KR102110657B1 - Plating composition and method of manufacturing zinc plated steel sheet - Google Patents

Plating composition and method of manufacturing zinc plated steel sheet Download PDF

Info

Publication number
KR102110657B1
KR102110657B1 KR1020180072597A KR20180072597A KR102110657B1 KR 102110657 B1 KR102110657 B1 KR 102110657B1 KR 1020180072597 A KR1020180072597 A KR 1020180072597A KR 20180072597 A KR20180072597 A KR 20180072597A KR 102110657 B1 KR102110657 B1 KR 102110657B1
Authority
KR
South Korea
Prior art keywords
weight
steel sheet
plating
silicon
tib
Prior art date
Application number
KR1020180072597A
Other languages
Korean (ko)
Other versions
KR20200000590A (en
Inventor
이재민
Original Assignee
현대제철 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 현대제철 주식회사 filed Critical 현대제철 주식회사
Priority to KR1020180072597A priority Critical patent/KR102110657B1/en
Publication of KR20200000590A publication Critical patent/KR20200000590A/en
Application granted granted Critical
Publication of KR102110657B1 publication Critical patent/KR102110657B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C18/00Alloys based on zinc
    • C22C18/04Alloys based on zinc with aluminium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/14Removing excess of molten coatings; Controlling or regulating the coating thickness
    • C23C2/16Removing excess of molten coatings; Controlling or regulating the coating thickness using fluids under pressure, e.g. air knives
    • C23C2/18Removing excess of molten coatings from elongated material
    • C23C2/20Strips; Plates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/261After-treatment in a gas atmosphere, e.g. inert or reducing atmosphere
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips

Abstract

본 발명의 일 실시예에 의한 도금 조성물은 마그네슘(Mg) : 0.5 ~ 3 중량%, 알루미늄(Al) : 0.5 ~ 10 중량%, 규소(Si) : 0.005 ~ 0.1 중량%, 티타늄(Ti)과 붕화티타늄(TiB) 중 적어도 어느 하나 : 0.005 ~ 0.1 중량% 및 잔부의 아연(Zn)을 포함하되, 규소(Si)의 중량비와 티타늄(Ti)과 붕화티타늄(TiB) 중 적어도 어느 하나의 중량비가 1:1 내지 1:5의 범위를 가진다. Plating composition according to an embodiment of the present invention magnesium (Mg): 0.5 ~ 3% by weight, aluminum (Al): 0.5 ~ 10% by weight, silicon (Si): 0.005 ~ 0.1% by weight, titanium (Ti) and boration At least one of titanium (TiB): 0.005 to 0.1% by weight and the balance of zinc (Zn), but the weight ratio of silicon (Si) and the weight ratio of at least one of titanium (Ti) and titanium boride (TiB) 1 : 1 to 1: 5.

Description

도금 조성물 및 아연도금강판의 제조방법{Plating composition and method of manufacturing zinc plated steel sheet}Plating composition and method of manufacturing zinc plated steel sheet

본 발명은 도금 조성물 및 아연도금강판의 제조방법에 관한 것으로, 보다 상세하게는 아연도금강판 및 그 제조방법에 관한 것이다. The present invention relates to a plating composition and a method of manufacturing a galvanized steel sheet, and more particularly, to a galvanized steel sheet and a manufacturing method thereof.

기존 용융아연 도금강판은 자기 희생성이 우수하여 건자재와 가전재 등에 많이 적용되고 있다. 용융아연 도금강판은 부식환경 노출 시, 철이 노출된 부분에 대하여 아연(Zn)이 희생양극으로 작용하여 도금층에서 아연의 소실이 발생하게 된다. 이런한 아연의 희생양극 작용은 부식환경에서 소지철의 녹 발생에 억제에 탁월한 역할을 하지만 양극 효율이 다소 떨어진다. 이런한 문제점을 해결하기 위해서 근래 일본과 유럽에서 아연에 마그네슘을 첨가하여 부식 환경에서 치밀한 부식 생성물을 생성시켜 양극 효율을 향상시켜 우수한 내식성을 발현하는 고내식 도금제품이 생산되고 있다. 아연에 마그네슘이 첨가됨에 따라 내식성을 증가시키는 작용을 하기도 하지만 마그네슘이 첨가됨에 따른 부식 환경에서 초기 표면활성도가 급격히 올라가게 되어 표면의 알카리도가 상승하는 현상이 발생하게 된다. 이러한 현상은 인산 처리 후 전착 도장시 내식성을 저해하는 역할로 작용한다. 전착 도장후 부식 환경에 노출되게 되면 도금층 표면의 알카리도 상승하게 되고 그로 인해 인산염층이 온전한 배리어 역할을 하지 못하게 된다. 이러한 현상을 제어하기 위해서는 표면의 조직의 제어하는 것이 매우 중요하다.The existing hot-dip galvanized steel sheet has excellent self-sacrifice, and is widely applied to construction materials and home appliances. When the hot-dip galvanized steel sheet is exposed to a corrosive environment, zinc (Zn) acts as a sacrificial anode for the exposed part of the iron, resulting in the loss of zinc in the plating layer. Such a sacrificial anode action of zinc plays an excellent role in suppressing the generation of rust in the iron in a corrosive environment, but the anode efficiency is somewhat inferior. In order to solve this problem, in recent years, in Japan and Europe, zinc has been added to zinc to produce a dense corrosion product in a corrosive environment, thereby improving anode efficiency to produce high corrosion-resistant plating products that exhibit excellent corrosion resistance. Although zinc may act to increase corrosion resistance as magnesium is added, initial surface activity rapidly increases in a corrosive environment as magnesium is added, resulting in an increase in surface alkalinity. This phenomenon serves to inhibit corrosion resistance during electrodeposition coating after phosphoric acid treatment. When exposed to a corrosive environment after electrodeposition coating, the alkali on the surface of the plating layer also rises, and as a result, the phosphate layer cannot function as a complete barrier. In order to control this phenomenon, it is very important to control the structure of the surface.

이에 관련된 기술로는 대한민국 특허공개공보 제2016-074753호(2016년 6월 29일 공개, 연신율이 우수한 아연도금강판 및 그 제조방법)가 있다. A related technology is Korean Patent Publication No. 2016-074753 (published on June 29, 2016, galvanized steel sheet with excellent elongation and manufacturing method thereof).

본 발명이 해결하고자 하는 과제는, 도장 내식성이 우수한 아연도금강판의 제조방법과 이를 위한 도금 조성물을 제공하는 것이다.The problem to be solved by the present invention is to provide a method for manufacturing a galvanized steel sheet having excellent coating corrosion resistance and a plating composition for the same.

상기 목적을 달성하기 위한 본 발명의 일 실시예에 따른 도금 조성물은 마그네슘(Mg) : 0.5 ~ 3 중량%, 알루미늄(Al) : 0.5 ~ 10 중량%, 규소(Si) : 0.005 ~ 0.1 중량%, 티타늄(Ti)과 붕화티타늄(TiB) 중 적어도 어느 하나 : 0.005 ~ 0.1 중량% 및 잔부의 아연(Zn)을 포함하되, 규소(Si)의 중량비와 티타늄(Ti)과 붕화티타늄(TiB) 중 적어도 어느 하나의 중량비가 1:1 내지 1:5의 범위를 가진다. Plating composition according to an embodiment of the present invention for achieving the above object is magnesium (Mg): 0.5 ~ 3% by weight, aluminum (Al): 0.5 ~ 10% by weight, silicon (Si): 0.005 ~ 0.1% by weight, At least one of titanium (Ti) and titanium boride (TiB): containing 0.005 to 0.1% by weight and the balance of zinc (Zn), but at least one of the weight ratio of silicon (Si) and titanium (Ti) and titanium boride (TiB) Either weight ratio has a range of 1: 1 to 1: 5.

상기 도금 조성물에서 알루미늄(Al)의 조성은 2 ~ 5 중량%일 수 있다. The composition of aluminum (Al) in the plating composition may be 2 to 5% by weight.

상기 목적을 달성하기 위한 본 발명의 다른 실시예에 따른 아연도금강판의 제조방법은 마그네슘(Mg) : 0.5 ~ 3 중량%, 알루미늄(Al) : 0.5 ~ 10 중량%, 규소(Si) : 0.005 ~ 0.1 중량%, 티타늄(Ti)과 붕화티타늄(TiB) 중 적어도 어느 하나 : 0.005 ~ 0.1 중량% 및 잔부의 아연(Zn)을 포함하되, 규소(Si)의 중량비와 티타늄(Ti)과 붕화티타늄(TiB) 중 적어도 어느 하나의 중량비가 1:1 내지 1:5의 범위를 가지는, 도금욕을 준비하는 단계; 상기 도금욕에 소지강판을 침지하고 도금을 행하여 아연도금강판을 얻는 단계; 상기 아연도금강판을 가스 와이핑하는 단계; 및 상기 가스 와이핑 후, 상기 아연도금강판을 5 내지 30℃/s의 냉각속도로 상온까지 냉각하는 단계; 를 포함한다. Method for producing a galvanized steel sheet according to another embodiment of the present invention for achieving the above object is magnesium (Mg): 0.5 ~ 3% by weight, aluminum (Al): 0.5 ~ 10% by weight, silicon (Si): 0.005 ~ 0.1 wt%, at least one of titanium (Ti) and titanium boride (TiB): containing 0.005 to 0.1 wt% and the balance of zinc (Zn), but the weight ratio of silicon (Si) and titanium (Ti) and titanium boride ( Preparing a plating bath in which a weight ratio of at least one of TiB) ranges from 1: 1 to 1: 5; Immersing the steel sheet in the plating bath and plating to obtain a galvanized steel sheet; Gas-wiping the galvanized steel sheet; And after the gas wiping, cooling the galvanized steel sheet to room temperature at a cooling rate of 5 to 30 ° C / s. It includes.

상기 아연도금강판의 제조방법의 상기 도금욕에서 알루미늄(Al)의 조성은 2 ~ 5 중량%일 수 있다. The composition of aluminum (Al) in the plating bath of the method for manufacturing the galvanized steel sheet may be 2 to 5% by weight.

상기 아연도금강판의 제조방법에서, 상기 도금욕의 온도는 400 ~ 520℃일 수 있다. In the manufacturing method of the galvanized steel sheet, the temperature of the plating bath may be 400 ~ 520 ℃.

상기 아연도금강판의 제조방법에서, 상기 아연도금강판에 형성된 도금층의 조직은 Zn 단상, MgZn2 상, Al 및 MgZn2 상으로 이루어진 삼원 공정상으로 구성되되, 상기 도금층에서 상기 Zn 단상의 표면 상분율이 20% 이상일 수 있다. In the method of manufacturing the galvanized steel sheet, the structure of the plating layer formed on the galvanized steel sheet is composed of a ternary process phase consisting of Zn single phase, MgZn 2 phase, Al and MgZn 2 phase, and the surface phase fraction of the Zn single phase in the plating layer This can be 20% or more.

상기 아연도금강판의 제조방법은, 상기 도금욕에 소지강판을 침지하기 전에, 10 ~ 30%의 수소 및 70 ~ 90%의 질소로 구성된 환원 분위기에서 700 ~ 750℃의 온도에서 상기 소지강판을 소둔 열처리하는 단계를 더 포함할 수 있다. The manufacturing method of the galvanized steel sheet, before immersing the steel sheet in the plating bath, annealing the steel sheet at a temperature of 700 ~ 750 ℃ in a reducing atmosphere consisting of 10 ~ 30% hydrogen and 70 ~ 90% nitrogen The heat treatment may further include a step.

본 발명의 실시예에 따르면, 도장 내식성이 우수한 아연도금강판의 제조방법과 이를 위한 도금 조성물을 구현할 수 있다. 물론 이러한 효과에 의해 본 발명의 범위가 한정되는 것은 아니다.According to an embodiment of the present invention, a method of manufacturing a galvanized steel sheet having excellent paint corrosion resistance and a plating composition for the same can be implemented. Of course, the scope of the present invention is not limited by these effects.

도 1은 본 발명의 실시예에 따른 아연도금강판의 제조방법을 도해하는 순서도이다.
도 2는 본 발명의 비교예에 따른 아연도금강판의 제조방법으로 구현된 도금층의 조직 사진이다.
도 3은 본 발명의 실시예에 따른 아연도금강판의 제조방법으로 구현된 도금층의 조직 사진이다.
1 is a flowchart illustrating a method of manufacturing a galvanized steel sheet according to an embodiment of the present invention.
2 is a photograph of the structure of the plating layer implemented by the method of manufacturing a galvanized steel sheet according to a comparative example of the present invention.
3 is a photograph of the structure of the plating layer implemented by the method of manufacturing a galvanized steel sheet according to an embodiment of the present invention.

이하에서는 본 발명의 일 실시예에 따른 도금 조성물과 이를 이용한 아연도금강판의 제조방법을 상세하게 설명한다. 후술되는 용어들은 본 발명에서의 기능을 고려하여 적절하게 선택된 용어들로서, 이러한 용어들에 대한 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다.Hereinafter, a plating composition according to an embodiment of the present invention and a method of manufacturing a galvanized steel sheet using the same will be described in detail. Terms to be described later are terms appropriately selected in consideration of functions in the present invention, and definitions of these terms should be made based on contents throughout the present specification.

도금 조성물Plating composition

본 발명의 일 관점은 아연도금강판의 제조방법에 적용될 수 있는 도금 조성물에 관한 것이다. 일 구체예에서, 본 발명의 일 관점에 따른 도금 조성물은, 마그네슘(Mg) : 0.5 ~ 3 중량%, 알루미늄(Al) : 0.5 ~ 10 중량%, 규소(Si) : 0.005 ~ 0.1 중량%, 티타늄(Ti)과 붕화티타늄(TiB) 중 적어도 어느 하나 : 0.005 ~ 0.1 중량% 및 잔부의 아연(Zn)을 포함하되, 규소(Si)의 중량비와 티타늄(Ti)과 붕화티타늄(TiB) 중 적어도 어느 하나의 중량비가 1:1 내지 1:5의 범위를 가진다. One aspect of the present invention relates to a plating composition that can be applied to a method of manufacturing a galvanized steel sheet. In one embodiment, the plating composition according to one aspect of the present invention, magnesium (Mg): 0.5 ~ 3% by weight, aluminum (Al): 0.5 ~ 10% by weight, silicon (Si): 0.005 ~ 0.1% by weight, titanium At least one of (Ti) and titanium boride (TiB): containing 0.005 to 0.1% by weight and the balance of zinc (Zn), but at least any one of the weight ratio of silicon (Si) and titanium (Ti) and titanium boride (TiB) One weight ratio ranges from 1: 1 to 1: 5.

아연(Zn)에 내식성을 향상시키기 위해 첨가된 마그네슘(Mg)은 부식 환경에서 도금층 표면의 알카리도 향상시키기 때문에 마그네슘 첨가에 의해 생성된 도금층 표면조직을 제어하는 것이 중요하다. 아연에 마그네슘이 첨가된 도금욕으로 도금한 도금층의 조직은 Zn 단상, MgZn2, Al+ MgZn2으로 이루워진 삼원 공정상으로 구성된다. 이중에 표면의 표면 활성화를 높이는 상은 Mg이 포함되어 있는 MgZn2와 Al+MgZn2 삼원 공정상이다. 표면 알카리도를 낮추기 위해서는 MgZn2 상과 Al+MgZn2 삼원 공정상 표면 상분율이 80%이하로 형성되야 하며 Zn 단상은 20% 이상으로 형성함으로써 도금층 표면의 알카리도의 상승을 막을 수 있다. 이러한 상의 분율을 제어하기 위해서는 알루미늄(Al)과 마그네슘(Mg) 함량을 통하여 제어를 할 수 있으나 알루미늄, 마그네슘 함량이 제한적인 투입범위에서 가능하기 때문에 우수한 내식성을 발현하기 어렵다. 한편 내식성을 발현 할 수 있는 도금 조성물 총 중량에 대하여 알루미늄(Al): 0.5wt% ~ 10wt%, 마그네슘(Mg) : 0.5wt% ~ 3wt% 범위 내에서 첨가되어 도금 표면이 우수하면 내식성이 우수한 도금강판을 얻을 수 있다. Magnesium (Mg) added to improve corrosion resistance to zinc (Zn) also improves the alkali on the surface of the plating layer in a corrosive environment, so it is important to control the surface texture of the plating layer produced by the addition of magnesium. The structure of the plating layer plated with a plating bath in which magnesium is added to zinc is composed of a ternary process phase consisting of Zn single phase, MgZn 2 and Al + MgZn 2 . Among them, the phases that increase the surface activation of the surface are MgZn 2 and Al + MgZn 2 ternary process phases containing Mg. In order to lower the surface alkalinity, the MgZn 2 phase and the Al + MgZn 2 ternary process must have a surface phase fraction of 80% or less, and the Zn single phase can be formed by more than 20% to prevent the alkalinity on the surface of the plating layer from rising. In order to control the fraction of these phases, it can be controlled through aluminum (Al) and magnesium (Mg) contents, but it is difficult to express excellent corrosion resistance because aluminum and magnesium contents are possible in a limited input range. On the other hand, aluminum (Al): 0.5wt% ~ 10wt%, magnesium (Mg): 0.5wt% ~ 3wt% with respect to the total weight of the plating composition, which can express corrosion resistance, is added in the range, and the plating surface is excellent corrosion resistance Steel sheet can be obtained.

마그네슘(Mg)Magnesium (Mg)

아연의 희생양극 작용은 부식환경에서 소지철의 녹 발생에 억제에 탁월한 역할을 하지만 양극 효율이 떨어지는 문제점을 해결하기 위해서 마그네슘을 첨가한다. 마그네슘은 아연에 첨가하여 부식 환경에서 치밀한 부식 생성물을 생성시켜 양극 효율을 향상시켜 우수한 내식성을 발현시킨다. 도금표면 활성상의 생성에 직접 관여하는 마그네슘의 함량은 0.5중량% ~ 3중량%인 것이 바람직한데, 내식성에 기여하는 공정상 생성을 위해서는 마그네슘이 0.5중량% 이상 첨가되야 하며, 마그네슘 함량이 3중량%을 초과하면 MgZn2와 Al+MgZn2 삼원 공정상의 분율이 급격히 증가하여 도금 표면 활성화를 제어할 수 없게 된다. Zinc's sacrificial anode action plays an excellent role in suppressing rust formation of the iron in a corrosive environment, but magnesium is added to solve the problem of poor anode efficiency. Magnesium is added to zinc to produce a dense corrosion product in a corrosive environment, thereby improving anode efficiency, thereby exhibiting excellent corrosion resistance. The content of magnesium directly involved in the formation of the active surface of the plating surface is preferably 0.5% by weight to 3% by weight, and in order to create a process contributing to corrosion resistance, magnesium should be added at least 0.5% by weight, and the magnesium content is 3% by weight If it exceeds, the fractions of the MgZn 2 and Al + MgZn 2 ternary processes increase rapidly, making it impossible to control the plating surface activation.

알루미늄(Al)Aluminum (Al)

알루미늄은 도금욕 내 마그네슘 산화물 드로스 형성을 억제하며 도금층 내 아연 및 마그네슘과 반응하여 Zn-Al-Mg계 금속간 화합물을 형성함으로써 도금강판의 인산염 처리성 향상에 매우 주요한 역할을 하는 원소이다. 도금 조성물에서 알루미늄의 함량이 0.5 중량% 보다 낮은 경우, 마그네슘이 산화되는 것을 방지할 수 없으며, 마그네슘 드로스 형성 억제능이 부족하고 도금층의 표면조직 내 충분한 양의 Zn-Al-Mg계 금속간 화합물을 확보할 수 없어 인산염 처리성 향상 효과가 충분치 않은 문제가 있다. 도금 조성물에서 알루미늄의 함량이 10 중량% 보다 높은 경우 표면에 Al 단상이 증가하여 도금표면 외관이 불량하며, 인산염 처리성 향상 효과가 포화될 뿐만 아니라 도금용 온도가 올라가 도금장치의 내구성에 악영향을 미치는 문제가 있으며, 나아가, 도금층의 단면조직 내 다량의 Zn-Al-Mg계 금속간 화합물이 형성되어 스폿 용접성이 저하되는 문제가 있다. 이러한 점을 고려하면, 상기 도금 조성물에서 알루미늄의 함량은 0.5 ~ 10 중량%으로 설정할 수 있다. 한편, 더욱 바람직하게는, 도금 조성물의 총 중량을 기준으로 알루미늄이 2 ~ 5중량% 첨가되는 것이 바람직할 수 있다. 알루미늄 조성이 2 ~ 5중량% 함량 범위를 만족하는 경우에서는 표면 외관의 저하없이 알루미늄 수지상이 발달하게 되어 내식성이 더욱 향상된다. Aluminum inhibits the formation of magnesium oxide dross in the plating bath and reacts with zinc and magnesium in the plating layer to form a Zn-Al-Mg-based intermetallic compound, which is an element that plays a very important role in improving the phosphate treatment of the plated steel sheet. When the content of aluminum in the plating composition is lower than 0.5% by weight, magnesium cannot be prevented from being oxidized, the ability to inhibit magnesium dross formation is insufficient, and a sufficient amount of Zn-Al-Mg-based intermetallic compound in the surface structure of the plating layer is used. There is a problem that the effect of improving the phosphate treatment property is insufficient because it cannot be secured. When the aluminum content in the plating composition is higher than 10% by weight, the Al single phase on the surface increases, the appearance of the plating surface is poor, and the effect of improving the phosphate treatment is saturated, and the temperature for plating increases, which adversely affects the durability of the plating device. There is a problem, and further, a large amount of Zn-Al-Mg-based intermetallic compounds are formed in the cross-sectional structure of the plated layer, thereby deteriorating spot weldability. Considering this, the content of aluminum in the plating composition may be set to 0.5 to 10% by weight. On the other hand, more preferably, it may be desirable to add 2 to 5% by weight of aluminum based on the total weight of the plating composition. When the aluminum composition satisfies the content range of 2 to 5% by weight, the aluminum resin phase develops without deteriorating the surface appearance, further improving corrosion resistance.

규소(Si)Silicon (Si)

제한적인 알루미늄과 마그네슘 함량 범위에서 조업성과 내식성을 보다 효과적으로 발현하기 위해서 미세원소를 첨가하게 된다. 고내식 도금욕은 기존의 아연도금욕 대비 알루미늄 함량이 높기 때문에 도금시 소재 강판으로부터 철(Fe)이 용출되기 쉽다. 이를 제어하기 위해서 미세량의 규소가 첨가된다. 이러한 목적으로 첨가된 규소는 소지철로부터 용출되는 Fe 량을 감소시킴으로써, Fe 드로스(dross) 발생량을 현저하게 감소시켜, 표면 외관이 우수한 도금강판의 제공이 가능하게 된다. 상기 도금 조성물에서, 규소의 함량은 0.005 ~ 0.1중량%인 것이 바람직한데, 합금층 제어 효과를 위해서는 규소 첨가량이 0.005중량% 이상이어야 하고, 규소 첨가량이 0.1중량%을 초과하면 Mg2Si상이 생성되어 도금층의 가공성이 저해된다. In the limited aluminum and magnesium content range, microelements are added to more effectively express operation and corrosion resistance. The high corrosion-resistant plating bath has a higher aluminum content than the existing zinc plating bath, so iron (Fe) is likely to elute from the steel sheet during plating. To control this, a fine amount of silicon is added. The silicon added for this purpose significantly reduces the amount of Fe dross generated by reducing the amount of Fe eluted from the base iron, and thus it is possible to provide a plated steel sheet having excellent surface appearance. In the plating composition, the content of silicon is preferably 0.005 to 0.1% by weight, for the alloy layer control effect, the silicon addition amount should be 0.005% by weight or more, and when the silicon addition amount exceeds 0.1% by weight, Mg 2 Si phase is generated. The workability of the plating layer is impaired.

티타늄(Ti)/붕화티타늄(TiB)Titanium (Ti) / Titanium Boride (TiB)

상술한 규소의 첨가는 도금 조직을 미세화게 하는 역할을 하게 되어 도금 표면에 MgZn2상과 삼원 공정상들이 다량 생성되어 표면 활성화를 증가시키게 된다. 규소 첨가를 통하여 도금시 소재 강판으로부터 용출 현상을 감소시키면서 동시에 표면 활성화를 최소화 하는 것은 어려운 과제이다. 이런 문제점을 해결하기 위해서 규소 첨가에 따른 MgZn2상과 삼원 공정상의 미세화를 억제하는 Ti 및 TiB 중에서 선택된 적어도 어느 하나 이상을 첨가하여 부식환경에서 도금표면에 표면활성화 증가에 따른 알카리도 상승을 감소시킬 수 있다. Ti 및 TiB 중에서 선택된 적어도 어느 하나 이상은 도금후 도금층 응고시 도금층에 존재하는 규소와 결합하여 금속화합물을 형성함으로써 규소 첨가에 의한 도금 표면에 활성화상의 분율을 감소시키게 된다. 그로 인하여 도금층 표면의 Zn 단상의 분율이 증가하게 되고 표면활성도가 감소하게 된다. 한편 TiB 및/또는 Ti 첨가량은 0.005 ~ 0.1 중량%인 것이 바람직한데, 도금층 표면의 조직을 제어하기 위해서는 TiB 및/또는 Ti 첨가량이 0.005 중량% 이상이어야 하고, TiB 및/또는 Ti 첨가량이 0.1 중량%을 초과하면 티타늄과 결함한 금속화합물이 과도하게 생성되어 도금표면 품질이 저하된다. 상술한 기술적 내용에서 볼 수 있듯이 규소와 티타늄은 교호작용을 하기 때문에 두 첨가원소의 적절한 비율로 첨가를 해야 발명의 효과를 얻을 수 있다. Addition of the above-described silicon serves to refine the plating structure, and thus, a large amount of MgZn 2 phases and ternary process phases are formed on the plating surface to increase surface activation. It is a difficult task to minimize the surface activation while simultaneously reducing the dissolution phenomenon from the steel sheet during plating by adding silicon. In order to solve this problem, by adding at least one selected from Ti and TiB to suppress the refinement of MgZn 2 phase and ternary process due to silicon addition, it is possible to reduce the increase in alkalinity due to increased surface activation on the plating surface in a corrosive environment. have. At least one or more selected from Ti and TiB forms a metal compound by combining with silicon present in the plating layer upon solidification of the plating layer after plating, thereby reducing the fraction of the activated phase on the plating surface by adding silicon. As a result, the fraction of the Zn single phase on the surface of the plating layer increases and the surface activity decreases. Meanwhile, the TiB and / or Ti addition amount is preferably 0.005 to 0.1% by weight, in order to control the texture of the surface of the plating layer, the TiB and / or Ti addition amount must be 0.005% by weight or more, and the TiB and / or Ti addition amount is 0.1% by weight If it exceeds, titanium and defective metal compounds are excessively generated, and the surface quality of the plating decreases. As can be seen from the above technical content, silicon and titanium interact with each other, so it is possible to obtain the effect of the invention by adding them at an appropriate ratio of two added elements.

규소와 TiB/Ti를 동시에 첨가할 경우에는, 티타늄(Ti)과 붕화티타늄(TiB) 중 적어도 어느 하나의 첨가와 규소(Si) 첨가는 각각의 효과를 서로 상쇄하는 역할을 하므로, 상제어와 외관 향상을 고려하여 첨가비를 조절하여야 한다. 본 발명자는 규소(Si)의 중량비와 티타늄(Ti)과 붕화티타늄(TiB) 중 적어도 어느 하나의 중량비의 비율이 1:1내지 1:5의 범위에서 적절한 내식성과 가공성 및 외관이 뛰어난 도금강재를 제조할 수 있음을 확인하였다. 규소(Si)의 중량비와 티타늄(Ti)과 붕화티타늄(TiB) 중 적어도 어느 하나의 중량비의 비율이 1:1 보다 작아 규소의 첨가량이 많은 경우에는 도금표면의 표면활성상이 증가하게 되어 부식환경에서 도금층 표면 알카리도를 억제할 수 없게 된다. 규소(Si)의 중량비와 티타늄(Ti)과 붕화티타늄(TiB) 중 적어도 어느 하나의 중량비의 비율이 1:5 보다 커서 TiB/Ti의 첨가량이 많은 경우에는 규소 첨가에 따른 소재 Fe 용출 제어 효과를 낼 수 없게 된다. When adding silicon and TiB / Ti at the same time, the addition of at least one of titanium (Ti) and titanium boride (TiB) and the addition of silicon (Si) serve to counteract the effects of each other, thereby controlling phase and appearance. The addition ratio should be adjusted in consideration of the improvement. The present inventors have a ratio of the weight ratio of silicon (Si) and the weight ratio of at least one of titanium (Ti) and titanium boride (TiB) in the range of 1: 1 to 1: 5 to provide a suitable corrosion resistance, processability and excellent plating steel. It was confirmed that it can be produced. When the ratio of the weight ratio of silicon (Si) and the weight ratio of at least one of titanium (Ti) and titanium boride (TiB) is less than 1: 1, when the amount of silicon added is large, the surface active phase of the plating surface is increased, and in a corrosive environment. The surface alkalinity of the plating layer cannot be suppressed. When the ratio of the weight ratio of silicon (Si) and the weight ratio of at least one of titanium (Ti) and titanium boride (TiB) is greater than 1: 5, the amount of TiB / Ti added is large, thereby controlling the material Fe dissolution control effect due to silicon addition. It cannot be paid.

기존에 고내식 도금강판의 시장에 적용에 있어서 건자재 시장에서는 내식성이 우수하여 넓게 사용되고 있다. 그러나 자동차 시장 적용에 있어서 전착 도장 내식성 확보가 매우 중요하다. 본 발명에서는 고내식 도금강판의 도금층 표면 미세조직을 제어함으로써 전착 도장성의 인산염처리의 건정성을 유지하기 위해서 Si과 TiB/Ti의 첨가중량비율이 1:1 내지 1:5의 범위에서 조절함으로써 도장내식성이 우수한 도금강재를 제조할 수 있다.When applied to the market of conventional high corrosion-resistant plated steel sheet, it is widely used in the construction materials market due to its excellent corrosion resistance. However, it is very important to secure the corrosion resistance of the electrodeposition coating in the automotive market application. In the present invention, by controlling the microstructure of the surface of the plating layer of the highly corrosion-resistant plated steel sheet, coating is performed by adjusting the added weight ratio of Si and TiB / Ti in the range of 1: 1 to 1: 5 in order to maintain the dryness of the phosphating property of electrodeposition coating. Plated steel with excellent corrosion resistance can be produced.

이하에서는 상술한 도금 조성물을 이용한 아연도금강판의 제조방법을 설명한다. Hereinafter, a method of manufacturing a galvanized steel sheet using the above-described plating composition will be described.

도 1은 본 발명의 실시예에 따른 아연도금강판의 제조방법을 도해하는 순서도이다. 1 is a flowchart illustrating a method of manufacturing a galvanized steel sheet according to an embodiment of the present invention.

도 1을 참조하면, 본 발명의 실시예에 따른 아연도금강판의 제조방법은 마그네슘(Mg) : 0.5 ~ 3 중량%, 알루미늄(Al) : 0.5 ~ 10 중량%, 규소(Si) : 0.005 ~ 0.1 중량%, 티타늄(Ti)과 붕화티타늄(TiB) 중 적어도 어느 하나 : 0.005 ~ 0.1 중량% 및 잔부의 아연(Zn)을 포함하되, 규소(Si)의 중량비와 티타늄(Ti)과 붕화티타늄(TiB) 중 적어도 어느 하나의 중량비가 1:1 내지 1:5의 범위를 가지는, 도금 조성물인 도금욕을 준비하는 단계(S100); 상기 도금욕에 소지강판을 침지하고 도금을 행하여 아연도금강판을 얻는 단계(S300); 상기 아연도금강판을 가스 와이핑하는 단계(S400); 및 상기 가스 와이핑 후, 상기 아연도금강판을 5 내지 30℃/s의 냉각속도로 상온까지 냉각하는 단계(S500); 를 포함한다. Referring to Figure 1, the method of manufacturing a galvanized steel sheet according to an embodiment of the present invention magnesium (Mg): 0.5 ~ 3% by weight, aluminum (Al): 0.5 ~ 10% by weight, silicon (Si): 0.005 ~ 0.1 At least one of weight percent, titanium (Ti) and titanium boride (TiB): 0.005 to 0.1 weight percent and the balance of zinc (Zn), but the weight ratio of silicon (Si) and titanium (Ti) and titanium boride (TiB) ) At least any one of the weight ratio of 1: 1 to 1: 5, preparing a plating bath as a plating composition (S100); Immersing the steel sheet in the plating bath and plating to obtain a galvanized steel sheet (S300); Gas wiping the galvanized steel sheet (S400); And after the gas wiping, cooling the galvanized steel sheet to room temperature at a cooling rate of 5 to 30 ° C / s (S500); It includes.

도금욕을 준비하는 단계(S100)에서 도금욕에 대한 설명은 상술한 도금 조성물에 대한 설명과 동일하므로 여기에서는 생략한다. In the step (S100) of preparing a plating bath, the description of the plating bath is the same as that of the above-described plating composition, and thus is omitted here.

상기 도금욕에 소지강판을 침지하고 도금을 행하여 아연도금강판을 얻는 단계(S300)에서 상기 도금욕의 온도는 400 ~ 520℃일 수 있다. 도금욕의 온도가 400℃ 미만이면 도금욕의 유동성이 떨어져 도금 피막의 외관이 불량해지고 도금 밀착성이 저하된다. 뿐만 아니라, 작업온도는 도금욕의 용해온도보다 40℃ 이상의 온도인 것이 바람직한데, 그 미만인 경우 도금표면에 내식성과 표면 외관성을 저해하는 검은 반점의 결함 발생량이 증가하게 된다. 도금욕 용해온도보다 40℃ 이상 높은 온도에서 도금 작업을 진행하면 도금표면의 검은 반점이 감소하는 경향을 보인다. 반면에, 작업온도가 520℃를 초과하면 과도한 산화 피막으로 도금강판의 외관이 불량해지고 도막 밀착성이 저하되며, 도금 후 응고 과정에서 불충분한 냉각을 유발하여 도금층에 흐름 자국과 같은 결함이 발생할 수 있다. The temperature of the plating bath may be 400 to 520 ° C. in a step (S300) of immersing the plated steel sheet in the plating bath and performing plating to obtain a galvanized steel sheet. If the temperature of the plating bath is less than 400 ° C, the fluidity of the plating bath is poor, and the appearance of the plating film is poor and the adhesion to the plating is lowered. In addition, the working temperature is preferably a temperature of 40 ° C. or higher than the melting temperature of the plating bath, and when it is less than that, the amount of defects of black spots on the plating surface that inhibit corrosion resistance and surface appearance is increased. When plating is performed at a temperature higher than the melting temperature of the plating bath by 40 ° C or higher, black spots on the plating surface tend to decrease. On the other hand, if the working temperature exceeds 520 ° C, the appearance of the plated steel sheet becomes poor due to excessive oxidation, and the adhesion of the coating film decreases, and after plating, inadequate cooling may cause insufficient cooling to cause defects such as flow marks on the plating layer. .

상기 아연도금강판에 형성된 도금층의 조직은 Zn 단상, MgZn2 상, Al 및 MgZn2 상으로 이루어진 삼원 공정상으로 구성되되, 상기 도금층에서 상기 Zn 단상의 표면 상분율이 20% 이상일 수 있다. The structure of the plating layer formed on the galvanized steel sheet is composed of a ternary process phase consisting of Zn single phase, MgZn 2 phase, Al and MgZn 2 phase, and the surface phase fraction of the Zn single phase in the plating layer may be 20% or more.

한편, 상기 도금욕에 소지강판을 침지하고 도금을 행하여 아연도금강판을 얻는 단계(S300) 이전에, 10 ~ 30%의 수소 및 70 ~ 90%의 질소로 구성된 환원 분위기에서 700 ~ 750℃의 온도에서 상기 소지강판을 소둔 열처리하는 단계(S200)를 수행할 수 있다. On the other hand, prior to the step (S300) of immersing the plated steel sheet in the plating bath to obtain a galvanized steel sheet by plating, a temperature of 700 to 750 ° C in a reducing atmosphere composed of 10 to 30% hydrogen and 70 to 90% nitrogen is obtained. In the step (S200) of annealing heat treatment of the steel sheet can be performed.

상기 아연도금강판을 가스 와이핑하는 단계(S400)는 강판을 도금욕에 침지시킨 후 끌어올려 질소 와이핑(N2 wiping) 또는 에어 와이핑(air wiping)에 의해 도금 부착량을 조절하는 단계를 포함할 수 있다. The step of gas wiping the galvanized steel sheet (S400) includes adjusting the plating amount by nitrogen wiping (N2 wiping) or air wiping by immersing the steel sheet in a plating bath and then pulling it up. Can be.

도금 부착량은 편면 도금 20 ~ 300g/m2로 조정한다. 이는 도금 부착량이 20g/m2 미만이면 내식성이 불충분하고, 300g/m2를 초과하면 과도한 부착량에 의해 도금층이 지나치게 두꺼워져, 도금층 자체의 밀착성이 저하되는 동시에, 표면 광택이 저하되어 외관이 나빠지기 때문이다.The plating adhesion amount is adjusted to 20 to 300 g / m 2 of single-sided plating. This coating weight is 20g / m 2 less than if when corrosion resistance is insufficient, and exceeding 300g / m 2 becomes over a plating layer thicker by the excess amount of deposition, and at the same time is the adhesion of the plated layer itself decreases, the surface gloss is lowered to deteriorate in appearance or Because.

한편, 상기 아연도금강판을 5 내지 30℃/s의 냉각속도로 상온까지 냉각하는 단계(S500)에서, 적어도 냉각속도 5℃/sec 이상을 유지하여 도금층이 완전히 굳는 온도까지 냉각해야 도금층이 불규칙적인 파형의 형태로 성장하지 않으면서 치밀한 도금층을 형성할 수 있다. 반면에, 냉각속도가 30℃/sec를 초과하면 냉각 공기의 압력으로 인해, 도금층 표면에 주름이 발생하게 되어 외관성이 저하된다.On the other hand, in the step (S500) of cooling the galvanized steel sheet to room temperature at a cooling rate of 5 to 30 ° C / s, at least a cooling rate of 5 ° C / sec or higher is required to cool the plating layer to a temperature at which the plating layer is completely hardened, and thus the plating layer is irregular. A dense plating layer can be formed without growing in the form of a wave shape. On the other hand, when the cooling rate exceeds 30 ° C / sec, due to the pressure of the cooling air, wrinkles are generated on the surface of the plating layer, and the appearance is deteriorated.

이하 본 발명의 이해를 돕기 위해 바람직한 실험예를 제시한다. 다만, 하기의 실험예는 본 발명의 이해를 돕기 위한 것일 뿐, 본 발명이 하기의 실험예에 의해 한정되는 것은 아니다. Hereinafter, preferred experimental examples are provided to help understanding of the present invention. However, the following experimental examples are only to help understanding of the present invention, and the present invention is not limited by the following experimental examples.

실험예Experimental Example

본 발명의 실험예에서는 표 1에 나타난 중량비로 표시한 조성을 가지는 도금 조성물을 이용한 각각의 아연합금도금강판에 대하여 평면 도장 내식성 평가를 수행하였다. 본 실험예에서는 두께 0.7mm의 냉연강판을 50℃ 알칼리 용액에 30분동안 침지시킨 후, 물로 세척하여 표면의 이물질과 기름을 제거한 시편을 준비하였다. 이 시편을 소둔처리한 후 도금하였다. 상기 소둔 열처리는 수소 및 질소로 구성된 환원 분위기에서 실시하였다. 도금은 소둔 열처리한 시편을 도금욕 온도로 냉각한 후, 도금욕에 2초간 침적시킨 후 끌어올려 질소 와이핑으로 도금두께를 10㎛ 내외로 조절하고, 상온까지 냉각하여 응고시킨다. 이상의 조건으로 도금강판을 제조하고, 제조된 도금강판의 조성별 전착 도장내식성을 평가하였다. 구체적으로는, NaCl 5%, 35℃에서 1000시간 염수 분무시험으로 적청 발생율을 평가하였다. In the experimental example of the present invention, a flat coating corrosion resistance evaluation was performed for each zinc alloy plated steel sheet using a plating composition having a composition represented by a weight ratio shown in Table 1. In this experimental example, a cold-rolled steel sheet having a thickness of 0.7 mm was immersed in an alkali solution at 50 ° C. for 30 minutes, and then a specimen was removed by washing with water to remove foreign substances and oil from the surface. This specimen was annealed and then plated. The annealing heat treatment was performed in a reducing atmosphere composed of hydrogen and nitrogen. After plating, the annealing heat-treated specimen is cooled to the plating bath temperature, immersed in the plating bath for 2 seconds, and then pulled up to adjust the plating thickness to about 10 μm by nitrogen wiping, and cooled to room temperature to solidify. A plated steel sheet was prepared under the above conditions, and the electrodeposition coating corrosion resistance of each prepared plated steel sheet was evaluated. Specifically, the incidence of red rust was evaluated by a salt spray test for 1000 hours at NaCl 5%, 35 ° C.

평가에 사용된 시편은 인산염 처리에 앞서, 제조된 각각의 아연합금도금강판을 탈지 처리하였다. 이때, 탈지제로 알칼리 탈지제를 사용하였으며, 45℃의 3중량% 수용액에 120초 간 탈지 처리하였다. 이후, 수세 및 표면 조정한 후에 40℃로 가열한 인산염 처리액에 120초간 침지하여 인산 아연계 피막을 형성하였다. 그 후 전착 도장을 실시하여 얻어지 시편에 대하여 전단면은 4면 모두 피복하고, 중앙에 칼을 이용하여 찰상부를 만들어 내식평가 1000시간 경과 후 시편 표면의 찰상부의 전착 도장이 박리를 육안으로 관찰하였다. The specimens used in the evaluation were subjected to degreasing treatment for each zinc alloy plated steel sheet prepared before phosphate treatment. At this time, an alkali degreasing agent was used as a degreasing agent, and degreasing treatment was performed in a 3% by weight aqueous solution at 45 ° C for 120 seconds. Thereafter, after rinsing and surface adjustment, it was immersed in a phosphate treatment solution heated to 40 ° C for 120 seconds to form a zinc phosphate-based coating. Thereafter, the specimen obtained by the electrodeposition coating was coated on all four sides of the specimen, and a scratch was formed using a knife in the center. After 1000 hours of corrosion resistance evaluation, the electrodeposition coating on the surface of the specimen was observed with naked eye. Did.

표 1에서 도장 내식성을 평가한 결과는 "◎", "○", "△", "X"으로 구분하였다. "◎"항목은 찰상부 도장 박리가 3mm 미만인 것을 의미하며, "○"항목은 찰상부 도장 박리가 7mm 미만인 것을 의미하며, "△"항목은 찰상부 도장 박리가 10mm 미만인 것을 의미하며, "X"항목은 찰상부 도장 박리가 10mm 이상인 것을 의미한다. In Table 1, the results of evaluating the coating corrosion resistance were divided into "◎", "○", "△", and "X". "◎" item means that the peeling of the scratched part is less than 3mm, "○" item means that the peeling of the scratched part is less than 7mm, and "△" means that the peeling of the scratched part is less than 10mm, "X "The item means that the peeling of the scratched portion is 10 mm or more.

구분 division ZnZn AlAl MgMg SiSi TiBTiB Si : TiB
첨가비
Si: TiB
Addition ratio
도장
내식성
stamp
Corrosion resistance
도금표면 Zn단상(면적%)Plating surface Zn single phase (area%)
비교예1Comparative Example 1 Bal.Bal. 0.20.2 00 00 00 -- XX 100100 비교예2Comparative Example 2 Bal.Bal. 1One 1One 0.010.01 0.0050.005 1:0.51: 0.5 1818 비교예3Comparative Example 3 Bal.Bal. 22 1.51.5 0.010.01 0.0050.005 1:0.51: 0.5 1515 비교예4Comparative Example 4 Bal.Bal. 55 33 0.010.01 0.0050.005 1:0.51: 0.5 1010 실시예1Example 1 Bal.Bal. 1One 1One 0.010.01 0.010.01 1:11: 1 2626 실시예2Example 2 Bal.Bal. 22 1.51.5 0.010.01 0.020.02 1:21: 2 3232 실시예3Example 3 Bal.Bal. 22 1.51.5 0.0050.005 0.020.02 1:41: 4 3838 실시예4Example 4 Bal.Bal. 55 33 0.020.02 0.050.05 1:2.51: 2.5 2121

비교예1을 참조하면, 알루미늄(Al) : 0.2 중량% 및 잔부의 아연(Zn)을 포함하는 도금 조성물을 적용한 경우, 도장내식성 평가에서 찰상부 도장 박리가 10mm 이상이며, 도금층 표면에서 Zn 단상의 면적비율은 100%인 것으로 나타났다. Referring to Comparative Example 1, when applying a plating composition containing aluminum (Al): 0.2% by weight and the remainder of zinc (Zn), in the coating corrosion resistance evaluation, the scratch coating peeling is 10 mm or more, and the Zn single phase The area ratio was found to be 100%.

비교예2를 참조하면, 마그네슘(Mg) : 1 중량%, 알루미늄(Al) : 1 중량%, 규소(Si) : 0.01 중량%, 붕화티타늄(TiB) : 0.005 중량% 및 잔부의 아연(Zn)을 포함하되, 규소(Si)의 중량비와 붕화티타늄(TiB)의 중량비가 1:0.5인 도금 조성물을 적용한 경우, 도장내식성 평가에서 찰상부 도장 박리가 10mm 미만이며, 도금층 표면에서 Zn 단상의 면적비율은 18%인 것으로 나타났다. Referring to Comparative Example 2, magnesium (Mg): 1% by weight, aluminum (Al): 1% by weight, silicon (Si): 0.01% by weight, titanium boride (TiB): 0.005% by weight and the balance of zinc (Zn) Including, but when applying a plating composition having a weight ratio of silicon (Si) and a weight ratio of titanium boride (TiB) of 1: 0.5, in the coating corrosion resistance evaluation, scratch coating peeling is less than 10 mm, the area ratio of Zn single phase on the surface of the plating layer Was found to be 18%.

비교예3을 참조하면, 마그네슘(Mg) : 1.5 중량%, 알루미늄(Al) : 2 중량%, 규소(Si) : 0.01 중량%, 붕화티타늄(TiB) : 0.005 중량% 및 잔부의 아연(Zn)을 포함하되, 규소(Si)의 중량비와 붕화티타늄(TiB)의 중량비가 1:0.5인 도금 조성물을 적용한 경우, 도장내식성 평가에서 찰상부 도장 박리가 10mm 미만이며, 도금층 표면에서 Zn 단상의 면적비율은 15%인 것으로 나타났다.Referring to Comparative Example 3, magnesium (Mg): 1.5% by weight, aluminum (Al): 2% by weight, silicon (Si): 0.01% by weight, titanium boride (TiB): 0.005% by weight and the balance of zinc (Zn) Including, but when applying a plating composition having a weight ratio of silicon (Si) and a weight ratio of titanium boride (TiB) of 1: 0.5, in the coating corrosion resistance evaluation, scratch coating peeling is less than 10 mm, the area ratio of Zn single phase on the surface of the plating layer Was found to be 15%.

비교예4를 참조하면, 마그네슘(Mg) : 3 중량%, 알루미늄(Al) : 5 중량%, 규소(Si) : 0.01 중량%, 붕화티타늄(TiB) : 0.005 중량% 및 잔부의 아연(Zn)을 포함하되, 규소(Si)의 중량비와 붕화티타늄(TiB)의 중량비가 1:0.5인 도금 조성물을 적용한 경우, 도장내식성 평가에서 찰상부 도장 박리가 10mm 미만이며, 도금층 표면에서 Zn 단상의 면적비율은 10%인 것으로 나타났다.Referring to Comparative Example 4, magnesium (Mg): 3% by weight, aluminum (Al): 5% by weight, silicon (Si): 0.01% by weight, titanium boride (TiB): 0.005% by weight and the balance of zinc (Zn) Including, but when applying a plating composition having a weight ratio of silicon (Si) and a weight ratio of titanium boride (TiB) of 1: 0.5, in the coating corrosion resistance evaluation, scratch coating peeling is less than 10 mm, the area ratio of Zn single phase on the surface of the plating layer Was found to be 10%.

비교예4를 참조하면, 마그네슘(Mg) : 3 중량%, 알루미늄(Al) : 5 중량%, 규소(Si) : 0.01 중량%, 붕화티타늄(TiB) : 0.005 중량% 및 잔부의 아연(Zn)을 포함하되, 규소(Si)의 중량비와 붕화티타늄(TiB)의 중량비가 1:0.5인 도금 조성물을 적용한 경우, 도장내식성 평가에서 찰상부 도장 박리가 10mm 미만이며, 도금층 표면에서 Zn 단상의 면적비율은 10%인 것으로 나타났다.Referring to Comparative Example 4, magnesium (Mg): 3% by weight, aluminum (Al): 5% by weight, silicon (Si): 0.01% by weight, titanium boride (TiB): 0.005% by weight and the balance of zinc (Zn) Including, but when applying a plating composition having a weight ratio of silicon (Si) and a weight ratio of titanium boride (TiB) of 1: 0.5, in the coating corrosion resistance evaluation, scratch coating peeling is less than 10 mm, the area ratio of Zn single phase on the surface of the plating layer Was found to be 10%.

실시예1을 참조하면, 마그네슘(Mg) : 1 중량%, 알루미늄(Al) : 1 중량%, 규소(Si) : 0.01 중량%, 붕화티타늄(TiB) : 0.01 중량% 및 잔부의 아연(Zn)을 포함하되, 규소(Si)의 중량비와 붕화티타늄(TiB)의 중량비가 1:1인 도금 조성물을 적용한 경우, 도장내식성 평가에서 찰상부 도장 박리가 7mm 미만이며, 도금층 표면에서 Zn 단상의 면적비율은 26%인 것으로 나타났다.Referring to Example 1, magnesium (Mg): 1% by weight, aluminum (Al): 1% by weight, silicon (Si): 0.01% by weight, titanium boride (TiB): 0.01% by weight, and the balance of zinc (Zn) Including, but when applying a plating composition having a weight ratio of silicon (Si) and a weight ratio of titanium boride (TiB) of 1: 1, the coating peeling of the scratch in the coating corrosion resistance evaluation is less than 7 mm, and the area ratio of Zn single phase on the surface of the plating layer Was found to be 26%.

실시예2를 참조하면, 마그네슘(Mg) : 1.5 중량%, 알루미늄(Al) : 2 중량%, 규소(Si) : 0.01 중량%, 붕화티타늄(TiB) : 0.02 중량% 및 잔부의 아연(Zn)을 포함하되, 규소(Si)의 중량비와 붕화티타늄(TiB)의 중량비가 1:2인 도금 조성물을 적용한 경우, 도장내식성 평가에서 찰상부 도장 박리가 7mm 미만이며, 도금층 표면에서 Zn 단상의 면적비율은 32%인 것으로 나타났다.Referring to Example 2, magnesium (Mg): 1.5% by weight, aluminum (Al): 2% by weight, silicon (Si): 0.01% by weight, titanium boride (TiB): 0.02% by weight and the balance of zinc (Zn) Including, but when applying a plating composition having a weight ratio of silicon (Si) and a weight ratio of titanium boride (TiB) of 1: 2, in the coating corrosion resistance evaluation, the scratch coating peeling is less than 7 mm, the area ratio of Zn single phase on the surface of the plating layer Was found to be 32%.

실시예3을 참조하면, 마그네슘(Mg) : 1.5 중량%, 알루미늄(Al) : 2 중량%, 규소(Si) : 0.005 중량%, 붕화티타늄(TiB) : 0.02 중량% 및 잔부의 아연(Zn)을 포함하되, 규소(Si)의 중량비와 붕화티타늄(TiB)의 중량비가 1:4인 도금 조성물을 적용한 경우, 도장내식성 평가에서 찰상부 도장 박리가 7mm 미만이며, 도금층 표면에서 Zn 단상의 면적비율은 38%인 것으로 나타났다.Referring to Example 3, magnesium (Mg): 1.5% by weight, aluminum (Al): 2% by weight, silicon (Si): 0.005% by weight, titanium boride (TiB): 0.02% by weight and the balance of zinc (Zn) Including, but when applying a plating composition having a weight ratio of silicon (Si) and a weight ratio of titanium boride (TiB) of 1: 4, in the coating corrosion resistance evaluation, abrasion coating peeling is less than 7 mm, the area ratio of Zn single phase on the surface of the plating layer Was found to be 38%.

실시예4를 참조하면, 마그네슘(Mg) : 3 중량%, 알루미늄(Al) : 5 중량%, 규소(Si) : 0.02 중량%, 붕화티타늄(TiB) : 0.05 중량% 및 잔부의 아연(Zn)을 포함하되, 규소(Si)의 중량비와 붕화티타늄(TiB)의 중량비가 1:2.5인 도금 조성물을 적용한 경우, 도장내식성 평가에서 찰상부 도장 박리가 7mm 미만이며, 도금층 표면에서 Zn 단상의 면적비율은 21%인 것으로 나타났다.Referring to Example 4, magnesium (Mg): 3% by weight, aluminum (Al): 5% by weight, silicon (Si): 0.02% by weight, titanium boride (TiB): 0.05% by weight and the balance of zinc (Zn) Including, but when applying a plating composition having a weight ratio of silicon (Si) and a weight ratio of titanium boride (TiB) of 1: 2.5, in the coating corrosion resistance evaluation, the scratch coating peeling is less than 7 mm, and the area ratio of the Zn single phase on the surface of the plating layer Was found to be 21%.

비교예1을 참조하면, 마그네슘, 규소, 붕화티타늄을 함유하지 않는 도금 조성물을 적용하는 경우, 도장내식성 평가에서 찰상부 도장 박리가 10mm 이상으로 나타나 도장 내식성이 매우 불량함을 확인할 수 있다. Referring to Comparative Example 1, when applying a plating composition that does not contain magnesium, silicon, and titanium boride, it can be seen that the coating corrosion resistance is very poor because the peeling of the coating is more than 10 mm in the evaluation of coating corrosion resistance.

비교예2 내지 비교예4를 참조하면, 마그네슘(Mg) : 0.5 ~ 3 중량%, 알루미늄(Al) : 0.5 ~ 10 중량%, 규소(Si) : 0.005 ~ 0.1 중량%, 붕화티타늄(TiB) : 0.005 ~ 0.1 중량% 및 잔부의 아연(Zn)을 포함하는 도금 조성물을 적용하더라도, 규소(Si)의 중량비와 티타늄(Ti)과 붕화티타늄(TiB) 중 적어도 어느 하나의 중량비가 1:1 내지 1:5의 범위를 만족하지 못하는 경우, 도금층에서 Zn 단상의 표면 상분율이 20% 미만으로 나타나 도금층 표면의 알카리도가 상승하여 인산처리후 전착 도장시 내식성이 우수하지 못함을 확인할 수 있다. Referring to Comparative Examples 2 to 4, magnesium (Mg): 0.5 to 3% by weight, aluminum (Al): 0.5 to 10% by weight, silicon (Si): 0.005 to 0.1% by weight, titanium boride (TiB): Even if a plating composition containing 0.005 to 0.1% by weight and the balance of zinc (Zn) is applied, the weight ratio of silicon (Si) and at least one of titanium (Ti) and titanium boride (TiB) are 1: 1 to 1 When the range of: 5 is not satisfied, it can be seen that the surface phase fraction of the Zn single phase in the plating layer is less than 20%, so that the alkalinity of the surface of the plating layer is increased and thus the corrosion resistance during electrodeposition coating after phosphoric acid treatment is not excellent.

이에 반하여, 실시예1 내지 실시예4를 참조하면, 마그네슘(Mg) : 0.5 ~ 3 중량%, 알루미늄(Al) : 0.5 ~ 10 중량%, 규소(Si) : 0.005 ~ 0.1 중량%, 티타늄(Ti)과 붕화티타늄(TiB) 중 적어도 어느 하나 : 0.005 ~ 0.1 중량% 및 잔부의 아연(Zn)을 포함하되, 규소(Si)의 중량비와 티타늄(Ti)과 붕화티타늄(TiB) 중 적어도 어느 하나의 중량비가 1:1 내지 1:5의 범위를 가지는, 도금 조성물을 적용한 경우, 도금층에서 Zn 단상의 표면 상분율이 20% 이상으로 나타나며 도장 내식성이 상대적으로 우수함을 확인할 수 있다. On the other hand, referring to Examples 1 to 4, magnesium (Mg): 0.5 to 3 wt%, aluminum (Al): 0.5 to 10 wt%, silicon (Si): 0.005 to 0.1 wt%, titanium (Ti ) And at least one of titanium boride (TiB): 0.005 to 0.1% by weight and the balance of zinc (Zn), but the weight ratio of silicon (Si) and at least one of titanium (Ti) and titanium boride (TiB) When the weight ratio has a range of 1: 1 to 1: 5, when a plating composition is applied, it can be confirmed that the surface phase fraction of the Zn single phase in the plating layer is 20% or more and the coating corrosion resistance is relatively excellent.

도 2는 본 발명의 비교예에 따른 아연도금강판의 제조방법으로 구현된 도금층의 조직 사진이며, 도 3은 본 발명의 실시예에 따른 아연도금강판의 제조방법으로 구현된 도금층의 조직 사진이다.2 is a photograph of the structure of the plating layer implemented by the method of manufacturing a galvanized steel sheet according to the comparative example of the present invention, and FIG. 3 is a photograph of the structure of the plating layer implemented by the method of manufacturing a galvanized steel sheet according to the embodiment of the present invention.

도 2에 도시된 도금층은 마그네슘(Mg) : 1 중량%, 알루미늄(Al) : 2.5 중량%, 규소(Si) : 0.01 중량%, 붕화티타늄(TiB) : 0.005 중량% 및 잔부의 아연(Zn)을 포함하되, 규소(Si)의 중량비와 붕화티타늄(TiB)의 중량비가 1:0.5인 도금 조성물을 적용하여 구현한 것으로서, 도금층에서 Zn 단상의 표면 상분율이 20% 미만인 것을 확인할 수 있다. The plating layer shown in Figure 2 is magnesium (Mg): 1% by weight, aluminum (Al): 2.5% by weight, silicon (Si): 0.01% by weight, titanium boride (TiB): 0.005% by weight and the balance of zinc (Zn) Including, but implemented by applying a plating composition having a weight ratio of silicon (Si) and a weight ratio of titanium boride (TiB) of 1: 0.5, it can be confirmed that the surface phase fraction of the Zn single phase in the plating layer is less than 20%.

도 3에 도시된 도금층은 마그네슘(Mg) : 1 중량%, 알루미늄(Al) : 2.5 중량%, 규소(Si) : 0.01 중량%, 붕화티타늄(TiB) : 0.02 중량% 및 잔부의 아연(Zn)을 포함하되, 규소(Si)의 중량비와 붕화티타늄(TiB)의 중량비가 1:2인 도금 조성물을 적용하여 구현한 것으로서, 도금층에서 Zn 단상의 표면 상분율이 20% 이상인 것을 확인할 수 있다. The plating layer shown in Figure 3 is magnesium (Mg): 1% by weight, aluminum (Al): 2.5% by weight, silicon (Si): 0.01% by weight, titanium boride (TiB): 0.02% by weight and the balance of zinc (Zn) Including, but by implementing a plating composition having a weight ratio of silicon (Si) and a weight ratio of titanium boride (TiB) of 1: 2, it can be confirmed that the surface phase fraction of the Zn single phase in the plating layer is 20% or more.

이상에서는 본 발명의 실시예를 중심으로 설명하였지만, 당업자의 수준에서 다양한 변경이나 변형을 가할 수 있다. 이러한 변경과 변형이 본 발명의 범위를 벗어나지 않는 한 본 발명에 속한다고 할 수 있다. 따라서 본 발명의 권리범위는 이하에 기재되는 청구범위에 의해 판단되어야 할 것이다.In the above, although the description has been mainly focused on the embodiment of the present invention, various changes or modifications can be made at the level of those skilled in the art. It can be said that such modifications and variations belong to the present invention without departing from the scope of the present invention. Therefore, the scope of the present invention should be judged by the claims set forth below.

Claims (7)

마그네슘(Mg) : 0.5 ~ 3 중량%, 알루미늄(Al) : 0.5 ~ 10 중량%, 규소(Si) : 0.005 ~ 0.02 중량%, 붕화티타늄(TiB) : 0.01~0.05 중량% 및 잔부의 아연(Zn)을 포함하되,
규소(Si)의 중량비와 붕화티타늄(TiB)의 중량비가 1:1 내지 1:4의 범위로 첨가되어 MgZn2상과 삼원 공정상의 미세화가 억제되는 것을 특징으로 하는,
도금 조성물.
Magnesium (Mg): 0.5 to 3% by weight, aluminum (Al): 0.5 to 10% by weight, silicon (Si): 0.005 to 0.02% by weight, titanium boride (TiB): 0.01 to 0.05% by weight and the balance of zinc (Zn ),
Characterized in that the weight ratio of silicon (Si) and the weight ratio of titanium boride (TiB) is added in a range of 1: 1 to 1: 4 to suppress the refinement of MgZn 2 phase and ternary process,
Plating composition.
제 1 항에 있어서,
알루미늄(Al)의 조성이 2 ~ 5 중량%인 것을 특징으로 하는,
도금 조성물.
According to claim 1,
Characterized in that the composition of aluminum (Al) is 2 to 5% by weight,
Plating composition.
마그네슘(Mg) : 0.5 ~ 3 중량%, 알루미늄(Al) : 0.5 ~ 10 중량%, 규소(Si) 0.005 ~ 0.02 중량%, 붕화티타늄(TiB) : 0.01~0.05 중량% 및 잔부의 아연(Zn)을 포함하되,
규소(Si)의 중량비와 붕화티타늄(TiB)의 중량비가 1:1 내지 1:4의 범위로 첨가되어 MgZn2상과 삼원 공정상의 미세화가 억제되는 도금욕을 준비하는 단계;
상기 도금욕에 소지강판을 침지하고 도금을 행하여 아연도금강판을 얻는 단계;
상기 아연도금강판을 가스 와이핑하는 단계; 및
상기 가스 와이핑 후, 상기 아연도금강판을 5 내지 30℃/s의 냉각속도로 상온까지 냉각하는 단계; 를 포함하고,
상기 아연도금강판에 형성된 도금층의 조직은 Zn 단상, MgZn2 상, Al 및 MgZn2 상으로 이루어진 삼원 공정상으로 구성되되, 상기 도금층에서 상기 Zn 단상의 표면 상분율이 21% ~38%인 것을 특징으로 하는,
아연도금강판의 제조방법.
Magnesium (Mg): 0.5 to 3% by weight, aluminum (Al): 0.5 to 10% by weight, silicon (Si) 0.005 to 0.02% by weight, titanium boride (TiB): 0.01 to 0.05% by weight and the balance of zinc (Zn) Including,
Preparing a plating bath in which the weight ratio of silicon (Si) and titanium boride (TiB) is added in a range of 1: 1 to 1: 4 to suppress the refinement of MgZn 2 phase and ternary process;
Immersing the steel sheet in the plating bath and plating to obtain a galvanized steel sheet;
Gas-wiping the galvanized steel sheet; And
After the gas wiping, cooling the galvanized steel sheet to room temperature at a cooling rate of 5 to 30 ° C / s; Including,
The structure of the plating layer formed on the galvanized steel sheet is composed of a ternary process phase consisting of Zn single phase, MgZn 2 phase, Al and MgZn 2 phase, wherein the surface phase fraction of the Zn single phase in the plating layer is 21% to 38%. Made with,
Method for manufacturing galvanized steel sheet.
제 3 항에 있어서,
상기 도금욕에서 알루미늄(Al)의 조성은 2 ~ 5 중량%인 것을 특징으로 하는,
아연도금강판의 제조방법.
The method of claim 3,
The composition of aluminum (Al) in the plating bath is characterized in that 2 to 5% by weight,
Method for manufacturing galvanized steel sheet.
제 3 항에 있어서,
상기 도금욕의 온도는 400 ~ 520℃인 것을 특징으로 하는,
아연도금강판의 제조방법.
The method of claim 3,
The temperature of the plating bath is characterized in that 400 ~ 520 ℃,
Method for manufacturing galvanized steel sheet.
삭제delete 제 3 항에 있어서,
상기 도금욕에 소지강판을 침지하기 전에, 10 ~ 30%의 수소 및 70 ~ 90%의 질소로 구성된 환원 분위기에서 700 ~ 750℃의 온도에서 상기 소지강판을 소둔 열처리하는 단계를 더 포함하는,
아연도금강판의 제조방법.


The method of claim 3,
Before immersing the steel sheet in the plating bath, further comprising the step of annealing the steel sheet at a temperature of 700 ~ 750 ℃ in a reducing atmosphere consisting of 10 ~ 30% hydrogen and 70 ~ 90% nitrogen,
Method for manufacturing galvanized steel sheet.


KR1020180072597A 2018-06-25 2018-06-25 Plating composition and method of manufacturing zinc plated steel sheet KR102110657B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180072597A KR102110657B1 (en) 2018-06-25 2018-06-25 Plating composition and method of manufacturing zinc plated steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180072597A KR102110657B1 (en) 2018-06-25 2018-06-25 Plating composition and method of manufacturing zinc plated steel sheet

Publications (2)

Publication Number Publication Date
KR20200000590A KR20200000590A (en) 2020-01-03
KR102110657B1 true KR102110657B1 (en) 2020-05-13

Family

ID=69155495

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180072597A KR102110657B1 (en) 2018-06-25 2018-06-25 Plating composition and method of manufacturing zinc plated steel sheet

Country Status (1)

Country Link
KR (1) KR102110657B1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001355055A (en) 2000-04-11 2001-12-25 Nippon Steel Corp HOT DIP Zn-Al-Mg-Si PLATED STEEL EXCELLENT IN CORROSION RESISTANCE OF UNCOATED PART AND COATED EDGE FACE PART

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NZ539228A (en) * 2002-10-28 2006-09-29 Nippon Steel Corp High corrosion-resistant hot dip coated steel product excellent in surface smoothness and formability, and method for producing hot dip coated steel product
KR20150070841A (en) * 2013-12-17 2015-06-25 동부제철 주식회사 High-anticorosive coated steel sheet and method for manufacturing the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001355055A (en) 2000-04-11 2001-12-25 Nippon Steel Corp HOT DIP Zn-Al-Mg-Si PLATED STEEL EXCELLENT IN CORROSION RESISTANCE OF UNCOATED PART AND COATED EDGE FACE PART

Also Published As

Publication number Publication date
KR20200000590A (en) 2020-01-03

Similar Documents

Publication Publication Date Title
JP7312142B2 (en) Zinc alloy plated steel material with excellent weldability and corrosion resistance of processed parts, and method for producing the same
KR101376381B1 (en) Plating steel sheet having excellent corrosion resistance, high formability and good appearance and method for production thereof
KR101819393B1 (en) Hot dip zinc alloy plated steel material having excellent weldability and press formability and method for manufacturing same
JP2008214681A (en) Galvannealed steel sheet superior in image clarity of coating and press formability, and manufacturing method therefor
JPH0324255A (en) Hot-dip galvanized hot rolled steel plate and its production
AU2015362106B2 (en) Plating composition, method for manufacturing plated steel material by using same, and plated steel material coated with plating composition
KR20090020751A (en) Hot dip al-si-mg alloy plating bath and products and method for production
KR102250323B1 (en) Plated steel sheet and method of manufacturing the same
KR102276742B1 (en) Galvanized steel sheet excellent coating adhesion and corrosion resistance properties and method for manufacturing thereof
KR20120076111A (en) Hot-dip zinc plating bath providing excellent corrosion resistance, high formability and appearance, and steel plate plated with the same
KR102110657B1 (en) Plating composition and method of manufacturing zinc plated steel sheet
KR101506681B1 (en) Magnesium plate and method for manufacturing the same
JP7453583B2 (en) Al-plated hot stamping steel material
KR102305753B1 (en) Zn-Al-Mg BASED HOT DIP ALLOY COATED STEEL MATERIAL HAVING EXCELLENT CORROSION RESISTANCE OF PROCESSED PARTS AND METHOD OF MANUFACTURING THE SAME
KR20150070841A (en) High-anticorosive coated steel sheet and method for manufacturing the same
KR102311503B1 (en) Aluminium alloy plate steel sheet having excellent formability and corrosion resistance and method for manufacturing the same
KR102311502B1 (en) Aluminium alloy plate steel sheet having excellent formability and corrosion resistance and method for manufacturing the same
KR101613354B1 (en) Coated steel plate and mehtod for manufacturing the same
KR102305748B1 (en) Hot dip alloy coated steel material having excellent anti-corrosion properties and method of manufacturing the same
KR102031308B1 (en) Plated steel wire and manufacturing method for the same
JPH0874018A (en) Hot dip galvanized steel sheet
KR20120041619A (en) Galvanizing steel sheet having good galvanizabilty and adhesion and method for manufacturing the same
KR101629260B1 (en) Composition for hot dipping bath
KR20210079987A (en) Aluminium alloy plate steel sheet having excellent formability and corrosion resistance and method for manufacturing the same
JP2020105554A (en) Alloyed hot-dip galvanized film

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant