KR102323645B1 - Plated steel sheet and method of manufacturing the same - Google Patents

Plated steel sheet and method of manufacturing the same Download PDF

Info

Publication number
KR102323645B1
KR102323645B1 KR1020200047476A KR20200047476A KR102323645B1 KR 102323645 B1 KR102323645 B1 KR 102323645B1 KR 1020200047476 A KR1020200047476 A KR 1020200047476A KR 20200047476 A KR20200047476 A KR 20200047476A KR 102323645 B1 KR102323645 B1 KR 102323645B1
Authority
KR
South Korea
Prior art keywords
steel sheet
plating
manufacturing
plated steel
plating layer
Prior art date
Application number
KR1020200047476A
Other languages
Korean (ko)
Other versions
KR20210129448A (en
Inventor
이재민
심승우
Original Assignee
현대제철 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 현대제철 주식회사 filed Critical 현대제철 주식회사
Priority to KR1020200047476A priority Critical patent/KR102323645B1/en
Publication of KR20210129448A publication Critical patent/KR20210129448A/en
Application granted granted Critical
Publication of KR102323645B1 publication Critical patent/KR102323645B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • C23C2/0224Two or more thermal pretreatments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • C23C2/29Cooling or quenching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Coating With Molten Metal (AREA)

Abstract

본 발명의 일 실시예에 따른 도금강판의 제조방법은 (a) 냉연강판을 제공하는 단계; (b) 상기 냉연강판을 소둔처리하는 단계; (c) 상기 소둔처리된 강판을 알루미늄(Al), 마그네슘(Mg) 및 아연(Zn)을 함유하는 도금욕에 통과시켜, 상기 강판 상에 알루미늄(Al): 0.5 ~ 10중량%, 마그네슘(Mg): 0.5 ~ 4중량% 및 잔부가 아연(Zn)과 기타 불가피한 불순물을 함유하는 도금층을 형성하는 단계; 및 (d) 상기 도금층이 형성된 상기 강판을 이산화탄소(CO2)가 용존된 냉각수에 급랭하는 단계; 를 포함한다. A method for manufacturing a plated steel sheet according to an embodiment of the present invention comprises the steps of: (a) providing a cold-rolled steel sheet; (b) annealing the cold-rolled steel sheet; (c) passing the annealed steel sheet through a plating bath containing aluminum (Al), magnesium (Mg) and zinc (Zn), on the steel sheet, aluminum (Al): 0.5 to 10% by weight, magnesium (Mg) ): forming a plating layer containing 0.5 to 4% by weight and the remainder zinc (Zn) and other unavoidable impurities; and (d) rapidly cooling the steel sheet on which the plating layer is formed in cooling water in which carbon dioxide (CO 2 ) is dissolved; includes

Description

도금강판 및 그 제조방법{PLATED STEEL SHEET AND METHOD OF MANUFACTURING THE SAME} Coated steel sheet and its manufacturing method

본 발명은 도금강판 및 그 제조방법 관한 것으로서, 보다 상세하게는 내흑변성이 우수한 아연도금강판 및 그 제조방법에 관한 것이다. The present invention relates to a galvanized steel sheet and a method for manufacturing the same, and more particularly, to a galvanized steel sheet having excellent blackening resistance and a method for manufacturing the same.

기존 용융아연 도금강판은 자기 희생성이 우수하여 건자재와 가전재 등에 많이 적용되고 있다. 용융아연 도금강판은 부식 환경 노출 시, 철이 노출된 부분에 대하여 아연(Zn)이 희생양극으로 작용하여 도금층에서 아연의 소실이 발생하게 된다. 이러한 아연의 희생양극 작용은 부식 환경에서 소지철의 녹 발생 억제에 탁월한 역할을 하지만 희생양극 효율이 다소 떨어진다. 이러한 문제점을 해결하기 위해서 근래 일본과 유럽에서 Zn 도금욕에 Mg을 첨가하여 부식 환경에서 치밀한 부식 생성물을 생성시켜 희생양극 효율을 향상시켜 우수한 내식성을 발현하는 고내식 도금제품이 생산되고 있다. 그러나 Zn에 Mg이 첨가된 도금욕에서 제조된 도금강판은 부식 환경에서 Mg이 선반응하여 산화물이 형성되고 이로 인하여 도금 표면이 검게 또는 갈색으로 변화되는 현상이 발생하게 된다. 이러한 문제점을 개선하기 위해 도금 후 일시방청용으로 도유처리나 후처리 코팅을 하게 된다. 그러나 이러한 개선 방법은 고온 다습한 분위기에서 온전한 배리어 역할을 하기에 기존 제품 대비 열위한 물성을 가지는 한계가 있다. 이러한 한계를 개선하기 위해서는 도금극표면에 있는 Mg이 지속적으로 반응하여 검게 또는 갈색으로 변하는 현상을 제어하기 위해서 도금극표면의 Mg이 부식 환경에서 금속 상태로 노출되는 것을 최소화시키는 기술이 필요하다.Existing hot-dip galvanized steel sheet has excellent self-sacrificing properties and is widely used in construction materials and home appliances. When a hot-dip galvanized steel sheet is exposed to a corrosive environment, zinc (Zn) acts as a sacrificial anode to the exposed iron portion, resulting in loss of zinc in the plating layer. The sacrificial anode action of zinc plays an excellent role in suppressing rust generation of base iron in a corrosive environment, but the sacrificial anode efficiency is somewhat lowered. In order to solve this problem, recently, in Japan and Europe, high corrosion resistance plating products that express excellent corrosion resistance by adding Mg to a Zn plating bath to generate a dense corrosion product in a corrosive environment to improve the efficiency of the sacrificial anode are being produced. However, in a plated steel sheet manufactured in a plating bath in which Mg is added to Zn, Mg pre-reacts in a corrosive environment to form an oxide, which causes the plating surface to turn black or brown. In order to improve this problem, lubrication treatment or post-treatment coating is performed for temporary rust prevention after plating. However, this improvement method has a limitation in having inferior properties compared to existing products because it serves as a complete barrier in a high temperature and high humidity atmosphere. In order to improve this limitation, it is necessary to minimize the exposure of Mg on the surface of the plating electrode to a metallic state in a corrosive environment in order to control the phenomenon that the Mg on the surface of the plating electrode continuously reacts and turns black or brown.

관련 선행기술로는 대한민국 공개특허공보 제10-20130053500호가 있다. As a related prior art, there is Korean Patent Publication No. 10-20130053500.

상기와 같은 문제를 해결하기 위하여, 본 발명이 이루고자 하는 기술적 과제는 내흑변성이 우수한 아연도금강판 및 그 제조방법을 제공하는 것이다.In order to solve the above problems, the technical problem to be achieved by the present invention is to provide a galvanized steel sheet having excellent blackening resistance and a method for manufacturing the same.

상기 목적을 달성하기 위한 본 발명의 일 실시예에 따른 도금강판은 냉연강판; 및 상기 냉연강판 상에 형성된, 알루미늄(Al): 0.5 ~ 10중량%, 마그네슘(Mg): 0.5 ~ 4중량% 및 잔부가 아연(Zn)과 기타 불가피한 불순물을 함유하는 도금층; 을 포함하며, 상기 도금층의 표면부는 탄산계 마그네슘 산화물이 형성되는 것을 특징으로 한다. A plated steel sheet according to an embodiment of the present invention for achieving the above object is a cold rolled steel sheet; and a plating layer formed on the cold-rolled steel sheet, containing aluminum (Al): 0.5 to 10% by weight, magnesium (Mg): 0.5 to 4% by weight, and the balance containing zinc (Zn) and other unavoidable impurities; Including, the surface portion of the plating layer is characterized in that the carbonate-based magnesium oxide is formed.

상기 도금강판에서, 상기 도금층은 알루미늄(Al): 1.0 ~ 6.0중량%, 마그네슘(Mg): 1.0 ~ 3.0중량% 및 잔부가 아연(Zn)과 기타 불가피한 불순물을 함유할 수 있다. In the plated steel sheet, the plating layer may contain aluminum (Al): 1.0 to 6.0% by weight, magnesium (Mg): 1.0 to 3.0% by weight, and the balance zinc (Zn) and other unavoidable impurities.

상기 도금강판에서, 상기 도금층은 도금 부착량이 편면도금 20 ~ 300 g/m2일 수 있다. In the plated steel sheet, the plating layer may have a plating adhesion amount of 20 to 300 g/m 2 of single-sided plating.

상기 목적을 달성하기 위한 본 발명의 일 실시예에 따른 도금강판의 제조방법은 (a) 냉연강판을 제공하는 단계; (b) 상기 냉연강판을 소둔처리하는 단계; (c) 상기 소둔처리된 강판을 알루미늄(Al), 마그네슘(Mg) 및 아연(Zn)을 함유하는 도금욕에 통과시켜, 상기 강판 상에 알루미늄(Al): 0.5 ~ 10중량%, 마그네슘(Mg): 0.5 ~ 4중량% 및 잔부가 아연(Zn)과 기타 불가피한 불순물을 함유하는 도금층을 형성하는 단계; 및 (d) 상기 도금층이 형성된 상기 강판을 이산화탄소(CO2)가 용존된 냉각수에 급랭하는 단계; 를 포함한다. A method for manufacturing a plated steel sheet according to an embodiment of the present invention for achieving the above object includes the steps of: (a) providing a cold-rolled steel sheet; (b) annealing the cold-rolled steel sheet; (c) passing the annealed steel sheet through a plating bath containing aluminum (Al), magnesium (Mg) and zinc (Zn), on the steel sheet, aluminum (Al): 0.5 to 10% by weight, magnesium (Mg) ): forming a plating layer containing 0.5 to 4% by weight and the remainder zinc (Zn) and other unavoidable impurities; and (d) rapidly cooling the steel sheet on which the plating layer is formed in cooling water in which carbon dioxide (CO 2 ) is dissolved; includes

상기 도금강판의 제조방법에서, 상기 이산화탄소(CO2)가 용존된 냉각수는 이산화탄소(CO2) 가스 버블링을 통하여 이산화탄소(CO2)가 용존된 워터(water)로서, 냉각수 온도: 50 ~ 80℃이며, 냉각수 pH: 4 ~ 6.5일 수 있다. In the method for producing the coated steel sheet, the carbon dioxide (CO 2) is the dissolved water is carbon dioxide (CO2) as the water (water) is carbon dioxide (CO 2) the dissolved through the gas bubbling, the cooling water temperature: and 50 ~ 80 ℃ , cooling water pH: 4 to 6.5.

상기 도금강판의 제조방법의 상기 (d) 단계에서 상기 급랭하는 단계는 상기 냉각수에 상기 도금층이 형성된 강판을 3 초 이상 침지하여 5 ~ 30℃/sec의 냉각속도로 상온까지 냉각하는 워터 켄칭(water quenching)하는 단계를 포함할 수 있다. In the step (d) of the method for manufacturing the plated steel sheet, the quenching step includes immersing the steel sheet having the plating layer formed thereon in the cooling water for 3 seconds or more and cooling it to room temperature at a cooling rate of 5 to 30° C./sec. quenching) may be included.

상기 도금강판의 제조방법에서, 상기 (d) 단계는 상기 도금층의 표면부에 탄산계 마그네슘 산화물이 생성되는 단계를 포함할 수 있다. In the method for manufacturing the plated steel sheet, step (d) may include generating a carbonate-based magnesium oxide on the surface of the plating layer.

상기 도금강판의 제조방법의 상기 (b) 단계에서 상기 소둔 처리는 700 ~ 850℃의 온도에서 수행하고, 상기 (c) 단계에서 상기 도금욕의 온도는 400 ~ 520℃일 수 있다. In step (b) of the method for manufacturing the plated steel sheet, the annealing treatment is performed at a temperature of 700 to 850°C, and the temperature of the plating bath in step (c) may be 400 to 520°C.

본 발명의 실시예에 따르면, 내흑변성이 우수한 아연도금강판 및 그 제조방법을 구현할 수 있다. 물론 이러한 효과에 의해 본 발명의 범위가 한정되는 것은 아니다.According to an embodiment of the present invention, a galvanized steel sheet having excellent blackening resistance and a manufacturing method thereof can be implemented. Of course, the scope of the present invention is not limited by these effects.

도 1은 본 발명의 일 실시예에 따르는 도금강판의 제조방법을 개략적으로 나타내는 순서도이다.
도 2는 본 발명의 비교예에 따른 도금강판의 도금층 표면을 촬영한 사진이다.
도 3은 본 발명의 실시예에 따른 도금강판의 도금층 표면을 촬영한 사진이다.
1 is a flowchart schematically illustrating a method of manufacturing a plated steel sheet according to an embodiment of the present invention.
2 is a photograph of a surface of a plated layer of a plated steel sheet according to a comparative example of the present invention.
3 is a photograph taken of the plated layer surface of the plated steel sheet according to an embodiment of the present invention.

본 발명의 일 실시예에 따른 도금강판 및 그 제조방법을 상세하게 설명한다. 후술되는 용어들은 본 발명에서의 기능을 고려하여 적절하게 선택된 용어들로서, 이러한 용어들에 대한 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다. 이하에서는 내흑변성이 우수한 도금강판 및 그 제조방법을 설명하고자 한다. A plated steel sheet and a method for manufacturing the same according to an embodiment of the present invention will be described in detail. The terms described below are appropriately selected in consideration of their functions in the present invention, and definitions of these terms should be made based on the content throughout this specification. Hereinafter, a plated steel sheet having excellent blackening resistance and a manufacturing method thereof will be described.

도금강판plated steel sheet

본 발명의 일 실시예에 따르는 도금강판은 냉연강판; 및 상기 냉연강판 상에 형성된, 알루미늄(Al): 0.5 ~ 10중량%, 마그네슘(Mg): 0.5 ~ 4중량% 및 잔부가 아연(Zn)과 기타 불가피한 불순물을 함유하는 도금층; 을 포함하며, 상기 도금층의 표면부는 탄산계 마그네슘 산화물이 형성되는 것을 특징으로 한다. A plated steel sheet according to an embodiment of the present invention is a cold rolled steel sheet; and a plating layer formed on the cold-rolled steel sheet, containing aluminum (Al): 0.5 to 10% by weight, magnesium (Mg): 0.5 to 4% by weight, and the balance containing zinc (Zn) and other unavoidable impurities; Including, the surface portion of the plating layer is characterized in that the carbonate-based magnesium oxide is formed.

Zn에 내식성을 향상시키기 위해 첨가된 Mg은 부식 환경에서 Mg 산화물을 형성시키므로 도금표면의 외관이 검게 또는 갈색으로 변하게 되어 외관품질 및 물성을 저해하는 원인으로 작용하는 것으로 알려져 있다. Mg added to Zn to improve corrosion resistance forms Mg oxide in a corrosive environment, so the appearance of the plating surface turns black or brown, which is known to act as a cause of deterioration of appearance quality and physical properties.

이러한 현상은 도금층 표면 미세조직을 조절하여 제어가 가능하다. Zn에 Mg이 첨가된 도금욕으로 도금한 도금층의 조직은 Zn 단상, MgZn2, Al+ MgZn2로 이루어진 삼원공정상으로 구성된다. 삼원 공정상은 Mg, Zn 및 Al을 포함하고 있는 공정상을 의미하며, 예를 들어, Al+MgZn2로 이루어진 삼원 공정상일 수 있다. This phenomenon can be controlled by controlling the microstructure of the surface of the plating layer. The structure of the plating layer plated with the plating bath in which Mg is added to Zn is composed of a Zn single phase, MgZn 2 , and a ternary eutectic phase consisting of Al+ MgZn 2 . The ternary eutectic phase means an eutectic phase containing Mg, Zn, and Al, and may be, for example, a ternary eutectic phase consisting of Al+MgZn2.

이들 중에서 도금면의 색차를 발생시키는 주 요인은 Mg이 포함되어 있는 MgZn2와 Al+MgZn2 삼원공정상이다. 그런 이유로 도금 표면에 색차를 낮추기 위해서는 MgZn2 상과 Al+MgZn2 삼원공정상이 적을수록 색차 변화가 적다. 이러한 상분율을 제어하기 위해서는 Al과 Mg 함량을 통하여 제어를 할 수 있으나 Al, Mg 함량이 제한적인 투입범위에서 가능하기 때문에 우수한 내식성을 발현하기 어렵다. Among them, the main factor causing the color difference of the plating surface is MgZn 2 containing Mg and Al+MgZn 2 ternary process phase. For that reason, in order to lower the color difference on the plating surface, the less the MgZn 2 phase and the Al+MgZn 2 ternary eutectic phase, the less the color difference change. In order to control such a phase fraction, it is possible to control through Al and Mg content, but since Al and Mg content is possible in a limited input range, it is difficult to express excellent corrosion resistance.

한편 내식성을 발현 할 수 있는 도금 조성물 총 중량에 대하여 Al: 0.5wt% ~ 10wt%, Mg: 0.5wt% ~ 4wt% 범위 내에서 첨가되어 도금 표면이 우수하며 내식성이 우수한 도금강판을 얻을 수 있다. 용융아연도금욕에서 알루미늄(Al)은 삼원 공정상을 형성하여 조직을 미세화 시키는 역할을 한다. On the other hand, Al: 0.5wt% ~ 10wt%, Mg: 0.5wt% ~ 4wt% with respect to the total weight of the plating composition capable of expressing corrosion resistance It is added within the range, so that the plated steel sheet with excellent plating surface and excellent corrosion resistance can be obtained. In the hot-dip galvanizing bath, aluminum (Al) forms a ternary process phase and plays a role in refining the structure.

Al 함량이 0.5wt% 이상 첨가되어야 내식성을 향상시키는 삼원공정상을 형성시킬 수 있으며, Al 함량이 10wt%를 초과하면 표면에 Al 단상이 증가하여 도금표면 외관이 감소하게 된다. 더욱 바람직하게는, 도금 조성물의 총 중량을 기준으로 Al이 1wt% ~ 6wt% 첨가되는 것이 바람직하다. Al 최소 첨가량은 1wt% 이상 첨가되어야 용탕 중의 Mg 산화에 의한 산화 드로스(Dross)를 감소시킬 수 있으며 Al함량은 Mg함량보다 높게 설계되어야 용탕 중에 Mg산화 억제가 용이하다. 또한 도금 시 강판으로부터 용해되는 철(Fe)로 인한 Fe 드로스(Dross)를 최소화하기 위해서는 Al함량을 6wt% 이하로 하는 것이 바람직하다. When the Al content is 0.5wt% or more, a three-way process phase to improve corrosion resistance can be formed. More preferably, 1 wt% to 6 wt% of Al is added based on the total weight of the plating composition. The minimum amount of Al added must be 1wt% or more to reduce oxidation dross due to Mg oxidation in the molten metal. In addition, in order to minimize Fe dross due to iron (Fe) dissolved from the steel sheet during plating, it is preferable that the Al content be 6 wt% or less.

또한, 도금층에 내식성을 향상시키는 Mg의 함량은 1wt% ~ 3wt%인 것이 바람직한데, 내식성에 기여하는 공정상 생성을 위해서는 Mg이 1wt% 이상 첨가되어야 하며, Mg 함량이 3wt%를 초과하면 MgZn2와 Al+MgZn2 삼원공정상의 분율이 급격히 증가하여 부식환경에서 도금 표면 MgO, Mg(OH)2 산화물을 형성하므로 색차변화를 제어하는 것이 어려워진다. 즉, 부식환경에서 도금표층의 색차변화를 최소화하는 방법은 부식환경에서 Mg이 지속적으로 MgO, Mg(OH)2 등의 산화물 생성을 최소화하는 것이 가장 효과적인 방법으로 이라 볼 수 있다. In addition, the content of Mg for improving corrosion resistance in the plating layer is preferably 1 wt% to 3 wt%. In order to generate a process contributing to corrosion resistance, Mg must be added at least 1 wt%, and when the Mg content exceeds 3 wt%, MgZn 2 and Al+MgZn 2 The fraction of the ternary process increases rapidly , forming MgO, Mg(OH) 2 oxide on the plating surface in a corrosive environment, making it difficult to control the color difference change. That is, the most effective method for minimizing the color difference change of the plating surface layer in a corrosive environment is to minimize the formation of oxides such as MgO and Mg(OH) 2 in a corrosive environment.

그러나 현재까지 내식성을 발현하면서 내흑변성까지 향상시키는 것은 상반된 메커니즘이기 때문에 기술적으로 난해한 부분이다. 이러한 기술적 한계를 극복하기 위해서 본 발명에서는 연속 도금 공정중 워터 켄칭(water quenching) 공정을 통하여 도금극표층에 탄산계열의 산화물 생성하여 내식성을 유지하면서 내흑변성을 개선하는 구성에 대하여 개시하였다. However, until now, improving the blackening resistance while expressing the corrosion resistance is a technically difficult part because it is a contradictory mechanism. In order to overcome this technical limitation, the present invention discloses a configuration for improving blackening resistance while maintaining corrosion resistance by generating carbonic acid-based oxides on the plating electrode surface layer through a water quenching process during a continuous plating process.

도금강판의 제조방법Method for manufacturing plated steel sheet

도 1은 본 발명의 일 실시예에 따르는 도금강판의 제조방법을 나타내는 순서도이다. 1 is a flowchart showing a method of manufacturing a plated steel sheet according to an embodiment of the present invention.

도 1을 참조하면, (a) 냉연강판을 제공하는 단계(S100); (b) 상기 냉연강판을 소둔처리하는 단계(S200); (c) 상기 소둔처리된 강판을 알루미늄(Al), 마그네슘(Mg) 및 아연(Zn)을 함유하는 도금욕에 통과시켜, 상기 강판 상에 알루미늄(Al): 0.5 ~ 10중량%, 마그네슘(Mg): 0.5 ~ 4중량% 및 잔부가 아연(Zn)과 기타 불가피한 불순물을 함유하는 도금층을 형성하는 단계(S300); 및 (d) 상기 도금층이 형성된 상기 강판을 이산화탄소(CO2)가 용존된 냉각수에 급랭하는 단계(S400);를 포함한다. Referring to Figure 1, (a) providing a cold-rolled steel sheet (S100); (b) annealing the cold-rolled steel sheet (S200); (c) passing the annealed steel sheet through a plating bath containing aluminum (Al), magnesium (Mg) and zinc (Zn), on the steel sheet, aluminum (Al): 0.5 to 10% by weight, magnesium (Mg) ): forming a plating layer containing 0.5 to 4% by weight and the remainder zinc (Zn) and other unavoidable impurities (S300); and (d) rapidly cooling the steel sheet on which the plating layer is formed in cooling water in which carbon dioxide (CO 2 ) is dissolved (S400).

상기 도금강판의 제조방법에서, 상기 이산화탄소(CO2)가 용존된 냉각수는 이산화탄소(CO2) 가스 버블링을 통하여 이산화탄소(CO2)가 용존된 워터(water)로서, 냉각수 온도: 50 ~ 80℃이며, 냉각수 pH: 4 ~ 6.5일 수 있다. 상기 (d) 단계(S400)에서 상기 급랭하는 단계는 상기 냉각수에 상기 도금층이 형성된 강판을 3 초 이상 침지하여 5 ~ 30℃/sec의 냉각속도로 상온까지 냉각하는 워터 켄칭(water quenching)하는 단계를 포함할 수 있다. 상기 (d) 단계(S400)는 상기 도금층의 표면부에 탄산계 마그네슘 산화물이 생성되는 단계를 포함할 수 있다. In the method for producing the coated steel sheet, the carbon dioxide (CO 2) is the dissolved water is carbon dioxide (CO2) as the water (water) is carbon dioxide (CO 2) the dissolved through the gas bubbling, the cooling water temperature: and 50 ~ 80 ℃ , cooling water pH: 4 to 6.5. The step of quenching in (d) step (S400) is a step of water quenching by immersing the steel sheet having the plating layer formed thereon in the cooling water for 3 seconds or more and cooling it to room temperature at a cooling rate of 5 to 30° C./sec. may include. The (d) step (S400) may include a step of generating a carbonate-based magnesium oxide on the surface of the plating layer.

상기 도금강판의 제조방법의 상기 (b) 단계(S200)에서 상기 소둔 처리는 700 ~ 850℃의 온도에서 수행하고, 상기 (c) 단계(S300)에서 상기 도금욕의 온도는 400 ~ 520℃일 수 있다. In the (b) step (S200) of the method for manufacturing the plated steel sheet, the annealing treatment is performed at a temperature of 700 to 850°C, and the temperature of the plating bath in the (c) step (S300) is 400 to 520°C. can

본 발명의 일 실시예에 따르는 도금강판의 제조방법은 연속아연도금라인에서 도금 후 강판의 온도를 급강하시키는 워터 켄칭 탱크(water quenching tank)의 설비 개선 및 공정조건 변경을 통하여 발명의 구성을 구현할 수 있다. The method for manufacturing a plated steel sheet according to an embodiment of the present invention can implement the configuration of the present invention through improvement of facilities of a water quenching tank that rapidly lowers the temperature of a steel sheet after plating in a continuous galvanizing line and change of process conditions. have.

구체적으로 워터 켄칭 탱크의 물온도를 50℃ 이상을 유지하고 워터 켄칭 탱크에 CO2 가스 버블링을 통하여 용존 CO2량을 증가시키면서 pH가 4 ~ 6.5를 유지하는 구성을 개시한다. 이렇게 구성된 공정에 Zn-Al-Mg으로 구성된 도금강판을 워터 켄칭 탱크에 3초 이상 침지하여 도금극표층의 Mg을 탄산계열의 Mg산화물로 변화시켜 내흑변성의 효과를 구현한다. Specifically, maintaining the water temperature of the water quenching tank at 50° C. or higher and increasing the amount of dissolved CO 2 through bubbling CO 2 gas in the water quenching tank while maintaining a pH of 4 to 6.5 is disclosed. In this process, the plated steel sheet composed of Zn-Al-Mg is immersed in a water quenching tank for more than 3 seconds to change the Mg of the plated electrode surface layer into carbonic acid-based Mg oxide to realize the effect of blackening resistance.

워터 켄칭 탱크의 물온도가 50℃ 미만인 경우 도금표층의 Mg이 탄산계열의 산화물을 형성하는데 반응성이 부족하여 효과에 한계가 있다. 또한 앞서 기술한 워터 켄칭 탱크의 온도 50℃ 이상에서 침지 시간이 3초 미만일 경우에는 탄산계열의 Mg산화물이 미세하게 형성되어 효과가 미미하다. When the water temperature of the water quenching tank is less than 50° C., the Mg of the plating surface layer has insufficient reactivity to form carbonate-based oxides, so there is a limit to the effect. In addition, when the immersion time is less than 3 seconds at a temperature of 50° C. or higher in the water quenching tank described above, carbonic acid-based Mg oxide is formed finely, and the effect is insignificant.

워터 켄칭 탱크에 투입되는 CO2 가스량 범위는 허용되는 pH범위 내에서 투입이 되어야 한다. CO2 가스의 투입량이 과하게 되면 pH가 급격히 감소하여 생성된 산화물이 용해되는 현상이 발생하게 된다. 반면 투입된 CO2 가스량이 적을 시에는 탄산계열의 산화물 형성이 적어 충분한 보호막 역할을 하지 못하게 된다. The amount of CO 2 gas input to the water quenching tank should be input within the allowable pH range. When the input amount of CO 2 gas is excessive, the pH is rapidly decreased, and the generated oxide is dissolved. On the other hand, when the amount of CO 2 gas input is small, the formation of carbonic acid-based oxides is small, so that it cannot serve as a sufficient protective film.

실험예Experimental example

이하 본 발명의 이해를 돕기 위해 바람직한 실험예를 제시한다. 다만, 하기의 실험예는 본 발명의 이해를 돕기 위한 것일 뿐, 본 발명이 하기의 실험예에 의해 한정되는 것은 아니다. Hereinafter, preferred experimental examples are presented to help the understanding of the present invention. However, the following experimental examples are only for helping understanding of the present invention, and the present invention is not limited by the following experimental examples.

1. 시편의 제조1. Preparation of specimens

두께 0.7mm의 냉연강판을 준비한다. 상기 냉연강판의 조성은 표 1에 나타난 조성범위를 만족한다. Prepare a cold-rolled steel sheet with a thickness of 0.7 mm. The composition of the cold-rolled steel sheet satisfies the composition range shown in Table 1.

C(wt%)C (wt%) Si(wt%)Si (wt%) Mn(wt%)Mn (wt%) P(wt%)P(wt%) S(wt%)S (wt%) ≤0.15≤0.15 -- ≤0.60≤0.60 ≤0.05≤0.05 ≤0.05≤0.05

예를 들어, 상기 냉연강판은 탄소(C):0.07중량%, 망간(Mn):0.3중량%, 인(P):0.05중량%, 황(S):0.005중량% 및 잔부가 철(Fe)인 조성을 가질 수 있다. 다만, 이러한 냉연강판의 조성은 예시적인 것이며, 본 발명의 기술적 사상을 구현함에 있어서 반드시 필요한 것은 아니다. For example, in the cold-rolled steel sheet, carbon (C): 0.07 wt%, manganese (Mn): 0.3 wt%, phosphorus (P): 0.05 wt%, sulfur (S): 0.005 wt%, and the balance iron (Fe) It may have a phosphorus composition. However, the composition of the cold-rolled steel sheet is exemplary, and is not necessarily required in implementing the technical idea of the present invention.

상기 냉연강판을 50℃ 알칼리 용액에 30분 동안 침지시킨 후, 물로 세척하여 표면의 이물질과 기름을 제거한 시편을 준비한다. After immersing the cold-rolled steel sheet in an alkaline solution at 50° C. for 30 minutes, washing with water to remove foreign substances and oil on the surface is prepared.

계속하여 상기 시편을 소둔처리한 후 도금한다. 소둔은 수소: 10 ~ 30%, 질소: 70 ~ 90%로 구성된 환원 분위기에서 실시하며, 소둔 열처리 온도는 700 ~ 850℃이다. 도금은 소둔 열처리한 시편을 도금욕 온도(400 ~ 520℃)로 냉각한 후, 도금욕에 침적시킨 후 끌어올려 질소 와이핑으로 도금 두께를 10㎛ 내외로 조절하였다. 도금 부착량은 편면 도금 20 ~ 300g/m2 수준으로 조절하였다. 계속하여, 도금 공정 후에 5℃/sec ~ 30℃/sec의 냉각속도로 상온까지 워터 켄칭(water quenching) 공정으로 냉각하여 응고시킨다. 상기 도금욕은 알루미늄(Al): 0.5 ~ 10중량%, 마그네슘(Mg): 0.5 ~ 4중량%를 함유하는 아연(Zn) 도금욕이다. Subsequently, the specimen is annealed and then plated. Annealing is carried out in a reducing atmosphere composed of hydrogen: 10 to 30%, nitrogen: 70 to 90%, and the annealing heat treatment temperature is 700 to 850 °C. For plating, the annealed specimen was cooled to a plating bath temperature (400 to 520° C.), immersed in the plating bath, and pulled up, and the plating thickness was adjusted to about 10 μm by nitrogen wiping. The plating adhesion amount was controlled to a level of 20 ~ 300g/m 2 for single-sided plating. Subsequently, after the plating process, it is cooled and solidified by a water quenching process to room temperature at a cooling rate of 5°C/sec to 30°C/sec. The plating bath is a zinc (Zn) plating bath containing 0.5 to 10% by weight of aluminum (Al) and 0.5 to 4% by weight of magnesium (Mg).

2. 도금 표면 내흑변성 평가2. Blackening resistance evaluation of plating surface

이상의 조건으로 도금강판을 제조하고, 워터 켄칭(water quenching) 조건별 도금 표면 내흑변성을 평가하여 표 2에 나타내었다. 흑변은 상대 습도 90% 이상, 온도 50℃의 고온다습한 환경에서 72시간 동안 보관 후 색차계를 이용하여 강판 표면의 색차 측정을 통해서 평가하였다. 표 2에 표시된 내흑변성 시험 전후의 색차에 따른 판단 기준은 항목 '◎'은 색차(△E)가 7.0 이하인 경우이며, 항목 '○'은 색차(△E)가 7.0 초과 9.0 이하인 경우이며, 항목 '△'은 색차(△E)가 9.0 초과 11.0 이하인 경우이며, 항목 'X'는 색차(△E)가 13.0 이상인 경우에 해당한다.A plated steel sheet was prepared under the above conditions, and the blackening resistance of the plating surface was evaluated for each water quenching condition, and it is shown in Table 2. Black stool was evaluated by measuring the color difference on the surface of the steel sheet using a colorimeter after storage for 72 hours in a high-temperature and high-humidity environment with a relative humidity of 90% or more and a temperature of 50°C. The criteria for judging according to the color difference before and after the blackening resistance test shown in Table 2 are when the color difference (ΔE) is 7.0 or less, and the item '○' is when the color difference (ΔE) is greater than 7.0 and less than or equal to 9.0. 'Δ' corresponds to a case in which the color difference (ΔE) is greater than or equal to 9.0 and less than or equal to 11.0, and item 'X' corresponds to a case in which the color difference (ΔE) is 13.0 or more.

구분 division ZnZn Al
(wt%)
Al
(wt%)
Mg
(wt%)
Mg
(wt%)
냉각수
온도(℃)
cooling water
Temperature (℃)
냉각수
pH
cooling water
pH
침지
시간(s)
immersion
time(s)
항온항습 평가결과
색차(△E)
Constant temperature and humidity evaluation result
Color difference (ΔE)
비교예1Comparative Example 1 Bal.Bal. 1.51.5 1One 3030 44 1010 XX 비교예2Comparative Example 2 Bal.Bal. 1.51.5 1One 50 50 33 1010 XX 비교예3Comparative Example 3 Bal.Bal. 1.51.5 1One 5050 77 1010 XX 비교예4Comparative Example 4 Bal.Bal. 22 1.51.5 8080 44 22 실시예1Example 1 Bal.Bal. 1.51.5 1One 50 50 44 1010 실시예2Example 2 Bal.Bal. 1.51.5 1One 5050 55 1010 실시예3Example 3 Bal.Bal. 1.51.5 1One 5050 66 1010 실시예4Example 4 Bal Bal 22 1.51.5 8080 44 1010 실시예5Example 5 Bal.Bal. 22 1.51.5 8080 66 1515 실시예6Example 6 Bal.Bal. 55 33 8080 44 1010

표 2를 참조하면, 실시예1, 실시예2, 실시예3, 실시예4, 실시예5 및 실시예6의 워터 켄칭(water quenching) 조건에서 냉각수는 이산화탄소(CO2) 가스 버블링을 통하여 이산화탄소(CO2)가 용존된 워터(water)이며, 냉각수 온도: 50 ~ 80℃, 냉각수 pH: 4 ~ 6.5, 냉각수 침지시간: 3초 이상의 공정조건을 적용하였다. 실시예1, 실시예2, 실시예3, 실시예4, 실시예5 및 실시예6에서 항온항습 평가결과 색차(△E)는 모두 9.0 이하로 내흑변성이 우수함을 확인할 수 있다. Referring to Table 2, in the water quenching conditions of Examples 1, 2, 3, 4, 5 and 6, the cooling water is carbon dioxide through carbon dioxide (CO2) gas bubbling. (CO 2 ) is dissolved water, cooling water temperature: 50 ~ 80 ℃, cooling water pH: 4 ~ 6.5, cooling water immersion time: 3 seconds or more process conditions were applied. In Example 1, Example 2, Example 3, Example 4, Example 5, and Example 6, the color difference (ΔE) was 9.0 or less as a result of constant temperature and humidity evaluation, confirming excellent blackening resistance.

한편, 비교예1, 비교예2, 비교예3 및 비교예4의 워터 켄칭(water quenching) 조건에서 냉각수는 이산화탄소(CO2) 가스 버블링을 적용하지 않았다. 나아가, 비교예1에서 냉각수 온도범위는 50 ~ 80℃에 미달하여 만족하지 못하며, 비교예2 및 비교예3에서 냉각수 pH 범위는 4 ~ 6.5를 만족하지 못하는바, 비교예1, 비교예2 및 비교예3에서 항온항습 평가결과 색차(△E)가 11.0 이상으로 나타나 흑변 현상이 현저하게 나타남을 확인할 수 있다. 비교예4에서는 냉각수 침지시간이 3초 이상의 범위를 미달하여 만족하지 못하는 바, 항온항습 평가결과 색차(△E)가 9.0을 초과하여 흑변 현상이 나타남을 확인할 수 있다. On the other hand, in the water quenching conditions of Comparative Example 1, Comparative Example 2, Comparative Example 3, and Comparative Example 4, carbon dioxide (CO2) gas bubbling was not applied to the cooling water. Furthermore, in Comparative Example 1, the cooling water temperature range was less than 50 to 80° C. and not satisfied, and in Comparative Examples 2 and 3, the cooling water pH range did not satisfy 4 to 6.5, Comparative Examples 1, 2 and As a result of the constant temperature and humidity evaluation in Comparative Example 3, the color difference (ΔE) was 11.0 or more, confirming that the blackening phenomenon was remarkably displayed. In Comparative Example 4, the cooling water immersion time was less than 3 seconds, which was not satisfactory. As a result of the constant temperature and humidity evaluation, it can be confirmed that the color difference (ΔE) exceeds 9.0, resulting in blackening.

도 2는 본 발명의 비교예1에 따른 도금강판의 도금층 표면을 촬영한 사진이고, 도 3은 본 발명의 실시예6에 따른 도금강판의 도금층 표면을 촬영한 사진이다. 2 is a photograph of the plated layer surface of the plated steel sheet according to Comparative Example 1 of the present invention, and FIG. 3 is a photograph of the plated layer surface of the plated steel sheet according to Example 6 of the present invention.

도 2를 참조하면 상온의 워터 켄칭 공정으로 도금강판을 급랭한 경우 탄산계 산화물이 형성되지 않는 반면에, 도 3을 참조하면, CO2 버블링을 적용한 상대적으로 고온의 워터 켄칭 공정으로 도금강판을 급랭한 경우 탄산계 산화물이 형성됨을 확인할 수 있다. Referring to FIG. 2, when the plated steel sheet is quenched by a water quenching process at room temperature, carbonate-based oxides are not formed, whereas referring to FIG. In one case, it can be confirmed that a carbonic acid-based oxide is formed.

이상에서는 본 발명의 실시예를 중심으로 설명하였지만, 당업자의 수준에서 다양한 변경이나 변형을 가할 수 있다. 이러한 변경과 변형이 본 발명의 범위를 벗어나지 않는 한 본 발명에 속한다고 할 수 있다. 따라서 본 발명의 권리범위는 이하에 기재되는 청구범위에 의해 판단되어야 할 것이다. Although the above description has been focused on the embodiments of the present invention, various changes or modifications may be made at the level of those skilled in the art. Such changes and modifications can be said to belong to the present invention without departing from the scope of the present invention. Accordingly, the scope of the present invention should be judged by the claims described below.

Claims (8)

삭제delete 삭제delete 삭제delete (a) 냉연강판을 제공하는 단계;
(b) 상기 냉연강판을 소둔처리하는 단계;
(c) 상기 소둔처리된 강판을 알루미늄(Al), 마그네슘(Mg) 및 아연(Zn)을 함유하는 도금욕에 통과시켜, 상기 강판 상에 알루미늄(Al): 0.5 ~ 10중량%, 마그네슘(Mg): 0.5 ~ 4중량% 및 잔부가 아연(Zn)과 기타 불가피한 불순물을 함유하는 도금층을 형성하는 단계; 및
(d) 상기 도금층이 형성된 상기 강판을 이산화탄소(CO2)가 용존된 냉각수에 급랭하는 단계; 를 포함하는 도금강판의 제조방법이며,
상기 이산화탄소(CO2)가 용존된 냉각수는 이산화탄소(CO2) 가스 버블링을 통하여 이산화탄소(CO2)가 용존된 워터(water)로서, 냉각수 온도: 50 ~ 80℃이며, 냉각수 pH: 4 ~ 6.5 이고,
상기 (d) 단계에서 상기 급랭하는 단계는 상기 냉각수에 상기 도금층이 형성된 강판을 3 초 이상 침지하여 5 ~ 30℃/sec의 냉각속도로 상온까지 냉각하는 워터 켄칭(water quenching)하는 단계를 포함하는 것을 특징으로 하는, 도금강판의 제조방법.
(a) providing a cold-rolled steel sheet;
(b) annealing the cold-rolled steel sheet;
(c) passing the annealed steel sheet through a plating bath containing aluminum (Al), magnesium (Mg) and zinc (Zn), on the steel sheet, aluminum (Al): 0.5 to 10% by weight, magnesium (Mg) ): forming a plating layer containing 0.5 to 4% by weight and the remainder zinc (Zn) and other unavoidable impurities; and
(d) rapidly cooling the steel sheet on which the plating layer is formed in cooling water in which carbon dioxide (CO 2 ) is dissolved; A method for manufacturing a plated steel sheet comprising:
The carbon dioxide (CO 2) is the dissolved water is carbon dioxide (CO2) as the water (water) is carbon dioxide (CO 2) the dissolved through the gas bubbling, the cooling water temperature: and 50 ~ 80 ℃, cooling water pH: 4 ~ 6.5, and ,
The step of quenching in step (d) includes immersing the steel sheet having the plating layer formed thereon in the cooling water for 3 seconds or more and cooling it to room temperature at a cooling rate of 5 to 30°C/sec. A method of manufacturing a plated steel sheet, characterized in that.
삭제delete 삭제delete 제 4 항에 있어서,
상기 (d) 단계는 상기 도금층의 표면부에 탄산계 마그네슘 산화물이 생성되는 단계를 포함하는,
도금강판의 제조방법.
5. The method of claim 4,
The step (d) comprises the step of generating carbonate-based magnesium oxide on the surface of the plating layer,
A method for manufacturing a plated steel sheet.
제 4 항에 있어서,
상기 (b) 단계에서 상기 소둔 처리는 700 ~ 850℃의 온도에서 수행하고,
상기 (c) 단계에서 상기 도금욕의 온도는 400 ~ 520℃인 것을 특징으로 하는,
도금강판의 제조방법.
5. The method of claim 4,
The annealing treatment in step (b) is performed at a temperature of 700 ~ 850 ℃,
The temperature of the plating bath in step (c) is characterized in that 400 ~ 520 ℃,
A method for manufacturing a plated steel sheet.
KR1020200047476A 2020-04-20 2020-04-20 Plated steel sheet and method of manufacturing the same KR102323645B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020200047476A KR102323645B1 (en) 2020-04-20 2020-04-20 Plated steel sheet and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200047476A KR102323645B1 (en) 2020-04-20 2020-04-20 Plated steel sheet and method of manufacturing the same

Publications (2)

Publication Number Publication Date
KR20210129448A KR20210129448A (en) 2021-10-28
KR102323645B1 true KR102323645B1 (en) 2021-11-08

Family

ID=78232655

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200047476A KR102323645B1 (en) 2020-04-20 2020-04-20 Plated steel sheet and method of manufacturing the same

Country Status (1)

Country Link
KR (1) KR102323645B1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003253457A (en) * 2002-03-06 2003-09-10 Jfe Steel Kk Surface treated galvanized steel sheet

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015129283A1 (en) * 2014-02-27 2015-09-03 Jfeスチール株式会社 Galvanized steel sheet and method for manufacturing same
KR101613354B1 (en) * 2014-05-22 2016-04-19 동부제철 주식회사 Coated steel plate and mehtod for manufacturing the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003253457A (en) * 2002-03-06 2003-09-10 Jfe Steel Kk Surface treated galvanized steel sheet

Also Published As

Publication number Publication date
KR20210129448A (en) 2021-10-28

Similar Documents

Publication Publication Date Title
CA2755389C (en) High-strength hot-dip galvanized steel sheet and method for producing same
JP6128223B2 (en) High-strength hot-dip galvanized steel sheet and manufacturing method thereof
KR101376381B1 (en) Plating steel sheet having excellent corrosion resistance, high formability and good appearance and method for production thereof
JP2020503442A (en) Hot-dip galvanized steel excellent in weldability and press workability and method for producing the same
US11377712B2 (en) Hot dipped high manganese steel and manufacturing method therefor
KR20210151035A (en) Aluminium alloy coated steel sheet, hot formed parts and method of manufacturing thereof
KR102250323B1 (en) Plated steel sheet and method of manufacturing the same
US10597764B2 (en) Substrate for hot-dip galvanizing or hot-dip galvannealing, production method therefor, and hot-dip galvanized steel sheet or hot-dip galvannealed steel sheet
JP4264373B2 (en) Method for producing molten Al-based plated steel sheet with few plating defects
KR20120076111A (en) Hot-dip zinc plating bath providing excellent corrosion resistance, high formability and appearance, and steel plate plated with the same
KR102323645B1 (en) Plated steel sheet and method of manufacturing the same
JP4696364B2 (en) Hot-dip galvanized steel sheet with excellent corrosion resistance and surface appearance
KR102529201B1 (en) Zinc plated steel sheet and method of manufacturing the same
JP2007291445A (en) Method for producing high tension hot-dip galvanized hot-rolled steel sheet excellent in wettability and bulging property
KR101500282B1 (en) Method for manufacturing high strength galvanized steel sheet having excellent surface property and coating adhesion
KR102672418B1 (en) Plated steel sheet and method of manufacturing the same
KR102672419B1 (en) Plated steel sheet and method of manufacturing the same
KR101629260B1 (en) Composition for hot dipping bath
KR102663847B1 (en) Galvanizing steel having excellent bendability and corrosion resistance
KR20190078330A (en) Plated steel wire and manufacturing method for the same
KR102110657B1 (en) Plating composition and method of manufacturing zinc plated steel sheet
KR102196210B1 (en) Method for manufacturing hot-dip plated steel sheet
KR20240106712A (en) Galvanizing steel having excellent corrosion resistance and method of manufacturing the same
KR20240080732A (en) Plated steel sheet and method of manufacturing the same
JP2005200711A (en) Method of producing hot dip galvannealed steel sheet

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant