KR102308854B1 - The pharmaceutical composition for prevention and treatment of coronavirus disease-19 containing carbocyclic nucleosides derivatives - Google Patents

The pharmaceutical composition for prevention and treatment of coronavirus disease-19 containing carbocyclic nucleosides derivatives Download PDF

Info

Publication number
KR102308854B1
KR102308854B1 KR1020210026365A KR20210026365A KR102308854B1 KR 102308854 B1 KR102308854 B1 KR 102308854B1 KR 1020210026365 A KR1020210026365 A KR 1020210026365A KR 20210026365 A KR20210026365 A KR 20210026365A KR 102308854 B1 KR102308854 B1 KR 102308854B1
Authority
KR
South Korea
Prior art keywords
formula
pharmaceutical composition
present
acid
reaction
Prior art date
Application number
KR1020210026365A
Other languages
Korean (ko)
Inventor
이혁우
손서현
강지윤
장휴정
서성욱
Original Assignee
퓨쳐메디신 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 퓨쳐메디신 주식회사 filed Critical 퓨쳐메디신 주식회사
Priority to KR1020210026365A priority Critical patent/KR102308854B1/en
Priority to KR1020210082247A priority patent/KR20220122441A/en
Application granted granted Critical
Publication of KR102308854B1 publication Critical patent/KR102308854B1/en
Priority to CA3208876A priority patent/CA3208876A1/en
Priority to JP2023552043A priority patent/JP2024508827A/en
Priority to EP22759972.7A priority patent/EP4272747A1/en
Priority to AU2022227430A priority patent/AU2022227430A1/en
Priority to CN202280017112.0A priority patent/CN116940366A/en
Priority to US18/277,982 priority patent/US20240148769A1/en
Priority to PCT/KR2022/002329 priority patent/WO2022182054A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/519Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim ortho- or peri-condensed with heterocyclic rings
    • A61K31/52Purines, e.g. adenine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7042Compounds having saccharide radicals and heterocyclic rings
    • A61K31/7052Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides
    • A61K31/706Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom
    • A61K31/7064Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom containing condensed or non-condensed pyrimidines
    • A61K31/7076Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom containing condensed or non-condensed pyrimidines containing purines, e.g. adenosine, adenylic acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses

Abstract

The present invention relates to a pharmaceutical composition for preventing or treating coronavirus infection-19 (COVID-19). Specifically, the present invention relates to a pharmaceutical composition which contains a carbocyclic nucleoside derivative represented by chemical formula A-1 or chemical formula A-2 or a pharmaceutically acceptable salt thereof.

Description

카보사이클릭 뉴클레오사이드 유도체를 포함하는 코로나바이러스감염증-19 예방 및 치료용 약학적 조성물 {THE PHARMACEUTICAL COMPOSITION FOR PREVENTION AND TREATMENT OF CORONAVIRUS DISEASE-19 CONTAINING CARBOCYCLIC NUCLEOSIDES DERIVATIVES}A pharmaceutical composition for preventing and treating coronavirus infection-19 comprising a carbocyclic nucleoside derivative

본 발명은 카보사이클릭 뉴클레오사이드 유도체를 포함하는 코로나바이러스감염증-19 예방 및 치료용 약학적 조성물에 관한 것으로서, 구체적으로는 SARS-CoV-2에 대한 우수한 감염 저해능과 낮은 세포독성을 가져 코로나바이러스감염증-19를 예방 또는 치료하는데 활용될 수 있는 카보사이클릭 뉴클레오사이드 유도체를 포함하는 약학적 조성물에 관한 것이다.The present invention relates to a pharmaceutical composition for the prevention and treatment of coronavirus infection-19 containing a carbocyclic nucleoside derivative, and specifically, has excellent infection inhibition ability and low cytotoxicity against SARS-CoV-2, so that the coronavirus It relates to a pharmaceutical composition comprising a carbocyclic nucleoside derivative that can be used to prevent or treat Infectious Disease-19.

바이러스는 인류의 건강을 위협하는 수많은 난치병들에 대한 대표적인 원인 중 하나로서, 전 세계적으로 이를 예방 또는 치료하기 위해 막대한 자본을 투자하고 있다. 최근에는 중국 우한에서 처음 발생한 새로운 유형의 중증급성호흡증후군 코로나바이러스(Severe acute respiratory syndrome coronavirus 2; SARS-CoV-2)에 의한 호흡기 감염질환인 코로나바이러스감염증-19(coronavirus disease 19; COVID-19)이 전 세계로 확산되어 팬데믹(pandemic) 현상을 초래하고 있다. 따라서 이들의 증식을 억제할 수 있는 바이러스 치료제의 개발이 시급한 상황이지만, 현재 이 바이러스들을 효과적이고 안전하게 억제할 수 있는 치료제 또는 예방제가 전무한 실정이다.Viruses are one of the leading causes of numerous incurable diseases that threaten human health, and enormous capital is being invested worldwide to prevent or treat them. Recently, coronavirus disease 19 (COVID-19), a respiratory infectious disease caused by a new type of severe acute respiratory syndrome coronavirus (SARS-CoV-2) that first occurred in Wuhan, China It has spread all over the world, causing a pandemic. Therefore, there is an urgent need to develop a therapeutic agent for viruses capable of inhibiting their proliferation, but currently there is no therapeutic or preventive agent capable of effectively and safely inhibiting these viruses.

한편, 항바이러스제들은 다양한 기전(mechanism)을 통해 바이러스를 억제할 수 있는데, 그 중 다음과 같은 두 가지 기전은 바이러스를 효과적으로 억제하는데 사용될 수 있는 것으로 알려져 있다.On the other hand, antiviral agents can inhibit viruses through various mechanisms, among which the following two mechanisms are known to be used to effectively inhibit viruses.

첫 번째는, S-adenosylhomocysteine(이하, SAH) 가수분해효소(hydrolase)를 억제하는 것이다. SAH 가수분해효소는 NAD+를 조효소로 이용하는 테트라머(tetramer) 형태의 효소로서, SAH를 아데노신(adenosine, Ado)과 호모시스테인(homocysteine, Hcy)으로 가역적으로 가수분해하는 역할을 하며, 생체내 단백질, 지질, 핵산뿐만 아니라 히스타민, 노르에피네프린같은 체내물질들의 메틸화(methylation)에 매우 중요한 효소이다.The first is to inhibit S-adenosylhomocysteine (hereinafter, SAH) hydrolase. SAH hydrolase is a tetramer-type enzyme that uses NAD + as a coenzyme, and serves to reversibly hydrolyze SAH into adenosine (Ado) and homocysteine (Hcy), and It is a very important enzyme for the methylation of body substances such as histamine and norepinephrine as well as lipids and nucleic acids.

이러한 SAH 가수분해효소의 억제는 SAH의 축적을 유발하며, 과잉의 SAH는 순차적으로 S-adenosylmethionine(AdoMet)-dependent transmethylase의 억제 및 바이러스 mRNA의 캡핑(capping)를 억제하여 바이러스의 복제에 필요한 단백질이 제대로 만들어지지 못하게 하기 때문에, 결과적으로 항바이러스 효과를 나타내게 된다.Inhibition of this SAH hydrolase causes the accumulation of SAH, and the excess SAH sequentially suppresses S-adenosylmethionine (AdoMet)-dependent transmethylase and capping of viral mRNA so that the protein required for viral replication is released. By preventing it from being made properly, it results in an antiviral effect.

대부분의 동물 DNA 바이러스뿐만 아니라 RNA 바이러스도 mRNA 캡핑에 메틸화 효소(viral mRNA guanosine N7-methytransferases, O-2′-methytransferase)가 필수적이므로, SAH 가수분해효소는 광범위 항바이러스제의 개발에 있어서 필수적인 요소로 간주된다. 즉, RNA 바이러스 치료제의 개발과 SAH 가수분해효소 저해제의 개발은 높은 상관성을 갖고 있는 것으로 여겨진다.Since most animal DNA viruses as well as RNA viruses require methylation enzymes (viral mRNA guanosine N7-methytransferases, O-2′-methytransferases) for mRNA capping, SAH hydrolase is considered an essential element in the development of broad-spectrum antiviral agents. do. In other words, it is considered that the development of RNA virus therapeutics and the development of SAH hydrolase inhibitors have a high correlation.

두 번째는, 바이러스 RNA 중합효소(polymerase)를 저해하는 것이다. RNA 바이러스들은 기질인 Nucleoside-5’-triphosphate(NTP)가 RNA 중합효소(polymerase)에 의해 RNA 사슬(chain)로 삽입되어 복제된다. 따라서, RNA 중합효소를 저해하는 물질 또한 항바이러스제 역할을 할 수 있으며, 체내에서 3인산염(triphosphate)으로 전환되어 바이러스 RNA 중합효소를 선택적으로 억제하거나 바이러스 RNA 사슬로 직접 삽입되어 연쇄종결반응(chain termination)을 유도하는 물질을 이용하면 효과적인 항바이러스제를 개발할 수 있을 것으로 여겨진다.Second, it inhibits viral RNA polymerase. RNA viruses are replicated by inserting the substrate Nucleoside-5'-triphosphate (NTP) into the RNA chain by RNA polymerase. Therefore, a substance that inhibits RNA polymerase can also act as an antiviral agent, and it is converted into triphosphate in the body to selectively inhibit viral RNA polymerase or is directly inserted into the viral RNA chain to cause chain termination. ), it is considered that effective antiviral agents can be developed.

Tetrahedron: Asymmetry, 2002, 13, 1189-1193Tetrahedron: Asymmetry, 2002, 13, 1189-1193 J. Med. Chem. 2001, 44, 3985-3993J. Med. Chem. 2001, 44, 3985-3993

이에, 본 발명이 해결하고자 하는 과제는 코로나바이러스의 일종인 SARS-CoV-2에 대한 우수한 감염 저해능과 낮은 세포독성을 갖는 카보사이클릭 뉴클레오사이드 유도체를 발굴하여 전세계적으로 심각한 위험을 초래하고 있는 코로나바이러스감염증-19(COVID-19)을 예방 또는 치료하기 위한 약학적 조성물을 제공하는 것이다.Accordingly, the problem to be solved by the present invention is to discover carbocyclic nucleoside derivatives having excellent infection inhibition ability and low cytotoxicity against SARS-CoV-2, a kind of coronavirus, which causes serious risks worldwide. To provide a pharmaceutical composition for preventing or treating coronavirus infection-19 (COVID-19).

본 발명의 과제들은 이상에서 언급한 기술적 과제로 제한되지 않으며, 언급되지 않은 또 다른 기술적 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.The problems of the present invention are not limited to the technical problems mentioned above, and other technical problems not mentioned will be clearly understood by those skilled in the art from the following description.

상기 과제를 해결하기 위한 본 발명의 일 실시예에 따른 코로나바이러스감염증-19(COVID-19) 예방 및/또는 치료용 약학적 조성물은 하기 화학식 A-1 또는 화학식 A-2로 표현되는 카보사이클릭 뉴클레오사이드(carbocyclic nucleoside) 유도체 또는 이의 약학적으로 허용 가능한 염을 포함한다.A pharmaceutical composition for preventing and/or treating coronavirus infection-19 (COVID-19) according to an embodiment of the present invention for solving the above problems is a carbocyclic compound represented by the following Chemical Formula A-1 or Chemical Formula A-2 and a nucleoside (carbocyclic nucleoside) derivative or a pharmaceutically acceptable salt thereof.

<화학식 A-1><Formula A-1>

Figure 112021023548100-pat00001
Figure 112021023548100-pat00001

<화학식 A-2><Formula A-2>

Figure 112021023548100-pat00002
Figure 112021023548100-pat00002

상기 화학식 A-1 또는 화학식 A-2에서, R1 및 R2는 각각 독립적으로 수소 또는 불소이되 R1 및 R2 중 적어도 하나는 불소이고, B는 하기 화학식 B-1이다.In Formula A-1 or Formula A-2, R 1 and R 2 are each independently hydrogen or fluorine, but at least one of R 1 and R 2 is fluorine, and B is represented by Formula B-1 below.

<화학식 B-1><Formula B-1>

Figure 112021023548100-pat00003
Figure 112021023548100-pat00003

상기 화학식 B-1에서, X는 치환 또는 비치환된 아미노기(amino group)이고, Y는 수소, 싸이오페닐기(thiophenyl group), 퓨라닐기(furanyl group) 또는 피롤릴기(pyrrolyl group)이고, Z는 수소 또는 치환 또는 비치환된 알키닐기(alkynyl group)이다In Formula B-1, X is a substituted or unsubstituted amino group, Y is hydrogen, a thiophenyl group, a furanyl group or a pyrrolyl group, and Z is hydrogen or a substituted or unsubstituted alkynyl group

상기 치환된 아미노기는 알킬(alkyl)아미노기 또는 아릴(aryl)아미노기이고, 상기 치환된 알키닐기는 알킬알키닐기 또는 아릴알키닐기일 수 있다.The substituted amino group may be an alkyl amino group or an aryl amino group, and the substituted alkynyl group may be an alkyl alkynyl group or an aryl alkynyl group.

상기 알킬아미노기는 -NHMe, -NHEt, -NMe2, -NMeEt, -NEt2, 벤질아미노(benzylamino) 또는 할로겐화벤질아미노(halogenized benzylamino)이고, 상기 아릴아미노기는 페닐아미노(phenylamino) 또는 할로겐화페닐아미노(halogenized phenylamino)이고, 상기 알킬알키닐기는 벤질에티닐(benzylethynyl) 또는 벤질프로피닐(benzylpropynyl)이고, 상기 아릴알키닐기는 페닐에티닐(phenylethynyl) 또는 페닐프로피닐(phenylpropynyl)일 수 있다.The alkylamino group is -NHMe, -NHEt, -NMe 2 , -NMeEt, -NEt 2 , benzylamino or halogenated benzylamino, and the arylamino group is phenylamino or halogenated phenylamino ( halogenized phenylamino), the alkyl alkynyl group may be benzylethynyl or benzylpropynyl, and the arylalkynyl group may be phenylethynyl or phenylpropynyl.

상기 할로겐화페닐아미노기 또는 할로겐화벤질아미노기는 예를 들어, 플루오르화(fluoro), 클로린화(chloro), 브롬화(bromo) 또는 요오드화(iodo)된 페닐아미노 또는 벤질아미노일 수 있으나 이에 제한되는 것은 아니다.The halogenated phenylamino group or halogenated benzylamino group may be, for example, fluorinated (fluoro), chlorinated (chloro), brominated (bromo) or iodinated (iodo) phenylamino or benzylamino, but is not limited thereto.

상기 알키닐기는 예를 들어, 에티닐(ethynyl), 프로피닐(propynyl) 또는 부티닐(butynyl)일 수 있으나 이에 제한되는 것은 아니다.The alkynyl group may be, for example, ethynyl, propynyl, or butynyl, but is not limited thereto.

구체적으로, 상기 화학식 A-1은 하기 화학식 1-1 또는 화학식 1-2일 수 있고, 상기 화학식 A-2는 하기 화학식 2일 수 있다.Specifically, Formula A-1 may be Formula 1-1 or Formula 1-2, and Formula A-2 may be Formula 2 below.

<화학식 1-1><Formula 1-1>

Figure 112021023548100-pat00004
Figure 112021023548100-pat00004

<화학식 1-2><Formula 1-2>

Figure 112021023548100-pat00005
Figure 112021023548100-pat00005

<화학식 2><Formula 2>

Figure 112021023548100-pat00006
Figure 112021023548100-pat00006

본 발명의 일 실시예에 따른 COVID-19 예방 및/또는 치료용 약학적 조성물은 상술한 카보사이클릭 뉴클레오사이드 유도체를 SARS-CoV-2에 대한 유효 성분으로서 포함할 수 있다. 즉, 본 발명의 실시예들은 상술한 카보사이클릭 뉴클레오사이드 유도체를 포함하는 SARS-CoV-2에 대한 항바이러스제(antiviral agent) 또는 항 SARS-CoV-2 제(anti-SARS-CoV-2 agent)일 수 있다.The pharmaceutical composition for preventing and/or treating COVID-19 according to an embodiment of the present invention may include the above-described carbocyclic nucleoside derivative as an active ingredient against SARS-CoV-2. That is, embodiments of the present invention provide an antiviral agent or anti-SARS-CoV-2 agent for SARS-CoV-2 including the above-described carbocyclic nucleoside derivative. ) can be

항바이러스제란 바이러스의 활성, 복제 등을 억제하는 것뿐만 아니라, 바이러스에 의해 유발되는 모든 질환들의 예방 및/또는 치료 용도로도 사용될 수 있는 약학적 조성물을 의미한다.Antiviral agent refers to a pharmaceutical composition that can be used not only for inhibiting virus activity, replication, etc., but also for preventing and/or treating all diseases caused by viruses.

상기 카보사이클릭 뉴클레오사이드 유도체 또는 염은 SARS-CoV-2에 대하여 우수한 감염 저해능과 낮은 세포독성을 가질 수 있다. 구체적으로, 상기 카보사이클릭 뉴클레오사이드 유도체 또는 염의 SARS-CoV-2에 대한 IC50 값은 7.5 μM 이하, CC50 값은 50 이상 및/또는 SI 값은 6.5 이상일 수 있다. 보다 구체적으로는, 상기 카보사이클릭 뉴클레오사이드 유도체 또는 염의 SARS-CoV-2에 대한 IC50 값이 4 μM 이하 및/또는 SI 값이 16 이상일 수 있다.The carbocyclic nucleoside derivative or salt may have excellent infection inhibition ability and low cytotoxicity against SARS-CoV-2. Specifically, the carbocyclic nucleoside derivative or salt may have an IC 50 value for SARS-CoV-2 of 7.5 μM or less, a CC 50 value of 50 or more, and/or an SI value of 6.5 or more. More specifically, the carbocyclic nucleoside derivative or salt may have an IC 50 value of 4 μM or less and/or an SI value of 16 or more for SARS-CoV-2.

또는, 상기 카보사이클릭 뉴클레오사이드 유도체 또는 염은 10 μM 농도일 때 SARS-CoV-2에 대한 감염 저해율(inhibition of infection)이 70% 이상인 것일 수 있다. 이와 동시에, 생존 세포 비율(cell ratio)은 70% 이상일 수 있다. 상기 감염 저해율은 상기 카보사이클릭 뉴클레오사이드 유도체 또는 염을 처리하지 않은 감염되지 않은 세포들(감염도 0%) 및 감염된 세포(감염도 100%)와 비교하여 도출되는 상대적인 비율일 수 있다.Alternatively, the carbocyclic nucleoside derivative or salt may have an inhibition of infection for SARS-CoV-2 of 70% or more at a concentration of 10 μM. At the same time, the viable cell ratio (cell ratio) may be greater than 70%. The infection inhibition rate may be a relative ratio derived compared to uninfected cells (infectivity 0%) and infected cells (infectivity 100%) that were not treated with the carbocyclic nucleoside derivative or salt.

상기 화학식 A-1 또는 화학식 A-2로 표현되는 카보사이클릭 뉴클레오사이드 유도체는 약학적으로 허용 가능한 염의 형태로 제공될 수 있다. 염으로는 약학적으로 허용되는 다양한 유기산 또는 무기산에 의해 형성된 산부가염이 유용하다. 적합한 유기산으로는, 예를 들면 카복시산, 포스폰산, 술폰산, 아세트산, 프로피온산, 옥탄산, 데칸산, 글리콜산, 락트산, 푸마르산, 숙신산, 아디프산, 말산, 타르타르산, 시트르산, 글루탐산, 아스파르트산, 말레산, 벤조산, 살리실산, 프탈산, 페닐아세트산, 벤젠술폰산, 2-나프탈렌술폰산, 메틸황산, 에틸황산, 도데실황산 등을 사용할 수 있고, 예를 들면 염산, 황산 등의 할로겐산 또는 인산 등을 사용할 수 있다.The carbocyclic nucleoside derivative represented by Formula A-1 or Formula A-2 may be provided in the form of a pharmaceutically acceptable salt. As the salt, acid addition salts formed with various pharmaceutically acceptable organic or inorganic acids are useful. Suitable organic acids include, for example, carboxylic acid, phosphonic acid, sulfonic acid, acetic acid, propionic acid, octanoic acid, decanoic acid, glycolic acid, lactic acid, fumaric acid, succinic acid, adipic acid, malic acid, tartaric acid, citric acid, glutamic acid, aspartic acid, Maleic acid, benzoic acid, salicylic acid, phthalic acid, phenylacetic acid, benzenesulfonic acid, 2-naphthalenesulfonic acid, methylsulfuric acid, ethylsulfuric acid, dodecylsulfuric acid, etc. can be used. For example, halogen acids such as hydrochloric acid and sulfuric acid or phosphoric acid can be used. can

다만 이에 제한되는 것은 아니며, 본 발명의 카보사이클릭 뉴클레오사이드 유도체는 통상의 방법에 의해 제조될 수 있는 모든 염, 수화물 및 용매화물 형태로도 제공될 수 있다.However, the present invention is not limited thereto, and the carbocyclic nucleoside derivative of the present invention may be provided in the form of all salts, hydrates and solvates that can be prepared by conventional methods.

상기 COVID-19 예방 및/또는 치료용 약학적 조성물은 전신적 또는 국부적으로 투여될 수 있으며, 경구 또는 비경구 투여를 위해 일반적으로 사용될 수 있는 충전제, 증량제, 결합제, 습윤제, 붕해제, 계면활성제 등의 부형제(또는 희석제)를 사용하여 제형화될 수 있다. 이하, 부형제 및 제형 방법에 대해 구체적으로 예시하지만, 이들 예로 한정되는 것은 아니다.The pharmaceutical composition for preventing and/or treating COVID-19 may be administered systemically or locally, and may include fillers, extenders, binders, wetting agents, disintegrants, surfactants, etc. that can be generally used for oral or parenteral administration. It may be formulated using an excipient (or diluent). Hereinafter, excipients and formulation methods are specifically illustrated, but not limited to these examples.

경구 투여를 위한 고형 제형은 정제, 환제, 산제, 과립제, 캡슐제 등을 포함할 수 있으며, 이러한 고형제제는 하나 이상의 상기 화학식 A-1 또는 화학식 A-2의 화합물에 적어도 하나 이상의 부형제, 예를 들면 전분, 탄산칼슘, 수크로오스(sucrose) 또는 락토오스(lactose), 젤라틴 등을 섞어 조제할 수 있다. 또한, 단순한 부형제 이외에 스테아린산 마그네슘, 탈크 등과 같은 윤활제도 사용할 수 있다. 경구 투여를 위한 액상 제형은, 예를 들면 현탁제, 내용액제, 유제, 시럽제 등을 들 수 있으며, 액상 제형은 통상적으로 사용되는 단순 희석제인 물, 리퀴드 파라핀 이외에 여러 가지 부형제, 예를 들면 습윤제, 감미제, 방향제, 보존제 등을 포함할 수 있다.Solid dosage forms for oral administration may include tablets, pills, powders, granules, capsules, etc., and such solid dosage forms include at least one excipient, for example, in one or more of the compounds of Formula A-1 or Formula A-2. For example, it can be prepared by mixing starch, calcium carbonate, sucrose or lactose, gelatin, and the like. In addition to simple excipients, lubricants such as magnesium stearate, talc and the like can also be used. Liquid formulations for oral administration include, for example, suspensions, internal solutions, emulsions, syrups, and the like, and the liquid formulation includes various excipients, such as wetting agents, in addition to commonly used simple diluents such as water and liquid paraffin, sweetening agents, flavoring agents, preservatives, and the like.

비경구 투여를 위한 제형은 주사제, 유제, 흡입제, 좌제 등을 포함할 수 있다. 주사제는 프로필렌 글리콜, 폴리에틸렌 글리콜, 올리브 오일과 같은 식물성 기름, 에틸올레이트 등과 같은 에스테르 등의 멸균된 수성 용제, 비수성 용제 및 현탁제를 포함할 수 있고, 좌제는 기제로서 위텝솔(witepsol), 마크로골, 트윈(tween) 61, 카카오지, 라우린지, 글리세로젤라틴 등을 포함할 수 있다. 또한, 국소 적용을 위해 본 발명의 항바이러스제를 연고나 크림으로 제형화할 수도 있다.Formulations for parenteral administration may include injections, emulsions, inhalants, suppositories, and the like. Injections may include sterile aqueous solvents, non-aqueous solvents and suspensions, such as propylene glycol, polyethylene glycol, vegetable oils such as olive oil, esters such as ethyl oleate, etc., and suppositories include witepsol, Macrogol, tween 61, cacao butter, laurin, glycerogelatin, and the like may be included. In addition, for topical application, the antiviral agent of the present invention may be formulated as an ointment or cream.

상기 약학적 조성물의 바람직한 투여량은 환자의 상태 및 체중, 질병의 정도, 약물 형태, 투여 경로 및 기간 등의 다수의 인자에 따라 다르지만, 당업자에 의해 적절하게 선택될 수 있다. 또한 투여 경로는 환자의 상태 및 그의 중증도에 따라 변화할 수 있다.The preferred dosage of the pharmaceutical composition varies depending on a number of factors such as the patient's condition and weight, the degree of disease, the drug form, the route and duration of administration, and the like, but may be appropriately selected by those skilled in the art. In addition, the route of administration may vary depending on the patient's condition and its severity.

기타 실시예의 구체적인 사항들은 상세한 설명에 포함되어 있다.The details of other embodiments are included in the detailed description.

본 발명의 실시예들에 따른 카보사이클릭 뉴클레오사이드 유도체는 SARS-CoV-2에 대한 우수한 감염 저해능과 낮은 세포독성을 갖기 때문에 안전하고 효과적인 코로나바이러스감염증-19(COVID-19) 예방 및 치료제로 활용될 수 있다.Carbocyclic nucleoside derivatives according to embodiments of the present invention are safe and effective for preventing and treating coronavirus infection-19 (COVID-19) because they have excellent infection inhibition and low cytotoxicity against SARS-CoV-2. can be utilized.

본 발명의 실시예들에 따른 효과는 이상에서 예시된 내용에 의해 제한되지 않으며, 더욱 다양한 효과들이 본 명세서 내에 포함되어 있다.Effects according to the embodiments of the present invention are not limited by the contents exemplified above, and more various effects are included in the present specification.

도 1은 본 발명의 실험예에 따른 HTS 자동화(automation)를 통한 SARS-CoV-2 감염분석 과정을 나타낸 흐름도이다.
도 2는 본 발명의 실험예에 따른 384-조직배양 플레이트의 각 웰을 처리물질 및 방법별로 구분한 지도(Plate map)이다.
도 3은 본 발명의 실험예에 따른 IM 소프트웨어를 이용하여 이미지를 분석하는 원리를 나타낸 도면이다.
도 4는 본 발명의 실험예에 따라 처리된 각 플레이트를 heatmap 분석한 이미지이다.
도 5 내지 도 7은 본 발명의 실험예에 따라 화합물들을 처리한 각 웰의 감염 저해능(inhibition of infection)과 세포독성(cytotoxicity)을 나타낸 그래프이다.
도 8은 본 발명의 실험예에 따라 최종 스크리닝된 3종의 화합물 10 μM을 처리한 웰들과 대조군 웰들의 공초점 현미경 이미지이다.
도 9는 본 발명의 실험예에 따라 대조군 웰들의 퍼포먼스와 Z'-factor를 분석한 그래프이다.
도 10은 본 발명의 실험예에 따른 분석을 통해 도출된 약물반응곡선(dose response curve; DRC)을 나타낸 그래프이다.
1 is a flowchart illustrating a SARS-CoV-2 infection analysis process through HTS automation according to an experimental example of the present invention.
2 is a map (Plate map) in which each well of the 384-tissue culture plate according to the experimental example of the present invention is divided by treatment material and method.
3 is a diagram illustrating a principle of analyzing an image using IM software according to an experimental example of the present invention.
4 is an image of heatmap analysis of each plate treated according to an experimental example of the present invention.
5 to 7 are graphs showing the inhibition of infection and cytotoxicity of each well treated with compounds according to the experimental example of the present invention.
8 is a confocal microscope image of wells treated with 10 μM of the three types of compounds finally screened according to an experimental example of the present invention and control wells.
9 is a graph analyzing the performance and Z'-factor of control wells according to an experimental example of the present invention.
10 is a graph showing a dose response curve (DRC) derived through analysis according to an experimental example of the present invention.

본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 실시예들은 본 발명의 개시가 완전하도록 하며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다.Advantages and features of the present invention, and methods of achieving them, will become apparent with reference to the embodiments described below in detail. However, the present invention is not limited to the embodiments disclosed below, but will be implemented in various different forms, and only the embodiments allow the disclosure of the present invention to be complete, and those of ordinary skill in the art to which the present invention pertains. It is provided to fully inform the person of the scope of the invention, and the present invention is only defined by the scope of the claims.

본 명세서에서 사용된 용어는 실시예들을 설명하기 위한 것이며 본 발명을 제한하고자 하는 것은 아니다. 본 명세서에서, '및/또는'은 언급된 아이템들의 각각 및 하나 이상의 모든 조합을 포함한다. 또, 단수형은 문구에서 특별히 언급하지 않는 한 복수형도 포함한다. 명세서에서 사용되는 '포함한다(comprises)' 및/또는 '포함하는(comprising)'은 언급된 구성요소 외에 하나 이상의 다른 구성요소의 존재 또는 추가를 배제하지 않는다. '-' 또는 '내지'를 사용하여 나타낸 수치 범위는 다른 언급이 없는 한 그 앞과 뒤에 기재된 값을 각각 하한과 상한으로서 포함하는 수치 범위를 나타낸다. '약' 또는 '대략'은 그 뒤에 기재된 값 또는 수치 범위의 20% 이내의 값 또는 수치 범위를 의미한다.The terminology used herein is for the purpose of describing the embodiments and is not intended to limit the present invention. In this specification, 'and/or' includes each and every combination of one or more of the mentioned items. The singular also includes the plural, unless the phrase specifically states otherwise. As used herein, 'comprises' and/or 'comprising' does not exclude the presence or addition of one or more other elements in addition to the stated elements. Numerical ranges indicated using '-' or 'to' indicate a numerical range including the values listed before and after as the lower and upper limits, respectively, unless otherwise stated. 'About' or 'approximately' means a value or numerical range within 20% of the value or numerical range recited thereafter.

또한, 본 발명의 실시예의 구성 요소를 설명하는 데 있어서, 제1, 제2, A, B, (a), (b) 등의 용어를 사용할 수 있다. 이러한 용어는 그 구성 요소를 다른 구성 요소와 구별하기 위한 것일 뿐, 그 용어에 의해 해당 구성 요소의 본질이나 차례 또는 순서 등이 한정되지 않는다.In addition, in describing the components of the embodiment of the present invention, terms such as first, second, A, B, (a), (b), etc. may be used. These terms are only for distinguishing the components from other components, and the essence, order, or order of the components are not limited by the terms.

다른 정의가 없다면, 본 명세서에서 사용되는 모든 용어(기술 및 과학적 용어를 포함)는 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 공통적으로 이해될 수 있는 의미로 사용될 수 있을 것이다. 또 일반적으로 사용되는 사전에 정의되어 있는 용어들은 명백하게 특별히 정의되어 있지 않는 한 이상적으로 또는 과도하게 해석되지 않는다.Unless otherwise defined, all terms (including technical and scientific terms) used herein may be used with the meaning commonly understood by those of ordinary skill in the art to which the present invention belongs. In addition, terms defined in a commonly used dictionary are not to be interpreted ideally or excessively unless clearly defined in particular.

그리고 본 발명의 실시예를 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 실시예에 대한 이해를 방해한다고 판단되는 경우에는 그 상세한 설명은 생략한다.And in describing the embodiment of the present invention, if it is determined that a detailed description of a related known configuration or function interferes with the understanding of the embodiment of the present invention, the detailed description thereof will be omitted.

본 명세서에서, '예방'이란 증상 또는 질환은 아직 없으나, 이러한 증상 또는 질환에 걸릴 수 있는 개체에서 증상 또는 질환의 발생을 억제하는 것을 의미한다. As used herein, 'prevention' refers to suppressing the occurrence of symptoms or diseases in an individual who has no symptoms or diseases yet, but may be afflicted with such symptoms or diseases.

본 명세서에서, '치료'란 개체에서 (a) 증상 또는 질환의 발전(악화)의 억제, (b) 증상 또는 질환의 경감 또는 개선, 또는 (c) 증상 또는 질환의 제거를 의미한다. As used herein, 'treatment' refers to (a) inhibition of the development (exacerbation) of a symptom or disease, (b) alleviation or amelioration of the symptom or disease, or (c) elimination of the symptom or disease in an individual.

본 명세서에서, '개체'란 본 발명의 조성물을 투여하여 '예방' 또는 '치료'될 수 있는 증상 또는 질환을 가진 인간을 포함한 동물, 특히 포유류를 의미한다.As used herein, the term 'subject' refers to animals, particularly mammals, including humans, having symptoms or diseases that can be 'prevented' or 'treated' by administering the composition of the present invention.

이하, 본 발명의 실시예들을 제조예와 실험예를 통해 상세하게 설명하나, 본 발명의 효과가 하기 실험예에 의해 제한되지 아니함은 자명하다.Hereinafter, embodiments of the present invention will be described in detail through Preparation Examples and Experimental Examples, but it is apparent that the effect of the present invention is not limited by the following Experimental Examples.

제조예: 본 발명의 카보사이클릭 뉴클레오사이드 유도체의 제조Preparation Example: Preparation of the carbocyclic nucleoside derivative of the present invention

제조예 1: 화학식 1-1Preparation Example 1: Formula 1-1

<물질 1><substance 1>

Figure 112021023548100-pat00007
Figure 112021023548100-pat00007

물질 1의 제조 방법: 참조 문헌 [1] Tetrahedron: Asymmetry, 2002, 13, 1189-1193 과 [2] J. Med. Chem. 2001, 44, 3985-3993를 참고하여 합성하였다.Method for the preparation of substance 1: References [1] Tetrahedron: Asymmetry, 2002, 13, 1189-1193 and [2] J. Med. Chem. It was synthesized with reference to 2001, 44, 3985-3993.

<물질 2a-2c><Substance 2a-2c>

Figure 112021023548100-pat00008
Figure 112021023548100-pat00008

물질 2a, 2b의 제조 방법: 앞서 합성한 물질 1 (6 g, 24.8 mmol)을 무수 THF에 녹인 뒤, 클로로트리에틸실란 (TESCl) (16.7 mL, 99.2 mmol)을 적가하고 -78 ℃로 냉각시킨다. 냉각된 혼합물에 1.0 M 리튬 비스(트리메틸실릴)아미드/THF 용액 (LiHMDS 1.0 M solution in THF) (50 mL, 50 mmol)을 서서히 적가한 뒤, 30 분간 동일 조건에서 반응을 잘 교반시켜 실릴 에놀 에테르화 시켜 준다. 반응이 종결되었음을 TLC로 확인한 뒤, 반응 혼합물을 포화 암모늄 클로라이드 (NH4Cl) 수용액으로 반응을 종결시키고 수용액층을 아세트산 에틸로 추출한 뒤 유기층을 분액한다. 분리된 유기층을 물과 brine으로 충분히 씻어준 후, 황산 마그네슘 (MgSO4)으로 건조시키고, 감압여과를 통해 잔여 고체를 제거한 뒤 감압 농축한다. 이 농축된 잔류물을 무수 DMF에 녹인 후, 0 ℃로 냉각시킨다. 냉각된 혼합물에 1-클로로메틸-4-플루오로-1,4-디아조니아비사이클로 [2.2.2]옥탄 비스(테트라플루오로보래이트) (상표명 Selectfluor®) (10.15 g, 28.65 mmol)를 1.5 당량 적가한 뒤 동일 조건에서 15 시간 동안 교반하게 되면 플루오로화된 화합물인 물질 2a와 2b가 각각 3:1의 비율로 생성(NMR에서 비율로 확인)된다. 반응이 종결된 것을 TLC에서 확인되면, 반응 혼합물을 포화 암모늄 클로라이드 (NH4Cl) 수용액으로 반응을 종결시키고 수용액층을 아세트산 에틸로 추출한 뒤 유기층을 분액한다. 분리된 유기층을 물과 brine으로 충분히 씻어준 후, 황산 마그네슘 (MgSO4)으로 건조시키고 감압여과를 통해 잔여 고체를 제거한 뒤 감압 농축한다. 농축된 잔류물은 실리카젤 크로마토그래피등을 통하여 분리 정제하여 2a (6.591 g, 58%)와 2b (3.078 g, 27%)를 각각 얻을 수 있다.Method for preparing materials 2a and 2b: The previously synthesized material 1 (6 g, 24.8 mmol) was dissolved in anhydrous THF, chlorotriethylsilane (TESCl) (16.7 mL, 99.2 mmol) was added dropwise and cooled to -78 °C. . To the cooled mixture, a 1.0 M lithium bis(trimethylsilyl)amide/THF solution (LiHMDS 1.0 M solution in THF) (50 mL, 50 mmol) was slowly added dropwise, and the reaction was stirred well under the same conditions for 30 minutes, followed by silyl enol ether. make you angry After TLC confirmed that the reaction was complete, the reaction mixture was quenched with a saturated aqueous ammonium chloride (NH 4 Cl) solution, the aqueous layer was extracted with ethyl acetate, and the organic layer was separated. The separated organic layer was washed thoroughly with water and brine, dried over magnesium sulfate (MgSO 4 ), and the residual solid was removed by filtration under reduced pressure and then concentrated under reduced pressure. The concentrated residue was dissolved in anhydrous DMF, and then cooled to 0 °C. To the cooled mixture was added 1-chloromethyl-4-fluoro-1,4-diazoniabicyclo [2.2.2] octane bis(tetrafluoroborate) (trade name Selectfluor ® ) (10.15 g, 28.65 mmol) 1.5 When an equivalent is added dropwise and stirred for 15 hours under the same conditions, materials 2a and 2b, which are fluorinated compounds, are produced in a ratio of 3:1, respectively (confirmed by NMR as a ratio). When it is confirmed by TLC that the reaction is complete, the reaction mixture is quenched with a saturated aqueous ammonium chloride (NH 4 Cl) solution, the aqueous layer is extracted with ethyl acetate, and the organic layer is separated. The separated organic layer was washed thoroughly with water and brine, dried over magnesium sulfate (MgSO 4 ), filtered under reduced pressure to remove the residual solid, and then concentrated under reduced pressure. The concentrated residue is separated and purified through silica gel chromatography, etc. to obtain 2a (6.591 g, 58%) and 2b (3.078 g, 27%), respectively.

2a: 1H NMR (400 MHz, CDCl3) 5.29 (dd, J = 8.2, 49.5 Hz, 1 H), 4.70 (t, J = 5.7 Hz, 1 H), 4.20 (dd, J = 2.4, 6.1 Hz, 1 H), 3.61 (dd, J = 1.6, 8.6 Hz, 1 H) 3.38-3.41 (m, 1 H), 2.75 (d, J = 8.2 Hz, 1 H), 1.41 (s, 3 H), 1.30 (s, 3 H), 1.06 (s, 9 H)2a: 1 H NMR (400 MHz, CDCl 3 ) 5.29 (dd, J = 8.2, 49.5 Hz, 1 H), 4.70 (t, J = 5.7 Hz, 1 H), 4.20 (dd, J = 2.4, 6.1 Hz) , 1 H), 3.61 (dd, J = 1.6, 8.6 Hz, 1 H) 3.38-3.41 (m, 1 H), 2.75 (d, J = 8.2 Hz, 1 H), 1.41 (s, 3 H), 1.30 (s, 3 H), 1.06 (s, 9 H)

2b: 1H NMR (600 MHz, CDCl3) 5.21-5.36 (ddd, J = 1.3, 4.5, 50.8 Hz, 1 H,), 4.55 (d, J = 5.9 Hz, 1 H), 4.50 (d, J = 5.9 Hz, 1 H), 3.63 (d, J = 2.2 Hz, 2 H), 2.52-2.58 (m, 1 H), 1.41 (s, 3 H), 1.33 (s, 3 H), 1.13 (s, 9 H)2b: 1 H NMR (600 MHz, CDCl 3 ) 5.21-5.36 (ddd, J = 1.3, 4.5, 50.8 Hz, 1 H,), 4.55 (d, J = 5.9 Hz, 1 H), 4.50 (d, J) = 5.9 Hz, 1 H), 3.63 (d, J = 2.2 Hz, 2 H), 2.52-2.58 (m, 1 H), 1.41 (s, 3 H), 1.33 (s, 3 H), 1.13 (s) , 9 H)

물질 2c의 제조 방법: 위에서 합성한 물질 2a (3.29 g, 12.6 mmol)를 상기 명시된 물질 1에서 물질 2a, 2b로의 합성과정을 동일하게 진행하면 2c (2.95 g, 84%)를 합성할 수 있다.Method for the preparation of material 2c: 2c (2.95 g, 84%) can be synthesized by performing the same synthesis of material 2a (3.29 g, 12.6 mmol) synthesized above from material 1 to materials 2a and 2b.

1H NMR (500 MHz, CDCl3) 4.72 (t, J = 6.1 Hz, 1 H), 4.35-4.38 (m, 1 H), 3.68 (d, J = 8.6 Hz, 1 H), 3.68 (d, J = 8.6 Hz, 1 H) 3.46 (d, J = 8.5 Hz, 1 H), 2.67 (d, J = 17.4 Hz, 1 H), 1.42 (s, 3 H), 1.33 (s, 3 H), 1.05 (s, 9 H). (디올 형태로 평형을 이룬 물질로 추정되는 피크와 섞여 있음) 1 H NMR (500 MHz, CDCl 3 ) 4.72 (t, J = 6.1 Hz, 1 H), 4.35-4.38 (m, 1 H), 3.68 (d, J = 8.6 Hz, 1 H), 3.68 (d, J = 8.6 Hz, 1 H) 3.46 (d, J = 8.5 Hz, 1 H), 2.67 (d, J = 17.4 Hz, 1 H), 1.42 (s, 3 H), 1.33 (s, 3 H), 1.05 (s, 9 H). (mixed with a peak presumed to be a substance equilibrated in the form of a diol)

<물질 3a-3c><Substance 3a-3c>

Figure 112021023548100-pat00009
Figure 112021023548100-pat00009

물질 3a의 제조 방법: 물질 2a (3.33 g, 12.8 mmol)를 메탄올에 녹인 뒤, 0 ℃ 이하로 충분히 냉각시켜준다. 냉각시킨 용액에 소듐보로하이드라이드 (NaBH4) (1.45 g, 38.4 mmol)을 천천히 첨가한다. 이후 동일 조건에서 반응을 교반시키고 TLC로 반응 종결을 확인한 뒤, 반응 혼합물을 포화 암모늄 클로라이드 (NH4Cl) 수용액으로 반응을 종결시키고 수용액층을 아세트산 에틸로 추출한 뒤 유기층을 분액한다. 분리된 유기층을 물과 brine으로 충분히 씻어준 후, 황산 마그네슘 (MgSO4)으로 건조시키고 감압여과를 통해 잔여 고체를 제거한 뒤 감압 농축한다. 생성된 알코올 화합물을 실리카젤 크로마토그래피등으로 분리정제한 중간체 (2.54 g, 76%)를 무수 피리딘 (pyridine)에 녹인 뒤, 0 ℃로 냉각시켜준다. 냉각된 혼합물에 무수 트리플루오로메탄설폰산 (trifluoromethanesulfonic anhydride) (3.26 ml, 19.36 mmol)을 적가한 뒤, 동일 조건에서 30 분 교반시켜 트리플루오로메틸설폰산화 시켜준다. 반응이 종결됨을 TLC로 확인한 뒤, 반응 혼합물을 포화 암모늄 클로라이드 (NH4Cl) 수용액으로 반응을 종결시키고 수용액층을 아세트산 에틸로 추출한 뒤 유기층을 분액한다. 분리된 유기층을 물과 brine으로 충분히 씻어준 후, 황산 마그네슘 (MgSO4)으로 건조시키고 감압여과를 통해 잔여 고체를 제거한 뒤 감압 농축한다. 생성된 트리플루오로메틸설폰산화 화합물과 소듐아지드 (NaN3) (1.89 g, 29.04 mmol)를 무수 DMF에 혼합한 뒤, 60 ℃ 로 가열상태에서 교반시켜 아지드화 시킨다. 4 시간 가량 교반한 뒤, TLC로 반응이 종결됨을 확인하고 물로 반응을 종결시킨 뒤, 수용액층을 아세트산 에틸로 추출한 뒤 유기층을 분액한다. 분리된 유기층을 물과 brine으로 충분히 씻어준 후, 황산 마그네슘 (MgSO4)으로 건조시키고 감압여과를 통해 잔여 고체를 제거한 뒤 감압 농축한다. 얻어진 아지드 화합물을 실리카젤 크로마토그래피등을 통하여 분리정제하고, 얻어진 화합물 (4.07 g, 42%)을 메탄올에 용해시킨다. 해당 용액에 팔라듐/탄소를 적당량 첨가하고 반응용기를 수소치환을 하여 수소화 반응을 진행시켜 아지드기를 아민기로 환원시킨다. 반응이 종결됨을 TLC로 확인한 뒤, 반응이 종결되면 감압여과를 통해 잔여 고체를 제거하고 감압 농축시키게 되면 원하는 물질 3a를 얻을 수 있다. 얻어진 물질 3a는 분리정제과정 없이 다음 과정으로 진행한다.Method for preparing material 3a: After dissolving material 2a (3.33 g, 12.8 mmol) in methanol, it is sufficiently cooled to 0° C. or less. To the cooled solution is slowly added sodium borohydride (NaBH 4 ) (1.45 g, 38.4 mmol). Thereafter, the reaction is stirred under the same conditions, the completion of the reaction is confirmed by TLC, the reaction mixture is terminated with a saturated aqueous ammonium chloride (NH 4 Cl) solution, the aqueous layer is extracted with ethyl acetate, and the organic layer is separated. The separated organic layer was washed thoroughly with water and brine, dried over magnesium sulfate (MgSO 4 ), filtered under reduced pressure to remove the residual solid, and then concentrated under reduced pressure. An intermediate (2.54 g, 76%) obtained by separation and purification of the alcohol compound produced by silica gel chromatography, etc. is dissolved in anhydrous pyridine, and then cooled to 0 °C. To the cooled mixture, trifluoromethanesulfonic anhydride (3.26 ml, 19.36 mmol) was added dropwise, and stirred under the same conditions for 30 minutes to oxidize trifluoromethylsulfonic acid. After confirming the completion of the reaction by TLC, the reaction mixture was quenched with a saturated aqueous solution of ammonium chloride (NH 4 Cl), the aqueous layer was extracted with ethyl acetate, and the organic layer was separated. The separated organic layer was washed thoroughly with water and brine, dried over magnesium sulfate (MgSO 4 ), filtered under reduced pressure to remove the residual solid, and then concentrated under reduced pressure. The resulting trifluoromethylsulfonated compound and sodium azide (NaN 3 ) (1.89 g, 29.04 mmol) were mixed in anhydrous DMF, and stirred under heating at 60° C. to azide. After stirring for about 4 hours, the reaction was confirmed by TLC, the reaction was terminated with water, the aqueous layer was extracted with ethyl acetate, and the organic layer was separated. The separated organic layer was washed thoroughly with water and brine, dried over magnesium sulfate (MgSO 4 ), filtered under reduced pressure to remove the residual solid, and then concentrated under reduced pressure. The obtained azide compound is separated and purified through silica gel chromatography, etc., and the obtained compound (4.07 g, 42%) is dissolved in methanol. An appropriate amount of palladium/carbon is added to the solution, the reaction vessel is replaced with hydrogen, and the hydrogenation reaction proceeds to reduce the azide group to an amine group. After confirming the completion of the reaction by TLC, when the reaction is completed, the remaining solid is removed through reduced pressure filtration and concentrated under reduced pressure to obtain the desired material 3a. The obtained material 3a proceeds to the next process without separation and purification.

1H NMR (600 MHz, CDCl3) d 4.96 (dt, J =52.5, 3.3 Hz, 1 H), 4.31-4.36 (m, 2 H), 3.48-3.54 (m, 2 H), 3.27 (td, J = 4.1, 28.4 Hz, 1 H), 2.24-2.34 (m, 1 H), 1.80 (s, 2 H), 1.45 (s, 3 H), 1.26 (s, 3 H), 1.16 (s, 9 H) 1 H NMR (600 MHz, CDCl 3 ) d 4.96 (dt, J =52.5, 3.3 Hz, 1 H), 4.31-4.36 (m, 2 H), 3.48-3.54 (m, 2 H), 3.27 (td, J = 4.1, 28.4 Hz, 1 H), 2.24-2.34 (m, 1 H), 1.80 (s, 2 H), 1.45 (s, 3 H), 1.26 (s, 3 H), 1.16 (s, 9) H)

물질 3c의 제조 방법: 위에서 합성한 물질 2c (4.95 g, 17.79 mmoL)를 상기 명시된 물질 2a에서 물질 3a로의 합성과정과 동일하게 진행하면 3c (2.98 g, 60%)를 합성할 수 있다. 단, 케톤을 알코올화 시키는 반응에서 소듐보로하이드라이드 (NaBH4) 대신 리튬보로하이드라이드 (LiBH4)를 사용하며, 아지드화 반응에서 소듐아지드를 10당량 사용하고 온도를 100 ℃로 올려야 하며, 교반시간을 15 시간 정도로 늘려주어야 한다.Preparation method of material 3c: 3c (2.98 g, 60%) can be synthesized by proceeding with the same procedure for the synthesis of material 2a to material 3a as described above for material 2c (4.95 g, 17.79 mmol) synthesized above. However, in the reaction of alcoholizing ketones, lithium borohydride (LiBH 4 ) is used instead of sodium borohydride (NaBH 4 ), and 10 equivalents of sodium azide is used in the azide reaction and the temperature is set to 100 °C. should be raised, and the stirring time should be increased to about 15 hours.

1H NMR (800 MHz, CDCl3) d 4.45-4.46 (m, 1 H), 4.25-4.27 (m, 1 H), 3.58 (dd, J = 4.5, 9.2 Hz, 1 H), 3.54 (dd, J = 5.1, 9.2 Hz, 1 H), 3.35-3.38 (m, 1 H), 2.56-2.59 (m, 1 H), 1.94 (bs, 3 H), 1.47 (s, 3 H), 1.28 (s, 3 H), 1.18 (s, 9 H) 1 H NMR (800 MHz, CDCl 3 ) d 4.45-4.46 (m, 1 H), 4.25-4.27 (m, 1 H), 3.58 (dd, J = 4.5, 9.2 Hz, 1 H), 3.54 (dd, J = 5.1, 9.2 Hz, 1 H), 3.35-3.38 (m, 1 H), 2.56-2.59 (m, 1 H), 1.94 (bs, 3 H), 1.47 (s, 3 H), 1.28 (s) , 3 H), 1.18 (s, 9 H)

<물질 4a-4c><Substance 4a-4c>

Figure 112021023548100-pat00010
Figure 112021023548100-pat00010

물질 4a의 제조 방법: 위에서 합성한 물질 3a (982 mg, 3.757 mmol)과 5-아미노-4,6-디클로로피리미딘 (5-amino-4,6-dichloropyrimidine) (1.85 g, 11.27 mmol), 디이소프로필에틸아민 (DIPEA) (6.54 mL, 37.57 mmol)을 n-부탄올 (n-butanol)에 혼합시킨 뒤, 마이크로웨이브등을 사용하여 170 ℃로 가열하여 4 시간 정도 교반시킨다. 반응이 종결됨을 TLC로 확인한 뒤, 반응 혼합물을 메탄올과 같이 혼합하여 감압농축 시킨 뒤, 잔류물을 실리카젤 크로마토그래피등으로 분리정제하여 중간체 (964 mg, 66%)를 얻을 수 있다. 이 중간체를 아세트산 디에톡시메틸 (diethoxymethyl acetate)에 녹인 후, 마이크로웨이브등을 사용하여 140 ℃에서 3시간 정도 교반시킨다. 반응이 종결됨을 TLC로 확인한 뒤, 반응 혼합물을 메탄올과 같이 혼합하여 감압농축 시킨 뒤, 실리카젤 크로마토그래피등으로 분리정제하면 물질 4a (643 mg, 65%)를 얻을 수 있다.Preparation of Substance 4a: Substance 3a (982 mg, 3.757 mmol) synthesized above and 5-amino-4,6-dichloropyrimidine (1.85 g, 11.27 mmol), di diisopropylethylamine (DIPEA) (6.54 mL, 37.57 mmol) of n - and heated to 170 ℃ using that later, microwave, etc. mixed in butanol (n -butanol), and the mixture was stirred for 4 hours. After confirming that the reaction is complete by TLC, the reaction mixture is mixed with methanol and concentrated under reduced pressure, and the residue is separated and purified by silica gel chromatography, etc. to obtain an intermediate (964 mg, 66%). This intermediate was dissolved in diethoxymethyl acetate and stirred at 140° C. for about 3 hours using a microwave or the like. After confirming the completion of the reaction by TLC, the reaction mixture is mixed with methanol, concentrated under reduced pressure, and separated and purified by silica gel chromatography, etc. to obtain material 4a (643 mg, 65%).

1H NMR (400 MHz, CDCl3) δ 8.74 (s, 1 H), 8.34 (d, J = 2.4 Hz, 1 H), 5.28-5.43 (dt, J = 52.8, 2.8 Hz, 1 H), 5.12-5.23 (m, 2 H), 4.61 (t, J = 5.0 Hz, 1 H), 3.65-3.69 (m, 1 H), 3.61 (t, J = 9.2 Hz, 1 H), 2.56-2.71 (m, 1 H), 1.56 (s, 3 H), 1.32 (s, 3 H), 1.17 (s, 9 H) 1 H NMR (400 MHz, CDCl 3 ) δ 8.74 (s, 1 H), 8.34 (d, J = 2.4 Hz, 1 H), 5.28-5.43 (dt, J = 52.8, 2.8 Hz, 1 H), 5.12 -5.23 (m, 2 H), 4.61 (t, J = 5.0 Hz, 1 H), 3.65-3.69 (m, 1 H), 3.61 (t, J = 9.2 Hz, 1 H), 2.56-2.71 (m) , 1 H), 1.56 (s, 3 H), 1.32 (s, 3 H), 1.17 (s, 9 H)

물질 4c의 제조 방법: 위에서 합성한 물질 3c (182 mg, 0.625 mmol)를 상기 명시된 물질 3a에서 물질 4a로의 합성과정과 동일하게 진행하면 4c (223 mg, 50%)를 합성할 수 있다. 단, 첫 번째 반응단계에서 온도를 200 ℃로 올려야 하고 교반시간을 7 시간 정도로 늘려주어야 한다.Method for the preparation of material 4c: 4c (223 mg, 50%) can be synthesized by using the above-synthesized material 3c (182 mg, 0.625 mmol) in the same manner as for the synthesis of material 4a from material 3a. However, in the first reaction step, the temperature should be raised to 200 °C and the stirring time should be increased to about 7 hours.

1H NMR (300 MHz, CDCl3) δ 8.76 (s, 1 H), 8.76 (s, 1 H), 8.29 (d, J = 2.4 Hz, 1 H), 5.26-5.37 (m, 1 H), 5.11 (t, J = 6.9 Hz, 1 H), 4.59-4.64 (m, 1 H), 3.64-3.74 (m, 2 H), 2.81-2.96 (m, 1 H), 1.58 (s, 3 H), 1.33 (s, 3 H), 1.20 (s, 9 H) 1 H NMR (300 MHz, CDCl 3 ) δ 8.76 (s, 1 H), 8.76 (s, 1 H), 8.29 (d, J = 2.4 Hz, 1 H), 5.26-5.37 (m, 1 H), 5.11 (t, J = 6.9 Hz, 1 H), 4.59-4.64 (m, 1 H), 3.64-3.74 (m, 2 H), 2.81-2.96 (m, 1 H), 1.58 (s, 3 H) , 1.33 (s, 3 H), 1.20 (s, 9 H)

<화학식 1-1><Formula 1-1>

Figure 112021023548100-pat00011
Figure 112021023548100-pat00011

화학식 1-1의 제조 방법: 위에서 합성한 물질 4a (220 mg, 0.54 mmol)를 터트부탄올 (tert-butanol)에 녹인 후, 고온밀폐용기 (stainless steel bomb reactor)에 옮긴다. 혼합액에 포화 암모니아/터트부탄올(제3 부탄올)을 적가한 후, 반응용기를 밀폐시키고 120 ℃에서 15 시간 정도 교반시킨다. 반응이 종결됨을 TLC로 확인한 뒤, 반응 혼합물을 메탄올로 희석시킨 뒤 감압농축 시킨다. 농축된 잔류물은 THF에 녹인 후 혼합액에 트리플루오로아세트산 (TFA)과 물이 2:1로 혼합된 용액을 적가한다. 반응 혼합물을 60 ℃에서 15 시간 가량 교반시킨 뒤, 반응이 종결됨을 TLC로 확인하고 감압농축 시킨다. 농축된 잔류물을 실리카젤 크로마토그래피등으로 분리정제하여 최종 물질 화학식 1-1의 화합물 (66 mg, 43%)를 얻을 수 있다.Preparation method of Formula 1-1: After dissolving the material 4a (220 mg, 0.54 mmol) synthesized above in tert-butanol ( tert- butanol), it is transferred to a high-temperature airtight container (stainless steel bomb reactor). After adding dropwise saturated ammonia/tert-butanol (tertiary butanol) to the mixture, the reaction vessel is sealed and stirred at 120° C. for about 15 hours. After confirming the completion of the reaction by TLC, the reaction mixture was diluted with methanol and then concentrated under reduced pressure. After the concentrated residue is dissolved in THF, a solution of trifluoroacetic acid (TFA) and water in a ratio of 2:1 is added dropwise to the mixture. After the reaction mixture was stirred at 60 °C for about 15 hours, the completion of the reaction was confirmed by TLC and concentrated under reduced pressure. The concentrated residue is separated and purified by silica gel chromatography, etc. to obtain the final compound of Formula 1-1 (66 mg, 43%).

1H NMR (400 MHz, CD3OD) δ 8.31 (d, J = 2.4 Hz, 1 H), 8.23 (s, 1 H), 5.36-5.39 (m, 1 H), 5.20-5.35 (td, J = 2.8, 53.6 Hz, 1 H), 5.05-5.16 (m, 1 H), 4.66-4.69 (m, 1 H), 3.64-3.71 (m, 2 H), 2.51-2.66 (m, 1 H), 1.55 (s, 3 H), 1.35 (s, 3 H), 1.22 (s, 9 H) 1 H NMR (400 MHz, CD 3 OD) δ 8.31 (d, J = 2.4 Hz, 1 H), 8.23 (s, 1 H), 5.36-5.39 (m, 1 H), 5.20-5.35 (td, J) = 2.8, 53.6 Hz, 1 H), 5.05-5.16 (m, 1 H), 4.66-4.69 (m, 1 H), 3.64-3.71 (m, 2 H), 2.51-2.66 (m, 1 H), 1.55 (s, 3 H), 1.35 (s, 3 H), 1.22 (s, 9 H)

제조예 2: 화학식 1-2Preparation Example 2: Formula 1-2

<화학식 1-2><Formula 1-2>

Figure 112021023548100-pat00012
Figure 112021023548100-pat00012

위에서 합성한 물질 4c (223 mg, 0.534 mmol)를 상기 명시된 물질 4a에서 화학식 1-1로의 합성과정과 동일하게 진행하면 화학식 1-2의 화합물 (99 mg, 61%)을 합성할 수 있다. Compound 4c (223 mg, 0.534 mmol) synthesized above can be synthesized in the same manner as in the synthesis of material 4a to Formula 1-1, as described above, to synthesize the compound of Formula 1-2 (99 mg, 61%).

1H NMR (400 MHz, CD3OD) δ 8.29 (s, 1 H), 8.21 (s, 1 H), 5.29-5.36 (m, 2 H), 4.66 (bs, 1 H), 3.75-3.79 (m, 1 H), 3.66-3.70 (m, 1 H), 2.80-2.89 (m, 1 H), 1.57 (s, 3 H), 1.34 (s, 3 H), 1.22 (s, 9 H) 1 H NMR (400 MHz, CD 3 OD) δ 8.29 (s, 1 H), 8.21 (s, 1 H), 5.29-5.36 (m, 2 H), 4.66 (bs, 1 H), 3.75-3.79 ( m, 1 H), 3.66-3.70 (m, 1 H), 2.80-2.89 (m, 1 H), 1.57 (s, 3 H), 1.34 (s, 3 H), 1.22 (s, 9 H)

제조예 3: 화학식 2Preparation Example 3: Formula 2

<물질 5><Substance 5>

Figure 112021023548100-pat00013
Figure 112021023548100-pat00013

물질 5의 제조 방법: 질소가스 하에서 2,2,6,6-tetramethylpiperidine (TMP, 59.2 g, 419 mmol)을 무수 THF (170 mL)에 녹이고 -78 ℃에서 n-BuLi (285 mL, 2.5 M in hexane, 457 mmol)을 천천히 첨가하고 0 ℃에서 2시간 동안 교반시킨다. 이 반응 혼합물을 다시 -78 ℃로 낮추고, 무수 THF (110 mL)에 녹인 출발물질 6-chloro-9-(tetrahydro-2H-pyran-2-yl)-9H-purine (20 g, 84 mmol)을 천천히 첨가하고 3시간 동안 교반한다. 이 반응혼합물에 THF (200 mL)에 녹인 iodine (102 g, 402 mmol)을 -78 ℃에서 천천히 첨가하고 같은 온도에서 3시간 동안 교반시킨 후 5시간에 걸쳐서 0 ℃로 온도를 서서히 올린다. 반응종결을 확인한 후 10%의 sodium thiosulfate 용액 (550 mL)과 포화 NH4Cl 수용액 (250 mL)을 가해 반응을 종결한다. 반응혼합물을 EtOAc (500 mL)으로 추출하고 무수 MgSO4로 건조하여 감압 농축한다. 남은 잔사물은 CH2Cl2/MeOH = 100/1 조건으로 flash 컬럼 크로마토그래피로 정제하여 아이보리 고체형태의 원하는 목적화합물 5 (66%)를 얻는다.Preparation method of substance 5: 2,2,6,6-tetramethylpiperidine (TMP, 59.2 g, 419 mmol) was dissolved in anhydrous THF (170 mL) under nitrogen gas and n-BuLi (285 mL, 2.5 M in) at -78 ° C. hexane, 457 mmol) was slowly added and stirred at 0 °C for 2 hours. The reaction mixture was lowered to -78 °C again, and the starting material 6-chloro-9-(tetrahydro-2H-pyran-2-yl)-9H-purine (20 g, 84 mmol) dissolved in anhydrous THF (110 mL) was added. Add slowly and stir for 3 hours. To this reaction mixture, iodine (102 g, 402 mmol) dissolved in THF (200 mL) was slowly added at -78 °C, stirred at the same temperature for 3 hours, and then slowly raised to 0 °C over 5 hours. After confirming the completion of the reaction, add 10% sodium thiosulfate solution (550 mL) and saturated NH4Cl aqueous solution (250 mL) to terminate the reaction. The reaction mixture is extracted with EtOAc (500 mL), dried over anhydrous MgSO4, and concentrated under reduced pressure. The remaining residue is purified by flash column chromatography under the condition of CH2Cl2/MeOH = 100/1 to obtain the desired compound 5 (66%) in the form of an ivory solid.

1H NMR (600 MHz, CDCl3) δ 5.66 (dd, J = 2.4, 10.8 Hz, 1H), 4.20 (m, 1 H), 3.74 (td, J = 2.4, 12 Hz, 1H), 3.04 (m, 1 H), 2.17 (m, 1 H), 1.62-1.91 (m, 4 H). 1 H NMR (600 MHz, CDCl 3 ) δ 5.66 (dd, J = 2.4, 10.8 Hz, 1H), 4.20 (m, 1 H), 3.74 (td, J = 2.4, 12 Hz, 1H), 3.04 (m , 1 H), 2.17 (m, 1 H), 1.62-1.91 (m, 4 H).

<물질 6><Substance 6>

Figure 112021023548100-pat00014
Figure 112021023548100-pat00014

물질 6의 제조 방법: 출발물질 5 (500 mg, 1.01 mmol)를 무수 DMF (10 mL)과 toluene (10 mL)에 잘 녹인 뒤, Bis(dibenzylideneacetone)palladium(0) (57.5 mg, 0.10 mmol), copper(I) iodide (38.4 mg, 0.20 mmol), diisopropylamine (306.60 mg, 3.03 mmol), 그리고 phenylacetylene (1.1 당량)를 넣고 충분히 교반해준다. 반응 혼합물은 질소가스 하에 상온에서 12시간 교반한다. 반응이 종결되면 반응 혼합물을 EtOAc (20 mL)로 추출하고 무수 MgSO4로 건조, 농축한다. 잔사물은 hexanes/EtOAc = 4/1 조건에서 컬럼 크로마토그래피로 정제해 목적화합물 6 (75%)를 얻는다.Method for preparing material 6: Starting material 5 (500 mg, 1.01 mmol) was well dissolved in anhydrous DMF (10 mL) and toluene (10 mL), and then Bis(dibenzylideneacetone)palladium(0) (57.5 mg, 0.10 mmol), Add copper(I) iodide (38.4 mg, 0.20 mmol), diisopropylamine (306.60 mg, 3.03 mmol), and phenylacetylene (1.1 equiv.), and stir thoroughly. The reaction mixture was stirred for 12 hours at room temperature under nitrogen gas. Upon completion of the reaction, the reaction mixture is extracted with EtOAc (20 mL), dried over anhydrous MgSO4, and concentrated. The residue is purified by column chromatography under the condition of hexanes/EtOAc = 4/1 to obtain the target compound 6 (75%).

1H NMR (600 MHz, CDCl3) δ 7.66-7.64 (m, 2H), 7.52-7.42 (m, 3H), 5.88 (dd, J = 11.3, 2.1 Hz, 1H), 4.23 (d, J = 11.5 Hz, 1H), 3.80-3.74 (m, 1H), 2.92 (qd, J = 12.1, 4.0 Hz, 1H), 2.17-2.14 (m, 1H), 1.96-1.55 (m, 4H). 1 H NMR (600 MHz, CDCl 3 ) δ 7.66-7.64 (m, 2H), 7.52-7.42 (m, 3H), 5.88 (dd, J = 11.3, 2.1 Hz, 1H), 4.23 (d, J = 11.5) Hz, 1H), 3.80-3.74 (m, 1H), 2.92 (qd, J = 12.1, 4.0 Hz, 1H), 2.17-2.14 (m, 1H), 1.96-1.55 (m, 4H).

<물질 7><Substance 7>

Figure 112021023548100-pat00015
Figure 112021023548100-pat00015

물질 7의 제조 방법: 출발물질 6을 무수 THF (0.13 M)에 녹이고 bis(triphenylphosphine)palladium(II) dichloride, 0.1당량과 2-tributylstannylthiophene, 2 당량을 넣고 질소기체 치환 조건 하에 실온에서 교반시킨다. 위의 혼합물을 60 ℃에서 3시간 동안 가열 교반시킨 후 실온으로 온도를 낮추고 증발시킨다. 남은 물질은 칼럼 크로마토그래피(silica gel, hexanes/EtOAc, 15/1)로 분리하여 최종생성물 7을 얻는다.Preparation method of material 7: Dissolve starting material 6 in anhydrous THF (0.13 M), add bis(triphenylphosphine)palladium(II) dichloride, 0.1 equivalents and 2-tributylstannylthiophene, 2 equivalents, and stir at room temperature under nitrogen gas substitution conditions. After heating and stirring the above mixture at 60 °C for 3 hours, the temperature was lowered to room temperature and evaporated. The remaining material is separated by column chromatography (silica gel, hexanes/EtOAc, 15/1) to obtain a final product 7.

1H NMR (600 MHz, DMSO) δ (ppm): 7.90 (dd, 1 H, J = 8.0, 6.8 Hz), 7.43 (m, 2 H), 7.46 (m, 3 H), 7.42 (dd, 1 H, J = 3.6, 0.8 Hz), 7.11 (dd, 1 H, J = 3.6, 1.6 Hz), 5.79 (dd, 1 H, J = 11.2, 2.4 Hz), 4.09 (d, 1 H, J = 11.2 Hz), 3.70 (m, 1 H), 3.50 (m, 1H), 2.69 (t, 2 H, J = 6.8 Hz), 2.03 (m, 2 H), 1.74 (m, 1 H). 1 H NMR (600 MHz, DMSO) δ (ppm): 7.90 (dd, 1 H, J = 8.0, 6.8 Hz), 7.43 (m, 2 H), 7.46 (m, 3 H), 7.42 (dd, 1 H, J = 3.6, 0.8 Hz), 7.11 (dd, 1 H, J = 3.6, 1.6 Hz), 5.79 (dd, 1 H, J = 11.2, 2.4 Hz), 4.09 (d, 1 H, J = 11.2) Hz), 3.70 (m, 1 H), 3.50 (m, 1H), 2.69 (t, 2 H, J = 6.8 Hz), 2.03 (m, 2 H), 1.74 (m, 1 H).

<물질 8><Substance 8>

Figure 112021023548100-pat00016
Figure 112021023548100-pat00016

물질 8의 제조 방법: 출발 물질 7에 무수 에탄올 (0.13 M)을 넣고 교반시킨 후, pyridinium p-toluenesulfonate, 0.2 당량을 질소가스 치환하에 실온에서 넣는다. 같은 온도에서 4시간 교반시킨 후, triethylamine (1 mL)을 넣고 반응을 종결한 뒤 증발시킨다. 반응물은 칼럼 크로마토그래피로 분리하여 최종생성물 8 (60%)을 얻는다.Preparation method of material 8: Anhydrous ethanol (0.13 M) was added to the starting material 7 and stirred, and 0.2 equivalents of pyridinium p-toluenesulfonate was added at room temperature under nitrogen gas substitution. After stirring at the same temperature for 4 hours, triethylamine (1 mL) was added to terminate the reaction, and then evaporated. The reaction product was separated by column chromatography to obtain a final product 8 (60%).

1H NMR (600 MHz, CDCl3) δ 8.06 (d, J = 3.2 Hz, 1H), 7.51-7.35 (m, 6H), 7.13 (t, J = 4.3 Hz, 1H). 1 H NMR (600 MHz, CDCl 3 ) δ 8.06 (d, J = 3.2 Hz, 1H), 7.51-7.35 (m, 6H), 7.13 (t, J = 4.3 Hz, 1H).

<물질 9><Substance 9>

Figure 112021023548100-pat00017
Figure 112021023548100-pat00017

물질 9의 제조 방법: 출발물질 8 (0.5 mmol)를 EDC (5 mL)에 충분히 녹인 후 상온에서 N,O-bis(trimethylsilyl)acetamide(BSA) (1.44 당량)를 천천히 적가한다. 반응 혼합물은 40 ℃에서 1시간 동안 교반한 뒤, 상온에서 sugar 3 (1.2 eq)를 EDC (2 mL)에 녹여 천천히 적가한다. 이 반응 혼합물을 0 ℃로 냉각시킨 후 TMSOTf (0.68 당량)를 첨가하고 80 ℃로 승온하여 3시간 동안 교반한다. 반응이 종결되면 반응 혼합물을 포화 NaHCO3 수용액으로 처리하고 CH2Cl2로 추출한다. 잔사물은 농축하여 컬럼 크로마토그래피로 정제해 목적화합물 9 (58%)를 얻는다.Preparation method of material 9: After sufficiently dissolving the starting material 8 (0.5 mmol) in EDC (5 mL), N,O-bis(trimethylsilyl)acetamide (BSA) (1.44 equivalents) is slowly added dropwise at room temperature. After the reaction mixture was stirred at 40 °C for 1 hour, sugar 3 (1.2 eq) was dissolved in EDC (2 mL) at room temperature and slowly added dropwise. After the reaction mixture was cooled to 0 °C, TMSOTf (0.68 equiv) was added, the temperature was raised to 80 °C, and the mixture was stirred for 3 hours. When the reaction is completed, the reaction mixture is treated with a saturated aqueous NaHCO 3 solution and extracted with CH 2 Cl 2 . The residue is concentrated and purified by column chromatography to obtain the target compound 9 (58%).

1H NMR (600 MHz, CDCl3) δ 8.04 (d, J = 3.2 Hz, 1H), 7.66 (d, J = 6.9 Hz, 2H), 7.51-7.42 (m, 4H), 7.15 (t, J = 4.3 Hz, 1H), 6.41 (s, 2H), 5.95 (s, 1H), 4.93 (dd, J = 10.5, 4.1 Hz, 1H), 4.27 (d, J = 10.5 Hz, 1H), 2.22 (s, 3H), 2.08 (s, 3H). 1 H NMR (600 MHz, CDCl 3 ) δ 8.04 (d, J = 3.2 Hz, 1H), 7.66 (d, J = 6.9 Hz, 2H), 7.51-7.42 (m, 4H), 7.15 (t, J = 4.3 Hz, 1H), 6.41 (s, 2H), 5.95 (s, 1H), 4.93 (dd, J = 10.5, 4.1 Hz, 1H), 4.27 (d, J = 10.5 Hz, 1H), 2.22 (s, 3H), 2.08 (s, 3H).

<화학식 2><Formula 2>

Figure 112021023548100-pat00018
Figure 112021023548100-pat00018

화학식 2의 제조 방법: 출발물질 9에 무수 에탄올 (0.3 M) 넣고 교반시킨 후 trimethylamine (4 당량) 과 메틸아민 하이드로클로라이드 (1.3 당량)를 넣고 질소가스 충전하에 상온에서 교반시킨다. 같은 온도에서 24시간 교반시키고 증발시킨 후 생성된 혼합물은 칼럼 크로마토그래피로 분리하여 최종물질 화학식 2 (물질 10)를 얻는다.Preparation method of Formula 2: Anhydrous ethanol (0.3 M) was added to the starting material 9 and stirred, then trimethylamine (4 equivalents) and methylamine hydrochloride (1.3 equivalents) were added and stirred at room temperature under nitrogen gas filling. After stirring at the same temperature for 24 hours and evaporating, the resulting mixture is separated by column chromatography to obtain the final product, Chemical Formula 2 (Substance 10).

1H NMR (600 MHz, MeOD) δ 7.87 (dd, J = 1.0, 3.6 Hz, 1 H), 7.63-7.67 (m, 2 H), 7.41-7.50 (m, 4 H), 7.08 (dd, J = 3.6, 5.0 Hz, 1 H), 6.22 (d, J = 6.0 Hz, 1 H), 5.46 (dd, J = 4.7, 5.8 Hz, 1 H), 4.72 (dd, J = 3.3, 9.5 Hz, 1 H), 4.05 (dd, J = 1.3, 9.5 Hz, 1 H), 3.17 (s, 3 H). 1 H NMR (600 MHz, MeOD) δ 7.87 (dd, J = 1.0, 3.6 Hz, 1 H), 7.63-7.67 (m, 2 H), 7.41-7.50 (m, 4 H), 7.08 (dd, J) = 3.6, 5.0 Hz, 1 H), 6.22 (d, J = 6.0 Hz, 1 H), 5.46 (dd, J = 4.7, 5.8 Hz, 1 H), 4.72 (dd, J = 3.3, 9.5 Hz, 1 H), 4.05 (dd, J = 1.3, 9.5 Hz, 1 H), 3.17 (s, 3 H).

실험예: SARS-CoV-2에 대한 활성 시험Experimental Example: Activity test for SARS-CoV-2

SARS-CoV-2에 대한 본 발명의 화합물들의 활성을 검증하기 위하여 상기 화합물들을 코로나 바이러스 평가모델에서 시험하였다. 이를 위해, Image Mining (IM) 소프트웨어를 사용하여 바이러스 N 단백질과 세포핵의 공초점 현미경 이미지를 분석하였으며, 각 화합물에 대한 용량반응곡선(DRC)을 생성하였다. 도 1은 이러한 실험예에 따른 HTS 자동화(automation)를 통한 SARS-CoV-2 감염분석 과정을 나타낸 흐름도로서, 구체적인 실험 방법은 다음과 같았다.In order to verify the activity of the compounds of the present invention against SARS-CoV-2, the compounds were tested in a coronavirus evaluation model. To this end, using Image Mining (IM) software, confocal microscopy images of viral N protein and cell nuclei were analyzed, and dose response curves (DRCs) were generated for each compound. 1 is a flowchart showing the SARS-CoV-2 infection analysis process through HTS automation according to this experimental example, and the specific experimental method was as follows.

한국 질병관리본부(KCDC)로부터 SARS-CoV-2를 제공받았으며, Vero 세포는 ATCC 로부터 획득하였다.SARS-CoV-2 was provided from the Korea Centers for Disease Control and Prevention (KCDC), and Vero cells were obtained from ATCC.

384-조직배양 플레이트에 웰당 1.2x104 개의 Vero 세포를 접종하였다. 24 시간 후, DMSO에 2배 연속희석하여 10 포인트로 준비된 화합물들을 50 μM을 최고농도로 하여 세포에 처리하였다. 도 2는 상기 384-조직배양 플레이트의 각 웰을 처리물질 및 방법별로 구분한 지도(Plate map)이다. 도 2에서 청색 'Compound' 웰은 본 발명의 화합물들을 포함한 84종의 화합물들을 처리한 웰을 나타낸다. 상기 과정은 신뢰성 검증을 위하여 두 개의 플레이트(Replicate 1, 2)에 동일하게 수행하였다. 1.2x10 4 Vero cells per well were seeded in a 384-tissue culture plate. After 24 hours, the cells were treated with 50 μM of the compounds prepared at 10 points by serial dilution twice in DMSO at the highest concentration. Figure 2 is a map (Plate map) in which each well of the 384-tissue culture plate is divided by treatment material and method. In FIG. 2, blue 'Compound' wells represent wells treated with 84 compounds including the compounds of the present invention. The above process was equally performed on two plates (Replicate 1 and 2) for reliability verification.

화합물 처리 약 1 시간 후, BSL3 시설에서 세포에 0.0125 MOI의 SARS-CoV-2를 감염시키고 37 ℃에서 24 시간 동안 배양하였다. 이후 4% paraformaldehyde (PFA)로 세포를 고정한 뒤, permeabilization 하였다. 그 후 anti-SARS-CoV-2 Nucleocapsid (N) 1 차 항체를 처리하고, 488-conjugated goat anti-rabbit IgG 2 차 항체와 Hoechst 33342를 처리하여 세포를 염색하였다. 형광 발현은 대용량 이미지 분석 기기인 Operetta (Perkin Elmer)를 이용하여 이미징 하였다. About 1 hour after compound treatment, cells were infected with 0.0125 MOI of SARS-CoV-2 in a BSL3 facility and incubated at 37°C for 24 hours. After fixing the cells with 4% paraformaldehyde (PFA), permeabilization was performed. Thereafter, cells were stained with anti-SARS-CoV-2 Nucleocapsid (N) primary antibody and 488-conjugated goat anti-rabbit IgG secondary antibody and Hoechst 33342. Fluorescence expression was imaged using a large-capacity image analysis device, Operetta (Perkin Elmer).

획득된 이미지는 내부 분석 프로그램인 Image Mining (IM) 소프트웨어를 이용하여 분석되었다. 도 3은 IM 소프트웨어를 이용하여 이미지를 분석하는 원리를 나타낸 도면이다.The acquired images were analyzed using an internal analysis program, Image Mining (IM) software. 3 is a diagram illustrating a principle of analyzing an image using IM software.

웰당 총 세포수는 Hoechst 로 염색된 핵 수로 산출하였고, 감염된 세포수는 nucleocapsid 단백질을 발현하는 세포수로 산출하였다. 감염도(infection ratio)는 nucleocapsid 단백질을 발현하는 세포수/총 세포수로 계산하였다. 각 웰당 감염도는 동일한 플레이트에서 감염되지 않은 세포(mock)를 포함한 웰들의 평균 감염도를 0%로 하고 화합물이 처리되지 않은 감염세포 (0.5% DMSO group)를 포함한 웰들의 평균 감염도를 100%로 하여 노말라이제이션 되었다. 약물 농도에 따른 반응 곡선과 IC50, CC50 값은 XLFit 4 (IDBS) 소프트웨어를 이용하여 Y = Bottom + (Top Bottom)/(1 + (IC50/X)Hillslope) 수식을 활용해 도출하였다. 모든 IC50 와 CC50 값은 두번의 반복실험으로 측정되었고, 어세이의 신뢰도는 Z'-factor와 변동계수 백분율 (%CV)의 값으로 검증되었다.The total number of cells per well was calculated as the number of Hoechst-stained nuclei, and the number of infected cells was calculated as the number of cells expressing the nucleocapsid protein. The infectivity (infection ratio) was calculated as the number of cells expressing the nucleocapsid protein/total number of cells. Infectivity per well was defined as 0% of the average infectivity of wells containing uninfected cells (mock) in the same plate and 100% of the average infectivity of wells containing untreated infected cells (0.5% DMSO group) in the same plate. was normalized. The response curve and IC 50 and CC 50 values according to drug concentration were derived using the formula Y = Bottom + (Top Bottom)/(1 + (IC 50 /X)Hillslope) using XLFit 4 (IDBS) software. All IC 50 and CC 50 values were measured in two replicates, and the reliability of the assay was verified with the values of Z'-factor and percent coefficient of variation (%CV).

도 4는 상기 실험예에 따라 처리된 각 플레이트를 heatmap 분석한 이미지이다. 도 5 내지 도 7은 화합물들을 처리한 각 웰의 감염 저해능(inhibition of infection)과 세포독성(cytotoxicity)을 나타낸 그래프이다.4 is an image of heatmap analysis of each plate processed according to the above experimental example. 5 to 7 are graphs showing the inhibition of infection and cytotoxicity of each well treated with the compounds.

도 4의 이미지 분석 결과와 도 5 내지 7의 그래프를 통해 감염 저해능이 70% 이상인 화합물 5종(Positives + Toxic-Positives)을 스크리닝하였으며, 그 중에서 세포독성을 나타내는 생존 세포 비율(cell ratio)이 70% 이상인 화합물 3종(Positives)을 스크리닝하였다. 도 8은 최종 스크리닝된 3종의 화합물(FM4L-038, FM2L-001, FM2L-002) 10 μM을 처리한 웰들과 대조군 웰들의 공초점 현미경 이미지이다. FM2L-001, FM2L-002 및 FM4L-038는 각각 화학식 1-1, 1-2 및 2의 화합물을 나타낸다.Through the image analysis result of FIG. 4 and the graphs of FIGS. 5 to 7, five compounds (Positives + Toxic-Positives) having an infection inhibition ability of 70% or more were screened, among which the viable cell ratio showing cytotoxicity was 70 % or more of three compounds (Positives) were screened. 8 is a confocal microscope image of wells treated with 10 μM of the final screened three compounds (FM4L-038, FM2L-001, FM2L-002) and control wells. FM2L-001, FM2L-002 and FM4L-038 represent compounds of Formulas 1-1, 1-2 and 2, respectively.

한편, 도 5 및 6의 두 플레이트 간의 상관관계를 나타낸 그래프는 상기 실험이 신뢰성 있게 수행되었음을 뒷받침한다. 도 9는 대조군 웰들의 퍼포먼스와 Z'-factor를 분석한 그래프인데, Z'-factor는 양성대조군(positive control)과 음성대조군(negative control)의 mean 값과 standard deviations 값을 통해 구해지는 것으로서 0.5 이상에 해당하는 경우 신뢰성이 확립된 실험으로 판단할 수 있다. 상기 실험의 Z' factor는 0.82로 나타났기 때문에 잘 검증된 실험임을 알 수 있다.On the other hand, the graph showing the correlation between the two plates in FIGS. 5 and 6 supports that the experiment was performed reliably. 9 is a graph analyzing the performance and Z'-factor of the control wells, where the Z'-factor is obtained through the mean values and standard deviations of positive and negative controls, and is 0.5 or more. In the case of , it can be judged as an experiment with established reliability. Since the Z' factor of the above experiment was 0.82, it can be seen that the experiment was well verified.

도 10은 상기 분석을 통해 도출된 약물반응곡선(dose response curve; DRC)을 나타낸 그래프이고, 하기 표 1은 각 화합물들의 DRC를 통해 도출된 IC50, CC50 및 SI 값이다. 도 10에 나타난 바와 같이, 최종 스크리닝된 본 발명의 화합물들은 SARS-CoV-2에 효능이 있는 것으로 알려진 기존의 화합물들인 클로로퀸(Chloroquine), 렘데시비르(Remdesivir) 및 로피나비르(Lopinavir)보다 훨씬 낮은 IC50 값을 나타내어 우수한 감염 저해능을 보이는 동시에 동등 수준의 CC50 값을 나타내어 SI 값도 상대적으로 높기 때문에, 더 안전하고 효과적인 SARS-CoV-2의 감염병(COVID-19) 예방 및 치료제로서 활용될 수 있다.10 is a graph showing a dose response curve (DRC) derived through the analysis, and Table 1 below shows IC 50 , CC 50 and SI values derived through DRC of each compound. As shown in FIG. 10 , the final screened compounds of the present invention are significantly higher than the existing compounds known to be effective against SARS-CoV-2, such as chloroquine, remdesivir and lopinavir. It shows a low IC 50 value, showing excellent infection inhibition, and at the same time showing an equivalent level of CC 50 value and thus a relatively high SI value, it can be used as a safer and more effective SARS-CoV-2 infectious disease (COVID-19) prevention and treatment. can

ICIC 5050 (μM) (μM) CCCC 5050 (μM) (μM) SISI 화학식 1-1Formula 1-1 7.437.43 > 50> 50 6.736.73 화학식 1-2Formula 1-2 3.083.08 > 50> 50 16.2516.25 화학식 2Formula 2 7.227.22 > 50> 50 6.936.93 ChloroquineChloroquine 9.719.71 > 150> 150 15.4415.44 RemdesivirRemdesivir 7.907.90 > 50> 50 6.336.33 LopinavirLopinavir 20.7720.77 > 50> 50 2.412.41

이상에서 본 발명의 실시예를 중심으로 설명하였으나 이는 단지 예시일 뿐 본 발명을 한정하는 것이 아니며, 본 발명이 속하는 분야에서 통상의 지식을 가진 자라면 본 발명의 실시예의 본질적인 특성을 벗어나지 않는 범위에서 이상에 예시되지 않은 여러 가지의 변형과 응용이 가능함을 알 수 있을 것이다. 예를 들어, 본 발명의 실시예에 구체적으로 나타난 각 구성 요소는 변형하여 실시할 수 있다. 그리고 이러한 변형과 응용에 관계된 차이점들은 첨부된 청구 범위에서 규정하는 본 발명의 범위에 포함되는 것으로 해석되어야 할 것이다.In the above, the embodiment of the present invention has been mainly described, but this is only an example and does not limit the present invention. It will be appreciated that various modifications and applications not exemplified above are possible. For example, each component specifically shown in the embodiment of the present invention may be implemented by modification. And differences related to such modifications and applications should be construed as being included in the scope of the present invention defined in the appended claims.

Claims (8)

하기 화학식 2로 표현되는 카보사이클릭 뉴클레오사이드(carbocyclic nucleoside) 유도체 또는 이의 약학적으로 허용 가능한 염을 포함하는
코로나바이러스감염증-19(COVID-19) 예방 또는 치료용 약학적 조성물.
<화학식 2>
Figure 112021094245089-pat00035
A carbocyclic nucleoside derivative represented by the following formula (2) or a pharmaceutically acceptable salt thereof.
A pharmaceutical composition for preventing or treating Coronavirus Infectious Disease-19 (COVID-19).
<Formula 2>
Figure 112021094245089-pat00035
삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 제1 항에 있어서,
상기 카보사이클릭 뉴클레오사이드 유도체 또는 염의 SARS-CoV-2에 대한 IC50 값이 7.5 μM 이하이고, CC50 값이 50 이상이며, SI 값이 6.5 이상인
COVID-19 예방 또는 치료용 약학적 조성물.
According to claim 1,
The carbocyclic nucleoside derivative or salt has an IC 50 value of 7.5 μM or less for SARS-CoV-2, a CC 50 value of 50 or more, and an SI value of 6.5 or more.
A pharmaceutical composition for preventing or treating COVID-19.
제7 항에 있어서,
상기 카보사이클릭 뉴클레오사이드 유도체 또는 염의 SARS-CoV-2에 대한 IC50 값이 4 μM 이하이고, SI 값이 16 이상인
COVID-19 예방 또는 치료용 약학적 조성물.
8. The method of claim 7,
The carbocyclic nucleoside derivative or salt has an IC 50 value of 4 μM or less and an SI value of 16 or more for SARS-CoV-2.
A pharmaceutical composition for preventing or treating COVID-19.
KR1020210026365A 2021-02-26 2021-02-26 The pharmaceutical composition for prevention and treatment of coronavirus disease-19 containing carbocyclic nucleosides derivatives KR102308854B1 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
KR1020210026365A KR102308854B1 (en) 2021-02-26 2021-02-26 The pharmaceutical composition for prevention and treatment of coronavirus disease-19 containing carbocyclic nucleosides derivatives
KR1020210082247A KR20220122441A (en) 2021-02-26 2021-06-24 The pharmaceutical composition for prevention and treatment of coronavirus disease-19 containing carbocyclic nucleosides derivatives
CA3208876A CA3208876A1 (en) 2021-02-26 2022-02-17 Pharmaceutical composition for preventing or treating coronavirus disease 19, containing carbocyclic nucleoside derivative
JP2023552043A JP2024508827A (en) 2021-02-26 2022-02-17 Pharmaceutical composition for prevention and treatment of novel coronavirus infection containing carbocyclic nucleoside derivative
EP22759972.7A EP4272747A1 (en) 2021-02-26 2022-02-17 Pharmaceutical composition containing carbocyclic nucleoside derivative for prevention and treatment of coronavirus disease 19
AU2022227430A AU2022227430A1 (en) 2021-02-26 2022-02-17 Pharmaceutical composition containing carbocyclic nucleoside derivative for prevention and treatment of coronavirus disease 19
CN202280017112.0A CN116940366A (en) 2021-02-26 2022-02-17 Pharmaceutical composition for preventing and treating novel coronavirus pneumonia comprising carbocyclic nucleoside derivatives
US18/277,982 US20240148769A1 (en) 2021-02-26 2022-02-17 Pharmaceutical composition for preventing or treating coronavirus disease 19, containing carbocyclic nucleoside derivative
PCT/KR2022/002329 WO2022182054A1 (en) 2021-02-26 2022-02-17 Pharmaceutical composition containing carbocyclic nucleoside derivative for prevention and treatment of coronavirus disease 19

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020210026365A KR102308854B1 (en) 2021-02-26 2021-02-26 The pharmaceutical composition for prevention and treatment of coronavirus disease-19 containing carbocyclic nucleosides derivatives

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020210082247A Division KR20220122441A (en) 2021-02-26 2021-06-24 The pharmaceutical composition for prevention and treatment of coronavirus disease-19 containing carbocyclic nucleosides derivatives

Publications (1)

Publication Number Publication Date
KR102308854B1 true KR102308854B1 (en) 2021-10-05

Family

ID=78077685

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020210026365A KR102308854B1 (en) 2021-02-26 2021-02-26 The pharmaceutical composition for prevention and treatment of coronavirus disease-19 containing carbocyclic nucleosides derivatives
KR1020210082247A KR20220122441A (en) 2021-02-26 2021-06-24 The pharmaceutical composition for prevention and treatment of coronavirus disease-19 containing carbocyclic nucleosides derivatives

Family Applications After (1)

Application Number Title Priority Date Filing Date
KR1020210082247A KR20220122441A (en) 2021-02-26 2021-06-24 The pharmaceutical composition for prevention and treatment of coronavirus disease-19 containing carbocyclic nucleosides derivatives

Country Status (8)

Country Link
US (1) US20240148769A1 (en)
EP (1) EP4272747A1 (en)
JP (1) JP2024508827A (en)
KR (2) KR102308854B1 (en)
CN (1) CN116940366A (en)
AU (1) AU2022227430A1 (en)
CA (1) CA3208876A1 (en)
WO (1) WO2022182054A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023198181A1 (en) * 2022-04-15 2023-10-19 The Chinese University Of Hong Kong Carbobicyclic nucleosides for treatment of viral infection

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4755594A (en) * 1986-01-31 1988-07-05 Warner-Lambert Company N6 -substituted adenosines
US5055569A (en) * 1989-10-19 1991-10-08 G. D. Searle & Co. N-(6)-substituted adenosine compounds
DE69123974T2 (en) * 1990-09-25 1997-05-07 Rhone Poulenc Rorer Int CONNECTIONS THAT HAVE ANTI-HYPERTENSIVE AND ANTI-CHEMICAL PROPERTIES
UA51716C2 (en) * 1996-07-08 2002-12-16 Авентіс Фармасьютікалз Продактс Інк. combinations possessing hypotensive, cardioprotective, anti-ishemic, and antilipolytic agents, a pharmaceutical composition and METHOD OF TREATMENT

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
J. Med. Chem. 2001, 44, 3985-3993
J. Med. Chem. 62, 6346-6362 (2019)* *
Tetrahedron: Asymmetry, 2002, 13, 1189-1193

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023198181A1 (en) * 2022-04-15 2023-10-19 The Chinese University Of Hong Kong Carbobicyclic nucleosides for treatment of viral infection

Also Published As

Publication number Publication date
US20240148769A1 (en) 2024-05-09
CA3208876A1 (en) 2022-09-01
JP2024508827A (en) 2024-02-28
CN116940366A (en) 2023-10-24
KR20220122441A (en) 2022-09-02
EP4272747A1 (en) 2023-11-08
AU2022227430A1 (en) 2023-08-31
WO2022182054A1 (en) 2022-09-01

Similar Documents

Publication Publication Date Title
DE60217465T2 (en) Nucleoside derivatives as inhibitors of RNA-dependent RNA viral polymerase
TWI313176B (en) Pharmaceutical compositions for treating diseases mediated by the hepatitis virus
AU2008326569B2 (en) 2&#39;,4&#39;-substituted nucleosides as antiviral agents
CN106957282B (en) Viral hepatitis type b antivirotic
US20040110717A1 (en) Nucleoside derivatives as inhibitors of rna-dependent rna viral polymerase
JP2008517912A (en) Fluorinated pyrrolo [2,3-d] pyrimidine nucleosides for the treatment of RNA-dependent RNA viral infections
JP2005527499A (en) Methods for inhibiting orthopoxvirus replication using nucleoside compounds
WO2003105770A2 (en) Carbocyclic nucleoside derivatives as inhibitors of rna-dependent rna viral polymerase
WO2004000858A2 (en) Nucleoside derivatives as inhibitors of rna-dependent rna viral polymerase
CA2818853A1 (en) 2&#39;-spirocyclo-nucleosides for use in therapy of hcv or dengue virus
JPWO2002051425A1 (en) Hepatitis C treatment
KR102308854B1 (en) The pharmaceutical composition for prevention and treatment of coronavirus disease-19 containing carbocyclic nucleosides derivatives
WO1991019713A1 (en) Pyrimidine nucleoside derivative
JPH0656877A (en) 2&#39;-deoxy-2&#39;,2&#39;-difluoro-(2,6,8-substituted)-purine nucleoside with antivirus activity and anticancer activity, and its intermediate
JP2010502748A (en) Azole nucleosides and use as RNA / DNA viral polymerase inhibitors
KR102202555B1 (en) Carbocyclic nucleosides derivatives and the antivirus compositions containing the same
KR102202556B1 (en) Carbocyclic nucleosides derivatives and the antivirus compositions containing the same
Siddiqui et al. The “β-fluorine effect” in the non-metal hydride radical deoxygenation of fluorine-containing nucleoside xanthates
WO2018110591A1 (en) 2&#39;-deoxy-7-deazapurine nucleoside derivative having antiviral activity
KR20180128252A (en) Carbocyclic nucleosides derivatives and the antivirus compositions containing the same
KR20180083094A (en) Carbocyclic nucleosides derivatives and the antivirus compositions containing the same
UA73843C2 (en) Nucleoside derivatives as inhibitors of rna-dependent rna viral polymerase

Legal Events

Date Code Title Description
AMND Amendment
X091 Application refused [patent]
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant