 같다: 건조 기체 온도, 300℃; 건조 기체 유량, 10 L/min; 분무 압력, 45 psi; 시스 (sheath) 기체 온도, 350℃; 시스 기체 유량, 10 L/min; 캐필러리 전압, 3500 V; 노즐 전압, 0 V; 단편화 전압, 175 V; 스키머 전압, 65 V였다.
질량 범위는 50-1700 m/z였으며, 스캔율은 MS 및 MS/MS 분석 모두 2.00 spectra/sec였다.
2. 화합물 3a 및 3b 합성
티아졸리딘-2,4-온 (10 mmol), 메틸 4-(브로모메틸)벤조에이트 또는 메틸 3-(브로모메틸)벤조에이트 (11 mmol) 및 무수 K2CO3 (15 mmol)의 혼합물을 아세톤 (50 mL)에서 하룻밤동안 환류시켰다.
고체 K2CO3을 여과하고 여과물을 증발시켜 잔사를 얻었으며, 상기 잔사를 MPLC로 정제하여 화합물 3a-b를 53-55% 수율로 얻었다.
2-1. 메틸 3-((2,4,-다이옥소티아졸리딘-3-일)메틸)벤조에이트 [Methyl 3-((2,4-dioxothiazolidin-3-yl)methyl)benzoate (3a)]
53% 수율. 1H-NMR (500 MHz, CDCl3) δ 8.04 (s, 1H), 7.99 (d, J = 7.4 Hz, 1H), 7.59 (d, J = 7.4 Hz, 1H), 7.41 (t, J = 7.7 Hz, 1H), 4.81 (s, 2H), 3.97 (s, 2H), 3.91 (s, 3H).
2-2. 메틸 4-(2, 4-다이옥소티아졸리딘-3-일)메틸)벤조에이트 [Methyl 4-((2,4-dioxothiazolidin-3-yl)methyl)benzoate (3b)]
55% 수율. 1H-NMR (500 MHz, CDCl3) δ 7.99 (d, J = 8.6 Hz, 2H), 7.44 (d, J = 8.0 Hz, 2H), 4.81 (s, 2H), 3.97 (s, 2H), 3.91 (s, 3H).
3. 화합물 4a 및 4b 합성
화합물 3a 또는 3b (2 mmol)를 현탁시킨 6N HCl (25 ml)를 12시간 동안 교반하여 환류시켰다. 이후 혼합물을 냉각시키고 4℃에서 2시간 동안 보관하였다. 목적 생성물을 침전시킨 후 여과하였으며, 물로 세척하고(2 × 20 ml), 진공상태에서 건조시켜 화합물 4a 및 4b를 76-89% 수율로 얻었다.
3-1. 3-((2,4,-다이옥소티아졸리딘-3-일)메틸)벤조익산 [3-((2,4-Dioxothiazolidin-3-yl)methyl)benzoic acid (4a)]
76% 수율. 1H-NMR (500 MHz, CD3OD) δ 7.99 (s, 1H), 7.95 (d, J = 7.4 Hz, 1H), 7.58 (d, J = 7.4 Hz, 1H), 7.44 (t, J = 7.4 Hz, 1H), 4.81 (s, 2H), 4.13 (s, 2H).
3-2. 4-((2,4-다이옥소티아졸리딘-3-일)메틸)벤조익산 [4-((2,4-Dioxothiazolidin-3-yl)methyl)benzoic acid (4b)]
89% 수율. 1H-NMR (500 MHz, CD3OD) δ 7.98 (d, J = 8.0 Hz, 2H), 7.42 (d, J = 8.0 Hz, 2H), 4.81 (s, 2H), 4.15 (s, 2H).
4. 화합물 5a 및 5b 합성
화합물 4a 또는 4b (1.1 mmol), EDCl.HCl (4.4 mmol), HOBt (2.2 mmol)을 용해시킨 건조 DCM의 용액에 트리메틸아민 (trimethylamine, 7.7 mmol) 및 O-테트라하이드로피란-2-일하이드록시아민 (O-tetrahydropyran-2-ylhydroxylamine (1.4 mmol)을 첨가하였다.
반응 혼합물을 실온에서 18시간 동안 교반한 후 DCM와 소금물로 세척하였다. 유기층을 과량의 Na2SO4로 건조시키고 진공에서 농축한 후 생성물을 MPLC로 정제하여 화합물 5a를 5b를 43-57% 수율로 얻었다.
4-1. 3-((2,4,-다이옥소티아졸리딘-3-일)메틸)-N-((테트라하이드로-2H-피란-2-일)옥시)벤즈아마이드 [3-((2,4-Dioxothiazolidin-3-yl)methyl)-N-((tetrahydro-2H-pyran-2-yl)oxy)benzamide (5a)]
43% 수율. 1H-NMR (500 MHz, CDCl3) δ 9.20 (s, 1H), 7.71 (s, 1H), 7.69 (d, J = 8.0 Hz, 1H), 7.50 (d, J = 7.4 Hz, 1H), 7.37 (t, J = 7.7 Hz, 1H), 5.06 (s, 1H), 4.76 (s, 2H), 3.98 (d, J = 11.5 Hz, 1H), 3.96 (s, 2H), 3.62 (t, J = 5.7 Hz, 1H), 1.81-1.87 (m, 3H), 1.56-1.65 (m, 3H).
4-2. 4-((2,4-다이옥소티아졸리딘-3-일)메틸)-N-((테트라하이드로-2H-피란-2-일)옥시)벤즈아마이드 [4-((2,4-Dioxothiazolidin-3-yl)methyl)-N-((tetrahydro-2H-pyran-2-yl)oxy)benzamide (5b)]
57% 수율. 1H-NMR (500 MHz, CDCl3) δ 8.86 (s, 1H), 7.71 (d, J = 8.0 Hz, 2H), 7.44 (d, J = 8.0 Hz, 2H), 5.06 (s, 1H), 4.79 (s, 2H), 3.99 (d, J = 8.6 Hz, 1H), 3.96 (s, 2H), 3.64 (dd, J = 6.3, 5.2 Hz, 1H), 1.83-1.92 (m, 3H), 1.59-1.66 (m, 3H).
5. 화합물 7a 내지 7c 합성
화합물 6a (0.22 mmol), 알킬 할라이드 (0.22 mmol) 및 무수 K2CO3 (0.22 mmol)을 건조 DMF (5 mL)에 첨가한 혼합물을 실온에서 18시간 동안 교반하였다.
그 후 DMF를 진공상태에서 증발시키고 고체 잔사를 MPLC로 정제하여 화합물 7a 내지 7c를 14 내지 27% 수율로 얻었다.
5-1. 4-((2,4-다이옥소-5-프로필티아졸리딘-3-일)메틸)-N-((테트라하이드로-2H-피란-2-일)옥시)벤즈아마이드 [4-((2,4-Dioxo-5-propylthiazolidin-3-yl)methyl)-N-((tetrahydro-2H-pyran-2-yl)oxy)benzamide (7a)]
14% 수율. 1H-NMR (500 MHz, CDCl3) δ 8.74 (s, 1H), 7.71 (d, J = 8.0 Hz, 2H), 7.43 (d, J = 8.0 Hz, 2H), 5.06 (s, 1H), 4.77 (dd, J = 20.6, 14.3 Hz, 2H), 4.21 (q, J = 4.4 Hz, 1H), 3.97-4.01 (m, 1H), 3.65 (t, J = 5.4 Hz, 1H), 2.15 (td, J = 9.5, 5.3 Hz, 1H), 1.79-1.91 (m, 4H), 1.59-1.68 (m, 3H), 1.38-1.50 (m, 2H), 0.95 (t, J = 7.2 Hz, 3H).
5-2. 4-((5-알릴-2,4-다이옥소티아졸리딘-3-일)메틸)-N-((테트라하이드로-2H-피란-2-일)옥시)벤즈아마이드 [4-((5-Allyl-2,4-dioxothiazolidin-3-yl)methyl)-N-((tetrahydro-2H-pyran-2-yl)oxy)benzamide (7b)]
27% 수율. 1H-NMR (500 MHz, CDCl3) δ 9.09 (s, 1H), 7.70 (d, J = 8.0 Hz, 2H), 7.35-7.39 (m, 2H), 5.66-5.75 (m, 1H), 5.13-5.18 (m, 2H), 5.05 (s, 1H), 4.75 (dd, J = 24.1, 14.3 Hz, 2H), 4.26-4.30 (m, 1H), 3.99 (q, J = 10.1 Hz, 1H), 3.62 (t, J = 5.4 Hz, 1H), 2.87-2.92 (m, 1H), 2.56-2.63 (m, 1H), 1.81-1.87 (m, 3H), 1.53-1.64 (m, 3H)
5-3. 4-((5-벤질-2,4-다이옥소티아졸리딘-3-일)메틸)-N-((테트라하이드로-2H-피란-2-일)벤즈아마이드 [4-((5-Benzyl-2,4-dioxothiazolidin-3-yl)methyl)-N-((tetrahydro-2H-pyran-2-yl)oxy)benzamide (7c)]
23% 수율. 1H-NMR (500 MHz, CDCl3) δ 8.81 (s, 1H), 7.69 (d, J = 8.0 Hz, 2H), 7.31 (d, J = 8.0 Hz, 2H), 7.27 (s, 3H), 7.17 (q, J = 2.9 Hz, 2H), 5.08 (s, 1H), 4.74 (dd, J = 22.6, 14.6 Hz, 2H), 4.50 (q, J = 4.4 Hz, 1H), 3.98-4.02 (m, 1H), 3.67 (t, J = 5.7 Hz, 1H), 3.49 (dd, J = 14.3, 4.0 Hz, 1H), 3.14 (dd, J = 14.3, 9.2 Hz, 1H), 1.85-1.91 (m, 3H), 1.62-1.68 (m, 3H).
6. 화합물 6a, 6b 및 8a 내지 8c 합성
화합물 5a 및 5b 또는 화합물 7a 내지 7c (0.1 mmol)를 CH2Cl2 (4 mL)에 용해시킨 후 2M HCl이 포함된 디에틸 에테르 (4 mL)를 한 방울씩 첨가하였다.
반응 혼합물을 실온에서 2시간 동안 교반하고, 용매를 진공상태에서 증발시켰다. 잔사를 MPLC로 정제하여 화합물 6a 및 6b 및 화합물 8a 내지 8c를 36-44% 수율로 얻었다.
6-1. 3-((2,4-다이옥소티아졸리딘-3-일)메틸)-N-하이드록시벤즈아마이드 [3-((2,4-Dioxothiazolidin-3-yl)methyl)-N-hydroxybenzamide (6a)
36% 수율. 1H-NMR (500 MHz, CD3OD) δ 7.71 (s, 1H), 7.66 (d, J = 8.0 Hz, 1H), 7.52 (d, J = 8.0 Hz, 1H), 7.43 (t, J = 7.7 Hz, 1H), 4.80 (s, 2H), 4.13 (s, 2H) 13C-NMR (125 MHz, CD3OD) δ 173.96, 173.50, 167.80, 137.75, 132.73, 130.01, 127.98, 127.64, 45.55, 34.75. ESI MS (m/z) 267.04 [M+H]+.
6-2. 4-((2,4-다이옥소티아졸리딘-3-일)메틸)-N-하이드록시벤즈아마이드 [4-((2,4-Dioxothiazolidin-3-yl)methyl)-N-hydroxybenzamide (6b)
42% 수율. 1H-NMR (500 MHz, CD3OD) δ 7.71 (d, J = 8.0 Hz, 2H), 7.42 (d, J = 8.0 Hz, 2H), 4.79 (s, 2H), 4.13 (s, 2H). 13C-NMR (125 MHz, CD3OD) δ 173.88, 173.43, 167.72, 140.76, 133.13, 129.44, 128.44, 45.48, 34.72. ESI MS (m/z) 267.04 [M+H]+.
6-3. 4-((2,4-다이옥소-5-프로필티아졸리딘-3-일)메틸)-N-하이드록시벤즈아마이드 [4-((2,4-Dioxo-5-propylthiazolidin-3-yl)methyl)-N-hydroxybenzamide (8a)]
38% 수율. 1H-NMR (500 MHz, CD3OD) δ 7.98 (d, J = 8.0 Hz, 2H), 7.41 (d, J = 8.6 Hz, 2H), 4.80 (s, 2H), 4.48-4.51 (m, 1H), 2.08-2.15 (m, 1H), 1.83-1.90 (m, 1H), 1.34-1.53 (m, 2H), 0.94-0.97 (m, 3H). 13C-NMR (125 MHz, CD3OD) δ 176.20, 172.88, 169.34, 142.09, 131.57, 131.09, 129.17, 50.89, 45.51, 35.87, 20.97, 13.76 ESI MS (m/z) 309.09 [M+H]+.
6-4. 4-((5-알릴-2,4-다이옥소티아졸리딘-3-일)메틸)-N-하이드록시벤즈아마이드 [4-((5-Allyl-2,4-dioxothiazolidin-3-yl)methyl)-N-hydroxybenzamide (8b)]
40% 수율. 1H-NMR (500 MHz, CD3OD) δ 7.98 (d, J = 8.6 Hz, 2H), 7.41 (t, J = 7.7 Hz, 2H), 5.73-5.81 (m, 1H), 5.11-5.19 (m, 2H), 4.77-4.83 (m, 2H), 4.59 (q, J = 4.0 Hz, 1H), 2.87-2.91 (m, 1H), 2.62-2.68 (m, 1H) 13C-NMR (125 MHz, CD3OD) δ 175.56, 172.79, 169.34, 142.04, 133.49, 131.55, 131.05, 129.22, 120.10, 50.33, 45.53, 37.38. ESI MS (m/z) 307.08 [M+H]+.
6-5. 4-((5-벤질-2,4-다이옥소티아졸리딘-3-일)메틸)-N-하이드록시벤즈아마이드 [4-((5-Benzyl-2,4-dioxothiazolidin-3-yl)methyl)-N-hydroxybenzamide (8c)]
44% 수율. 1H-NMR (500 MHz, CD3OD) δ 7.92 (d, J = 8.0 Hz, 2H), 7.18-7.24 (m, 7H), 4.83 (q, J = 4.0 Hz, 1H), 4.73 (dd, J = 22.3, 14.9 Hz, 2H), 3.41 (dd, J = 14.0, 4.3 Hz, 1H), 3.26 (q, J = 7.3 Hz, 1H). 13C-NMR (125 MHz, CD3OD) δ 175.37, 172.60, 169.39, 141.84, 136.97, 131.38, 131.03, 130.84, 129.54, 128.96, 128.44, 52.28, 45.47, 38.47. ESI MS (m/z) 357.09 [M+H]+.
하기의 실험예들은 본 발명에 따른 각각의 실시예에 공통적으로 적용되는 실험예를 제공하기 위한 것이다.
<실험예 1> 물질
DMEM (Dulbecco’s Modified Eagle’s medium)와 L-glutamine을 GenDEPOT (Barker, TX, USA)에서 구입하였으며, 태아소혈청 (FBS) 및 페니실린 & 스트렙토마이신을 Gibco BRL (Gaithersburg, MD, USA)에서 구입하였다.
α-tubulin, Ac-α-tubulin (Lys40), Histone H3, Ac-Histone H3 (Lys9) 및 β-actin에 대한 항체를 Cell Signaling Technology (Boston, MA, USA)에서 구입하였으며, Goat anti-rabbit IgG horseradish peroxidase conjugate는 Santa Cruz Biotechnology (Santa Cruz, CA, USA)에서 구입하였다.
Cell Titer 96 Aqueous One Solution cell proliferation assay kit를 Promega (Madison, WI, USA)에서 구입하였으며, Amersham ECL select Western blotting detection reagent은 GE Healthcare에서 구입하였다.
HDAC fluorogenic assay kits (HDAC1, #50061; HDAC6, #50076)를 BPS Bioscience (San Diego, CA, USA)에서 구입하였으며, Tubastain A (Portland, OR, USA)는 TCI chemicals에서 구입하였다.
생체 외 (in vitro) 실험을 위해, 메스암페타민 (METH)을 식품의약품안전처(Korea)에서 구입하였다.
<실험예 2> 세포배양
SH-SY5Y를 스트렙토마이신 (500 mg/mL), 페니실린 (100 units/m) 및 10% 태아소혈청 (FBS)이 포함된 DMEM 배지에서 성장시켰으며, 세포는 37℃, 5% CO2가 포함된 가습 조건에서 배양하였다.
<실험예 3> 세포 형태 확인
SH-SY5Y 세포 (1×104 cells/well)를 6-웰 플레이트에 분주하고, 72시간 동안 세포를 부착시켰다. 배양 배지를 METH (1 mM)가 포함된 신선한 배지로 교체하고 4시간 동안 전처리하였다.
4시간 동안 사전 배양 후 화합물 6b (5, 10 및 20 μM)을 24시간 동안 처리하였다. 이후 역상 대조 현미경 (Olympus, Japan)을 이용하여 20× 배율로 세포 형태를 확인하였다.
<실험예 4> HDAC assay
효소적 HDAC 분석을 제조사 (BPS Bioscience)의 프로토콜에 따라 수행하였다. 간략하게, BSA (1 mg/mL) 5 μL 및 HDAC 기질 (200 μM) 5 μL을 HDAC 분석 버퍼 (35 μL)와 96-웰 검정 플레이트에서 혼합하였다.
HDAC1 효소 (0.4 ng/μL) 및 HDAC6 효소 (7 ng/μL)를 각 웰에 첨가하고 다양한 농도의 화합물 6a-b, 8a-c 및 SAHA (5 μL)을 첨가하고 생성된 혼합물을 37℃에서 30분간 인큐베이션하였다.
인큐베이션 후 희석하지 않은 2× HDAC 현상액 50 μL를 각 웰에 첨가하고 혼합물과 실온에서 15분간 인큐베이션하였다. 그 후 분광광도계를 이용하여 360 nm 방출 및 460 nm 여기 파장에서 형광 강도를 측정하였다.
<실험예 5> 세포 증식 분석
SH-SY5Y (1×103 cells/well)을 96-웰 플레이트에 분주하고, 배지 용량이 100 μL가 되도록 첨가하고 14시간 동안 세포를 부착시켰다.
다양한 농도의 화합물 6b (1, 5, 10, 30, 50, 70 및 100 μM)와 METH (0.1 및 1 mM)를 각 웰에 첨가한 후 세포를 37℃에서 24시간 동안 인큐베이션하였다.
Promega Cell Titer 96 Aqueous One Solution cell proliferation assay를 이용하여 세포 생존도를 확인하였다. Tecan Infinite F200 Pro plate reader를 이용하여 490 nm에서 흡광도를 측정한 후 DMSO에서 인큐베이션된 세포에 대한 흡광도의 백분율로 결과 값을 나타내었다.
<실험예 6> 웨스턴 블롯 분석
세포를 세척하고 어름처럼 차가운 용해 버퍼 (23 mM Tris-HCl pH 7.6, 130 mM NaCl, 1% NP-40, 1% sodium deoxycholate, 0.1% SDS)로 용해시켰다. 레인 당 30 μg의 용해물을 SDS-PAGE에서 분리시킨 후 PVDF 막 (Bio rad, Hercules, USA)으로 옮겼다.
막을 TBST에 용해시킨 5% 탈지유로 블로킹한 후 1차 항체와 인큐베이션하였다. 그 후 호래디쉬 페록시다아제가 결합된 고트-항 래빗 2차 항체 (Santa Cruz, CA, USA)를 처리하고, 제조사 (GE healthcare, USA)의 설명서에 따라 ECL 화학발광을 통하여 단백질을 시각화하였다.
<실시예 1> HDAC 억제 활성을 나타내는 화합물 합성 및 이의 활성 확인
먼저, 구조 기반 가상 탐색(virtual screening)을 수행하여 도 1과 같이 다른 HDAC 동질효소보다 우수한 HDAC6 선택성을 나타내는 신규한 안트라퀴논 기반의 HDAC6 억제제를 확인하였으며, 상기 억제제는 2개의 안트라퀴논의 카보닐 산소가 HDAC6의 선택적 억제를 나타내는 중심 역할을 하는 것을 확인하였다. 상기 카보닐 산소는 HDAC6의 고유한 가장자리 및 표면 영역을 인식하여 다른 HDAC 동종효소와는 다른 특징을 나타내었다.
이러한 안트라퀴논 기반의 HDAC6 억제제는 우수한 실험관 내 생물학적 활성을 나타내었음에도 불구하고, 고유의 낮은 용해도는 생체 내 적용을 위한 추가 실험에 문제점이 되었다.
티아졸리딘디온 (Thiazolidinedione, TZD)은 2개의 헤테로원자 (질소 및 황) 및 2개의 카보닐기를 함유한 5원자 고리 분자로, 티아졸리딘디온 및 이의 유도체는 항균성, 항산화, 항염증, 항당뇨, 항암 및 항결핵 활성과 같은 다양한 생물학적 활성을 나타내며, 트로글리타존 및 로시글리타존과 같은 티아졸리딘디온 기반의 약물이 제2형 당뇨병의 치료를 위하여 임상적으로 승인되었다.
이렇듯 두 개의 카보닐기를 가진 임상적으로 승인된 약물에서 티아졸리딘디온이 특화된 스캐폴드라는 사실은 티아졸리딘디온 기반의 HDAC6 억제제를 탐구하도록 자극시켰다.
티아졸리딘 기반의 HDAC6 억제제 6a 및 6b의 합성과정은 반응식 1과 같다.
[반응식 1]
Figure 112019126860467-pat00005
주요 중간체 3a 및 3b는 이전에 보고된 과정에 따라 합성되었다 (22). 간략하게, 티아졸리딘-2,4-온 (1)과 메틸 3-(브로모메틸)벤조에이트 (2a) 또는 메틸 4-(브로모메틸)벤조에이트 (2b)의 염기 촉진 N-알킬화 반응을 통하여 화합물 3a 및 3b가 53 및 55% 수율로 성공적으로 합성되었다.
메탄올 중 수산화나트륨의 존재하에서 하이드록실아민을 이용하여 에스테르 3a 및 3b를 하이드록사메이트 6a 및 6b로 직접 전환시키는 초기 시도는 상기 반응 조건에서 티아졸리딘-2,4-온 고리의 불안정성 때문에 성공적이지 못하였다. 이에 따라 대안적인 합성방법으로 화합물 3a 및 3b를 수용성 산성 조건에서 카르복실산 4a 및 4b로 가수분해하였다. 이렇게 준비된 카르복실산 4a 및 4b를 DCM에서 EDC, HOBt 및 TEA를 이용하여 NH2OTHP와 아미드 결합 반응시켜 화합물 5a 및 5b를 43 및 57% 수율로 얻었다.
마지막으로 산성 가수분해를 통하여 화합물 5a 및 5b로부터 THP 보호기를 제거함으로써 화합물 6a 및 6b를 36 및 42% 수율로 성공적으로 합성하였다.
상기 과정으로 합성된 화합물 6a 및 6b를 사용하여 실험관 내에서 HDAC1 및 HDAC6 효소에 대한 메타-유사체 6a 및 파라-유사체 6b의 억제 활성을 확인하였다.
그 결과, 표 1과 같이 파라-유사체 6b가 메타-유사체 6a보다 HDAC1 및 HDAC6에 대한 매우 높은 결합 활성을 나타내었으며, HDAC1 및 HDAC6에 대한 파라-유사체 6b의 IC50 값은 각각 388 nM 및 21 nM인 것으로 확인되었다.
상기 결과로부터 화합물 6b로부터 유래된 많은 파라-유사체를 합성하였다.
Figure 112019126860467-pat00006
<실시예 2> 파라-유사체 화합물 합성 및 이의 활성 확인
[반응식 2]
Figure 112019126860467-pat00007
상기 반응식 2와 같이 화합물 8a 내지 8c의 합성과정은 중간체 5a로부터 시작되었다.
DMF에서 중간체 5a와 알릴 브로마이드, 프로필 아이오다이드 및 벤질 브로마이드의 염기 촉매된 알킬화 반응은 14 내지 27% 수율로 화합물 7a 내지 7c를 유도하였다. 이어서 산성 조건하에서 화합물 7a 내지 7c로부터 THP 보호기의 절단을 통하여 화합물 8a 내지 8c를 38 내지 44% 수율로 얻었다.
다음으로, HDAC1 및 HDAC6 동종에 대한 5-치환된 티아졸리딘디온 기반의 HDAC 억제제 8a 내지 8c의 억제 활성을 확인하였다.
그 결과, 표 1과 같이 5-치환된 티아졸리딘디온 기반의 HDAC 억제제 8a 내지 8c는 이들의 비치환된 모 화합물 6b와 비교하여 HDAC1 및 HDAC6 동종 모두에 대한 감소된 결합 친화성을 나타내었다.
상기 결과로부터 5-위치에서 2,4-티아졸리딘디온의 치환은 HDAC1 및 HDAC6 효소에 대한 고유의 결합력에 부정적인 영향을 초래하는 것을 확인할 수 있었다.
흥미롭게도 화합물 6b (HDAC6 IC50 = 21 nM)는 HDAC6에 대한 매우 훌륭한 억제 활성을 나타내었으며, FDA 승인된 약물 SAHA (HDAC6 IC50 = 226 nM)보다도 우수한 것으로 확인되었다.
전체적으로 화합물 6b는 HDAC1보다 HDAC6에 대한 우수한 선택성을 갖는 새로 합성된 유사체들 중에서 HDAC1 및 HDAC6에 대하여 가장 우수한 억제 활성을 나타내었다. 이에 따라, 화합물 6b의 추가적인 생물학적 활성을 확인하였다.
<실시예 3> 생물학적 활성 확인
1. 세포 생존도에 미치는 영향 확인
먼저, 화합물 6b가 사람 신경아세포종 세포주인 SH-SY5Y의 세포 생존도에 미치는 영향을 확인하였다.
그 결과, 도 2A와 같이 높은 농도 (50, 70, 및 100 μM)의 6b가 처리된 SH-SY5Y 세포에서는 용량의존적으로 세포 생존율이 감소하였으나, 최대 30 μM까지는 세포 생존에 대한 독성 효과가 나타나지 않았다. class I HDAC 효소의 억제와 대조적으로 HDAC6 동형 단백질의 선택적 억제는 세포 생존에 치명적인 영향을 미치지 않는 것으로 보고되어 있다.
2. HDAC 효소에 대한 화합물 6b의 활성 확인
추가적으로 화합물 6b의 명확한 세포내 메커니즘을 확인하였다.
히스톤 H3 및 α-튜불린 (α-tubulin)은 HDAC1 및 HDAC6의 잘 알려진 기질로, HDAC1 및 HDAC6 효소의 억제는 각각 아세틸화된 히스톤 H3 및 α-튜불린의 축적을 촉진시킨다.
그러므로, SH-SY5Y 세포를 다양한 농도 (0, 1, 5, 10 및 20 μM)의 화합물 6b와 24시간 동안 인큐베이션하고 α-튜불린, Ac-α-튜불린, 히스톤 H3 및 Ac-히스톤 H3의 발현 수준을 웨스턴 블롯 분석으로 확인하였으며, 높은 선택성을 나타내는 HDAC6 억제제인 Tubastatin A (Tub, 5 μM)를 기준 약물로 사용하였다.
그 결과, 도 2B와 같이 화합물 6b는 용량의존적으로 α-튜불린 및 히스톤 H3의 아세틸화를 유도하였다. 1 μM의 비교적 낮은 농도로 6b가 투여된 경우에도 HDAC6의 억제를 통하여 α-튜불린의 아세틸화가 유도되었다. 이와 대조적으로 10 μM 농도의 화합물 6b는 HDAC1의 억제를 통하여 히스톤 H3의 아세틸화를 촉진시킬 수 있었다.
상기 결과로부터 화합물 6b는 세포 환경에서 HDAC1보다 HDAC6를 더 효과적으로 억제하는 것이 확인되었다.
또한, 히스톤 H3의 단백질 수준이 화합물 6b의 농도에 비례하여 증가하는 것을 확인되었으며, 상기 결과로부터 화합물 6b가 전사 인자에 영향을 미칠 수 있을 것으로 제안될 수 있다. 내부 기준인 β-액틴의 발현 수준은 예상대로 변하지 않았다.
상기 결과들을 종합하면 화합물 6b는 SH-SY5Y 세포에서 HDAC1보다 HDAC6 효소 활성을 더욱 강하게 억제하였으며, 이는 표 1에서 확인된 시험관 내 HDAC 분석과 분명한 상관관계를 나타낸다.
3. 메스암페타민이 처리된 세포에서 화합물 6b의 영향 확인
메스암페타민 (METH)은 HDAC6 활성의 변형을 통하여 α-튜불린의 아세틸화를 촉진시켜 세포 골격 안정성, 세포 운동성 및 극성에 영향을 미치는 것으로 보고되었으며, 세포 골격 교란은 혈관뇌장벽(BBB) 무결성의 파괴와 강하게 연관되어 혈류 내 유해 물질이 중추 신경계 (CNS)로 들어갈 수 있다. 이에 따라, 세포 형태에 미치는 메스암페타민 (METH)의 영향을 확인하였다.
먼저, METH이 SH-SY5Y 세포의 세포 형태에 미치는 영향을 분석하기 전에 세포 생존력에 대한 세포 독성을 나타낼 수 있는 지 확인하기 위해, SH-SY5Y 세포를 메스암페타민 (0, 0.1 및 1 mM)과 24시간 동안 인큐베이션한 후 세포 생존도를 MTS 분석으로 확인하였다.
그 결과, 도 3A와 같이 메스암페타민은 24시간 동안 1 mM 농도까지 독성을 나타내지 않았다.
다음으로, 세포 형태에 대한 METH의 영향 및 METH에 의해 유도되는 세포 형태 변화를 예방하는데 있어 화합물 6b의 효과를 확인하기 위해, 1 mM의 METH을 4시간 동안 사전 처리한 SH-SY5Y 세포롸 화합물 6b (5, 10 및 20 μM)를 24시간 동안 인큐베이션하였다.
그 결과, 도 3B와 같이 처리되지 않은 SH-SY5Y 세포 (DMSO)는 정상적으로 연장된 방추형태를 나타내었으나, 1 mM의 METH이 처리된 세포들은 대부분 주름진 둥근 형태를 나타내었다. 다음으로 화합물 6b (5, 10 및 20μM)가 투여된 세포군에서는 용량의존적으로 둥근 형태에서 방추 형태로의 세포 형태가 회복되는 변화가 나타났다.
다음으로 형태학적 변화에 대한 기본적인 분자 및 생화학적 메커니즘을 확인하였다. α-튜불린은 세포 골격을 구성하는 기본 단백질이며, α-튜불린의 동적 아세틸화 및 탈아세틸화는 세포의 형태에 중요한 역할을 한다.
SH-SY5Y 세포에 메스암페타민을 다양한 농도 (0, 0.5, 1, 2 및 3 mM)로 24시간 동안 처리하고, α-튜불린 및 Ac-α-튜불린의 발현 수준을 웨스턴 블롯으로 확인한 결과, 도 4A와 같이 메스암페타민의 용량의존적으로 α-튜불린의 아세틸화가 감소된 반면, α-튜불린의 발현 수준은 변화하지 않았다.
또한, 화합물 6b가 메스암페타민에 의한 아세틸화의 손실을 회복시킬 수 있을 지 확인하였다. 이를 위해 SH-SY5Y 세포에 메스암페타민 (METH, 3 mM)을 4시간 동안 처리한 후 화합물 6b와 24시간 동안 인큐베이션하였다.
그 결과, 도 4B와 같이 메스암페타민이 처리된 세포에서는 α-튜불린의 아세틸화 상태가 감소하였으나, 흥미롭게도 화합물 6b가 함께 처리된 세포에서는 메스암페타민이 촉진시킨 아세틸화의 손실을 회복시켜 α-튜불린의 아세틸화를 유의하게 증가시켰다.
상기 결과들로부터 메스암페타민는 α-튜불린의 아세틸화 상태를 파괴함으로써 세포의 형태학적 변화를 촉진시켰으나, 화합물 6b는 HDAC6 효소의 억제를 통하여 세포 상태를 회복시키는 것으로 확인되었다.
이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는 바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적 기술은 단지 바람직한 실시양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.

Claims (13)

  1. 하기 화학식 1로 표시되는 화합물 또는 이의 약제학적으로 허용가능한 염:
    [화학식 1]
    Figure 112021094409283-pat00008

    상기 화학식 1에 있어서, R은 수소, (C1~C4)알킬, 알릴, 또는 벤질 중에서 선택됨.
  2. 청구항 1에 있어서, 상기 화합물은 벤젠 고리의 파라(para) 위치에 하이드록시아마이드가 도입된 것을 특징으로 화합물 또는 이의 약제학적으로 허용가능한 염.
  3. 청구항 1에 있어서, 상기 화합물은 3-((2,4-다이옥소티아졸리딘-3-일)메틸)-N-하이드록시벤즈아마이드[3-((2,4-Dioxothiazolidin-3-yl)methyl)-N-hydroxybenzamid];, 4-((2,4-다이옥소티아졸리딘-3-일)메틸)-N-하이드록시벤즈아마이드[4-((2,4-Dioxothiazolidin-3-yl)methyl)-N-hydroxybenzamide]; 4-((2,4-다이옥소-5-프로필티아졸리딘-3-일)메틸)-N-하이드록시벤즈아마이드[4-((2,4-Dioxo-5-propylthiazolidin-3-yl)methyl)-N-hydroxybenzamide]; 4-((5-알릴-2,4-다이옥소티아졸리딘-3-일)메틸)-N-하이드록시벤즈아마이드[4-((5-Allyl-2,4-dioxothiazolidin-3-yl)methyl)-N-hydroxybenzamide]; 및 4-((5-벤질-2,4-다이옥소티아졸리딘-3-일)메틸)-N-하이드록시벤즈아마이드[4-((5-Benzyl-2,4-dioxothiazolidin-3-yl)methyl)-N-hydroxybenzamide]로 이루어진 군에서 선택된 것을 특징으로 하는 화합물 또는 이의 약제학적으로 허용가능한 염.
  4. 청구항 1에 있어서, 상기 화합물 또는 이의 약제학적으로 허용가능한 염은 히스톤 탈아세틸효소(Histone deacetylases; HDACs) 활성을 억제하는 것을 특징으로 하는 화합물 또는 이의 약제학적으로 허용가능한 염.
  5. 청구항 4에 있어서, 상기 히스톤 탈아세틸효소는 HDAC1 및 HDAC6으로 이루어진 군에서 선택된 것을 특징으로 하는 화합물 또는 이의 약제학적으로 허용가능한 염.
  6. 하기 화학식 1로 표시되는 화합물 또는 이의 약제학적으로 허용가능한 염을 유효성분으로 함유하는 약물 중독 예방 또는 치료용 약학조성물:
    [화학식 1]
    Figure 112021094409283-pat00009

    상기 화학식 1에 있어서, R은 수소, (C1~C4)알킬, 알릴, 또는 벤질 중에서 선택됨.
  7. 청구항 6에 있어서, 상기 화합물 또는 이의 약제학적으로 허용가능한 염은 히스톤 탈아세틸효소(Histone deacetylases; HDACs) 활성을 억제하는 것을 특징으로 하는 약학조성물.
  8. 청구항 7에 있어서, 상기 히스톤 탈아세틸효소는 HDAC1 및 HDAC6으로 이루어진 군에서 선택된 것을 특징으로 하는 약학조성물.
  9. 삭제
  10. 삭제
  11. 청구항 6에 있어서, 상기 약물 중독은 메스암페타민, 모르핀, 코케인, 아편, 대마, 필로폰 및 엑스터시로 이루어지는 군에서 선택된 약물 중독인 것을 특징으로 하는 약학조성물.
  12. 삭제
  13. 하기 화학식 1로 표시되는 화합물 또는 이의 약제학적으로 허용가능한 염을 유효성분으로 함유하는 약물 중독 개선 또는 예방용 건강식품조성물:
    [화학식 1]
    Figure 112021094409283-pat00010

    상기 화학식 1에 있어서, R은 수소, (C1~C4)알킬, 알릴, 또는 벤질 중에서 선택됨.
KR1020190162597A 2019-12-09 2019-12-09 히스톤 탈아세틸효소 억제 활성을 갖는 신규 화합물 및 이의 의학적 용도 KR102331206B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190162597A KR102331206B1 (ko) 2019-12-09 2019-12-09 히스톤 탈아세틸효소 억제 활성을 갖는 신규 화합물 및 이의 의학적 용도

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190162597A KR102331206B1 (ko) 2019-12-09 2019-12-09 히스톤 탈아세틸효소 억제 활성을 갖는 신규 화합물 및 이의 의학적 용도

Publications (2)

Publication Number Publication Date
KR20210072361A KR20210072361A (ko) 2021-06-17
KR102331206B1 true KR102331206B1 (ko) 2021-11-25

Family

ID=76603905

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190162597A KR102331206B1 (ko) 2019-12-09 2019-12-09 히스톤 탈아세틸효소 억제 활성을 갖는 신규 화합물 및 이의 의학적 용도

Country Status (1)

Country Link
KR (1) KR102331206B1 (ko)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013134467A1 (en) 2012-03-07 2013-09-12 H. Lee Moffitt Cancer Center And Research Institute, Inc. Selective histone deactylase 6 inhibitors
WO2015017546A1 (en) * 2013-07-30 2015-02-05 H. Lee Moffitt Cancer Center And Research Institute, Inc. Selective histone deactylase 6 inhibitors

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
HUE057544T2 (hu) 2015-08-04 2022-05-28 Chong Kun Dang Pharmaceutical Corp 1,3,4-oxadiazol-származék vegyületek mint hiszton deacetiláz 6 inhibitorok, és ezeket tartalmazó gyógyszerkészítmények

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013134467A1 (en) 2012-03-07 2013-09-12 H. Lee Moffitt Cancer Center And Research Institute, Inc. Selective histone deactylase 6 inhibitors
WO2015017546A1 (en) * 2013-07-30 2015-02-05 H. Lee Moffitt Cancer Center And Research Institute, Inc. Selective histone deactylase 6 inhibitors

Also Published As

Publication number Publication date
KR20210072361A (ko) 2021-06-17

Similar Documents

Publication Publication Date Title
US20220127257A1 (en) Small molecules
KR101471999B1 (ko) Gsk-3 저해제
CA2918365C (en) Sulfonamides as modulators of sodium channels
KR20170103977A (ko) 안드로겐 수용체의 표적화된 분해를 위한 화합물 및 방법
US20170107218A1 (en) Small Molecule Transcription Modulators of Bromodomains
AU2006219643A1 (en) Use of PDE7 inhibitors for the treatment of neuropathic pain
US20170044185A1 (en) Histone Deacetylase Inhibitors and Methods for Use Thereof
US11420950B2 (en) Heterocyclicalkyl derivative compounds as selective histone deacetylase inhibitors and pharmaceutical compositions comprising the same
WO2006092692A1 (en) Use of combinations of pde7 inhibitors and alpha-2-delty ligands for the treatment of neuropathic pain
US20190270733A1 (en) Quinoline and Isoquinoline Based HDAC Inhibitors and Methods of Use Thereof
RU2577861C2 (ru) N-гидрокси-бензамиды для лечения рака
US20220017518A1 (en) Histone Deacetylase Inhibitors and Methods of Use Thereof
WO2010075869A1 (en) Toluidine sulfonamides and their use
US7547716B2 (en) Sulfonamide derivatives
AU5881000A (en) Macrophage scavenger receptor antagonists
KR102331206B1 (ko) 히스톤 탈아세틸효소 억제 활성을 갖는 신규 화합물 및 이의 의학적 용도
JP2020515527A (ja) 置換イミダゾール塩系化合物、その調製方法、医薬組成物およびその応用
EP2045246A1 (en) Derivatives of benzo[d] isothiazoles as histone deacetylase inhibitors
KR102023845B1 (ko) 히스톤 탈아세틸효소 억제제 및 이의 용도
KR102507397B1 (ko) 히스톤 탈아세틸화효소 억제 활성을 갖는 신규 화합물 및 이의 용도
US20080119521A1 (en) Butyrlcholinesterase Selective Inhibitors
US7411076B2 (en) Coumarin derivative
WO2016107227A1 (zh) 吡咯酰胺类化合物及其制备方法与用途
EP0679649B1 (en) 2,3-Dihydrobenzofuran Derivatives
JPH10101560A (ja) 神経変性疾患の予防または治療薬

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant