KR102311152B1 - Production of poly(3HB-co-3HP) from methane by metabolic engineered methanotrophs - Google Patents

Production of poly(3HB-co-3HP) from methane by metabolic engineered methanotrophs Download PDF

Info

Publication number
KR102311152B1
KR102311152B1 KR1020190131967A KR20190131967A KR102311152B1 KR 102311152 B1 KR102311152 B1 KR 102311152B1 KR 1020190131967 A KR1020190131967 A KR 1020190131967A KR 20190131967 A KR20190131967 A KR 20190131967A KR 102311152 B1 KR102311152 B1 KR 102311152B1
Authority
KR
South Korea
Prior art keywords
genus
coa
hydroxybutyrate
transformed
ob3b
Prior art date
Application number
KR1020190131967A
Other languages
Korean (ko)
Other versions
KR20210048625A (en
Inventor
이은열
타이 넉 딥 뉴엔
이옥경
Original Assignee
경희대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 경희대학교 산학협력단 filed Critical 경희대학교 산학협력단
Priority to KR1020190131967A priority Critical patent/KR102311152B1/en
Publication of KR20210048625A publication Critical patent/KR20210048625A/en
Application granted granted Critical
Publication of KR102311152B1 publication Critical patent/KR102311152B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • C12P7/42Hydroxy-carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0006Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0008Oxidoreductases (1.) acting on the aldehyde or oxo group of donors (1.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1025Acyltransferases (2.3)
    • C12N9/1029Acyltransferases (2.3) transferring groups other than amino-acyl groups (2.3.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/93Ligases (6)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/01Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
    • C12Y101/01036Acetoacetyl-CoA reductase (1.1.1.36)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y102/00Oxidoreductases acting on the aldehyde or oxo group of donors (1.2)
    • C12Y102/01Oxidoreductases acting on the aldehyde or oxo group of donors (1.2) with NAD+ or NADP+ as acceptor (1.2.1)
    • C12Y102/01075Malonyl CoA reductase (malonate semialdehyde-forming)(1.2.1.75)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y201/00Transferases transferring one-carbon groups (2.1)
    • C12Y201/03Carboxy- and carbamoyltransferases (2.1.3)
    • C12Y201/03001Methylmalonyl-CoA carboxytransferase (2.1.3.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y203/00Acyltransferases (2.3)
    • C12Y203/01Acyltransferases (2.3) transferring groups other than amino-acyl groups (2.3.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y203/00Acyltransferases (2.3)
    • C12Y203/01Acyltransferases (2.3) transferring groups other than amino-acyl groups (2.3.1)
    • C12Y203/01016Acetyl-CoA C-acyltransferase (2.3.1.16)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y602/00Ligases forming carbon-sulfur bonds (6.2)
    • C12Y602/01Acid-Thiol Ligases (6.2.1)
    • C12Y602/010363-Hydroxypropionyl-CoA synthase (6.2.1.36)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y604/00Ligases forming carbon-carbon bonds (6.4)
    • C12Y604/01Ligases forming carbon-carbon bonds (6.4.1)
    • C12Y604/01002Acetyl-CoA carboxylase (6.4.1.2)

Abstract

본 발명은 메탄으로부터 3-하이드록시부티레이트-3-하이드록시프로피오네이트 공중합체(poly(3HB-co-3HP))의 생산능을 가지는 형질전환 메탄자화균 및 이를 이용한 3-하이드록시부티레이트-3-하이드록시프로피오네이트 공중합체의 생산 방법에 대한 것으로, 상기 형질 전환된 메탄자화균은 C1 탄소원으로부터 3-하이드록시부티레이트-3-하이드록시프로피오네이트 공중합체를 생산할 수 있는바, 친환경적이고 경제적으로 3-하이드록시부티레이트-3-하이드록시프로피오네이트 공중합체의 대량 생산에 유용하게 사용될 수 있다.The present invention relates to a transformed methanogen having the ability to produce 3-hydroxybutyrate-3-hydroxypropionate copolymer (poly(3HB-co-3HP)) from methane and 3-hydroxybutyrate-3 using the same -To a method for producing a hydroxypropionate copolymer, the transformed methanogen can produce 3-hydroxybutyrate-3-hydroxypropionate copolymer from a C1 carbon source, environmentally friendly and economical As such, it can be usefully used for mass production of 3-hydroxybutyrate-3-hydroxypropionate copolymer.

Description

메탄으로부터 3-하이드록시부티레이트-3-하이드록시프로피오네이트 공중합체(poly(3HB-co-3HP)) 생산능을 가지는 형질전환 메탄자화균 및 이를 이용한 3-하이드록시부티레이트-3-하이드록시프로피오네이트 공중합체의 제조방법 {Production of poly(3HB-co-3HP) from methane by metabolic engineered methanotrophs}Transformed methanogenic bacteria having the ability to produce 3-hydroxybutyrate-3-hydroxypropionate copolymer (poly(3HB-co-3HP)) from methane and 3-hydroxybutyrate-3-hydroxypropionate using the same Method for producing cypionate copolymer {Production of poly(3HB-co-3HP) from methane by metabolic engineered methanotrophs}

본 발명은 메탄으로부터 3-하이드록시부티레이트-3-하이드록시프로피오네이트 공중합체(poly(3HB-co-3HP))의 생산능을 가지는 형질전환 메탄자화균 및 이를 이용한 3-하이드록시부티레이트-3-하이드록시프로피오네이트 공중합체의 생산 방법에 관한 것이다. The present invention relates to a transformed methanogen having the ability to produce 3-hydroxybutyrate-3-hydroxypropionate copolymer (poly(3HB-co-3HP)) from methane and 3-hydroxybutyrate-3 using the same -To a method for producing a hydroxypropionate copolymer.

최근, 해양에 녹아 있는 유해 화학물질을 흡수한 미세플라스틱이 해양 환경을 오염시킬 뿐 아니라 해양 생물의 조직에 들어가게 됨으로써 생물농축현상에 의해 인간의 건강을 해칠 수 있어 사회적 문제로 대두되고 있으며 (Xanthos et al, 2017; Gallo et al., 2018) 전세계 바다에는 약 5조개의 플라스틱 조각이 있고 이들의 무게는 약 250,000톤으로 추정된다 (Environmental Audit Committee, 2016). 현재 널리 이용되는 석유계 기반의 플라스틱 제품의 유해성에 대한 인식의 변화로 자발적인 플라스틱 줄이기 캠페인이 이루어지고 있으나 대부분의 생활용품의 포장재가 플라스틱 또는 비닐 등으로 사용되고 있어 실질적인 폐기물의 감소 효과는 크지 않으며, 플라스틱 소재의 편의성 때문에 플라스틱의 사용을 완전히 줄이는 것은 쉽지 않음. 이에 플라스틱의 편의성을 유지하되 자연에서 쉽게 분해되는 생분해성 플라스틱의 개발과 보급이 요구되고 있다.Recently, microplastics that have absorbed harmful chemicals dissolved in the ocean not only contaminate the marine environment but also enter the tissues of marine organisms, which can harm human health due to bioaccumulation, and is emerging as a social problem (Xanthos et al. al, 2017; Gallo et al., 2018) There are about 5 trillion pieces of plastic in the world's oceans and they weigh about 250,000 tonnes (Environmental Audit Committee, 2016). Voluntary plastic reduction campaigns are being conducted due to a change in awareness of the harmfulness of petroleum-based plastic products that are currently widely used. It is not easy to completely reduce the use of plastic because of the convenience of the material. Accordingly, there is a demand for the development and distribution of biodegradable plastics that are easily decomposed in nature while maintaining the convenience of plastics.

Narancic et al. (2018)은 최근에 가정, 산업용 처리시설, 토양, 해수 등의 환경에서 다양한 종류 polymer 기반의 플라스틱이 분해에 소요되는 시간을 측정하였고, 생분해성 플라스틱이라도 종류에 따라 분해 정도가 상당한 차이가 있음을 보고하였음. 우리의 실생활에서 널리 사용되는 폴리머인 ‘Poly lactic acid (PLA)’의 경우 높은 온도의 산업용 처리시설에서는 분해되었으나 실온에서 쉽게 분해되지 않았고, PHB는 가정, 산업용 처리시설뿐 아니라 담수와 해수에서도 완전히 분해되었음. 이러한 결과는 어떠한 종류의 polymer 유래 생분해성 플라스틱을 개발하고 사용해야 하는지 시사한다. Narancic et al. (2018) recently measured the time it takes for various types of polymer-based plastics to decompose in environments such as homes, industrial treatment facilities, soil, and seawater, and found that even biodegradable plastics have significant differences in the degree of decomposition depending on the type. reported In the case of 'Poly lactic acid (PLA)', a polymer widely used in our daily life, it was decomposed at high temperature industrial treatment facilities, but was not easily decomposed at room temperature. has been These results suggest what kind of polymer-derived biodegradable plastics should be developed and used.

자연에서, 3-하이드록시부티레이트의 호모중합체인 3-하이드록시부티레이트 공중합체 (poly(3-hydroxybutyrate, 3HB))는 가장 풍부한 폴리머이다. 하지만 결정성이 높고 단단하며 부서지기 쉽기 때문에 실제적 활용에 한계가 있으며 이러한 단점을 개선하기 위한 많은 연구가 수행되고 있다. poly(3-hydroxybutyrate-co-3-hydroxyvalerate, 3HB-co-3HV), poly(3-hydroxybutyrate-co-3-hydroxyhexanoate, 3HB-co-3HH), 그리고 poly(3-hydroxybutyrate-co-3-hydroxypropionate, 3HB-co-3HP)는 3HB보다 훨씬 유연하고 결정성이 적다 (Andreeßen et al., 2014b; Chen et al., 2000; Doi et al., 1995; Shimamura et al., 1993; Sato et al., 2015) 이들 co-polymer 중에서, 3-하이드록시부티레이트-3-하이드록시프로피오네이트 공중합체 (p(3HB-co-3HP))는 물질 특성의 장점으로 인해 생분해성 플라스틱의 재료로 매우 유망하다 (Steinb

Figure 112019108206696-pat00001
chel, 2010). 3-하이드록시부티레이트-3-하이드록시프로피오네이트 공중합체는 E.coli, Ralstonia, Pseudomonas와 같은 미생물에 의해 합성 가능하며 포도당, 오탄당, 및 글리세롤과 같은 탄소원으로부터 생산되어 왔다 (Meng et al., 2015; Sato et al., 2015). 그러나, 폴리머 생산 공정에서 기질의 높은 가격으로 인하여 경제성을 확보하기 어려워, 풍부하고 저렴한 탄소원이 필요하다. In nature, 3-hydroxybutyrate copolymer (poly(3-hydroxybutyrate, 3HB)), a homopolymer of 3-hydroxybutyrate, is the most abundant polymer. However, it is highly crystalline, hard, and brittle, so there is a limit to its practical use, and many studies are being conducted to improve these shortcomings. poly(3-hydroxybutyrate-co-3-hydroxyvalerate, 3HB-co-3HV), poly(3-hydroxybutyrate-co-3-hydroxyhexanoate, 3HB-co-3HH), and poly(3-hydroxybutyrate-co-3-hydroxypropionate) , 3HB-co-3HP) is much more flexible and less crystalline than 3HB (Andreeßen et al., 2014b; Chen et al., 2000; Doi et al., 1995; Shimamura et al., 1993; Sato et al. , 2015) among these co-polymers, 3-hydroxybutyrate-3-hydroxypropionate copolymer (p(3HB-co-3HP)) is very promising as a material for biodegradable plastics due to the advantages of material properties. (Stainb
Figure 112019108206696-pat00001
chel, 2010). 3-hydroxybutyrate-3-hydroxypropionate copolymer can be synthesized by microorganisms such as E. coli, Ralstonia, and Pseudomonas and has been produced from carbon sources such as glucose, pentose, and glycerol (Meng et al., 2015; Sato et al., 2015). However, it is difficult to secure economic feasibility due to the high price of the substrate in the polymer production process, and thus an abundant and inexpensive carbon source is required.

지구온난화를 야기하는 온실가스의 주요성분은 이산화탄소와 메탄이다. 양적으로는 이산화탄소가 우위에 있으나 메탄이 84배 더 강력한 영향 미치는 것으로 알려져 있다. 이 두가지 온실가스를 탄소원으로 이용한 생분해성 폴리머 생산 공정의 개발은 온실가스 저감뿐 아니라 환경친화적이며 지속가능하고 경제성까지 확보할 수 있는 기술로 평가받을 수 있다.The main components of greenhouse gases that cause global warming are carbon dioxide and methane. Quantitatively, carbon dioxide dominates, but methane is known to have an 84-fold stronger effect. The development of a biodegradable polymer production process using these two greenhouse gases as a carbon source can be evaluated as a technology that can not only reduce greenhouse gases but also secure eco-friendly, sustainable and economical efficiency.

1. Xanthos, D., & Walker, T. R. (2017). International policies to reduce plastic marine pollution from single-use plastics (plastic bags and microbeads): a review. Marine pollution bulletin, 118(1-2), 17-26. 2. Gallo, F., Fossi, C., Weber, R., Santillo, D., Sousa, J., Ingram, I., ... & Romano, D. (2018). Marine litter plastics and microplastics and their toxic chemicals components: the need for urgent preventive measures. Environmental Sciences Europe, 30, 1-14. 3. Environmental Audit Committee. (2016) Environmental Impact of Microplastics. Fourth Report of Session, 2016-2017. House of Commons Environmental Audit Committee. 4. Anderson AJ, Haywood GW, Dawes EA. (1990) Biosynthesis and composition of bacterial poly(hydroxyalkanoates). Int J Biol Macromol 12:102-105. 5. Chen GQ, Wu Q, Zhao K, Yu PH (2000) Functional polyhydroxyalkanoates synthesized by microorganisms. Chinese J Polym Sci 18-5:389-396. 6. Doi Y, Kitamura S, Abe H. (1995) Microbial synthesis and characterization of poly (rhydroxybutyrate-co-hydroxyhexanoate). Macromolecules 8:4822-4828. 7. Shimamura E, Kasuya K, Kobayashi G, Shiotani T, Shima Y, Doi Y. (1993) Physical properties and biodegradability of microbial poly(3-hydroxybutyrate-cohydroxyhexanoate). Macromolecules 27:878-880

Figure 112019108206696-pat00002
8. Sato, S., Andreeßen, B., & Steinbchel, A. (2015). Strain and process development for poly (3HB-co-3HP) fermentation by engineered Shimwellia blattae from glycerol. AMB Express, 5(1), 18. 9. Meng, D. C., Wang, Y., Wu, L. P., Shen, R., Chen, J. C., Wu, Q., & Chen, G. Q. (2015). Production of poly (3-hydroxypropionate) and poly (3-hydroxybutyrate-co-3-hydroxypropionate) from glucose by engineering Escherichia coli. Metabolic engineering, 29, 189-195. 1. Xanthos, D., & Walker, TR (2017). International policies to reduce plastic marine pollution from single-use plastics (plastic bags and microbeads): a review. Marine pollution bulletin, 118(1-2), 17-26. 2. Gallo, F., Fossi, C., Weber, R., Santillo, D., Sousa, J., Ingram, I., ... & Romano, D. (2018). Marine litter plastics and microplastics and their toxic chemicals components: the need for urgent preventive measures. Environmental Sciences Europe, 30, 1-14. 3. Environmental Audit Committee. (2016) Environmental Impact of Microplastics. Fourth Report of Session, 2016-2017. House of Commons Environmental Audit Committee. 4. Anderson AJ, Haywood GW, Dawes EA. (1990) Biosynthesis and composition of bacterial poly(hydroxyalkanoates). Int J Biol Macromol 12:102-105. 5. Chen GQ, Wu Q, Zhao K, Yu PH (2000) Functional polyhydroxyalkanoates synthesized by microorganisms. Chinese J Polym Sci 18-5:389-396. 6. Doi Y, Kitamura S, Abe H. (1995) Microbial synthesis and characterization of poly (rhydroxybutyrate-co-hydroxyhexanoate). Macromolecules 8:4822-4828. 7. Shimamura E, Kasuya K, Kobayashi G, Shiotani T, Shima Y, Doi Y. (1993) Physical properties and biodegradability of microbial poly(3-hydroxybutyrate-cohydroxyhexanoate). Macromolecules 27:878-880
Figure 112019108206696-pat00002
8. Sato, S., Andreeßen, B., & Steinbchel, A. (2015). Strain and process development for poly (3HB-co-3HP) fermentation by engineered Shimwellia blattae from glycerol. AMB Express, 5(1), 18. 9. Meng, DC, Wang, Y., Wu, LP, Shen, R., Chen, JC, Wu, Q., & Chen, GQ (2015). Production of poly (3-hydroxypropionate) and poly (3-hydroxybutyrate-co-3-hydroxypropionate) from glucose by engineering Escherichia coli. Metabolic engineering, 29, 189-195.

본 발명의 하나의 목적은 말로닐-CoA 환원 효소(malonyl-CoA reductase); 아세틸-CoA 카르복실화 효소(acetyl-CoA carboxylase) 및/또는 메틸말로닐-CoA 카르복실전달효소(Methylmalonyl-CoA carboxyltransferase); ATP 의존성 아실-CoA 합성효소 (ATP-dependent acyl-CoA synthetase) 및/또는 3-하이드록시프로피오닐-CoA 합성효소 (3-hydroxypropionyl-CoA synthetase); PHA 합성유전자(phaC), β-케토티올라제(β-ketothiolase, phaA) 및 NADPH 의존적 아세토아세틸-CoA 환원효소(NADPH dependent acetoacetyl-CoA reductase, phaB) 활성이 강화된, 3-하이드록시부티레이트-3-하이드록시프로피오네이트 공중합체 생산능을 가지는 형질전환 메탄자화균을 제공하는 것이다.One object of the present invention is malonyl-CoA reductase (malonyl-CoA reductase); acetyl-CoA carboxylase and/or Methylmalonyl-CoA carboxyltransferase; ATP-dependent acyl-CoA synthetase and/or 3-hydroxypropionyl-CoA synthetase; 3-hydroxybutyrate- with enhanced activity of PHA synthetase (phaC), β-ketothiolase (β-ketothiolase, phaA) and NADPH dependent acetoacetyl-CoA reductase (phaB) To provide a transformed methanogen having the ability to produce 3-hydroxypropionate copolymer.

본 발명의 다른 목적은 상기 형질전환 메탄자화균을 이용한 메탄기질로부터 3-하이드록시부티레이트-3-하이드록시프로피오네이트 공중합체를 생산하는 방법을 제공하는 것이다Another object of the present invention is to provide a method for producing a 3-hydroxybutyrate-3-hydroxypropionate copolymer from a methane substrate using the transformed methanogenic bacteria.

본 발명의 다른 목적은 상기 형질전환 메탄자화균을 포함하는 3-하이드록시부티레이트-3-하이드록시프로피오네이트 공중합체 생산용 조성물을 제공하는 것이다.Another object of the present invention is to provide a composition for producing a 3-hydroxybutyrate-3-hydroxypropionate copolymer comprising the transformed methanogen.

이를 구체적으로 설명하면 다음과 같다. This will be described in detail as follows.

한편, 본 발명에서 개시된 각각의 설명 및 실시 형태는 각각의 다른 설명 및 실시 형태에도 적용될 수 있다. 즉, 본 발명에서 개시된 다양한 요소들의 모든 조합이 본 발명의 범주에 속한다. 또한, 하기 기술된 구체적인 서술에 의하여 본 발명의 범주가 제한된다고 볼 수 없다.Meanwhile, each description and embodiment disclosed in the present invention may be applied to each other description and embodiment. That is, all combinations of the various elements disclosed herein fall within the scope of the present invention. In addition, it cannot be considered that the scope of the present invention is limited by the specific descriptions described below.

상기 목적을 달성하기 위한 본 발명의 하나의 양태는 말로닐-CoA 환원 효소(malonyl-CoA reductase); 아세틸-CoA 카르복실화 효소(acetyl-CoA carboxylase) 및/또는 메틸말로닐-CoA 카르복실전달효소(Methylmalonyl-CoA carboxyltransferase); ATP 의존성 아실-CoA 합성효소 (ATP-dependent acyl-CoA synthetase) 및/ 또는 3-하이드록시프로피오닐-CoA 합성효소 (3-hydroxypropionyl-CoA synthetase); PHA 합성유전자(phaC), β-케토티올라제(β-ketothiolase, phaA) 및 NADPH 의존적 아세토아세틸-CoA 환원효소(NADPH dependent acetoacetyl-CoA reductase, phaB) 활성이 강화된 3-하이드록시부티레이트-3-하이드록시프로피오네이트 공중합체 생산용 형질전환 메탄자화균을 제공한다.One aspect of the present invention for achieving the above object is malonyl-CoA reductase (malonyl-CoA reductase); acetyl-CoA carboxylase and/or Methylmalonyl-CoA carboxyltransferase; ATP-dependent acyl-CoA synthetase and/or 3-hydroxypropionyl-CoA synthetase; 3-hydroxybutyrate-3 with enhanced activity of PHA synthetase (phaC), β-ketothiolase (β-ketothiolase, phaA) and NADPH dependent acetoacetyl-CoA reductase (phaB) -Provides a transformed methanogen for producing a hydroxypropionate copolymer.

또한, 발명자들은 3-하이드록시부티레이트-3-하이드록시프로피오네이트 공중합체를 생산하기 위한 보다 환경 친화적이고 경제적인 방법으로, 메탄 등 바이오매스를 활용한 방법에 대해 예의 연구 노력한 결과, 놀랍게도 본 발명의 형질전환 메탄자화균을 이용할 경우 3-하이드록시부티레이트-3-하이드록시프로피오네이트 공중합체의 생산이 가능함을 확인하였다. 메탄을 유일 탄소원으로 사용하는 메탄자화균을 통한 3-하이드록시부티레이트-3-하이드록시프로피오네이트 공중합체의 생산은 지금까지 전혀 알려지지 않았고, 본 발명을 통해 최초로 개발되었다는 점에서 그 의의가 매우 크다고 할 수 있다.In addition, the inventors have made intensive research efforts on a method using biomass such as methane as a more environmentally friendly and economical method for producing 3-hydroxybutyrate-3-hydroxypropionate copolymer. As a result, surprisingly, the present invention It was confirmed that the production of 3-hydroxybutyrate-3-hydroxypropionate copolymer is possible when using a transformed methanogen of . The production of 3-hydroxybutyrate-3-hydroxypropionate copolymer through methanogenic bacteria using methane as the sole carbon source is not known at all, and it is very significant in that it was first developed through the present invention. can do.

본 발명에서 용어 "3-하이드록시부티레이트-3-하이드록시프로피오네이트 공중합체 (Poly(3-hydroxybytyrate-co-3-hydroxypropionate)"는 폴리하이드록시알카노에이트(PHA)의 한 종류로서, 폴리 3-하이드록시부티레이트와 폴리3-하이드록시프로피오네이트가 결합된 공중합체로, 하기 화학식 1로 나타낼 수 있다. 상기 물질은 본 발명의 형질전환된 메탄자화균의 대사 산물로서, 아세틸 CoA을 출발물질로 acetoacetyl-CoA, 3-hydroxybutyryl CoA 또는 malonyl CoA, malonic semialdehyde, 3-hydroxypropionic acid, 3-hydroxypropionyl-CoA를 거쳐 최종적으로 생성된다. 이에 제한되는 것은 아니나, 본 발명의 일 실시예에서는 M. trichosporium OB3b 에 상기 물질을 합성하기 위한 대사 경로를 도입하고, 상기 균주를 메탄을 탄소원으로 배양하여 생산하였다. In the present invention, the term "3-hydroxybutyrate-3-hydroxypropionate copolymer (Poly(3-hydroxybytyrate-co-3-hydroxypropionate)" is a kind of polyhydroxyalkanoate (PHA), A copolymer in which 3-hydroxybutyrate and poly3-hydroxypropionate are bonded, and can be represented by the following formula 1. The substance is a metabolite of the transformed methanogen of the present invention, starting from acetyl CoA As a substance, it is finally produced through acetoacetyl-CoA, 3-hydroxybutyryl CoA or malonyl CoA, malonic semialdehyde, 3-hydroxypropionic acid, and 3-hydroxypropionyl-CoA. Although not limited thereto, in one embodiment of the present invention, M. trichosporium A metabolic pathway for synthesizing the substance was introduced into OB3b, and the strain was produced by culturing methane as a carbon source.

Figure 112019108206696-pat00003
Figure 112019108206696-pat00003

본 발명에서 용어 "메탄자화균(metahnotroph)"은 메탄을 주요 탄소원 또는 에너지원으로 사용하는 세균을 의미한다. 상기 메탄자화균은 본 발명에서 형질전환의 대상이 되는 숙주 균주를 의미할 수 있으며, 본 발명의 목적상 메탄을 탄소원으로 사용하여, 아세틸 CoA을 출발물질로 acetoacetyl-CoA, 3-hydroxybutyryl CoA 또는 malonyl CoA, malonic semialdehyde, 3-hydroxypropionic acid, 3-hydroxypropionyl-CoA를 거쳐 최종적으로 3-하이드록시부티레이트-3-하이드록시프로피오네이트 공중합체를 생산할 수 있는 한 특별히 이에 제한되지 않는다. 또한, 메탄, 메탄올, 메틸아민 등 C1 화합물을 에너지원으로 사용하는 메틸자화균(methylotroph) 중에서 메탄을 함께 사용할 수 있는 균주 또한 본 발명의 메탄화균에 포함될 수 있음은 당업자에게 자명하다.In the present invention, the term “metahnotroph” refers to bacteria using methane as a major carbon source or energy source. The methanogenic bacteria may mean a host strain to be transformed in the present invention, and for the purpose of the present invention, acetoacetyl-CoA, 3-hydroxybutyryl CoA, or malonyl using methane as a carbon source and acetyl-CoA as a starting material CoA, malonic semialdehyde, 3-hydroxypropionic acid, 3-hydroxypropionyl-CoA, as long as it can finally produce 3-hydroxybutyrate-3-hydroxypropionate copolymer is not particularly limited thereto. In addition, it is apparent to those skilled in the art that a strain capable of using methane together among methylotrophs using C1 compounds such as methane, methanol, and methylamine as an energy source may also be included in the methanating bacteria of the present invention.

상기 메탄자화균은 메탄 등 C1 화합물을 에너지원으로 사용할 수 있는 것인한 특별히 이에 제한되지 않으나, 메틸로모나스 속(Methylomonas), 메틸로박터속(Methylobacter), 메틸로코커스 속(Methylococcus), 메틸로스페라 속(Methylosphaera), 메틸로칼덤 속(Methylocaldum), 메틸로글로버스 속(Methyloglobus), 메틸로사르시나 속(Methylosarcina), 메틸로프로펀더스 속(Methyloprofundus), 메틸로썰머스 속(Methylothermus), 메틸로할로비우스 속(Methylohalobius), 메틸로게아 속(Methylogaea), 메틸로마리넘 속(Methylomarinum), 메틸로벌럼 속(Methylovulum), 메틸로마리노범 속(Methylomarinovum), 메틸로러브럼 속(Methylorubrum), 메틸로파라코커스 속(Methyloparacoccus), 메틸로시스티스 속(Methylocystis), 메틸로셀라 속(Methylocella), 메틸로캡사 속(Methylocapsa), 메틸로퍼룰라 속(Methylofurula), 메틸아시디필럼 속(Methylacidiphilum), 메틸아시디마이크로븀 속(Methylacidimicrobium), 메틸로마이크로븀(Methylomicrobium) 속 또는 메틸로시 너스 속(Methylosinus) 균주일 수 있으며, 구체적으로 메틸로시너스 트리코스포륨(Methylosinus trichosporium) OB3b일 수 있다.The methanogenic bacteria is not particularly limited thereto, as long as it can use a C1 compound such as methane as an energy source, but Methylomonas, Methylobacter, Methylococcus, methylose Methylosphaera, Methylocaldum, Methyloglobus, Methylosarcina, Methyloprofundus, Methylothermus ), genus Methylohalobius, genus Methylogaea, genus Methylomarinum, genus Methylovulum, genus Methylomarinovum, genus Methyloloverum Methylorubrum, Methyloparacoccus, Methylocystis, Methylocella, Methylocapsa, Methylofurula, Methylacid It may be a phyllum genus (Methylacidiphilum), a methylacidimicrobium genus (Methylacidimicrobium), a methylomicrobium genus or a methylosinus genus (Methylosinus) strain, specifically, Methylosinus trichosporium) It may be OB3b.

이러한 메탄자화균을 이용한 바이오전환 공정의 경우, 비교적 저렴한 메탄을 탄소원으로 사용할 수 있어 경제적으로 유리하며, 대기 중의 메탄을 사용 가능하다는 점에서 온실가스의 방출 예방 등 환경적인 면에서도 장점이 있다. 또한, 기존에 포도당(glucose)을 이용한 공정 대비 산소의 손실이 없어 최종 생산 물질의 수율 또한 높다.In the case of the bioconversion process using such methane magnetizing bacteria, relatively inexpensive methane can be used as a carbon source, which is economically advantageous, and in that methane in the atmosphere can be used, there are environmental advantages such as prevention of greenhouse gas emission. In addition, there is no loss of oxygen compared to the conventional process using glucose, so the yield of the final product is also high.

본 발명에서 용어 "형질전환 메탄자화균"은 상기 메탄자화균의 유전자를 도입하거나 또는 제거하여 형질을 전환시킨 균주를 의미한다.In the present invention, the term "transformed methanogenic bacteria" refers to a strain transformed by introducing or removing the gene of the methanogenic bacteria.

구체적으로, 본 발명의 형질전환 메탄자화균은 말로닐-CoA 환원 효소(malonyl-CoA reductase); 아세틸-CoA 카르복실화 효소(acetyl-CoA carboxylase) 및/또는 메틸말로닐-CoA 카르복실전달효소(Methylmalonyl-CoA carboxyltransferase); ATP 의존성 아실-CoA 합성효소 (ATP-dependent acyl-CoA synthetase) 및/ 또는 3-하이드록시프로피오닐-CoA 합성효소 (3-hydroxypropionyl-CoA synthetase); PHA 합성유전자(phaC), β-케토티올라제(β-ketothiolase, phaA) 및 NADPH 의존적 아세토아세틸-CoA 환원효소(NADPH dependent acetoacetyl-CoA reductase, phaB) 활성이 강화된 것일 수 있으나, 이에 제한되지 않는다. 본 명에 있어서, 상기 형질전환 메탄자화균은 3-하이드록시부티레이트-3-하이드록시프로피오네이트 공중합체 생산능이 없는 야생형에 비해 3-하이드록시부티레이트-3-하이드록시프로피오네이트 공중합체의 생산능이 현저히 향상된 것일 수 있다.Specifically, the transformed methanogen of the present invention is malonyl-CoA reductase (malonyl-CoA reductase); acetyl-CoA carboxylase and/or Methylmalonyl-CoA carboxyltransferase; ATP-dependent acyl-CoA synthetase and/or 3-hydroxypropionyl-CoA synthetase; PHA synthesis gene (phaC), β-ketothiolase (β-ketothiolase, phaA) and NADPH-dependent acetoacetyl-CoA reductase (NADPH-dependent acetoacetyl-CoA reductase, phaB) activity may be enhanced, but is not limited thereto does not In the present name, the transformed methanogenic bacteria produced 3-hydroxybutyrate-3-hydroxypropionate copolymer compared to the wild type without the ability to produce 3-hydroxybutyrate-3-hydroxypropionate copolymer. performance may be significantly improved.

본 발명에서 용어 " 말로닐-CoA 환원 효소(malonyl-CoA reductase, MCR)”는 말로닐 CoA를 말로닉 세미알데히드로 전환시키고, 나아가 이로부터 3-하이드록시피온산을 생성하는 반응을 촉매하는 효소를 의미한다.As used herein, the term "malonyl-CoA reductase (MCR)" refers to an enzyme that catalyzes a reaction that converts malonyl-CoA to malonic semialdehyde and further produces 3-hydroxypionic acid therefrom. means

상기 말로닐-CoA 환원 효소를 코딩하는 유전자(mcr)는 클로로프렉수스 아우란티아쿠스(Chloroflexus aurantiacus) 유래일 수 있으며, 구체적으로 서열번호 1의 염기서열로 구성된 것일 수 있다. 보다 구체적으로, 상기 서열번호 1의 서열과 보다 구체적으로, 상기 서열번호 1의 서열과 70% 이상, 구체적으로는 80% 이상, 보다 구체적으로는 90%이상, 보다 더 구체적으로는 95%이상, 가장 구체적으로는 99% 이상의 상동성을 나타내는 염기서열로서 실질적으로 말로닐-CoA 환원 효소 활성을 가진 단백질을 발현 가능한 경우, 제한없이 포함될 수 있다.The gene (mcr) encoding the malonyl-CoA reductase may be derived from Chloroflexus aurantiacus, and specifically may be composed of the nucleotide sequence of SEQ ID NO: 1. More specifically, the sequence of SEQ ID NO: 1 and more specifically, 70% or more, specifically 80% or more, more specifically 90% or more, even more specifically 95% or more, the sequence of SEQ ID NO: 1 and more, Most specifically, if it is possible to express a protein having substantially malonyl-CoA reductase activity as a nucleotide sequence showing 99% or more homology, it may be included without limitation.

본 발명에서 용어 "아세틸-CoA 카르복실화 효소(acetyl-CoA carboxylase, ACC)"는 메탄으로부터 합성된 아세틸-CoA로부터 말로닐-CoA를 생성하는 반응을 촉매하는 효소를 의미한다.As used herein, the term “acetyl-CoA carboxylase (ACC)” refers to an enzyme that catalyzes a reaction for producing malonyl-CoA from acetyl-CoA synthesized from methane.

상기 아세틸-CoA 카르복실화 효소를 코딩하는 유전자(acc)는 메틸로시너스트리코스포륨(Methylosinus trichosporium) OB3b 유래일 수 있으며, 구체적으로 서열번호 2의 염기서열로 구성된 것일 수 있다. 보다 구체적으로, 상기서열번호 3의 서열과 70% 이상, 구체적으로는 80% 이상, 보다 구체적으로는 90%이상, 보다 더 구체적으로는 95%이상, 가장 구체적으로는 99% 이상의 상동성을 나타내는 염기서열로서 실질적으로 아세틸-CoA 카르복실화 효소 활성을 가진 단백질을 발현 가능한 경우, 제한없이 포함될 수 있다. The gene (acc) encoding the acetyl-CoA carboxylase may be derived from Methylosinus trichosporium OB3b, and specifically may be composed of the nucleotide sequence of SEQ ID NO: 2. More specifically, 70% or more, specifically 80% or more, more specifically 90% or more, even more specifically 95% or more, most specifically 99% or more homology with the sequence of SEQ ID NO: 3 If a protein having substantially acetyl-CoA carboxylase activity can be expressed as a base sequence, it may be included without limitation.

본 발명에서 용어 "메틸말로닐-CoA 카르복실전달효소(Methylmalonyl-CoA carboxyltransferase, MMC)"는 아세틸-CoA 및 옥살로아세테이트를 말로닐-CoA 및 피루브산으로 전환하는 반응을 촉매하는 효소를 의미한다.As used herein, the term "methylmalonyl-CoA carboxyltransferase (MMC)" refers to an enzyme catalyzing the conversion of acetyl-CoA and oxaloacetate to malonyl-CoA and pyruvic acid.

상기 메틸말로닐-CoA 카르복실전달효소(Methylmalonyl-CoA carboxyltransferase)를 코딩하는 유전자(mmc)는 프로피오니박테륨 프레우덴레이치(Propionibacterium freudenreichii) 유래일 수 있으며, 구체적으로 서열번호 3의 염기서열로 구성된 것일 수 있다. 보다 구체적으로, 상기서열번호 3의 서열과 70% 이상, 구체적으로는 80% 이상, 보다 구체적으로는 90%이상, 보다 더 구체적으로는 95%이상, 가장 구체적으로는 99% 이상의 상동성을 나타내는 염기서열로서 실질적으로 메틸말로닐-CoA 카르복실전달효소 활성을 가진 단백질을 발현 가능한 경우, 제한없이 포함될 수 있다.The gene (mmc) encoding the methylmalonyl-CoA carboxyltransferase (Methylmalonyl-CoA carboxyltransferase) may be derived from Propionibacterium freudenreichii, specifically, with the nucleotide sequence of SEQ ID NO: 3 may be configured. More specifically, 70% or more, specifically 80% or more, more specifically 90% or more, even more specifically 95% or more, most specifically 99% or more homology with the sequence of SEQ ID NO: 3 If a protein having substantially methylmalonyl-CoA carboxyl transferase activity can be expressed as a base sequence, it may be included without limitation.

본 발명에서 용어 " ATP 의존성 아실 CoA 합성효소 (ATP-dependent acyl-CoA synthetase)"는 3-하이드록시프로피오네이트를 3-하이드록시프로피오닐 CoA로 전환하는 반응을 촉매하는 효소를 의미한다. As used herein, the term "ATP-dependent acyl-CoA synthetase" refers to an enzyme that catalyzes the conversion of 3-hydroxypropionate to 3-hydroxypropionyl CoA.

상기 ATP 의존성 아실 CoA 합성효소를 코딩하는 유전자(acs)는 클로로프렉수스 아우란티아쿠스(Chloroflexus aurantiacus )유래일 수 있으며, 구체적으로 서열번호 4의 염기서열로 구성된 것일 수 있다. 보다 구체적으로, 상기서열번호 4의 서열과 70% 이상, 구체적으로는 80% 이상, 보다 구체적으로는 90%이상, 보다 더 구체적으로는 95%이상, 가장 구체적으로는 99% 이상의 상동성을 나타내는 염기서열로서 실질적으로 ATP 의존성 아실 CoA 합성효소 활성을 가진 단백질을 발현 가능한 경우, 제한없이 포함될 수 있다.Gene (acs) coding for the ATP-dependent acyl CoA synthetase may be a claw rope rack Versus Au is thiazol kusu (Chloroflexus aurantiacus) origin and may be specifically configured to the nucleotide sequence of SEQ ID NO: 4. More specifically, 70% or more, specifically 80% or more, more specifically 90% or more, even more specifically 95% or more, most specifically 99% or more homology with the sequence of SEQ ID NO: 4 If a protein having an ATP-dependent acyl-CoA synthetase activity is substantially expressed as a base sequence, it may be included without limitation.

본 발명에서 용어 "3-하이드록시프로피오닐 CoA 합성효소 (3-hydroxypropionyl-CoA synthetase)"는 3-하이드록시프로피오네이트를 3-하이드록시프로피오닐 CoA로 전환하는 반응을 촉매하는 효소를 의미한다. As used herein, the term "3-hydroxypropionyl-CoA synthetase" refers to an enzyme that catalyzes the conversion of 3-hydroxypropionate to 3-hydroxypropionyl CoA. .

상기 3-하이드록시프로피오닐 CoA 합성효소를 코딩하는 유전자(3HPCS)는 메탈로스페라 세둘라(Metallosphaera sedula )유래일 수 있으며, 구체적으로 서열번호 5의 염기서열로 구성된 것일 수 있다. 보다 구체적으로, 상기서열번호 5의 서열과 70% 이상, 구체적으로는 80% 이상, 보다 구체적으로는 90%이상, 보다 더 구체적으로는 95%이상, 가장 구체적으로는 99% 이상의 상동성을 나타내는 염기서열로서 실질적으로 3-하이드록시프로피오닐 CoA 합성효소 활성을 가진 단백질을 발현 가능한 경우, 제한없이 포함될 수 있다.The gene encoding the 3-hydroxypropionyl CoA synthetase (3HPCS) is Metallosphaera sedula ) , and specifically may be composed of the nucleotide sequence of SEQ ID NO: 5. More specifically, 70% or more, specifically 80% or more, more specifically 90% or more, even more specifically 95% or more, most specifically 99% or more homology with the sequence of SEQ ID NO: 5 If a protein having a substantially 3-hydroxypropionyl CoA synthetase activity can be expressed as a base sequence, it may be included without limitation.

즉, 본 발명의 형질전환된 메탄자화균은 클로로프렉수스 아우란티아쿠스(Chloroflexus aurantiacus) 유래의 말로닐-CoA 환원 효소(malonyl-CoA reductase, MCR) 유전자; 메틸로시너스 트리코스포륨(Methylosinus trichosporium) OB3b 유래의 아세틸-CoA 카르복실화 효소(acetyl-CoA carboxylase, ACC) 유전자; 프로피오니박테륨 프레우덴레이치(Propionibacterium freudenreichii) 유래의 메틸말로닐-CoA 카르복실전달효소(Methylmalonyl-CoA carboxyltransferase, MMC) 유전자; 클로로프렉수스 아우란티아쿠스(Chloroflexus aurantiacus) 유래의 ATP 의존성 아실 CoA 합성효소 (ATP-dependent acyl-CoA synthetase, ACS)유전자; 메탈로스페라 세둘라(Metallosphaera sedula) 유래의 3-하이드록시프로피오닐 CoA 합성효소 (3-hydroxypropionyl-CoA synthetase, 3HPCS) 유전자; 및 레스토니아 유트로파(Rastonia eutropha) 유래의 PHA 합성유전자(phaC), β-케토티올라제(β-ketothiolase, phaA) 및 NADPH 의존적 아세토아세틸-CoA 환원효소(NADPH dependent acetoacetyl-CoA reductase, phaB)가 도입 또는 과발현된 것이며, That is, the transformed methanogen of the present invention is a malonyl-CoA reductase (MCR) gene derived from Chloroflexus aurantiacus; Methylosinus trichosporium OB3b-derived acetyl-CoA carboxylase (ACC) gene; Methylmalonyl-CoA carboxyltransferase (MMC) gene derived from Propionibacterium freudenreichii; ATP-dependent acyl-CoA synthetase (ACS) gene derived from Chloroflexus aurantiacus; 3-hydroxypropionyl-CoA synthetase (3HPCS) gene from Metallosphaera sedula; and Restonia eutropha. eutropha )-derived PHA synthesis gene (phaC), β-ketothiolase (β-ketothiolase, phaA) and NADPH-dependent acetoacetyl-CoA reductase (NADPH-dependent acetoacetyl-CoA reductase, phaB) are introduced or overexpressed,

이에 제한되는 것은 아니나, 상기 클로로프렉수스 아우란티아쿠스(Chloroflexus aurantiacus) 유래의 말로닐-CoA 환원 효소(malonyl-CoA reductase, MCR) 유전자는 서열번호 1의 염기서열, 틸로시너스 트리코스포륨(Methylosinus trichosporium) OB3b 유래의 아세틸-CoA 카르복실화 효소(acetyl-CoA carboxylase, ACC) 유전자는 서열번호 2; 프로피오니박테륨 프레우덴레이치(Propionibacterium freudenreichii) 유래의 메틸말로닐-CoA 카르복실전달효소(Methylmalonyl-CoA carboxyltransferase, MMC) 유전자는 서열번호 3; 클로로프렉수스 아우란티아쿠스(Chloroflexus aurantiacus) 유래의 ATP 의존성 아실 CoA 합성효소 (ATP-dependent acyl-CoA synthetase, ACS)유전자는 서열번호 4; 메탈로스페라 세둘라(Metallosphaera sedula) 유래의 3-하이드록시프로피오닐 CoA 합성효소 (3-hydroxypropionyl-CoA synthetase, 3HPCS) 유전자는 서열번호 5; 레스토니아 유트로파(Rastonia eutropha) 유래의 PHA 합성유전자(phaC), β-케토티올라제(β-ketothiolase, phaA) 및 NADPH 의존적 아세토아세틸-CoA 환원효소(NADPH dependent acetoacetyl-CoA reductase, phaB)를 코딩하는 유전자인 phaCAB 유전자는 서열번호 6의 염기서열로 이루어진 것을 특징으로 한다. Although not limited thereto, the Chloroflexus aurantiacus-derived malonyl-CoA reductase (MCR) gene is the nucleotide sequence of SEQ ID NO: 1, Tylocinus tricosporium ( Methylosinus trichosporium) OB3b-derived acetyl-CoA carboxylase (acetyl-CoA carboxylase, ACC) gene is SEQ ID NO: 2; Methylmalonyl-CoA carboxyltransferase (MMC) gene derived from Propionibacterium freudenreichii is SEQ ID NO: 3; The ATP-dependent acyl-CoA synthetase (ACS) gene derived from Chloroflexus aurantiacus is SEQ ID NO: 4; 3-hydroxypropionyl-CoA synthetase (3HPCS) gene derived from Metallosphaera sedula is SEQ ID NO: 5; PHA synthetase (phaC), β-ketothiolase (phaA) and NADPH dependent acetoacetyl-CoA reductase (NADPH dependent acetoacetyl-CoA reductase, phaB) derived from Rastonia eutropha The gene encoding the phaCAB gene is characterized in that it consists of the nucleotide sequence of SEQ ID NO: 6.

본 발명의 일 실시예에서는, Chloroflexus aurantiacus 유래의 ATP 의존성 아실 CoA 합성효소 유전자 (acs) 또는 Metallosphaera sedula 유래의 3-하이드록시프로피오닐 CoA 합성효소 유전자(3HPCS)를 MCR 및 ACC과 과발현된 type II 메탄자화균 Methylosinus trichosporium OB3b 내에서 추가로 과발현시킨 결과, 각각의 3-하이드록시부티레이트-3-하이드록시프로피오네이트 공중합체 생산량은 세포 중량 대비 24.59 wt %와 24.86 wt %, 이때 공중합체의 3-하이드록시프로피오네이트의 함량은 4.15 mol %와 8.09 mol %였으며, 세포 내 공중합체 함량을 향상시키기 위해 Rastonia eutropha 유래의 phaCAB 유전자를 과발현시킨 형질전환 균주에서는 공중합체 함량은 증가하였으나 3-하이드록시프로피오네이트 몰비는 상대적으로 감소함을 확인하였다. In one embodiment of the present invention, Chloroflexus ATP-dependent acyl-CoA synthetase gene (acs) from aurantiacus or Metallosphaera sedula derived 3-Hydroxypropionyl CoA synthetase gene (3HPCS) overexpressed with MCR and ACC, type II methanogen Methylosinus As a result of further overexpression in trichosporium OB3b, the production of each 3-hydroxybutyrate-3-hydroxypropionate copolymer was 24.59 wt % and 24.86 wt % relative to the cell weight, wherein the 3-hydroxypropionate of the copolymer was 24.59 wt % and 24.86 wt %. The content of nate was 4.15 mol% and 8.09 mol%, and Rastonia was used to enhance the intracellular copolymer content. In the transgenic strain overexpressing the eutropha- derived phaCAB gene, it was confirmed that the copolymer content was increased, but the 3-hydroxypropionate molar ratio was relatively decreased.

전술한 각각의 효소 또는 단백질은 본 발명에서 사용되는 각각의 활성을 나타내는 한, 각 효소 또는 단백질을 구성하는 아미노산 서열의 하나 이상의 위치에서의 하나 이상의 아미노산이 치환, 결실, 삽입, 첨가 또는 역위된 아미노산 서열을 포함할수 있는데, 상기 각 효소 또는 단백질의 활성을 나타내는 한, 상기 각 효소 또는 단백질의 아미노산 서열에 대하여, 80% 이상, 구체적으로는 90% 이상, 보다 구체적으로는 95% 이상, 보다 더 구체적으로는 99% 이상의 상동성을 가지는 것으로, 실질적으로 각 효소 또는 단백질과 동일하거나 상응하는 활성을 가지는 아미노산 서열의 경우도 본 발명의 범주에 포함됨은 당업자에게 자명하다. Each of the above-described enzymes or proteins is an amino acid in which one or more amino acids at one or more positions of the amino acid sequence constituting each enzyme or protein are substituted, deleted, inserted, added or inverted as long as they exhibit the respective activity used in the present invention. It may include a sequence, as long as it shows the activity of each enzyme or protein, with respect to the amino acid sequence of each enzyme or protein, 80% or more, specifically 90% or more, more specifically 95% or more, more specifically It is apparent to those skilled in the art that amino acid sequences having substantially the same or corresponding activity as each enzyme or protein are included in the scope of the present invention as having a homology of 99% or more.

본 발명에서 용어 "약화 또는 불활성화"는 효소 또는 단백질의 활성이 야생형 또는 그 내재적 활성에 비해 감소 또는 전혀 발현이 되지 않거나, 발현이 되더라도 그 활성이 없거나 감소된 것을 의미한다. 상기 효소 또는 단백질의 활성 약화 또는 불활성화는 당업계에 알려진 임의의 방법에 의해 수행될 수 있다. 구체적으로, 해당 효소를 코딩하는 폴리뉴클레오티드의 일부 또는 전체의 결실, 상기 뉴클레오티드의 발현이 감소하도록 발현 조절 서열의 변형, 상기 단백질의 활성이 약화 되도록 염색체상의 상기 뉴클레오티드 서열의 변형, 또는 이들의 조합으로부터 선택된 방법에 수행될 수 있으나, 특별히 이에 제한되지는 않는다.In the present invention, the term "weakened or inactivated" means that the activity of an enzyme or protein is reduced or not expressed at all compared to the wild-type or its intrinsic activity, or that the activity is absent or reduced even if it is expressed. Attenuation or inactivation of the enzyme or protein may be performed by any method known in the art. Specifically, deletion of a part or all of the polynucleotide encoding the enzyme, modification of the expression control sequence to decrease the expression of the nucleotide, modification of the nucleotide sequence on the chromosome to weaken the activity of the protein, or a combination thereof It may be carried out in the selected method, but is not particularly limited thereto.

상기 단백질을 코딩하는 폴리뉴클레오티드의 일부 또는 전체를 결실하는 방법은 세균 내 염색체 삽입용 벡터를 통해 염색체 내 내재적 목적 단백질을 암호화하는 폴리뉴클레오티드를 일부 핵산 서열이 결실된 폴리뉴클레오티드 또는 마커 유전자로 교체함으로써 수행될 수 있다. 본 발명에서 용어 "강화"는 효소 또는 단백질의 활성이 야생형 또는 그 내재적 활성에 비해 증가되는 것을 의미한다. 상기 효소 또는 단백질의 활성 강화는 당업계에 알려진 임의의 방법에 의해 수행될 수 있다.The method of deleting part or all of the polynucleotide encoding the protein is performed by replacing a polynucleotide encoding an endogenous target protein in a chromosome with a polynucleotide or a marker gene in which a part of the nucleic acid sequence is deleted through a vector for chromosome insertion in bacteria. can be In the present invention, the term "enhancement" means that the activity of an enzyme or protein is increased compared to the wild type or its intrinsic activity. Enhancing the activity of the enzyme or protein may be performed by any method known in the art.

상기 목적을 달성하기 위한 본 발명의 다른 하나의 양태는 상기 3-하이드록시부티레이트-3-하이드록시프로피오네이트 공중합체 생산용 형질전환 메탄자화균을 배양하는 단계를 포함하는, 3-하이드록시부티레이트-3-하이드록시프로피오네이트 공중합체 제조방법을 제공하는 것이다. 상기 말로닐-CoA 환원 효소(malonyl-CoA reductase); 아세틸-CoA 카르복실화 효소(acetyl-CoA carboxylase) 및/또는 메틸말로닐-CoA 카르복실전달효소(Methylmalonyl-CoA carboxyltransferase); ATP 의존성 아실-CoA 합성효소 (ATP-dependent acyl-CoA synthetase) 및/ 또는 3-하이드록시프로피오닐-CoA 합성효소 (3-hydroxypropionyl-CoA synthetase); PHA 합성유전자(phaC), β-케토티올라제(β-ketothiolase, phaA) 및 NADPH 의존적 아세토아세틸-CoA 환원효소(NADPH dependent acetoacetyl-CoA reductase, phaB) 활성이 강화된, 3-하이드록시부티레이트-3-하이드록시프로피오네이트 공중합체 및 형질전환 메탄자화균은 전술한 바와 같다.Another aspect of the present invention for achieving the above object is 3-hydroxybutyrate comprising the step of culturing a transformed methanogen for the production of the 3-hydroxybutyrate-3-hydroxypropionate copolymer, 3-hydroxybutyrate To provide a method for preparing a -3-hydroxypropionate copolymer. the malonyl-CoA reductase; acetyl-CoA carboxylase and/or Methylmalonyl-CoA carboxyltransferase; ATP-dependent acyl-CoA synthetase and/or 3-hydroxypropionyl-CoA synthetase; 3-hydroxybutyrate- with enhanced activity of PHA synthetase (phaC), β-ketothiolase (β-ketothiolase, phaA) and NADPH dependent acetoacetyl-CoA reductase (phaB) The 3-hydroxypropionate copolymer and the transformed methanogen are the same as described above.

본 발명에서 용어 "배양"은 목적하는 세포 또는 조직 등을 인공적으로 조절한 환경 조건에서 생육하는 것을 의미한다. 상기 환경 조건은 대표적으로 영양소, 온도, 삼투압, pH, 기체 조성, 빛 등이 있으나, 직접적인 영향을 주는 것은 배지이며, 배지는 크게 액체배지와 고체배지로 나뉠 수 있다. 본 발명의 형질전환 메탄자화균의 배양은 당업계에 널리 알려져 있는 방법을 이용하여 수행할 수 있다.In the present invention, the term "culture" refers to growth in environmental conditions artificially regulated, such as a target cell or tissue. The environmental conditions typically include nutrients, temperature, osmotic pressure, pH, gas composition, light, etc., but it is the medium that directly affects it, and the medium can be largely divided into a liquid medium and a solid medium. Culturing of the transformant methanogenic bacteria of the present invention can be performed using a method well known in the art.

구체적으로, 상기 배양은 상기 형질전환 메탄자화균으로부터 3-하이드록시부티레이트-3-하이드록시프로피오네이트 공중합체를 생산할 수 있는 한 특별히 이에 제한되지 않으나, 배치 공정 또는 주입배치 또는 반복 주입 배치 공정(fed batch or repeated fed batch process)에서 연속식으로 배양할 수 있다. 배양에 사용되는 배지는 메탄자화균의 배양에 사용되는것으로 알려진 NMS(nitrate mineral salts) 배지를 사용할 수 있고, 메탄자화균에 따라 상기 배지에 포함된 성분 또는 이의 함량을 적절히 조절한 배지를 사용할 수 있으나, 이에 특별히 제한되는 것은 아니다. 본 발명에서 형질전환 메탄자화균의 배양 온도는 15℃ 내지 45℃, 구체적으로 20℃ 내지 40℃, 보다 구체적으로 25℃내지 35℃일 수 있으며, 메탄과 균주의 원활한 접촉을 위해, 150rpm 내지 300rpm, 구체적으로 180rpm 내지 270rpm, 보다 구체적으로 200rpm 내지 250rpm으로 교반할 수 있으나, 이에 제한되지 않는다.Specifically, the culture is not particularly limited thereto, as long as it can produce 3-hydroxybutyrate-3-hydroxypropionate copolymer from the transformed methanogen, but a batch process or injection batch or repeated injection batch process ( It can be cultivated continuously in fed batch or repeated fed batch process). As the medium used for culture, NMS (nitrate mineral salts) medium known to be used for culturing of methanogenic bacteria can be used, and a medium in which the components contained in the medium or its content are appropriately adjusted according to the methanogenic bacteria can be used. However, it is not particularly limited thereto. In the present invention, the culture temperature of the transformant methanogenic bacteria may be 15 ℃ to 45 ℃, specifically 20 ℃ to 40 ℃, more specifically 25 ℃ to 35 ℃, for smooth contact between the methane and the strain, 150rpm to 300rpm , specifically 180rpm to 270rpm, more specifically 200rpm to 250rpm may be stirred, but is not limited thereto.

본 발명에 있어서, 상기 3-하이드록시부티레이트-3-하이드록시프로피오네이트 공중합체의 제조방법은 상기 형질전환 메탄자화균을 C1 탄소원을 포함하는 배양액에 배양하는 것일 수 있다.In the present invention, the method for preparing the 3-hydroxybutyrate-3-hydroxypropionate copolymer may include culturing the transformed methanogen in a culture medium containing a C1 carbon source.

본 발명에 있어서, 상기 제조방법은 배양액으로부터 3-하이드록시부티레이트-3-하이드록시프로피오네이트 공중합체를 회수하는 단계를 추가로 포함할 수 있다. 상기 1,3-부탄다이올을 회수하는 단계는 배양 방법에 따라 당업계에 공지된 적합한 방법에 의해 수행될 수 있다. 구체적으로, 공지된 3-하이드록시부티레이트-3-하이드록시프로피오네이트 공중합체 회수 방법은 특별히 이에 제한되지 않으나, 원심분리, 여과, 추출, 분무, 건조, 증발, 침전, 결정화, 전기영동, 분별 용해(예를 들면 암모늄 설페이트 침전), 크로마토그래피(예를 들면 HPLC, 이온교환, 친화성, 소수성 및 크기배제) 등의 방법이 사용될 수 있다.In the present invention, the preparation method may further comprise the step of recovering 3-hydroxybutyrate-3-hydroxypropionate copolymer from the culture solution. The step of recovering the 1,3-butanediol may be performed by a suitable method known in the art depending on the culture method. Specifically, the known 3-hydroxybutyrate-3-hydroxypropionate copolymer recovery method is not particularly limited thereto, but centrifugation, filtration, extraction, spraying, drying, evaporation, precipitation, crystallization, electrophoresis, fractionation Methods such as dissolution (eg ammonium sulfate precipitation), chromatography (eg HPLC, ion exchange, affinity, hydrophobicity and size exclusion) may be used.

상기 목적을 달성하기 위한 본 발명의 또 다른 하나의 3-하이드록시부티레이트-3-하이드록시프로피오네이트 공중합체 생산능을 가지는 형질전환 메탄자화균을 포함하는 3-하이드록시부티레이트-3-하이드록시프로피오네이트 공중합체 생산용 조성물을 제공한다.To achieve the above object, 3-hydroxybutyrate-3-hydroxy comprising a transformed methanogen having another 3-hydroxybutyrate-3-hydroxypropionate copolymer-producing ability of the present invention A composition for producing a propionate copolymer is provided.

상기 말로닐-CoA 환원 효소(malonyl-CoA reductase); 아세틸-CoA 카르복실화 효소(acetyl-CoA carboxylase) 및/또는 메틸말로닐-CoA 카르복실전달효소(Methylmalonyl-CoA carboxyltransferase); ATP 의존성 아실-CoA 합성효소 (ATP-dependent acyl-CoA synthetase) 및/ 또는 3-하이드록시프로피오닐-CoA 합성효소 (3-hydroxypropionyl-CoA synthetase); PHA 합성유전자(phaC), β-케토티올라제(β-ketothiolase) 합성유전자(phaA) 및 NADPH 의존적 아세토아세틸-CoA 환원효소(NADPH dependent acetoacetyl-CoA reductase) 합성유전자(phaB) 활성이 강화된, 3-하이드록시부티레이트-3-하이드록시프로피오네이트 공중합체, 형질전환 메탄자화균은 전술한 바와 같다.the malonyl-CoA reductase; acetyl-CoA carboxylase and/or Methylmalonyl-CoA carboxyltransferase; ATP-dependent acyl-CoA synthetase and/or 3-hydroxypropionyl-CoA synthetase; Enhanced PHA synthesis gene (phaC), β-ketothiolase synthesis gene (phaA) and NADPH dependent acetoacetyl-CoA reductase synthesis gene (phaB) activity, The 3-hydroxybutyrate-3-hydroxypropionate copolymer and the transformed methanogen are the same as described above.

본 발명의 형질전환 메탄자화균은 C1 탄소원으로부터 3-하이드록시부티레이트-3-하이드록시프로피오네이트 공중합체를 생산할 수 있는바, 친환경적이고 경제적으로 3-하이드록시부티레이트-3-하이드록시프로피오네이트 공중합체의 대량 생산에 유용하게 사용될 수 있다.The transformed methanogen of the present invention can produce 3-hydroxybutyrate-3-hydroxypropionate copolymer from a C1 carbon source, and is environmentally friendly and economically 3-hydroxybutyrate-3-hydroxypropionate It can be usefully used for mass production of copolymers.

도 1은 본 발명의 형질전환된 M. trichosporium OB3b에 의한 3-하이드록시프로피오네이트-3-하이드록시부티레이트 공중합체 생산경로를 간략히 도식화한 것이다.
도 2는 3-하이드록시프로피오네이트-3-하이드록시부티레이트 공중합체를 생산하기 위하여 제작된 plasmid 5종에 대한 것이다.
도 3은 표준품, 3-하이드록시부티레이트-3-하이드록시프로피오네이트 공중합체를 GC-MS를 통해 분석한 결과를 나타낸 것이다.
도 4는 형질전환 메탄자화균으로부터 추출한 3-하이드록시부티레이트-3-하이드록시프로피오네이트 공중합체를 정성 분석한 결과이다.
Figure 1 is a schematic view showing an overview of production of 3-hydroxy-propionate-3-hydroxybutyrate copolymer path by M. trichosporium OB3b transformed according to the present invention.
Figure 2 is about the 5 kinds of plasmids prepared to produce 3-hydroxypropionate-3-hydroxybutyrate copolymer.
3 shows the results of analysis of the standard product, 3-hydroxybutyrate-3-hydroxypropionate copolymer through GC-MS.
4 is a result of qualitative analysis of 3-hydroxybutyrate-3-hydroxypropionate copolymer extracted from transformed methanogen.

이하, 본 발명은 실시예에 의해 상세히 설명한다. 단, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기의 실시예에 한정되는 것은 아니다.Hereinafter, the present invention will be described in detail by way of Examples. However, the following examples are only illustrative of the present invention, and the content of the present invention is not limited to the following examples.

실시예Example 1. 야생형 M. 1. Wild-type M. trichosporiumtrichosporium OB3bOB3b 및 형질전환 and transformation 메탄자화균을methanobacteria 이용한 3- 3- used 하이드록시프로피오네이트hydroxypropionate -3-하이드록시부티레이트 공중합체의 생산을 위한 세포 배양 및 회수Cell culture and recovery for production of -3-hydroxybutyrate copolymer

M. trichosporium OB3b (NCIMB 11131)은 이전 연구(Hwang et al., 2015)에서 기술된 바와 같이, 5μM의 CuSO4를 포함한 NMS(nitrate mineral salt)배지에서 배양 하였다. M. trichosporium OB3b 세포를 50ml의 NMS 배지가 들어있고 스크류 캡으로 밀봉된 500ml 배플 플라스크(baffled flask)에서 30℃, 및 230 rpm으로 교반하며 배양하였다. 기밀식 주사기(gas-tight syringe)를 사용한 가스 교환에 의해 최종 농도 30%(v/v) 메탄을 공급하였으며, 헤드 스페이스를 매일 새것으로 교환하였다. 4일간 동일한 조건으로 배양 후, nitrate가 제거된 새로운 NMS 배지로 세포를 옮겨 3일간 추가로 배양하였다. 세포 배양의 광학 밀도는 1cm 경로 길이의 1.5 ml 큐벳을 사용하여 Beckman 분광 광도계에서 측정하였다. 50μg/ml의 최종 농도를 갖는 카나마이신(Km)을 재조합 플라스미드를 함유하는 M. trichosporium OB3b 및 대장균 모두의 선별하는 데에 사용하였다. 3-하이드록시프로피오네이트-3-하이드록시부티레이트 공중합체 생산을 위하여 4일간은 위와 동일한 조건으로 배양 후, 5일째부터 nitrate가 제거된 새로운 NMS 배지로 세포를 옮겨 3일간 추가로 배양하였다.M. trichosporium OB3b (NCIMB 11131) was cultured in NMS (nitrate mineral salt) medium containing 5 μM CuSO 4 as described in a previous study (Hwang et al., 2015). M. trichosporium OB3b cells were cultured in a 500 ml baffled flask containing 50 ml of NMS medium and sealed with a screw cap while stirring at 30° C. and 230 rpm. A final concentration of 30% (v/v) methane was supplied by gas exchange using a gas-tight syringe, and the headspace was replaced with a new one every day. After culturing under the same conditions for 4 days, the cells were transferred to a new NMS medium from which nitrate was removed and further cultured for 3 days. The optical density of the cell culture was measured on a Beckman spectrophotometer using a 1.5 ml cuvette with a 1 cm path length. Kanamycin (Km) with a final concentration of 50 μg/ml was used for selection of both M. trichosporium OB3b and E. coli containing recombinant plasmids. For the production of 3-hydroxypropionate-3-hydroxybutyrate copolymer, after culturing under the same conditions as above for 4 days, the cells were transferred to a new NMS medium from which nitrate was removed from the 5th day and further cultured for 3 days.

실시예Example 2. 3-하이드록시부티레이트-3-하이드록시프로피오네이트 공중합체 2. 3-hydroxybutyrate-3-hydroxypropionate copolymer of 분석 analysis

야생형 및 형질전환 메탄자화균을 10,000 g에서 10 분 동안 원심 분리하여 세포를 수확한 후, 증류수로 1회 세척하고 동결건조기를 이용하여 세포를 건조시켰다. 건조된 세포중량 100-150mg을 methanolysis를 수행한 후, 가스 크로마토 그래피-질량 분석기 (GC-MSD, Agilent 7890B GC-5977B MSD, Korea Pty Ltd.)을 통해 3-하이드록시부티레이트-3-하이드록시프로피오네이트 공중합체 함량 및 조성을 분석 하였다. GC-MSD 분석시 HP-5MS 케피러리 컬럼이 장착되고 불꽃 이온화 검출기 (FID)를 이용하였다. 분할 비는 1/50이었고 이동상으로 헬륨을 사용하였고 주입구, 검출기 온도는 각각 250℃, 275 ℃로 설정하였다. 오븐 온도는 초기 온도 50 ℃(2분간 유지), 이어서 20 ℃/ min의 속도로 110 ℃까지 승온한 다음, 20 ℃/분의 속도로 250 ℃까지 추가 승온시켰다. 각 샘플에서 3-하이드록시부티레이트-3-하이드록시프로피오네이트 공중합체 양은 동결건조 된 세포의 건조 중량 대비 백분율로 표시하였다. Cells were harvested by centrifuging wild-type and transgenic methanogenic bacteria at 10,000 g for 10 minutes, washed once with distilled water, and dried using a freeze dryer. After methanolysis of 100-150 mg of dried cell weight, 3-hydroxybutyrate-3-hydroxyproate was performed through gas chromatography-mass spectrometry (GC-MSD, Agilent 7890B GC-5977B MSD, Korea Pty Ltd.). Cypionate copolymer content and composition were analyzed. For GC-MSD analysis, an HP-5MS capillary column was installed and a flame ionization detector (FID) was used. The split ratio was 1/50, helium was used as the mobile phase, and the inlet and detector temperatures were set to 250°C and 275°C, respectively. The oven temperature was raised to an initial temperature of 50 °C (maintained for 2 minutes), then at a rate of 20 °C/min to 110 °C, and then further heated to 250 °C at a rate of 20 °C/min. The amount of 3-hydroxybutyrate-3-hydroxypropionate copolymer in each sample was expressed as a percentage of the dry weight of the lyophilized cells.

실시예Example 3. 3- 3. 3- 하이드록시프로피오네이트hydroxypropionate -3--3- 하이드록시부티레이트hydroxybutyrate 공중합체 생합성 경로 구축을 위한 벡터시스템 구축 Construction of a vector system for the construction of a copolymer biosynthetic pathway

본 발명의 프라이머는 Primer 3 소프트웨어를 사용하여 설계되었으며 Macrogen (서울,한국)에서 합성되었다[표 1]. Chloroflexus aurantiacus , Propionibacterium freudenreichii shermanii , Metallosphaera sedula , Rastonia eutropha 및 M. trichosporium OB3b의 gDNA는 Wizard® Genomic DNA Purification Kit (Promega, USA)를 사용하여 분리하였으며, 모든 플라스미드는 Gibson 어셈블리를 사용하여 제작되었다. 프라이머 pAWP89-Tac-For/pAWP89-Tac-Rev (Puri et al., 2013)에 의해 선형 벡터 pAWP89를 제조하기 위하여 역 PCR을 사용하였다. The primers of the present invention were designed using Primer 3 software and synthesized by Macrogen (Seoul, Korea) [Table 1]. Chloroflexus aurantiacus , Propionibacterium freudenreichii shermanii , Metallosphaera gDNA of sedula , Rastonia eutropha and M. trichosporium OB3b was isolated using Wizard® Genomic DNA Purification Kit (Promega, USA), and all plasmids were constructed using Gibson assembly. Reverse PCR was used to prepare the linear vector pAWP89 with primers pAWP89-Tac-For/pAWP89-Tac-Rev (Puri et al., 2013).

본 발명에서 사용한 프라이머 서열은 하기 표 1에 정리된 바와 같다. The primer sequences used in the present invention are summarized in Table 1 below.

NameName SequenceSequence pAWP89-FpAWP89-F TAGTTGTCGGGAAGATGCGTTAGTTGTCGGGAAGATGCGT P tac 프로모터를 포함하는 pAWP89 백본 증폭을 위한 프라이머 Primer for pAWP89 backbone amplification containing P tac promoter pAWP89-RpAWP89-R AGCTGTTTCCTGTGTGAATAAGCTGTTTCCTGTGTGAATA CaMCR-FCaMCR-F ttcacacaggaaacagctATGAGCGGAACAGGACGACT ttcacacaggaaacagct ATGAGCGGAACAGGACGACT C. aurantiacus 로부터 분리한 MCR 유전자를 증혹하기 위한 프라이머,
PCR 산물이 pAWP89 백본으로 삽입되 어 pAWP89-MCR 벡터를 구축함.
A primer for substantiating the MCR gene isolated from C. aurantiacus,
The PCR product was inserted into the pAWP89 backbone to construct the pAWP89-MCR vector.
CaMCR-RCaMCR-R gcatcttcccgacaactaTTACACGGTAATCGCCCGTC gcatcttcccgacaacta TTACACGGTAATCGCCCGTC lacZ-FlacZ-F ttcacacaggaaacagctATGACCATGATTACGCCAAGC ttcacacaggaaacagct ATGACCATGATTACGCCAAGC pBBR1MCS-2 유래의 lacZ gene 을 PCR로 증폭하여 pAWP89 backbone 으로 삽입하여, pAWP89-lacZ vector를 구축함.The pBBR1MCS-2-derived lacZ gene was amplified by PCR and inserted into the pAWP89 backbone to construct the pAWP89-lacZ vector. lacZ-RlacZ-R gcatcttcccgacaactaTTACAATTTCCATTCGCCATTCAGG gcatcttcccgacaacta TTACAATTTCCATTCGCCATTCAGG ACC-CT sub beta-FACC-CT sub beta-F ggaacaaaagctgggtacATTAAGCACTATCATATAAATTAAGAGGAGGTAATCAATGAACTGGTATTCGAATGT ggaacaaaagctgggtac ATTAAGCACTATCATATAAATTAAGAGGAGGTAATCAATGAACTGGTATTCGAATGT M. trichosporium OB3b 로부터 ACC 유전자의 4 개 서브 유닛을 증폭시키기 위해, PCR 산물을 pAWP89-lacZ의 제한 부위에 라이게이션하여 pAWP89-lacZ-ACC 벡터를 제작 하였음 M. trichosporium To amplify the 4 subunits of the ACC gene from OB3b, the PCR product was ligated to the restriction site of pAWP89-lacZ to construct the pAWP89-lacZ-ACC vector. ACC-CT sub beta-RACC-CT sub beta-R cgagggggggcccggtacTCAGGCGGCGCGCCGAGGCG cgagggggggcccggtac TCAGGCGGCGCGCCGAGGCG Biotin carboxyl carrier-FBiotin carboxyl carrier-F tcgataagcttgatatcgATGGCGCGCAAAGCTCCG tcgataagcttgatatcg ATGGCGCGCAAAGCTCCG Biotin carboxyl carrier-RBiotin carboxyl carrier-R gatcccccgggctgcaggCTATTCGATCACGATGAGGGG gatccccccgggctgcagg CTATTCGATCACGATGAGGGGG Biotin carboxylase subunit-FBiotin carboxylase subunit-F atagcctgcagcccggggATGTTCGACAAGATCCTCAT atagcctgcagcccgggg ATGTTCGACAAGATCCTCAT Biotin carboxylase subunit-RBiotin carboxylase subunit-R gccgctctagaactagtgTCAGAAGGTCGGCTCTATGC gccgctctagaactagtg TCAGAAGGTCGGCTCTATGC CT subunit alpha-FCT subunit alpha-F gaccttctgacactagttATGCGTTTCTATCTCGACTT gaccttctgacactagtt ATGCGTTTCTATCTCGACTT CT subunit alpha-RCT subunit alpha-R accgcggtggcggccgctTCAGATCTTGCGTCCGATCG accgcggtggcggccgct TCAGATCTTGCGTCCGATCG pAWP89-FpAWP89-F TAGTTGTCGGGAAGATGCGTTAGTTGTCGGGAAGATGCGT P tac 프로모터 및 MCR 유전자를 포함하는 pAWP89-MCR 백본 증폭용 프라이머Primer for pAWP89-MCR backbone amplification containing P tac promoter and MCR gene pAWP89-MCR-RpAWP89-MCR-R TTACACGGTAATCGCCCGTCTTACACGGTAATCGCCCGTC ACC-4 subunit-FACC-4 subunit-F cgggcgattaccgtgtaaATTAAGCACTATCATATAAATT cgggcgattaccgtgtaa ATTAAGCACTATCATATAAATT pAWP89-lacZ-ACC 벡터로부터 ACC 유전자를 증폭시키기 위해, PCR 생성물을 pAWP89-MCR 백본에 라이 게이션하여 pAWP89-MCR-ACC 벡터를 제작함.To amplify the ACC gene from the pAWP89-lacZ-ACC vector, the PCR product was ligated to the pAWP89-MCR backbone to construct the pAWP89-MCR-ACC vector. ACC-4 subunit-RACC-4 subunit-R gcatcttcccgacaactaTCAGATCTTGCGTCCGATCG gcatcttcccgacaacta TCAGATCTTGCGTCCGATCG 3HPCS-EcoRI-F3HPCS-EcoRI-F aaatgggtcgcggatccgAGGAAACAGCTATGTTTATGCGATATATTATGGT aaatgggtcgcggatccg AGGAAACAGCTATGTTTATGCGATATATTATGGT M. sedula로부터 3HPCS 유전자를 증폭시키기 위해, PCR 산물을 pET28 벡터에 결찰하여 pET28-3HPCS 벡터를 제작함. To amplify the 3HPCS gene from M. sedula , the PCR product was ligated to the pET28 vector to construct the pET28-3HPCS vector. 3HPCS-EcoRI-R3HPCS-EcoRI-R gcttgtcgacggagctcgCTAGGAGGTCTTTAACTCCTTCT gcttgtcgacggagctcg CTAGGAGGTCTTTAACTCCTTCT phaCAB-pET28-SacI-FphaCAB-pET28-SacI-F aagacctcctagcgagctAGGAAACAGCTATGGCGACCGGCAAAGGC aagacctcctagcgagct AGGAAACAGCTATGGCGACCGGCAAAGGC R. eutropha로부터 phaCAB 유전자를 증폭시키기 위해, PCR 산물을 pET28-3HPCS 벡터에 라이 게이션하여 pET28-3HPCS-phaCAB 벡터를 제작함. To amplify the phaCAB gene from R. eutropha , the PCR product was ligated into the pET28-3HPCS vector to construct the pET28-3HPCS-phaCAB vector. phaCAB-pET28-SacI-RphaCAB-pET28-SacI-R aagcttgtcgacggagctTCAGCCCATATGCAGGCC aagcttgtcgacggagct TCAGCCCATATGCAGGCC 3HPCS-SpeI-F3HPCS-SpeI-F agagccgaccttctgacaAGGAAACAGCTATGTTTATGCGATAT agagccgaccttctgaca AGGAAACAGCTATGTTTATGCGATAT pET28-3HPCS 벡터로부터 3HPCS 유전자를 증폭시키기 위해, PCR 생성물을 pAWP89-MCR-ACC 백본에 라이 게이션하여 pAWP89-MCR-ACC-3HPCS 벡터를 구축함.To amplify the 3HPCS gene from the pET28-3HPCS vector, the PCR product was ligated into the pAWP89-MCR-ACC backbone to construct the pAWP89-MCR-ACC-3HPCS vector. 3HPCS-SpeI-R3HPCS-SpeI-R gtttttattatattccaaCTAGGAGGTCTTTAACTCCTTCT gtttttattatattccaa CTAGGAGGTCTTTAACTCCTTCT 3HPCS-SpeI-F3HPCS-SpeI-F agagccgaccttctgacaAGGAAACAGCTATGTTTATGCGATAT agagccgaccttctgaca AGGAAACAGCTATGTTTATGCGATAT pET28-3HPCS-phaCAB 벡터로부터 3HPCS-phaCAB 유전자를 증폭시키기 위해, PCR 산물을 pAWP89-MCR-ACC 백본에 라이 게이션하여 pAWP89-MCR-ACC-3HPCS-phaCAB 벡터를 구축함.To amplify the 3HPCS-phaCAB gene from the pET28-3HPCS-phaCAB vector, the PCR product was ligated into the pAWP89-MCR-ACC backbone to construct the pAWP89-MCR-ACC-3HPCS-phaCAB vector. phaCAB-pAW-SpeI-RphaCAB-pAW-SpeI-R gtttttattatattccaaTCAGCCCATATGCAGGCC gtttttattatattccaa TCAGCCCATATGCAGGCC ACS-Ca-EcoRI-FACS-Ca-EcoRI-F aaatgggtcgcggatccgAGGAAACAGCTATGATCGACACTGCGCCC aaatgggtcgcggatccg AGGAAACAGCTATGATCGACACTGCGCCC C. aurantiacus 의 ACS 유전자를 증폭시키기 위해, PCR 산물을 pET28 벡터에 결찰하여 pET28-ACS 벡터를 구축함. To amplify the ACS gene of C. aurantiacus , the PCR product was ligated to the pET28 vector to construct the pET28-ACS vector. ACS-Ca-EcoRI-RACS-Ca-EcoRI-R gcttgtcgacggagctcgTTATGTCACCGTCACTACCGC gcttgtcgacggagctcg TTATGTCACCGTCACTACCGC phaCAB-pET28-ACS-SacI-FphaCAB-pET28-ACS-SacI-F acggtgacataacgagctAGGAAACAGCTATGGCGACCGGCAAAGGC acggtgacataacgagct AGGAAACAGCTATGGCGACCGGCAAAGGC R. eutropha로부터 phaCAB 유전자를 증폭시키기 위해 PCR 산물을 pET28-ACS 벡터에 연결하여 pET28-ACS-phaCAB 벡터를 제작함. To amplify the phaCAB gene from R. eutropha , the PCR product was ligated to the pET28-ACS vector to construct the pET28-ACS-phaCAB vector. phaCAB-pET28-SacI-RphaCAB-pET28-SacI-R aagcttgtcgacggagctTCAGCCCATATGCAGGCC aagcttgtcgacggagct TCAGCCCATATGCAGGCC ACS-Ca-SpeI-FACS-Ca-SpeI-F agagccgaccttctgacaAGGAAACAGCTATGATCGACAC agagccgaccttctgaca AGGAAACAGCTATGATCGACAC pET28-ACS 벡터로부터 ACS 유전자를 증폭시키기 위해, PCR 생성물을 pAWP89-MCR-ACC 백본에 라이 게이션하여 pAWP89-MCR-ACC-ACS 벡터를 구축함.To amplify the ACS gene from the pET28-ACS vector, the PCR product was ligated to the pAWP89-MCR-ACC backbone to construct the pAWP89-MCR-ACC-ACS vector. ACS-Ca-SpeI-RACS-Ca-SpeI-R gtttttattatattccaaTTATGTCACCGTCACTACCG gtttttattatattccaa TTATGTCACCGTCACTACCG ACS-Ca-SpeI-FACS-Ca-SpeI-F agagccgaccttctgacaAGGAAACAGCTATGATCGACAC agagccgaccttctgaca AGGAAACAGCTATGATCGACAC pET28-ACS-phaCAB 벡터로부터 ACS-phaCAB 유전자를 증폭시키기 위해, PCR 산물을 pAWP89-MCR-ACC 백본에 라이 게이션하여 pAWP89-MCR-ACC-ACS-phaCAB 벡터를 구축 함.To amplify the ACS-phaCAB gene from the pET28-ACS-phaCAB vector, the PCR product was ligated to the pAWP89-MCR-ACC backbone to construct the pAWP89-MCR-ACC-ACS-phaCAB vector. phaCAB-pAW-SpeI-RphaCAB-pAW-SpeI-R gtttttattatattccaaTCAGCCCATATGCAGGCC gtttttattatattccaa TCAGCCCATATGCAGGCC MMC(PF)-NheI-FMMC(PF)-NheI-F cgcgcggcagccatatggGGGATCTGATTAGGTTAAGAGAAAGGAGGTTGTTATGAGTCCGCGAGAAATTGAG cgcgcggcagccatatgg GGGATCTGATTAGGTTAAGAGAAAGGAGGTTGTTATGAGTCCGCGAGAAATTGAG P. freudenreichii로부터 MMC 유전자를 증폭시키기 위해, PCR 생성물을 pET28-3HPCS 벡터에 라이 게이션하여 pET28-MMC-3HPCS 벡터를 구축함To amplify the MMC gene from P. freudenreichii, the PCR product was ligated into the pET28-3HPCS vector to construct the pET28-MMC-3HPCS vector. MMC(PF)-NheI-RMMC(PF)-NheI-R tgctgtccaccagtcatgtCAGCCGATCTTGATGAGACC tgctgtccaccagtcatgt CAGCCGATCTTGATGAGACC MMC-FMMC-F cgggcgattaccgtgtaaGGGATCTGATTAGGTTAAGAGA cgggcgattaccgtgtaa GGGATCTGATTAGGTTAAGAGA pET28-MMC-3HPCS 벡터로부터 MMC-3HPCS 유전자를 증폭시키기 위해, PCR 생성물을 pAWP89-MCR 백본에 라이 게이션하여 pAWP89-MCR-MMC-3HPCS 벡터를 구축 하였다To amplify the MMC-3HPCS gene from the pET28-MMC-3HPCS vector, the PCR product was ligated to the pAWP89-MCR backbone to construct the pAWP89-MCR-MMC-3HPCS vector. 3HPCS-R3HPCS-R gcatcttcccgacaactaCTAGGAGGTCTTTAACTCCTTCT gcatcttcccgacaacta CTAGGAGGTCTTTAACTCCTTCT

PlasmidsPlasmids pAWP89-MCR-ACC-ACSpAWP89-MCR-ACC-ACS C. aurantiacus OK-70-fl DSM 636으로부터 유래 된 ACS 유전자를 운반하는 pAWP89-MCR-ACC- 기반 백본pAWP89-MCR-ACC-based backbone carrying ACS gene derived from C. aurantiacus OK-70-fl DSM 636 pAWP89-MCR-ACC-ACS-phaCABpAWP89-MCR-ACC-ACS-phaCAB R. eutropha에서 유래 된 pAWP89-MCR-ACC-ACS 기반 백본 운반 phaCAB 유전자 클러스터pAWP89-MCR-ACC-ACS-based backbone-carrying phaCAB gene cluster derived from R. eutropha. pAWP89-MCR-ACC-3HPCSpAWP89-MCR-ACC-3HPCS M. sedula DSM 5348에서 유래 한 3HPCS 유전자를 보유하는 pAWP89-MCR-ACC 기반 백본pAWP89-MCR-ACC based backbone carrying 3HPCS gene derived from M. sedula DSM 5348 pAWP89-MCR-ACC-3HPCS-phaCABpAWP89-MCR-ACC-3HPCS-phaCAB R. eutropha에서 유래 한 phaCAB 유전자 클러스터를 보유하는 pAWP89-MCR-ACC-3HPCS 기반 백본pAWP89-MCR-ACC-3HPCS-based backbone carrying the phaCAB gene cluster derived from R. eutropha pAWP89-MCR-MMC-3HPCSpAWP89-MCR-MMC-3HPCS pAWP89-MCR-MMC-based backbone carrying 3HPCS gene originated from M. sedula DSM 5348pAWP89-MCR-MMC-based backbone carrying 3HPCS gene originated from M. sedula DSM 5348

실시예Example 4. 3-하이드록시부티레이트-3-하이드록시프로피오네이트 공중합체 생합성 경로 구축을 위한 벡터시스템의 M. 4. M. of Vector System for constructing 3-hydroxybutyrate-3-hydroxypropionate copolymer biosynthetic pathway. trichosporiumtrichosporium OB3b로의to OB3b 형질전환 transformation

상기 실시예3을 통하여 얻어진 재조합 발현용 벡터를 야생형 메탄자화균 M. trichosporium OB3b에 형질전환시키기 위하여, 컨주게이션(conjugation) 을 실시하였다. OD600에서 약 0.2까지 자란 M.trichosporium OB3b를 사용하였다 M. trichosporium OB3b 50ml 및 도입될 플라스미드를 포함하는 공여자 E. coli S17-1 10ml를 NMS로 세척하였다. 이후, 이들을 0.2 μm 멸균 니트로셀룰로스 필터에 혼합된 세포를 도포하였다. 필터를 0.02% (w/v) 프로테오스-펩톤(proteose-peptone)을 포함한 NMS 한천 배지에 놓고, 메탄(대기 중 50 %)의 존재하에 30℃에서 24 시간 동안 배양하였다. 0.02% (w/v) 프로테오스-펩톤(proteose-peptone)을 포함한 NMS 한천 플레이트로부터의 세포를 10mL NMS 배지에 재현탁시키고, 7000g에서 5분동안 원심분리하여 농축시켰다. 세포 펠렛은 카나마이신이 포함된 NMS 한천에 도말하고 단일한 콜로니가 나타날 때까지 메탄/ 공기(1:1, v/v)와 함께 2-3 주 동안 배양하였다. In order to transform the recombinant expression vector obtained in Example 3 into M. trichosporium OB3b, a wild-type methanogen, conjugation was performed. M. trichosporium OB3b grown at OD600 to about 0.2 was used. 50 ml of M. trichosporium OB3b and 10 ml of donor E. coli S17-1 containing the plasmid to be introduced were washed with NMS. Thereafter, the mixed cells were applied to a 0.2 μm sterile nitrocellulose filter. The filter was placed on NMS agar medium containing 0.02% (w/v) proteose-peptone, and incubated for 24 hours at 30°C in the presence of methane (50% in air). Cells from NMS agar plates containing 0.02% (w/v) proteose-peptone were resuspended in 10 mL NMS medium, and concentrated by centrifugation at 7000 g for 5 minutes. Cell pellets were plated on NMS agar containing kanamycin and incubated with methane/air (1:1, v/v) for 2-3 weeks until single colonies appeared.

형질전환 메탄자화균을 선별하기 위하여, 16s DNA 분석법을 통하여 M. trichosporium OB3b임을 확인하고 실시예 2에서 사용한 프라이머를 이용하여 각각의 유전자가 삽입되었는지 확인하였다. 이를 통해 얻은 형질전환 메탄자화균은 표 3과 같다.In order to select the transformed methanogenic bacteria, M. trichosporium OB3b was confirmed through 16s DNA analysis, and it was confirmed whether each gene was inserted using the primers used in Example 2. Table 3 shows the transformed methanogenic bacteria obtained through this.

Strains namestrain name Relevant characteristicsRelevant characteristics Methylosinus trichosporium OB3b Methylosinus trichosporium OB3b 숙주 균주로 사용되는 필수 호기성 메탄 산화 알파 프로 테오 박테리아Essential aerobic methane-oxidizing alpha proteobacteria used as host strains OB3b-MCRA-ASOB3b-MCRA-AS M. trichosporium OB3b harboring pAWP89-MCR-ACC-ACS M. trichosporium OB3b harboring pAWP89-MCR- ACC-ACS OB3b-MCRA-ASPOB3b-MCRA-ASP M. trichosporium OB3b harboring pAWP89-MCR-ACC-ACS-phaCAB M. trichosporium OB3b harboring pAWP89-MCR- ACC-ACS-phaCAB OB3b-MCRA-3SOB3b-MCRA-3S M. trichosporium OB3b harboring pAWP89-MCR-ACC-3HPCS M. trichosporium OB3b harboring pAWP89-MCR- ACC-3HPCS OB3b-MCRA-3SPOB3b-MCRA-3SP M. trichosporium OB3b harboring pAWP89-MCR-ACC-3HPCS-phaCAB M. trichosporium OB3b harboring pAWP89-MCR- ACC-3HPCS-phaCAB OB3b-MCRM-3SOB3b-MCRM-3S M. trichosporium OB3b harboring pAWP89-MCR-MMC-3HPCS M. trichosporium OB3b harboring pAWP89-MCR- MMC-3HPCS

실시예Example 5. 야생형 균주 5. Wild-type strain M. M. trichosporiumtrichosporium OB3b와with OB3b 형질전환 transformation 메탄자화균을methanobacteria 이용한 used 메탄기질로부터from methane 3- 3- 하이드록시부티레이트hydroxybutyrate -3--3- 하이드록시프로피오네이트hydroxypropionate 공중합체 생산, 추출 및 정량 Copolymer production, extraction and quantitation

실시예 1의 방법으로 야생형 균주 M. trichosporium OB3b와 형질전환된 메탄자화균(OB3b-MCRA-AS, OB3b-MCRA-ASP, OB3b-MCRA-3S, OB3b-MCRA-3SP 및 OB3b-MCRM-3S)를 4일간 NMS 배지에서 배양한 후, 5일째부터 질소원이 제거된 새로운 NMS 배지로 옮겨 3일간 추가 배양하였다. 수확한 세포는 실시예 2의 방법으로 생산된 3-하이드록시부티레이트-3-하이드록시프로피오네이트 공중합체를 분석 및 정량하였다. Method of Example 1 with the wild type strain M. trichosporium OB3b and transformed with methane bacteria magnetization (OB3b-MCRA-AS, OB3b -MCRA-ASP, OB3b-MCRA-3S, OB3b-MCRA-3SP and OB3b-MCRM-3S) conversion After culturing in NMS medium for 4 days, it was transferred to a new NMS medium from which the nitrogen source was removed from the 5th day and further cultured for 3 days. The harvested cells were analyzed and quantified for 3-hydroxybutyrate-3-hydroxypropionate copolymer produced by the method of Example 2.

그 결과, 야생형 균주에서는 3-하이드록시부티레이트-3-하이드록시프로피오네이트 공중합체가 생성되지 않았고, 말로닐-CoA 환원 효소(malonyl-CoA reductase) 및 아세틸-CoA 카르복실화 효소(acetyl-CoA carboxylase)가 과발현된 M. trichosporium OB3b 에 ATP 의존성 아실-CoA 합성효소 (ATP-dependent acyl-CoA synthetase)를 추가로 발현시킨 형질전환 메탄자화균 OB3b-MCRA-AS에서는 세포 중량 대비 24.93 %의 3-하이드록시부티레이트-3-하이드록시프로피오네이트 공중합체가 생산되었으며, 이 중 3-하이드록시프로피오네이트의 함량은 4.15 mol% 로 측정되었다. As a result, in the wild-type strain, 3-hydroxybutyrate-3-hydroxypropionate copolymer was not produced, and malonyl-CoA reductase and acetyl-CoA carboxylase (acetyl-CoA) were not produced. carboxylase) the ATP-dependent acyl -CoA synthase (ATP-dependent acyl-CoA synthetase ) of 24.93%, based on the weight of the cells in the transgenic methane bacteria magnetization OB3b-MCRA-aS was more expressed in the 3- to the overexpression of M. trichosporium OB3b A hydroxybutyrate-3-hydroxypropionate copolymer was produced, and the content of 3-hydroxypropionate was measured to be 4.15 mol%.

또한, OB3b-MCRA-AS 균주에 PHA 합성유전자(phaC), β-케토티올라제(β-ketothiolase, phaA) 및 NADPH 의존적 아세토아세틸-CoA 환원효소(NADPH dependent acetoacetyl-CoA reductase, phaB)를 추가 발현시킨 경우, 3-하이드록시부티레이트-3-하이드록시프로피오네이트 공중합체의 비율은 25.59 wt%로 약간 증가하였으나, 3-하이드록시프로피오네이트 함량은 오히려 감소했다(도 3 및 4). In addition, PHA synthesis gene (phaC), β-ketothiolase (β-ketothiolase, phaA) and NADPH dependent acetoacetyl-CoA reductase (NADPH dependent acetoacetyl-CoA reductase, phaB) were added to the OB3b-MCRA-AS strain. When expressed, the proportion of 3-hydroxybutyrate-3-hydroxypropionate copolymer slightly increased to 25.59 wt%, but the content of 3-hydroxypropionate was rather decreased ( FIGS. 3 and 4 ).

아울러, 3-하이드록시프로피오네이트를 3-하이드록시프로피오닐 CoA로의 전환 효율을 높이기 위하여 말로닐-CoA 환원 효소(malonyl-CoA reductase) 및 아세틸-CoA 카르복실화 효소(acetyl-CoA carboxylase)가 과발현된 M. trichosporium OB3b에 3-하이드록시프로피오닐-CoA 합성효소 (3-hydroxypropionyl-CoA synthetase)를 추가 과발현시킨 형질전환 메탄자화균 OB3b-MCRA-3S 에서는 세포 중량 대비 24.86 %의 3-하이드록시부티레이트-3-하이드록시프로피오네이트 공중합체가 생산되었으며, 이 중 3-하이드록시프로피오네이트의 함량은 8.09 mol %로 OB3b-MCRA-AS 대비 3-하이드록시프로피오네이트 함량이 1.94배 증가하였다(표 4). In addition, in order to increase the conversion efficiency of 3-hydroxypropionate to 3-hydroxypropionyl CoA, malonyl-CoA reductase and acetyl-CoA carboxylase were used. In the transgenic methanogen OB3b-MCRA-3S, which was overexpressed with 3-hydroxypropionyl-CoA synthetase in M. trichosporium OB3b, 24.86% of 3-hydroxy Butyrate-3-hydroxypropionate copolymer was produced, of which the content of 3-hydroxypropionate was 8.09 mol %, which increased by 1.94 times compared to OB3b-MCRA-AS. (Table 4).

3-하이드록시부티레이트-3-하이드록시프로피오네이트 공중합체의 3-하이드록시프로피오네이트 함량이 높을수록 물리적 특성은 향상된다. 또한, 3-하이드록시프로피오닐 CoA의 전구체인 3-하이드록시프로피오네이트로의 플럭스를 향상시키기 위해 아세틸-CoA 카르복실화 효소(acetyl-CoA carboxylase) 대신 메틸말로닐-CoA 카르복실전달효소(Methylmalonyl-CoA carboxyltransferase)와 말로닐-CoA 환원 효소(malonyl-CoA reductase)를 과발현된 M. trichosporium OB3b에 3-하이드록시프로피오닐-CoA 합성효소 (3-hydroxypropionyl-CoA synthetase)를 추가로 발현시킨 OB3b-MCRM-3S 에서는 세포 중량 대비 25.62 %의 3-하이드록시부티레이트-3-하이드록시프로피오네이트 공중합체가 생산되었으며, 이 중 3-하이드록시프로피오네이트의 함량은 9.0 mol %로 OB3b-MCRA-3S 대비 세포 내 공중합체 비율도 약 2% 가량 증가하였고 3-하이드록시프로피오네이트 함량 또한 약 1% 증가하였다.The higher the 3-hydroxypropionate content of the 3-hydroxybutyrate-3-hydroxypropionate copolymer, the better the physical properties. In addition, methylmalonyl-CoA carboxyltransferase (methylmalonyl-CoA carboxylase) instead of acetyl-CoA carboxylase to enhance the flux to 3-hydroxypropionate, a precursor of 3-hydroxypropionyl CoA. Methylmalonyl-CoA carboxyltransferase) and malonyl -CoA reductase (malonyl-CoA reductase) to that in the over-expressing M. trichosporium OB3b 3- hydroxy-propionyl -CoA synthase expression by adding (3-hydroxypropionyl-CoA synthetase) OB3b -MCRM-3S produced 25.62% of 3-hydroxybutyrate-3-hydroxypropionate copolymer based on the cell weight, and the content of 3-hydroxypropionate was 9.0 mol% of OB3b-MCRA- The intracellular copolymer ratio compared to 3S also increased by about 2%, and the 3-hydroxypropionate content also increased by about 1%.

Strainsstrains PHA/CDW
(wt%)
PHA/CDW
(wt%)
3HB
(wt%)
3HB
(wt%)
3HP
(wt%)
3HP
(wt%)
CompositionComposition
3HB
(mol%)
3HB
(mol%)
3HP
(mol%)
3HP
(mol%)
WTWT 17.0917.09 17.0917.09 00 100100 00 OB3b-MCRA-ASOB3b-MCRA-AS 24.9324.93 24.0324.03 0.90.9 95.8595.85 4.154.15 OB3b-MCRA-ASPOB3b-MCRA-ASP 25.5925.59 24.6824.68 0.910.91 95.9195.91 4.094.09 OB3b-MCRA-3SOB3b-MCRA-3S 24.8624.86 23.123.1 1.761.76 91.9191.91 8.098.09 OB3b-MCRA-3SPOB3b-MCRA-3SP 26.7626.76 24.9324.93 1.831.83 92.1892.18 7.827.82 OB3b-MCRM-3SOB3b-MCRM-3S 25.6225.62 23.623.6 2.022.02 91.0091.00 9.009.00

이상의 설명으로부터, 본 발명이 속하는 기술분야의 당업자는 본 발명이 그 기술적 사상이나 필수적 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 이와 관련하여, 이상에서 기술한 실시 예들은 모든 면에서 예시적인 것이며 한정적인 것이 아닌 것으로서 이해해야만 한다. 본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허 청구범위의 의미 및 범위 그리고 그 등가 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.From the above description, those skilled in the art to which the present invention pertains will understand that the present invention may be embodied in other specific forms without changing the technical spirit or essential characteristics thereof. In this regard, it should be understood that the embodiments described above are illustrative in all respects and not restrictive. The scope of the present invention should be construed as being included in the scope of the present invention, rather than the above detailed description, all changes or modifications derived from the meaning and scope of the claims described below and their equivalents.

<110> kyoung-hee university industry coorperation foundation <120> Production of poly(3HB-co-3HP) from methane by metabolic engineered methanotrophs <130> PN1910-487 <160> 6 <170> KoPatentIn 3.0 <210> 1 <211> 3663 <212> DNA <213> Chloroflexus aurantiacus <400> 1 atgagcggaa caggacgact ggcaggaaag attgcgttaa ttaccggtgg cgccggcaat 60 atcggcagtg aattgacacg tcgctttctc gcagagggag cgacggtcat tattagtgga 120 cggaatcggg cgaagttgac cgcactggcc gaacggatgc aggcagaggc aggagtgccg 180 gcaaagcgca tcgatctcga agtcatggat gggagtgatc cggtcgcggt acgtgccggt 240 atcgaagcga ttgtggcccg tcacggccag atcgacattc tggtcaacaa tgcaggaagt 300 gccggtgccc agcgtcgtct ggccgagatt ccactcactg aagctgaatt aggccctggc 360 gccgaagaga cgcttcatgc cagcatcgcc aatttacttg gtatgggatg gcatctgatg 420 cgtattgcgg cacctcatat gccggtagga agtgcggtca tcaatgtctc gaccatcttt 480 tcacgggctg agtactacgg gcggattccg tatgtcaccc ctaaagctgc tcttaatgct 540 ctatctcaac ttgctgcgcg tgagttaggt gcacgtggca tccgcgttaa tacgatcttt 600 cccggcccga ttgaaagtga tcgcatccgt acagtgttcc agcgtatgga tcagctcaag 660 gggcggcccg aaggcgacac agcgcaccat tttttgaaca ccatgcgatt gtgtcgtgcc 720 aacgaccagg gcgcgcttga acgtcggttc ccctccgtcg gtgatgtggc agacgccgct 780 gtctttctgg ccagtgccga atccgccgct ctctccggtg agacgattga ggttacgcac 840 ggaatggagt tgccggcctg cagtgagacc agcctgctgg cccgtactga tctgcgcacg 900 attgatgcca gtggccgcac gacgctcatc tgcgccggcg accagattga agaggtgatg 960 gcgctcaccg gtatgttgcg tacctgtggg agtgaagtga tcatcggctt ccgttcggct 1020 gcggcgctgg cccagttcga gcaggcagtc aatgagagtc ggcggctggc cggcgcagac 1080 tttacgcctc ccattgcctt gccactcgat ccacgcgatc cggcaacaat tgacgctgtc 1140 ttcgattggg gggccggcga gaataccggc gggattcatg cagcggtgat tctgcctgct 1200 accagtcacg aaccggcacc gtgcgtgatt gaggttgatg atgagcgggt gctgaatttt 1260 ctggccgatg aaatcaccgg gacaattgtg attgccagtc gcctggcccg ttactggcag 1320 tcgcaacggc ttacccccgg cgcacgtgcg cgtgggccgc gtgtcatttt tctctcgaac 1380 ggtgccgatc aaaatgggaa tgtttacgga cgcattcaaa gtgccgctat cggtcagctc 1440 attcgtgtgt ggcgtcacga ggctgaactt gactatcagc gtgccagcgc cgccggtgat 1500 catgtgctgc cgccggtatg ggccaatcag attgtgcgct tcgctaaccg cagccttgaa 1560 gggttagaat ttgcctgtgc ctggacagct caattgctcc atagtcaacg ccatatcaat 1620 gagattaccc tcaacatccc tgccaacatt agcgccacca ccggcgcacg cagtgcatcg 1680 gtcggatggg cggaaagcct gatcgggttg catttgggga aagttgcctt gattaccggt 1740 ggcagcgccg gtattggtgg gcagatcggg cgcctcctgg ctttgagtgg cgcgcgcgtg 1800 atgctggcag cccgtgatcg gcataagctc gaacagatgc aggcgatgat ccaatctgag 1860 ctggctgagg tggggtatac cgatgtcgaa gatcgcgtcc acattgcacc gggctgcgat 1920 gtgagtagcg aagcgcagct tgcggatctt gttgaacgta ccctgtcagc ttttggcacc 1980 gtcgattatc tgatcaacaa cgccgggatc gccggtgtcg aagagatggt tatcgatatg 2040 ccagttgagg gatggcgcca taccctcttc gccaatctga tcagcaacta ctcgttgatg 2100 cgcaaactgg cgccgttgat gaaaaaacag ggtagcggtt acatccttaa cgtctcatca 2160 tactttggcg gtgaaaaaga tgcggccatt ccctacccca accgtgccga ttacgccgtc 2220 tcgaaggctg gtcagcgggc aatggccgaa gtctttgcgc gcttccttgg cccggagata 2280 cagatcaatg ccattgcgcc gggtccggtc gaaggtgatc gcttgcgcgg taccggtgaa 2340 cgtcccggcc tctttgcccg tcgggcgcgg ctgattttgg agaacaagcg gctgaatgag 2400 cttcacgctg ctcttatcgc ggctgcgcgc accgatgagc gatctatgca cgaactggtt 2460 gaactgctct tacccaatga tgtggccgca ctagagcaga atcccgcagc acctaccgcg 2520 ttgcgtgaac tggcacgacg ttttcgcagc gaaggcgatc cggcggcatc atcaagcagt 2580 gcgctgctga accgttcaat tgccgctaaa ttgctggctc gtttgcataa tggtggctat 2640 gtgttgcctg ccgacatctt tgcaaacctg ccaaacccgc ccgatccctt cttcacccga 2700 gcccagattg atcgcgaggc tcgcaaggtt cgtgacggca tcatggggat gctctacctg 2760 caacggatgc cgactgagtt tgatgtcgca atggccaccg tctattacct tgccgaccgc 2820 aatgtcagtg gtgagacatt ccacccatca ggtggtttgc gttacgaacg cacccctacc 2880 ggtggcgaac tcttcggctt gccctcaccg gaacggctgg cggagctggt cggaagcacg 2940 gtctatctga taggtgaaca tctgactgaa caccttaacc tgcttgcccg tgcgtacctc 3000 gaacgttacg gggcacgtca ggtagtgatg attgttgaga cagaaaccgg ggcagagaca 3060 atgcgtcgct tgctccacga tcacgtcgag gctggtcggc tgatgactat tgtggccggt 3120 gatcagatcg aagccgctat cgaccaggct atcactcgct acggtcgccc agggccggtc 3180 gtctgtaccc ccttccggcc actgccgacg gtaccactgg tcgggcgtaa agacagtgac 3240 tggagcacag tgttgagtga ggctgaattt gccgagttgt gcgaacacca gctcacccac 3300 catttccggg tagcgcgcaa gattgccctg agtgatggtg ccagtctcgc gctggtcact 3360 cccgaaacta cggctacctc aactaccgag caatttgctc tggctaactt catcaaaacg 3420 acccttcacg cttttacggc tacgattggt gtcgagagcg aaagaactgc tcagcgcatt 3480 ctgatcaatc aagtcgatct gacccggcgt gcgcgtgccg aagagccgcg tgatccgcac 3540 gagcgtcaac aagaactgga acgttttatc gaggcagtct tgctggtcac tgcaccactc 3600 ccgcctgaag ccgatacccg ttacgccggg cggattcatc gcggacgggc gattaccgtg 3660 taa 3663 <210> 2 <211> 3898 <212> DNA <213> Methylosinus trichosporium <400> 2 atgaactggt attcgaatgt cgttccgccg aagatcaaag ccctcatcaa gcgcgaggcg 60 cccgagaacg cctgggtcaa atgcccggag agcggccagc tcgtgttcca caaggacata 120 gaggacaatc tctatgtcat tccgggctcg ggctatcaca tgcgcatccc cgtcgaggcg 180 cggctcgcca gcctcttcga cgagggcgag cacgaattgc tgccgacgcc ggaggttccg 240 gccgatccgc tgaaattccg cgacatcaag cgctatgtcg acaagatcaa agagtatcgg 300 ttgaagaccg gccatatcga cgcggtgacg ctggccttcg gcaagctcga ggacgcgccg 360 gtcacggtcg cggtgcagga tttcgacttc atgggcggct cgctcggcat ggcggcgggc 420 gaggcgatcg tcaccggcat gacccatgcg ctggagaagc gcacgccatt catcatcttc 480 accgcctcgg gcggcgcgcg catgcaggag ggcatgttct cgctgatgca gatgccgcgc 540 accacggtcg cggtgcgccg gctgcgcgag gcgcgcttgc cttatatcgt cgtgctcacc 600 aatccgacca cgggcggcgt caccgcctcc tatgcgatgc tgggcgacat tcacatcgcc 660 gagcccggcg cgatcatcgg cttcgccggc gcgcgcgtca tcgagcagac gattcgcgag 720 aagctgccgc agggttttca gcgcgccgaa tatctgcgcg accatggcat ggtcgacatg 780 gtcgtgccgc gccccgagat gcgcgcgaca ttggcgcggc tctgcgctct gctgaccaaa 840 gcgcctcggc gcgccgcctg agtaccgggc cccccctcga ggtcgacggt atcgataagc 900 ttgatatcga gtactactca accaaaccag caagaaggag gttatatatg gcgcgcaaag 960 ctccgacgcg acgcaccccc ccagccaaac cgagagtcgc cgccgccgcc gagacgggcg 1020 tcgacgccgc gctgctgcgc gagatcgcca agctgctcgg cgagagcgat ctcaccgaaa 1080 tcgaggtcca gaaaggcgat ctgcgcataa gggcggcgcg catgccggcg ccggcgccgg 1140 cgatcgccca tggcgcgatc gcgctgccgc cctatgccgc gcagccttat gcgccgccct 1200 atgctgcgcc gccgccgccg gccaagcccg ccgcgcccgc gccggcgagc catgccgacg 1260 cgctgaaatc gccgatggtc ggcaccgcct atctgcgccc gagcccggac gcgcggccct 1320 tcatagaggt cggctcgcgc gtcaccgcgg gcgataagct gctgctcatc gaggcgatga 1380 agacattcaa cgacatcgtc gcgcccaagg gcggcgtcgt caccgccatt ctggtggagg 1440 acggacagcc ggtcgaatat ggcgagcccc tcatcgtgat cgaatagcct gcagcccggg 1500 gtatcgtaga tctacactaa taaagaagga ggtacataat gttcgacaag atcctcatcg 1560 ccaatcgcgg cgagatcgcg cttcgcatcc tgcgcgccgc caaggagctc ggcatcgcca 1620 cggtcgccgt gcattcgacg gcggacgcgg atgcgatgca tgtgaagctc gccgacgaat 1680 ccgtctgcat cggaccgccg gcggcgcgcg actcctatct caacattccc tcgctgctct 1740 cggcctgcga gatcaccggc gccgacgccg tgcatccggg ctatggcttc ctctcggaga 1800 acgcccgttt cgccgagatc gtggccgagc acgggctgac cttcatcggg ccgaaggccg 1860 agcacatccg gctgatgggc gacaagatcg aggccaaggc gacggcgcgg cgcctcggca 1920 ttccgtgcgt gccgggctcg gacggcccga tcgccgacga gatcgaaggc gcgcgcgtcg 1980 ccgcgaagat cggctatccg gtgctggtga aagcggcctc gggcggcggc ggacgcggca 2040 tgaaggtcgc gcgcaacgac accgagctcg ccatcgccat tcccactgcg cgcaccgagg 2100 caaaggccgc cttcggcgac gacacggtct atctcgagaa atatctcgag aagccgcgcc 2160 acatcgaaat ccaggtgttc ggcgacggca agggcgcagc catccatctc ggcgagcgcg 2220 attgctcgct tcagcgtcgc caccaaaaag tgtgggagga aagcccgtcg cccgcgctca 2280 acgacgagca gcgcgccgag atcggcgagg tctgcgccgc ggcgatgcgc gaattgaaat 2340 atgccggcgc cggcacgatc gaattcctct atgagaatgg cgccttctat ttcatcgaga 2400 tgaacacgcg catccaggtc gagcatccgg tgaccgaggc ggtgaccggc gtcgatctcg 2460 tcagcgagca aatccgggtc gcggccggct cgccgctgtc gatgcggcag gaagacatct 2520 ggttctgggg ccatgcgatc gagtgccgcg tcaacgccga gcacccgtcg agctttcggc 2580 cctcgcccgg gcgcatcgcc tattatcacc cgccgggcgg cgtcggcgtg cgcgtcgatt 2640 catcggccta tcagggctac acgatcccgc cgaactatga ctcgctgatc ggcaagctga 2700 tcgtgcatgg ccgcaatcgc accgaggcgc tgatgcgcct gcggcgcgcg ctcgacgaat 2760 tcatcgtcga cggcatcgac acgaccttgc cgttgttccg cacgctggtg cgcaacgccg 2820 atgtgcagaa cggagtctat gacatccact ggctcgagca ttttctggcg acgggcggca 2880 tagagccgac cttctgacac tagttggaat ataataaaaa cactaatcaa aaaggaggtc 2940 cacaatgcgt ttctatctcg acttcgaaaa gcccgtcgcc gagctcgaga ccaaggtcga 3000 ggagctgcgc gctctcgcct ccaagggcga cggcgtgtcg atcggcgagg agctgggcaa 3060 gctcgaggcc aaggccgcca aggcgctcgc cgatctctac gccactttga cgccctggca 3120 gaagatccag gtcgcgcgcc atccgcagcg gccgcatttc tccgattatg tgcgccagct 3180 gttcgacgag ttcacgccgc tcgccggcga tcgcgccttc ggcgaggatt tggctatcgt 3240 cggcggcttt gcgcgctttc gcggcgagcc ggtctgcatc atgggccagg agaagggctc 3300 ggacacgtcg agtcggctcg agcataattt cggcatggcg cggccggagg gctatcgcaa 3360 ggcggcgcgg ctgatggagc tcgccgaccg cttcggcctg ccggtcgtct cgctggtcga 3420 caccgcgggc gccttcccgg gcatagacgc cgaggagcgc ggccaggccg aggccatcgc 3480 ccgctcgacc gaagtgtcgc tgtcgctcgg cgttcccaat gtcgccgtgg tggtggggga 3540 gggcggctcc ggcggcgcca tcgccatcgc cacctgcaac aaggtgctga tgctggagca 3600 cgccgtgtac acggtggcct cgcccgaggc ttcggcctcg atcctgtggc gcgacgccac 3660 caaggcgcag gatgcggcca ccagcatgaa gatcaccgcg caggacctgc tcaaattcgg 3720 catcatcgac gtcatcgtcg ccgagcccgc gggcggcgcg catcgcgagc cgcaggccgc 3780 ggtgacggcg gtcggcgagg cgatcgacca tgcgctcgcc ggcctcggaa acctgtcgcg 3840 ggcgcagatc atcgacgccc gcgcggaaaa atttctgtcg atcggacgca agatctga 3898 <210> 3 <211> 3760 <212> DNA <213> Propionibacterium freudenreichii <400> 3 atgagtccgc gagaaattga ggtttccgag ccgcgcgagg ttggtatcac cgagctcgtg 60 ctgcgcgatg cccatcagag cctgatggcc acacgaatgg caatggaaga catggtcggc 120 gcctgtgcag acattgatgc tgccgggtac tggtcagtgg agtgttgggg tggtgccacg 180 tatgactcgt gtatccgctt cctcaacgag gatccttggg agcgtctgcg cacgttccgc 240 aagctgatgc ccaacagccg tctccagatg ctgctgcgtg gccagaacct gctgggttac 300 cgccactaca acgacgaggt cgtcgatcgc ttcgtcgaca agtccgctga gaacggcatg 360 gacgtgttcc gtgtcttcga cgccatgaat gatccccgca acatggcgca cgccatggct 420 gccgtcaaga aggccggcaa gcacgcgcag ggcaccattt gctacacgat cagcccggtc 480 cacaccgttg agggctatgt caagcttgct ggtcagctgc tcgacatggg tgctgattcc 540 atcgccctga aggacatggc cgccctgctc aagccgcagc cggcctacga catcatcaag 600 gccatcaagg acacctacgg ccagaagacg cagatcaacc tgcactgcca ctccaccacg 660 ggtgtcaccg aggtctccct catgaaggcc atcgaggccg gcgtcgacgt cgtcgacacc 720 gccatctcgt ccatgtcgct cggcccgggc cacaacccca ccgagtcggt tgccgagatg 780 ctcgagggca ccgggtacac caccaacctt gactacgatc gcctgcacaa gatccgcgat 840 cacttcaagg ccatccgccc gaagtacaag aagttcgagt cgaagacgct tgtcgacacc 900 tcgatcttca agtcgcagat ccccggcggc atgctctcca acatggagtc gcagctgcgc 960 gcccagggcg ccgaggacaa gatggacgag gtcatggcag aggtgccgcg cgtccgcaag 1020 gccgccggct tcccgcccct ggtcaccccg tccagccaga tcgtcggcac gcaggccgtg 1080 ttcaacgtga tgatgggcga gtacaagagg atgaccggcg agttcgccga catcatgctc 1140 ggctactacg gcgccagccc ggccgatcgc gatccgaagg tggtcaagtt ggccgaggag 1200 cagtccggca agaagccgat cacccagcgc ccggccgatc tgctgccccc cgagtgggag 1260 gagcagtcca aggaggccgc ggccctcaag ggcttcaacg gcaccgacga ggacgtgctc 1320 acctatgcac tgttcccgca ggtcgctccg gtcttcttcg agcatcgcgc cgagggcccg 1380 cacagcgtgg ctctcaccga tgcccagctg aaggccgagg ccgagggcga cgagaagtcg 1440 ctcgccgtgg ccggtcccgt cacctacaac gtgaacgtgg gcggaaccgt ccgcgaagtc 1500 accgttcagc aggcgtgagg atgattgcca atcatggctg aaaacaacaa tttgaagctc 1560 gccagcacca tggaaggtcg cgtggagcag ctcgcagagc agcgccaggt gatcgaagcc 1620 ggtggcggcg aacgtcgcgt cgagaagcaa cattcccagg gtaagcagac cgctcgtgag 1680 cgcctgaaca acctgctcga tccccattcg ttcgacgagg tcggcgcttt ccgcaagcac 1740 cgcaccacgt tgttcggcat ggacaaggcc gtcgtcccgg cagatggcgt ggtcaccggc 1800 cgtggcacca tccttggtcg tcccgtgcac gccgcgtccc aggacttcac ggtcatgggt 1860 ggttcggctg gcgagacgca gtccacgaag gtcgtcgaga cgatggaaca ggcgctgctc 1920 accggcacgc ccttcctgtt cttctacgat tcgggcggcg cccggatcca ggagggcatc 1980 gactcgctga gcggttacgg caagatgttc ttcgccaacg tgaagctgtc gggcgtcgtg 2040 ccgcagatcg ccatcattgc cggcccctgt gccggtggcg cctcgtattc gccggcactg 2100 actgacttca tcatcatgac caagaaggcc catatgttca tcacgggccc ccaggtcatc 2160 aagtcggtca ccggcgagga tgtcaccgct gacgaactcg gtggcgctga ggcccatatg 2220 gccatctcgg gcaatatcca cttcgtggcc gaggacgacg acgccgcgga gctcattgcc 2280 aagaagctgc tgagcttcct tccgcagaac aacactgagg aagcatcctt cgtcaacccg 2340 aacaatgacg tcagccccaa taccgagctg cgcgacatcg ttccgattga cggcaagaag 2400 ggctatgacg tgcgcgatgt cattgccaag atcgtcgact ggggtgacta cctcgaggtc 2460 aaggccggct atgccaccaa cctcgtgacc gccttcgccc gggtcaatgg tcgttcggtg 2520 ggcatcgtgg ccaatcagcc gtcggtgatg tcgggttgcc tcgacatcaa cgcctctgac 2580 aaggccgccg aattcgtgaa tttctgcgat tcgttcaaca tcccgctggt gcagctggtc 2640 gacgtgccgg gcttcctgcc cggcgtgcag caggagtacg gcggcatcat tcgccatggc 2700 gcgaagatgc tgtacgccta ctccgaggcc accgtgccga agatcaccgt ggtgctccgc 2760 aaggcctacg gcggctccta cctggccatg tgcaaccgtg accttggtgc cgacgccgtg 2820 tacgcctggc ccagcgccga gattgcggtg atgggcgccg agggtgcggc aaatgtgatc 2880 ttccgcaagg agatcaaggc tgccgacgat cccgacgcca tgcgcgccga gaagatcgag 2940 gagtaccaga acgcgttcaa cacgccgtac gtggccgccg cccgcggtca ggtcgacgac 3000 gtgattgacc cggctgatac ccgtcgaaag attgcttccg ccctggagat gtacgccacc 3060 aagcgtcaga cccgcccggc gaagaagcat ggaaacttcc cctgctgagc gaggagagaa 3120 attatggctg atgaggaaga gaaggacctg atgatcgcca cgctcaacaa gcgcgtcgcg 3180 tcattggagt ctgagttggg ttcactccag agcgataccc agggtgtcac cgaggacgta 3240 ctgacggcca tttcggccgc cgttgcggcc tatctcggca acgatggatc ggctgaggtc 3300 gtccatttcg ccccgagccc gaactgggtc cgcgagggtc gtcgggctct gcagaaccat 3360 tccattcgtt gatccgggag taactcacat gaaactgaag gtaacagtca acggcactgc 3420 gtatgacgtt gacgttgacg tcgacaagtc acacgaaaac ccgatgggca ccatcctgtt 3480 cggcggcggc accggcggcg cgccggcacc gcgcgcagca ggtggcgcag gcgccggtaa 3540 ggccggagag ggcgagattc ccgctccgct ggccggcacc gtctccaaga tcctcgtgaa 3600 ggagggtgac acggtcaagg ctggtcagac cgtgctcgtt ctcgaggcca tgaagatgga 3660 gaccgagatc aacgctccca ccgacggcaa ggtcgagaag gtccttgtca aggagcgtga 3720 cgccgtgcag ggcggtcagg gtctcatcaa gatcggctga 3760 <210> 4 <211> 2643 <212> DNA <213> Chloroflexus aurantiacus <400> 4 atgatcgaca ctgcgcccct tgccccacca cgggcgcccc gctctaatcc gattcgggat 60 cgagttgatt gggaagctca gcgcgctgct gcgctggcag atcccggtgc ctttcatggc 120 gcgattgccc ggacagttat ccactggtac gacccacaac accattgctg gattcgcttc 180 aacgagtcta gtcagcgttg ggaagggctg gatgccgcta ccggtgcccc tgtaacggta 240 gactatcccg ccgattatca gccctggcaa caggcgtttg atgatagtga agcgccgttt 300 taccgctggt ttagtggtgg gttgacaaat gcctgcttta atgaagtaga ccggcatgtc 360 atgatgggct atggcgacga ggtggcctac tactttgaag gtgaccgctg ggataactcg 420 ctcaacaatg gtcgtggtgg tccggttgtc caggagacaa tcacgcggcg gcgcctgttg 480 gtggaggtgg tgaaggctgc gcaggtgttg cgtgatctgg gcctgaagaa gggtgatcgg 540 attgctctga atatgccgaa tattatgccg cagatttatt atacggaagc ggcaaaacga 600 ctgggtattc tgtacacgcc ggtcttcggt ggcttctcgg acaagactct ttccgaccgt 660 attcacaatg ccggtgcacg agtggtgatt acctctgatg gtgcgtaccg caacgcgcag 720 gtggtgccct acaaagaagc gtataccgat caggcgctcg ataagtatat tccggttgag 780 acggcgcagg cgattgttgc gcagaccctg gccaccttgc ccctgactga gtcgcagcgc 840 cagacgatca tcaccgaagt ggaggccgca ctggccggtg agattacggt tgagcgctcg 900 gacgtgatgc gtggggttgg ttctgccctc gcaaagctcc gcgatcttga tgcaagcgtg 960 caggcaaagg tgcgtacagt actggcgcag gcgctggtcg agtcgccgcc gcgggttgaa 1020 gctgtggtgg ttgtgcgtca taccggtcag gagattttgt ggaacgaggg gcgagatcgc 1080 tggagtcacg acttgctgga tgctgcgctg gcgaagattc tggccaatgc gcgtgctgcc 1140 ggctttgatg tgcacagtga gaatgatctg ctcaatctcc ccgatgacca gcttatccgt 1200 gcgctctacg ccagtattcc ctgtgaaccg gttgatgctg aatatccgat gtttatcatt 1260 tacacatcgg gtagcaccgg taagcccaag ggtgtgatcc acgttcacgg cggttatgtc 1320 gccggtgtgg tgcacacctt gcgggtcagt tttgacgccg agccgggtga tacgatatat 1380 gtgatcgccg atccgggctg gatcaccggt cagagctata tgctcacagc cacaatggcc 1440 ggtcggctga ccggggtgat tgccgaggga tcaccgctct tcccctcagc cgggcgttat 1500 gccagcatca tcgagcgcta tggggtgcag atctttaagg cgggtgtgac cttcctcaag 1560 acagtgatgt ccaatccgca gaatgttgaa gatgtgcgac tctatgatat gcactcgctg 1620 cgggttgcaa ccttctgcgc cgagccggtc agtccggcgg tgcagcagtt tggtatgcag 1680 atcatgaccc cgcagtatat caattcgtac tgggcgaccg agcacggtgg aattgtctgg 1740 acgcatttct acggtaatca ggacttcccg cttcgtcccg atgcccatac ctatcccttg 1800 ccctgggtga tgggtgatgt ctgggtggcc gaaactgatg agagcgggac gacgcgctat 1860 cgggtcgctg atttcgatga gaagggcgag attgtgatta ccgccccgta tccctacctg 1920 acccgcacac tctggggtga tgtgcccggt ttcgaggcgt acctgcgcgg tgagattccg 1980 ctgcgggcct ggaagggtga tgccgagcgt ttcgtcaaga cctactggcg acgtgggcca 2040 aacggtgaat ggggctatat ccagggtgat tttgccatca agtaccccga tggtagcttc 2100 acgctccacg gacgctctga cgatgtgatc aatgtgtcgg gccaccgtat gggcaccgag 2160 gagattgagg gtgccatttt gcgtgaccgc cagatcacgc ccgactcgcc cgtcggtaat 2220 tgtattgtgg tcggtgcgcc gcaccgtgag aagggtctga ccccggttgc cttcattcaa 2280 cctgcgcctg gccgtcatct gaccggcgcc gaccggcgcc gtctcgatga gctggtgcgt 2340 accgagaagg gggcggtcag tgtcccagag gattacatcg aggtcagtgc ctttcccgaa 2400 acccgcagcg ggaagtatat gcggcgcttt ttgcgcaata tgatgctcga tgaaccactg 2460 ggtgatacga cgacgttgcg caatcctgaa gtgctcgaag agattgcagc caagatcgct 2520 gagtggaaac gccgtcagcg tatggccgaa gagcagcaga tcatcgaacg ctatcgctac 2580 ttccggatcg agtatcaccc accaacggcc agtgcgggta aactcgcggt agtgacggtg 2640 aca 2643 <210> 5 <211> 1986 <212> DNA <213> Metallosphaera sedula <400> 5 atgtttatgc gatatattat ggttgaggaa cagaccctga agaccgggtc acaggaacta 60 gaggagaagg cagactataa catgagatat tacgctcacc tcatgaagtt gagtaaggaa 120 aaacctgcag agttctgggg atctctagca caggacctgc tagactggta tgagccttgg 180 aaggagacca tgagacagga agacccgatg acaaggtggt tcataggagg taagataaat 240 gcctcgtaca acgctgtcga cagacacctc aacggcccca gaaagttcaa ggctgcggtc 300 atctgggaaa gtgagttagg ggaaaggaag atcgtgacgt atcaggacat gttctatgag 360 gttaataggt gggccaatgc gctcagatcc ctaggagttg gtaaagggga tagggtgacc 420 atatacatgc ccctgacccc agagggaata gctgcaatgc tggcctcggc caggataggt 480 gcaattcata gcgtaatatt tgccggcttt ggttcgcaag ccatagccga cagggttgag 540 gacgccaagg cgaaggtagt gatcactgct gacgcctatc ccagaagggg aaaggttgtg 600 gagttaaaga agactgtcga cgaggcctta aactcccttg gagaaaggag cccagtacag 660 cacgtgctcg tgtataggag gatgaaaacg gatgtaaaca tgaaggaggg aagagacgtt 720 ttcttcgacg aggtcggcaa gtacaggtac gtggagcctg aaaggatgga ctccaatgat 780 ccactcttca ttctctacac ctctgggacc accggtaaac ctaagggaat tatgcactct 840 accggtggtt atctgaccgg gacagccgtt atgctactgt ggagctacgg ccttagccag 900 gagaacgacg ttctcttcaa cacctcagat attggttgga tagttggcca ctcctacatt 960 acctattccc cccttatcat ggggagaacg gttgtcattt acgagagcgc cccagactat 1020 ccctacccag acaagtgggc tgagattatt gagagataca gggcaaccac tttcggcacc 1080 tcagctacag ccttgcgtta cttcatgaag tatggggacg aatacgtgaa gaaccacgat 1140 ctctcgtcca tcaggataat tgtgacgaac ggggaagtgc ttaactactc tccgtggaag 1200 tgggggctag aagtgttagg tggaggaaag gtattcatgt cccatcagtg gtggcaaact 1260 gagacaggcg caccgaacct gggctacctt ccgggtataa tttacatgcc aatgaagtcg 1320 ggtccagcct caggcttccc tctacccggt aacttcgtgg aggttctgga cgagaacgga 1380 aatccctctg cccctagagt gagaggatac cttgtaatga ggccaccctt cccgcctaac 1440 atgatgatgg ggatgtggaa cgataatggg gagaggttga agaagacgta ctttagcaag 1500 ttcggttccc tgtattatcc aggagacttc gccatggtgg atgaggatgg atacatctgg 1560 gtgttgggta gggcagacga gactctaaaa attgcagccc acagaattgg agctggggaa 1620 gtggaatcag caatcacttc tcacccatcg gttgccgagg cagcagtcat aggcgtgcca 1680 gactcagtga aaggagaaga ggttcacgcg ttcgttgtgc taaagcaagg ttacgctcct 1740 tcctctgaac tggctaagga catacagtca cacgttagga aggtcatggg gcccattgtt 1800 agtccgcaga ttcatttcgt ggataagttg cctaagacaa ggtctgggaa ggtcatgaga 1860 agggtgataa aggcagtgat gatgggttcg agtgctggcg acttaaccac catagaggac 1920 gaagcatcaa tggacgaaat aaagaaggct gtcgaggaac taaagaagga gttaaagacc 1980 tcctag 1986 <210> 6 <211> 3851 <212> DNA <213> Ralstonia eutropha <400> 6 atggcgaccg gcaaaggcgc ggcagcttcc acgcaggaag gcaagtccca accattcaag 60 gtcacgccgg ggccattcga tccagccaca tggctggaat ggtcccgcca gtggcagggc 120 actgaaggca acggccacgc ggccgcgtcc ggcattccgg gcctggatgc gctggcaggc 180 gtcaagatcg cgccggcgca gctgggtgat atccagcagc gctacatgaa ggacttctca 240 gcgctgtggc aggccatggc cgagggcaag gccgaggcca ccggtccgct gcacgaccgg 300 cgcttcgccg gcgacgcatg gcgcaccaac ctcccatatc gcttcgctgc cgcgttctac 360 ctgctcaatg cgcgcgcctt gaccgagctg gccgatgccg tcgaggccga tgccaagacc 420 cgccagcgca tccgcttcgc gatctcgcaa tgggtcgatg cgatgtcgcc cgccaacttc 480 cttgccacca atcccgaggc gcagcgcctg ctgatcgagt cgggcggcga atcgctgcgt 540 gccggcgtgc gcaacatgat ggaagacctg acacgcggca agatctcgca gaccgacgag 600 agcgcgtttg aggtcggccg caatgtcgcg gtgaccgaag gcgccgtggt cttcgagaac 660 gagtacttcc agctgttgca gtacaagccg ctgaccgaca aggtgcacgc gcgcccgctg 720 ctgatggtgc cgccgtgcat caacaagtac tacatcctgg acctgcagcc ggagagctcg 780 ctggtgcgcc atgtggtgga gcagggacat acggtgtttc tggtgtcgtg gcgcaatccg 840 gacgccagca tggccggcag cacctgggac gactacatcg agcacgcggc catccgcgcc 900 atcgaagtcg cgcgcgacat cagcggccag gacaagatca acgtgctcgg cttctgcgtg 960 ggcggcacca ttgtctcgac cgcgctggcg gtgctggccg cgcgcggcga gcacccggcc 1020 gccagcgtca cgctgctgac cacgctgctg gactttgccg acacgggcat cctcgacgtc 1080 tttgtcgacg agggccatgt gcagttgcgc gaggccacgc tgggcggcgg cgccggcgcg 1140 ccgtgcgcgc tgctgcgcgg ccttgagctg gccaatacct tctcgttctt gcgcccgaac 1200 gacctggtgt ggaactacgt ggtcgacaac tacctgaagg gcaacacgcc ggtgccgttc 1260 gacctgctgt tctggaacgg cgacgccacc aacctgccgg ggccgtggta ctgctggtac 1320 ctgcgccaca cctacctgca gaacgagctc aaggtaccgg gcaagctgac cgtgtgcggc 1380 gtgccggtgg acctggccag catcgacgtg ccgacctata tctacggctc gcgcgaagac 1440 catatcgtgc cgtggaccgc ggcctatgcc tcgaccgcgc tgctggcgaa caagctgcgc 1500 ttcgtgctgg gtgcgtcggg ccatatcgcc ggtgtgatca acccgccggc caagaacaag 1560 cgcagccact ggactaacga tgcgctgccg gagtcgccgc agcaatggct ggccggcgcc 1620 atcgagcatc acggcagctg gtggccggac tggaccgcat ggctggccgg gcaggccggc 1680 gcgaaacgcg ccgcgcccgc caactatggc aatgcgcgct atcgcgcaat cgaacccgcg 1740 cctgggcgat acgtcaaagc caaggcatga cgcttgcatg agtgccggcg tgcgtcatgc 1800 acggcgccgg caggcctgca ggttccctcc cgtttccatt gaaaggacta cacaatgact 1860 gacgttgtca tcgtatccgc cgcccgcacc gcggtcggca agtttggcgg ctcgctggcc 1920 aagatcccgg caccggaact gggtgccgtg gtcatcaagg ccgcgctgga gcgcgccggc 1980 gtcaagccgg agcaggtgag cgaagtcatc atgggccagg tgctgaccgc cggttcgggc 2040 cagaaccccg cacgccaggc cgcgatcaag gccggcctgc cggcgatggt gccggccatg 2100 accatcaaca aggtgtgcgg ctcgggcctg aaggccgtga tgctggccgc caacgcgatc 2160 atggcgggcg acgccgagat cgtggtggcc ggcggccagg aaaacatgag cgccgccccg 2220 cacgtgctgc cgggctcgcg cgatggtttc cgcatgggcg atgccaagct ggtcgacacc 2280 atgatcgtcg acggcctgtg ggacgtgtac aaccagtacc acatgggcat caccgccgag 2340 aacgtggcca aggaatacgg catcacacgc gaggcgcagg atgagttcgc cgtcggctcg 2400 cagaacaagg ccgaagccgc gcagaaggcc ggcaagtttg acgaagagat cgtcccggtg 2460 ctgatcccgc agcgcaaggg cgacccggtg gccttcaaga ccgacgagtt cgtgcgccag 2520 ggcgccacgc tggacagcat gtccggcctc aagcccgcct tcgacaaggc cggcacggtg 2580 accgcggcca acgcctcggg cctgaacgac ggcgccgccg cggtggtggt gatgtcggcg 2640 gccaaggcca aggaactggg cctgaccccg ctggccacga tcaagagcta tgccaacgcc 2700 ggtgtcgatc ccaaggtgat gggcatgggc ccggtgccgg cctccaagcg cgccctgtcg 2760 cgcgccgagt ggaccccgca agacctggac ctgatggaga tcaacgaggc ctttgccgcg 2820 caggcgctgg cggtgcacca gcagatgggc tgggacacct ccaaggtcaa tgtgaacggc 2880 ggcgccatcg ccatcggcca cccgatcggc gcgtcgggct gccgtatcct ggtgacgctg 2940 ctgcacgaga tgaagcgccg tgacgcgaag aagggcctgg cctcgctgtg catcggcggc 3000 ggcatgggcg tggcgctggc agtcgagcgc aaataaggaa ggggttttcc ggggccgcgc 3060 gcggttggcg cggacccggc gacgataacg aagccaatca aggagtggac atgactcagc 3120 gcattgcgta tgtgaccggc ggcatgggtg gtatcggaac cgccatttgc cagcggctgg 3180 ccaaggatgg ctttcgtgtg gtggccggtt gcggccccaa ctcgccgcgc cgcgaaaagt 3240 ggctggagca gcagaaggcc ctgggcttcg atttcattgc ctcggaaggc aatgtggctg 3300 actgggactc gaccaagacc gcattcgaca aggtcaagtc cgaggtcggc gaggttgatg 3360 tgctgatcaa caacgccggt atcacccgcg acgtggtgtt ccgcaagatg acccgcgccg 3420 actgggatgc ggtgatcgac accaacctga cctcgctgtt caacgtcacc aagcaggtga 3480 tcgacggcat ggccgaccgt ggctggggcc gcatcgtcaa catctcgtcg gtgaacgggc 3540 agaagggcca gttcggccag accaactact ccaccgccaa ggccggcctg catggcttca 3600 ccatggcact ggcgcaggaa gtggcgacca agggcgtgac cgtcaacacg gtctctccgg 3660 gctatatcgc caccgacatg gtcaaggcga tccgccagga cgtgctcgac aagatcgtcg 3720 cgacgatccc ggtcaagcgc ctgggcctgc cggaagagat cgcctcgatc tgcgcctggt 3780 tgtcgtcgga ggagtccggt ttctcgaccg gcgccgactt ctcgctcaac ggcggcctgc 3840 atatgggctg a 3851 <110> kyoung-hee university industry coorperation foundation <120> Production of poly(3HB-co-3HP) from methane by metabolic engineered methanotrophs <130> PN1910-487 <160> 6 <170> KoPatentIn 3.0 <210> 1 <211> 3663 <212> DNA <213> Chloroflexus aurantiacus <400> 1 atgagcggaa caggacgact ggcaggaaag attgcgttaa ttaccggtgg cgccggcaat 60 atcggcagtg aattgacacg tcgctttctc gcagagggag cgacggtcat tattagtgga 120 cggaatcggg cgaagttgac cgcactggcc gaacggatgc aggcagaggc aggagtgccg 180 gcaaagcgca tcgatctcga agtcatggat gggagtgatc cggtcgcggt acgtgccggt 240 atcgaagcga ttgtggcccg tcacggccag atcgacattc tggtcaacaa tgcaggaagt 300 gccggtgccc agcgtcgtct ggccgagatt ccactcactg aagctgaatt aggccctggc 360 gccgaagaga cgcttcatgc cagcatcgcc aatttacttg gtatgggatg gcatctgatg 420 cgtattgcgg cacctcatat gccggtagga agtgcggtca tcaatgtctc gaccatcttt 480 tcaggggctg agtactacgg gcggattccg tatgtcaccc ctaaagctgc tcttaatgct 540 ctatctcaac ttgctgcgcg tgagttaggt gcacgtggca tccgcgttaa tacgatcttt 600 cccggcccga ttgaaagtga tcgcatccgt acagtgttcc agcgtatgga tcagctcaag 660 gggcggcccg aaggcgacac agcgcaccat tttttgaaca ccatgcgatt gtgtcgtgcc 720 aacgaccagg gcgcgcttga acgtcggttc ccctccgtcg gtgatgtggc agacgccgct 780 gtctttctgg ccagtgccga atccgccgct ctctccggtg agacgattga ggttacgcac 840 ggaatggagt tgccggcctg cagtgagacc agcctgctgg cccgtactga tctgcgcacg 900 attgatgcca gtggccgcac gacgctcatc tgcgccggcg accagattga agaggtgatg 960 gcgctcaccg gtatgttgcg tacctgtggg agtgaagtga tcatcggctt ccgttcggct 1020 gcggcgctgg cccagttcga gcaggcagtc aatgagagtc ggcggctggc cggcgcagac 1080 tttacgcctc ccattgcctt gccactcgat ccacgcgatc cggcaacaat tgacgctgtc 1140 ttcgattggg gggccggcga gaataccggc gggattcatg cagcggtgat tctgcctgct 1200 accagtcacg aaccggcacc gtgcgtgatt gaggttgatg atgagcgggt gctgaatttt 1260 ctggccgatg aaatcaccgg gacaattgtg attgccagtc gcctggcccg ttactggcag 1320 tcgcaacggc tccccccgg cgcacgtgcg cgtgggccgc gtgtcatttt tctctcgaac 1380 ggtgccgatc aaaatgggaa tgtttacgga cgcattcaaa gtgccgctat cggtcagctc 1440 attcgtgtgt ggcgtcacga ggctgaactt gactatcagc gtgccagcgc cgccggtgat 1500 catgtgctgc cgccggtatg ggccaatcag attgtgcgct tcgctaaccg cagccttgaa 1560 gggttagaat ttgcctgtgc ctggacagct caattgctcc atagtcaacg ccatatcaat 1620 gagattaccc tcaacatccc tgccaacatt agcgccacca ccggcgcacg cagtgcatcg 1680 gtcggatggg cggaaagcct gatcgggttg catttgggga aagttgcctt gattaccggt 1740 ggcagcgccg gtattggtgg gcagatcggg cgcctcctgg ctttgagtgg cgcgcgcgtg 1800 atgctggcag cccgtgatcg gcataagctc gaacagatgc aggcgatgat ccaatctgag 1860 ctggctgagg tggggtatac cgatgtcgaa gatcgcgtcc acattgcacc gggctgcgat 1920 gtgagtagcg aagcgcagct tgcggatctt gttgaacgta ccctgtcagc ttttggcacc 1980 gtcgattatc tgatcaacaa cgccgggatc gccggtgtcg aagagatggt tatcgatatg 2040 ccagttgagg gatggcgcca taccctcttc gccaatctga tcagcaacta ctcgttgatg 2100 cgcaaactgg cgccgttgat gaaaaaacag ggtagcggtt acatccttaa cgtctcatca 2160 tactttggcg gtgaaaaaga tgcggccatt ccctacccca accgtgccga tacgccgtc 2220 tcgaaggctg gtcagcgggc aatggccgaa gtctttgcgc gcttccttgg cccggagata 2280 cagatcaatg ccattgcgcc gggtccggtc gaaggtgatc gcttgcgcgg taccggtgaa 2340 cgtcccggcc tctttgcccg tcgggcgcgg ctgattttgg agaacaagcg gctgaatgag 2400 cttcacgctg ctcttatcgc ggctgcgcgc accgatgagc gatctatgca cgaactggtt 2460 gaactgctct tacccaatga tgtggccgca ctagagcaga atcccgcagc acctaccgcg 2520 ttgcgtgaac tggcacgacg ttttcgcagc gaaggcgatc cggcggcatc atcaagcagt 2580 gcgctgctga accgttcaat tgccgctaaa ttgctggctc gtttgcataa tggtggctat 2640 gtgttgcctg ccgacatctt tgcaaacctg ccaaacccgc ccgatccctt cttcacccga 2700 gcccagattg atcgcgaggc tcgcaaggtt cgtgacggca tcatggggat gctctacctg 2760 caacggatgc cgactgagtt tgatgtcgca atggccaccg tctattacct tgccgaccgc 2820 aatgtcagtg gtgagacatt ccacccatca ggtggtttgc gttacgaacg cacccctacc 2880 ggtggcgaac tcttcggctt gccctcaccg gaacggctgg cggagctggt cggaagcacg 2940 gtctatctga taggtgaaca tctgactgaa caccttaacc tgcttgcccg tgcgtacctc 3000 gaacgttacg gggcacgtca ggtagtgatg attgttgaga cagaaaccgg ggcagagaca 3060 atgcgtcgct tgctccacga tcacgtcgag gctggtcggc tgatgactat tgtggccggt 3120 gatcagatcg aagccgctat cgaccaggct atcactcgct acggtcgccc agggccggtc 3180 gtctgtaccc ccttccggcc actgccgacg gtaccactgg tcgggcgtaa agacagtgac 3240 tggagcacag tgttgagtga ggctgaattt gccgagttgt gcgaacacca gctcacccac 3300 catttccggg tagcgcgcaa gattgccctg agtgatggtg ccagtctcgc gctggtcact 3360 cccgaaacta cggctacctc aactaccgag caatttgctc tggctaactt catcaaaacg 3420 acccttcacg cttttacggc tacgattggt gtcgagagcg aaagaactgc tcagcgcatt 3480 ctgatcaatc aagtcgatct gacccggcgt gcgcgtgccg aagagccgcg tgatccgcac 3540 gagcgtcaac aagaactgga acgttttatc gaggcagtct tgctggtcac tgcaccactc 3600 ccgcctgaag ccgatacccg ttacgccggg cggattcatc gcggacgggc gattaccgtg 3660 taa 3663 <210> 2 <211> 3898 <212> DNA <213> Methylosinus trichosporium <400> 2 atgaactggt attcgaatgt cgttccgccg aagatcaaag ccctcatcaa gcgcgaggcg 60 cccgagaacg cctgggtcaa atgcccggag agcggccagc tcgtgttcca caaggacata 120 gaggacaatc tctatgtcat tccgggctcg ggctatcaca tgcgcatccc cgtcgaggcg 180 cggctcgcca gcctcttcga cgagggcgag cacgaattgc tgccgacgcc gggaggttccg 240 gccgatccgc tgaaattccg cgacatcaag cgctatgtcg acaagatcaa agagtatcgg 300 ttgaagaccg gccatatcga cgcggtgacg ctggccttcg gcaagctcga ggacgcgccg 360 gtcacggtcg cggtgcagga tttcgacttc atgggcggct cgctcggcat ggcggcgggc 420 gaggcgatcg tcaccggcat gacccatgcg ctggagaagc gcacgccatt catcatcttc 480 accgcctcgg gcggcgcgcg catgcaggag ggcatgttct cgctgatgca gatgccgcgc 540 accacggtcg cggtgcgccg gctgcgcgag gcgcgcttgc cttatatcgt cgtgctcacc 600 aatccgacca cgggcggcgt caccgcctcc tatgcgatgc tgggcgacat tcacatcgcc 660 gagcccggcg cgatcatcgg cttcgccggc gcgcgcgtca tcgagcagac gattcgcgag 720 aagctgccgc agggttttca gcgcgccgaa tatctgcgcg accatggcat ggtcgacatg 780 gtcgtgccgc gccccgagat gcgcgcgaca ttggcgcggc tctgcgctct gctgaccaaa 840 gcgcctcggc gcgccgcctg agtaccgggc cccccctcga ggtcgacggt atcgataagc 900 ttgatatcga gtactactca accaaaccag caagaaggag gttatatatg gcgcgcaaag 960 ctccgacgcg acgcaccccc ccagccaaac cgagagtcgc cgccgccgcc gagacgggcg 1020 tcgacgccgc gctgctgcgc gagatcgcca agctgctcgg cgagagcgat ctcaccgaaa 1080 tcgaggtcca gaaaggcgat ctgcgcataa gggcggcgcg catgccggcg ccggcgccgg 1140 cgatcgccca tggcgcgatc gcgctgccgc cctatgccgc gcagccttat gcgccgccct 1200 atgctgcgcc gccgccgccg gccaagcccg ccgcgcccgc gccggcgagc catgccgacg 1260 cgctgaaatc gccgatggtc ggcaccgcct atctgcgccc gagcccggac gcgcggccct 1320 tcatagaggt cggctcgcgc gtcaccgcgg gcgataagct gctgctcatc gaggcgatga 1380 agacattcaa cgacatcgtc gcgcccaagg gcggcgtcgt caccgccatt ctggtggagg 1440 acggacagcc ggtcgaatat ggcgagcccc tcatcgtgat cgaatagcct gcagcccggg 1500 gtatcgtaga tctacactaa taaagaagga ggtacataat gttcgacaag atcctcatcg 1560 ccaatcgcgg cgagatcgcg cttcgcatcc tgcgcgccgc caaggagctc ggcatcgcca 1620 cggtcgccgt gcattcgacg gcggacgcgg atgcgatgca tgtgaagctc gccgacgaat 1680 ccgtctgcat cggaccgccg gcggcgcgcg actcctatct caacattccc tcgctgctct 1740 cggcctgcga gatcaccggc gccgacgccg tgcatccggg ctatggcttc ctctcggaga 1800 acgcccgttt cgccgagatc gtggccgagc acgggctgac cttcatcggg ccgaaggccg 1860 agcacatccg gctgatgggc gacaagatcg aggccaaggc gacggcgcgg cgcctcggca 1920 ttccgtgcgt gccgggctcg gacggcccga tcgccgacga gatcgaaggc gcgcgcgtcg 1980 ccgcgaagat cggctatccg gtgctggtga aagcggcctc gggcggcggc ggacgcggca 2040 tgaaggtcgc gcgcaacgac accgagctcg ccatcgccat tcccactgcg cgcaccgagg 2100 caaaggccgc cttcggcgac gacacggtct atctcgagaa atatctcgag aagccgcgcc 2160 acatcgaaat ccaggtgttc ggcgacggca agggcgcagc catccatctc ggcgagcgcg 2220 attgctcgct tcagcgtcgc caccaaaaag tgtgggagga aagcccgtcg cccgcgctca 2280 acgacgagca gcgcgccgag atcggcgagg tctgcgccgc ggcgatgcgc gaattgaaat 2340 atgccggcgc cggcacgatc gaattcctct atgagaatgg cgccttctat ttcatcgaga 2400 tgaacacgcg catccaggtc gagcatccgg tgaccgaggc ggtgaccggc gtcgatctcg 2460 tcagcgagca aatccgggtc gcggccggct cgccgctgtc gatgcggcag gaagacatct 2520 ggttctgggg ccatgcgatc gagtgccgcg tcaacgccga gcacccgtcg agctttcggc 2580 cctcgcccgg gcgcatcgcc tattatcacc cgccgggcgg cgtcggcgtg cgcgtcgatt 2640 catcggccta tcagggctac acgatcccgc cgaactatga ctcgctgatc ggcaagctga 2700 tcgtgcatgg ccgcaatcgc accgaggcgc tgatgcgcct gcggcgcgcg ctcgacgaat 2760 tcatcgtcga cggcatcgac acgaccttgc cgttgttccg cacgctggtg cgcaacgccg 2820 atgtgcagaa cggagtctat gacatccact ggctcgagca ttttctggcg acgggcggca 2880 tagagccgac cttctgacac tagttggaat ataataaaaa cactaatcaa aaaggaggtc 2940 cacaatgcgt ttctatctcg acttcgaaaa gcccgtcgcc gagctcgaga ccaaggtcga 3000 ggagctgcgc gctctcgcct ccaagggcga cggcgtgtcg atcggcgagg agctgggcaa 3060 gctcgaggcc aaggccgcca aggcgctcgc cgatctctac gccactttga cgccctggca 3120 gaagatccag gtcgcgcgcc atccgcagcg gccgcatttc tccgattatg tgcgccagct 3180 gttcgacgag ttcacgccgc tcgccggcga tcgcgccttc ggcgaggatt tggctatcgt 3240 cggcggcttt gcgcgctttc gcggcgagcc ggtctgcatc atgggccagg agaagggctc 3300 ggacacgtcg agtcggctcg agcataattt cggcatggcg cggccggagg gctatcgcaa 3360 ggcggcgcgg ctgatggagc tcgccgaccg cttcggcctg ccggtcgtct cgctggtcga 3420 caccgcgggc gccttcccgg gcatagacgc cgaggagcgc ggccaggccg aggccatcgc 3480 ccgctcgacc gaagtgtcgc tgtcgctcgg cgttcccaat gtcgccgtgg tggtggggga 3540 gggcggctcc ggcggcgcca tcgccatcgc cacctgcaac aaggtgctga tgctggagca 3600 cgccgtgtac acggtggcct cgcccgaggc ttcggcctcg atcctgtggc gcgacgccac 3660 caaggcgcag gatgcggcca ccagcatgaa gatcaccgcg caggacctgc tcaaattcgg 3720 catcatcgac gtcatcgtcg ccgagcccgc gggcggcgcg catcgcgagc cgcaggccgc 3780 ggtgacggcg gtcggcgagg cgatcgacca tgcgctcgcc ggcctcggaa acctgtcgcg 3840 ggcgcagatc atcgacgccc gcgcggaaaa atttctgtcg atcggacgca agatctga 3898 <210> 3 <211> 3760 <212> DNA <213> Propionibacterium freudenreichii <400> 3 atgagtccgc gagaaattga ggtttccgag ccgcgcgagg ttggtatcac cgagctcgtg 60 ctgcgcgatg cccatcagag cctgatggcc acacgaatgg caatggaaga catggtcggc 120 gcctgtgcag acatgatgc tgccgggtac tggtcagtgg agtgttgggg tggtgccacg 180 tatgactcgt gtatccgctt cctcaacgag gatccttggg agcgtctgcg cacgttccgc 240 aagctgatgc ccaacagccg tctccagatg ctgctgcgtg gccagaacct gctgggttac 300 cgccactaca acgacgaggt cgtcgatcgc ttcgtcgaca agtccgctga gaacggcatg 360 gacgtgttcc gtgtcttcga cgccatgaat gatccccgca acatggcgca cgccatggct 420 gccgtcaaga aggccggcaa gcacgcgcag ggcaccattt gctacacgat cagcccggtc 480 cacaccgttg agggctatgt caagcttgct ggtcagctgc tcgacatggg tgctgattcc 540 atcgccctga aggacatggc cgccctgctc aagccgcagc cggcctacga catcatcaag 600 gccatcaagg acacctacgg ccagaagacg cagatcaacc tgcactgcca ctccaccacg 660 ggtgtcaccg aggtctccct catgaaggcc atcgaggccg gcgtcgacgt cgtcgacacc 720 gccatctcgt ccatgtcgct cggcccgggc cacaacccca ccgagtcggt tgccgagatg 780 ctcgagggca ccgggtacac caccaacctt gactacgatc gcctgcacaa gatccgcgat 840 cacttcaagg ccatccgccc gaagtacaag aagttcgagt cgaagacgct tgtcgacacc 900 tcgatcttca agtcgcagat ccccggcggc atgctctcca acatggagtc gcagctgcgc 960 gcccagggcg ccgaggacaa gatggacgag gtcatggcag aggtgccgcg cgtccgcaag 1020 gccgccggct tcccgcccct ggtcaccccg tccagccaga tcgtcggcac gcaggccgtg 1080 ttcaacgtga tgatgggcga gtacaagagg atgaccggcg agttcgccga catcatgctc 1140 ggctactacg gcgccagccc ggccgatcgc gatccgaagg tggtcaagtt ggccgaggag 1200 cagtccggca agaagccgat cacccagcgc ccggccgatc tgctgccccc cgagtgggag 1260 gagcagtcca aggaggccgc ggccctcaag ggcttcaacg gcaccgacga ggacgtgctc 1320 acctatgcac tgttcccgca ggtcgctccg gtcttcttcg agcatcgcgc cgagggcccg 1380 cacagcgtgg ctctcaccga tgcccagctg aaggccgagg ccgagggcga cgagaagtcg 1440 ctcgccgtgg ccggtcccgt cacctacaac gtgaacgtgg gcggaaccgt ccgcgaagtc 1500 accgttcagc aggcgtgagg atgattgcca atcatggctg aaaacaacaa tttgaagctc 1560 gccagcacca tggaaggtcg cgtggagcag ctcgcagagc agcgccaggt gatcgaagcc 1620 ggtggcggcg aacgtcgcgt cgagaagcaa cattcccagg gtaagcagac cgctcgtgag 1680 cgcctgaaca acctgctcga tccccattcg ttcgacgagg tcggcgcttt ccgcaagcac 1740 cgcaccacgt tgttcggcat ggacaaggcc gtcgtcccgg cagatggcgt ggtcaccggc 1800 cgtggcacca tccttggtcg tcccgtgcac gccgcgtccc aggacttcac ggtcatgggt 1860 ggttcggctg gcgagacgca gtccacgaag gtcgtcgaga cgatggaaca ggcgctgctc 1920 accggcacgc ccttcctgtt cttctacgat tcgggcggcg cccggatcca ggagggcatc 1980 gactcgctga gcggttacgg caagatgttc ttcgccaacg tgaagctgtc gggcgtcgtg 2040 ccgcagatcg ccatcattgc cggcccctgt gccggtggcg cctcgtattc gccggcactg 2100 actgacttca tcatcatgac caagaaggcc catatgttca tcaggggccc ccaggtcatc 2160 aagtcggtca ccggcgagga tgtcaccgct gacgaactcg gtggcgctga ggcccatatg 2220 gccatctcgg gcaatatcca cttcgtggcc gaggacgacg acgccgcgga gctcattgcc 2280 aagaagctgc tgagcttcct tccgcagaac aacactgagg aagcatcctt cgtcaacccg 2340 aacaatgacg tcagccccaa taccgagctg cgcgacatcg ttccgattga cggcaagaag 2400 ggctatgacg tgcgcgatgt cattgccaag atcgtcgact ggggtgacta cctcgaggtc 2460 aaggccggct atgccaccaa cctcgtgacc gccttcgccc gggtcaatgg tcgttcggtg 2520 ggcatcgtgg ccaatcagcc gtcggtgatg tcgggttgcc tcgacatcaa cgcctctgac 2580 aaggccgccg aattcgtgaa tttctgcgat tcgttcaaca tcccgctggt gcagctggtc 2640 gacgtgccgg gcttcctgcc cggcgtgcag caggagtacg gcggcatcat tcgccatggc 2700 gcgaagatgc tgtacgccta ctccgaggcc accgtgccga agatcaccgt ggtgctccgc 2760 aaggcctacg gcggctccta cctggccatg tgcaaccgtg accttggtgc cgacgccgtg 2820 tacgcctggc ccagcgccga gattgcggtg atgggcgccg agggtgcggc aaatgtgatc 2880 ttccgcaagg agatcaaggc tgccgacgat cccgacgcca tgcgcgccga gaagatcgag 2940 gagtaccaga acgcgttcaa cacgccgtac gtggccgccg cccgcggtca ggtcgacgac 3000 gtgattgacc cggctgatac ccgtcgaaag attgcttccg ccctggagat gtacgccacc 3060 aagcgtcaga cccgcccggc gaagaagcat ggaaacttcc cctgctgagc gaggagagaa 3120 attatggctg atgaggaaga gaaggacctg atgatcgcca cgctcaacaa gcgcgtcgcg 3180 tcattggagt ctgagttggg ttcactccag agcgataccc agggtgtcac cgaggacgta 3240 ctgacggcca tttcggccgc cgttgcggcc tatctcggca acgatggatc ggctgaggtc 3300 gtccatttcg ccccgagccc gaactgggtc cgcgagggtc gtcgggctct gcagaaccat 3360 tccattcgtt gatccgggag taactcacat gaaactgaag gtaacagtca acggcactgc 3420 gtatgacgtt gacgttgacg tcgacaagtc acacgaaaac ccgatgggca ccatcctgtt 3480 cggcggcggc accggcggcg cgccggcacc gcgcgcagca ggtggcgcag gcgccggtaa 3540 ggccggagag ggcgagattc ccgctccgct ggccggcacc gtctccaaga tcctcgtgaa 3600 ggagggtgac acggtcaagg ctggtcagac cgtgctcgtt ctcgaggcca tgaagatgga 3660 gaccgagatc aacgctccca ccgacggcaa ggtcgagaag gtccttgtca aggagcgtga 3720 cgccgtgcag ggcggtcagg gtctcatcaa gatcggctga 3760 <210> 4 <211> 2643 <212> DNA <213> Chloroflexus aurantiacus <400> 4 atgatcgaca ctgcgcccct tgccccacca cgggcgcccc gctctaatcc gattcgggat 60 cgagttgatt gggaagctca gcgcgctgct gcgctggcag atcccggtgc ctttcatggc 120 gcgattgccc ggacagttat ccactggtac gacccacaac accattgctg gattcgcttc 180 aacgagtcta gtcagcgttg ggaagggctg gatgccgcta ccggtgcccc tgtaacggta 240 gactatcccg ccgattatca gccctggcaa caggcgtttg atgatagtga agcgccgttt 300 taccgctggt ttagtggtgg gttgacaaat gcctgcttta atgaagtaga ccggcatgtc 360 atgatgggct atggcgacga ggtggcctac tactttgaag gtgaccgctg ggataactcg 420 ctcaacaatg gtcgtggtgg tccggttgtc caggagacaa tcacgcggcg gcgcctgttg 480 gtggaggtgg tgaaggctgc gcaggtgttg cgtgatctgg gcctgaagaa gggtgatcgg 540 attgctctga atatgccgaa tattatgccg cagattatt atacggaagc ggcaaaacga 600 ctgggtattc tgtacacgcc ggtcttcggt ggcttctcgg acaagactct ttccgaccgt 660 attcacaatg ccggtgcacg agtggtgatt acctctgatg gtgcgtaccg caacgcgcag 720 gtggtgccct acaaagaagc gtataccgat caggcgctcg ataagtatat tccggttgag 780 acggcgcagg cgattgttgc gcagaccctg gccaccttgc ccctgactga gtcgcagcgc 840 cagacgatca tcaccgaagt ggaggccgca ctggccggtg agattacggt tgagcgctcg 900 gacgtgatgc gtggggttgg ttctgccctc gcaaagctcc gcgatcttga tgcaagcgtg 960 caggcaaagg tgcgtacagt actggcgcag gcgctggtcg agtcgccgcc gcgggttgaa 1020 gctgtggtgg ttgtgcgtca taccggtcag gagattttgt ggaacgaggg gcgagatcgc 1080 tggagtcacg acttgctgga tgctgcgctg gcgaagattc tggccaatgc gcgtgctgcc 1140 ggctttgatg tgcacagtga gaatgatctg ctcaatctcc ccgatgacca gcttatccgt 1200 gcgctctacg ccagtattcc ctgtgaaccg gttgatgctg aatatccgat gtttatcatt 1260 tacacatcgg gtagcaccgg taagcccaag ggtgtgatcc acgttcacgg cggttatgtc 1320 gccggtgtgg tgcacacctt gcgggtcagt tttgacgccg agccgggtga tacgatatat 1380 gtgatcgccg atccgggctg gatcaccggt cagagctata tgctcacagc cacaatggcc 1440 ggtcggctga ccggggtgat tgccgaggga tcaccgctct tcccctcagc cgggcgttat 1500 gccagcatca tcgagcgcta tggggtgcag atctttaagg cgggtgtgac cttcctcaag 1560 acagtgatgt ccaatccgca gaatgttgaa gatgtgcgac tctatgatat gcactcgctg 1620 cgggttgcaa ccttctgcgc cgagccggtc agtccggcgg tgcagcagtt tggtatgcag 1680 atcatgaccc cgcagtatat caattcgtac tgggcgaccg agcacggtgg aattgtctgg 1740 acgcatttct acggtaatca ggacttcccg cttcgtcccg atgcccatac ctatcccttg 1800 ccctgggtga tgggtgatgt ctgggtggcc gaaactgatg agagcgggac gacgcgctat 1860 cgggtcgctg atttcgatga gaagggcgag attgtgatta ccgccccgta tccctacctg 1920 acccgcacac tctggggtga tgtgcccggt ttcgaggcgt acctgcgcgg tgagattccg 1980 ctgcgggcct ggaagggtga tgccgagcgt ttcgtcaaga cctactggcg acgtgggcca 2040 aacggtgaat ggggctatat ccagggtgat tttgccatca agtaccccga tggtagcttc 2100 acgctccacg gacgctctga cgatgtgatc aatgtgtcgg gccaccgtat gggcaccgag 2160 gagattgagg gtgccatttt gcgtgaccgc cagatcacgc ccgactcgcc cgtcggtaat 2220 tgtattgtgg tcggtgcgcc gcaccgtgag aagggtctga ccccggttgc cttcattcaa 2280 cctgcgcctg gccgtcatct gaccggcgcc gaccggcgcc gtctcgatga gctggtgcgt 2340 accgagaagg gggcggtcag tgtcccagag gattacatcg aggtcagtgc ctttcccgaa 2400 acccgcagcg ggaagtatat gcggcgcttt ttgcgcaata tgatgctcga tgaaccactg 2460 ggtgatacga cgacgttgcg caatcctgaa gtgctcgaag agattgcagc caagatcgct 2520 gagtggaaac gccgtcagcg tatggccgaa gagcagcaga tcatcgaacg ctatcgctac 2580 ttccggatcg agtatcaccc accaacggcc agtgcgggta aactcgcggt agtgacggtg 2640 aca 2643 <210> 5 <211> 1986 <212> DNA <213> Metallosphaera sedula <400> 5 atgtttatgc gatatattat ggttgaggaa cagaccctga agaccgggtc acaggaacta 60 gaggagaagg cagactataa catgagatat tacgctcacc tcatgaagtt gagtaaggaa 120 aaacctgcag agttctgggg atctctagca caggacctgc tagactggta tgagccttgg 180 aaggagacca tgagacagga agacccgatg acaaggtggt tcataggagg taagataaat 240 gcctcgtaca acgctgtcga cagacacctc aacggcccca gaaagttcaa ggctgcggtc 300 atctgggaaa gtgagttagg ggaaaggaag atcgtgacgt atcaggacat gttctatgag 360 gttaataggt gggccaatgc gctcagatcc ctaggagttg gtaaagggga tagggtgacc 420 atatacatgc ccctgacccc agagggaata gctgcaatgc tggcctcggc caggataggt 480 gcaattcata gcgtaatatt tgccggcttt ggttcgcaag ccatagccga cagggttgag 540 gacgccaagg cgaaggtagt gatcactgct gacgcctatc ccagaagggg aaaggttgtg 600 gagttaaaga agactgtcga cgaggcctta aactcccttg gagaaaggag cccagtacag 660 cacgtgctcg tgtataggag gatgaaaacg gatgtaaaca tgaaggaggg aagagacgtt 720 ttcttcgacg aggtcggcaa gtacaggtac gtggagcctg aaaggatgga ctccaatgat 780 ccactcttca ttctctacac ctctgggacc accggtaaac ctaagggaat tatgcactct 840 accggtggtt atctgaccgg gacagccgtt atgctactgt ggagctacgg ccttagccag 900 gagaacgacg ttctcttcaa cacctcagat attggttgga tagttggcca ctcctacatt 960 acctattccc cccttatcat ggggagaacg gttgtcattt acgagagcgc cccagactat 1020 ccctacccag acaagtgggc tgagattatt gagagataca gggcaaccac tttcggcacc 1080 tcagctacag ccttgcgtta cttcatgaag tatggggacg aatacgtgaa gaaccacgat 1140 ctctcgtcca tcaggataat tgtgacgaac ggggaagtgc ttaactactc tccgtggaag 1200 tgggggctag aagtgttagg tggaggaaag gtattcatgt cccatcagtg gtggcaaact 1260 gagacaggcg caccgaacct gggctacctt ccgggtataa tttacatgcc aatgaagtcg 1320 ggtccagcct caggcttccc tctacccggt aacttcgtgg aggttctgga cgagaacgga 1380 aatccctctg cccctagagt gagaggatac cttgtaatga ggccaccctt cccgcctaac 1440 atgatgatgg ggatgtggaa cgataatggg gagaggttga agaagacgta ctttagcaag 1500 ttcggttccc tgtattatcc aggagacttc gccatggtgg atgaggatgg atacatctgg 1560 gtgttgggta gggcagacga gactctaaaa attgcagccc acagaattgg agctggggaa 1620 gtggaatcag caatcacttc tcacccatcg gttgccgagg cagcagtcat aggcgtgcca 1680 gactcagtga aaggagaaga ggttcacgcg ttcgttgtgc taaagcaagg tacgctcct 1740 tcctctgaac tggctaagga catacagtca cacgttagga aggtcatggg gcccattgtt 1800 agtccgcaga ttcatttcgt ggataagttg cctaagacaa ggtctgggaa ggtcatgaga 1860 agggtgataa aggcagtgat gatgggttcg agtgctggcg acttaaccac catagaggac 1920 gaagcatcaa tggacgaaat aaagaaggct gtcgaggaac taaagaagga gttaaagacc 1980 tcctag 1986 <210> 6 <211> 3851 <212> DNA <213> Ralstonia eutropha <400> 6 atggcgaccg gcaaaggcgc ggcagcttcc acgcaggaag gcaagtccca accattcaag 60 gtcacgccgg ggccattcga tccagccaca tggctggaat ggtcccgcca gtggcagggc 120 actgaaggca acggccacgc ggccgcgtcc ggcattccgg gcctggatgc gctggcaggc 180 gtcaagatcg cgccggcgca gctgggtgat atccagcagc gctacatgaa ggacttctca 240 gcgctgtggc aggccatggc cgagggcaag gccgaggcca ccggtccgct gcacgaccgg 300 cgcttcgccg gcgacgcatg gcgcaccaac ctcccatatc gcttcgctgc cgcgttctac 360 ctgctcaatg cgcgcgcctt gaccgagctg gccgatgccg tcgaggccga tgccaagacc 420 cgccagcgca tccgcttcgc gatctcgcaa tgggtcgatg cgatgtcgcc cgccaacttc 480 cttgccacca atcccgaggc gcagcgcctg ctgatcgagt cgggcggcga atcgctgcgt 540 gccggcgtgc gcaacatgat ggaagacctg acacgcggca agatctcgca gaccgacgag 600 agcgcgtttg aggtcggccg caatgtcgcg gtgaccgaag gcgccgtggt cttcgagaac 660 gagtacttcc agctgttgca gtacaagccg ctgaccgaca aggtgcacgc gcgcccgctg 720 ctgatggtgc cgccgtgcat caacaagtac tacatcctgg acctgcagcc ggagagctcg 780 ctggtgcgcc atgtggtgga gcagggacat acggtgtttc tggtgtcgtg gcgcaatccg 840 gacgccagca tggccggcag cacctgggac gactacatcg agcacgcggc catccgcgcc 900 atcgaagtcg cgcgcgacat cagcggccag gacaagatca acgtgctcgg cttctgcgtg 960 ggcggcacca ttgtctcgac cgcgctggcg gtgctggccg cgcgcggcga gcacccggcc 1020 gccagcgtca cgctgctgac cacgctgctg gactttgccg acacgggcat cctcgacgtc 1080 tttgtcgacg agggccatgt gcagttgcgc gaggccacgc tgggcggcgg cgccggcgcg 1140 ccgtgcgcgc tgctgcgcgg ccttgagctg gccaatacct tctcgttctt gcgcccgaac 1200 gacctggtgt ggaactacgt ggtcgacaac tacctgaagg gcaacacgcc ggtgccgttc 1260 gacctgctgt tctggaacgg cgacgccacc aacctgccgg ggccgtggta ctgctggtac 1320 ctgcgccaca cctacctgca gaacgagctc aaggtaccgg gcaagctgac cgtgtgcggc 1380 gtgccggtgg acctggccag catcgacgtg ccgacctata tctacggctc gcgcgaagac 1440 catatcgtgc cgtggaccgc ggcctatgcc tcgaccgcgc tgctggcgaa caagctgcgc 1500 ttcgtgctgg gtgcgtcggg ccatatcgcc ggtgtgatca acccgccggc caagaacaag 1560 cgcagccact ggactaacga tgcgctgccg gagtcgccgc agcaatggct ggccggcgcc 1620 atcgagcatc acggcagctg gtggccggac tggaccgcat ggctggccgg gcaggccggc 1680 gcgaaacgcg ccgcgcccgc caactatggc aatgcgcgct atcgcgcaat cgaacccgcg 1740 cctgggcgat acgtcaaagc caaggcatga cgcttgcatg agtgccggcg tgcgtcatgc 1800 acggcgccgg caggcctgca ggttccctcc cgtttccatt gaaaggacta cacaatgact 1860 gacgttgtca tcgtatccgc cgcccgcacc gcggtcggca agtttggcgg ctcgctggcc 1920 aagatcccgg caccggaact gggtgccgtg gtcatcaagg ccgcgctgga gcgcgccggc 1980 gtcaagccgg agcaggtgag cgaagtcatc atgggccagg tgctgaccgc cggttcgggc 2040 cagaaccccg cacgccaggc cgcgatcaag gccggcctgc cggcgatggt gccggccatg 2100 accatcaaca aggtgtgcgg ctcgggcctg aaggccgtga tgctggccgc caacgcgatc 2160 atggcgggcg acgccgagat cgtggtggcc ggcggccagg aaaacatgag cgccgccccg 2220 cacgtgctgc cgggctcgcg cgatggtttc cgcatgggcg atgccaagct ggtcgacacc 2280 atgatcgtcg acggcctgtg ggacgtgtac aaccagtacc acatgggcat caccgccgag 2340 aacgtggcca aggaatacgg catcacacgc gaggcgcagg atgagttcgc cgtcggctcg 2400 cagaacaagg ccgaagccgc gcagaaggcc ggcaagtttg acgaagagat cgtcccggtg 2460 ctgatcccgc agcgcaaggg cgacccggtg gccttcaaga ccgacgagtt cgtgcgccag 2520 ggcgccacgc tggacagcat gtccggcctc aagcccgcct tcgacaaggc cggcacggtg 2580 accgcggcca acgcctcggg cctgaacgac ggcgccgccg cggtggtggt gatgtcggcg 2640 gccaaggcca aggaactggg cctgaccccg ctggccacga tcaagagcta tgccaacgcc 2700 ggtgtcgatc ccaaggtgat gggcatgggc ccggtgccgg cctccaagcg cgccctgtcg 2760 cgcgccgagt ggaccccgca agacctggac ctgatggaga tcaacgaggc ctttgccgcg 2820 caggcgctgg cggtgcacca gcagatgggc tgggacacct ccaaggtcaa tgtgaacggc 2880 ggcgccatcg ccatcggcca cccgatcggc gcgtcgggct gccgtatcct ggtgacgctg 2940 ctgcacgaga tgaagcgccg tgacgcgaag aagggcctgg cctcgctgtg catcggcggc 3000 ggcatgggcg tggcgctggc agtcgagcgc aaataaggaa ggggttttcc ggggccgcgc 3060 gcggttggcg cggacccggc gacgataacg aagccaatca aggagtggac atgactcagc 3120 gcattgcgta tgtgaccggc ggcatgggtg gtatcggaac cgccatttgc cagcggctgg 3180 ccaaggatgg ctttcgtgtg gtggccggtt gcggccccaa ctcgccgcgc cgcgaaaagt 3240 ggctggagca gcagaaggcc ctgggcttcg atttcattgc ctcggaaggc aatgtggctg 3300 actgggactc gaccaagacc gcattcgaca aggtcaagtc cgaggtcggc gaggttgatg 3360 tgctgatcaa caacgccggt atcacccgcg acgtggtgtt ccgcaagatg acccgcgccg 3420 actgggatgc ggtgatcgac accaacctga cctcgctgtt caacgtcacc aagcaggtga 3480 tcgacggcat ggccgaccgt ggctggggcc gcatcgtcaa catctcgtcg gtgaacgggc 3540 agaagggcca gttcggccag accaactact ccaccgccaa ggccggcctg catggcttca 3600 ccatggcact ggcgcaggaa gtggcgacca agggcgtgac cgtcaacacg gtctctccgg 3660 gctatatcgc caccgacatg gtcaaggcga tccgccagga cgtgctcgac aagatcgtcg 3720 cgacgatccc ggtcaagcgc ctgggcctgc cggaagagat cgcctcgatc tgcgcctggt 3780 tgtcgtcgga ggagtccggt ttctcgaccg gcgccgactt ctcgctcaac ggcggcctgc 3840 atatgggctg a 3851

Claims (6)

말로닐-CoA 환원 효소(malonyl-CoA reductase, MCR); 아세틸-CoA 카르복실화 효소(acetyl-CoA carboxylase, ACC); 메틸말로닐-CoA 카르복실전달효소(Methylmalonyl-CoA carboxyltransferase, MMC); ATP 의존성 아실 CoA 합성효소 (ATP-dependent acyl-CoA synthetase, ACS); 3-하이드록시프로피오닐 CoA 합성효소 (3-hydroxypropionyl-CoA synthetase, 3HPCS); PHA 합성유전자(phaC); β-케토티올라제(β-ketothiolase, phaA) 및 NADPH 의존적 아세토아세틸-CoA 환원효소(NADPH dependent acetoacetyl-CoA reductase, phaB)가 도입 또는 과발현되어 3-하이드록시부티레이트-3-하이드록시프로피오네이트 공중합체 생산능을 가지는 형질전환된 메탄자화균으로서,
상기 형질전환된 메탄자화균은, MCR, ACC, ACS를 포함하는 벡터로 형질전환된 OB3b-MCRA-AS 균주;
MCR, ACC, ACS, phaCAB를 포함하는 벡터로 형질전환된 OB3b-MCRA-ASP 균주;
MCR, ACC, 3HPCS를 포함하는 벡터로 형질전환된 OB3b-MCRA-3P 균주;
MCR, ACC, 3HPCS, phaCAB를 포함하는 벡터로 형질전환된 OB3b-MCRA-3SP 균주; 및
MCR, MMC, 3HPCS를 포함하는 벡터로 형질전환된 OB3b-MCRM-3S 균주로 이루어진 군에서 선택된 균주이며,
상기 형질전환된 메탄자화균은 기질로서 메탄을 이용하는, 메탄자화균.
malonyl-CoA reductase (MCR); acetyl-CoA carboxylase (ACC); Methylmalonyl-CoA carboxyltransferase (MMC); ATP-dependent acyl-CoA synthetase (ACS); 3-hydroxypropionyl-CoA synthetase (3HPCS); PHA synthetic gene (phaC); β-ketothiolase (phaA) and NADPH dependent acetoacetyl-CoA reductase (NADPH dependent acetoacetyl-CoA reductase, phaB) are introduced or overexpressed to induce 3-hydroxybutyrate-3-hydroxypropionate As a transformed methanogen having a copolymer-producing ability,
The transformed methanogenic bacteria include: OB3b-MCRA-AS strain transformed with a vector containing MCR, ACC, and ACS;
OB3b-MCRA-ASP strain transformed with a vector containing MCR, ACC, ACS, and phaCAB;
OB3b-MCRA-3P strain transformed with a vector containing MCR, ACC, and 3HPCS;
OB3b-MCRA-3SP strain transformed with a vector containing MCR, ACC, 3HPCS, and phaCAB; and
It is a strain selected from the group consisting of OB3b-MCRM-3S strain transformed with a vector containing MCR, MMC, and 3HPCS,
The transformed methanogenic bacteria using methane as a substrate, methanogenic bacteria.
제 1항에 있어서,
상기 말로닐-CoA 환원 효소(malonyl-CoA reductase, MCR)는 서열번호 1;
아세틸-CoA 카르복실화 효소(acetyl-CoA carboxylase, ACC)는 서열번호 2;
메틸말로닐-CoA 카르복실전달효소(Methylmalonyl-CoA carboxyltransferase, MMC)는 서열번호 3;
ATP 의존성 아실 CoA 합성효소 (ATP-dependent acyl-CoA synthetase, ACS)는 서열번호 4;
3-하이드록시프로피오닐 CoA 합성효소 (3-hydroxypropionyl-CoA synthetase, 3HPCS)는 서열번호 5;
PHA 합성유전자(phaC), β-케토티올라제(β-ketothiolase, phaA) 및 NADPH 의존적 아세토아세틸-CoA 환원효소(NADPH dependent acetoacetyl-CoA reductase, phaB)는 서열번호 6 의 염기서열로 이루어진 유전자로 각각 코딩되는 것을 특징으로 하는 형질전환된 메탄자화균.
The method of claim 1,
The malonyl-CoA reductase (malonyl-CoA reductase, MCR) is SEQ ID NO: 1;
Acetyl-CoA carboxylase (ACC) is SEQ ID NO: 2;
Methylmalonyl-CoA carboxyltransferase (MMC) is SEQ ID NO: 3;
ATP-dependent acyl-CoA synthetase (ACS) is SEQ ID NO: 4;
3-hydroxypropionyl-CoA synthetase (3HPCS) is SEQ ID NO: 5;
The PHA synthesis gene (phaC), β-ketothiolase (β-ketothiolase, phaA) and NADPH dependent acetoacetyl-CoA reductase (phaB) are genes consisting of the nucleotide sequence of SEQ ID NO: 6 Transformed methanogenic bacteria, characterized in that each is encoded.
제 1항에 있어서,
상기 메탄자화균은 메틸로모나스 속(Methylomonas), 메틸로박터 속(Methylobacter), 메틸로코커스 속(Methylococcus), 메틸로스페라 속(Methylosphaera), 메틸로칼덤 속(Methylocaldum), 메틸로글로버스 속(Methyloglobus), 메틸로사르시나 속(Methylosarcina), 메틸로프로펀더스 속(Methyloprofundus), 메틸로썰머스 속(Methylothermus), 메틸로할로비우스 속(Methylohalobius), 메틸로게아 속(Methylogaea), 메틸로마리넘 속(Methylomarinum), 메틸로벌럼 속(Methylovulum), 메틸로마리노범 속(Methylomarinovum), 메틸로러브럼 속(Methylorubrum), 메틸로파라코커스 속(Methyloparacoccus), 메틸로시스티스 속(Methylocystis), 메틸로셀라 속(Methylocella), 메틸로캡사 속(Methylocapsa), 메틸로퍼룰라 속(Methylofurula), 메틸아시디필럼 속(Methylacidiphilum), 메틸아시디마이크로븀 속(Methylacidimicrobium), 메틸로마이크로븀(Methylomicrobium) 속 및 메틸로시 너스 속(Methylosinus) 균주를 포함하는 군에서 선택되는 것인, 형질전환된 메탄자화균.
The method of claim 1,
The methanobacteria are genus Methylomonas, genus Methylobacter, genus Methylococcus, genus Methylosphaera, genus methylocaldum (Methylocaldum), methyloglobus Methyloglobus, Methylosarcina, Methyloprofundus, Methylothermus, Methylohalobius, Methylogaea , genus Methylomarinum, genus Methylovulum, genus Methylomarinovum, genus Methylorubrum, genus Methyloparacoccus, genus Methyloparacoccus (Methylocystis), genus Methylocella, genus Methylocapsa, genus Methylofurula, genus Methylacidiphilum, genus Methylacidimicrobium, methylomicro Bium (Methylomicrobium) genus and methyl locinus genus (Methylosinus) will be selected from the group comprising strains, transformed methanogenic bacteria.
제1항에 있어서,
상기 메탄자화균은 메틸로시너스 트리코스포륨(Methylosinus trichosporium) OB3b인, 형질전환된 메탄자화균.
According to claim 1,
The methanogenic bacteria is methylosinus trichosporium (Methylosinus trichosporium) OB3b, the transformed methanogen.
제1항 내지 제4항 중 어느 한 항의 메탄자화균 및 기질로서 메탄을 포함하는 3-하이드록시부티레이트-3-하이드록시프로피오네이트 공중합체 생산용 조성물.
A composition for producing a 3-hydroxybutyrate-3-hydroxypropionate copolymer comprising methane as a substrate and the methanogenic bacteria of any one of claims 1 to 4.
제1항 내지 제4항 중 어느 한 항의 메탄자화균을 기질로서 메탄이 포함된 배지에서 배양하여 전환 반응을 유도하는 단계; 및
상기 배지로부터 3-하이드록시부티레이트-3-하이드록시프로피오네이트 공중합체를 회수하는 단계를 포함하는 3-하이드록시부티레이트-3-하이드록시프로피오네이트 공중합체의 생산 방법.
Inducing a conversion reaction by culturing the methanogenic bacteria of any one of claims 1 to 4 in a medium containing methane as a substrate; and
Method for producing 3-hydroxybutyrate-3-hydroxypropionate copolymer comprising the step of recovering 3-hydroxybutyrate-3-hydroxypropionate copolymer from the medium.
KR1020190131967A 2019-10-23 2019-10-23 Production of poly(3HB-co-3HP) from methane by metabolic engineered methanotrophs KR102311152B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190131967A KR102311152B1 (en) 2019-10-23 2019-10-23 Production of poly(3HB-co-3HP) from methane by metabolic engineered methanotrophs

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190131967A KR102311152B1 (en) 2019-10-23 2019-10-23 Production of poly(3HB-co-3HP) from methane by metabolic engineered methanotrophs

Publications (2)

Publication Number Publication Date
KR20210048625A KR20210048625A (en) 2021-05-04
KR102311152B1 true KR102311152B1 (en) 2021-10-13

Family

ID=75913774

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190131967A KR102311152B1 (en) 2019-10-23 2019-10-23 Production of poly(3HB-co-3HP) from methane by metabolic engineered methanotrophs

Country Status (1)

Country Link
KR (1) KR102311152B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230173870A (en) 2022-06-20 2023-12-27 경희대학교 산학협력단 Development of recombinant Pseudomonas putida for direct bio-upgrading of ethanol and glycerol to polyhydroxyalkanoates
CN115851510B (en) * 2022-10-13 2023-09-12 深圳中科翎碳生物科技有限公司 Salmonella and application thereof in co-production of tetrahydropyrimidine and polyhydroxyalkanoate

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100979694B1 (en) * 2005-05-24 2010-09-02 한국과학기술원 Cells or Plants Having an Producing Ability of Polylactate or Its Copolymers and Method for Preparing Polylactate or Its Copolymers Using the Same
KR100957776B1 (en) * 2006-11-23 2010-05-12 주식회사 엘지화학 Novel Copolymer of [poly3-hydroxybutyrate-co-hydroxypropionate-co-lactate] and Method for Preparing the Same
KR102088504B1 (en) * 2015-09-03 2020-03-12 주식회사 엘지화학 Copolymer comprising 3-hydroxypropionate, 2-hydroxybutyrate and lactate as repeating unit and method for preparing the same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Applied and Environmental Microbiology, Vol. 76, pp. 4919-4925 (2010.)
Metabolic Engineering, Vol. 29, pp. 189-195 (2015.)

Also Published As

Publication number Publication date
KR20210048625A (en) 2021-05-04

Similar Documents

Publication Publication Date Title
Mitra et al. Current developments on polyhydroxyalkanoates synthesis by using halophiles as a promising cell factory
RU2710714C2 (en) Compositions and methods for biological production of lactate from c1-compounds using transformants of lactate dehydrogenase
Zhao et al. Poly (3-hydroxybutyrate-co-3-hydroxyvalerate) production by Haloarchaeon Halogranum amylolyticum
Zhou et al. Production of 3-hydroxypropionate homopolymer and poly (3-hydroxypropionate-co-4-hydroxybutyrate) copolymer by recombinant Escherichia coli
Ma et al. Poly (3-hydroxybutyrate-co-3-hydroxyvalerate) co-produced with l-isoleucine in Corynebacterium glutamicum WM001
WO2009145164A1 (en) Microorganism capable of producing improved polyhydroxyalkanoate and method of producing polyhydroxyalkanoate by using the same
CN101720356A (en) Enzyme for the production of methylmalonyl coenzyme a or ethylmalonyl coenzyme a, and use thereof
CN110079489B (en) Recombinant halomonas and method for producing P (3HB-co-4HB) by using same
CN114480317B (en) Engineered microorganisms expressing acetoacetyl-coa reductase variants and methods of increasing PHA production
CN111705029A (en) Method for efficiently producing 3-hydroxypropionic acid (3HP) and derivatives thereof based on halophilic bacteria
US20230303966A1 (en) Recombinant bacterium with a high pha yield and the construction method thereof
Nguyen et al. Methane-based biosynthesis of 4-hydroxybutyrate and P (3-hydroxybutyrate-co-4-hydroxybutyrate) using engineered Methylosinus trichosporium OB3b
KR102311152B1 (en) Production of poly(3HB-co-3HP) from methane by metabolic engineered methanotrophs
JP2022530467A (en) Generation of chemicals from renewable resources
Pu et al. Characterization of polyhydroxyalkanoate synthases from the marine bacterium Neptunomonas concharum JCM17730
Kek et al. Heterologous expression of Cupriavidus sp. USMAA2-4 PHA synthase gene in PHB− 4 mutant for the production of poly (3-hydroxybutyrate) and its copolymers
JP2008086238A (en) Method for producing polyhydroxyalkanoate
JPWO2008090873A1 (en) Process for producing polyhydroxyalkanoate
MX2011000351A (en) Method for polymerising glycolic acid with microorganisms.
KR100447532B1 (en) (R)-Hydroxycarboxylic Acid Producing Recombinant Microorganism and Process for Preparing (R)-Hydroxycarboxylic Acid Using the Same
KR102120996B1 (en) Transformed methanotrophs for producing 3-Hydroxypropionic acid and uses thereof
KR102339122B1 (en) Production of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) from methane by metabolic engineered methanotrophs
CN111363713A (en) Construction method and application of genetic engineering escherichia coli for improving content of lactic acid component in polyhydroxybutyrate lactate
KR102331270B1 (en) Transformed microorganism producing polyhydroxyalkanoate
JP2009225775A (en) Method of producing polyhydroxyalkanoic acid

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant