KR102296446B1 - Differentiation method of securing large amount of cells by chopping target cell enriched 3D organoids prepared from human pluripotent stem cells - Google Patents

Differentiation method of securing large amount of cells by chopping target cell enriched 3D organoids prepared from human pluripotent stem cells Download PDF

Info

Publication number
KR102296446B1
KR102296446B1 KR1020190128602A KR20190128602A KR102296446B1 KR 102296446 B1 KR102296446 B1 KR 102296446B1 KR 1020190128602 A KR1020190128602 A KR 1020190128602A KR 20190128602 A KR20190128602 A KR 20190128602A KR 102296446 B1 KR102296446 B1 KR 102296446B1
Authority
KR
South Korea
Prior art keywords
cells
differentiation
cell
stem cells
astrocytes
Prior art date
Application number
KR1020190128602A
Other languages
Korean (ko)
Other versions
KR20200043297A (en
Inventor
이상훈
장미윤
김성원
우혜지
Original Assignee
코아스템(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 코아스템(주) filed Critical 코아스템(주)
Publication of KR20200043297A publication Critical patent/KR20200043297A/en
Priority to KR1020210111426A priority Critical patent/KR102468360B1/en
Application granted granted Critical
Publication of KR102296446B1 publication Critical patent/KR102296446B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0618Cells of the nervous system
    • C12N5/0623Stem cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/30Nerves; Brain; Eyes; Corneal cells; Cerebrospinal fluid; Neuronal stem cells; Neuronal precursor cells; Glial cells; Oligodendrocytes; Schwann cells; Astroglia; Astrocytes; Choroid plexus; Spinal cord tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/14Drugs for disorders of the nervous system for treating abnormal movements, e.g. chorea, dyskinesia
    • A61P25/16Anti-Parkinson drugs
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/0062General methods for three-dimensional culture
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0618Cells of the nervous system
    • C12N5/0619Neurons
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2506/00Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells
    • C12N2506/08Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from cells of the nervous system
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2513/003D culture

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Neurology (AREA)
  • Cell Biology (AREA)
  • Neurosurgery (AREA)
  • General Health & Medical Sciences (AREA)
  • Developmental Biology & Embryology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Virology (AREA)
  • Immunology (AREA)
  • Ophthalmology & Optometry (AREA)
  • Psychology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Abstract

본 발명은 인간 만능 줄기세포로부터 제작된 3D 오가노이드를 패턴화하고 해체하여 해당 줄기세포 또는 전구세포를 배양하고 분화를 유도하여 최종 분화된 세포를 다량 확보하는 방법에 관한 것으로, 다량 확보된 세포는 기존 분화방법에 의해 분화된 세포에 비해 재현성, 안정성, 기능성 면에서 현저히 우수한 효과를 나타냄으로써 세포치료제나 치료 약물 스크리닝에 매우 유용하리라 기대된다.The present invention relates to a method for securing a large amount of finally differentiated cells by patterning and disassembling a 3D organoid prepared from human pluripotent stem cells, culturing the stem cells or progenitor cells, and inducing differentiation. It is expected to be very useful for screening cell therapies or therapeutic drugs as it exhibits significantly superior effects in terms of reproducibility, stability, and functionality compared to cells differentiated by existing differentiation methods.

Description

인간 만능 줄기세포로부터 제작된 3D 오가노이드를 해체하여 세포를 다량 확보하는 분화방법 {Differentiation method of securing large amount of cells by chopping target cell enriched 3D organoids prepared from human pluripotent stem cells}{Differentiation method of securing large amount of cells by chopping target cell enriched 3D organoids prepared from human pluripotent stem cells}

본 발명은 인간 만능 줄기세포로부터 제작된 3D 오가노이드를 분리 해체하여 최종 분화된 세포를 다량 확보하는 분화방법에 관한 것이다.The present invention relates to a differentiation method for securing a large amount of finally differentiated cells by separating and disassembling 3D organoids prepared from human pluripotent stem cells.

파킨슨병은 중뇌(midbrain) 흑질에 도파민 신경세포의 소실로 발생하는 신경퇴행성질환이다. 병변 부위와 병변세포가 명확하여 줄기세포 이식 치료에 가장 적합한 질환이라 알려져 있다.Parkinson's disease is a neurodegenerative disease caused by loss of dopaminergic neurons in the substantia nigra in the midbrain. It is known as the most suitable disease for stem cell transplantation because the lesion site and lesion cells are clear.

파킨슨병 세포 치료를 위해서는 줄기세포로부터 인간 중뇌형 도파민 신경세포 (midbrian-type dopamine neuron; mDA neuron)로 분화시키는 기술이 필요하며, 인간 만능 줄기세포 (hPSC, 인간 배아줄기세포(hESC) 또는 인간 유도만능줄기세포(hiPSC))로부터 mDA 신경세포로 분화시키는 분화 방법이 오랜 기간 동안 개발되어 왔다[비특허문헌 1]. 그러나 이러한 분화하는 방법은 임상적용에 사용하는데 있어서 다음과 같은 여러 문제점이 제기되었다.For the treatment of Parkinson's disease cells, a technology to differentiate from stem cells into human midbrain-type dopamine neurons (mDA neurons) is required, and human pluripotent stem cells (hPSCs, human embryonic stem cells (hESCs) or human induction A differentiation method for differentiating pluripotent stem cells (hiPSCs) into mDA neurons has been developed for a long time [Non-Patent Document 1]. However, in using this differentiation method for clinical application, several problems have been raised as follows.

첫째, 재현성에 문제가 있다. 기존의 이차원적인 방법이 매우 까다로와 다른 실험실에서는 재현이 잘 되지 않고, 개발한 모든 방법에서 개발에 사용한 H9 등의 일부 만능 줄기세포주에서만 적용되며 여러 다른 만능줄기세포주에서는 중뇌 도파민 신경세포로의 분화가 잘 일어나지 않았다.First, there is a problem with reproducibility. The existing two-dimensional method is very difficult and cannot be reproduced well in other laboratories. In all of the developed methods, it is applied only to some pluripotent stem cell lines such as H9 used for development. did not happen well.

둘째, 안정적인 중뇌인자(midbrain-specific factors) 발현의 문제점이 있다. Nurr1 Foxa2, Lmx1a와 같은 중뇌 인자는 중뇌 도파민 신경세포의 생존, 기능, 및 유지에 결정적으로 중요하다고 알려져서 이식 후 파킨슨병 치료능과 긴밀하게 관련되어 있다. 이 사실 때문에 최근 개발된 hPSC-mDA 신경세포 분화 프로토콜은 모두 중뇌 도파민 신경세포에서 중뇌 인자의 발현에 초점을 두고 개발되었다. 그러나 이 중뇌인자의 발현은 매우 불안정하여 중뇌 도파민 신경세포를 장기간 배양하던지 이식 후 쉽게 손실되어 버린다. 그러므로 현재까지 개발된 방법으로 분화된 세포를 이식하여 이식된 중뇌 도파민 신경세포에 일부 중뇌인자 발현(주로 Foxa2)만을 보여주고 있다. Second, there is a problem of stable expression of midbrain-specific factors. Midbrain factors such as Nurr1 Foxa2 and Lmx1a are known to be critically important for survival, function, and maintenance of midbrain dopaminergic neurons, and thus are closely related to their ability to treat Parkinson's disease after transplantation. Because of this fact, all of the recently developed hPSC-mDA neuronal differentiation protocols were developed focusing on the expression of midbrain factors in midbrain dopaminergic neurons. However, the expression of this midbrain factor is very unstable and is easily lost after long-term culture or transplantation of midbrain dopaminergic neurons. Therefore, by transplanting differentiated cells by the method developed so far, only some midbrain factor expression (mainly Foxa2) is shown in the transplanted midbrain dopaminergic neurons.

셋째, 분화된 mDA 신경세포 배양에서는 성상교세포(astrocyte)가 존재하지 않는 문제점이 있다. 지금까지 개발된 방법으로 분화된 mDA 신경세포 배양에서는 성상교세포 (astrocyte)가 포함되어 있지 않다. 성상교세포는 mDA 신경세포와 같은 신경세포의 생존, 기능 증진을 담당하는 세포로서 실제 뇌조직에서 신경세포의 정상적인 생존 및 기능 유지를 위해 필수적으로 필요한 세포이다. 또한, 성상교세포가 mDA 신경세포에서 중뇌인자의 발현을 유지하는데 필요하다.Third, there is a problem in that astrocytes do not exist in the differentiated mDA neuronal cell culture. Astrocytes are not included in the culture of mDA neurons differentiated by the methods developed so far. Astrocytes are cells that are responsible for the survival and function enhancement of neurons such as mDA neurons, and are essential for normal survival and function maintenance of neurons in actual brain tissue. In addition, astrocytes are required to maintain the expression of midbrain factors in mDA neurons.

마지막으로, 신경세포 분화로 얻을 수 있는 신경세포 양에 문제점이 있다. 지금까지 개발된 도파민성 신경세포 분화 방법에서는 중간에 증식에 가능한 신경줄기세포 단계 없이 바로 신경세포로 분화를 유도하여 한번의 분화를 통해 얻을 수 있는 최종 분화된 신경세포의 양에 한계가 있다. Finally, there is a problem in the amount of nerve cells that can be obtained through nerve cell differentiation. In the dopaminergic neuron differentiation method developed so far, there is a limit to the amount of finally differentiated neurons that can be obtained through one differentiation by inducing differentiation into neurons without a neural stem cell stage capable of proliferation in the middle.

3D brain Organoids derived from pluripotent stem cells: promising experimental models for brain development and neurodegenerative disorders, Journal of Biomedical Science (2017) 24:593D brain Organoids derived from pluripotent stem cells: promising experimental models for brain development and neurodegenerative disorders, Journal of Biomedical Science (2017) 24:59

이에, 본 발명자들은 이차원적인 세포의 배양에 대하여 오가노이드를 이용한 삼차원적 배양이 실제의 뇌 환경을 보다 가깝게 구현하고, 세포의 건강한 배양이 가능한 점에 착안하여 연구 노력하였다. 타겟 세포인 전구세포 또는 줄기세포가 충분히 포함될 수 있는 각각의 오가노이드를 각기 패턴화하여 원하는 운명체의 세포군을 다수의 세포군으로 (target cell enriched) 제작하고, 이 오가노이드 조직을 해체하여, 전구세포 또는 줄기세포를 배양하였다. 다른 기술들은 세포의 확보를 위해서는 2차원적인 배양법으로 패턴화하여 양적으로 확보하든지, 중간 단계에서 3차원 sphere 형태만을 차용하여 분화법 개발에 응용하는 반면, 본 발명은 완벽한 형태의 오가노이드를 거쳐서, 적절한 배양으로 그 안에 원하는 상태의 세포를 충분하게 (target cell enriched) 하기 때문에, 기존의 다른 기술에 비해 본 발명에서 분리된 세포는 오가노이드라는 완전한 3차원적 인공 뇌 부위를 거침으로써 세포 하나 하나가 보다 기능적으로 우수함을 확인하였다. Accordingly, the present inventors made research efforts focusing on the fact that the three-dimensional culture using organoids more closely emulates the actual brain environment and the healthy culture of cells is possible for the two-dimensional cell culture. By patterning each organoid capable of sufficiently containing target cells, progenitor cells or stem cells, a cell group of the desired fate body is prepared as a plurality of cell groups (target cell enriched), and this organoid tissue is disassembled to form progenitor cells or Stem cells were cultured. While other technologies are applied to the development of differentiation methods by patterning and quantitatively securing cells by a two-dimensional culture method, or by borrowing only the three-dimensional sphere form in the intermediate stage to secure cells, the present invention provides an organoid in a perfect form, In order to sufficiently enrich the cells in the desired state with appropriate culture, the cells isolated in the present invention, compared to other conventional techniques, undergo a complete three-dimensional artificial brain called an organoid, so that each cell is It was confirmed that it was more functionally superior.

따라서, 본 발명의 목적은 인간 만능 줄기세포로부터 제작된 3D 오가노이드를 패턴화하고 해체하여 해당 줄기세포 또는 전구세포를 배양하고 분화를 유도하여 최종 분화된 세포를 다량 확보하는 방법을 제공하는 것이다.Accordingly, it is an object of the present invention to provide a method for securing a large amount of finally differentiated cells by patterning and disassembling 3D organoids prepared from human pluripotent stem cells, culturing the stem cells or progenitor cells, and inducing differentiation.

또한, 본 발명의 다른 목적은 상기 방법으로 얻은 분화된 세포를 유효성분으로 포함하는 세포치료제를 제공하는 것이다.Another object of the present invention is to provide a cell therapy product comprising the differentiated cells obtained by the above method as an active ingredient.

또한, 본 발명의 또 다른 목적은 상기 방법으로 얻은 분화된 세포를 이용한 약물 스크리닝 방법을 제공하는 것이다.Another object of the present invention is to provide a drug screening method using the differentiated cells obtained by the above method.

이하, 본 발명을 보다 상세히 설명한다.Hereinafter, the present invention will be described in more detail.

본 발명은 인간 만능 줄기세포로부터 제작된 3D 오가노이드를 패턴화하고 해체하여 해당 줄기세포 또는 전구세포를 배양하고 분화를 유도하여 최종 분화된 세포를 다량 확보하는 방법에 관한 것이다. The present invention relates to a method for patterning and disassembling 3D organoids prepared from human pluripotent stem cells, culturing the stem cells or progenitor cells, and inducing differentiation to secure a large amount of finally differentiated cells.

본 명세서에 기재된 "만능 줄기세포(pluripotent stem cell, PSC)"는 몸을 구성하는 어떠한 형태의 세포로도 유도 분화가 가능한 줄기세포를 의미하며, 만능 줄기세포에는 배아줄기세포(embryonic stem cell, ESC)와 유도 만능 줄기세포 (induced pluripotent stem cell, Ipsc, 역분화 줄기세포)가 포함된다.As used herein, "pluripotent stem cell (PSC)" refers to a stem cell capable of induced differentiation into any type of cell constituting the body, and the pluripotent stem cell includes an embryonic stem cell (ESC). ) and induced pluripotent stem cells (Ipsc).

본 명세서에 기재된 "오가노이드 (organoid)"는 줄기세포를 이용해 최소 기능을 할 수 있도록 만든 '미니 유사 장기’로서, 3차원 구조로 만들어져 실험실에서도 실제 신체 기관과 비슷한 환경을 만들 수 있는 것이 특징이다. 즉, "오가노이드 (organoid)"는 3D 입체구조를 가지는 세포를 의미하며, 동물 등에서 수집, 취득하지 않은 인공적인 배양 과정을 통하여 제조한 신경, 장 등의 장기와 유사한 모델을 의미한다. 이를 구성하는 세포의 유래는 제한되지 않는다. 상기 오가노이드 (organoid)는 세포의 성장 과정에서 주변 환경과 상호 작용하도록 허용되는 환경을 가질 수 있다. 2D 배양과는 달리, 3D 세포 배양은 체외에서 세포가 모든 방향으로 성장할 수 있다. 이에 따라 본 발명에서 3D 오가노이드는 실제로 생체 내에서 상호 작용을 하고 있는 장기를 거의 완벽히 모사하여, 질병의 치료제 개발 및 등을 관찰할 수 있는 훌륭한 모델이 될 수 있다.The "organoid" described herein is a 'mini-like organ' made to have minimal functions using stem cells. . That is, "organoid" refers to a cell having a 3D three-dimensional structure, and refers to a model similar to organs such as nerves and intestines manufactured through an artificial culture process that is not collected or acquired from animals. The origin of the cells constituting it is not limited. The organoid may have an environment that is allowed to interact with the surrounding environment in the process of cell growth. Unlike 2D culture, 3D cell culture allows cells to grow in all directions in vitro. Accordingly, the 3D organoid in the present invention can be an excellent model for observing the development of therapeutic agents for diseases and the like by almost completely mimicking the organs that actually interact in vivo.

오가노이드는(organoid)는 일반적으로 인간 만능줄기세포를 배양하여 제조할 수 있다. 구체적으로, 파킨슨병 유래의 유도만능 줄기세포로부터 신경외배엽 구체 (neuroectodermal sphere) 형태의 신경외배엽 구체로 분화하거나 파킨슨병 유래의 유도만능 줄기세포로부터 진정 내배엽 (definitive endoderm), 후장 (hindgut) 으로의 단계별 분화를 통한 장관 오가노이드로 분화를 유도할 수 있다.Organoids can generally be prepared by culturing human pluripotent stem cells. Specifically, differentiation from induced pluripotent stem cells derived from Parkinson's disease into neuroectodermal spheres or from induced pluripotent stem cells derived from Parkinson's disease to definitive endoderm and hindgut Differentiation can be induced into intestinal organoids through differentiation.

본 발명에서 용어, "분화"는 세포가 분열하여 증식하며 전체 개체가 성장하는 동안에 세포의 구조나 기능이 특수화되는 현상을 의미한다. 즉, 생물의 세포, 조직 등이 각각에게 주어지는 역할을 수행하기 위해 적합한 형태 및 기능으로 변하는 과정을 말하며, 예를 들어, 만능 줄기세포가 외배엽(대뇌 피질, 중뇌, 시상하부 등), 중배엽(난황낭 등) 및 내배엽 세포로 변하는 과정뿐 아니라 조혈모세포가 적혈구, 백혈구, 혈소판 등으로 변하는 과정, 즉 전구세포가 특정 분화형질을 발현하게 되는 것도 모두 분화에 포함될 수 있다.As used herein, the term "differentiation" refers to a phenomenon in which cells divide and proliferate, and the structure or function of cells is specialized while the entire individual grows. In other words, it refers to the process by which cells, tissues, etc. of living organisms change into a suitable form and function to perform their respective roles. For example, pluripotent stem cells transform into ectoderm (cortex, midbrain, hypothalamus, etc.) etc.) and endoderm cells, as well as the process in which hematopoietic stem cells change into red blood cells, white blood cells, platelets, etc., that is, the expression of specific differentiation traits by progenitor cells, can all be included in differentiation.

기존의 인간 만능 줄기세포로부터 바로 분화 유도하여 해당 세포로 분화시키는 경우 세포주 또는 실험실(실험 환경)에 따라 재현성에 문제가 있으며, 안정적인 유지인자 발현이 되지 않으며, 일 례로 중뇌 도파민 신경세포의 경우에는 실제의 생체 환경과 달리 성상교세포가 함께 존재하지 않으며, 한번의 분화를 통해 얻을 수 있는 최종 세포의 양에 한계가 있다. 본 발명의 일 실시예와 같이 대뇌 성상전구세포, 중뇌 성상전구세포, 중뇌 도파민성 신경줄기세포, 또는 시상하부 신경줄기세포를 충분히 포함될 수 있는 오가노이드를 각기 패턴화하여 제작하고 (target cell enriched), 즉 각 타겟으로 하는 세포를 최대한 함유하고 있는 오가노이드 확보, 이 오가노이드 조직을 해체하여 해당 줄기세포 또는 전구세포를 배양함으로써 이차원적으로 분화 유도된 세포군에 대비하여, 실제의 뇌로부터 분리된 세포와 보다 비슷하고, 그 특성이 잘 유지되고 있으며, 생존력이 확보된 세포군으로의 분화 확보가 가능하다.In the case of direct differentiation from existing human pluripotent stem cells and differentiation into corresponding cells, there is a problem with reproducibility depending on the cell line or laboratory (experimental environment), and stable expression of maintenance factors is not achieved. For example, in the case of midbrain dopaminergic neurons, Unlike the in vivo environment of , astrocytes do not exist together, and there is a limit to the amount of final cells that can be obtained through one differentiation. As in an embodiment of the present invention, each of the organoids that can sufficiently contain cerebral astrocytes, midbrain astrocytes, midbrain dopaminergic neural stem cells, or hypothalamic neural stem cells is patterned and produced (target cell enriched), that is, Securing an organoid containing the maximum amount of each target cell, dismantling the organoid tissue and culturing the stem or progenitor cells to prepare for a cell group induced two-dimensionally, compared to cells isolated from the actual brain. It is similar, its characteristics are well maintained, and it is possible to secure differentiation into a cell group with secured viability.

본 발명에서, 용어 "패턴화"는 오르가노이드 제작시에, 중뇌성 패턴, 대뇌 피질성 패턴, 혹은 시상하부성 패턴, 이런식으로 뇌 세부 조직들 중 최종적으로 뽑아내고자 하는 세포의 오리진 조직의 특성을 지니는 운명체의 세포군을 다수의 세포군으로 함유되도록 (target cell enriched) 오르가노이드를 제작함을 의미한다. 또한, 패턴화 마커는 중뇌성 패턴 시에는 Lmx1a, Foxa2, Nurr1, En1; 대뇌 피질성 패턴 시에는 Pax6, Foxg1; 시상하부성 패턴 시에는 Rax, Nkx2.2 등이 있다.
본 발명에서, 용어 "해체(chopping)"는 계대 배양 전 제작된 3D 오가노이드를 물리적으로 (예, 니들을 이용 등) 여러 조각으로 잘라 나누어 흩어지게 함을 의미한다.
In the present invention, the term "patterning" refers to the characteristics of the origin of cells to be finally extracted from among the brain sub-tissues in this way, the midbrain pattern, the cortical pattern, or the hypothalamus pattern when the organoid is manufactured. It means that the organoid is prepared so that the cell group of the fate body having In addition, patterning markers include Lmx1a, Foxa2, Nurr1, En1; In cortical patterns, Pax6, Foxg1; In the case of hypothalamic patterns, there are Rax and Nkx2.2.
In the present invention, the term "chopping" means to physically cut and disperse the 3D organoids fabricated before subculture into several pieces (eg, using a needle, etc.).

따라서, 본 발명에서는 제작된 3D 오가노이드를 해체하여 오가노이드로부터 증식이 가능한 줄기세포를 분리 배양하여 증식시킴으로써 최종 분화된 세포를 한번에 다량으로 확보할 수 있다. Therefore, in the present invention, it is possible to secure a large amount of finally differentiated cells at once by disassembling the produced 3D organoid, separating and culturing stem cells capable of proliferating from the organoid, and proliferating them.

본 발명의 일 구현예에 따르면,According to one embodiment of the present invention,

1) 인간 만능 줄기세포를 증식 배양하여 3D 오가노이드를 제작하는 단계;1) Proliferating and culturing human pluripotent stem cells to produce 3D organoids;

2) 제작된 3D 오가노이드를 패턴화하고 해체하는 단계; 및2) patterning and disassembling the fabricated 3D organoid; and

3) 상기 해제된 오가노이드로부터 뽑아낸 세포들 내 줄기세포 또는 전구세포를 배양하여 증식시키고 분화 유도하여 최종 분화된 세포를 다량 확보하는 단계3) culturing, proliferating, and inducing differentiation of stem cells or progenitor cells in the cells extracted from the released organoids to secure a large amount of finally differentiated cells

를 포함하는 인간 만능줄기세포로부터 제작된 3D 오가노이드를 해체하여 줄기세포 또는 전구세포를 다량 확보하고 이를 최종 분화하는 방법을 포함한다.It includes a method of disassembling 3D organoids produced from human pluripotent stem cells, including a method for securing a large amount of stem cells or progenitor cells, and finally differentiate them.

상기 줄기세포는 외배엽성 줄기세포(피부, 신경세포), 중배엽성 줄기세포(근육, 뼈 세포) 또는 내배엽성 줄기세포(소화, 호흡 세포)일 수 있다. 구체적으로, 중뇌 도파민성 신경줄기세포, 또는 시상하부 신경줄기세포일 수 있다.The stem cells may be ectodermal stem cells (skin, nerve cells), mesodermal stem cells (muscle, bone cells), or endoderm stem cells (digestive and respiratory cells). Specifically, it may be a midbrain dopaminergic neural stem cell, or a hypothalamic neural stem cell.

상기 전구세포는 대뇌 성상전구세포, 또는 중뇌 성상전구세포일 수 있으나, 이에 제한되지 않는다.The progenitor cells may be cerebral astrocytes, or midbrain astrocytes, but are not limited thereto.

상기 세포는 신경세포 또는 성상교세포일 수 있으나, 이에 제한되지 않는다.The cell may be a neuron or an astrocyte, but is not limited thereto.

보다 바람직하게 상기 인간 만능 줄기세포 및 줄기세포를 비트로넥틴(Vitronectin)을 이용하여 배양시킨다. 이때 비트로넥틴을 0.3 ~ 0.7 ug/cm2 사용하는 것이 적절하다. 현재까지 이식용 도파민성 신경세포를 양산하는 최신 연구 보고된 Parmar group의 CellStemCell (A. Kirkeby et al., Predictive Markers Guide Differentiation to Improve Graft Outcome in Clinical Translation of hESC-Based Therapy for Parkinson's Disease. Cell Stem Cell 20, 135-148 (2017).), Nature Protocol (S. Nolbrant, A. Heuer, M. Parmar, A. Kirkeby, Generation of high-purity human ventral midbrain dopaminergic progenitors for in vitro maturation and intracerebral transplantation. Nature protocols 12, 1962-1979 (2017))의 보고에 의하면 인간 배아줄기세포의 증식 및 배양을 위해 Lamin521 (BioLamina사 LN-521)을 0.5ug/cm2 사용하고, 중뇌 신경세포로의 분화 후에는 Lamin511 (BioLamina사 LN-511)을 1ug/cm2 사용하는 것이 매우 중요하다고 보고하였다. 이에 비해 본 발명의 실시예에서는 인간 배아줄기세포의 배양 및 중뇌 신경 줄기세포 배양에 모두 비트로넥틴(Gibco사 A31804)를 0.5ug/cm2 사용하였다. 일반적으로 배양에 사용하는 60mm dish의 코팅 단가로 봤을 때, 인간 배아줄기세포 배양을 위한 Lamin521은 7,282원/dish 본 발명에서의 비트로넥틴은 1,480원/dish, 그리고 중뇌 신경 줄기세포 배양을 위한 Lamin511은 23,832원/dish인데 반하여, 본 발명의 계속 비트로넥틴 사용으로 1,480원/dish 이다. 코팅 비용만을 보더라도 본 발명의 방법이 인간 배아줄기세포 배양 시에는 5배, 중뇌 신경줄기세포 배양 시에는 무려 16배 절감 효과가 있다. More preferably, the human pluripotent stem cells and stem cells are cultured using vitronectin. At this time, it is appropriate to use vitronectin 0.3 to 0.7 ug/cm 2 . Parmar group's CellStemCell (A. Kirkeby et al. , Predictive Markers Guide Differentiation to Improve Graft Outcome in Clinical Translation of hESC-Based Therapy for Parkinson's Disease. Cell Stem Cell 20 , 135-148 (2017).), Nature Protocol (S. Nolbrant, A. Heuer, M. Parmar, A. Kirkeby, Generation of high-purity human ventral midbrain dopaminergic progenitors for in vitro maturation and intracerebral transplantation. Nature protocols 12 , 1962-1979 (2017)) reported that 0.5ug/cm 2 of Lamin521 (BioLamina LN-521) was used for proliferation and culture of human embryonic stem cells, and after differentiation into midbrain neurons, Lamin511 ( BioLamina's LN-511) was reported to be very important to use 1ug/cm 2 . In contrast, in the examples of the present invention, 0.5 ug/cm 2 of vitronectin (Gibco's A31804) was used for both culturing of human embryonic stem cells and culturing of mesencephalic neural stem cells. In terms of the coating unit price of a 60mm dish generally used for culture, Lamin521 for human embryonic stem cell culture is 7,282 won/dish Vitronectin in the present invention is 1,480 won/dish, and Lamin511 for culturing midbrain neural stem cells is While it is 23,832 won/dish, it is 1,480 won/dish with continued use of vitronectin of the present invention. Looking at the coating cost alone, the method of the present invention has an effect of reducing 5 times when culturing human embryonic stem cells and 16 times when culturing midbrain neural stem cells.

본 발명에 사용된 용어 "다량"은 처음 사용한 만능줄기세포 1개의 배양접시(dish)의 시작으로부터 도입하였을 때 각 패턴화된 세포군에 따라 차이가 있지만, 대략 1000~7200여 vial의 냉동세포 확보가 가능하고 이는 일반적으로 한 두개의 배양접시 세포를 1개의 vial 로 냉동한다고 봤을 때, 약 1,000~14,000배로 증가된 양을 의미한다. 특히, 단순한 양적인 증식뿐만 아니라, 특성의 유지까지도 포함한다.The term "large amount" used in the present invention differs depending on each patterned cell group when introduced from the start of one culture dish of pluripotent stem cells used for the first time, but it is difficult to secure about 1000-7200 vials of frozen cells It is possible, and this generally means an increased amount of about 1,000 to 14,000 times when one or two culture dish cells are frozen in one vial. In particular, it includes not only simple quantitative proliferation, but also maintenance of characteristics.

본 명세서에 기재된 "아교세포(gila)"는 뇌에 존재하는 세포 중 가장 많은 부분을 차지하는 세포로서, "성상교세포(astrocyte)"를 의미한다. 상기 성상교세포는 성상교세포라고도 하며, 신경세포의 보호 및 영양공급, 염증에 관여하며, 상기 미세아교세포는 뇌에서 염증을 담당하는 세포이다.As used herein, the term "glia (gila)" refers to a cell that occupies the largest portion of cells present in the brain, and refers to an "astrocytic cell (astrocyte)". The astrocytes are also referred to as astrocytes, and are involved in the protection and supply of nutrients and inflammation of nerve cells, and the microglia are cells responsible for inflammation in the brain.

상기 성상교세포는 배아 또는 성체 줄기세포로부터 분화시켜 수득할 수도 있고, 포유동물의 중뇌(ventral midbrain), 대뇌 피질(cortex) 또는 측면 신경절 융기(lateral ganglionic eminence)(줄무늬체 원기(선조체 anlage))에서 분리하여 수득할 수도 있다. The astrocytes may be obtained by differentiation from embryonic or adult stem cells, and in the mammalian midbrain (ventral midbrain), cerebral cortex (cortex) or lateral ganglionic eminence (striae anlage) It can also be obtained by isolation.

"신경전구세포/신경줄기세포(Neural stem/precursor cells, NSCs/NPCs)"는 발생 중이거나 또는 성체에서의 뇌 조직으로부터 분리 및 배양되며, 배양된 NPC는 연구 및 약물 스크리닝을 위한 도파민 신경세포의 대량 형성에 사용될 수 있다."Neural stem/precursor cells (NSCs/NPCs)" are isolated and cultured from brain tissue in developing or adults, and the cultured NPCs produce large quantities of dopaminergic neurons for research and drug screening. can be used to form.

"신경세포"는 신경계의 세포이고, 용어 "뉴런" 또는 "뉴런 세포"로 서로 바꾸어 사용할 수 있다.A “neuron” is a cell of the nervous system, and the terms “neuron” or “neuronal cell” can be used interchangeably.

"도파민(DA) 신경세포"는 티로신 수산화효소(Tyrosine Hydroxylase, TH)을 발현하는 신경세포를 말한다. 본 발명에서는 "도파민성 신경세포", "도파민 뉴런", "DA" 등으로 혼용하여 사용한다. 도파민 신경세포은 중간 뇌 흑색질에 특이적으로 위치하고, 생체 내에서 선조체, 변연계 및 신피질을 자극하여 자세반사, 운동, 및 보상관련 거동을 조절한다."Dopamine (DA) nerve cell" refers to a nerve cell expressing Tyrosine Hydroxylase (TH). In the present invention, "dopaminergic neuron", "dopaminergic neuron", "DA" and the like are used interchangeably. Dopaminergic neurons are specifically located in the midbrain substantia nigra and stimulate the striatum, limbic system, and neocortex in vivo to regulate postural reflexes, movement, and reward-related behaviors.

본 발명은 또한, 상기 방법으로 확보된 세포를 포함하는 세포치료제를 포함한다.The present invention also includes a cell therapy product comprising the cells obtained by the above method.

"세포치료제"는 대상체로부터 분리, 배양 및 특수한 저작을 통해 제조된 세포 및 조직으로 치료, 진단 및 예방의 목적으로 사용되는 의약품(미국 FDA규정)으로서, 세포 혹은 조직의 기능을 복원시키기 위하여 살아있는 자가, 동종, 또는 이종세포를 체외에서 증식, 선별하거나 다른 방법으로 세포의 생물학적 특성을 변화시키는 등의 일련의 행위를 통하여 치료, 진단 및 예방의 목적으로 사용되는 의약품을 지칭한다. 세포치료제는 세포의 분화 정도에 따라 크게 체세포치료제, 줄기세포치료제로 분류된다. "Cell therapy product" refers to cells and tissues manufactured through isolation, culture, and special masturbation from a subject, and is a drug used for treatment, diagnosis, and prevention purposes (US FDA regulations). , refers to a drug used for the purpose of treatment, diagnosis, and prevention through a series of actions such as proliferating, selecting allogeneic or xenogeneic cells in vitro, or changing the biological properties of cells in other ways. Cell therapy products are largely classified into somatic cell therapy and stem cell therapy according to the degree of cell differentiation.

본 명세서에 있어서, "대상체"는 치료, 관찰 또는 실험의 대상인 척추동물, 바람직하게는 포유동물, 예를 들어, 소, 돼지, 말, 염소, 개, 고양이, 쥐, 생쥐, 토끼, 기니아 피그, 인간 등일 수 있다.As used herein, a "subject" is a vertebrate, preferably a mammal, which is the subject of treatment, observation or experiment, for example, cattle, pigs, horses, goats, dogs, cats, rats, mice, rabbits, guinea pigs, It may be a human or the like.

본 발명에서 “치료”란 질환과 관련된 임상적 상황을 억제하거나 완화하거나 이롭게 변경하는 모든 행위를 의미한다. 또한 치료는 치료를 받지 않은 경우 예상되는 생존율과 비교하여 증가된 생존을 의미할 수 있다. 치료는 치료적 수단 이외에 예방적 수단을 동시에 포함한다.In the present invention, "treatment" refers to any action that suppresses, alleviates, or advantageously changes the clinical situation related to a disease. Treatment can also mean increased survival compared to the expected survival rate if not receiving treatment. Treatment includes simultaneously prophylactic means in addition to therapeutic means.

본 발명의 세포치료제는 신경 퇴행성 질환, 염증성 퇴행성 질환 및 대사 질환으로 이루어진 군에서 선택된 질환에 대한 치료 효과를 나타낸다. The cell therapy agent of the present invention exhibits a therapeutic effect on a disease selected from the group consisting of neurodegenerative diseases, inflammatory degenerative diseases and metabolic diseases.

상기 신경계 퇴행성 질환은 예를 들어 파킨슨병, 치매, 알츠하이머 질환, 헌팅턴 질환, 근위축성 측색 경화증, 기억력 저하, 중증근무력증, 진행성 핵상마비, 다계통 위축증, 본태성 진전증, 피질-기저핵 퇴행증, 미만성 루이소체 질환 및 픽병로 이루어진 군에서 선택된 것을 포함할 수 있으나, 이에 제한되지 않는다.The neurodegenerative disease is, for example, Parkinson's disease, dementia, Alzheimer's disease, Huntington's disease, amyotrophic lateral sclerosis, memory loss, myasthenia gravis, progressive supranuclear palsy, multiple system atrophy, essential tremor, cortical-basal nucleus degeneration, diffuse Lewy. It may include one selected from the group consisting of bodily disease and Pick's disease, but is not limited thereto.

상기 염증성 퇴행성 질환은 치매, 루이소체치매, 전두측두치매, 백질변성, 부신백질이영양증, 다발성 경화증 및 루게릭병으로 이루어진 군에서 선택된 것을 포함할 수 있으나, 이에 제한되지 않는다.The inflammatory degenerative disease may include one selected from the group consisting of dementia, Lewy body dementia, frontotemporal dementia, white matter degeneration, adrenal leukodystrophy, multiple sclerosis, and Lou Gehrig's disease, but is not limited thereto.

상기 대사 질환은 당뇨병, 비만 및 대사 장애로 이루어진 군에서 선택된 것을 포함할 수 있으나, 이에 제한되지 않는다.The metabolic disease may include, but is not limited to, one selected from the group consisting of diabetes, obesity and metabolic disorders.

본 발명의 방법으로 확보된 세포는 세포 치료제로 적용될 수 있으며, 약학적으로 허용가능한 담체를 추가로 포함하여 제제화될 수 있다. 본 발명에서 용어, "약학적으로 허용가능한 담체"란 생물체를 상당히 자극하지 않고 투여 성분의 생물학적 활성 및 특성을 저해하지 않는 담체 또는 희석제를 말한다. 본 발명에 있어서, 세포 치료제로서 포함할 수 있는 약학적으로 허용 가능한 담체는 완충제, 보존제, 무통화제, 가용화제, 등장제, 안정화제, 기제, 부형제, 윤활제 등 당업계에 공지된 것이라면 제한 없이 사용할 수 있다. 본 발명의 세포 치료제는 각종 제형의 형태로 통용되는 기법에 따라 제조될 수 있다. 본 발명의 세포치료제는 질병 부위로 이동을 유도할 수 있다면 어떠한 경로를 통해서든지 투여 가능하다. 경우에 따라서는 줄기세포를 병변으로 향하게 하는 수단을 구비한 비히클에 로딩하는 방안을 고려할 수도 있다. 따라서 본 발명의 세포치료제는 국소 (협측, 설하, 피부 및 안내 투여를 포함), 비경구 (피하, 피내, 근육내, 점적, 정맥 내, 동맥 내, 관절 내 및 뇌척수액 내를 포함) 또는 경피성 투여를 포함한 여러 경로를 통해 투여할 수 있으며, 바람직하게는 발병부위에 직접 투여한다. 일 양태로서 세포는 적합한 희석제에 약 현탁시켜 개체에 투여할 수 있는데, 이 희석제는 세포를 보호 및 유지하고, 목적하는 조직에 주입 시 사용에 용이하도록 하는 용도로 사용된다. 상기 희석제로는 생리식염수, 인산완충용액, HBSS 등의 완충용액, 뇌척수액 등이 있을 수 있다. 또한, 제약 조성물은 활성 물질이 표적 세포로 이동할 수 있도록 임의의 장치에 의해 투여될 수 있다. 바람직한 투여방식 및 제제는 주사제이다. 주사제는 생리식염액, 링겔액, Hank 용액 또는 멸균된 수용액 등의 수성용제, 올리브 오일 등의 식물유, 에틸올레인산 등의 고급 지방산 에스테르 및 에탄올, 벤질알코올, 프로필렌글리콜, 폴리에틸렌글리콜 또는 글리세린 등의 비수성용제 등을 이용하여 제조할 수 있고, 점막 투과를 위해, 통과할 배리어에 적합한 당업계에 공지된 비침투성제가 사용될 수 있으며, 변질방지를 위한 안정화제로 아스코르빈산, 아황산수소나트륨, BHA, 토코페롤, EDTA 등과, 유화제, pH 조절을 위한 완충제, 질산페닐수은, 치메로살, 염화벤잘코늄, 페놀, 크레솔, 벤질알코올 등의 미생물 발육을 저지하기 위한 보존제 등의 약학적 담체를 추가적으로 포함할 수 있다.The cells obtained by the method of the present invention may be applied as a cell therapeutic agent, and may be formulated by further including a pharmaceutically acceptable carrier. As used herein, the term "pharmaceutically acceptable carrier" refers to a carrier or diluent that does not significantly stimulate the organism and does not inhibit the biological activity and properties of the administered component. In the present invention, the pharmaceutically acceptable carrier that can be included as a cell therapeutic agent is used without limitation as long as it is known in the art, such as a buffer, preservative, analgesic agent, solubilizer, isotonic agent, stabilizer, base, excipient, lubricant, etc. can The cell therapeutic agent of the present invention may be prepared in the form of various formulations according to commonly used techniques. The cell therapy agent of the present invention can be administered through any route as long as it can induce movement to the diseased site. In some cases, it may be possible to consider loading the stem cells into a vehicle equipped with a means for directing the lesion. Therefore, the cell therapy agent of the present invention is topical (including buccal, sublingual, dermal and intraocular administration), parenteral (including subcutaneous, intradermal, intramuscular, instillation, intravenous, intraarterial, intraarticular and intracerebrospinal fluid) or transdermal It can be administered through several routes including administration, and is preferably administered directly to the site of disease. In one embodiment, the cells may be administered to an individual by suspending the drug in a suitable diluent, and the diluent is used to protect and maintain the cells, and to facilitate use when injected into a target tissue. The diluent may include physiological saline, a phosphate buffer solution, a buffer solution such as HBSS, and cerebrospinal fluid. In addition, the pharmaceutical composition may be administered by any device to allow the active agent to migrate to the target cell. A preferred mode of administration and formulation are injections. Injections include aqueous solutions such as physiological saline, Ringel's solution, Hank's solution or sterilized aqueous solution, vegetable oils such as olive oil, higher fatty acid esters such as ethyl oleic acid, and non-aqueous solvents such as ethanol, benzyl alcohol, propylene glycol, polyethylene glycol or glycerin For mucosal penetration, a non-penetrating agent known in the art suitable for a barrier to pass through may be used, and ascorbic acid, sodium hydrogen sulfite, BHA, tocopherol, EDTA as a stabilizer for preventing deterioration It may further include a pharmaceutical carrier such as an emulsifier, a buffer for pH control, a preservative for inhibiting the growth of microorganisms such as phenylmercuric nitrate, thimerosal, benzalkonium chloride, phenol, cresol, and benzyl alcohol.

본 발명은 또한, 상기 방법으로 확보된 세포 또는 전구세포를 이용한 약물 스크리닝 방법을 제공한다.The present invention also provides a drug screening method using the cells or progenitor cells obtained by the above method.

본 발명으로 확보된 세포의 중요한 특징으로 다량의 세포 생산 확보 가능성과 냉동보존 시에도 그 특성의 유지로 장기간 같은 성격의 세포군 유지 가능성, 생체 유래 세포와 보다 흡사하게 분화됨에 있다. 이러한 특성은 특히나, 동일한 상태의 다량의 세포를 요구하고 이의 반복 분석을 위해서는 장기간의 동일한 세포의 확보가 관건인, 다종의 약물의 동시 스크리닝 시에 적합하다. 주요 마커가 유지되는 동일한 성격의 세포군이 스크리닝 작업 시작 시점에서부터 끝나는 시점까지 계속 사용 가능함으로 스크리닝 세포에 매우 적합하다. Important features of the cells secured by the present invention include the possibility of securing the production of a large amount of cells, the maintenance of the characteristics even during cryopreservation, the possibility of maintaining the same cell group for a long period of time, and differentiation more similar to the cells derived from the living body. This property is particularly suitable for simultaneous screening of multiple drugs, which requires a large amount of cells in the same state and the key to obtaining the same cells for a long period of time for repeated analysis thereof. It is very suitable for screening cells as a cell population with the same characteristics in which key markers are maintained can be used continuously from the beginning to the end of the screening operation.

상기 약물은 신경 퇴행성 질환, 신경 퇴행성 질환, 염증성 퇴행성 질환 및 대사 질환으로 이루어진 군에서 선택된 질환을 치료하는 약물로서, 상기 신경 퇴행성 질환, 신경 퇴행성 질환, 염증성 퇴행성 질환 및 대사 질환으로 이루어진 군에서 선택된 질환에 대한 치료 효과를 나타낸다. The drug is a drug for treating a disease selected from the group consisting of a neurodegenerative disease, a neurodegenerative disease, an inflammatory degenerative disease, and a metabolic disease, and a disease selected from the group consisting of the neurodegenerative disease, a neurodegenerative disease, an inflammatory degenerative disease and a metabolic disease shows the therapeutic effect on

상기 신경계 퇴행성 질환은 예를 들어 파킨슨병, 치매, 알츠하이머 질환, 헌팅턴 질환, 근위축성 측색 경화증, 기억력 저하, 중증근무력증, 진행성 핵상마비, 다계통 위축증, 본태성 진전증, 피질-기저핵 퇴행증, 미만성 루이소체 질환 및 픽병을 포함하는 다양한 신경계 질환이 포함될 수 있으나, 이에 제한되지 않는다.The neurodegenerative disease is, for example, Parkinson's disease, dementia, Alzheimer's disease, Huntington's disease, amyotrophic lateral sclerosis, memory loss, myasthenia gravis, progressive supranuclear palsy, multiple system atrophy, essential tremor, cortical-basal nucleus degeneration, diffuse Lewy. Various neurological diseases may include, but are not limited to, bodily disease and Pick's disease.

상기 염증성 퇴행성 질환은 치매, 루이소체치매, 전두측두치매, 백질변성, 부신백질이영양증,다발성 경화증 및 루게릭병으로 이루어진 군에서 선택된 것을 포함할 수 있으나, 이에 제한되지 않는다.The inflammatory degenerative disease may include one selected from the group consisting of dementia, Lewy body dementia, frontotemporal dementia, white matter degeneration, adrenal leukodystrophy, multiple sclerosis, and Lou Gehrig's disease, but is not limited thereto.

상기 대사 질환은 당뇨병, 비만 및 대사 장애로 이루어진 군에서 선택된 것을 포함할 수 있으나, 이에 제한되지 않는다.The metabolic disease may include, but is not limited to, one selected from the group consisting of diabetes, obesity and metabolic disorders.

본 발명에서 사용되는 모든 기술용어는, 달리 정의되지 않는 이상, 본 발명의 관련 분야에서 통상의 당업자가 일반적으로 이해하는 바와 같은 의미로 사용된다. 또한 본 명세서에는 바람직한 방법이나 시료가 기재되나, 이와 유사하거나 동등한 것들도 본 발명의 범주에 포함된다. 본 명세서에 참고문헌으로 기재되는 모든 간행물의 내용은 본 발명에 도입된다.All technical terms used in the present invention, unless otherwise defined, have the meaning as commonly understood by one of ordinary skill in the art of the present invention. In addition, although preferred methods and samples are described herein, similar or equivalent ones are also included in the scope of the present invention. The contents of all publications herein incorporated by reference are incorporated herein by reference.

본 발명에서는 제작된 3D 오가노이드를 해체하여 오가노이드로부터 줄기세포 또는 전구세포를 분리 배양하여 증식시킴으로써 최종 분화된 세포를 다량으로 분화시킬 수 있으므로, 다량의 세포를 한번에 확보할 수 있다. 일례로, 본 발명의 방법을 mDA 신경세포 분화에 적용하는 경우 세포주에 따른 또는 batch-to-batch variation 없이 손쉽게 분화를 유도할 수 있어 다른 실험실에서 쉽게 재현이 가능하다. 또한, 본 발명으로 분화된 중뇌형 신경줄기세포를 파킨슨병에 이식 시 mDA 신경세포의 생존, 기능, 및 유지에 결정적으로 중요하다고 알려진 일련의 Nurr1 Foxa2, Lmx1a 등이 이식된 mDA 신경세포에 충실하게 발현되어 세포이식 치료 효과가 현저히 개선됨을 확인하였다. 또한, mDA 신경세포와 함께 신경세포의 생존, 기능 증진을 담당하는 세포인 성상교세포도 존재하여 mDA 신경세포를 보호, 기능 증진시킴으로써 이식 시 세포 이식 치료 증진에 기여한 것으로 보인다. In the present invention, by disassembling the produced 3D organoid, separating and culturing stem cells or progenitor cells from the organoids and proliferating them, the terminally differentiated cells can be differentiated in a large amount, so that a large amount of cells can be secured at once. For example, when the method of the present invention is applied to mDA neuronal differentiation, differentiation can be easily induced without cell line-dependent or batch-to-batch variation, and thus can be easily reproduced in other laboratories. In addition, a series of Nurr1 Foxa2, Lmx1a, etc., which are known to be critical for survival, function, and maintenance of mDA neurons, are faithfully expressed in the transplanted mDA neurons when the mesencephalic neural stem cells differentiated according to the present invention are transplanted into Parkinson's disease. It was confirmed that the cell transplantation treatment effect was significantly improved. In addition, astrocytes, which are cells responsible for the survival and function enhancement of neurons along with the mDA neurons, also exist, which protect and enhance the function of mDA neurons, which seems to have contributed to the enhancement of cell transplantation therapy during transplantation.

따라서, 이렇게 다량으로 확보된 분화 세포(mDA 신경세포 외 대뇌 성상전구세포, 중뇌 성상전구세포, 중뇌 도파민성 신경줄기세포, 또는 시상하부 신경줄기세포 등 포함)들은 세포 치료제나 세포로 치료 가능한 약물 스크리닝에 사용될 수 있다.Therefore, differentiated cells obtained in such a large amount (including cerebral astrocytes, midbrain astrocytes, midbrain dopaminergic neural stem cells, hypothalamic neural stem cells, etc.) can

도 1은 중뇌 오가노이드를 제작하여, 이로부터 중뇌성 신경줄기세포를 추출하는 방법을 나타낸 것이다 [A: 오가노이드로부터 신경줄기세포를 bFGF로 증식하여, 2D 환경 하에서 증식시키며 확보하는 방법을 나타낸 도면. B 및 C: 2주 동안 오가노이드로부터 증식한 중뇌형의 신경줄기세포의 형광염색으로 중뇌형 (OTX2, FOXA2, LMX1A, PAX2, PAX5) 마커 및 신경줄기세포 (SOX2, NESTIN, KI67) 마커의 발현 확인. D; 오가노이드로 부터 증식한 중뇌형의 신경줄기세포의 증식율 계산. PDL (population doubling level, bars) 및 누적(cumulative) PDL (line). E-G: 오가노이드로부터 증식한 중뇌형의 신경줄기세포의 12~15일 동안의 분화 유도 후 정확한 중뇌형 도파민 신경세포의 분화 확인. 도파민 신경세포 마커(TH)와 함께 중뇌형 마커 (FOXA2, LMX1A, NURR1, EN1) 및 완전 성숙한 신경세포 분화 마커(AADC, SYPT, DAT)의 확인. F: 2D 신경줄기세포로부터 분화된 신경세포 대비하여, 발현 % 확인. G: 각종 인간 배아줄기세포 및 유도만능 줄기세포를 이용했을 때 안정적으로 프로토콜이 구현됨을 확인. H: 2D로의 분화법 대비 오가노이드 유래 신경줄기세포의 분화 기술의 안정적 분화 성공율 확인. (성공의 기준으로 각 방법 수행 시, >70% (>30%) TH+ of MAP2+ neurons and >70% (>20%) NURR1+ of TH+ mDA neurons). I-L: 오가노이드 유래 신경줄기세포 분화 프로토콜이 보다 안정적으로 세포사멸을 억제하며 분화 가능함. EthD-1+ dead cells (I), cleaved caspase 3+ 사멸세포(J), FACS-이용 Annexin+/PI+ 세포 계산 (K), and β-galactosidase-염색 세포로서 세포사멸예정세포 (cell senescence) (L). *P= 0.0045 (I), 0.02 (J), 0.008-0.044 (L), 0.003 (K), n= 3 independent experiments, one-tailed Student's t-test. scale bars, 25μm(J), 50μm(B, E, I, K)].
도 2는 오가노이드 유래 신경줄기세포의 전사적 조절(Transcriptome characteristics) 분석을 나타낸 것이다 [A 및 B: 중뇌 오가노이드(midbrain-like organoid (MLO)), 오가노이드 유래 신경줄기세포 (Og-NSCs), 및 2D 유래 신경줄기세포(2D-NSCs)를 제작하여 그 RNA로부터의 전사인자와 기존에 보고된 발생 중의 중뇌 조직(published transcriptome datasets of prenatal midbrain), 성체의 도파민성 신경세포가 존재하는 선조체 (adult substantia nigra), 성체의 대뇌 피질(cortex), 후뇌(hindbrain) 의 전사 인자 조절의 차이를 bulk RNA Sequencing 으로 분석함. A: Spearman's correlation plot. 2D 신경줄기세포와 오가노이드 유래 신경줄기세포의 DEGs(differentially expressed genes) 분석. B: bulk RNA Sequencing 데이터를 PCA (Principle component analysis). PCA score는 발현의 차이가 가장 많이 나는 1,000의 유전자를 중심으로 함. C-G: 오가노이드 유래 신경줄기세포 (Og-NSCs), 2D 유래 신경줄기세포(2D-NSCs)의 전사 조절을 single cell RNA sequencing 분석함. (각기 13,793개와 12,166개의 세포를 분석) C: t-SNE (t-distributed stochastic neighbor embedding) map을 데이터 기반 색깔로 표현함. D: t-SNE projection으로 3개의 분리된 k-means clustering 됨. (Loupe Cell Browser ver. 3.0.1, 10X Genomics, Inc.). Og- 와 2D-신경줄기세포의 분석은 각기 밴다이어그램으로 분석 (아래). E: 각 cluster 내의 다른 군 대비 과발현되는 40개의 유전자를 Hierarchical clustering 분석. F: 각 군의 과발현 유전자를 중심으로 Top-ranked GOs (UMI>1, log2FC>0.5, P<0.05, DAVID). G, 다른 군 대비 특이적 조절되는 대표적인 유전자 발현. 데이터는 색의 짙음으로 표시됨 (log2 expression (UMI). F-H, Og-신경줄기세포에서 2D-신경줄기세포의 분석 대비 보다 극명한 발현성을 보이는 (DEGs) GOs (vs 2D-NSCs, log2FC >1, padj<0.01)가 bulk(H)와 single-cell RNA-seq datasets(I) 분석함. 'cell-cell adhesion,'는 bulk-와 single-cell RNA-seq data에서 모두 발현 증대되어 Heatmap 분석함(J).
도 3은 미토콘드리아 기능면에서 Og-NSCs 및 도파민성 신경세포 성숙도와 기능성을 분석한 결과 및 두 그룹 간의 신경세포 성숙도 차이를 보여주는 결과이다. 결론적으로 기존에 생산되던 방식의 NSC 에 대비하여, Og-NSCs 는 보다 건강하고 성숙한 형태의 분화가 가능함을 보여준다. [A-F: 미토콘드리아 독소 실험 하에서도 오가노이드 신경줄기세포 (Og-NSCs) 유래 신경세포는 미토콘드리아가 건강한 상태로 유지됨. A: Og-NSCs에서 과발현되는 미토콘드리아 인자의 STRING 분석(vs 2D-NSCs). B: 미토콘드리아의 합성 분석 (Mitochondrial biogenesis (MitoTimer)). *p=0.0000005 (48hr), 0.024 (24hr), n=4 cultures. C: 미토콘드리아 ROS (MitoSox), D, 미토콘드리아 막전위 (JC-1). *p=1.9e-46, independent cultures, 310-314 cells (C), p=3.5e-21, 세 번 이상의 독립실험으로 283-311 세포분석결과(D), Student's t-test. E, F, 미토콘드리아 독소 처리 하에서의 4일간 분화된 도파민성 신경세포의 생존 분석. 세포 생존/사멸 (E), 도파민성 신경세포 길이 분석 (F). ROT, rotenone; CC, cccp; HO, H

Figure 112019105598316-pat00001
O₂ *p=0.013-0.165 (E), p=0.000032-0.11 (F) n=3, Student's t-test. G-P: 도파민성 신경세포 성숙도와 기능성 분석. G, Og-NSCs 발현 특이적인 유전자의 Heatmap 분석 (vs 2D-NSCs). H, Neurolucida 분석 프로그램으로 대표적으로 분석된 Og-NSCs 유래 성숙도 높은 도파민성 신경세포. J, 12일 동안 분화 유도된 도파민성 신경세포 길이 분석. 23-58 세포/배양물로부터의 TH+ 섬유 길이를 측정하였다. *p=0.013, n= 7 (Og), 3(2D) independent cultures, t-test. I, K, 도파민성 신경세포의 시냅스 분석. 실제 시냅스를 형성하는 수를 synaptophysin 염색으로 분석함. (27-43 TH+ fibers/culture) *p=0.03, n= 5 cultures for each group. L-O, 신경세포 기능을 기반으로 한 Ca2+ influx 분석. L, Og-NSCs와 2D NSCs로 부터의 1AP을 내는 신경세포를 관찰. Og-NSCs (red) 및 2D-NSCs (black). 화살표 1AP point. M, 1 AP response amplitudes 평균값: [Ca2+ influx ]Og = 0.60 ± 0.09 (n=10), [Ca2+ influx]2D = 0.16 ± 0.02 (n=12). N, 자극에 의한 Ca2+ influx traces. O, 100AP response 동안 Ca2+ influx kinetics 평균값: [τ of Ca2+ influx]3D=0.85s ± 0.11 (n=10), [τ of Ca2+ influx]2D=2.35s ± 0.43 (n=12). *p=0.0009(M), p=0.005(O), Student's t-test. P, Pre-synaptic DA 분비, DA levels은 분화 13~15일 배지 내의 도파민 분비를 그 24시간 동안의 조건화 배지로 측정함. 30분 동안 KCl-depolarization 유도함. *p=0.0006-0.0009, n=4 (Og), 5-6 (2D) independent cultures. Q, R, Og-NSCs의 성상교세포 분화능. Single RNA-seq 의 cluster 1 에서 성상전구세포군이 관찰됨 (Q). CD44+ 성상 전구세포군은 신경줄기세포군에 포함됨 (R), 분화 이후 도파민성 신경세포(TH)와 함께 성상교세포(GFAP)가 같이 분화됨 (S). Og-NSC 군에서 관찰되고 2D-NSC 군에서는 거의 없음. *p=0.004(R), p=0.0003(S), n=3-4 independent cultures. scale bars, 10μm(I), 25μm(B, R), 50μm(C, D, S), 100μm(H)].
도 4는 파킨슨병의 생체적 특징인 α-synucleiopathy 모델에서 관찰하는 경우, 본 발명의 방법으로 유도된 신경줄기세포는 심화된 파킨슨 병인인α-synuclein 전파가 잘 되지 않는 상태의 세포임을 볼 때, 파킨슨 세포치료제로 사용 시 유리하다고 할 수 있다 [오가노이드 유래 중뇌형 신경줄기세포(Og-NSCs) 유래 신경세포는 상대적으로 α-syn이 덜 퍼지는 것으로 관찰됨. α-syn 질환 환경에서 보다 저항성 가질 수 있음. A-D, α-syn이 신경세포 내로 적게 침투되는 특성 관찰. Og-NSCs (vs 2D-NSC). A, 세포간에 α-syn 이동을 관찰할 수 있는 듀얼 쳄버 시스템. B: α-syn (GFP) 강도를 768 개 (Og)와 740 개 (2D)의 처리된 세포에서 비교함. *p=0.000004. Og-NSCs에서 상대적으로 덜 침투됨을 보임. C-F: 파킨슨 병인이 될 수 있는 α-syn 올리고머화를 바이러스를 이용한 과발현 시스템으로 유발시켰을 때, 특히 병인이 될 수 있는 p129-α-syn levels은 상대적으로 Og-NSCs에서 적게 관찰됨 (C), α-syn 올리고머를 바이러스 과발현 유발 후 (왼쪽) 혹은 임의로 PFF(preformed α-syn fibril) 처리 후 (오른쪽)에 Western blot 분석. 파킨슨병 주요 병인이 될 수 있는 α-syn 올리고머가 Og-NSCs에서 덜 발생함을 보임 (D), Bi-FC 시스템 (E, F). Bi-FC-녹색 발현되는 inclusions이 상대적으로 Og-NSCs에서 덜 관찰됨. 이로서 같은 양의 α-syn 이라도 뭉쳐서 병인으로 될 확률이 낮음을 보여줌 (F). *significance at p=0.001 (C) and 0.02 (F), n= 3 independent experiments. G, PFF-a syn 모델 동물에다가 Og-NSCs(left hemisphere)와 2D-NSCs(right-hemisphere)를 각각 이식 후 조직학적으로 분석함. 동물은 2주간 PFF와 a-syn AAV 바이러스로 파킨슨병 모델 유도하고, 각 세포 이식 후 1달 후 희생시킴. Og-NSCs 이식한 부위에서 상대적으로 적은 악성 α-syn (p129-α-syn)이 관찰되고, 건강한 도파민성 신경세포 관찰됨. scale bars, 50μm(B, C, F), 100μm(G)].
도 5는 Og-NSC 이식 후 나타날 수 있는 결과에 대해 다각도의 in vivo 예측 연구를 나타낸 것이다 [A: 도파민 신경세포의 이식 시 성공의 중요한 인자로 보고되어 있는 인자들의 발현을 Single cell RNA-seq data 에서 분석 결과, Og-NSCs 에서 상대적으로 높은 발현을 보임. (vs 2D-NSCs). 결과값은 색깔의 농도로 표시. log2 (expression of unique molecular identifier (UMI) values) (좌), log2 Og/2D 발현값의 비율 평균으로 표시 (우). B: pSyn-GCaMP6s-발현하는 신경세포를 dorsal striatum 에 이식하여, Two-photon 형광 endomicroscopy 관찰한 이미지 결과 (상). GCaMP6s 형광의 각 다른색의 ROI(regions of interest)는 도면 위쪽 이미지의 동그라미로 표시됨 (B, 하). C-F: Og-NSC-유래된 이식 부위의 Action potential firing 와 synaptic transmission. pDll1-GFP-hESCs로부터 분화되어, 신경줄기세포에서 형광을 발현하는 Og-NSCs 을 hemi parkinsonian 모델 동물의 선조체에 이식. 이식 1.5개월 후의 동물 뇌 슬라이스에서 Whole-cell patch clamp recording. 이식된 GFP+ 세포들의depolarizing current injection 으로 intrinsic excitability 관찰 (C), -70 mV holding potential로 sEPSC 기록 (D). Og-NSC 유래 이식부위의 sEPSCs의 평균 amplitude(E)와 frequency(F)를 이식하지 않은 부위의 정상 세포와 비교(좌). n=5 (graft) 및 4 (control, unlesioned) from 2 rats. G, H: 6-OHDA 파킨슨병 유발 동물에 이식된 Og-NSCs를 5개월 후에 18F FP-CIT DAT binding 을 MRI와 PET 스캔으로 분석함. *p=0.021, n=8 (graft) 및 5 (control, lesioned). T: 이식 부위, scale bars, 200μm.
도 6은 Og-NSCs 를 실제 파킨슨병 모델 동물에 이식 후 결과를 관찰한 것이다 [Og-NSCs 은 6-OHDA-유발 hemi parkinsonian 모델 랫트에 이식 (A-O), 또한 필리핀 원숭이에도 이식함 (P). A-C: 파킨슨병 동물의 이식 후, 행동학적 분석. A: 이식 6 개월 후, 암페타민-유발 rotation 스코어 관찰함. 시작 시점에 14마리 파킨슨병 모델 동물이 Og-NSCs 이식받았고, 암페타민-유래 행동학적 회복 스코어는 이식 후 1-6 달 동안 매달 분석함. 1-4개월 동안, 6 마리의 행동학적 회복 스코어가 >60% 이면, 분석을 위해 희생시켰음. 이식받기 전의 행동학적 스코어 분석 자료를 근거로 회복을 그것의 %로 표시함. 대조군으로는 생리식염수 이식 그룹으로 7마리를 사용하였다. (sham-(PBS-injected) controls (n=7) 분석은 *p=7.8e-10-0.037, one-way ANOVA.) Og-NSC-이식된 동물 모델의 다른 행동학적 실험으로 이식 6개월 후에 step adjustment tests 실시함, *p=5.58e-07-0.0006, one-way ANOVA, Tukey's post hoc analysis (B) 또한 cylinder tests도 실시함, *p=1.63e-08-0.000424, one-way ANOVA, Tukey's post hoc analysis (C) (n=8). D: Og-NSC-이식된 동물 모델 이식 후 6개월에 도파민 신경세포의 형태를 Neurite tracing (Neurolucida) 이미지로 관찰한 결과 성숙한 형태로 분화되었음을 확인함. E-O: 조직 형태학적 분석을 형광염색으로 확인함. E-G: 이식 부위의 TH+/FOXA2+, TH+/LMX1A+, TH+/NURR1+ 도파민성 신경세포 확인. 아래 확대된 이미지를 통해 이식된 도파민성 신경세포가 진정한 중뇌형의 신경세포임을 확인함. I: 중뇌성 인자들과의 형광 염색 결과 발현%를 8마리의 동물 이식 부위에서 확인함 (13,697 TH+ 세포 개수 분석함). L-P: 이식 6개월 후에 이식 부위를 부피로 계산 (L), TH+ 신경세포의 개수 (M), density (N), body size (O) (n=8 rats). P, Og-NSC-이식된 성체 필리핀 원숭이(cynomolgus)에 이식 1개월 후에, TH+ 도파민 신경세포 중에 인간세포 유래 이식된 세포임을 나타내는, STEM121을 발현하고, 중뇌성 마커로 FOXA2 와 NURR1을 발현하는 이식된 도파민성 신경세포 확인. scale bars, 50μm(E-G bottom, H, J, K, P bottom), 200μm(P top), 500μm(D-G)].
도 7은 hPSC로부터의 중뇌 유사 오가노이드의 생성 및 특성을 나타낸 것이다[A: 중뇌 유사 오가노이드를 생성하기 위한 실험 절차의 개략도. 시험관내 (DIV) 배양 일에 걸친 오가노이드의 B-D, 위상차 이미지. 스케일 바, 200 μm. E-O: 오가노이드에 형성된 신경 구조에 대한 대표적인 면역 형광 이미지. 오가노이드는 시험관내 표시된 날에 동결 절편화되고 지시된 항체로 염색되었다. V, 심실; VZ, 심실 구역; IZ, 중간 구역; MZ, 맨틀 존, 스케일 바, 100μm (E-P), 200μm (B-D)].
도 8은 본 발명의 방법에 의해 중뇌 신경 발생에 중요한 FGF8의 처리 시간 조절로 중뇌 신경줄기세포 유지가 효율적으로 개선됨을 나타낸 것이다 [A: 프로토콜 A 및 B의 FGF8b 처리 계획. B: 2개의 상이한 FGF8b 처리 계획으로 산출된 오가노이드(Og)-NSC에서 복부 중뇌 (VM)-특이적 및 시상 하부-특이적 마커의 발현에 대한 RNA-seq 데이터. C: 프로토콜 A 및 B로 유도된 EN1+/TH+ mDA 뉴런에 대한 대표 이미지. 스케일 바 (50μm)].
도 9는 복부 중뇌(VM) 신경 줄기/전구 세포(NSC) 또는 2D 배양 환경에서 hPSC로부터 2D-NSC 생성을 나타낸 것이다 [A: 2D에서 분화 hPSC의 세포 계대 동안 성상 세포 조절 배지(ACM) 처리의 요구. NSC를 제조하기 위해, ACM의 부재(-) 또는 존재(+)에서 VM-패터닝 화학 처리 (상단 전, 상부 패널)로 분화된 hPSC를 분리하고 도금(통과 후)하였다. 표시된 중뇌-특이적 인자를 발현하는 세포의 위상차 및 면역 형광 염색의 이미지가 제시된다. B: 2D 배양 기반 hPSC-NSC/mDA 뉴런 분화 프로토콜의 도식적 개요. C에 의해 추정된 2D-NSC에서의 VM-특이적 NSC 마커 발현 NSC 확장 2주 후 면역 형광 염색. D: 집단 배가 수준 (PDL, 막대) 및 누적 PDL (선)에 의해 표현된 2D-NSC의 세포 확장. E-F: mDA 뉴런은 분화 후 12-15일 후에 Og-NSC로부터 산출되었다. DA 뉴런 (TH+ 세포의 %)의 중뇌-특이적 마커 발현을 3개의 독립적인 실험 (F)으로부터 정량화하였다. 스케일 바, 50μm].
도 10은 신경 줄기/전구 세포(NSC) 및 오가노이드-(상) 및 2D 기반 배양 (하)에서 중뇌 관련 마커를 표현하는 mDA 신경세포에 대한 대표 이미지를 나타낸 것이다 [스케일 바, 50μm].
도 11은 개발된 본 프로토콜이 인간 배아줄기세포/유도만능 줄기세포에 다양한 줄기세포주에 모두 범용 가능한 프로토콜임을 보여주는 결과이다 [복부 중뇌(VM) 신경 줄기/전구 세포(NSC) 및 중뇌-특이적 마커를 발현하는 mDA 신경세포는 시험된 모든 hPSC 라인에 걸쳐 생성된다. 3개의 hESC 및 4 hiPSC 라인을 도 1의 a에 요약된 오가노이드 프로토콜을 사용하여 VM-타입 NSC로 분화하도록 유도하였다. NSC는 2-3 세포 통과로 확장되었고 mDA 신경세포로 NSC의 최종 분화가 유도되었다. 말단 분화 후 7-12일 후 중뇌 마커 FOXA2, LMX1A, NURR1 및 EN1을 발현하는 NSC 단계 (확장) 및 TH+ mDA 신경세포에서 FOXA2 +, LMX1A + NSC에 대한 대표적인 면역 염색 이미지가 도시되어 있다. 스케일 바, 50μm].
도 12는 오가노이드(Og)-신경줄기/전구 세포(NSC)는 인간 mDA 신경세포에 대한 확장 가능하고, 양적인 면에서나 그 세포생물학적 특성 유지에 있어서, 범용의 세포 치료제로의 사용 가능할 정도의 공급이 가능함을 보여주는 결과이다. [A: 5 세포 계대를 갖는 NSC 확장을 사용하여 미분화된 hPSC 1 다쉬로부터 mDA 뉴런 7,260 바이알 (9,075 디쉬)을 생성하는 오가이드-기반 프로토콜의 도식적 개요. B: 다수의 NSC 계대 동안 Og-NSC의 mDA 신경원 용량의 유지.  좌측에는 FOXA2+, NSC 단계에서의 LMX1A+ NSC (확장) 및 중뇌 마커 FOXA2, LMX1A, NURR1 및 EN1을 발현하는 TH+ mDA 뉴런에 대한 대표적인 면역 염색 이미지가 말단 분화 후 10-18일에 도시되어 있다. NSC 및 mDA 뉴런에서의 중뇌 마커 발현은 우측의 그래프에서 정량화되었다. n = 3 개의 독립적인 실험. C: mDA 신경원성 전위를 변경시키지 않으면서 액체 N2에 Og-NSC의 저장. 액체 N2 저장 있는(+) 그리고 없는 (-) H9 Og-NSC로부터 분화된 mDA 뉴런의 대표적인 면역 염색 이미지가 도시되어 있다. 스케일 바, 50μm].
도 13은 PD-iPSC로부터 유래된 mDA 신경세포를 이용한 PD 약물의 후보 화합물 스크리닝을 나타낸 것이다 [A: 실험 절차의 개략도. PD 환자 (PD-ips1)로부터 유래된 hiPSC를 오가노이드-기반 프로토콜을 사용하여 mDA 신경세포로 분화시켰다. PD-iPSC-mDA 신경세포의 세포 생존을 MTT 분석 및 TH- 양성 DA 신경세포의 면역 형광 강도-기반 카운팅을 사용하여 화합물의 존재 하에 평가하였다. Image Express Microconfocal (Molecular Devices, San Jose, CA)을 사용한 고함량 스크리닝(HCS) 분석을 TH 강도-기반 mDA 신경세포 생존 분석에 사용하였다. B: MTT 분석 (상부) 및 TH+ 강도 측정 (하부)에 의해 얻어진 스크리닝 데이터의 예. 노란색 선, 대조군의 평균값 (비히클). C: 비히클 (상부) 및 화합물 #9를 사용하여 10일에 PD-iPSC 유래 mDA 신경세포의 대표적인 TH/MAP2 이미지].
도 14는 계대 배양에 따라, 오가노이드(Og) 신경 줄기/전구 세포(NSC) 분화 발달 중뇌(VM)에서 mDA 신경세포의 개발 그 세포의 특성을 요약한 것이다. Og-NSC의 말단 분화는 bFGF의 철회 및 신경 영양 인자 BDNF, GDNF 및 cAMP의 존재에 의해 유도되었다. 면역 세포 화학적 분석은 증식 세포 (Ki67), 성숙 신경세포 (MAP2), DA 신경세포 (TH) 및 중뇌 (FOXA2, LMX1A, NURR1)에 특이적인 항체를 사용하여 지시된 분화 일에 수행되었다. 스케일 바, 50μm.
도 15는 오가노이드(Og) 및 2D-NSC에서 신경 줄기/전구 세포(NSC)-(A), 만능 세포-(B) 및 세포 노화-특이적 유전자 (D)의 단일 세포 RNA 발현 패턴을 나타낸 것이다 [다능성 유전자 SSEA4 및 TRA1-60의 낮은 발현 수준은 FACS 분석 (C)에 의해 추가로 평가되었다].
도 16은 3D 대뇌 피질 오가노이드를 이용하여 대뇌 피질 신경줄기세포 분리를 위한 세부 프로토콜을 나타낸 것이다.
도 17은 3D 대뇌 피질 오가노이드를 이용하여 신경줄기세포를 확보함을 나타낸 것이다 [좌 그래프: 분화 프로토콜 적합성을 대뇌 마커인 pax6 발현을 통해 확인하였다. 우: 위쪽 사진은 오가노이드 해체(chop) 전에 사진으로 제대로 된 형태의 오가노이드 형성을 확인하였고, 아래 사진은 해체한 이후에 정상적인 신경줄기세포 형태로 성장함을 확인하였다].
도 18은 2D 및 3D 유래 배양으로부터 중뇌-신경줄기세포로의 최종 확립된 직접 분화 프로토콜을 나타낸 것이다[A: 인간 배아줄기세포를 이용해 단계적으로 배아줄기세포로부터 중뇌-신경줄기세포로의 직접 분화(Direct differentiation), 성상전구세포 확보, 그리고 그 이후에 성상 세포로의 말단 분화(Terminal differentiation)기술을 확립, B: 대뇌피질유래 성상교세포 확보의 프로토콜. (A)는 (B)와 그 패턴화 법에 있어서 상이].
도 19는 2D 및 3D 유래 배양으로부터 중뇌-신경줄기세포로의 직접 분화 프로토콜을 이용한 성상교세포의 제조를 나타낸 것으로, 기존의 이차원적 배양법에 대비하여 본 발명의 방법으로 유래된 세포들이 보다 건강하고 마커 유지가 잘되는 행상된 형태의 세포임을 보여준다.
도 20은 in vitro 배양된 대뇌 피질형 및 중뇌형 성상교세포의 특성을 분석한 것으로, 둘 간에는 실제적인 신경세포의 지지 기능면에서는 중뇌 유래 성상세포가 유전자 분석 시 우수함을 보여준다.
도 21은 in vivo 이식 후 대뇌 피질형 및 중뇌형 성상교세포의 특성을 분석한 것으로, 둘 간에는 실제적인 신경세포의 지지 기능면에서는 중뇌 유래 성상세포가 유전자 분석 시 우수함을 보여준다.
도 22는 in vivo 성상전구세포의 이식으로부터 미세아교세포의 M2 타입의 양질의 세포로의 변화를 나타낸 것으로, 이는 향후 성상세포의 이식 시 그 환경의 개선이 가능하므로, 활용도가 클 것임을 예측할 수 있다.
도 23은 Xeno-free 시스템을 이용한 다른 종류의 유도만능 줄기세포의 적응 배양 결과를 나타낸 것이다. 실제 세포치료제 개발 시에는 Xeno-free 시스템을 이용해서 다양한 라인에 적용이 중요하므로, 기본적인 결과이다.
도 24는 다른 종류의 유도만능 줄기세포(CMC-iPSC#11)의 중뇌성 성상세포군으로의 프로토콜 적용 확인(좌) 및 정상적인 신경세포 분화 확인(우)을 나타낸 것이다.
도 25는 다른 종류의 유도만능 줄기세포(CMC-iPSC#11)의 프로토콜 적용을 확인한 것이다.
도 26은 TGF-β와 LIF를 이용한 효율적인 분화 유도를 통해 프로토콜 적용을 확인한 것이다.
도 27은 생성한 중뇌 성상교세포의 생리학적 특성을 분석한 것이다.
도 28은 중뇌형 성상교세포의 조건화 배지를 활용한 미세아교세포의 변화를 관찰한 것이다. 이를 통해 성상세포에 의한 항염증 효과를 in vitro로 검증하였다.
도 29는 염증 유도 후 성상교세포 조건화 배지로 사멸 인자 억제 가능성을 확인한 것이다. 이를 통해 성상세포에 의한 항염증 효과를 in vitro로 검증하였다.
도 30은 염증 유도 후 성상교세포 조건화 배지로 항염증 효과를 RT-PCR 을 이용하여 확인한 것이다. 이를 통해 성상세포에 의한 항염증 효과를 in vitro로 검증하였다.
도 31은 선조체에 성상교세포 이식 후 비이식 부위와 염증반응 관련 RNA 발현을 분석한 것이다. 이를 통해 성상세포에 의한 항염증 효과를 in vivo로 검증하였다.
도 32는 In vivo 성상교세포 이식 후, M1 마커 iNOS 발현을 나타낸 것이다. 신경줄기세포 이식 부위에 대비하여, 염증이 덜 발생되는 것을 확인하였다.
도 33은 In vivo 성상교세포 이식 후, M1 마커 CD11b 발현을 나타낸 것이다. 신경줄기세포 이식 부위에 대비하여, 염증이 덜 발생되는 것을 확인하였다.
도 34는 In vivo 성상교세포 이식 후, M1 마커 CD16.32 발현을 나타낸 것이다. 신경줄기세포 이식 부위에 대비하여, 염증이 덜 발생되는 것을 확인하였다.
도 35는 In vivo 성상교세포 이식 후, M2 마커 CD206 발현을 나타낸 것이다. 신경줄기세포 이식 부위에 대비하여, 염증이 덜 발생되는 것을 확인하였다.
도 36은 3D 오가노이드를 이용하여 시상하부 신경줄기세포 분리를 위한 세부 프로토콜을 나타낸 것이다.
도 37은 3D 시상하부 오가노이드를 확보하고, 이에 맞는 마커의 발현을 확인한 것이다. 특이 마커로서 nestin, Rax, Sox2 의 발현이 잘 일어난다.
도 38은 증식 가능한 시상하부 신경줄기세포 확보됨을 확인한 것이다 [a: 시상하부 신경줄기세포 마커인 nestin/Rax를 97% 발현하는 4계대까지 증식 가능한 신경줄기세포 확보; b: 시상하부 신경줄기세포의 시상하부 관련 유전자 발현 확인].
도 39는 시상하부 신경줄기세포의 분화 유도 후 정상적인 신경세포와 성상교세포 분화를 확인한 것이다.
도 40은 시상하부 신경줄기세포로부터 분화 유도 후 렙틴(leptin)에 반응성 있는 세포로의 분화를 확인한 것이다. 이러한 기능 분석으로 시상하부세포의 기능적 특징을 잘 보이고, 분화후에 시상하부 신경세포 마커인 NPY, AGRP의 발현이 증진되어 있음으로, 기능적으로도 마커 발현 측면에서도 원하는 시상하부 신경줄기세포로의 패턴화가 잘 되었음을 확인하였다.
도 41은 3D 오가노이드 이용으로 개발된 시상하부 신경줄기세포가 이차원적 2D 환경에서 개발된 것 보다 생체 내의 마커 유전자군을 많이 발현함을 나타낸 것이다.
도 42는 3D 오가노이드 이용으로 개발된 시상하부 신경줄기세포의 생체 이식 가능성을 확인한 것이다.1 shows a method of preparing a midbrain organoid and extracting mesencephalic neural stem cells therefrom. B and C: Expression of mesencephalic (OTX2, FOXA2, LMX1A, PAX2, PAX5) markers and neural stem cell (SOX2, NESTIN, KI67) markers was confirmed by fluorescent staining of mesencephalic neural stem cells proliferated from organoids for 2 weeks. D; Calculation of the proliferation rate of mesencephalic neural stem cells proliferated from organoids. PDL (population doubling level, bars) and cumulative PDL (line). EG: Confirmation of accurate differentiation of midbrain dopaminergic neurons after 12-15 days of differentiation induction of mesencephalic neural stem cells proliferated from organoids. Identification of midbrain markers (FOXA2, LMX1A, NURR1, EN1) and fully mature neuronal differentiation markers (AADC, SYPT, DAT) along with dopaminergic neuronal markers (TH). F: Verification of expression % compared to neurons differentiated from 2D neural stem cells. G: It was confirmed that the protocol was stably implemented when various human embryonic stem cells and induced pluripotent stem cells were used. H: Confirmation of stable differentiation success rate of organoid-derived neural stem cell differentiation technology compared to 2D differentiation method. (When performing each method as a criterion of success, >70% (>30%) TH+ of MAP2+ neurons and >70% (>20%) NURR1+ of TH+ mDA neurons). IL: Organoid-derived neural stem cell differentiation protocol can more stably inhibit apoptosis and differentiate. EthD-1+ dead cells (I), cleaved caspase 3+ apoptotic cells (J), FACS-using Annexin+/PI+ cell counting (K), and β-galactosidase-stained cells for cell senescence (L) ). * P = 0.0045 (I), 0.02 (J), 0.008-0.044 (L), 0.003 (K), n= 3 independent experiments, one-tailed Student's t-test. scale bars, 25 μm (J), 50 μm (B, E, I, K)].
Figure 2 shows the analysis of the transcriptional regulation (Transcriptome characteristics) of organoid-derived neural stem cells [A and B: midbrain-like organoid (MLO)), organoid-derived neural stem cells (Og-NSCs), and 2D Produced neural stem cells (2D-NSCs), transcription factors from the RNA, and previously reported transcriptome datasets of prenatal midbrain, adult dopaminergic neurons (adult substantia nigra) , Analysis of differences in transcription factor regulation in adult cortex and hindbrain by bulk RNA sequencing. A: Spearman's correlation plot. Analysis of the differentially expressed genes (DEGs) of 2D neural stem cells and organoid-derived neural stem cells. B: Principle component analysis (PCA) of bulk RNA sequencing data. The PCA score is centered on the 1,000 genes with the greatest difference in expression. CG: Single cell RNA sequencing analysis of transcriptional regulation of organoid-derived neural stem cells (Og-NSCs) and 2D-derived neural stem cells (2D-NSCs). (13,793 and 12,166 cells analyzed, respectively) C: t-SNE (t-distributed stochastic neighbor embedding) map is expressed in data-based color. D: Three separate k-means clustered by t-SNE projection. (Loupe Cell Browser ver. 3.0.1, 10X Genomics, Inc.). The analysis of Og- and 2D-neuronal stem cells is analyzed as a Van diagram, respectively (below). E: Hierarchical clustering analysis of 40 genes overexpressed compared to other groups in each cluster. F: Top-ranked GOs based on overexpressed genes in each group (UMI>1, log 2 FC>0.5, P<0.05, DAVID). G, Representative gene expression specifically regulated compared to other groups. Data are expressed in dark colors (log2 expression (UMI). FH, Og-neuronal stem cells showed more pronounced expression compared to 2D-neuronal stem cell analysis (DEGs) GOs (vs 2D-NSCs, log 2 FC >1, padj<0.01) analyzed bulk (H) and single-cell RNA-seq datasets (I), 'cell-cell adhesion,' increased expression in both bulk- and single-cell RNA-seq data, and analyzed heatmap ( J).
3 shows the results of analyzing the maturity and functionality of Og-NSCs and dopaminergic neurons in terms of mitochondrial function, and the results showing the difference in neuronal maturity between the two groups. In conclusion, it shows that Og-NSCs can differentiate into a healthier and more mature form compared to the conventionally produced NSCs. [AF: Organoid neural stem cells (Og-NSCs)-derived neurons maintain healthy mitochondria even under mitochondrial toxin experiments. A: STRING analysis of mitochondrial factors overexpressed in Og-NSCs (vs 2D-NSCs). B: Synthesis analysis of mitochondria (Mitochondrial biogenesis (MitoTimer)). *p=0.0000005 (48hr), 0.024 (24hr), n=4 cultures. C: Mitochondrial ROS (MitoSox), D, Mitochondrial membrane potential (JC-1). *p=1.9e-46, independent cultures, 310-314 cells (C), p=3.5e-21, 283-311 cell analysis results from three or more independent experiments (D), Student's t-test. E, F, Survival analysis of dopaminergic neurons differentiated for 4 days under mitochondrial toxin treatment. Cell survival/death (E), dopaminergic neuron length analysis (F). ROT, rotenone; CC, cccp; HO, H
Figure 112019105598316-pat00001
O₂ *p=0.013-0.165 (E), p=0.000032-0.11 (F) n=3, Student's t-test. GP: Dopaminergic neuronal maturity and functional analysis. G, Heatmap analysis of Og-NSCs expression-specific genes (vs 2D-NSCs). H, High-maturity dopaminergic neurons derived from Og-NSCs typically analyzed by the Neurolucida analysis program. J, Length analysis of differentiation-induced dopaminergic neurons for 12 days. TH+ fiber lengths from 23-58 cells/culture were measured. *p = 0.013, n = 7 (Og), 3 (2D) independent cultures, t-test. I, K, Synaptic analysis of dopaminergic neurons. The number of actual synapses was analyzed by synaptophysin staining. (27-43 TH+ fibers/culture) *p=0.03, n=5 cultures for each group. LO, Ca 2+ influx analysis based on neuronal function. Observation of 1AP-producing neurons from L, Og-NSCs and 2D NSCs. Og-NSCs (red) and 2D-NSCs (black). Arrow 1AP point. Mean values of M, 1 AP response amplitudes: [Ca 2+ influx ]Og = 0.60 ± 0.09 (n=10), [Ca 2+ influx]2D = 0.16 ± 0.02 (n=12). N, Ca 2+ influx traces by stimulation. O, mean values of Ca2+ influx kinetics during 100AP response: [τ of Ca2 + influx]3D=0.85s ± 0.11 (n=10), [τ of Ca2 + influx]2D=2.35s ±0.43 (n=12). *p=0.0009(M), p=0.005(O), Student's t-test. P, Pre-synaptic DA secretion, DA levels were measured as dopamine secretion in the medium for 13-15 days of differentiation with the conditioned medium for 24 hours. Induce KCl-depolarization for 30 min. *p=0.0006-0.0009, n=4 (Og), 5-6 (2D) independent cultures. Q, R, Astrocyte differentiation capacity of Og-NSCs. Astrocytes were observed in cluster 1 of Single RNA-seq (Q). The CD44+ astrocyte group is included in the neural stem cell group (R), and after differentiation, astrocytes (GFAP) are differentiated together with dopaminergic neurons (TH) (S). Observed in the Og-NSC group and rarely in the 2D-NSC group. *p=0.004(R), p=0.0003(S), n=3-4 independent cultures. scale bars, 10 μm (I), 25 μm (B, R), 50 μm (C, D, S), 100 μm (H)].
Figure 4 is when observed in the α-synucleiopathy model, which is a biological characteristic of Parkinson's disease, the neural stem cells induced by the method of the present invention are cells in a state in which α-synuclein propagation, which is the intensified Parkinson's disease, is not well propagated. It can be said to be advantageous when used as a cell therapy. May be more resistant to α-syn disease environments. AD, Observation of the characteristic that α-syn penetrates less into neurons. Og-NSCs (vs 2D-NSCs). A, A dual-chamber system capable of observing the movement of α-syn between cells. B: Comparison of α-syn (GFP) intensity in 768 (Og) and 740 (2D) treated cells. *p=0.000004. Og-NSCs showed relatively less penetration. CF: When α-syn oligomerization, which may be a Parkinson’s etiology, was induced with a viral overexpression system, particularly etiological p129-α-syn levels were observed relatively low in Og-NSCs (C), Western blot analysis of α-syn oligomers after viral overexpression (left) or optionally after PFF (preformed α-syn fibril) treatment (right). Showing that α-syn oligomers, which may be the main etiology of Parkinson's disease, occur less in Og-NSCs (D), Bi-FC system (E, F). Bi-FC-green expressed inclusions were relatively less observed in Og-NSCs. This shows that even the same amount of α-syn has a low probability of aggregation and pathogenesis (F). *significance at p=0.001 (C) and 0.02 (F), n= 3 independent experiments. G, Histologically analyzed after transplantation of Og-NSCs (left hemisphere) and 2D-NSCs (right-hemisphere) in PFF-a syn model animals, respectively. Animals were induced in the Parkinson's disease model with PFF and a-syn AAV virus for 2 weeks, and sacrificed 1 month after transplantation of each cell. Relatively little malignant α-syn (p129-α-syn) was observed at the site of transplantation of Og-NSCs, and healthy dopaminergic neurons were observed. scale bars, 50 μm (B, C, F), 100 μm (G)].
Figure 5 shows a multi-angle in vivo prediction study for the results that may appear after Og-NSC transplantation [A: Single cell RNA-seq data for the expression of factors reported as important factors for success in transplantation of dopaminergic neurons. As a result of the analysis, Og-NSCs showed relatively high expression. (vs 2D-NSCs). The result is displayed as a color intensity. log2 (expression of unique molecular identifier (UMI) values) (left), expressed as a ratio average of log2 Og/2D expression values (right). B: Images obtained by two-photon fluorescence endomicroscopy of pSyn-GCaMP6s-expressing neurons transplanted into dorsal striatum (top). ROIs (regions of interest) of different colors of GCaMP6s fluorescence are indicated by circles in the upper image of the figure (B, lower). CF: Action potential firing and synaptic transmission at Og-NSC-derived graft sites. Og-NSCs differentiated from pDll1-GFP-hESCs and expressing fluorescence in neural stem cells were transplanted into the striatum of a hemi parkinsonian model animal. Whole-cell patch clamp recordings from animal brain slices 1.5 months after transplantation. Observation of intrinsic excitability by depolarizing current injection of transplanted GFP+ cells (C), sEPSC recording with -70 mV holding potential (D). Mean amplitude (E) and frequency (F) of sEPSCs from Og-NSC-derived graft sites compared to normal cells from non-transplanted sites (left). n=5 (graft) and 4 (control, unlesioned) from 2 rats. G, H: After 5 months of Og-NSCs transplanted into 6-OHDA Parkinson's disease-induced animals, 18 F FP-CIT DAT binding was analyzed by MRI and PET scans. *p=0.021, n=8 (graft) and 5 (control, lesioned). T: implantation site, scale bars, 200 μm.
6 is The results were observed after transplantation of Og-NSCs into actual Parkinson's disease model animals [Og-NSCs were transplanted into 6-OHDA-induced hemi parkinsonian model rats (AO), and also into Philippine monkeys (P). AC: Behavioral analysis after transplantation of Parkinson's disease animals. A: Six months after transplantation, amphetamine-induced rotation scores were observed. At the start, 14 Parkinson's disease model animals were transplanted with Og-NSCs, and amphetamine-derived behavioral recovery scores were analyzed monthly for 1-6 months post-transplantation. For months 1-4, 6 animals were sacrificed for analysis if their behavioral recovery score was >60%. Recovery is expressed as a percentage of it based on pre-transplant behavioral score analysis. As a control group, 7 mice were used in the physiological saline transplantation group. (sham-(PBS-injected) controls (n=7) analysis was *p=7.8e-10-0.037, one-way ANOVA.) Another behavioral experiment in an Og-NSC-transplanted animal model 6 months after transplantation. Step adjustment tests were performed, *p=5.58e-07-0.0006, one-way ANOVA, Tukey's post hoc analysis (B) Also cylinder tests were performed, *p=1.63e-08-0.000424, one-way ANOVA, Tukey's post hoc analysis (C) (n=8). D: Og-NSC-transplanted animal model 6 months after transplantation, the morphology of dopaminergic neurons was observed with a Neurite tracing (Neurolucida) image, confirming that they were differentiated into a mature form. EO: Confirmed by fluorescence staining for tissue morphological analysis. EG: Identification of TH+/FOXA2+, TH+/LMX1A+, TH+/NURR1+ dopaminergic neurons at the transplant site. The enlarged image below confirms that the transplanted dopaminergic neurons are true midbrain type neurons. I: As a result of fluorescence staining with mesencephalic factors, expression % was confirmed at the transplantation site of 8 animals (13,697 TH+ cell number analysis). LP: 6 months after transplantation, the transplant site was calculated by volume (L), number of TH+ neurons (M), density (N), body size (O) (n=8 rats). One month after transplantation into P, Og-NSC-transplanted adult cynomolgus, transplantation expressing STEM121 and expressing FOXA2 and NURR1 as mesencephalic markers, indicating human cell-derived transplanted cells among TH+ dopaminergic neurons. identified dopaminergic neurons. scale bars, 50 μm (EG bottom, H, J, K, P bottom), 200 μm (P top), 500 μm (DG)].
7 shows the generation and characterization of midbrain-like organoids from hPSCs [A: Schematic of the experimental procedure for generating midbrain-like organoids. BD, phase contrast images of organoids over days of in vitro (DIV) culture. Scale bar, 200 μm. EO: Representative immunofluorescence images of neural structures formed in organoids. Organoids were frozen sectioned in vitro on the indicated days and stained with the indicated antibodies. V, ventricle; VZ, ventricular zone; IZ, middle zone; MZ, mantle zone, scale bar, 100 μm (EP), 200 μm (BD)].
8 shows that the maintenance of midbrain neural stem cells is efficiently improved by controlling the processing time of FGF8, which is important for midbrain neurogenesis, by the method of the present invention [A: FGF8b treatment scheme of protocols A and B. B: RNA-seq data for expression of ventral midbrain (VM)-specific and hypothalamic-specific markers in organoid (Og)-NSCs generated with two different FGF8b treatment regimens. C: Representative images of EN1+/TH+ mDA neurons induced with protocols A and B. Scale bar (50 μm)].
9 shows 2D-NSC generation from ventral midbrain (VM) neural stem/progenitor cells (NSC) or hPSCs in a 2D culture environment [A: Astrocyte conditioned medium (ACM) treatment during cell passage of differentiated hPSCs in 2D. request. To prepare NSCs, hPSCs differentiated with VM-patterning chemical treatment (top before, top panel) in the absence (-) or presence (+) of ACM were isolated and plated (after passage). Images of phase contrast and immunofluorescence staining of cells expressing the indicated midbrain-specific factors are shown. B: Schematic overview of the 2D culture-based hPSC-NSC/mDA neuron differentiation protocol. VM-specific NSC marker expression in 2D-NSCs estimated by C. Immunofluorescence staining 2 weeks after NSC expansion. D: Cell expansion of 2D-NSCs expressed by population doubling level (PDL, bars) and cumulative PDL (lines). EF: mDA neurons were generated from Og-NSCs 12-15 days after differentiation. Midbrain-specific marker expression in DA neurons (% of TH+ cells) was quantified from three independent experiments (F). Scale bar, 50 μm].
10 shows representative images of neural stem/progenitor cells (NSCs) and mDA neurons expressing midbrain-related markers in organoid- (top) and 2D-based cultures (bottom) [scale bar, 50 μm].
11 is a result showing that the developed protocol is a protocol that is universally applicable to human embryonic stem cells/induced pluripotent stem cells and various stem cell lines [ventral midbrain (VM) neural stem/progenitor cells (NSC) and midbrain-specific markers. mDA neurons expressing mDA are generated across all hPSC lines tested. Three hESC and 4 hiPSC lines were induced to differentiate into VM-type NSCs using the organoid protocol outlined in Figure 1a. NSCs expanded with 2-3 cell passage and induced terminal differentiation of NSCs into mDA neurons. Representative immunostaining images for FOXA2 +, LMX1A + NSCs in NSC stage (expanded) and TH+ mDA neurons expressing midbrain markers FOXA2, LMX1A, NURR1 and EN1 are shown 7-12 days after terminal differentiation. Scale bar, 50 μm].
12 is an organoid (Og)-neuronal stem/progenitor cell (NSC) that is expandable to human mDA neurons, and in terms of quantity or maintaining its cell biological properties, supply enough to be used as a general-purpose cell therapy The results show that this is possible. [A: Schematic overview of an oguide-based protocol to generate 7,260 vials (9,075 dishes) of mDA neurons from undifferentiated hPSC 1 dash using NSC expansion with a 5-cell passage. B: Maintenance of mDA neuronal capacity of Og-NSCs during multiple NSC passages. On the left, representative immunostaining images for FOXA2+, LMX1A+ NSCs at the NSC stage (expanded) and TH+ mDA neurons expressing the midbrain markers FOXA2, LMX1A, NURR1 and EN1 are shown 10-18 days after terminal differentiation. Midbrain marker expression in NSC and mDA neurons was quantified in the graph on the right. n = 3 independent experiments. C: Storage of Og-NSCs in liquid N2 without altering the mDA neuronal potential. Representative immunostaining images of mDA neurons differentiated from H9 Og-NSCs with (+) and without (-) liquid N2 storage are shown. Scale bar, 50 μm].
Figure 13 shows the screening of candidate compounds of PD drugs using mDA neurons derived from PD-iPSCs [A: Schematic of the experimental procedure. hiPSCs derived from PD patients (PD-ips1) were differentiated into mDA neurons using an organoid-based protocol. Cell survival of PD-iPSC-mDA neurons was assessed in the presence of compounds using MTT assay and immunofluorescence intensity-based counting of TH-positive DA neurons. A high content screening (HCS) assay using Image Express Microconfocal (Molecular Devices, San Jose, CA) was used for TH intensity-based mDA neuronal survival assays. B: Examples of screening data obtained by MTT analysis (top) and TH+ intensity measurements (bottom). Yellow line, mean value of control (vehicle). C: Representative TH/MAP2 images of PD-iPSC-derived mDA neurons at day 10 using vehicle (top) and compound #9].
Figure 14 summarizes the characteristics of mDA neurons in the developmental midbrain (VM) of organoid (Og) neural stem/progenitor cells (NSC) differentiation developmental midbrain (VM) following subcultures. Terminal differentiation of Og-NSCs was induced by the withdrawal of bFGF and the presence of the neurotrophic factors BDNF, GDNF and cAMP. Immunocytochemical analyzes were performed on the indicated days of differentiation using antibodies specific for proliferating cells (Ki67), mature neurons (MAP2), DA neurons (TH) and midbrain (FOXA2, LMX1A, NURR1). Scale bar, 50 μm.
15 shows single cell RNA expression patterns of neural stem/progenitor cells (NSC)-(A), pluripotent cells-(B) and senescence-specific genes (D) in organoids (Og) and 2D-NSCs. [low expression levels of the pluripotency genes SSEA4 and TRA1-60 were further assessed by FACS analysis (C)].
16 shows a detailed protocol for isolating cortical neural stem cells using 3D cortical organoids.
Figure 17 shows that neural stem cells are obtained using 3D cortical organoids [left graph: suitability of the differentiation protocol was confirmed through expression of pax6, a cerebral marker. Right: In the upper photo, before organoid disassembly (chop), proper organoid formation was confirmed, and in the lower photo, normal neural stem cell growth was confirmed after disassembly].
Figure 18 shows the final established direct differentiation protocol from 2D and 3D derived culture to mesencephalic-neuronal stem cells [A: Direct differentiation from embryonic stem cells to mesencephalic-neuronal stem cells in stages using human embryonic stem cells. ), securing astrocytes, and then establishing terminal differentiation technology into astrocytes, B: Protocol for securing cerebral cortex-derived astrocytes. (A) differs from (B) in its patterning method].
19 shows the preparation of astrocytes using a direct differentiation protocol from 2D and 3D-derived culture to mesencephalic-neuronal stem cells. Compared to the conventional two-dimensional culture method, the cells derived by the method of the present invention are healthier and maintain markers. shows that the cells are well-paced.
20 is an analysis of the characteristics of cortical-type and midbrain astrocytes cultured in vitro, and shows that midbrain-derived astrocytes are superior in gene analysis in terms of the actual support function of neurons between the two.
21 shows the characteristics of cortical-type and midbrain astrocytes after transplantation in vivo, showing that midbrain-derived astrocytes are superior in gene analysis in terms of the actual support function of neurons between the two.
Figure 22 shows the change of microglia into high-quality cells of M2 type from transplantation of astrocytes in vivo, which can be expected to be of great utility because the environment can be improved during transplantation of astrocytes in the future. .
23 shows the results of adaptive culture of different types of induced pluripotent stem cells using the Xeno-free system. This is a basic result because it is important to apply the Xeno-free system to various lines when developing an actual cell therapy product.
24 shows confirmation (left) and confirmation of normal neuronal differentiation (right) of protocol application of different types of induced pluripotent stem cells (CMC-iPSC#11) to the mesencephalic astrocyte group.
Figure 25 confirms the application of the protocol of different types of induced pluripotent stem cells (CMC-iPSC#11).
Figure 26 confirms the application of the protocol through efficient differentiation induction using TGF-β and LIF.
27 is an analysis of the physiological characteristics of the generated midbrain astrocytes.
28 is an observation of changes in microglia using a conditioned medium for midbrain type astrocytes. Through this, the anti-inflammatory effect by astrocytes was verified in vitro.
Figure 29 confirms the possibility of inhibiting apoptosis factors with an astrocyte conditioned medium after induction of inflammation. Through this, the anti-inflammatory effect by astrocytes was verified in vitro.
30 shows the anti-inflammatory effect of an astrocyte conditioned medium after induction of inflammation using RT-PCR. Through this, the anti-inflammatory effect by astrocytes was verified in vitro.
31 is an analysis of RNA expression related to non-transplantation site and inflammatory response after transplantation of astrocytes into the striatum. Through this, the anti-inflammatory effect by astrocytes was verified in vivo.
Figure 32 shows the expression of M1 marker iNOS after transplantation of astrocytes in vivo. Compared to the neural stem cell transplantation site, it was confirmed that less inflammation occurred.
33 shows the expression of the M1 marker CD11b after transplantation of astrocytes in vivo. Compared to the neural stem cell transplantation site, it was confirmed that less inflammation occurred.
34 shows the expression of the M1 marker CD16.32 after transplantation of astrocytes in vivo. Compared to the neural stem cell transplantation site, it was confirmed that less inflammation occurred.
35 shows the expression of the M2 marker CD206 after transplantation of astrocytes in vivo. Compared to the neural stem cell transplantation site, it was confirmed that less inflammation occurred.
36 shows a detailed protocol for isolating hypothalamic neural stem cells using 3D organoids.
Figure 37 is to secure the 3D hypothalamic organoids, confirming the expression of the appropriate marker. As specific markers, the expression of nestin, Rax, and Sox2 occurs well.
Figure 38 confirms that proliferative hypothalamic neural stem cells are secured [a: securing proliferative neural stem cells up to passage 4 expressing 97% nestin/Rax, a hypothalamic neural stem cell marker; b: Confirmation of hypothalamus-related gene expression in hypothalamic neural stem cells].
Figure 39 confirms the differentiation of normal neurons and astrocytes after induction of differentiation of hypothalamic neural stem cells.
Figure 40 confirms the differentiation into cells responsive to leptin (leptin) after induction of differentiation from hypothalamic neural stem cells. This functional analysis shows the functional characteristics of hypothalamic cells well, and the expression of hypothalamic neuronal markers, NPY and AGRP, is enhanced after differentiation. confirmed that it was.
41 shows that hypothalamic neural stem cells developed using 3D organoids express more marker gene groups in vivo than those developed in a two-dimensional 2D environment.
Figure 42 confirms the in vivo transplantation potential of hypothalamic neural stem cells developed by using 3D organoids.

이하, 본 출원을 실시예를 통해 상세히 설명한다. 하기 실시예는 본 출원을 예시하는 것일 뿐 본 출원의 범위가 하기 실시예에 한정되는 것은 아니다. Hereinafter, the present application will be described in detail through examples. The following examples only illustrate the present application, but the scope of the present application is not limited to the following examples.

[실시예] [Example]

실시예 1: 인간 유도만능 줄기세포로부터 중뇌 오가노이드를 이용하여 mDA(중뇌 도파민) 신경세포로의 분화Example 1: Differentiation of human induced pluripotent stem cells into mDA (midbrain dopamine) neurons using midbrain organoids

[실험방법][Test method]

인간 배아줄기세포 또는 인간 유도만능 줄기세포의 배양Culturing of human embryonic stem cells or human induced pluripotent stem cells

한양대학교(서울, 대한민국)의 IRB(institutional review board)에 의해 승인된 hESC 리서치 가이드라인을 기초로 hESCs 및 hiPSCs를 배양하였다. 본 실험에서 사용된 hESCs 및 hiPSCs는 하기 표 1에 나타내었다. hESCs and hiPSCs were cultured based on the hESC research guidelines approved by the institutional review board (IRB) of Hanyang University (Seoul, Korea). The hESCs and hiPSCs used in this experiment are shown in Table 1 below.

Figure 112019105598316-pat00002
Figure 112019105598316-pat00002

미분화 hESC/iPSC의 증식 및 유지를 위해, 피더층 없이 37℃ 설정된 CO2 인큐베이터에서, mTESR-1 배지 (Stemcell Technologies Inc., Vancouver, BC, Canada)를 이용하여 MatrigelTM 상에서 혹은 vitronectin (Human; Gibco Fisher Scientific, Waltham, MA) (Gibco A31804; 0.5 ug/cm2)-코팅된 6cm 디쉬(Thermo Fisher Scientific, Waltham, MA) 상에서 배양하였고, 배지 교체는 매일 수행하였다. 미분화된 줄기세포들은 매일 배지 교체로 분화능이 유지되었으며 4~5일마다 Acutase (Stemcell Technologies Inc.)를 이용하여 계대배양되었다.For proliferation and maintenance of undifferentiated hESCs/iPSCs, in a CO 2 incubator set at 37° C. without a feeder layer, using mTESR-1 medium (Stemcell Technologies Inc., Vancouver, BC, Canada) on Matrigel TM or vitronectin (Human; Gibco) Fisher Scientific, Waltham, MA) (Gibco A31804; 0.5 ug/cm 2 )-coated 6 cm dishes (Thermo Fisher Scientific, Waltham, MA), medium change was performed daily. The undifferentiated stem cells were maintained in differentiation capacity by daily medium replacement and subcultured using Acutase (Stemcell Technologies Inc.) every 4 to 5 days.

3D 오가노이드제작법을 활용한 중뇌형 신경줄기세포의 제작Fabrication of midbrain neural stem cells using 3D organoid manufacturing method

간단하게, 중뇌형의 3D 오가노이드를 먼저 제작하고, 이를 잘게 잘라서 배양접시에서 중뇌형의 신경줄기세포 상태로 대량 증식시키는 시스템을 사용하였다. Briefly, a system was used in which a midbrain-type 3D organoid was first produced, cut into small pieces, and mass-proliferated in a medium-brain type neural stem cell state in a culture dish.

미분화 상태로 정상 배양하고 있던, hESC 및 hiPSC를 계대배양 시 AccutaseTM를 이용하여 떼어내고 바닥에 붙지 않는 바닥 둥근 형태의 96 well plate 에다가 미분화 상태의 인간배아줄기세포를 10,000 세포/well 로 분주하여 일단 오가노이드를 형성하게 하였다. 첫날의 배지 조성은 아래 표 4의 seeding base 배지에 표 2의 Day0에 해당하는 첨가물 조건 (SB431542, 10uM; Noggin, 100ng/ml; ascorbic acid, 200uM; Doxycyclin, 1ug/ml; Y27632, 20uM)으로 오가노이드 발생을 시작하였다. 다음날은 배지를 neural inducing base media (표 3)로 하고, 첫날 첨가 성분 중에 Doxycyclin, 1ug/ml, Y27632, 20uM 을 제외한 성분에다가 추가적으로 purmophamine 2uM, sonic hedgehog 100ng/ml 을 첨가하면서 발생 유도하였다. (표 2 참조) 배양배지는 11일까지 neural inducing base media로 하고 첨가성분은 표 2 참조하여 첨가물을 농도에 맞춰 가감하며 발생 유도하였다. 배지는 날짜에 맞게 매일 교환하였다. 오가노이드의 바른 형성은 2~3일째에 세포괴의 형성으로 확인하고, 11일 이전에 세포 외곽으로의 buding 으로 체크하였다. 오가노이드 분화 11일째에 96well plate 에 하나씩 형성되어있는 오가노이드를 8개씩 그룹화하여 6 well low binding plate 한 well에 분주 배양하였다. Orbitary shaker (80~100 rpm)로 돌리면서 표 2의 성분이 들어간 midbrain patterning base media (표 3) 하에서 발생 유도하였다. 18일째에 30G 바늘로 하나의 오가노이드를 4~10 조각 정도로 잘라서 AccutaseTM를 10분간 처리한 후 1ml 피펫으로 5회 피펫팅 후 원심분리법으로 AccutaseTM를 제거 후에 3 well 분량의 오가노이드 세포를 poly-L ornithine (PLO; 15ug/cm2)/Fibronectin (FN; 1ug/cm2) 혹은 vitronectin (VN; 0.5 ug/cm2) 코팅된 하나의 60mm 배양접시에 center plating 하였다. When subculturing hESCs and hiPSCs, which were normally cultured in an undifferentiated state, they were removed using Accutase TM , and undifferentiated human embryonic stem cells were dispensed at 10,000 cells/well in a 96-well plate with a round bottom that does not stick to the bottom. to form organoids. The medium composition of the first day was added to the seeding base medium of Table 4 below with the additive conditions corresponding to Day 0 of Table 2 (SB431542, 10uM; Noggin, 100ng/ml; ascorbic acid, 200uM; Doxycyclin, 1ug/ml; Y27632, 20uM). Noid generation started. The next day, the medium was used as neural inducing base media (Table 3), and purmophamine 2uM and sonic hedgehog 100ng/ml were added in addition to components other than Doxycyclin, 1ug/ml, Y27632, and 20uM among the components added on the first day to induce development. (See Table 2) The culture medium was used as neural inducing base media until the 11th day, and the additive components were added or subtracted according to the concentration with reference to Table 2 to induce generation. The medium was changed daily according to the date. Correct formation of organoids was confirmed by the formation of a cell mass on the 2nd to 3rd day, and by buding out of the cell before the 11th day. On the 11th day of organoid differentiation, eight organoids each formed in a 96-well plate were grouped and cultured in one well of a 6-well low binding plate. Generation was induced under the midbrain patterning base media (Table 3) containing the components of Table 2 while rotating with an orbitary shaker (80-100 rpm). On the 18th day, one organoid was cut into 4-10 pieces with a 30G needle, treated with Accutase TM for 10 minutes, pipetted 5 times with a 1ml pipette, removed Accutase TM by centrifugation, and then 3 wells of organoid cells were poly -L ornithine (PLO; 15 ug/cm 2 )/Fibronectin (FN; 1 ug/cm 2 ) or vitronectin (VN; 0.5 ug/cm 2 ) was center-plated in a single 60 mm culture dish.

Day 0Day 0 Seeding Base Media(recipe below) + SB431542(Tocris, #1614 10μM) + Noggin(Peprotech, #120-10, 100ng/ml) + Ascorbic Acid(Sigma, #A4544, 200μM) + Doxycycline(Sigma, #D9891, 1㎍/ml) + Y27632(Sigma, #Y0503, 20μM)Seeding Base Media (recipe below) + SB431542 (Tocris, #1614 10 μM) + Noggin (Peprotech, #120-10, 100 ng/ml) + Ascorbic Acid (Sigma, #A4544, 200 μM) + Doxycycline (Sigma, #D9891, 1) μg/ml) + Y27632 (Sigma, #Y0503, 20 μM) Day 1Day 1 Neural Induction Base Media(recipe below) + SB431542(Tocris, #1614 10μM) + Noggin(Peprotech, #120-10, 100ng/ml) + Purmorphamine(Calbiochem, #540223, 2μM) + SonicHedgeHog(Peprotech, #100-45, 100ng/ml) + Ascorbic Acid(Sigma, #A4544, 200μM)Neural Induction Base Media (recipe below) + SB431542 (Tocris, #1614 10 μM) + Noggin (Peprotech, #120-10, 100 ng/ml) + Purmorphamine (Calbiochem, #540223, 2 μM) + SonicHedgeHog (Peprotech, #100-45) , 100ng/ml) + Ascorbic Acid (Sigma, #A4544, 200μM) Day 2~4Day 2~4 Neural Induction Base Media(recipe below) + SB431542(Tocris, #1614 10μM) + Noggin(Peprotech, #120-10, 100ng/ml) + Purmorphamine(Calbiochem, #540223, 2μM) + SonicHedgeHog(Peprotech, #100-45, 100ng/ml) + CHIR99021(Stemgent, #04-0004, 0.8μM) + Ascorbic Acid(Sigma, #A4544, 200μM)Neural Induction Base Media (recipe below) + SB431542 (Tocris, #1614 10 μM) + Noggin (Peprotech, #120-10, 100 ng/ml) + Purmorphamine (Calbiochem, #540223, 2 μM) + SonicHedgeHog (Peprotech, #100-45) , 100 ng/ml) + CHIR99021 (Stemgent, #04-0004, 0.8 μM) + Ascorbic Acid (Sigma, #A4544, 200 μM) Day 5~6Day 5~6 Neural Induction Base Media(recipe below) + Noggin(Peprotech, #120-10, 100ng/ml) + Purmorphamine(Calbiochem, #540223, 2μM) + SonicHedgeHog(Peprotech, #100-45, 100ng/ml) + CHIR99021(Stemgent, #04-0004, 0.8μM) + Ascorbic Acid(Sigma, #A4544, 200μM)Neural Induction Base Media (recipe below) + Noggin (Peprotech, #120-10, 100ng/ml) + Purmorphamine (Calbiochem, #540223, 2μM) + SonicHedgeHog (Peprotech, #100-45, 100ng/ml) + CHIR99021 (Stemgent) , #04-0004, 0.8 μM) + Ascorbic Acid (Sigma, #A4544, 200 μM) Day 7~10Day 7-10 Neural Induction Base Media(recipe below) + Noggin(Peprotech, #120-10, 100ng/ml) + Purmorphamine(Calbiochem, #540223, 2μM) + SonicHedgeHog(Peprotech, #100-45, 100ng/ml) + Fgf8b(Peprotech, #AF-100-25, 100ng/ml) + CHIR99021(Stemgent, #04-0004, 0.8μM) + Ascorbic Acid(Sigma, #A4544, 200μM)Neural Induction Base Media (recipe below) + Noggin (Peprotech, #120-10, 100ng/ml) + Purmorphamine (Calbiochem, #540223, 2μM) + SonicHedgeHog (Peprotech, #100-45, 100ng/ml) + Fgf8b (Peprotech) , #AF-100-25, 100 ng/ml) + CHIR99021 (Stemgent, #04-0004, 0.8 μM) + Ascorbic Acid (Sigma, #A4544, 200 μM) Day 11~14Day 11-14 Midbrain Patterning Base Media(recipe below) + Noggin(Peprotech, #120-10, 100ng/ml) + Purmorphamine(Calbiochem, #540223, 2μM) + SonicHedgeHog(Peprotech, #100-45, 100ng/ml) + Fgf8b(Peprotech, #AF-100-25, 100ng/ml) + CHIR99021(Stemgent, #04-0004, 1.5μM) + Ascorbic Acid(Sigma, #A4544, 200μM)Midbrain Patterning Base Media (recipe below) + Noggin (Peprotech, #120-10, 100ng/ml) + Purmorphamine (Calbiochem, #540223, 2μM) + SonicHedgeHog (Peprotech, #100-45, 100ng/ml) + Fgf8b (Peprotech) , #AF-100-25, 100 ng/ml) + CHIR99021 (Stemgent, #04-0004, 1.5 μM) + Ascorbic Acid (Sigma, #A4544, 200 μM) Day 15~16Day 15~16 Midbrain Patterning Base Media(recipe below) + Purmorphamine(Calbiochem, #540223, 2μM) + Fgf8b(Peprotech, #AF-100-25, 50ng/ml) + CHIR99021(Stemgent, #04-0004, 1.5μM) + Ascorbic Acid(Sigma, #A4544, 200μM)Midbrain Patterning Base Media (recipe below) + Purmorphamine (Calbiochem, #540223, 2 μM) + Fgf8b (Peprotech, #AF-100-25, 50 ng/ml) + CHIR99021 (Stemgent, #04-0004, 1.5 μM) + Ascorbic Acid (Sigma, #A4544, 200 μM) Day 17Day 17 Midbrain Patterning Base Media(recipe below) + Purmorphamine(Calbiochem, #540223, 2μM) + Fgf8b(Peprotech, #AF-100-25, 50ng/ml) + CHIR99021(Stemgent, #04-0004, 1.5μM) + bFGF(R&D systems, #233-FB, 20ng/ml) + Ascorbic Acid(Sigma, #A4544, 200μM)Midbrain Patterning Base Media (recipe below) + Purmorphamine (Calbiochem, #540223, 2 μM) + Fgf8b (Peprotech, #AF-100-25, 50 ng/ml) + CHIR99021 (Stemgent, #04-0004, 1.5 μM) + bFGF ( R&D systems, #233-FB, 20ng/ml) + Ascorbic Acid (Sigma, #A4544, 200μM) Day 18Day 18 Chop&PlatingChop&Plating

Seeding Base MediaSeeding Base Media Neural Induction Base MediaNeural Induction Base Media Midbrain Patterning Base MediaMidbrain Patterning Base Media Neurobasal/N2 2X(1:1)
(Neurobasal, Gibco, #21103049)
(N2 2X recipe as follows(1L)
D.W. 1L
DMEM-F12 12g
Sodium Bicarbonate 1.69g
D-glucose 1.55g
L-Glutamine 0.073g
Apo-transferrin 200mg
Putrescine 200㎕
Selenite 120㎕
Progesterone 400㎕)

MEM-NEAA
(Sigma, #M7145, 1:100)

Figure 112019105598316-pat00003
-mercaptoethanol
(Sigma, #M6250, 0.1%)
B27 w/o VitA
(Gibco, #12587010, 1:50)
GlutaMAX
(Gibco, #35050061, 1:100)
Insulin
(Gibco, #12585014, 0.31㎕/ml)
Neurobasal/N2 2X (1:1)
(Neurobasal, Gibco, #21103049)
(N2 2X recipe as follows(1L)
DW 1L
DMEM-F12 12g
Sodium Bicarbonate 1.69g
D-glucose 1.55g
L-Glutamine 0.073g
Apo-transferrin 200mg
200 μl of Putrescine
Selenite 120 μl
Progesterone 400 μl)

MEM-NEAA
(Sigma, #M7145, 1:100)
Figure 112019105598316-pat00003
-mercaptoethanol
(Sigma, #M6250, 0.1%)
B27 w/o VitA
(Gibco, #12587010, 1:50)
GlutaMAX
(Gibco, #35050061, 1:100)
Insulin
(Gibco, #12585014, 0.31 μl/ml)
Neurobasal/N2 2X(1:1)
(Neurobasal, Gibco, #21103049)
(N2 2X recipe as follows(1L)
D.W. 1L
DMEM-F12 12g
Sodium Bicarbonate 1.69g
D-glucose 1.55g
L-Glutamine 0.073g
Apo-transferrin 200mg
Putrescine 200㎕
Selenite 120㎕
Progesterone 400㎕)

B27 w/o VitA
(Gibco, #12587010, 1:50)
Insulin
(Gibco, #12585014, 0.31㎕/ml)



Neurobasal/N2 2X (1:1)
(Neurobasal, Gibco, #21103049)
(N2 2X recipe as follows(1L)
DW 1L
DMEM-F12 12g
Sodium Bicarbonate 1.69g
D-glucose 1.55g
L-Glutamine 0.073g
Apo-transferrin 200mg
200 μl of Putrescine
Selenite 120 μl
Progesterone 400 μl)

B27 w/o VitA
(Gibco, #12587010, 1:50)
Insulin
(Gibco, #12585014, 0.31 μl/ml)



Human N2
(human N2 recipe as follows(1L)
D.W. 1L
DMEM-F12 12g
Sodium Bicarbonate 1.69g
D-glucose 1.55g
L-Glutamine 0.073g
Apo-transferrin 200mg
Insulin 312㎕
Putrescine 100㎕
Selenite 60㎕
Progesterone 200㎕)

Human N2
(human N2 recipe as follows(1L)
DW 1L
DMEM-F12 12g
Sodium Bicarbonate 1.69g
D-glucose 1.55g
L-Glutamine 0.073g
Apo-transferrin 200mg
Insulin 312 μl
Putrescine 100 μl
Selenite 60 μl
200 μl of Progesterone)

중뇌 3D 오가노이드 유래 중뇌형 신경줄기세포의 대량 증식Mass proliferation of midbrain 3D organoid-derived midbrain neural stem cells

오가노이드 유래 중뇌형 신경줄기세포는 30G needle 로 물리적으로 잘라서 계대배양하는 첫번째 plating 이후에는 계대배양을 위하여 일주일에 한 번씩 80~90% 정도 세포가 충만되었을 때, AccutaseTM를 이용하여 PLO/FN 혹은 PLO/VN 코팅된 60mm 배양접시에 3 X 106의 세포를 평면 배양하였다. 중뇌형 신경줄기세포의 배양 배지는 표 4에 있는 midbrain patterning base 배지에 마이토젠 (bFGF 20ng/ml, FGF-8 50ng/ml), BDNF (20ng/ml), GDNF (20ng/ml), Ascorbic acid 200uM, Doxycyclin, 1ug/ml 를 첨가한 것을 증식 배지로 사용하였다. 단, 계대배양 당일은 이 배지에 Y27632, 20uM를 첨가하였다. 매 계대배양마다 PLO/VN 24well 코팅 플레이트에도 well 당 8 X 104 세포를 플레이팅하여 2~3일간 증식 후, 80-90% 세포 컨플루언시(confluency)에 도달했을 때, 중뇌형 마커의 형광염색 혹은 마이토젠(mitogens; bFGF, FGF-8)를 제거함으로 인하여 NSCs의 분화를 유도하였다. 분화 배지는 상기 표 4에 있는 midbrain patterning base 배지에 BDNF (20ng/ml), GDNF (20ng/ml), Ascorbic acid 200uM, cAMP 500 uM을 첨가하여 12일간 신경세포 분화 유도 후 도파민성 신경세포와 중뇌형 마커가 공 발현되는지의 여부를 점검하였다. Organoid-derived midbrain neural stem cells are physically cut with a 30G needle and subcultured. After the first plating, once a week for subculture, when 80-90% cells are filled, PLO/FN or PLO using Accutase TM. /VN-coated 60mm culture dish 3 X 10 6 cells were flat-cultured. The medium brain-type neural stem cell culture medium is mitogen (bFGF 20ng/ml, FGF-8 50ng/ml), BDNF (20ng/ml), GDNF (20ng/ml), Ascorbic acid 200uM in the midbrain patterning base medium shown in Table 4. , Doxycyclin, 1ug/ml added was used as a growth medium. However, on the day of subculture, Y27632, 20 uM was added to this medium. At every subculture, 8 X 10 4 cells per well were plated on a PLO/VN 24-well coated plate and proliferated for 2-3 days. When 80-90% cell confluency was reached, The differentiation of NSCs was induced by fluorescent staining or removal of mitogens (bFGF, FGF-8). For the differentiation medium, BDNF (20ng/ml), GDNF (20ng/ml), Ascorbic acid 200uM, and cAMP 500uM were added to the midbrain patterning base medium shown in Table 4 above to induce neuronal differentiation for 12 days, and then dopaminergic neurons and midbrain It was checked whether the phenotype marker was co-expressed.

3D 오가노이드 유래 중뇌형 신경줄기세포의 냉동 보관Freeze storage of 3D organoid-derived mesencephalic neural stem cells

오가노이드 유래 중뇌형 신경줄기세포는 대체적으로 5 계대까지는 최소한 그 특성의 변화가 없으므로 첫 번째 계대 이후 매 계대 마다 그 세포의 냉동보관 후 특성의 변화 없이 해동 사용이 가능하다. 세포의 냉동 보관은 계대 배양 시에 이루어지고, AccutaseTM를 이용하여 세포를 떼어내고 세포의 수를 계수하여 냉동 하나의 vial 에 6 X 106의 세포를 증식배지와 10% 농도로 DMSO를 섞은 냉동 배지에 플어서 얼렸다. 첫 번째 24시간 동안 -70도 냉동 보관 후 다음 날 초저온 질소탱크에 사용시까지 보관하였다. 필요 시 하나의 vial을 37도 워터 베스에 빨리 해동하여, PLO/FN 혹은 PLO/VN 코팅된 60mm 배양접시에 평면 배양하였다. 해동 시 사용 배지는 신경줄기세포 증식배지를 사용하고, 해동 당일에는 이 배지에 Y27632, 20uM를 첨가하였다.In general, organoid-derived mesencephalic neural stem cells do not change their properties at least until passage 5. Cryopreservation of cells are passaged made during the culture, Accutase TM using frozen, remove the cell mixture of DMSO to be the coefficient of frozen single vial cells of 6 X 10 6 to by the cell in growth medium with 10% concentration Frozen in the medium. After being frozen at -70°C for the first 24 hours, it was stored in a cryogenic nitrogen tank the next day until use. If necessary, one vial was quickly thawed in a 37 degree water bath, and flat cultured in a 60 mm culture dish coated with PLO/FN or PLO/VN. For thawing, a neural stem cell proliferation medium was used, and on the day of thawing, Y27632 and 20 uM were added to this medium.

면역 세포 화학immunocytochemistry

세포를 PBS(phosphate-buffered saline) 내에서 4% 파라포름알데히드로 고정하였고, 블록킹 용액(PBS 내의 1% BSA/0.03% 트리톤 X-100) 내에서 배양하였으며, 그런 다음 하기의 1차 항체들과 함께 배양하였다. Tuj1 항-토끼(1:2000, Babco), TH 항-마우스(1:1000, Immunostar), GFAP 항-마우스(1:100, ICN Biochemicals), 마이크로튜불-연관 단백질 2(MAP2, 1:200, Sigma) 하기의 형광 분자들로 표지된 2차 항체들을 시각화를 위해 사용하였다. 그 이외의 항체들은 표 4에 나열되어 있다. 알렉사 488(1:200, Invitrogen) 및 Cy3(1:200, Jackson ImmunoResearch Laboratories). DAPI 마운팅 배지를 갖는 벡타쉴드(Vectashield)(Vector Laboratories) 내에 염색된 샘플을 마운트하였고, 표면형광(epifluorescence) 현미경(Leica)을 이용하여 촬영하였다. Cells were fixed with 4% paraformaldehyde in phosphate-buffered saline (PBS) and cultured in a blocking solution (1% BSA/0.03% Triton X-100 in PBS), and then with the following primary antibodies incubated together. Tuj1 anti-rabbit (1:2000, Babco), TH anti-mouse (1:1000, Immunostar), GFAP anti-mouse (1:100, ICN Biochemicals), microtubule-associated protein 2 (MAP2, 1:200, Sigma) Secondary antibodies labeled with the following fluorescent molecules were used for visualization. Other antibodies are listed in Table 4. Alexa 488 (1:200, Invitrogen) and Cy3 (1:200, Jackson ImmunoResearch Laboratories). Stained samples were mounted in a Vectashield (Vector Laboratories) with DAPI mounting medium and photographed using an epifluorescence microscope (Leica).

AntibodiesAntibodies Working dilutionworking dilution CompanyCompany NotesNotes Mouse monoclonal Antibody(Ab)Mouse monoclonal Antibody (Ab) Oct4Oct4 1:2001:200 1Santa Cruz Biotechnology 1 Santa Cruz Biotechnology Use only Cy3 2nd antibodyUse only Cy3 2nd antibody Pax6Pax6 1:1001:100 2DSHB 2 DSHB Cdh2 (N-cadherin)Cdh2 (N-cadherin) 1:5001:500 Santa Cruz BiotechnologySanta Cruz Biotechnology Neuron-specific class III beta-tubulin (TuJ1)Neuron-specific class III beta-tubulin (TuJ1) 1:5001:500 3Covance 3 Covance Tyrosine Hydroxylase (TH)Tyrosine Hydroxylase (TH) 1:10001:1000 4Immunostar 4 Immunostar Incubation for 2 days at 4℃Incubation for 2 days at 4℃ Ki67Ki67 1:1001:100 5Novocastra 5 Novocastra Pax5Pax5 1:501:50 6BD Biosciences 6 BD Biosciences human Neural Cell Adhesion Molecule (hNCAM)Human Neural Cell Adhesion Molecule (hNCAM) 1:1001:100 Santa Cruz BiotechnologySanta Cruz Biotechnology HuC/DHuC/D 1:1001:100 7Chemicon 7 Chemicon Microtubule-Associated Protein 2 (MAP2)Microtubule-Associated Protein 2 (MAP2) 1:2001:200 8Sigma 8 Sigma Dopamine Transporter (DAT)Dopamine Transporter (DAT) 1:1001:100 BD BiosciencesBD Biosciences Blocking with 0.1% Saponin Blocking with 0.1% Saponin Human Nuclei antigen (HN)Human Nuclei antigen (HN) 1:10001:1000 Chemicon Chemicon Rabbit polyclonal Ab Rabbit polyclonal Ab Nanog Nanog 1:2001:200 Santa Cruz BiotechnologySanta Cruz Biotechnology Nestin #130 Nestin #130 1:501:50 9Dr Martha Marvin, Dr Ron McKay 9 Dr Martha Marvin, Dr Ron McKay Sox2 Sox2 1:1001:100 Chemicon Chemicon TuJ1 TuJ1 1:20001:2000 CovanceCovance Pax2 Pax2 1:1001:100 CovanceCovance TH TH 1:5001:500 10Pel-freez 10 Pel-freez GFAPGFAP 1:4001:400 11DAKO 11 DAKO Serotonin Serotonin 1:40001:4000 SigmaSigma γ-aminobutyric acid (GABA) γ-aminobutyric acid (GABA) 1:7001:700 SigmaSigma GAD67GAD67 1:5001:500 Chemicon Chemicon Vesicular monoamine transporter 2 (VMAT2) Vesicular monoamine transporter 2 (VMAT2) 1:5001:500 Pel-freez Pel-freez Use only cy3 2nd antibodyUse only cy3 2nd antibody Nurr1 Nurr1 1:5001:500 Chemicon Chemicon 0.1% SDS treatment for 5min before blocking0.1% SDS treatment for 5min before blocking EN1 EN1 1:2001:200 Chemicon Chemicon Incubation for 2 days at 4℃Incubation for 2 days at 4℃ Calbindin1, 28kDa (calbindin D28K) Calbindin1, 28kDa (calbindin D28K) 1:2501:250 Chemicon Chemicon potassium inwardly-rectifying channel, subfamily J, member 6 (GIRK2) potassium inwardly-rectifying channel, subfamily J, member 6 (GIRK2) 1:2001:200 SigmaSigma Cleaved Caspase-3 Cleaved Caspase-3 1:5001:500 12Cell signaling 12 Cell signaling

파킨슨병 모델 동물에 세포 이식 및 조직학적 절차Cell Transplantation and Histological Procedures in Parkinson's Disease Model Animals

실험은 NIH (National Institutes of Health) 지침에 따라 수행되었다. Hemi-parkinsonian을 흑색질의 우측(AP-4.8 mm, ML-1.8 mm, V-8.2 mm) 및 MFB(median forebrain bundle)(AP -4.4 mm, ML -1.2 mm, V -7.8 mm)에 6-OHDA (6-hydroxydopamine, 8 μg/μl; 시그마) 3 μl의 단독 정위 주사로 성숙한 암컷 Sprague-Dawley 랫트 (220-250g)에 유도하였다. 절치 막대(incisor bar)는 -3.5 mm로 설정되었고, AP와 ML 좌표는 브레그마에 상대적으로 주어진다. 암페타민-유도 회전 검사에서 상기 장애에 대해 같은 쪽 300회/시간을 가지는 랫트를 선택하였다. 이식을 위해, 랫트 E12 VM-NPC를 증식시키고, 2 : 1 비율로 Ctx-, VM-성상교세포, N + F-VM-성상교세포 또는 E14 Ctx-NPCs (대조군)과 혼합시켰다. 혼합된 세포 (1.5 x 105 세포/ul) 3 ㎕를 Rompun 100 ul/100 g (23.32 mg/ml)과 혼합된 100 ul/100 g (50 mg/ml)의 Zoletil에 의해 유도된 마취 하에서 선조체 (bregma 및 dura에 상대적인 AP, ML 및 V의 좌표: [1] 0.07, -0.30, -0.55; [2] -0.10, -0.40, -0.50; 제로 아래 3.5mm로 설정한 절치 막대)의 2개의 부위 각각에 10분에 걸쳐 주사하였다. 각 주사 완료 후 5분 동안 바늘 (22 게이지)을 제 위치에 두었다. 랫트는 이식 1일 전부터 시작하여 1개월 동안 계속 시클로스포린 A (10 mg/kg, i.p.)를 매일 투여받았고 나머지 이식 후 기간 동안 면역 억제제 없이 유지되었다. 이식 6개월 후, 동물을 마취시키고 4% 파라포름알데히드로 경피 관류시켰다. 뇌를 제거하고 PBS 내 30% 수크로오스에 밤새 담그고 Tissue-Tek® (Sakura Finetek, Torrance, CA, USA)에서 냉동시킨 다음 냉동 마이크로톰 (Leica)에서 슬라이스하였다. 자유 부동성 뇌 Free-floating brain부분 (30 μm 두께)은 위에서 설명한대로 면역 조직 화학을 시행하고 공초점 현미경 (Leica)으로 이미지를 얻었다. 이식된 뇌의 숙주 환경을 시험하기 위한 실험에서, 이식 후 1달째에 동물을 희생시키고 랫트 뇌 슬라이스 매트릭스 (ZIVIC Instruments, Pittsburgh, PA) 상에서 1 mm 두께로 슬라이스하였고, 이식 후의 변화를 관찰하기 위해 이식부위의 조직을 적출하였다. 이식-숙주 계면 (ca 2x2 mm) /이식의 8-12 군데의 영역을 해부하고 qPCR 분석을 수행하였다. 또한, 신경영양 및 전-염증성 아교세포 마커에 대해 면역 반응성인 세포는 이식 후 7-10 일에 동결 절단된 뇌 슬라이스의 이식-숙주 계면을 따라 계수되었다.Experiments were performed according to National Institutes of Health (NIH) guidelines. Hemi-parkinsonian 6-OHDA in the right substantia nigra (AP-4.8 mm, ML-1.8 mm, V-8.2 mm) and median forebrain bundle (MFB) (AP-4.4 mm, ML -1.2 mm, V -7.8 mm). (6-hydroxydopamine, 8 μg/μl; Sigma) was induced in mature female Sprague-Dawley rats (220-250 g) by a single stereotaxic injection of 3 μl. The incisor bar was set to -3.5 mm, and the AP and ML coordinates are given relative to the bregma. Rats with 300 reps/hour on the same side for this disorder in the amphetamine-induced rotation test were selected. For transplantation, rat E12 VM-NPCs were propagated and mixed with Ctx-, VM-astrocytes, N + F-VM-astroglia or E14 Ctx-NPCs (control) in a 2:1 ratio. 3 μl of mixed cells (1.5×10 5 cells/ul) were mixed with 100 μl/100 g (23.32 mg/ml) of Rompun striatum under anesthesia induced by Zoletil at 100 μl/100 g (50 mg/ml). (coordinates of AP, ML, and V relative to bregma and dura: [1] 0.07, -0.30, -0.55; [2] -0.10, -0.40, -0.50; incisor bar set to 3.5 mm below zero) Each site was injected over 10 minutes. The needle (22 gauge) was left in place for 5 minutes after each injection was completed. Rats received daily cyclosporine A (10 mg/kg, ip) starting 1 day before transplantation and continuing for 1 month, and were maintained without immunosuppressants for the remainder of the post-transplantation period. Six months after transplantation, animals were anesthetized and perfused percutaneously with 4% paraformaldehyde. Brains were removed, soaked in 30% sucrose in PBS overnight, frozen in Tissue-Tek® (Sakura Finetek, Torrance, CA, USA) and sliced in a frozen microtome (Leica). Free-floating brain Free-floating brain sections (30 μm thick) were subjected to immunohistochemistry as described above and imaged by confocal microscopy (Leica). In experiments to test the host environment of transplanted brains, animals were sacrificed one month after transplantation and sliced 1 mm thick on a rat brain slice matrix (ZIVIC Instruments, Pittsburgh, PA), and transplanted to observe changes after transplantation. Tissues from the site were excised. 8-12 regions of the graft-host interface (ca 2x2 mm)/graft were dissected and qPCR analysis was performed. In addition, cells immunoreactive to neurotrophic and pro-inflammatory glial markers were counted along the graft-host interface of cryosectioned brain slices 7-10 days after transplantation.

행동 테스트behavioral test

동물 행동은 Y. H. Rhee et al., 의 논문(LIN28A enhances the therapeutic potential of cultured neural stem cells in a Parkinson's disease model. Brain: a journal of neurology 139, 2722-2739 (2016).)에 기술된 것처럼 아포모르핀/암페타민-유도 회전 테스트를 사용하여 평가되었다. 아포모르핀(Sigma사)을 0.5mg/kg의 투여량으로 피하 주사하고 60분간 회전하며 관찰하였다. 결과는 최종 회전 수/60분의 단위로 나타내었다.Animal behavior was described by YH Rhee et al. , using the apomorphine/amphetamine-induced rotation test as described in a paper by LIN28A enhances the therapeutic potential of cultured neural stem cells in a Parkinson's disease model. Brain: a journal of neurology 139, 2722-2739 (2016). was evaluated. Apomorphine (Sigma) was injected subcutaneously at a dose of 0.5 mg/kg and observed while rotating for 60 minutes. The results are expressed in units of the number of final revolutions/60 minutes.

동물 PET/MRI 이미징 및 분석Animal PET/MRI Imaging and Analysis

PET-MRI 융합 영상화는 nanoScanPET/MRI 시스템 (1T, Mediso, Hungary)을 사용하여 수행되었다. 마우스를 따뜻하게 유지하기 위해 0.2 mL의 FP-CIT에 꼬리 정맥 6.5±1.0 MBq를 통해 정맥 내로 투여하고 쥐를 마취 (100% O2 가스 중 1.5% 이소플루란)로 유지하였다. MR 뇌 영상화는 FP-CIT 흡수 기간 동안 획득된 그라디언트 에코(GRE) 3D 시퀀스(TR= 25 ms, TEeff= 3.4, FOV= 50 mm, matrix= 256x256)로 가중치가 부여된 T1 및 고속 스핀 에코 (FSE) 3D 시퀀스(TR= 2400 ms, TEeff= 110, FOV= 50 mm, matrix= 256x256) 가중치가 부여된 T2 이미지를 얻었다. 20분의 정적 PET 이미지는 MRI 범위의 단일 시야에서 1-3의 일치로 획득되었다. 동물 베드 (헝가리 Multicell Mediso, 헝가리)의 가열 공기로 체온을 유지하고 호흡 유발을 위해 압력 감지 패드를 사용했다. PET 이미지는 Tera-Tomo 3D에 의해 전체 탐지기 모드에서 모든 수정과 높은 정규화 및 8회 반복으로 재구성되었다. 재구성된 이미지의 3차원 VOI(volume of interest) 분석은 InterView Fusion 소프트웨어 패키지 (Mediso, Hungary)를 사용하고 표준 흡수 값 (SUV, standard uptake value) 분석을 적용하여 수행되었다. VOI는 코로나 이미지에서 2mm 스피어로 고정되었고, 선조(striatum) 및 대한 VOI가 도출되었다. 각 VOI 부위의 SUV는 다음 식을 사용하여 계산되었다. SUVmean = (Bq/cc × 체중 단위로 관심있는 종양 부피의 종양 방사능)/ 주사된 방사능.PET-MRI fusion imaging was performed using a nanoScanPET/MRI system (1T, Mediso, Hungary). To keep mice warm, 0.2 mL of FP-CIT was administered intravenously via tail vein 6.5±1.0 MBq and mice were maintained under anesthesia (1.5% isoflurane in 100% O 2 gas). MR brain imaging was performed using gradient echo (GRE) 3D sequences (TR = 25 ms, TE eff = 3.4, FOV = 50 mm, matrix = 256x256) obtained during FP-CIT absorption, weighted T1 and fast spin echo ( FSE) 3D sequence (TR = 2400 ms, TE eff = 110, FOV = 50 mm, matrix = 256x256) weighted T2 images were obtained. A 20-minute static PET image was acquired with a 1-3 concordance in a single field of view within the MRI range. Body temperature was maintained with heated air from the animal bed (Multicell Mediso, Hungary) and pressure-sensitive pads were used to induce respiration. PET images were reconstructed by Tera-Tomo 3D in full detector mode with all corrections and high normalization and 8 iterations. Three-dimensional VOI (volume of interest) analysis of the reconstructed image was performed using the InterView Fusion software package (Mediso, Hungary) and applying standard uptake value (SUV) analysis. The VOI was fixed with a 2 mm sphere in the coronal image, and the VOI for the striatum and for it was derived. The SUV of each VOI site was calculated using the following equation. SUVmean = (Bq/cc × tumor volume of interest in body weight)/injected radioactivity.

고 처리량 전체 전사체 RNA 시퀀싱High-throughput whole transcriptome RNA sequencing

RNA의 경우, Trizol 시약 (Invitrogen)을 사용하여 총 RNA를 분리한 후 Ribo-Zero Magnetic kit (Epicentre Inc., Madison, WI, USA)를 이용한 rRNA 제거를 수행하였다. 라이브러리 구축은 SENSE mRNA-Seq Library Prep Kit (Lexogen Inc., Vienna, Austria)를 사용하여 수행되었다. 고 처리량(High-throughput) 시퀀싱은 HiSeq 2000 (Illumina, San Diego, CA, USA)을 사용하여 paired-end 100 시퀀싱으로 수행되었다. RNA-Seq 판독 값을 TopHat 소프트웨어를 사용하여 맵핑하여 bam 정렬 파일을 수득하였다. 전사 영역에 맵핑된 리드 카운트는 BEDTools (v2.25.0) 및 R/Bioconductor (version 3.2.2; R Development Core Team, 2011)를 사용하여 정렬 파일에서 추출되었다. 정렬 파일은 전사체를 조립하고, 이의 존재비를 추정하고, 유전자, linc RNA 또는 아이소형의 차등 발현을 검출하는데 사용되었다. 유전자 영역의 발현 수준을 결정하기 위해 FPKM (fragments per kb of exon per million fragments)을 사용하였다. 샘플 간의 비교를 위해 전역 정규화를 사용하였다. 유전자 분류는 DAVID(http://david.abcc.ncifcrf.gov/)에 제출된 검색을 기반으로 한다.For RNA, total RNA was isolated using Trizol reagent (Invitrogen), and then rRNA removal was performed using the Ribo-Zero Magnetic kit (Epicentre Inc., Madison, WI, USA). Library construction was performed using the SENSE mRNA-Seq Library Prep Kit (Lexogen Inc., Vienna, Austria). High-throughput sequencing was performed as paired-end 100 sequencing using a HiSeq 2000 (Illumina, San Diego, CA, USA). RNA-Seq reads were mapped using TopHat software to obtain bam alignment files. Read counts mapped to transcriptional regions were extracted from alignment files using BEDTools (v2.25.0) and R/Bioconductor (version 3.2.2; R Development Core Team, 2011). Alignment files were used to assemble transcripts, estimate their abundance, and detect differential expression of genes, linc RNAs or isoforms. FPKM (fragments per kb of exon per million fragments) was used to determine the expression level of the gene region. Global normalization was used for comparison between samples. Genetic classification is based on searches submitted to DAVID (http://david.abcc.ncifcrf.gov/).

GO 및 KEGG 경로 분석은 DAVID Bioinformatics Resources 버전 6.8을 사용하여 수행되었다. 풍부한 범주의 GO 및 KEGG 경로 분석은 p-값 0.05까지 제시되었다.GO and KEGG pathway analyzes were performed using DAVID Bioinformatics Resources version 6.8. Analyzes of rich categories of GO and KEGG pathways were presented up to p-values of 0.05.

10× 유전체학 단일 세포 RNA 시퀀싱 (scRNA-seq) 및 데이터 분석10× Genomics single-cell RNA sequencing (scRNA-seq) and data analysis

단일세포 전사인자 조절분석 (scRNA-seq)은 Chromium Controller (10× Genomics, San Francisco, CA) 프로그램을 이용하여, Chromium Single Cell Gene Expression Solution 과 Chromium Single Cell 3' GEM, Library and Gel Bead Kit v2 (10× Genomics) 실험 후에 진행하였다. 15,000개의 단일세포로 분리한 세포를 Single Cell A chip with Master mix solution에 얹어서 진행하였다. 각기 단일세포들은 세포 내부의 전사인자들이 역전사되고, oligo dT 코딩된 UMIs 을 emulsion 하여 RNA 바코딩되었다. 바코드된 Libraries는 Illumina HiSeq 4000 platform(Macrogen Inc., Seoul, Korea)으로 시퀀싱되었다. Cell Ranger (v2.1.1, 10× Genomics)로 결과를 분석하였다. 2D-NSCs 분석 시에는, 2D_cellRanger로는 12,166 cells 대략 평균 57,343 reads 그리고 세포당 2,284 유전자 (24,055 전체 유전자중) 그리고 Og-NSCs 분석 시에는 (3D_cellRanger로) 13,739 cells 대략 평균 39,191 reads 그리고 한 세포당 2,353 유전자(23,860 전체 유전자중)가 분석되었다. 세포의 전사인자 발현은 UMI count로 표시하였다. t-SNE(t-distributed stochastic neighbor embedding) 분석을 k-means clustering으로 세포의 다양성 분석을 수행하였다 (performed by Loupe Cell Browser ver. 3.0.1, 10× Genomics, Inc.). 발현의 현저한 차이를 보이는 상위 40개의 발현 증가된 유전자들을 을 Hierarchical clustering analysis법으로 분석하고, 이를 기반으로 각 cluster 를 나누었다. Og-NSCs 의 GO and KEGG pathway 분석을 위해, 580 differentially upregulated genes (UMI >1, log2FC>0.5, P<0.05)을 분석하였다. 유전자 분석은 주로 DAVID (http://david.abcc.ncifcrf.gov/) 이용하여 분석하였다. 네트워크 분석은 Cytoscape (version 3.7.1+JAVA v8, provided by NIGMS)을 이용하여 분석하였다.Single cell transcription factor regulation analysis (scRNA-seq) was performed using Chromium Controller (10 × Genomics, San Francisco, CA) program, Chromium Single Cell Gene Expression Solution and Chromium Single Cell 3' GEM, Library and Gel Bead Kit v2 ( 10 × Genomics) was carried out after the experiment. Cells separated into 15,000 single cells were placed on Single Cell A chip with Master mix solution. In each single cell, transcription factors inside the cell were reverse transcribed, and RNA barcodes were encoded by emulsion of oligo dT-encoded UMIs. The barcoded Libraries were sequenced with the Illumina HiSeq 4000 platform (Macrogen Inc., Seoul, Korea). The results were analyzed with Cell Ranger (v2.1.1, 10 × Genomics). For 2D-NSCs analysis, 12,166 cells with 2D_cellRanger averaged 57,343 reads and 2,284 genes per cell (out of 24,055 total genes), and for Og-NSCs (with 3D_cellRanger) 13,739 cells averaged 39,191 reads and 2,353 genes per cell (with 3D_cellRanger) 23,860 of the total genes) were analyzed. Cellular transcription factor expression was expressed as UMI count. Cell diversity analysis was performed by k-means clustering for t-distributed stochastic neighbor embedding (t-SNE) analysis (performed by Loupe Cell Browser ver. 3.0.1, 10 × Genomics, Inc.). The top 40 genes with increased expression showing a significant difference in expression were analyzed by hierarchical clustering analysis, and each cluster was divided based on this. For the GO and KEGG pathway analysis of Og-NSCs, 580 differentially upregulated genes (UMI >1, log2FC>0.5, P<0.05) were analyzed. Genetic analysis was mainly performed using DAVID (http://david.abcc.ncifcrf.gov/). Network analysis was performed using Cytoscape (version 3.7.1+JAVA v8, provided by NIGMS).

미토콘드리아 기능 분석Analysis of mitochondrial function

미토콘드리아의 재생 다이나믹스는 integrated portions of young (green) and old (red) MitoTimer proteins (Ferree, A.W., Trudeau, K., Zik, E., Benador, I.Y., Twig, G., Gottlieb, R.A., and Shirihai, O.S. (2013). MitoTimer probe reveals the impact of autophagy, fusion, and motility on subcellular distribution of young and old mitochondrial protein and on relative mitochondrial protein age. Autophagy 9, 1887-1896; Hernandez, G., Thornton, C., Stotland, A., Lui, D., Sin, J., Ramil, J., Magee, N., Andres, A., Quarato, G., Carreira, R.S., et al. (2013). MitoTimer: a novel tool for monitoring mitochondrial turnover. Autophagy 9, 1852-1861)를 이용하여 분석하였다. NSCs 세포에 pMitoTimer 벡터(Addgene52659; Addgene, Watertown, MA)를 electroporation (NEPA21, Nepagene, Japan)으로 주입하여 발현시킨 후, 2일 후에, red 대비 green 형광으로 생성되는 미토콘드리아를 조사하였다. 미토콘드리아 ROS 및 멤브레인 포텐셜은 MitoSox (Thermo Scientific Inc., Waltham, MA)와 NucleoCounter3000 (NC3000; Chemometec, Allerod, Denmark)로 각각 측정하였다. ROS 생성은 분석 2시간 전에 H2O2(500 μM)을 처리 후 유도 분석하였다. 미토콘드리아의 독성 저항성 연구는 10 μM Rotenone, 4 μM CCCP 또는 250 μM H2O2를 1시간 처리하여 TH 형광염색 분석하였다. The regenerative dynamics of mitochondria are described in integrated portions of young (green) and old (red) MitoTimer proteins (Ferree, AW, Trudeau, K., Zik, E., Benador, IY, Twig, G., Gottlieb, RA, and Shirihai, OS (2013).MitoTimer probe reveals the impact of autophagy, fusion, and motility on subcellular distribution of young and old mitochondrial protein and on relative mitochondrial protein age.Autophagy 9, 1887-1896; Hernandez, G., Thornton, C., Stotland, A., Lui, D., Sin, J., Ramil, J., Magee, N., Andres, A., Quarato, G., Carreira, RS , et al. (2013). MitoTimer: a novel Tool for monitoring mitochondrial turnover was analyzed using Autophagy 9, 1852-1861). pMitoTimer vector (Addgene52659; Addgene, Watertown, MA) was injected into NSCs cells by electroporation (NEPA21, Nepagene, Japan) to express them, and then 2 days later, mitochondria generated by red versus green fluorescence were investigated. Mitochondrial ROS and membrane potential were measured with MitoSox (Thermo Scientific Inc., Waltham, Mass.) and NucleoCounter3000 (NC3000; Chemometec, Allerod, Denmark), respectively. ROS production was analyzed for induction after treatment with H 2 O 2 (500 μM) 2 hours before analysis. For the study of mitochondrial toxicity resistance, 10 μM Rotenone, 4 μM CCCP, or 250 μM H 2 O 2 was treated for 1 hour and analyzed by TH fluorescence staining.

DA 방출 분석DA release assay

DA 신경세포의 시냅스 전 활동은 분화된 VM-NPC 배양물에서 방출된 DA 신경전달물질의 수준을 측정함으로써 결정되었다. 24시간 배양된 배지(분화 12-13 일)를 수집하여 ELISA 키트 (BA E-5300, LDN)를 사용하여 DA 수준을 측정하였다. 또한, 멤브레인 탈 극성에 의해 유발된 DA 방출은 56 mM KCl의 존재 또는 부재 하에 30분 동안 새로운 N2 배지에서 배양 (배양 12일째) 배양함으로써 평가하였다. 유발된 DA 방출은 KCl 있는 DA 수준에서 KCl 없는 DA 방출을 뺀 값으로 계산되었다.The presynaptic activity of DA neurons was determined by measuring the level of DA neurotransmitter released in differentiated VM-NPC cultures. The 24-hour culture medium (differentiation day 12-13) was collected and the DA level was measured using an ELISA kit (BA E-5300, LDN). In addition, DA release induced by membrane depolarization was assessed by incubation (day 12 of culture) in fresh N2 medium for 30 min in the presence or absence of 56 mM KCl. The induced DA release was calculated as the DA level with KCl minus the DA release without KCl.

세포 간 α-syn 전달 분석Intercellular α-syn Transduction Assay

성상교세포에서 분비된 factor에 의한 세포간 α-synuclein 응집체 이동 확인Confirmation of intercellular α-synuclein aggregate migration by factors secreted from astrocytes

신경모세포종(neuroblastoma)에서 유래된SH-SY5Y (아주대 박상면교수님) 세포에 A53Tα-syn-EGFP 을 과발현되는 세포와의 공배양을 이용하여 분석 실험하였다. An analysis experiment was conducted using a co-culture with cells overexpressing A53Tα-syn-EGFP in SH-SY5Y (Professor Park Sang-myeon, Ajou University) derived from neuroblastoma.

5일간 RA를 이용하여 분화 유도하여, A53Tα-syn-EGFP가 발현되어 나오게 유도한 SH-SY5Y 세포를 듀얼 챔버 시스템으로, 10일간 분화 유도된 신경줄기세포와 24 시간 공배양하여 A53Tα-syn-EGFP의 이동을 GFP 발현 정도로 비교 분석하였다. αsynuclein의 이동(transmission)을 항체를 이용한 α-syn-GFP의 밝기를 통한 면역염색 (Immunoncytochemistry)으로 확인하였다.SH-SY5Y cells, which were differentiated using RA for 5 days and induced to express A53Tα-syn-EGFP, were co-cultured with neural stem cells induced to differentiate for 10 days in a dual chamber system for 24 hours to produce A53Tα-syn-EGFP. Migration was compared to the extent of GFP expression. Transmission of αsynuclein was confirmed by immunostaining (Immunoncytochemistry) through the brightness of α-syn-GFP using an antibody.

병리학적 α-syn 응집체 검출Detection of pathological α-syn aggregates

분화 중 α-synuclein 응집체인 PFF(pre-formed fibrils)를 처리하여 (8 μg/ml of medium) a-synuclein aggregation을 유발하며 20일 분화 후에 a-synucelin aggregation 정도를 분석하였다. 또는 lentiviruses expressing α-syn (pEF1α-α-syn) 를 이용하여 과발현 유도하여 분석하였다. Thioflavin S(단백응집을 측정하는 염색법; sigma Aldrich)과 a-synuclein 항체를 이용한 면역염색(Immunoncytochemistry) 및 단백질전기영동법(Western blot)으로 존재 확인 및 그 응집을 단백질 크기 변화로 관찰하였다.α-synuclein aggregates during differentiation A-synuclein aggregation was induced by treatment with PFF (pre-formed fibrils) (8 μg/ml of medium), and the degree of a-synuclein aggregation was analyzed after differentiation for 20 days. Alternatively, overexpression was induced using α-syn (pEF1α-α-syn) expressing lentiviruses and analyzed. Thioflavin S (staining method for measuring protein aggregation; sigma Aldrich) and immunostaining (Immunoncytochemistry) and protein electrophoresis (Western blot) using a-synuclein antibody were used to confirm the presence and the aggregation was observed as a change in protein size.

Bi-FC (Bimolecular fluorescence complementation) Bi-FC (Bimolecular fluorescence complementation)

Og-NSCs 또는 2D-NSCs에 lentiviruses expressing Venus1-α-syn (V1S; N-terminal of α-syn), α-syn-Venus2 (SV2; C-terminal of α-syn)를 발현 유도하고, 25일 분화된 도파민성 신경세포에서 Aggregated α-syn 를 GFP로 분석하였다.Venus1-α-syn (V1S; N-terminal of α-syn) and α-syn-Venus2 (SV2; C-terminal of α-syn) expressing lentiviruses were induced in Og-NSCs or 2D-NSCs, and on the 25th day Aggregated α-syn in differentiated dopaminergic neurons was analyzed by GFP.

이식된 이식편으로의 인 비보 a-syn 전파In vivo a-syn propagation to transplanted grafts

암컷 SD(Sprague Dawley) 랫트들 (225-250 g)에 AAV expressing human hα-syn (AAV2-CMV-hα-syn, 2× 1013 genome copies)와 PFF (10 μg)를 선조체에 주사하여 발현 및 응집 유도하였다. anteroposterior (AP), -0; mediolateral (ML), -3.0; dorsoventral (DV), -5.0. 2주 후에, Og-NSCs 및 2D-NSCs을 선조체의 양쪽에 가가 이식하였다. 이식 한달 후, α-syn의 이식 세포 전이를 면역조직화학을 분석하였다 (α-syn and p129-α-syn). In female SD (Sprague Dawley) rats (225-250 g), AAV expressing human hα-syn (AAV2-CMV-hα-syn, 2×10 13 genome copies) and PFF (10 μg) were injected into the striatum. Aggregation was induced. anteroposterior (AP), -0; medialateral (ML), -3.0; dorsoventral (DV), -5.0. Two weeks later, Og-NSCs and 2D-NSCs were grafted onto both sides of the striatum. One month after transplantation, the transfer of α-syn to the transplanted cells was analyzed by immunohistochemistry (α-syn and p129-α-syn).

이식편에서 신경세포를 발현하는 GCaMP6의 2-광자 영상Two-photon imaging of GCaMP6 expressing neurons in grafts

시냅신 프로모터 (pSyn-GCaMP6s)의 제어 하에 GCaMP6 (Addgene, # 40753)을 생성하고 인비트로 배양을 형질도입하는데 사용하였다. 각각의 형질도입 반응에 2 ml/6-cm 디쉬 또는 200 μl/웰 (24-웰 플레이트) 및 106 형질도입 단위(TU/ml (60-70 ng/ml)를 사용하였다. AAV2-CMV-hα-syn의 패키징 및 생산은 한국과학기술연구원 (서울)에서 수행 하였다.GCaMP6 (Addgene, #40753) was generated under the control of the synapsin promoter (pSyn-GCaMP6s) and used to transduce the culture in vitro. 2 ml/6-cm dishes or 200 μl/well (24-well plate) and 10 6 transduction units (TU/ml (60-70 ng/ml) were used for each transduction reaction. AAV2-CMV- Packaging and production of hα-syn was performed at the Korea Institute of Science and Technology (Seoul).

3 계대에서의 Og-NSC는 이식 3일 전에 렌티바이러스 (pSyn-GCaMP6)로 형질도입되었다. 이어서, 세포를 4개의 야생형 SD 랫트에 이식하고, 랫트를 이식 1개월 후 분석하였다. 2 광자 이미징은   680 ~ 1080 nm, 80 MHz 반복 속도 및 140 fs 펄스 폭에서 조정할 수 있는 파장을 갖는 Ti:Sapphire femtosecond 레이저 (Chameleon Vision, Coherent Inc., USA)가 장착된 상업용 현미경 시스템 (SP-5, Leica, Germany)을 사용하여 수행되었다.Og-NSCs at passage 3 were transduced with lentivirus (pSyn-GCaMP6) 3 days before transplantation. Cells were then transplanted into 4 wild-type SD rats, and the rats were analyzed 1 month after transplantation. Two-photon imaging was performed using a commercial microscope system (SP-5) equipped with a Ti:Sapphire femtosecond laser (Chameleon Vision, Coherent Inc., USA) with a tunable wavelength from 680 to 1080 nm, 80 MHz repetition rate, and 140 fs pulse width. , Leica, Germany).

인비보 뇌 영상화를 위해, 직경 1.0 mm, 길이 9.20 mm의 단일 GRIN 렌즈 (NEM-100-25-10-860-S-1.0p-ST, GRINTECH GmbH)를 사용하였다. 가스 마취 하에 랫트를 수술 적으로 노출된 뇌가 위를 향하도록 랫트 머리 홀더에 장착했다. GRIN 렌즈를 플레이트의 구멍을 통해 알루미늄 플레이트에 고정시키고 플레이트를 번역하여 뇌를 위쪽에서 삽입했다. 10× 건식 대물 렌즈 (Leica HC PL FLUOTAR 10.0 × 0.30)를 현미경 시스템으로부터 여기 레이저를 결합시키기 위해 GRIN 렌즈의 한쪽 끝에 가깝게 위치시켰다. 여기 파장은 GCaMP6의 2 광자 여기에 대해 900nm로 설정되었다. 여기 레이저를 뇌에 주사하여 2 광자 영상화를 수행하였다. 이미징 시야 (FOV) 및 이미징 속도는 각각 512 × 512 픽셀 및 9.03 프레임/s로 387.50 um x 387.50 um이었다. 뇌로부터의 방출 광은 GRIN 렌즈에 의해 수집되었고, 대물 렌즈를 통해 현미경 시스템에 결합되었다. 현미경 시스템에는 4개의 검출 채널 (Ch1 : 430-480nm, Ch2 : 500-550nm, Ch3 : 565-605nm 및 Ch4 : 625-675nm)이 있었고 두 번째 채널 (Ch2)에서 GCaMP6 형광이 수집되었다. . 여기 레이저 출력은 58.08mw이다.For in vivo brain imaging, a single GRIN lens (NEM-100-25-10-860-S-1.0p-ST, GRINTECH GmbH) with a diameter of 1.0 mm and a length of 9.20 mm was used. Under gas anesthesia, rats were mounted in a rat head holder with the surgically exposed brain facing up. The GRIN lens was fixed to the aluminum plate through the hole in the plate and the plate was translated and the brain was inserted from above. A 10× dry objective lens (Leica HC PL FLUOTAR 10.0 × 0.30) was placed close to one end of the GRIN lens to couple the excitation laser from the microscope system. The excitation wavelength was set at 900 nm for the two-photon excitation of GCaMP6. Two-photon imaging was performed by injecting an excitation laser into the brain. The imaging field of view (FOV) and imaging speed were 387.50 um x 387.50 um with 512 x 512 pixels and 9.03 frames/s, respectively. Emission light from the brain was collected by a GRIN lens and coupled to a microscope system through an objective. The microscopy system had four detection channels (Ch1:430-480nm, Ch2:500-550nm, Ch3:565-605nm and Ch4:625-675nm) and GCaMP6 fluorescence was collected in the second channel (Ch2). . The excitation laser power is 58.08mw.

칼슘 이미징 분석Calcium Imaging Analysis

Fluo3-AM 를 1시간 처리하여 세포 안에 흡수시키고 배지에 형광이 남아있지 않도록 PBS 로 3회 세척하였다. 공초점 현미경으로 형광을 관찰하면서 형광 intensity를 1~3초 간격으로 사진을 찍고, 각 시간대별의 사진에서 세포 하나 하나를 ROI를 측정, 형광의 intensity가 변하는 것을 확인하였다. 필요에 따라 FACS 로 게이팅하였다.Fluo3-AM was treated for 1 hour to be absorbed into the cells and washed three times with PBS so that no fluorescence remained in the medium. While observing fluorescence with a confocal microscope, fluorescence intensity was taken at intervals of 1 to 3 seconds, and ROI was measured for each cell in each time-framed picture, and it was confirmed that the intensity of fluorescence was changed. Gated by FACS as needed.

실험 결과Experiment result

인간배아줄기세포로부터 중뇌형 오가노이드 제작Production of midbrain organoids from human embryonic stem cells

기존에 이차원적인 2D 배양을 기반으로 한 분화 기술은 실제 뇌 생체 내의 3차원적 복잡한 네트워크를 대변해 주지 못한다. 3차원 발생을 기반으로 한 프로토콜의 개발만이 실제 뇌의 조직 특성을 대변해 줄 수 있다. 따라서 우선적으로 본 연구팀은 기존의 3D 중뇌형 오가노이드를 먼저 제작하였다. 성공적으로 제작된 중뇌형의 오가노이드는 발생 초반에는 신경줄기세포 마커인 PLZF+, Sox2+와 함께 ZO-1과 N-cadherin이 발현되었다(도 7의 E&F). 일반적인 신경줄기세포 마커라 할 수 있는, Nestin, Sox2와 함께 anterior embryonic brain 마커 (OTX2), 배쪽 VM floor plate 마커(FOXA2, LMX1A)가 발현된다(도 7의 G-I). 발생을 더 유도하면 증식 마커인 Ki67+, SOX2+ 밖의 레이어로 신경세포 마커인 MAP2가 발현되고, 더 구체적으로 생체의 뇌 레이어와 같이 PCNA+ (the proliferative ventricular zone; VZ), MASH1+ (VZ, intermediate zone (IZ) 와 mantle zone (MZ)), 그리고 NURR1+ cells (IZ and MZ)에 각기 특이적으로 발현하는 구조를 확인하였다 (도 7의 L, M). 특징적으로, IZ 와 MZ에서, 대포적인 중뇌 특이적인 인자인 FOXA2+, LMX1A+와 NURR1+ 세포가 도파민성 신경세포 마커인 TH (tyrosine hydroxylase)와 같이 발현됨으로써 진정한 중뇌 타입의 도파민성 신경세포임을 확인하였다(도 7의 N, O, P). The existing differentiation technology based on two-dimensional 2D culture does not represent the three-dimensional complex network in the brain in vivo. Only the development of a protocol based on 3D generation can represent the tissue characteristics of the real brain. Therefore, first of all, this research team produced the existing 3D midbrain organoid first. In the early development of the successfully produced mesencephalic organoids, ZO-1 and N-cadherin were expressed along with the neural stem cell markers PLZF+ and Sox2+ (FIG. 7E&F). Anterior embryonic brain markers (OTX2) and ventral VM floor plate markers (FOXA2, LMX1A) are expressed along with Nestin and Sox2, which can be called general neural stem cell markers (G-I in FIG. 7). When development is further induced, MAP2, a neuronal marker, is expressed as a layer outside the proliferation marker Ki67+ and SOX2+, and more specifically, PCNA+ (the proliferative ventricular zone; VZ), MASH1+ (VZ, intermediate zone (IZ) ) and mantle zone (MZ)), and structures specifically expressed in NURR1+ cells (IZ and MZ) were confirmed (L, M in FIG. 7). Characteristically, in IZ and MZ, FOXA2+, LMX1A+, and NURR1+ cells, which are canonical midbrain-specific factors, were expressed together with TH (tyrosine hydroxylase), a dopaminergic neuron marker, confirming that they were true midbrain-type dopaminergic neurons (Fig. 7 N, O, P).

중뇌 오가노이드로부터 중뇌 타입의 신경줄기세포 (Og-NSCs)Midbrain type neural stem cells (Og-NSCs) from midbrain organoids 분리separation

파킨슨병의 세포 치료제로서 사용 시 보다 진화된 형태의 신경줄기세포로서 오가노이드 유래 중뇌형의 신경줄기세포(Og-NSCs)의 분리 배양 기술을 개발하였다. 선행 연구로서 발생 10~35일 중의 오가노이드로부터 신경줄기세포를 추출하려 하였으나, 효율이 높지 않았다. 오가노이드 내의 신경줄기세포 비율을 높임으로써 적량의 세포 확보가 가능하다고 보고, 세포양을 높이려는 노력으로 프로토콜을 수정하였다. When used as a cell treatment for Parkinson's disease, a technology for separating and culturing organoid-derived midbrain type neural stem cells (Og-NSCs) as a more evolved form of neural stem cells was developed. As a previous study, an attempt was made to extract neural stem cells from organoids during 10 to 35 days of development, but the efficiency was not high. By increasing the ratio of neural stem cells in the organoid, it is believed that it is possible to secure an appropriate amount of cells, and the protocol was modified in an effort to increase the amount of cells.

(1) 계속적으로 분화 유도하면, 줄기세포군의 양이 자동적으로 줄어들기 때문에, 10일차로부터 진행되는 최종 발생 분화 프로토콜을 중단하고, 증식시키는 방향으로 개선하였다, (2) 17 일차부터 신경줄기세포 특이적으로 늘릴 수 있는, bFGF를 추가하는 방법으로 수정하였다, (3) 중뇌 특이적인 인자들 (SHH/Purmorphamine/CHIR999021) 의 처리 시기를 늘림으로써 (1일~18일 까지), 즉, 중뇌 패턴화시키는 과정을 늘려서 중뇌 특이적인 신경줄기세포의 증식을 유도하였다. (4) 기존의 방법과 달리 FGF8b 처리 시기를 7 일부터 시작하였다 (도 8의 A).(1) Since the amount of stem cell population is automatically reduced when differentiation is continuously induced, the final developmental differentiation protocol from day 10 was stopped and improved in the direction of proliferation, (2) neural stem cell-specific from day 17 It was modified by adding bFGF, which can be extended to , (3) by increasing the processing time of midbrain-specific factors (SHH/Purmorphamine/CHIR999021) (from day 1 to day 18), that is, the process of patterning the midbrain was increased to induce proliferation of midbrain-specific neural stem cells. (4) Unlike the conventional method, the FGF8b treatment period started from day 7 (FIG. 8A).

이러한 세밀한 시기의 조절을 통해 중뇌 유도 시 오염되기 쉬운 시상하부 (sunthalamic)로의 발생을 줄일 수 있고, 특이적인 마커 중 하나인 EN1 의 발현을 현저히 높일 수 있다 (도 8). 이와 같은 여러 변형들을 적용하여, 중뇌형 오가노이드 발생 유도 18일차에 2D 환경으로 증식 배양하였다. 인간 비트로넥틴이 코팅된 plates에 bFGF-supplemented hN2 배지로 배양하였다. 분리 후에 세포는 84-97%의 오가노이드 유래 신경줄기세포(Og-NSCs)를 함유하였다 (신경줄기세포 마커 SOX2, NESTIN를 발현하고, OTX2 중뇌성 마커로서 도파민성 신경세포 특성 초기 확보에 매우 중요한 FOXA2, LMX1A발현으로 확인하였다 (도 1의 B, C). 신경줄기세포 주위로 PAX2, PAX5 인자의 발현을 확인함으로써 진정한 중뇌성의 세포로 발생했음을 확인하였다 (도 1의 B). 오가노이드 유래 중뇌성 신경줄기세포(Og-NSCs)는 FOXA2+, LMX1A+ 등 중뇌 특이적 마커 (도 12)의 발현을 통해, 계대 배양 동안 그 특성을 성실히 유지하며 증식 가능함을 관찰하였다 (도 1의 D). 2D hESC 배양에서 VM 유형 NSC를 준비하려고 했다. VM-유사 성상세포 (Astrocyte conditioned medium, ACM)에 의해 조절된 배지의 처리는 세포 통과 동안 세포 생존 및 중뇌 마커 발현에 중요하였다 (도 9의 A). ACM 처리 및 상기 기재된 NSC 집단을 풍부하게 하기 위한 변형과 함께, 본 발명자들은 또한 종래의 2D 배양에서 hESC의 분화로부터 확장 가능한 FOXA2+/LMX1A+VM-NSC를 제조할 수 있었다. (도 9).Through the control of such a detailed time period, the occurrence of the hypothalamus, which is prone to contamination during midbrain induction, can be reduced, and the expression of EN1, one of the specific markers, can be significantly increased ( FIG. 8 ). By applying these various modifications, growth and culture were carried out in a 2D environment on the 18th day of induction of mesencephalic organoid generation. Human vitronectin-coated plates were cultured with bFGF-supplemented hN2 medium. After isolation, the cells contained 84-97% of organoid-derived neural stem cells (Og-NSCs) (expressing neural stem cell markers SOX2 and NESTIN, and FOXA2, which is very important for initial acquisition of dopaminergic neuronal characteristics as an OTX2 mesencephalic marker, It was confirmed by the expression of LMX1A (FIG. 1 B, C). By confirming the expression of PAX2 and PAX5 factors around the neural stem cells, it was confirmed that they developed into true mesencephalic cells (FIG. 1 B). It was observed that (Og-NSCs) can proliferate while faithfully maintaining their properties during subculture through the expression of midbrain-specific markers such as FOXA2+ and LMX1A+ (FIG. 12) (FIG. 1D) VM type in 2D hESC culture To prepare NSC.Treatment of medium conditioned by VM-like astrocyte conditioned medium (ACM) was important for cell survival and midbrain marker expression during cell passage (FIG. 9A).ACM treatment and described above With modifications to enrich the NSC population, we were also able to prepare scalable FOXA2+/LMX1A+VM-NSCs from the differentiation of hESCs in conventional 2D culture (Figure 9).

오가노이드 유래 중뇌형 신경줄기세포(Og-NSCs)는 최종 분화 과정을 통해 중뇌형 마커가 완벽히 발현하는 완전한 형태의 도파민성 신경세포로의 분화가 가능Organoid-derived mesencephalic neural stem cells (Og-NSCs) can be differentiated into complete dopaminergic neurons that fully express mesencephalic markers through the final differentiation process.

최종 분화 과정을 거쳐서 중뇌성 Og-NSCs는 효율적으로 완전한 형태의 도파민성 신경세포로의 분화가 가능하다 (도 1의 E, F). Og-NSC-유래 도파민성 신경세포는 중뇌성 마커로서 도파민 신경세포 마커인 TH 와 더불어, FOXA2 (95%), LMX1A (96%), NURR1 (91%), EN1(86%)을 동시에 발현하였다. 반면에 기존의 2D 배양 환경에서는 44-61% 정도의 낮은 중뇌성 인자 발현을 보였다. (도 9의 E, F, 및 도 10). 더욱이 이러한 오가노이드 유래 중뇌성 신경줄기세포 분리 프로토콜은 여러 다양한 인간 배아줄기세포 및 역분화 줄기세포에 공히 적용 가능하다 (도 1의 G 및 도 11). 8개의 인간 만능줄기세포 (3 hESCs and 5 hiPSCs)로 진행한, 117의 실험 중 111번의 성공율로 상당히 높은 성공율을 보였다. 반면에 2D 방법을 훨씬 적용이 어려워서, 63번 중 28번의 성공율을 기록했다 (도 1의 H). Through the final differentiation process, mesencephalic Og-NSCs can be efficiently differentiated into complete dopaminergic neurons (FIG. 1E, F). Og-NSC-derived dopaminergic neurons simultaneously expressed FOXA2 (95%), LMX1A (96%), NURR1 (91%), and EN1 (86%) along with TH, a dopaminergic neuron marker, as a mesencephalic marker. . On the other hand, in the conventional 2D culture environment, the expression of midbrain factor was as low as 44-61%. (FIG. 9E, F, and FIG. 10). Moreover, this organoid-derived mesencephalic neural stem cell isolation protocol is applicable to a variety of human embryonic stem cells and dedifferentiated stem cells (FIG. 1G and FIG. 11). The success rate of 111 out of 117 experiments performed with 8 human pluripotent stem cells (3 hESCs and 5 hiPSCs) showed a fairly high success rate. On the other hand, the 2D method was much more difficult to apply, and the success rate of 28 out of 63 was recorded (H in FIG. 1 ).

가장 높은 중뇌 인자 발현을 나타내는 H9 hESC 라인이 본 연구 전반에 걸쳐 주로 사용되었다. 이는 오가노이드 유래 개발된 프로토콜이 매우 안정적이며, 세포의 분리, 증식, 분화 등의 일반적인 과정 중에 작은 양만이 세포사멸의 과정을 거치는 것으로 보인다. 이는 2D 방법과 대조적으로, 절차 동안 상당한 비율의 세포 사멸이 나타났다. 실제로 배양 시에 ethidium heterodimer-stained 사멸된 세포 (도 1의 I), cleaved caspase 3+ 사멸된 세포 (도 1의 J) 분석과 새포 분리 후 진행한 FACS 분석을 통한 Annexin+/PI+ 사멸 세포의 분석에서도 상대적으로 수가 적은 안정적인 결과를 보였다 (도 1의 K). β-galactosidase+ 세포로 대표되는 노화 세포 (세포사멸 전 단계)도 Og-NSC 배양에서 현저히 적음을 보인다 (도 1의 L). 복합적으로 새로 확보된 프로토콜은 기존의 것과 비교하였을 때, 보다 안정적으로 중뇌형의 신경세포 확보가 가능하다. The H9 hESC line showing the highest midbrain factor expression was mainly used throughout this study. This suggests that the protocol developed from organoids is very stable, and only a small amount undergoes the process of apoptosis during general processes such as cell isolation, proliferation, and differentiation. This, in contrast to the 2D method, showed a significant percentage of cell death during the procedure. In fact, in culture, ethidium heterodimer-stained dead cells (I in Fig. 1), cleaved caspase 3+ dead cells (J in Fig. 1) and Annexin+/PI+ dead cells analysis through FACS analysis after cell separation were also analyzed. A relatively small number of stable results were shown (FIG. 1K). Senescent cells (pre-apoptotic stage) represented by β-galactosidase+ cells are also significantly less in Og-NSC culture (FIG. 1L). Compared to the existing protocol, the newly secured protocol can more stably secure midbrain type neurons.

Og-NSC 배양된 세포는 신약 개발 플렛폼 세포로의 활용이 가능Og-NSC cultured cells can be used as platform cells for drug development

Og-NSCs 는 중뇌형으로 패턴화 되어 분화 이후 완전한 형태의 도파민성 신경세포로의 분화가 가능하고 아울러 5 계대 이상 그 특성을 유지할 수 있다. (도 1의 D 및 도 12의 A, B), 산술적으로 1 개의 배양접시(dish)로부터 7,260 vials (9,075 배양접시)의 Og-NSCs 확보가 가능하다 (도 12의 A). 아울러 그 기능의 상실 없이 질소탱크에 보존이 가능하다. (도 12의 C). 이와 같은 결과로 실제 굴지의 제약 회사(Chong Kun Dang Pharm., Seoul, KOREA)와 후보 파킨슨병 신약 개발에 사용되고 있다 (도 13). Og-NSC 배양 시스템의 확장 가능하고 저장 가능한 속성은 제약 회사 (Chong Kun Dang Pharm., Seoul, KOREA)와 협력하여, hESC (H9) 및 PD-hiPSC (PD-ips1) 라인으로부터의 mDA 신경세포를 사용하여 PD 약물을 개발하기 위해 후보 화학 물질의 대량 스크리닝을 받았다 (도 13).Og-NSCs are patterned in the midbrain type and can be differentiated into complete dopaminergic neurons after differentiation and can maintain their characteristics for more than 5 passages. (FIG. 1D and FIG. 12A, B), arithmetic, it is possible to secure Og-NSCs of 7,260 vials (9,075 culture dish) from one culture dish (FIG. 12A). In addition, it can be stored in a nitrogen tank without loss of its function. (Fig. 12C). As a result of this, it is actually being used with a leading pharmaceutical company (Chong Kun Dang Pharm., Seoul, KOREA) to develop a candidate Parkinson's disease drug (FIG. 13). The scalable and storable properties of the Og-NSC culture system, in cooperation with a pharmaceutical company (Chong Kun Dang Pharm., Seoul, KOREA), were made to produce mDA neurons from hESC (H9) and PD-hiPSC (PD-ips1) lines. was used to undergo a large-scale screening of candidate chemicals to develop PD drugs (Figure 13).

미분화 상태의 Og-NSCs는 적당한 중뇌형의 신경줄기세포 마커를 완벽히 발현한다 (도 1의 B, C 및 도 14의 A, E, F). 분화 이전에는 분화 neuronal/DA neuronal 마커들을 일절 발현하지 않는다 (MAP2, TH) (도 14의 B, C). 최종 분화 유도 후에는 증식 마커인 Ki67+의 발현이 줄어들면서 신경세포의 특성으로 신경돌기가 늘어나는 등의 형태적 변화가 일어난다 (도 14의 A-C). 실제의 중뇌형 신경줄기세포의 발상단계와 같이 전구세포 단계부터 특이 마커인 NURR1가 발현 시작해서 분화 후까지 계속적으로 발현된다. (분화 2일부터 최종 분화 단계까지) (도 14의 D). 실제적으로 중뇌에서의 생체적 발생 리듬에 맞춰서, 계속적으로 FOXA2와 LMX1A 가 발현되고, 분화 이후에는 LMX1A+ 발현이 약간 줄어드는 경향을 보였다 (도 14의 E, F). 중뇌형 세포의 중요 마커인 NURR1, FOXA2, LMX1A 의 경우 최종 분화된 도파민성 신경세포에 겹쳐서 잘 발현되었다 (도 1의 E-G). 이러한 발견은 복합적으로 인비트로 NSC 분화가 VM에서의 생리적 mDA 뉴런 발달을 요약하여, 존재하지 않았던 인간 mDA 뉴런 발달을 연구하기 위한 시험관내 모델로서 유용할 수 있음을 나타낸다.Og-NSCs in an undifferentiated state perfectly express an appropriate mesencephalic neural stem cell marker (FIG. 1B, C and FIG. 14A, E, F). Prior to differentiation, no differentiation neuronal/DA neuronal markers were expressed (MAP2, TH) ( FIGS. 14B and 14C ). After induction of the final differentiation, the expression of the proliferation marker Ki67+ is reduced, and morphological changes such as neurites increase due to the characteristics of neurons occur ( FIGS. 14A-C ). As in the developmental stage of actual mesencephalic neural stem cells, NURR1, a specific marker, starts to be expressed from the progenitor cell stage and continues to be expressed until after differentiation. (from day 2 of differentiation to the final stage of differentiation) (Fig. 14D). Actually, in accordance with the biological rhythm of development in the midbrain, FOXA2 and LMX1A were continuously expressed, and after differentiation, LMX1A+ expression showed a tendency to slightly decrease (FIG. 14E, F). In the case of NURR1, FOXA2, and LMX1A, which are important markers of midbrain cells, they were well expressed overlaid on the terminally differentiated dopaminergic neurons (FIG. 1E-G). These findings collectively indicate that in vitro NSC differentiation recapitulates physiological mDA neuron development in VM, and may be useful as an in vitro model to study human mDA neuron development that did not exist.

bulk 와 single cell RNA sequencing을 이용하여, Og-NSCs의 전사조절 특성 분석Analysis of transcriptional regulation characteristics of Og-NSCs using bulk and single cell RNA sequencing

Og-NSCs의 분자생물학적 전사조절 분석을 위해, RNA sequencing (RNA-seq) 분석을 수행하였다. 오가노이드 유래 중뇌형 신경줄기세포(Og-NSCs)와 기존의 분화법으로 발생한 신경줄기세포 (2D-NSCs)를 기존의 인간 태아 및 성체 뇌 조직과 전사조절인자의 차이를 비교 분석하였다 (Carithers, L.J., Ardlie, K., Barcus, M., Branton, P.A., Britton, A., Buia, S.A., Compton, C.C., DeLuca, D.S., Peter-Demchok, J., Gelfand, E.T., et al. (2015). A Novel Approach to High-Quality Postmortem Tissue Procurement: The GTEx Project. Biopreserv Biobank 13, 311-319.; Jo, J., Xiao, Y., Sun, A.X., Cukuroglu, E., Tran, H.D., Goke, J., Tan, Z.Y., Saw, T.Y., Tan, C.P., Lokman, H., et al. (2016). Midbrain-like Organoids from Human Pluripotent Stem Cells Contain Functional Dopaminergic and Neuromelanin-Producing Neurons. Cell Stem Cell 19, 248-257.). 기존의 보고(Jo, J., Xiao, Y., Sun, A.X., Cukuroglu, E., Tran, H.D., Goke, J., Tan, Z.Y., Saw, T.Y., Tan, C.P., Lokman, H., et al. (2016). Midbrain-like Organoids from Human Pluripotent Stem Cells Contain Functional Dopaminergic and Neuromelanin-Producing Neurons. Cell Stem Cell 19, 248-257.)와 마찬가지로, PCA (principal component analysis)와 Spearman's correlation 분석 결과 중뇌형 오가노이드는 현저히 인간 태아의 뇌와 유사함을 보였다 (도 2의 A, B). Og-NSCs는 중뇌형의 오가노이드와 유사하여 그 특징을 유지하고 있고, (Spearman's correlation co-efficiencies:0.79-0.97) 또한 실제 태아의 중뇌와도 비슷하여(0.70-0.85), 실제로 신경줄기세포로 뽑아낸 Og-NSCs는 분리 및 계대 배양 과정에도 그 특성이 유지됨을 알 수 있다.To analyze the molecular biological transcriptional regulation of Og-NSCs, RNA sequencing (RNA-seq) analysis was performed. Organoid-derived midbrain neural stem cells (Og-NSCs) and neural stem cells (2D-NSCs) generated by the conventional differentiation method were compared and analyzed for differences in transcriptional regulatory factors with those of human fetal and adult brain tissues (Carithers, LJ, Ardlie, K., Barcus, M., Branton, PA, Britton, A., Buia, SA, Compton, CC, DeLuca, DS, Peter-Demchok, J., Gelfand, ET, et al. (2015). Novel Approach to High-Quality Postmortem Tissue Procurement: The GTEx Project. Biopreserv Biobank 13, 311-319.; Jo, J., Xiao, Y., Sun, AX, Cukurolu, E., Tran, HD, Goke, J. , Tan, ZY, Saw, TY, Tan, CP, Lokman, H., et al. (2016). Midbrain-like Organoids from Human Pluripotent Stem Cells Contain Functional Dopaminergic and Neuromelanin-Producing Neurons. Cell Stem Cell 19, 248- 257.). Previous reports (Jo, J., Xiao, Y., Sun, AX, Cukuroglu, E., Tran, HD, Goke, J., Tan, ZY, Saw, TY, Tan, CP, Lokman, H., et al. Organoids were remarkably similar to human fetal brains (FIG. 2A, B). Og-NSCs are similar to midbrain type organoids and retain their characteristics (Spearman's correlation co-efficiencies: 0.79-0.97) and are also similar to fetal midbrain (0.70-0.85), so they are actually extracted as neural stem cells. It can be seen that the obtained Og-NSCs retain their properties even in the process of isolation and subculture.

신경줄기세포군락의 세포 개개의 특성의 확인을 위해서, single-cell RNA-seq 를 수행하였다 (Og-NSCs : total 13,793 cells analyzed; 2D-NSCs : 12,166 cells ;. On average, there were 3.8 × 105 post-normalization reads per cell and 2,227 genes detected in each individual cell) 평균적으로, 세포 당 정규화 후 3.8 × 105 판독 값 및 각각의 개별 세포에서 2,227개의 유전자가 검출되었다. 예상대로, ~99.7%의 Og-NSC와 기존 2D-NSC 세포들이 신경줄기세포 마커인 NESTIN, VIMENTIN, NCAM1, SOX2, NOTCH1, MUSASHI1을 발현하였다(도 15의 A). 전분화능 세포의 마커인 POU5F1, NANOG, KLF4는 오직 0.09%, 0.45%, 0.91%의 Og-NSC 새포에서 발현되고, 발현되는 세포 조차 그 발현양은 미미했다 (average unique molecular identifiers (UMI) were <0.005) (도 15의 B). 대부분이 신경줄기세포이기는 하지만 기존의 2D-NSCs 경우는 상대적으로 약간 높은 전분화능 세포의 발현을 보였다 (0.19%, 2.69%, and 1.24%, respectively, with an average UMI of <0.031). Og-NSCs 와 2D-NSCs 모두 세개의 마커를 동시에 발현하는 세포는 없으므로, 이는 신경줄기세포만을 분리배양이 가능함을 보여주는 것이다. FACS 분석을 통해 TRA-1-60과 SSEA-4의 발현도 거의 없음을 확인하였다 (도 15의 C). 앞서 노화 세포(세포사멸 전 단계)도 Og-NSC 배양에서 현저히 적음을 보임과 아울러 (도 1의 L), 사멸유전자를 발현하는 세포도 아주 적은 것으로 분석되었다 (도 15의 D). 특히, 2D-NSC의 세포와 비교하여 Og-NSC의 세포의 매우 낮은 비율은 p16/INK4a를 발현하였으며, 이는 세포 aging/senescence 및 뇌(Molofsky, A.V., Slutsky, S.G., Joseph, N.M., He, S., Pardal, R., Krishnamurthy, J., Sharpless, N.E., and Morrison, S.J. (2006). Increasing p16INK4a expression decreases forebrain progenitors and neurogenesis during ageing. Nature 443, 448-452.; Nishino, J., Kim, I., Chada, K., and Morrison, S.J. (2008). Hmga2 promotes neural stem cell self-renewal in young but not old mice by reducing p16Ink4a and p19Arf Expression. Cell 135, 227-239.)와 다른 조직(Sousa-Victor, P., Gutarra, S., Garcia-Prat, L., Rodriguez-Ubreva, J., Ortet, L., Ruiz-Bonilla, V., Jardi, M., Ballestar, E., Gonzalez, S., Serrano, A.L., et al. (2014). Geriatric muscle stem cells switch reversible quiescence into senescence. Nature 506, 316-321.; Wang, J., Lu, X., Sakk, V., Klein, C.A., and Rudolph, K.L. (2014). Senescence and apoptosis block hematopoietic activation of quiescent hematopoietic stem cells with short telomeres. Blood 124, 3237-3240.)에서 줄기세포의 복구 능력의 저하에 중요한 특징이다.In order to confirm the individual characteristics of the neural stem cell community, single-cell RNA-seq was performed (Og-NSCs: total 13,793 cells analyzed; 2D-NSCs: 12,166 cells ;. On average, there were 3.8 × 10 5 post -normalization reads per cell and 2,227 genes detected in each individual cell) On average, 2,227 genes were detected in each individual cell and 3.8 × 10 5 reads after normalization per cell. As expected, ~99.7% of Og-NSC and conventional 2D-NSC cells expressed neural stem cell markers NESTIN, VIMENTIN, NCAM1, SOX2, NOTCH1, and MUSASHI1 (FIG. 15A). The markers of pluripotent cells, POU5F1, NANOG, and KLF4, were expressed in only 0.09%, 0.45%, and 0.91% of Og-NSC cells, and even the expressed cells had insignificant expression levels (average unique molecular identifiers (UMI) were <0.005). ) (FIG. 15B). Although most of them are neural stem cells, the conventional 2D-NSCs showed a relatively high expression of pluripotent cells (0.19%, 2.69%, and 1.24%, respectively, with an average UMI of <0.031). Since neither Og-NSCs nor 2D-NSCs have cells expressing the three markers at the same time, this shows that only neural stem cells can be isolated and cultured. Through FACS analysis, it was confirmed that the expression of TRA-1-60 and SSEA-4 was almost absent (FIG. 15C). Previously, senescent cells (stage before apoptosis) were also analyzed to be significantly less in Og-NSC culture (FIG. 1L), and cells expressing apoptosis genes were also very small (FIG. 15D). In particular, compared with cells of 2D-NSC, a very low proportion of cells of Og-NSC expressed p16/INK4a, which resulted in cell aging/senescence and brain (Molofsky, AV, Slutsky, SG, Joseph, NM, He, S ., Pardal, R., Krishnamurthy, J., Sharpless, NE, and Morrison, SJ (2006). Increasing p16INK4a expression decreases forebrain progenitors and neurogenesis during aging. Nature 443, 448-452.; Nishino, J., Kim, I., Chada, K., and Morrison, SJ (2008).Hmga2 promotes neural stem cell self-renewal in young but not old mice by reducing p16Ink4a and p19Arf Expression. Cell 135, 227-239.) and other tissues (Sousa) -Victor, P., Gutarra, S., Garcia-Prat, L., Rodriguez-Ubreva, J., Ortet, L., Ruiz-Bonilla, V., Jardi, M., Ballestar, E., Gonzalez, S. ., Serrano, AL, et al. (2014).Geriatric muscle stem cells switch reversible quiescence into senescence.Nature 506, 316-321.;Wang, J., Lu, X., Sakk, V., Klein, CA, and Rudolph, KL (2014).Stem cell recovery in Senescence and apoptosis block hematopoietic activation of quiescent hematopoietic stem cells with short telomeres. Blood 124, 3237-3240.) It is an important characteristic for the deterioration of ability.

t-SNE (t-distributed stochastic neighbor embedding) 분석을 통해서 분석한 Og-NSCs 세포군은 세 개의 clusters로의 분류가 가능하다 (도 2의 C-E). 각 세포 cluster 의 특성의 확인을 위해, 발현 증가된 유전자군의 GO(gene ontology) 분석을 수행하였다. (UMI>1, log2FC>0.5, P<0.05) (도 2의 F), cluster 3의 경우, 25% (Og-NSC )와 12% (2D-NSC) (도 2의 D)를 차지하는데, 유전자 분석 결과 신경세포로 이미 운명 결정된 세포 군으로 분화 인자도 상당수 포함한다. cluster 1에서 과발현되는 유전자군의 경우는 도파민 신경세포가 발생되는 흑질(SN) 발생에 중요한 유전자군이 많이 발현되는데 (ENO3, RSPO2, FGF9, LDHA, NR4A2, INA, LMX1A, OTX2, HSPA5, SYNGR3, RAD1, UCHL1, EN1, NDUFS3, and SEC16A), 따라서cluster 1 중뇌로의 패턴화가 가장 완성된 세포군이라고 할 수 있다. 특히나, 71%의 Og-NSCs 세포들, 13% 의 기존 2D-NSCs 세포들이 cluster 1에 해당된다. 이러한 유전자적 분석 결과 또한 Og-NSC 배양이 훨씬 더 중뇌형의 패턴화되어 있고, 안정적으로 세포 사멸 없이 전분화능 세포의 오염없이 세포군의 확보 가능함을 보여주었다 The Og-NSCs cell population analyzed through t-SNE (t-distributed stochastic neighbor embedding) analysis can be classified into three clusters ( FIG. 2 CE ). To confirm the characteristics of each cell cluster, GO (gene ontology) analysis of the gene group with increased expression was performed. (UMI>1, log 2 FC>0.5, P<0.05) (FIG. 2F), in the case of cluster 3, 25% (Og-NSC ) and 12% (2D-NSC) (FIG. 2D) accounted for However, as a result of genetic analysis, it is a group of cells that have already been destined to be nerve cells, and contains a significant number of differentiation factors. In the case of the overexpressed gene group in cluster 1, many gene groups important for the development of substantia nigra (SN), where dopaminergic neurons are generated, are expressed (ENO3, RSPO2, FGF9, LDHA, NR4A2, INA, LMX1A, OTX2, HSPA5, SYNGR3, RAD1, UCHL1, EN1, NDUFS3, and SEC16A), and thus the cluster 1 midbrain is the most complete cell group. In particular, 71% of Og-NSCs cells and 13% of existing 2D-NSCs cells belong to cluster 1. The results of this genetic analysis also showed that the Og-NSC culture had a much more mesencephalic pattern, and it was possible to stably secure a cell population without apoptosis and without contamination of pluripotent cells.

GO와 KEGG 분석을 통해, bulk 와 single cell RNA-seq 데이타 (Og-NSCs vs 2D-NSCs)를 보다 자세히 분석하였다(도 2의 H, I). Og-NSCs에서 상대적으로 많이 발현되는 유전자 그룹은 (2D-NSCs에 대비) 두 가지 방법의 seq data에 의하면, cell adhesion 과 ECM으로 줄기세포의 발생과 기능 유지에 그 중요함이 강조된 유전자군이다. 두 가지 방법의 seq data에 의해 모두 높이 발현되는 이 유전자군의 발현은 unsupervised hierarchal clustering으로 연구하였다 (도 2의 J) 그것의 특별한 기능도 기술하였다 (표 5). Through GO and KEGG analysis, bulk and single cell RNA-seq data (Og-NSCs vs 2D-NSCs) were analyzed in more detail (Fig. 2H, I). According to the seq data of two methods (compared to 2D-NSCs), the gene group that is expressed relatively in Og-NSCs is a gene group that emphasizes the importance of stem cell development and maintenance of function due to cell adhesion and ECM. The expression of this gene group, which is highly expressed by the seq data of both methods, was studied by unsupervised hierarchal clustering (FIG. 2J) and its special function was also described (Table 5).

Figure 112019105598316-pat00004
Figure 112019105598316-pat00004

(계속)(continue)

Figure 112019105598316-pat00005
Figure 112019105598316-pat00005

(계속)(continue)

Figure 112019105598316-pat00006
Figure 112019105598316-pat00006

(계속)(continue)

Figure 112019105598316-pat00007
Figure 112019105598316-pat00007

또한 Og-NSC 세포군에서 특이적으로 많이 발현되는 유전자군으로는 중뇌의 패턴화와 관계된 'SN development' 'negative regulation of cell death' (도 2의 I)이다. single cell RNA-seq analysis 분석 시에 특히 Og-NSCs 군에서 미토콘드리아의 생물학적 기능에 관련된 유전자군이 대거 조절되어 있음을 볼 수 있었다 (mitochondria function, ER and protein folding, and autophagy), 이는 세포 노화와 사멸과 밀접히 관계된 신경퇴행성 질환의 상화에서 대표적으로 그 영향이 나타나는 기관으로 미토콘드리아가 밀접하므로 그 중요성을 강조할 수 있다. 이 데이터는 KEGG 분석 시에도 대표적인 신경 퇴행성 질환인 'Parkinson's disease', 'Huntington's disease','Alzheimer's disease' 가장 상위에 변화로 랭크됨을 통해서 그 연관성을 추측할 수 있다 (도 2의 I). Also, as a group of genes that are specifically expressed a lot in the Og-NSC cell group, 'SN development' and 'negative regulation of cell death' (I in FIG. 2) related to midbrain patterning. In the analysis of single cell RNA-seq analysis, it was found that the gene group related to mitochondrial biological function was largely regulated in the Og-NSCs group (mitochondria function, ER and protein folding, and autophagy), which resulted in cell aging and death. The importance of mitochondria can be emphasized because mitochondria are closely related to the organ that is typically affected in the normalization of neurodegenerative diseases closely related to . This data can be inferred by KEGG analysis as it is ranked as the highest change in 'Parkinson's disease', 'Huntington's disease', and 'Alzheimer's disease', which are representative neurodegenerative diseases (I in FIG. 2).

인간 배아줄기세포 및 유도만능 줄기세포의 분화 시 미토콘드리아의 기능은 매우 중요하다. 특히나 신경줄기세포의 미토콘드리아의 경우 신경퇴행성 질환의 진행과 발병에 매우 중요하다고 알려져 있다. 미토콘드리아의 유전자는 미토콘드리아의 생성 및 그 다이나믹스에 관련된 것들도 포함하는 Og-NSCs 두 가지의 다른 bulk 와 single-RNA-seq 분석에서 기존의 방법으로 유도된 세포 대비 모두 조절되었다 (도 3의 A). 유전자 분석과 마찬가지로 Mitotimer로도 분석 가능한데, Og-NSCs 세포군에서 기존의 2D-NSCs보다 훨씬 건강하고 기능적으로 우수함을 볼 수 있었다 (도 3의 B). Og-NSC의 건강하고 기능적으로 우수함은 미토콘드리아 ROS 분석으로도 알 수 있다 (MitoSox, 도 3의 C). 또한 미토콘드리아 막 전위도 Og-NSC 군에서 높음으로 모든 면에서 우수함이 보였다 (JC-1, 도 3의 D). 개선된 미토콘드리아 회전율 및 산화 방지제 용량과 함께, Og-NSC로부터 분화된 mDA 신경세포는 2D-NSC로부터 유래된 것 보다 다양한 미토콘드리아 독소에 의해 유도된 세포 사멸 (도 3의 E) 및 신경 돌기 변성 (도 3의 F)에 더 큰 저항성을 나타냈다.The function of mitochondria is very important in the differentiation of human embryonic stem cells and induced pluripotent stem cells. In particular, the mitochondria of neural stem cells are known to be very important in the progression and pathogenesis of neurodegenerative diseases. Mitochondrial genes were all regulated compared to cells induced by the conventional method in two different bulk and single-RNA-seq analyzes of Og-NSCs, including those related to mitochondrial generation and dynamics (FIG. 3A). Similar to genetic analysis, it can also be analyzed with Mitotimer, and it was found that the Og-NSCs cell group was much healthier and functionally superior to the conventional 2D-NSCs ( FIG. 3B ). The healthy and functional superiority of Og-NSC can also be seen by mitochondrial ROS analysis (MitoSox, FIG. 3C). In addition, the mitochondrial membrane potential was also high in the Og-NSC group, showing superiority in all aspects (JC-1, FIG. 3D). With improved mitochondrial turnover and antioxidant capacity, mDA neurons differentiated from Og-NSCs exhibited apoptosis (Fig. 3E) and neurite degeneration (Fig. 3E) induced by a variety of mitochondrial toxins than those derived from 2D-NSCs. 3 showed greater resistance to F).

Og-NSCs로부터 분화 유도된 도파민성 신경세포 mDA neurons는 성상교세포와 공존함으로써 신경세포의 기능이 향상되고 성숙됨Differentiation-induced dopaminergic neurons from Og-NSCs mDA neurons coexist with astrocytes, resulting in improved neuronal function and maturation

유전자의 전사적 조절은 실제로 세포군의 형상이 변화되기에 앞서 이른 변화를 보여준다. 예를 들면 신경줄기세포로부터 볼 수 있는 변화를 실제 유전자 분석 시에는 (differentially expressed genes (DEGs) 에서는) 배아줄기세포 단계에서부터 볼 수 있는 것이 그 예일 것이다. bulk RNA-seq 분석에서, Og-NSCs (vs 2D-NSCs) 세포에서는 신경세포의 성숙과 관련된 유전자가 높이 발현되었다 (도 2의 H 및 도 3의 G). 유전자 발현 프로파일에서와 같이, 2D 대응물과 비교하여, Og-NSCs에서 분화 유도된 중뇌형 도파민 신경세포는 신경세포 분화 후 보다 성숙된 형태를 보이고, (도 3의 H, J), 시냅스 형성 (도 3의 I, K), action potential-유발 Ca2+ 다이나믹스 (도 3의 L-O), 탈분극 유도된 도파민 분비에 의해 평가된 전-시냅스성 도파민 신경세포 기능(도 3의 P) 면에서 훨씬 성숙한 형태를 보인다. The transcriptional regulation of genes actually shows early changes before the shape of the cell population changes. For example, in the case of actual gene analysis (in differentially expressed genes (DEGs)), changes that can be seen from neural stem cells can be seen from the embryonic stem cell stage. In bulk RNA-seq analysis, genes related to neuronal maturation were highly expressed in Og-NSCs (vs 2D-NSCs) cells (FIG. 2H and FIG. 3G). As in the gene expression profile, compared with their 2D counterparts, differentiation-induced mesencephalic dopaminergic neurons in Og-NSCs showed a more mature morphology after neuronal differentiation (Fig. 3H, J), and synapse formation ( 3I, K), action potential-induced Ca 2+ dynamics (LO of FIG. 3), and pro-synaptic dopaminergic neuron function (FIG. 3P) evaluated by depolarization-induced dopamine secretion. looks in shape

현재 존재하는 모든 hPSC-mDA 분화 프로토콜에서, 성상 세포 분화 없이 mDA 뉴런이 생성된다. 유사하게, 배양된 2D-NSC에서 성상 세포 분화가 발견되지 않았다. (도 3의 R, S). 흥미롭게, Og-NSCs의 cluster 1 (중뇌성의 SN 발생 세포군, 더 높은 SN 발달 유전자 발현을 갖는 클러스터)의 subpopulation 17% 의 세포들은 glia 발달과 연관된 유전자들(EIF2B5, MT3, PLP1, CDK6, SCL1A3, HES1, HES5, 및 SOX8 )을 공통적으로 높이 발현하는 특성을 보였다 (도 3의 Q).   Og-NSC 배양물이 VM (SN)-타입 glia 전구체 집단을 함유함을 나타내었다. 일관되게, Og-NSC 배양에서 세포의 일부는 말초 분화 시 성상 세포로 분화되는 신경 원성 전구체 (도 3의 R)에서 특이적으로 발견되는 CD44를 발현시켰다 (도 3의 S). 이 세포들은 성상전구세포의 마커인 CD44를 발현함으로써 (도 3의 R), 향후 최종 분화 시 성상교세포로의 분화를 기대할 수 있다 (도 3의 S). 이는 실제의 중뇌발달의 패턴과 같이 mDA 신경세포가 GFAP+성상교세포와 혼재하여 발생됨을 알 수 있다 (도 3의 S). In all existing hPSC-mDA differentiation protocols, mDA neurons are generated without astrocyte differentiation. Similarly, no astrocyte differentiation was found in cultured 2D-NSCs. (R, S in Fig. 3). Interestingly, 17% of the subpopulation of Og-NSCs cluster 1 (the SN-generating cell population of the midbrain, a cluster with higher SN developmental gene expression) contained genes related to glia development (EIF2B5, MT3, PLP1, CDK6, SCL1A3, HES1). , HES5, and SOX8 ) showed a characteristic of high expression in common ( FIG. 3 Q ). It was shown that Og-NSC cultures contained a VM (SN)-type glia precursor population. Consistently, some of the cells in Og-NSC culture expressed CD44 ( FIG. 3S ), which is specifically found in neurogenic precursors ( FIG. 3R ) that differentiate into astrocytes upon peripheral differentiation. These cells express CD44, a marker of astrocytes (FIG. 3R), and can be expected to differentiate into astrocytes during final differentiation in the future (FIG. 3S). It can be seen that, like the actual pattern of midbrain development, mDA neurons are generated by mixing with GFAP + astrocytes ( FIG. 3S ).

따라서, 생체 내에서 중뇌에서와 같이 분화된 배양물에서 mDA 뉴런을 GFAP + 성상교세포와 혼재시켰다 (도 3의 S). 성상교세포의 일반적인 신경 영양 작용 외에도 VM형 성상교세포는 다른 뇌 영역으로부터의 성상 세포 보다 우수한 특이적 dopaminotrophic 기능을 발휘하는 것으로 알려져 있다.Therefore, mDA neurons were mixed with GFAP + astrocytes in differentiated cultures as in the midbrain in vivo ( FIG. 3S ). In addition to the general neurotrophic action of astrocytes, VM-type astrocytes are known to exert specific dopaminotrophic functions superior to astrocytes from other brain regions.

기존의 보고에 근거하여 성상교세포의 사이토카인 분비능력을 감안해 볼 때, 성상교세포는 도파민성 신경세포가 발생할 때 긍정적으로 영향 미칠 것을 기대할 수 있다. 이러한 정보에 기초하여 도 3의 E-P, 도 1의 E-L에서 보는 것처럼 인접 성상 세포는 mDA 뉴런 성숙, 생존, 시냅스 전 기능 및 중뇌-특이적 인자 발현에 대해 신경 영양 지원을 발휘할 수 있다.Considering the cytokine secretion ability of astrocytes based on previous reports, astrocytes can be expected to have a positive effect when dopaminergic neurons are generated. Based on this information, adjacent astrocytes can exert neurotrophic support for mDA neuron maturation, survival, presynaptic function and midbrain-specific factor expression, as shown in E-P of FIG. 3 and E-L of FIG. 1 .

Og-NSCs로부터 분화된 도파민성 신경세포는 α-syn의 oligomerization과 병적인 확산(propagation)이 덜 된다.Dopaminergic neurons differentiated from Og-NSCs exhibit less oligomerization and pathological propagation of α-syn.

원래의 환자 뇌에 존재하는 α-synucleinopathy의 이식된 세포에로까지의 확산을 막기 위해, 또한 장기적으로 파킨슨병 세포 치료의 성공을 위해서는 세포치료제로 사용할(이식할) 세포의 α-syn 확산 저항성의 확보가 중요하다. 독성의 α-syn 병적 확산(pathogenic propagation)은 α-syn의 세포간 이동과, α-syn 응집(aggregates) 또한 이식된 세포로의 이동과 관계된다. α-syn 의 세포간 이동 능력을 측정하기 위해, 듀얼 챔버 시스템 (Choi, Y.R., Cha, S.H., Kang, S.J., Kim, J.B., Jou, I., and Park, S.M. (2018b). Prion-like Propagation of alpha-Synuclein Is Regulated by the FcgammaRIIB-SHP-1/2 Signaling Pathway in Neurons. Cell reports 22, 136-148)을 활용하여 Og-NSCs 와 2D-NSCs에서 각각 분석하였다. GFP-labeled α-syn (SH-SY5Y neuronal 세포에서 과발현시킨 단백질)을 챔버 위에 위치시키고, 배양된 Og-NSC (2D-NSC)-유래된 신경세포를 밑에 위치시켜서 단백질 이동 후 흡수 확장되는 것을 관찰 결과 (도 4의 A), GFP-labeled α-syn의 형광값이 Og-NSC 유래 신경세포에서 현저히 낮게 관찰되었다 (도 4의 B).In order to prevent the spread of α-synucleinopathy existing in the original patient’s brain to transplanted cells, and for the long-term success of Parkinson’s disease cell therapy, the It is important to secure Pathogenic propagation of α-syn is associated with intercellular migration of α-syn, and α-syn aggregates are also associated with migration into transplanted cells. To measure the intercellular migration ability of α-syn, a dual chamber system (Choi, YR, Cha, SH, Kang, SJ, Kim, JB, Jou, I., and Park, SM (2018b). Prion-like propagation) of alpha-Synuclein Is Regulated by the FcgammaRIIB-SHP-1/2 Signaling Pathway in Neurons. Cell reports 22, 136-148) were analyzed in Og-NSCs and 2D-NSCs, respectively. GFP-labeled α-syn (protein overexpressed in SH-SY5Y neuronal cells) was placed on the chamber, and cultured Og-NSC (2D-NSC)-derived neurons were placed underneath to observe expansion of uptake after protein migration. As a result (FIG. 4A), the fluorescence value of GFP-labeled α-syn was observed to be significantly lower in Og-NSC-derived neurons (FIG. 4B).

α-syn 이동뿐 아니라 다른 중요 이슈로 이식된 세포로의 α-syn의 병적 확산을 독성의 α-syn 응집체로 분석하였다. 세포 내부의 α-syn 양이 증가하는 환경과 혹은 외부의 α-syn 유입 시의 (exogenous α-syn fibril seed) 조건으로 나누어 응집 정도를 비교 분석하였다. The pathological spread of α-syn into transplanted cells as well as α-syn migration as well as other important issues were analyzed as toxic α-syn aggregates. The degree of aggregation was compared and analyzed by dividing the cell into an environment in which the amount of α-syn inside the cell increases or when α-syn is introduced from the outside (exogenous α-syn fibril seed).

Og-NSCs 와 2D-NSCs 세포군에 α-syn을 과발현하는 렌티바이러스를 감염시키고, 도파민성 신경세포 분화 후 H2O2 로 산화 스트레스를 유발하여, 독성의 α-syn 응집 및 확산 분석하였다. 독성 α-syn이랄 수 있는 인산화된α-syn at serine 129 (p129-α-syn)이나, GFP+ α-syn 이동이 Og-NSC 에서 낮게 관찰되었다 (도 4의 C). 따라서, 독성의 α-syn 응집 또한 분화된 Og-NSC 세포군에서 적게 관찰되었다 (도 4의 D, 좌). α-syn fibril (PFF)을 주입함으로써 외부의 α-syn 유입 시의 (exogenous α-syn fibril seed) 조건을 마련하여, 관찰한 결과에서도 독성의 α-syn 응집이 기존의 2D-NSCs에서 보다 많은 것으로 보아 (도 4의 D, 우), 다양한 조건의 독성의 α-syn 응집이 Og-NSC 세포군에서 낮게 관찰되었다. 다음으로 독성의 α-syn 응집을 Bi-FC(bimolecular fluorescence complementation) 시스템으로 관찰하였다. 이 시스템은 α-syn이 amino (N) terminus (V1S)이나 carboxy (C) terminus (SV2) Venus fragment이 각기 발현되어서 응집되면 진하게 형광을 보임으로서 관찰하는 시스템이다 (도 4의 E, F). 산화 스트레스와 미토콘드리아 파괴는 α-syn의 단백질 misfolding과 응집을 유발한다고 알려져 있다. Og-NSC-유래 도파민성 신경세포의 α-synucleinopathy에 대한 상대적인 저항성은 낮은 산화 및 미토콘드리아 스트레스에 기인한다고 볼 수 있다 (도 3의 B-F). 또한, 분화된 Og-NSC 세포군에 성상교세포가 함유되어 있는 것도, 성상교세포의 원래 기능으로 독성의 α-syn 응집을 줄일 수 있으므로, α-synucleinopathy 의 감소에 기여한다고 볼 수 있다. 종합적으로 Og-NSCs 유래 신경세포는 독성의 α-syn 확산이 상대적으로 억제되어 있는데, 이는 세포 내외의 α-syn 연구 결과 확인하였다. Og-NSCs and 2D-NSCs cell groups were infected with a lentivirus overexpressing α-syn, and oxidative stress was induced with H 2 O 2 after differentiation of dopaminergic neurons, and toxic α-syn aggregation and diffusion were analyzed. Phosphorylated α-syn at serine 129 (p129-α-syn), which may be toxic α-syn, but GFP+ α-syn shift was low in Og-NSC ( FIG. 4C ). Therefore, toxic α-syn aggregation was also observed less in the differentiated Og-NSC cell group (Fig. 4D, left). By injecting α-syn fibril (PFF), conditions were prepared for external α-syn inflow (exogenous α-syn fibril seed), and the observed results showed that toxic α-syn aggregation was higher than that of conventional 2D-NSCs. As it can be seen (Fig. 4D, right), toxic α-syn aggregation under various conditions was observed to be low in the Og-NSC cell group. Next, toxic α-syn aggregation was observed using a Bi-FC (bimolecular fluorescence complementation) system. This system is a system for observing α-syn by showing intense fluorescence when the amino (N) terminus (V1S) or carboxy (C) terminus (SV2) Venus fragment is expressed and aggregated, respectively (FIG. 4E, F). Oxidative stress and mitochondrial destruction are known to cause protein misfolding and aggregation of α-syn. The relative resistance of Og-NSC-derived dopaminergic neurons to α-synucleinopathy can be attributed to low oxidative and mitochondrial stress (FIG. 3 BF). In addition, the inclusion of astrocytes in the differentiated Og-NSC cell population can also reduce toxic α-syn aggregation as an original function of astrocytes, thus contributing to the reduction of α-synucleinopathy. Overall, Og-NSCs-derived neurons exhibit relatively suppressed toxic α-syn diffusion, which was confirmed by the results of intracellular and intracellular α-syn studies.

최종적으로, Og-NSCs 또는 2D-NSCs을 생체 뇌조직 내 이식하고 실제 뇌 환경에서의 α-syn 확산 및 응집을 관찰하였다. 인간 특이적인 α-syn 과발현 AAV 바이러스와 PFF를 랫트의 선조체에 주사하여 α-syn 병에 의한 파킨슨병을 유도하고, 2주 후에 Og-NSCs 와 2D-NSCs 를 각기 모델 동물 선조체에 이식하여 생체 뇌 환경 내에서의 차이점을 관찰하였다. 1 달 후에 이식 조직의 분석 결과, 심각한 α-synucleinopathy 환경 하에서 기존의 2D-NSC-유래된 이식 부위는 거의 생존한 도파민성 신경세포가 없을 뿐더러 (도 4의 G, lower panel), α-syn+ 와 p129-α-syn+ 공동 발현되는 루이체(Lewy bodies) 가 관찰되고, 신경돌기가 거의 분화되지 못함을 볼 수 있음으로써 기존의 세포군은 세포 치료제로 적합하지 못함을 보여주었다. 반면에, 새로 개발한 Og-NSC 세포군 유래 이식 부위의 경우는 신경세포의 모양이 훨씬 건강하고, 심각한 신경돌기의 퇴화가 없었다. (도 4의 G, upper panel). 더욱이, 독성의 α-syn+ (p129-α-syn+) 응집이 신경세포의 여러 부위에서 적게 관찰되었다. 파킨슨병의 환자의 경우, 세포치료제의 이식 후에도 환자 유래 α-syn의 이식된 세포로의 확산이 (host-to-graft α-syn propagation) 이 환자의 생존 동안 (이식 후 11~16년) 심각한 문제로 제기되었다. 동물 모댈의 경우 α-syn 확산 응집은 훨씬 빠른 기간인 한 달 정도면 관찰되는데, 환자의 뇌 환경을 완벽히 반영하지는 못하지만, in vitro 와 in vivo assays 연구 결과를 통해서, Og-NSCs 유래의 세포가 독성 α-syn 확산 및 응집에 보다 저항성 있음을 보여준다. Finally, Og-NSCs or 2D-NSCs were implanted in living brain tissue and α-syn diffusion and aggregation were observed in the real brain environment. Parkinson's disease caused by α-syn disease was induced by injecting human-specific α-syn overexpressing AAV virus and PFF into the rat striatum, and 2 weeks later, Og-NSCs and 2D-NSCs were transplanted into the model animal striatum, respectively, and the living brain Differences within the environment were observed. As a result of analysis of the transplanted tissue after 1 month, under severe α-synucleinopathy, the existing 2D-NSC-derived transplant site had almost no surviving dopaminergic neurons (Fig. 4G, lower panel), α-syn+ and As Lewy bodies co-expressed with p129-α-syn+ were observed and neurites were hardly differentiated, it was shown that the existing cell population is not suitable as a cell therapy. On the other hand, in the case of the newly developed Og-NSC cell group-derived transplantation site, the shape of the nerve cells was much healthier and there was no severe neurite degeneration. (G in Fig. 4, upper panel). Moreover, less toxic α-syn+ (p129-α-syn+) aggregation was observed at various sites in neurons. In patients with Parkinson's disease, even after transplantation of cell therapy, the spread of patient-derived α-syn into the transplanted cells (host-to-graft α-syn propagation) is severe during the patient's survival (11-16 years after transplantation). raised as an issue In the case of animal models, α-syn diffusion aggregation is observed at a much faster period of about one month. Although it does not fully reflect the patient's brain environment, the results of in vitro and in vivo assays show that Og-NSCs-derived cells are toxic. It shows that α-syn is more resistant to diffusion and aggregation.

Og-NSC 이식으로 파킨슨병 동물 모델의 건강한 도파민성 신경세포를 제공 Og-NSC transplantation provides healthy dopaminergic neurons in an animal model of Parkinson's disease

최종적으로 세포 치료제로서의 Og-NSCs 유래 세포군의 가능성을 6-OHDA (6-hydroxydopamine) 으로 파킨슨병 유발한 모델 동물 시스템에서 이식 후 관찰하였다. 최근에 인간 배아줄기세포 유래 세포의 이식 후 성공을 가늠할 수 있는 유전자에 대한 연구가 있었다. 예상대로 이 유전자 그룹은 single cell RNA-seq 분석 결과, 새로 개발한 Og-NSCs 세포군에서 상대적으로 많이 발현됨을 볼 수 있었다. (기존의 2D 세포군 대비) (도 5의 A). 이식된 도파민성 신경세포의 시냅스 가소성은 향후 세포의 생존과 이식의 성공에 매우 중요하다. 신경세포로서의 기능을 분석하기 위해, Og-NSCs 세포군에 GFP 형광이 달린 GCaMP6s (calcium indicator protein, which emanates green fluorescence by Ca++ binding)을 발현시킨 후 뇌의 선조체에 이식하였다. 신경세포에 특별한 자극 없이도 신경세포의 기능을 이식 한달 후 two-photon endomicroscopy로 관찰하였다. (도 5의 B, top), 이식된 Og-NSCs 세포에서 자발적인 신경세포를 통한 신호 전달을 볼 수 있었다. Ca2+ transients (ΔF/F)는 신경세포의 2-5Hz의 action potential frequency를 보여주는데 (도 5의 B, bottom), 이는 원래 뇌 조직의 SNpc (substantia nigra pars compacta)에서 발생한 도파민성 신경세포의 그것과 유사하다. 이식된 Og-NSC세포에 의한 시냅스 가소성을 더 확인하기 위해, delta-like canonical Notch ligand 1에 GFP가 달린 (Dll1; pDll1-GFP-hESC) 유전자를 발현하는 인간 배아줄기세포군로부터 Og-NSCs를 제작하고, 이는 분화된 신경세포에만 형광 발현되므로, 파킨슨병 모델 동물에 세포 이식 후 형광 발현하는 세포만을 분석하였다. 한 달 반 후에 patch clamp 분석 시, action potentials (도 5의 C)와 spontaneous excitatory postsynaptic currents (sEPSCs) (도 5의 D) 이식된 GFP 발현하는 신경세포에서 관찰하였다. 이식된 신경세포의 시냅스 가소성은 반대쪽 병변이 없는 정상적인 세포의 그것과 큰 차이가 없었다 (도 5의 E, F), 이는 Og-NSCs 이식 후에도 신경세포가 기능적으로 완벽한 형태를 가진다는 것을 보여주었다. 이식된 도파민성 신경세포가 완전히 성숙되어 도파민 분비 등의 완벽한 시냅스 기능을 하는지를 보기 위해 도파민 수송체에 의한 도파민 흡수를 [18F]FP-CIT PET scan 으로 본 결과, 파킨슨병 동물의 선조체는 낮은 도파민 흡수력을 보이지만 (2% of the intact hemisphere), 상대적으로 Og-NSCs 세포군의 이식 5개월 후에는, 정상의 40%까지 회복됨을 보였다 (도 5의 G, H).Finally, the possibility of Og-NSCs-derived cell population as a cell therapy was observed after transplantation in a model animal system induced by Parkinson's disease with 6-OHDA (6-hydroxydopamine). Recently, there has been a study on genes that can measure the success of human embryonic stem cell-derived cells after transplantation. As expected, as a result of single cell RNA-seq analysis, it was found that this gene group was expressed relatively highly in the newly developed Og-NSCs cell group. (Compared to the conventional 2D cell population) (FIG. 5A). Synaptic plasticity of transplanted dopaminergic neurons is very important for future cell survival and success of transplantation. To analyze their function as neurons, GCaMP6s (calcium indicator protein, which emanates green fluorescence by Ca++ binding) with GFP fluorescence was expressed in the Og-NSCs cell group, and then transplanted into the brain striatum. The function of the nerve cells was observed by two-photon endomicroscopy one month after transplantation without special stimulation to the nerve cells. (B, top of Fig. 5), it was possible to see the signal transduction through the spontaneous neurons in the transplanted Og-NSCs cells. Ca 2+ transients (ΔF/F) show an action potential frequency of 2-5Hz of neurons (Fig. 5B, bottom), which is a dopaminergic neuron that originally occurred in SNpc (substantia nigra pars compacta) of brain tissue. It is similar to that. To further confirm synaptic plasticity by transplanted Og-NSC cells, we constructed Og-NSCs from a group of human embryonic stem cells expressing the (Dll1; pDll1-GFP-hESC) gene with GFP attached to delta-like canonical Notch ligand 1. And, since it is fluorescently expressed only in differentiated neurons, only cells expressing fluorescence were analyzed after cell transplantation into a Parkinson's disease model animal. After one and a half months of patch clamp analysis, action potentials (FIG. 5C) and spontaneous excitatory postsynaptic currents (sEPSCs) (FIG. 5D) were observed in transplanted GFP-expressing neurons. The synaptic plasticity of transplanted neurons was not significantly different from that of normal cells without contralateral lesions (FIG. 5E, F), which showed that even after transplantation of Og-NSCs, neurons had a functionally perfect morphology. [18 F]FP-CIT PET scan of dopamine uptake by dopamine transporters to see whether transplanted dopaminergic neurons are fully matured and have perfect synaptic functions such as dopamine secretion. Although the absorption capacity (2% of the intact hemisphere) was relatively restored to 40% of the normal Og-NSCs cell population after 5 months of transplantation (FIG. 5G, H).

파킨슨병 동물 모델에 Og-NSCs 세포군을 이식하고, 행동학적 연구를 수행한 결과 amphetamine-induced rotational 행동분석 결과 일관된 회복 효과를 볼 수 있었다. 이식 ~6 개월 동안, 14마리 중 11마리의 행동학적 회복 (rotation scores) 은 이식 이전의 >50% 를 기록하였다. 이식 후 6개월째에 관찰한 8 마리의 경우, 모든 동물에서 >79%의 결과를 보였다 (도 6의 A). 이식된 동물에서 stepping test (도 6의 B)와 cylinder test (도 6의 C)에서도 회복 효과를 보였다. As a result of transplanting the Og-NSCs cell group into an animal model of Parkinson's disease, and performing a behavioral study, the amphetamine-induced rotational behavioral analysis showed a consistent recovery effect. At ∼6 months of transplantation, rotation scores of 11 of 14 animals were >50% before transplantation. In the case of 8 animals observed 6 months after transplantation, all animals showed >79% results ( FIG. 6A ). In the transplanted animals, the recovery effect was also shown in the stepping test (FIG. 6B) and the cylinder test (FIG. 6C).

Og-NSCs 를 모델 동물에 이식 6개월 후 분석한 결과, 이식 부위에 건강한 도파민성 신경세포 조직을 확인하였다 (graft volume: 4.50±1.56 mm3, TH+ cells: 9031±3773 cells, n=8 from 6 rounds of independent transplantation experiments, 도 6의 D-O). 이식 부위는 일정하게 특이적인 증식은 관찰되지 않았다. 이는 in vitro 상에 Og-NSCs 유래 도파민성 신경세포로의 분화와 같은 양상이다 (도 2의 H 및 도 3의 G-I), 특히나 이식된 도파민성 신경세포는 원래의 뇌조직에 있는 세포와의 시냅스를 성숙하게 형성하며 정상적인 신경돌기를 뻗고 있다 (도 6의 D). 중뇌 특이적인 인자들은 도파민성 신경세포의 생존과 성숙에 매우 중요하지만 특히나 이식 후에 그 발현이 잘 유지되지 않는 것으로 알려져 있다. 이러한 이유에서 기존의 논문들은 대부분 이식 후의 조직에서는 전체의 중뇌성 인자의 발현을 보여주지 못하고, 최대 FOXA2/TH+ 발현 세포의 이미지 정도 보여 주었는데, 본 프로토콜로 개발된 Og-NSCs 유래된 이식 세포군은 중요한 중뇌 인자들을 모두 발현한다. 이식 6개월 후까지도, 96.7%(3,106/3,196, FOXA2), 93.8%(3,338/3,549, LMX1A), 95.0%(3,496/3,678, NURR1), 91.5%(2,989/3,274, EN1)의 주요 중뇌 인자들이 도파민성 신경세포의 마커인 TH+와 공통으로 발현된다. (from 8 animals; 도 6의 E-I). 특히나 A9 nigral 도파민성 신경세포의 마커인 GIRK2 (도 6의 J)을 발현하고, A9 nigral 도파민성 신경세포의 주요 특징과 같이 이식된 도파민성 신경세포는 다방향으로 신경돌기를 뻗는 성숙한 형태이고 (도 6의 E-G, H, 아래 도면 및 도 6의 P), 원래의 뇌조직 세포와도 성숙한 신경돌기를 뻗고 있음을 보인다. (도 6의 D). 이식된 도파민성 신경세포 주위에는 인간 GFAP (hGFAP)-를 발현하는 성상교세포가 포진하고 있고(도 6의 K), 이는 이식한 Og-NSC-유래 성상교세포가 도파민성 신경세포가 신경돌기를 뻗어 시냅스를 형성하고 세포의 성숙에 도움을 주고 있음을 보여준다. 예전에 성상교세포의 공이식이 비슷한 효과를 보여준 것과 같다. 영장류에서의 효과도 보기 위해, Og-NSCs 유래 세포군을 두 마리의 성체 필리핀 원숭이의 선조체에 이식하였고, 한 달 후에 중요 중뇌성 마커인 FOXA2 와 NURR1를 공발현하는 성숙한 형태의 도파민성 신경세포를 확인하였다 (도 6의 P).As a result of analyzing Og-NSCs 6 months after transplantation into a model animal, healthy dopaminergic nerve cell tissue was confirmed at the transplant site (graft volume: 4.50±1.56 mm 3 , TH+ cells: 9031±3773 cells, n=8 from 6) rounds of independent transplantation experiments, FIG. 6 DO). No specific proliferation was observed at the site of transplantation. This is the same as the differentiation into Og-NSCs-derived dopaminergic neurons in vitro (H in Fig. 2 and GI in Fig. 3). In particular, the transplanted dopaminergic neurons synapse with cells in the original brain tissue. to mature and extend normal neurites (FIG. 6D). Although midbrain-specific factors are very important for the survival and maturation of dopaminergic neurons, it is known that their expression is not maintained well after transplantation. For this reason, most of the existing papers did not show the expression of the entire mesencephalic factor in the tissue after transplantation, but showed the image of the maximum FOXA2/TH+ expressing cells. Expresses all midbrain factors. Even 6 months after transplantation, 96.7% (3,106/3,196, FOXA2), 93.8% (3,338/3,549, LMX1A), 95.0% (3,496/3,678, NURR1), and 91.5% (2,989/3,274, EN1) of major midbrain factors were present. It is expressed in common with TH+, a marker of dopaminergic neurons. (from 8 animals; EI in FIG. 6). In particular, they express GIRK2 (Fig. 6J), a marker of A9 nigral dopaminergic neurons, and transplanted dopaminergic neurons have a mature form extending neurites in multiple directions, as are the main characteristics of A9 nigral dopaminergic neurons ( 6 EG, H, and FIG. 6 P), it is shown that mature neurites are stretched even with the original brain tissue cells. (Fig. 6D). Human GFAP (hGFAP)-expressing astrocytes are clustered around the transplanted dopaminergic neurons (Fig. 6K), which means that the transplanted Og-NSC-derived astrocytes, dopaminergic neurons, and neurites extend It is shown that it forms synapses and helps the maturation of cells. It is the same as the previous co-transplantation of astrocytes showed similar effects. To see the effect in primates, the Og-NSCs-derived cell population was transplanted into the striatum of two adult Filipino monkeys, and one month later, mature dopaminergic neurons co-expressing FOXA2 and NURR1, important midbrain markers, were identified. (Fig. 6P).

토의discussion

배양된 오가노이드는 조직 발달 및 인간 질병 모델링 연구에 적용되는 것 외에도 재생 의학에서 기증자 이식의 원천이 될 수 있다. 그러나 뇌 오가노이드를 심부 뇌 영역에 이식하는 것은 숙주 뇌 조직을 손상시키지 않으면 서 실행 가능하지 않기 때문에, 뇌 오가노이드를 이식하는 것은 뇌 장애 치료에 적용되지 않을 것이다. 더욱이, 이식된 뇌 오가노이드의 치료 결과는 이식된 오가노이드에서 자가-조직화된 구조가 매우 정밀한 방식으로 숙주 뇌와 상호 작용하는 새로운 신경망을 확립할 수 있어야 한다. 대조적으로, 다른 조직의 이식된 오가노이드 (간, 장, 신장, 췌장 등)는 이식된 후 단리된 기능적 단위 (간 버드, 췌장 섬, 신장 네프론 등)로서 치료 기능을 발휘할 수 있다. 따라서, 오가노이드 이식이 다른 엑스트라 -CNS 장애를 치료할 가능성이 있을 수 있지만, 뇌 장애를 치료하기 위해 뇌 오가노이드를 직접 이식하는 것은 무리가 있다.Cultured organoids may be a source of donor transplantation in regenerative medicine, in addition to their applications in tissue development and human disease modeling studies. However, transplantation of brain organoids will not be applicable for the treatment of brain disorders, as transplantation of brain organoids into deep brain regions is not feasible without damaging the host brain tissue. Moreover, the therapeutic outcomes of transplanted brain organoids should be able to establish new neural networks in which self-organized structures in transplanted organoids interact with the host brain in a highly precise manner. In contrast, transplanted organoids from other tissues (liver, intestine, kidney, pancreas, etc.) may exert therapeutic functions as isolated functional units (liver buds, pancreatic islets, renal nephrons, etc.) after transplantation. Therefore, although organoid transplantation may have the potential to treat other extra-CNS disorders, direct transplantation of brain organoids to treat brain disorders is unreasonable.

모든 조직 발달은 순차적인 생성 과정, 조직-특이적 줄기/전구 세포의 증식 및 조직-특이적 세포로의 이들의 분화를 통해 달성된다. 배양 조직-특이적 줄기/전구 세포는 발달 연구 및 약물 스크리닝을 위한 생물 검정 플랫폼뿐만 아니라 재생 의학을 위한 공여자 세포를 제공할 수 있다. 그러나, hPSC로부터 적절한 VM-패터닝을 갖는 NSC 배양의 유도는 이전 연구에서 달성되지 않았다. 본 발명자들은 VM-특이적 NSC 배양 제조에 어려움이 배양 내 VM 영역 특이성의 불안정성에 기인한다는 것을 깨달았다. VM-특이적 마커 발현의 유지는 세포 밀도에 매우 민감하므로, NSC 제조에 필요한 세포 분리 및 리플레이팅 과정 중에 쉽게 소실된다 (도 9의 A).All tissue development is achieved through sequential generative processes, proliferation of tissue-specific stem/progenitor cells and their differentiation into tissue-specific cells. Cultured tissue-specific stem/progenitor cells can provide donor cells for regenerative medicine as well as bioassay platforms for developmental studies and drug screening. However, the induction of NSC cultures with appropriate VM-patterning from hPSCs was not achieved in previous studies. We realized that the difficulty in preparing VM-specific NSC cultures was due to the instability of VM region specificity in the culture. Since maintenance of VM-specific marker expression is very sensitive to cell density, it is easily lost during the cell separation and replating process required for NSC preparation ( FIG. 9A ).

따라서 hPSC-mDA 뉴런 프로토콜은 매우 높은 세포 밀도 또는 Laminin-511 또는 111(Biolamina, LN-511, LN-111)과 같은 특정 플레이트 코팅 재료로 개발되었다. 다양한 세포 해리 조건 (Acutase, collagenase, Ca++, Mg++-free HBSS), 세포 생존 사이토카인 (TGFβ, 독시사이클린, cAMP, 아스코르브산, Y27632), 개방성 후성 유전 적 상태를 유발하는 화학 물질(5-azacytidine, VPA)을 이용한 다양한 노력, TSA), β-에스트라디올 또는 DAPT (Notch 억제제)는 문제를 해결하지 못했다.Therefore, hPSC-mDA neuron protocols were developed with very high cell densities or specific plate coating materials such as Laminin-511 or 111 (Biolamina, LN-511, LN-111). Various cell dissociation conditions (Acutase, collagenase, Ca++, Mg++-free HBSS), cell survival cytokines (TGFβ, doxycycline, cAMP, ascorbic acid, Y27632), chemicals that induce open epigenetic conditions (5-azacytidine, VPA) ), TSA), β-estradiol or DAPT (Notch inhibitor) did not solve the problem.

최근의 연구 (Song, J.J., Oh, S.M., Kwon, O.C., Wulansari, N., Lee, H.S., Chang, M.Y., Lee, E., Sun, W., Lee, S.E., Chang, S., et al. (2018). Cografting astrocytes improves cell therapeutic outcomes in a Parkinson's disease model. The Journal of clinical investigation 128, 463-482.)에서 본 발명자들은 배양된 성상교세포로부터 분비된 인자, 특히 VM 조직으로부터 유래된 인자가 1차 NSC 및 mDA 뉴런 배양에서 세포 생존 및 중뇌-특이적 인자 발현을 촉진시키기 위해 강한 영양 효과를 발휘한다는 것을 관찰하였다.Recent studies (Song, JJ, Oh, SM, Kwon, OC, Wulansari, N., Lee, HS, Chang, MY, Lee, E., Sun, W., Lee, SE, Chang, S., et al (2018).Cografting astrocytes improves cell therapeutic outcomes in a Parkinson's disease model.The Journal of clinical investigation 128, 463-482.), the present inventors found that factors secreted from cultured astrocytes, especially factors derived from VM tissue It was observed to exert a strong trophic effect to promote cell survival and midbrain-specific factor expression in primary NSC and mDA neuron cultures.

따라서 배양된 성상세포(ACM)에서 준비된 조절 배지의 처리를 통해 본 연구에 사용된 2D-NSC 배양 프로토콜을 개발할 수 있었다 (도 9). 그러나 2D-NSC 배양의 유도는 여전히 전술한 안정성 및 재현성 문제를 가졌다. 대조적으로 안정한 VM 마커 발현을 갖는 NSC는 설치류 배아 VM 조직으로부터 용이하게 단리되고 배양되어, hPSC 유래 중뇌 오가노이드로부터 인간 VM-특이적 NSC를 분리하도록 자극하고, 생리학적 배아 뇌의 구조와 유사한 환경에 구축된 구조 및 영역 특이성을 갖는다.Therefore, it was possible to develop the 2D-NSC culture protocol used in this study through the treatment of conditioned medium prepared from cultured astrocytes (ACM) (Fig. 9). However, the induction of 2D-NSC culture still had the aforementioned stability and reproducibility issues. In contrast, NSCs with stable VM marker expression were readily isolated and cultured from rodent embryonic VM tissues, stimulated to isolate human VM-specific NSCs from hPSC-derived midbrain organoids, and placed in an environment similar to the physiological structure of the embryonic brain. It has an established structure and region specificity.

오가노이드-기반 제제는 충실한 중뇌-특이적 마커 발현을 갖는 NSC 배양에서 VM-패턴의 안정성뿐만 아니라 매우 낮은 수준의 세포 사멸, 노화, 산화 및 미토콘드리아 스트레스를 갖는 일반적인 배양 안정성과 관련하여 큰 성공을 거두었다. 다른 주목할만한 관찰은 Og-NSC가 mDA 뉴런과 혼재된 성상 세포로 분화되는 VM- 특이적 유전자 발현 프로파일을 갖는 성상교세포 전구 세포 집단을 함유한다는 것이었다. 대조적으로, mDA 뉴런 분화는 hPSC-mDA 분화에 대한 기존의 모든 방법에서 성상교세포 분화 없이 유도되며, 결과적으로 분화된 mDA 뉴런 배양물에는 astroglia이 없었다. 따라서, astroglial support가 없으면, 신경 성숙도 및 기능은 생체 내 대응물에서 분화된 mDA 신경세포의 것과 동일할 것으로 예상될 수 없었다. 실제로, 불충분한 성숙 및 기능은 시험관내 질병 모델링 및 요법에서 hPSC와 차별화된 mDA 신경세포의 유용성에서 결정적인 단점으로 제안되었다. 대조적으로 혼재된 성상교세포로부터의 영양 적지지 하에서, Og-NSC- 유래 mDA 신경세포는 개선된 시냅스 성숙, 기능성, 독성 모욕에 대한 내성, 및 이식 후 생체 내 및 생체 내에서 긴 중뇌 특정 인자 발현의 개선 된 세트를 나타냈다. Og-NSC의 이러한 모든 특성은 궁극적으로 재현성 있는 방식으로 이식 후 우수하고 장기적인 치료 효능에 기여한다. 또한, 오가노이드 유래 NSC는 약물 스크리닝, 발달 연구 및 질병 모델링을 위한 생물 검정 플랫폼뿐만 아니라 치료를 위한 기증자 세포 제조에 필요한 확장 가능한 세포 공급원임을 보여주었다.Organoid-based formulations have had great success with respect to stability of VM-patterns in NSC cultures with faithful midbrain-specific marker expression as well as general culture stability with very low levels of apoptosis, senescence, oxidative and mitochondrial stress. all. Another notable observation was that Og-NSCs contain an astrocyte progenitor cell population with a VM-specific gene expression profile that differentiates into astrocytes intermixed with mDA neurons. In contrast, mDA neuronal differentiation was induced without astrocyte differentiation in all existing methods for hPSC-mDA differentiation, and consequently there was no astroglia in differentiated mDA neuronal cultures. Therefore, in the absence of astroglial support, neural maturity and function could not be expected to be identical to that of differentiated mDA neurons in their in vivo counterparts. Indeed, insufficient maturation and function have been proposed as critical drawbacks in the utility of hPSC-differentiated mDA neurons in in vitro disease modeling and therapy. In contrast, under nutritional support from mixed astrocytes, Og-NSC-derived mDA neurons exhibited improved synaptic maturation, functionality, resistance to toxic insult, and long midbrain specific factor expression in vivo and in vivo after transplantation. showed an improved set. All these properties of Og-NSC ultimately contribute to superior long-term therapeutic efficacy after transplantation in a reproducible manner. Furthermore, it has been shown that organoid-derived NSCs are a scalable source of cells needed for the preparation of donor cells for therapy as well as bioassay platforms for drug screening, developmental studies, and disease modeling.

본 발명에 기초하여, 오가노이드-기반 방법은 CNS뿐만 아니라 CNS 외 장애에 대한 강력한 치료 잠재력을 갖는 조직 특이적 줄기/전구 세포를 제조하는 차세대 공통 전략이 될 수 있다.Based on the present invention, organoid-based methods may become a next-generation common strategy to produce tissue-specific stem/progenitor cells with strong therapeutic potential for CNS as well as non-CNS disorders.

즉, 2차원의 배양 대비 오르가노이드의 세포가 더욱 건강하고 세포치료시 우수한 결과를 보일 수 있을 것임에는 의심의 여지가 없으나, 뇌조직의 특성상 '괴'의 형태인 오르가노이드를 바로 이식하는 방법은 바람직하지 않으므로, 본 발명이 신경계용 세포치료제의 가장 적절한 모델이라 할 수 있다.In other words, there is no doubt that the cells of organoids are healthier compared to the two-dimensional culture and that excellent results can be obtained during cell therapy. Since it is not preferred, it can be said that the present invention is the most appropriate model for a cell therapy product for the nervous system.

실시예 2: 인간 만능 줄기세포로부터 대뇌 피질 오가노이드를 이용하여 대뇌 피질 신경줄기세포로의 분화 Example 2: Differentiation from human pluripotent stem cells into cortical neural stem cells using cortical organoids

[실험과정][Experimental process]

인간 만능 줄기세포 (hESCs/hiPSCs) 배양Human pluripotent stem cell (hESCs/hiPSCs) culture

한양대학교(서울, 대한민국)의 IRB(institutional review board)에 의해 승인된 hESC 리서치 가이드라인을 기초로 hESCs 및 hiPSCs를 배양하였다. hESCs and hiPSCs were cultured based on the hESC research guidelines approved by the institutional review board (IRB) of Hanyang University (Seoul, Korea).

본 실험에서 사용된 hESCs 및 hiPSCs는 하기 표 6에 나타내었다. The hESCs and hiPSCs used in this experiment are shown in Table 6 below.

hESC linehESC line Name used in this paperName used in this paper Original nameoriginal name KaryotypeKaryotype Establishing instituteEstablishing institute HSF6HSF6 UC06UC06 Female (46, XX)Female (46, XX) UCSFUCSF H9H9 WA09WA09 Female (46, XX)Female (46, XX) Wi cellWi cell HUES6HUES6 HUES6HUES6 Female (46, XX)Female (46, XX) Harvard university(HSCI iPS Core)Harvard university (HSCI iPS Core) hiPSC linehiPSC line Name used in this paperName used in this paper Original nameoriginal name SourceSource
(Human)(Human)
Reprogramming factorsReprogramming factors MethodsMethods Establishing instituteEstablishing institute
Retro-1Retro-1 Rv-hiPS 01-1Rv-hiPS 01-1 Newborn fibroblastNewborn fibroblast OCT4, SOX2, KLF4, MYCOCT4, SOX2, KLF4, MYC Retrovirusretrovirus HarvardHarvard Epi-ipsEpi-ips episomal-ips1episomal-ips1 SkinSkin OCT4, SOX2, KLF4, shp53OCT4, SOX2, KLF4, shp53 Episomal vectorEpisomal vector Hanyang Univ. (Our own)Hanyang Univ. (Our own) CMC-ips#11CMC-ips#11 CMC-hipsc-011CMC-hipsc-011 Bone marrow bloodbone marrow blood OCT4, SOX2, KLF4, MYCOCT4, SOX2, KLF4, MYC Sendai virusSendai virus Catholic Univ. (Korea NIH SCRM)Catholic University. (Korea NIH SCRM) PD-ips1PD-ips1 PD patient derived ips-1PD patient derived ips-1 SkinSkin OCT4, SOX2, KLF4, shp53OCT4, SOX2, KLF4, shp53 Episomal vectorEpisomal vector Hanyang Univ. (Our own)Hanyang Univ. (Our own) PD-#22PD-#22 Corr. PD-ips#22Corr. PD-ips#22 SkinSkin OCT4, SOX2, KLF4, shp53OCT4, SOX2, KLF4, shp53 Episomal vector and genome editedEpisomal vector and genome edited Hanyang Univ. (Our own)Hanyang Univ. (Our own)

미분화 hESC/iPSC의 증식 및 유지를 위해, 피더층 없이 37℃ 설정된 CO2 인큐베이터에서, mTESR-1 배지 (Stemcell Technologies Inc., Vancouver, BC, Canada)를 이용하여 MatrigelTM 상에서 혹은 vitronectin (Human; Gibco Fisher Scientific, Waltham, MA) (Gibco A31804; 0.5 ug/cm2)-코팅된 6cm 디쉬(Thermo Fisher Scientific, Waltham, MA) 상에서 배양하였고, 배지 교체는 매일 수행하였다. 미분화된 줄기세포들은 매일 배지 교체로 분화능이 유지되었으며 4~5일마다 Acutase (Stemcell Technologies Inc.)를 이용하여 계대 배양되었다.For proliferation and maintenance of undifferentiated hESCs/iPSCs, in a CO 2 incubator set at 37° C. without a feeder layer, using mTESR-1 medium (Stemcell Technologies Inc., Vancouver, BC, Canada) on Matrigel TM or vitronectin (Human; Gibco) Fisher Scientific, Waltham, MA) (Gibco A31804; 0.5 ug/cm 2 )-coated 6 cm dishes (Thermo Fisher Scientific, Waltham, MA), medium change was performed daily. The undifferentiated stem cells were maintained in differentiation capacity by daily medium replacement, and subcultured using Acutase (Stemcell Technologies Inc.) every 4 to 5 days.

3차원 대뇌 피질 오가노이드 제작Fabrication of 3D cortical organoids

인간 배아/유도만능 줄기세포 는 Acutase를 이용해 디쉬에서 떼어 신경세포 분화유도 배지에 담겨 low attachment 96-well round bottom plate (Corning, Corning, NY)에 1well 당 10,000개 세포씩 150μL로 주입됐다(분화 0일 차). 신경세포 분화유도 배지의 조성은 아래 표와 같다. 처음 seeding 할 때는 KSR-hES media (DMEM 40ml, KSR 10ml, 2-mercapto 20ul, MEM-NEAA 500ul, GlutaMAX 500ul) 와 bFGF (4 ng/ml), ROCK inhibitor Y27632 (20 μM), Doxycyclin 1ug/ml 를 넣는다. Y27632는 첫날 24시간 동안만 처리하였다. 2일 차에는 Retinoic acid 가 없는 B27와 Insulin (15.6ul/50ml), SB431542 (10 μM), LDN (10 μM), A-83 (10 μM) 이 추가되며 본격적인 신경계 분화를 유도한다. 2~3일 사이에는 기본 배지를 전체의 1/2만 N2: Neurobasal (1:1, Gibco)로 사용하다가 이후 18일째의 2D 상태로 chopping 후 플레이트에 깔 때까지는 전체 기본 배지를 N2: Neurobasal (1:1, Gibco) 로 사용하였다. 배지 조성이 바뀔 시마다 전체 배지가 교체되었다. 8 일 차부터 bFGF(20 ng/ml)와 EGF(20 ng/ml)가 추가되었다. Human embryonic/induced pluripotent stem cells were removed from the dish using Acutase, placed in a neuronal differentiation induction medium, and injected into a low attachment 96-well round bottom plate (Corning, Corning, NY) with 150 μL of 10,000 cells per well (differentiation 0). day car). The composition of the nerve cell differentiation induction medium is shown in the table below. For the first seeding, KSR-hES media (DMEM 40ml, KSR 10ml, 2-mercapto 20ul, MEM-NEAA 500ul, GlutaMAX 500ul), bFGF (4 ng/ml), ROCK inhibitor Y27632 (20 μM), Doxycyclin 1ug/ml put it in Y27632 was treated only for 24 hours on the first day. On day 2, retinoic acid-free B27, Insulin (15.6ul/50ml), SB431542 (10 μM), LDN (10 μM), and A-83 (10 μM) are added to induce full-fledged nervous system differentiation. Between 2 and 3 days, only 1/2 of the basal medium was used as N2: Neurobasal (1:1, Gibco), and then the entire basal medium was used as N2: Neurobasal (N2: Neurobasal ( 1:1, Gibco). The entire medium was replaced whenever the medium composition was changed. From day 8, bFGF (20 ng/ml) and EGF (20 ng/ml) were added.

18일때까지 아래의 표와 같은 배지에 맞춰 배양하며 오가노이드를 형성하였다. Organoids were formed by culturing according to the medium shown in the table below until day 18.

Figure 112019105598316-pat00008
Figure 112019105598316-pat00008

대뇌 피질 오가노이드로부터 대뇌 피질 신경줄기세포 및 성상전구세포 분리하여 신경세포 및 성상교세포로 분화Separation of cortical neural stem cells and astrocytes from cortical organoids and differentiation into neurons and astrocytes

18일 차에 오가노이드들은 Acutase로 37℃에 7분 소화된 뒤 30gauge 바늘로 잘게 찢어졌으며 vitronectin-coated 6 cm plates (Corning, cells from 24 organoids/plate)에 깔렸다. 이 시점에서 세포들은 신경줄기세포(Neural Stem Cell, NSC) 단계이며 증식 가능하고 5-7일마다 계대 배양되었다. NSC 배양에 사용된 배지는 N2 expansion 배지로, 조성은 다음과 같다 (1X N2 supplement containing, 200 μM ascorbic acid, 20 ng/ml EGF, 20 ng/ml bFGF, and 1μg/ml doxycycline). 배지 교체는 매일 이루어졌으며 처음 2차원 배양으로 전환 시, 그리고 계대배양 시마다 하루동안 Y27632가 5 μM의 농도로 처리되었다. 신경세포로의 최종 분화는 N2 분화 배지로 유도됐다(10 ng/ml BDNF, 10 ng/ml GDNF, 200 μM ascorbic acid).On the 18th day, the organoids were digested with Acutase at 37°C for 7 minutes, then chopped with a 30-gauge needle and spread on vitronectin-coated 6 cm plates (Corning, cells from 24 organoids/plate). At this point, the cells were at the Neural Stem Cell (NSC) stage, proliferative and passaged every 5-7 days. The medium used for NSC culture is an N2 expansion medium, and the composition is as follows (1X N2 supplement containing, 200 μM ascorbic acid, 20 ng/ml EGF, 20 ng/ml bFGF, and 1 μg/ml doxycycline). The medium was changed daily and Y27632 was treated at a concentration of 5 μM for one day at the first conversion to 2D culture and at each subculture. Final differentiation into neurons was induced with N2 differentiation medium (10 ng/ml BDNF, 10 ng/ml GDNF, 200 μM ascorbic acid).

대뇌피질 오가노이드로부터 대뇌 피질 성상전구세포를 분리 및 배양Isolation and culture of cortical astrocytes from cortical organoids

만들어진 대뇌피질형의 Og-NSCs를 실제 뇌 발생 단계에 맞게 계대를 더 늘리면, 특별히 배지 조성 등의 변화 없이 9계대 이후에 성상전구세포가 주로 함유된 Og-성상전구세포의 배양이 가능하다. 9계대~11계대는 건강한 상태로 사용이 가능하다. 대뇌피질형의 Og-NSCs 와 같이 증식 배지로는 N2 expansion 배지로, 조성은 1X N2 supplement containing, 200 μM ascorbic acid, 20 ng/ml EGF, 20 ng/ml bFGF, and 1μg/ml doxycycline 이다. 배지 교체는 매일 이루어졌으며 처음 2차원 배양으로 전환 시, 그리고 계대배양 시마다 하루 동안 Y27632가 5 μM의 농도로 처리되었다. 중뇌의 오가노이드 유래 성상전구세포처럼(실시예 3 참조) 계대가 오래된 증식단계의 세포를 이식 연구에 사용한다. 분석을 위해서는 위의 최종 분화 배지로 높은 계대의 세포군은 성상교세포의 성격을 띠게 된다.If the passage of the created cortical-type Og-NSCs is further extended to match the actual brain development stage, it is possible to culture Og-strocytes mainly containing astrocytes after passage 9 without changing the medium composition. Generations 9 to 11 can be used in a healthy state. As with cortical Og-NSCs, the growth medium is N2 expansion medium, and the composition is 1X N2 supplement containing, 200 μM ascorbic acid, 20 ng/ml EGF, 20 ng/ml bFGF, and 1 μg/ml doxycycline. The medium was changed daily and Y27632 was treated at a concentration of 5 μM for one day at the first conversion to 2D culture and at each subculture. Like organoid-derived astrocytes of the midbrain (see Example 3), cells in the proliferative stage with an older passage are used for transplantation studies. For analysis, the high passage cell population as the final differentiation medium above assumes the characteristics of astrocytes.

대뇌 피질 신경세포 및 성상교세포로의 분화 확인Confirmation of differentiation into cortical neurons and astrocytes

대뇌 피질형의 신경세포를 제작하고 이를 통하여 수 차례의 계대 배양을 통해 성상전구세포 확보를 위해 우선적으로 대뇌피질형의 패턴화를 실시하였다. 인간 배아줄기세포로부터 신경계의 분화 유도 후 이의 확인은 우선적으로 패턴화의 확인으로, PAX6, FOXG1 등의 대뇌 피질형의 마커 발현을 확인하였다. 아울러 수 차례의 계대 배양을 거쳐서 성상전구세포로의 발생이 되면, GFAP, AQP4, ALDH1L1, GLAST 등의 성상세포성 인자의 발현을 확인하였다. 마커의 확인은 RNA 추출 후 -real time PCR 혹은 면역염색법을 이용한 동시에 발현 확인 등의 과정을 통해 가능하다.Cortical-type neurons were prepared, and through this, cortical-type patterning was preferentially performed to secure astrocytes through several passages. After induction of differentiation of the nervous system from human embryonic stem cells, the confirmation thereof was preferentially confirmed by patterning, and the expression of cortical markers such as PAX6 and FOXG1 was confirmed. In addition, when the astrocytes were developed through several passages, expression of astrocytic factors such as GFAP, AQP4, ALDH1L1, and GLAST was confirmed. Identification of the marker is possible through a process such as simultaneous expression confirmation using -real time PCR or immunostaining after RNA extraction.

[결과][result]

3D 오가노이드 제작3D Organoid Creation

우선적으로 대뇌 피질세포군으로의 정상적인 오가노이드 형태로의 분화가 되면서, 패턴화가 되며, 향후 성상전구세포로의 분화가 완성됨을 확인하는 것이 결과의 포인트이다. 도 17에서 보는 바와 같이 정상적인 형태의 오가노이드가 완성되고, 이를 해체한 이후에도 그 패턴화 마커인 PAX6, FOXG1의 발현이 유지됨을 확인하였다. The point of the result is to confirm that the differentiation into a normal organoid form into a group of cerebral cortex cells is preferentially formed, and the differentiation into astrocytes is completed in the future. As shown in FIG. 17 , it was confirmed that the normal form of the organoid was completed, and the expression of the patterning markers PAX6 and FOXG1 was maintained even after the organoid was dismantled.

제작된 대뇌 피질 3D 오가노이드로부터 대뇌 피질 신경줄기세포 및 성상전구세포 확보Securing cortical neural stem cells and astrocytes from the fabricated cortical 3D organoids

언급된 프로토콜과 같이 SB431542 (10 μM), LDN (10 μM), A-83 (10 μM) 이 추가되며 본격적인 신경계 분화를 유도를 수행하고 (도 16 아래, 도 18의 대뇌 피질 유도 scheme) 정상적인 형태의 오가노이드가 형성됨을 도 17과 같이 확인하였다. 이의 확인을 위해, RNA-real time PCR로 대뇌 피질 부위 패턴화 인자인 PAX6, FOXG1의 발현을 확인하였다 (도 17, 도 25). 앞서 언급한 방법대로 수 차례의 계대 배양을 거쳐서, 성상전구세포로의 발생을 유도하고 확보할 수 있는데, 면역염색법을 이용하여, 그 충분한 발현을 GFAP, AQP4, ALDH1L1, GLAST 등의 발현을 확인할 수 있었으며, 동시에 이 세포군에서 패턴화 인자의 발현을 확인할 수 있었다 (도 25).As in the protocol mentioned, SB431542 (10 μM), LDN (10 μM), and A-83 (10 μM) are added to induce full-scale nervous system differentiation (Fig. 16 below, cortical induction scheme in Fig. 18) and normal morphology It was confirmed as shown in FIG. 17 that organoids of To confirm this, the expression of PAX6 and FOXG1, which are cortical region patterning factors, was confirmed by RNA-real time PCR ( FIGS. 17 and 25 ). As mentioned above, through several passages, the generation of astrocytes can be induced and secured. Using immunostaining, sufficient expression of GFAP, AQP4, ALDH1L1, GLAST, etc. can be confirmed. and at the same time, it was possible to confirm the expression of the patterning factor in this cell group (FIG. 25).

대뇌 피질 신경세포 및 성상교세포 분화 확인Confirmation of cortical neuron and astrocyte differentiation

신경계 패턴화 인자인 SB431542 (10 μM), LDN (10 μM), A-83 (10 μM)이 추가되며 본격적인 신경계 분화를 유도를 수행하여 대뇌 피질형 뇌 오가노이드로 패턴화 하였지만, 신경줄기세포로부터의 신경세포 및 여러 계대의 분열을 통해 성상전구세포로의 분화 이후의 과정은 초기 패턴화만 달리하고 중뇌 오가노이드를 통한 분화의 과정과 다르지 않다. 중뇌 성상전구세포의 분화처럼 비교하였을 때, 면역염색법을 이용, 그 충분한 발현을 GFAP, AQP4, ALDH1L1, GLAST 등의 발현을 확인할 수 있으며, 동시에 각각의 세포군에서 패턴화 인자의 발현을 확인할 수 있었다 (도 25). 그 기능적인 면에서 전기 생리학적 기능면에서도 활성화된 성상세포로의 분화가 완성될 수 있음을 알 수 있다.Nervous system patterning factors SB431542 (10 μM), LDN (10 μM), and A-83 (10 μM) were added to induce full-scale nervous system differentiation and patterned into cortical brain organoids, but The process after differentiation into astrocytes through division of neurons and multiple passages differs only in initial patterning and is not different from the process of differentiation through midbrain organoids. When compared with the differentiation of midbrain astrocytes, using immunostaining, sufficient expression of GFAP, AQP4, ALDH1L1, GLAST, etc. could be confirmed, and at the same time, expression of patterning factors in each cell group could be confirmed ( Fig. 25). It can be seen that differentiation into activated astrocytes can be completed in terms of functional and electrophysiological functions.

본 실시예에서 대뇌 피질 특이적인 신경줄기세포 생산이 가능한 3D 오가노이드를 활용한 방법을 확립하였다. 3D 오가노이드를 활용함으로써 실제 생체 대뇌와 같은 구조의 조직으로부터 신경줄기세포를 추출하므로, 보다 건강하고 실제적인 형태의 세포 확보가 가능함을 기대할 수 있다.In this example, a method using a 3D organoid capable of producing cerebral cortex-specific neural stem cells was established. By utilizing 3D organoids, neural stem cells are extracted from tissues with the same structure as the actual living cerebrum, so it can be expected to secure more healthy and realistic cells.

실시예 3: 인간 유도만능 줄기세포로부터 중뇌 오가노이드를 이용하여 중뇌 성상교세포로의 분화 확인Example 3: Confirmation of differentiation from human induced pluripotent stem cells into midbrain astrocytes using midbrain organoids

[실험과정][Experimental process]

인간 만능 줄기세포 (hESCs/hiPSCs) 배양Human pluripotent stem cell (hESCs/hiPSCs) culture

한양대학교(서울, 대한민국)의 IRB(institutional review board)에 의해 승인된 hESC 리서치 가이드라인을 기초로 hESCs 및 hiPSCs를 배양하였다. hESCs and hiPSCs were cultured based on the hESC research guidelines approved by the institutional review board (IRB) of Hanyang University (Seoul, Korea).

본 실험에서 사용된 hESCs 및 hiPSCs는 하기 표 7에 나타내었다. The hESCs and hiPSCs used in this experiment are shown in Table 7 below.

hESC linehESC line Name used in this paperName used in this paper Original nameoriginal name KaryotypeKaryotype Establishing instituteEstablishing institute HSF6HSF6 UC06UC06 Female (46, XX)Female (46, XX) UCSFUCSF H9H9 WA09WA09 Female (46, XX)Female (46, XX) Wi cellWi cell HUES6HUES6 HUES6HUES6 Female (46, XX)Female (46, XX) Harvard university(HSCI iPS Core)Harvard university (HSCI iPS Core) hiPSC linehiPSC line Name used in this paperName used in this paper Original nameoriginal name SourceSource
(Human)(Human)
Reprogramming factorsReprogramming factors MethodsMethods Establishing instituteEstablishing institute
Retro-1Retro-1 Rv-hiPS 01-1Rv-hiPS 01-1 Newborn fibroblastNewborn fibroblast OCT4, SOX2, KLF4, MYCOCT4, SOX2, KLF4, MYC Retrovirusretrovirus HarvardHarvard Epi-ipsEpi-ips episomal-ips1episomal-ips1 SkinSkin OCT4, SOX2, KLF4, shp53OCT4, SOX2, KLF4, shp53 Episomal vectorEpisomal vector Hanyang Univ. (Our own)Hanyang Univ. (Our own) CMC-ips#11CMC-ips#11 CMC-hipsc-011CMC-hipsc-011 Bone marrow bloodbone marrow blood OCT4, SOX2, KLF4, MYCOCT4, SOX2, KLF4, MYC Sendai virusSendai virus Catholic Univ. (Korea NIH SCRM)Catholic University. (Korea NIH SCRM) PD-ips1PD-ips1 PD patient derived ips-1PD patient derived ips-1 SkinSkin OCT4, SOX2, KLF4, shp53OCT4, SOX2, KLF4, shp53 Episomal vectorEpisomal vector Hanyang Univ. (Our own)Hanyang Univ. (Our own) PD-#22PD-#22 Corr. PD-ips#22Corr. PD-ips#22 SkinSkin OCT4, SOX2, KLF4, shp53OCT4, SOX2, KLF4, shp53 Episomal vector and genome editedEpisomal vector and genome edited Hanyang Univ. (Our own)Hanyang Univ. (Our own)

미분화 hESC/iPSC의 증식 및 유지를 위해, 피더층 없이 37℃ 설정된 CO2 인큐베이터에서, mTESR-1 배지 (Stemcell Technologies Inc., Vancouver, BC, Canada)를 이용하여 MatrigelTM 상에서 혹은 vitronectin (Human; Gibco Fisher Scientific, Waltham, MA) (Gibco A31804; 0.5 ug/cm2)-코팅된 6cm 디쉬(Thermo Fisher Scientific, Waltham, MA) 상에서 배양하였고, 배지 교체는 매일 수행하였다. 미분화된 줄기세포들은 매일 배지 교체로 분화능이 유지되었으며 4~5일마다 Acutase (Stemcell Technologies Inc.)를 이용하여 계대배양되었다.For proliferation and maintenance of undifferentiated hESCs/iPSCs, in a CO 2 incubator set at 37° C. without a feeder layer, using mTESR-1 medium (Stemcell Technologies Inc., Vancouver, BC, Canada) on Matrigel TM or vitronectin (Human; Gibco) Fisher Scientific, Waltham, MA) (Gibco A31804; 0.5 ug/cm 2 )-coated 6 cm dishes (Thermo Fisher Scientific, Waltham, MA), medium change was performed daily. The undifferentiated stem cells were maintained in differentiation capacity by daily medium replacement and subcultured using Acutase (Stemcell Technologies Inc.) every 4 to 5 days.

3차원 중뇌 오가노이드 제작3D midbrain organoid fabrication

중뇌형의 오르가노이드 제작까지는 실시예 1에서와 같이 동일한 방법으로 제작한다. 성공적으로 제작된 중뇌형의 오가노이드는 발생 초반에는 신경줄기세포 마커인 PLZF+, Sox2+와 함께 ZO-1과 N-cadherin이 발현되었다(도 7의 E&F). 일반적인 신경줄기세포 마커라 할 수 있는, Nestin, Sox2와 함께 anterior embryonic brain 마커 (OTX2), 배쪽 VM floor plate 마커(FOXA2, LMX1A)가 발현된다(도 7의 G-I). 발생을 더 유도하면 증식 마커인 Ki67+, SOX2+ 밖의 레이어로 신경세포 마커인 MAP2가 발현되고, 더 구체적으로 생체의 뇌 레이어와 같이 PCNA+ (the proliferative ventricular zone; VZ), MASH1+ (VZ, intermediate zone (IZ)와 mantle zone (MZ)), 그리고 NURR1+ cells (IZ and MZ)에 각기 특이적으로 발현하는 구조를 확인하였다 (도 7의 L, M). 특징적으로, 오르가노이드에서도 중뇌 특이적인 인자인 FOXA2+, LMX1A+와 NURR1+ 세포가 발현됨으로써 진정한 중뇌 타입의 오르가노이드로 바로 제작됨을 확인한다.It was prepared in the same manner as in Example 1 until the midbrain type organoid was produced. In the early development of the successfully produced mesencephalic organoids, ZO-1 and N-cadherin were expressed along with the neural stem cell markers PLZF+ and Sox2+ (FIG. 7E&F). Anterior embryonic brain markers (OTX2) and ventral VM floor plate markers (FOXA2, LMX1A) are expressed along with Nestin and Sox2, which can be called general neural stem cell markers (G-I in FIG. 7). When development is further induced, MAP2, a neuronal marker, is expressed as a layer outside the proliferation marker Ki67+ and SOX2+, and more specifically, PCNA+ (the proliferative ventricular zone; VZ), MASH1+ (VZ, intermediate zone (IZ) ) and mantle zone (MZ)), and structures specifically expressed in NURR1+ cells (IZ and MZ) were confirmed (L, M in FIG. 7). Characteristically, FOXA2+, LMX1A+ and NURR1+ cells, which are midbrain-specific factors, are also expressed in the organoid, confirming that the organoid is directly produced as a true midbrain type organoid.

중뇌 오가노이드로부터 중뇌 신경줄기세포 분리하여 신경세포로의 분화Separation of midbrain neural stem cells from midbrain organoids and differentiation into neurons

hESCs/hiPSCs는 Acutase를 이용해 디쉬에서 떼어 신경세포 분화유도 배지에 담겨 low attachment 96-well round bottom plate (Corning, Corning, NY)에 1 well 당 10,000개 세포씩 150μL로 주입됐다(분화 0일 차). 신경세포 분화 유도 배지의 조성은 다음과 같다(N2: Neurobasal (1:1, Gibco) containing B27 without vitamin A (2%, Invitrogen Fisher Scientific, Waltham, MA), GlutaMAX (1%, Invitrogen Fisher Scientific), minimum essential media-nonessential amino acid (1%, MEM-NEAA, Invitrogen Fisher Scientific), β-mercaptoethanol (0.1%, Invitrogen Fisher Scientific), SB431542 (10 μM, Tocris, Bristol, UK), Noggin (200 ng/ml, Peprotech, Rocky Hill, NJ), ascorbic acid (200 μM, Sigma-Aldrich), insulin (25 mg/L), ROCK inhibitor Y27632 (20 μM, Sigma-Aldrich, St. Louis, MO), Y27632는 첫날 24시간 동안만 처리하였다). 오가노이드의 Ventral Midbrain 타입 신경줄기세포 증대를 위해 분화 1일 차부터 신경세포 분화 유도 배지에 sonic hedgehog (100 ng/ml, SHH, Peprotech)와 purmorphamine (2 μM, Calbiochem, MilliporeSigma, Burlington, MA)이 추가되었다. 2일 차에는 CHIR99021 (0.8 μM, Stemgent, Cambridge, MA)가 추가되었다. 배지 조성이 바뀔 시마다 전체 배지가 교체되었다. 5일 차부터 SB431542가 빠졌고 7일차부터 FGF8b (100 ng/ml, Peprotech)가 추가되었다. 11일 차에 기본 배지가 N2로 완전히 바뀌었으며 B27, GlutaMAX, MEM-NEAA, β-mercaptoethanol은 첨가되지 않았다. 11일 차부터 첨가되는 CHIR99021의 농도가 약 2배(1.5 μM)로 늘었으며, 이 때부터 오가노이드들은 96well plate에서 6 well plate (low attachment, Corning)로 옮겨졌고 오비탈쉐이커 위에서 80rpm의 속도로 배양되었다. 15일 차부터 Noggin과 sonic hedgehog가 빠졌으며 17일 차부터 bFGF(20 ng/ml)가 추가되었다. 18일 차에 오가노이드들은 Acutase로 37 ℃에 7분 소화된 뒤 30gauge 바늘로 잘게 찢어졌으며 비트로젝틴-코팅된 6 cm plates (Corning, cells from 24 organoids/plate)에 깔렸다. 이 시점에서 세포들은 신경줄기세포(Neural Stem Cell, NSC) 단계이며 증식 가능하고 5-7일마다 계대배양되었다. NSC 배양에 사용된 배지는 N2 증식 배지로, 조성은 다음과 같다(N2 containing 10 ng/ml BDNF, 10 ng/ml GDNF, 200 μM ascorbic acid, 100 ng/ml FGF8b, 20 ng/ml bFGF, and 1μg/ml doxycycline). 배지 교체는 매일 이루어졌으며 처음 2차원 배양으로 전환 시, 그리고 계대배양 시마다 하루동안 Y27632가 5 μM의 농도로 처리되었다. 신경세포로의 최종 분화는 N2 분화 배지로 유도됐으며 조성은 다음과 같다(10 ng/ml BDNF, 10 ng/ml GDNF, 200 μM ascorbic acid, and 500 μM db-cAMP).hESCs/hiPSCs were removed from the dish using Acutase, placed in neuronal differentiation induction medium, and injected into a low attachment 96-well round bottom plate (Corning, Corning, NY) with 150 μL of 10,000 cells per well (Day 0 of differentiation). . The composition of the neuronal differentiation induction medium is as follows (N2: Neurobasal (1:1, Gibco) containing B27 without vitamin A (2%, Invitrogen Fisher Scientific, Waltham, MA), GlutaMAX (1%, Invitrogen Fisher Scientific), minimum essential media-nonessential amino acid (1%, MEM-NEAA, Invitrogen Fisher Scientific), β-mercaptoethanol (0.1%, Invitrogen Fisher Scientific), SB431542 (10 μM, Tocris, Bristol, UK), Noggin (200 ng/ml) , Peprotech, Rocky Hill, NJ), ascorbic acid (200 μM, Sigma-Aldrich), insulin (25 mg/L), ROCK inhibitor Y27632 (20 μM, Sigma-Aldrich, St. Louis, MO), Y27632 on day 24 time only). Sonic hedgehog (100 ng/ml, SHH, Peprotech) and purmorphamine (2 μM, Calbiochem, MilliporeSigma, Burlington, MA) were added to the neuronal differentiation induction medium from the first day of differentiation for organoid Ventral Midbrain type neural stem cell expansion. became On day 2, CHIR99021 (0.8 μM, Stemgent, Cambridge, Mass.) was added. The entire medium was replaced whenever the medium composition was changed. From day 5, SB431542 was removed and from day 7, FGF8b (100 ng/ml, Peprotech) was added. On day 11, the basal medium was completely changed to N2, and B27, GlutaMAX, MEM-NEAA, and β-mercaptoethanol were not added. The concentration of CHIR99021 added from the 11th day increased about 2 times (1.5 μM). From this point on, the organoids were transferred from a 96-well plate to a 6-well plate (low attachment, Corning) and cultured on an orbital shaker at a speed of 80 rpm. became Noggin and sonic hedgehog were removed from the 15th day, and bFGF (20 ng/ml) was added from the 17th day. On day 18, the organoids were digested with Acutase at 37°C for 7 min, torn into pieces with a 30-gauge needle, and spread on vitroxectin-coated 6 cm plates (Corning, cells from 24 organoids/plate). At this point, the cells were at the Neural Stem Cell (NSC) stage, proliferative and passaged every 5-7 days. The medium used for NSC culture was N2 growth medium, and the composition was as follows (N2 containing 10 ng/ml BDNF, 10 ng/ml GDNF, 200 μM ascorbic acid, 100 ng/ml FGF8b, 20 ng/ml bFGF, and 1 μg/ml doxycycline). The medium was changed daily and Y27632 was treated at a concentration of 5 μM for one day at the first conversion to 2D culture and at each subculture. Final differentiation into neurons was induced with N2 differentiation medium and the composition was as follows (10 ng/ml BDNF, 10 ng/ml GDNF, 200 μM ascorbic acid, and 500 μM db-cAMP).

중뇌 오가노이드로부터 중뇌 성상전구세포 분리하여 성상교세포로 분화Separation of midbrain astrocytes from midbrain organoids and differentiation into astrocytes

만들어진 중뇌형의 Og-NSCs를 실제 뇌 발생 단계에 맞게 계대를 더 늘리면, 특별히 배지 조성 등의 변화 없이 9계대 이후에 성상전구세포가 주로 함유된 Og-성상전구세포의 배양이 가능하다. 9계대~11계대는 건강한 상태로 사용이 가능하다. Og-NSCs와 같이 증식 배지로는 N2 증식 배지로, 조성은 N2 containing 10 ng/ml BDNF, 10 ng/ml GDNF, 200 μM ascorbic acid, 100 ng/ml FGF8b, 20 ng/ml bFGF, and 1μg/ml doxycycline 이다. 배지 교체는 매일 이루어졌으며 처음 2차원 배양으로 전환 시, 그리고 계대배양 시마다 하루동안 Y27632가 5 μM의 농도로 처리되었다. 이식 시에는 증식 중의 성상전구세포를 사용하고, 연구를 위한 분화 시에는 N2 분화 배지로 유도됐으며 조성은 다음과 같다(10 ng/ml BDNF, 10 ng/ml GDNF, 200 μM ascorbic acid, 및 500 μM db-cAMP).If the passage of the produced midbrain type Og-NSCs is further increased to match the actual brain development stage, it is possible to culture Og-astrocytic progenitor cells mainly containing astrocytes after passage 9 without changing the medium composition. Generations 9 to 11 can be used in a healthy state. As with Og-NSCs, the growth medium is N2 growth medium, and the composition is N2 containing 10 ng/ml BDNF, 10 ng/ml GDNF, 200 μM ascorbic acid, 100 ng/ml FGF8b, 20 ng/ml bFGF, and 1 μg/ ml doxycycline. The medium was changed daily and Y27632 was treated at a concentration of 5 μM for one day at the first conversion to 2D culture and at each subculture. Proliferating astrocytes were used for transplantation, and differentiation for research was induced with N2 differentiation medium. The composition was as follows (10 ng/ml BDNF, 10 ng/ml GDNF, 200 μM ascorbic acid, and 500 μM). db-cAMP).

[결과][result]

3D 중뇌 오가노이드 제작 확인Confirmation of 3D midbrain organoid fabrication

도 7에 결과로 보여주는 중뇌성의 오가노이드를 제작하고, 실제 뇌 발생 단계에 맞게 계대를 더 늘리면, 중뇌성 신경세포뿐만 아니라, 성상전구세포로의 분화가 가능한 중뇌성 오가노이드의 제작이 가능하다. 따라서, 중뇌성 오가노이드의 제작 및 그 특성에 관한 결과는 중뇌 오가노이드를 통한 신경세포의 분화 시에 보여주는 결과와 동일하다. If the mesencephalic organoids shown as a result of FIG. 7 are prepared and passages are further increased according to the actual brain development stage, it is possible to produce mesencephalic organoids capable of differentiation into mesencephalic neurons as well as astrocytes. Therefore, the results regarding the production of mesencephalic organoids and their properties are the same as the results shown during the differentiation of neurons through the mesencephalic organoids.

제작된 중뇌 3D 오가노이드로부터 중뇌 성상전구세포 확보 확인Confirmation of securing midbrain astrocytes from the manufactured midbrain 3D organoid

중뇌 신경 줄기세포 직접 분화(Direct differentiation)및 성상전구세포 확보 Direct differentiation of midbrain neural stem cells and securing of astrocytes

hESC/iPSC로부터 신경줄기세포로의 중뇌-신경줄기세포로의 분화를 유도하기 위해 배아줄기세포 단계에서 약 20일 동안 Neuroectoderm 유도인자 및 중뇌 타입 신경줄기세포 유도 인자를 이용해 중뇌-신경줄기세포를 확보하였다. 확보된 신경줄기세포는 증식 및 Stock에 용이하며 계대배양을 통해 더 많은 수의 신경줄기세포를 얻을 수 있다. 제대로 된 분화 여부의 확인은 Nestin, Sox2 등 신경줄기세포 마커와 Foxa2 및 Lmx1a 등 중뇌-신경줄기세포의 마커 발현율을 통해 확인할 수 있다. 본 프로토콜을 적용 시 다음과 같이 95% 이상의 높은 효율로 중뇌 신경줄기세포로의 분화를 유도할 수 있다. 성상전구세포를 얻기 위해 추가로 여러 번의 계대배양 과정을 거친다. 초기 계대배양 시 말단 분화시킨 세포들은 성상교세포보다는 신경세포로의 분화율이 높지만 계대배양을 할수록 성상전구세포의 비율이 늘어난다. 기존 프로토콜은 계대배양 5번 후 분화 시 성상교세포를 확인할 수 있었지만, 보다 효율적인 성상전구세포의 확립을 위해서는 9 계대~11 계대의 신경줄기세포군을 성상전구세포군으로 사용한다. 이때 성상전구세포 마커인 CD44가 90% 이상이고, 분화 유도 시에는 도 19와 같이 분화된 성상교세포 마커군(GFAP, AQP4, GLAST, S100b)이 90% 이상 발현되었다. To induce differentiation from hESC/iPSCs into neural stem cells, midbrain-neuronal stem cells were obtained using Neuroectoderm inducers and midbrain type neural stem cell inducers for about 20 days at the embryonic stem cell stage. The secured neural stem cells are easy to proliferate and stock, and a greater number of neural stem cells can be obtained through subculture. Confirmation of proper differentiation can be confirmed through the expression rate of neural stem cell markers such as Nestin and Sox2 and midbrain-neuronal stem cell markers such as Foxa2 and Lmx1a. When this protocol is applied, differentiation into midbrain neural stem cells can be induced with a high efficiency of 95% or more as follows. In order to obtain astrocytes, several additional passages are performed. During the initial subculture, terminally differentiated cells have a higher differentiation rate into neurons than astrocytes, but the proportion of astrocytes increases as the subculture increases. The existing protocol was able to identify astrocytes upon differentiation after passage 5, but for more efficient establishment of astrocytes, the neural stem cell group of passages 9 to 11 is used as the astrocyte group. At this time, the astrocyte marker CD44 was 90% or more, and when differentiation was induced, the differentiated astrocyte marker group (GFAP, AQP4, GLAST, S100b) was expressed more than 90% as shown in FIG. 19 .

중뇌형의 성상전구세포의 보다 양질의 효과 관찰 Observation of higher quality effects of midbrain type astrocytes

In vitro 상의 특성 분석 결과 중뇌형의 성상교세포가 보다 유용한 사이토카인 분비 및 신경세포 기능 유지에 관계된 인자가 과발현됨을 관찰하였다 (도 20). in vivo 결과 역시 보다 유용한 인자의 분비가 중뇌형의 성상교세포에서 발현 촉진됨을 관찰하였다 (도 21). 아울러 이러한 성상교세포의 영향은 미세아교세포에 영향을 미쳐서 보다 좋은 타입의 미세아교세포로의 변화에 관여하여 항염증 효과의 시너지 효과를 기대할 수 있다 (도 22).As a result of in vitro characterization, it was observed that midbrain type astrocytes overexpress factors related to secretion of more useful cytokines and maintenance of neuronal function ( FIG. 20 ). In vivo results also observed that the secretion of more useful factors promotes expression in midbrain type astrocytes (FIG. 21). In addition, the influence of these astrocytes affects microglia and participates in the change to a better type of microglia, and a synergistic effect of anti-inflammatory effect can be expected (FIG. 22).

중뇌 성상교세포 분화 확인Confirmation of differentiation of midbrain astrocytes

hiPSC을 이용한 프로토콜 적용 확인Confirmation of protocol application using hiPSC

H9 hESC 뿐만 아니라 다른 종류의 배아줄기세포에도 확보된 프로토콜이 적용되는지를 알아보기 위한 실험을 진행하였다. 이를 위해 중앙질병관리본부로부터 iPSC를 확보하였다(CMC-hiPSC-003 및 011). 배양 단계에서 기존에 인간 배아줄기세포의 배양에 사용되던 마우스 feeder 또는 matrigel 등 동물로부터 유래된 성분을 사용하지 않는 Xeno-free 시스템을 이용해 적응 배양하는데 성공했고(도 23), 다수의 세포 stock을 확보하였다.An experiment was conducted to see if the secured protocol was applied not only to H9 hESC but also to other types of embryonic stem cells. For this purpose, iPSCs were obtained from the Central Center for Disease Control (CMC-hiPSC-003 and 011). In the culture stage, we succeeded in adaptive culture using a Xeno-free system that does not use animal-derived components such as mouse feeder or matrigel, which were previously used for culturing human embryonic stem cells (Fig. 23), and secured a large number of cell stocks did.

이렇게 확보된 hiPSC를 본 프로토콜에 적용한 결과, 신경줄기세포로 잘 분화됨을 확인했고 더 나아가 계대배양 과정에서 H9 hESC와 같이 GFAP 등의 성상교세포 마커가 증가하는 현상을 확인할 수 있었다(도 24).As a result of applying the hiPSCs thus obtained to this protocol, it was confirmed that they were well differentiated into neural stem cells, and further, it was confirmed that astrocyte markers such as GFAP increased during subculture, such as H9 hESCs (FIG. 24).

정상적으로 중뇌 성상교세포로의 분화를 확인하였다 (도 25). 즉, 이를 통해 본 프로토콜을 H9 hESC 뿐만 아니라 다른 종류의 배아줄기세포에도 적용을 할 수 있다는 사실을 확인할 수 있었다. 사용 iPSC line 중에 #11이 보다 분화 용이하고, 향후 실제적인 사용시, 가용한 유도만능 줄기세포의 확보에 매우 중요한 단계가 될 것이다.Normal differentiation into midbrain astrocytes was confirmed ( FIG. 25 ). In other words, it was confirmed that this protocol can be applied not only to H9 hESC but also to other types of embryonic stem cells. Among the used iPSC lines, #11 is easier to differentiate and will be a very important step in securing available induced pluripotent stem cells when practically used in the future.

TGF-β와 LIF를 이용한 효율적인 분화 유도.Efficient differentiation induction using TGF-β and LIF.

TGF-β와 LIF를 이용한 효율적인 분화 유도를 통해 보다 다량의 성상교세포 확보 기술을 확보하였다. 증식단계에 TGF-β를 처리하고, 분화 단계에 LIF를 처리함으로써 보다 많은 양의 성상세포가 분화됨을 보이고, (GFAP 마커 발현으로) 이러한 성상세포에서 보다 많은 양의 신경조절인자가 발현되는 양질의 세포로됨을 관찰하였다 (도 26). 성상전구세포의 양을 확인하기 위해, 증식 단계에 분열하는 세포에만 마킹될 수 있는 EdU를 30분간만 처리하고 완전히 분화 후, 성상세포와 동시에 발현되는 양을 봄으로서 성상세포의 전구세포 증감을 확인한 결과, 성상전구세포의 양이 1.5배 증가됨을 확인하였다. Through efficient differentiation induction using TGF-β and LIF, a technology for securing a large amount of astrocytes was secured. By treating TGF-β in the proliferation stage and LIF in the differentiation stage, it was shown that a greater amount of astrocytes were differentiated, and a higher amount of neuromodulatory factors were expressed in these astrocytes (by expression of the GFAP marker). cell formation was observed (FIG. 26). In order to confirm the amount of astrocytes, EdU, which can be marked only on dividing cells in the proliferation stage, was treated for only 30 minutes, and after complete differentiation, the increase or decrease of the progenitor cells of astrocytes was confirmed by looking at the amount expressed simultaneously with the astrocytes. As a result, it was confirmed that the amount of astrocytes increased by 1.5 times.

최종 프로토콜을 통해 확보된 성상교세포의 유래물질의 활용성을 보기 위해 우선적으로 조건화 배지의 특성 분석To see the utility of the astrocyte-derived material obtained through the final protocol, preferentially characterize the conditioned medium

- 세포 특성 분석: 확보된 성상교세포의 특성을 분석하기 위해 생리학적 특성을 분석하여 중뇌성 성상교세포의 생리 활성도를 측정하였고, 이를 통해 분화 유래물 확보 및 이식에 적합한 미성숙의 성상교세포임을 확인하였다[도 27]. 완전히 성숙한 형태의 성상세포는 나쁜 환경에서 쉽게 나쁘게 동화될 수 있음을 감안하여 이러한 미성숙한 형태의 세포가 이식에는 보다 적합하다.- Cell characteristics analysis: To analyze the characteristics of the obtained astrocytes, the physiological activity of the mesencephalic astrocytes was measured by analyzing the physiological characteristics, and through this, it was confirmed that they are immature astrocytes suitable for securing differentiation derivatives and transplantation [ 27]. Considering that fully mature astrocytes can be easily assimilated into a bad environment in a bad environment, these immature types of cells are more suitable for transplantation.

- 기능 분석: 이식 후에 성상교세포의 기능을 보기 위해 실시하였고, 이식 후 생체 내에서 양질의 세포로서의 기능 수행이 가능한지를 in vitro 와 in vivo 에서 관찰하였다. In vitro 결과는 주변부의 환경 개선에 적합한지를 알아보기 위해, 조건화 배지를 이용한 실험을 실시하였다. - Functional analysis: After transplantation, it was carried out to check the function of astrocytes, and it was observed in vitro and in vivo whether it was possible to perform functions as high-quality cells in vivo after transplantation. In order to find out whether the in vitro results are suitable for improving the surrounding environment, an experiment using a conditioned medium was conducted.

그 결과는 도 28, 도 29, 도 30에 나타내었다. 도 28은 중뇌형 성상교세포의 조건화 배지를 활용한 미세아교세포의 변화를 관찰한 것이다. 이를 통해 성상세포에 의한 항염증 효과를 in vitro 로 검증하였다. 미세아교세포가 함유되어 있는 세포 배양에서, LPS 처리로 염증 유발 시, 중뇌 성상세포의 조건화 배지의 처리로, 나쁜 방향의 미세아교세포 마커인 iNOS, Cd11b, CD16.32가 감소되고, 좋은 방향의 미세아교세포로의 변환을 보여주는 마커인 Arg, CD206의 발현이 증대되었다.The results are shown in FIGS. 28, 29 and 30 . 28 is an observation of changes in microglia using a conditioned medium for midbrain astrocytes. Through this, the anti-inflammatory effect by astrocytes was verified in vitro. In cell culture containing microglia, when inflammation is induced by LPS treatment, treatment with conditioned medium for midbrain astrocytes reduces iNOS, Cd11b, and CD16.32, which are microglia markers in a bad direction, The expression of Arg and CD206, which are markers showing transformation into microglia, was increased.

도 29는 염증 유도 후 성상교세포 조건화 배지로 사멸 인자 억제 가능성을 확인한 것이다. 이를 통해 성상세포에 의한 항염증 효과를 in vitro로 검증하였다. 역시 미세아교세포가 함유되어있는 세포 배양에서, LPS 처리로 염증 유발 시, 중뇌 성상세포의 조건화 배지의 처리로, 세포 사멸 마커인 b-gal, p16 발현이 감소되었다. Figure 29 confirms the possibility of inhibiting apoptosis factors with an astrocyte conditioned medium after induction of inflammation. Through this, the anti-inflammatory effect by astrocytes was verified in vitro. Also, in cell culture containing microglia, when inflammation was induced by LPS treatment, the expression of b-gal and p16, apoptosis markers, was decreased by treatment with the conditioned medium of mesencephalic astrocytes.

도 30은 염증 유도 후 성상교세포 조건화 배지로 항염증 효과를 RT-PCR로 확인한 것이다. 이를 통해 성상세포에 의한 항염증 효과를 in vitro 로 검증하였다. 역시 미세아교세포가 함유되어있는 세포 배양에서, LPS 처리로 염증 유발 시 중뇌 성상세포의 조건화 배지의 처리로, inflammosome 형성 관련 인자의 발현 감소와 신경화 인자의 발현 증가를 확인하였다.30 shows the anti-inflammatory effect of an astrocyte conditioned medium after induction of inflammation by RT-PCR. Through this, the anti-inflammatory effect by astrocytes was verified in vitro. Also, in cell culture containing microglia, when inflammation was induced by LPS treatment, it was confirmed that the expression of inflammosome formation-related factors decreased and the expression of neurogenic factors was increased by treatment of the conditioned medium of midbrain astrocytes.

최종 프로토콜을 통해 확보된 성상교세포의 in vivo 내에서의 활용성을 보기 위한, 이식 후 특성 분석Post-transplant characterization to see the in vivo utility of astrocytes obtained through the final protocol

우선적으로 in vivo 생체 뇌에 이식 후 성상교세포의 주변 환경에 대한 긍정적인 역할에의 영향을 보는 연구 관찰하였다. Striatum 부위에 성상교세포를 이식 후, 항염증 인자 및 염증인자, 사이토카인 분비 등의 결과를 확인하였다. 성상교세포 이식 부위에 TNF-a, IL1b, iNOS, CD11b 등 염증인자의 발현이 감소되었고, 주변부위에도 IL1b, iNOS, CD11b 등 염증인자의 발현이 감소되었고, 이식 부위 및 주변부에 BDNF, GDNF, Arg1 사이토카인 발현이 다소 증대되었다 (도 31).First, we observed a study on the positive role of astrocytes on the surrounding environment after transplantation into the brain in vivo. After transplanting astrocytes to the striatum region, the results of anti-inflammatory factors, inflammatory factors, and cytokine secretion were confirmed. The expression of inflammatory factors such as TNF-a, IL1b, iNOS, and CD11b was reduced in the astrocyte transplantation site, and the expression of inflammatory factors such as IL1b, iNOS, CD11b was also reduced in the surrounding area, and BDNF, GDNF, Arg1 astrocytes were Cain expression was slightly enhanced ( FIG. 31 ).

성상교세포의 생체 이식 후 환경 개선 효과를 미세아교세포의 변화로 in vivo 에서 관찰.The effect of improving the environment after transplantation of astrocytes in vivo was observed in vivo through changes in microglia.

확보된 성상교세포를 랫트의 뇌 선조체에 이식 후 반대쪽에는 신경줄기세포를 대조군으로 이식하여, 대표적인 환경 변화 관찰로 미세아교세포의 M1 M2 변환 여부를 확인하였다. After transplanting the obtained astrocytes into the rat brain striatum, neural stem cells were transplanted to the opposite side as a control, and it was confirmed whether the microglia were converted to M1 to M2 by observing representative environmental changes.

LPS로 염증을 유발하고, 성상교세포 이식 후 관찰한 결과 성상교세포 이식 부위에 나쁜 타입의 M1 마커인 iNOS, CD11b, CD16 등의 발현이 억제되고 (도 32~34), M2의 마커로 CD206의 발현이 증대되어 있음을 관찰하여서, 성상교세포의 긍정적인 영향을 보았다 (도 35).Inflammation was induced by LPS, and as a result of observation after astrocyte transplantation, the expression of iNOS, CD11b, and CD16, which are bad types of M1 markers at the astrocyte transplantation site, was suppressed ( FIGS. 32-34 ), and the expression of CD206 as a marker of M2 By observing that this is increased, a positive effect of astrocytes was seen (FIG. 35).

실시예 4: 인간 유도만능 줄기세포로부터 시상하부 오가노이드를 이용하여 시상하부 신경세포 및 성상교세포로의 분화 확인Example 4: Confirmation of differentiation into hypothalamic neurons and astrocytes from human induced pluripotent stem cells using hypothalamic organoids

[실험과정][Experimental process]

인간 만능 줄기세포 (hESCs/hiPSCs) 배양Human pluripotent stem cell (hESCs/hiPSCs) culture

한양대학교(서울, 대한민국)의 IRB(institutional review board)에 의해 승인된 hESC 리서치 가이드라인을 기초로 hESCs 및 hiPSCs를 배양하였다. hESCs and hiPSCs were cultured based on the hESC research guidelines approved by the institutional review board (IRB) of Hanyang University (Seoul, Korea).

본 실험에서 사용된 hESCs 및 hiPSCs는 하기 표 8에 나타내었다. The hESCs and hiPSCs used in this experiment are shown in Table 8 below.

hESC linehESC line Name used in this paperName used in this paper Original nameoriginal name KaryotypeKaryotype Establishing instituteEstablishing institute HSF6HSF6 UC06UC06 Female (46, XX)Female (46, XX) UCSFUCSF H9H9 WA09WA09 Female (46, XX)Female (46, XX) Wi cellWi cell HUES6HUES6 HUES6HUES6 Female (46, XX)Female (46, XX) Harvard university(HSCI iPS Core)Harvard university (HSCI iPS Core) hiPSC linehiPSC line Name used in this paperName used in this paper Original nameoriginal name SourceSource
(Human)(Human)
Reprogramming factorsReprogramming factors MethodsMethods Establishing instituteEstablishing institute
Retro-1Retro-1 Rv-hiPS 01-1Rv-hiPS 01-1 Newborn fibroblastNewborn fibroblast OCT4, SOX2, KLF4, MYCOCT4, SOX2, KLF4, MYC Retrovirusretrovirus HarvardHarvard Epi-ipsEpi-ips episomal-ips1episomal-ips1 SkinSkin OCT4, SOX2, KLF4, shp53OCT4, SOX2, KLF4, shp53 Episomal vectorEpisomal vector Hanyang Univ. (Our own)Hanyang Univ. (Our own) CMC-ips#11CMC-ips#11 CMC-hipsc-011CMC-hipsc-011 Bone marrow bloodbone marrow blood OCT4, SOX2, KLF4, MYCOCT4, SOX2, KLF4, MYC Sendai virusSendai virus Catholic Univ. (Korea NIH SCRM)Catholic University. (Korea NIH SCRM) PD-ips1PD-ips1 PD patient derived ips-1PD patient derived ips-1 SkinSkin OCT4, SOX2, KLF4, shp53OCT4, SOX2, KLF4, shp53 Episomal vectorEpisomal vector Hanyang Univ. (Our own)Hanyang Univ. (Our own) PD-#22PD-#22 Corr. PD-ips#22Corr. PD-ips#22 SkinSkin OCT4, SOX2, KLF4, shp53OCT4, SOX2, KLF4, shp53 Episomal vector and genome editedEpisomal vector and genome edited Hanyang Univ. (Our own)Hanyang Univ. (Our own)

미분화 hESC/iPSC의 증식 및 유지를 위해, 피더층 없이 37℃ 설정된 CO2 인큐베이터에서, mTESR-1 배지 (Stemcell Technologies Inc., Vancouver, BC, Canada)를 이용하여 MatrigelTM 상에서 혹은 vitronectin (Human; Gibco Fisher Scientific, Waltham, MA) (Gibco A31804; 0.5 ug/cm2)-코팅된 6cm 디쉬(Thermo Fisher Scientific, Waltham, MA) 상에서 배양하였고, 배지 교체는 매일 수행하였다. 미분화된 줄기세포들은 매일 배지 교체로 분화능이 유지되었으며 4~5일마다 Acutase (Stemcell Technologies Inc.)를 이용하여 계대배양되었다.For proliferation and maintenance of undifferentiated hESCs/iPSCs, in a CO 2 incubator set at 37° C. without a feeder layer, using mTESR-1 medium (Stemcell Technologies Inc., Vancouver, BC, Canada) on Matrigel TM or vitronectin (Human; Gibco) Fisher Scientific, Waltham, MA) (Gibco A31804; 0.5 ug/cm 2 )-coated 6 cm dishes (Thermo Fisher Scientific, Waltham, MA), medium change was performed daily. The undifferentiated stem cells were maintained in differentiation capacity by daily medium replacement and subcultured using Acutase (Stemcell Technologies Inc.) every 4 to 5 days.

3차원 시상하부 오가노이드 제작3D hypothalamic organoid fabrication

도 36과 같은 프로토콜로 오가노이드 제작하였다.An organoid was prepared by the same protocol as in FIG. 36 .

기본적으로 배아/유도만능 줄기세포로부터 신경계의 오가노이드를 제작하므로, 인간 배아/유도만능 줄기세포는 Acutase를 이용해 디쉬에서 떼어 신경세포 분화유도 배지에 담겨 low attachment 96-well round bottom plate (Corning, Corning, NY)에 1well 당 10,000개 세포씩 150μL로 주입되었다(분화 0일 차). 신경계로의 오가노이드 제작을 위해서 SB -431542. 10 μM, Noggin, 100 ng/mL을 처리하며, 신경계로 유도하고 배쪽 유도인자인 SHH, Purmophamin 처리로 패턴화하였다. 구체적인 배지 조성은 다음 표 9, 표 10과 같다.Basically, because organoids of the nervous system are produced from embryonic/induced pluripotent stem cells, human embryonic/induced pluripotent stem cells are removed from the dish using Acutase and placed in a neuron differentiation induction medium with a low attachment 96-well round bottom plate (Corning, Corning). , NY) at 150 μL of 10,000 cells per well (day 0 of differentiation). SB -431542 for the production of organoids into the nervous system. Treated with 10 μM, Noggin, 100 ng/mL, induced into the nervous system and patterned by treatment with ventral inducers SHH and Purmophamin. Specific medium composition is shown in Tables 9 and 10 below.

시상하부 오가노이드로부터 시상하부 신경줄기세포를 분리하여 신경세포로 분화 확인Isolation of hypothalamic neural stem cells from hypothalamic organoids and confirmation of differentiation into neurons

날짜에 따른 분화유도 배지의 조성은 다음 표 9와 같다. The composition of the differentiation induction medium according to the date is shown in Table 9 below.

DayDay Media CompositionMedia Composition 96-well (seeding: 1 × 1096-well (seeding: 1 × 10 44 cells/well) cells/well) D0D0 Neurobasal : 2Х N2 (1:1)Neurobasal: 2Х N2 (1:1) 1×B27 (- RA)1×B27 (-RA) 1×MEM NEAAMEM NEAA 1×Glutamax1×Glutamax β-mercaptoethanol, 55 μMβ-mercaptoethanol, 55 μM Penicillin/StreptomycinPenicillin/Streptomycin Ascorbic Acid, 200 μMAscorbic Acid, 200 μM Doxycycline, 1 μg/mLDoxycycline, 1 μg/mL Y-27632, 10 μMY-27632, 10 μM SB -431542. 10 μMSB -431542. 10 μM Noggin, 100 ng/mLNoggin, 100 ng/mL D1-6D1-6 Neurobasal : 2×N2 (1:1)Neurobasal : 2×N2 (1:1) 1×B27 (- RA)1×B27 (-RA) 1×MEM NEAAMEM NEAA 1×Glutamax1×Glutamax β-mercaptoethanol, 55 μMβ-mercaptoethanol, 55 μM Penicillin/StreptomycinPenicillin/Streptomycin Ascorbic Acid, 200 μMAscorbic Acid, 200 μM SB -431542. 10 μMSB -431542. 10 μM SHH, 100 ng/mLSHH, 100 ng/mL Purmorphamine, 2 μMPurmorphamine, 2 μM D7-12D7-12 Neurobasal : 2×N2 (1:1)Neurobasal : 2×N2 (1:1) 1×B27 (- RA)1×B27 (-RA) 1×MEM NEAAMEM NEAA 1×Glutamax1×Glutamax β-mercaptoethanol, 55 μMβ-mercaptoethanol, 55 μM Penicillin/StreptomycinPenicillin/Streptomycin Ascorbic Acid, 200 μMAscorbic Acid, 200 μM Noggin, 100 ng/mLNoggin, 100 ng/mL SHH, 100 ng/mLSHH, 100 ng/mL Purmorphamine, 2 μMPurmorphamine, 2 μM Move to 6-well culture plateMove to 6-well culture plate D13-20D13-20 N2 mediumN2 medium Penicillin/StreptomycinPenicillin/Streptomycin Ascorbic Acid, 200 μMAscorbic Acid, 200 μM FGF2, 20 ng/mLFGF2, 20 ng/mL Choppingchopping D18~21D18-21 N2 mediumN2 medium Penicillin/StreptomycinPenicillin/Streptomycin Ascorbic Acid, 200 μMAscorbic Acid, 200 μM Doxycycline, 1 μg/mLDoxycycline, 1 μg/mL FGF2, 20 ng/mLFGF2, 20 ng/mL

처음 seeding 할 때는 N2: Neurobasal (1:1, Gibco), B27 (RA 미포함), 2-mercapto 55uM, MEM-NEAA, GlutaMAX, Ascorbic Acid, 200 μM, SB431542 (10 μM), Noggin 100ng/ml, ROCK inhibitor Y27632 (20 μM), Doxycyclin 1ug/ml 를 넣었다. Y27632, Doxycyclin 은 첫날 24시간 동안만 처리하였다. 1~6일 사이에는 기본 배지를 사용하면서 SHH, 100 ng/mL, Purmorphamine, 2 μM 를 추가하였다. 7~12일 사이에는 기존의 기본 배지를 사용하면서 SB431542 만 없는 배지를 사용하였다. 13일째의 6 well plate (low binding)로 이동하여, orbitary shaker 로 교반시켰다. 13~20일에는 N2배지에 Ascorbic Acid, 200 μM, FGF2, 20 ng/mL 만 첨가하고 배양하다가, 21일째 (18일 이후에는 가능함)의 2D 상태로 chopping 후 플레이트에 깔 때까지는 전체 기본 배지를 N2 로 사용하며, 플레이트 첫날만 Doxycyclin 첨가하였다. 배지 조성이 바뀔 시마다 전체 배지가 교체되었고, 증식 배지로는 13일차에 사용하던 배지를 사용하였다. 계대배양 시마다 하루동안 Doxycyclin 1ug/ml, Y27632가 5 μM의 농도로 처리되었다. 신경세포로의 최종 분화는 N2 분화 배지로 유도되었다(10 ng/ml BDNF, 10 ng/ml GDNF, 200 μM ascorbic acid).For initial seeding, N2: Neurobasal (1:1, Gibco), B27 (without RA), 2-mercapto 55uM, MEM-NEAA, GlutaMAX, Ascorbic Acid, 200 μM, SB431542 (10 μM), Noggin 100ng/ml, ROCK Inhibitor Y27632 (20 μM) and Doxycyclin 1ug/ml were added. Y27632 and Doxycyclin were treated only for 24 hours on the first day. Between days 1 and 6, SHH, 100 ng/mL, Purmorphamine, and 2 μM were added while using the basal medium. Between 7 and 12 days, a medium without SB431542 was used while using the existing basal medium. It was transferred to a 6-well plate (low binding) on day 13 and stirred with an orbitary shaker. On days 13-20, only Ascorbic Acid, 200 μM, FGF2, and 20 ng/mL were added to N2 medium and cultured, and then chopping in 2D state on the 21st day (possible after the 18th), and the entire basal medium until spread on a plate. Used as N2, and Doxycyclin was added only on the first day of the plate. The entire medium was replaced whenever the medium composition was changed, and the medium used on the 13th day was used as the growth medium. Each subculture was treated with Doxycyclin 1ug/ml and Y27632 at a concentration of 5 μM for one day. Final differentiation into neurons was induced with N2 differentiation medium (10 ng/ml BDNF, 10 ng/ml GDNF, 200 μM ascorbic acid).

기본 배지는 다음 표 10과 같다.The basic badges are shown in Table 10 below.

2× N2 medium2× N2 medium N2 mediumN2 medium 12 g DMEM/F12 (- HEPES buffer, - sodium bicarbonate)12 g DMEM/F12 (- HEPES buffer, - sodium bicarbonate) 12 g DMEM/F12 (- HEPES buffer, - sodium bicarbonate)12 g DMEM/F12 (- HEPES buffer, - sodium bicarbonate) 1.69 g Sodium bicarbonate1.69 g Sodium bicarbonate 1.69 g Sodium bicarbonate1.69 g Sodium bicarbonate 1.55 g D(+) Glucose1.55 g D(+) Glucose 1.55 g D(+) Glucose1.55 g D(+) Glucose 0.073 g L-Glutamine0.073 g L-Glutamine 0.073 g L-Glutamine0.073 g L-Glutamine 200 mg Apo-transferrin200 mg Apo-transferrin 100 mg Apo-transferrin100 mg Apo-transferrin Progesterone, 40 nMProgesterone, 40 nM Progesterone, 20 nMProgesterone, 20 nM Putrescine, 200 μMPutrescine, 200 μM Putrescine, 100 μMPutrescine, 100 μM Selenite, 60 nMSelenite, 60 nM Selenite, 30 nMSelenite, 30 nM Insulin, 200 nMInsulin, 200 nM Insulin, 200 nMInsulin, 200 nM 1 L water1 L water 1 L water1 L water

시상하부 오가노이드로부터 시상하부 성상전구세포를 분리하여 성상교세포로 분화 확인Isolation of hypothalamic astrocytes from hypothalamic organoids to confirm differentiation into astrocytes

만들어진 시상하부형의 Og-NSCs를 실제 뇌 발생 단계에 맞게 계대를 더 늘리면, 특별히 배지 조성 등의 변화 없이 9계대 이후에 성상전구세포가 주로 함유된 Og-성상전구세포의 배양이 가능하다. 9계대~11계대는 건강한 상태로 사용이 가능하다. 시상하부형의 Og-NSCs와 같이 증식 배지로는 N2 증식 배지로, 조성은 1X N2 supplement containing, 200 μM ascorbic acid, 20 ng/ml bFGF, and 1μg/ml doxycycline이다. 배지 교체는 매일 이루어졌으며 처음 2차원 배양으로 전환 시, 그리고 계대 배양 시마다 하루 동안 Y27632가 5 μM의 농도로 처리되었다. 중뇌의 오가노이드 유래 성상전구세포처럼 계대가 오래된 증식 단계의 세포를 이식 연구에 사용한다. If the passage of the hypothalamic-type Og-NSCs produced is further increased to match the actual brain development stage, it is possible to culture Og-progenitor cells, mainly containing astrocytes, after passage 9 without changing the medium composition. Generations 9 to 11 can be used in a healthy state. Like hypothalamic Og-NSCs, the growth medium is N2 growth medium, and the composition is 1X N2 supplement containing, 200 μM ascorbic acid, 20 ng/ml bFGF, and 1 μg/ml doxycycline. Medium change was made daily and Y27632 was treated at a concentration of 5 μM for one day at the first conversion to 2D culture and at each subculture. Cells in the proliferative stage with an older passage, such as organoid-derived astrocytes in the midbrain, are used for transplantation studies.

[결과][result]

3D 시상하부 오가노이드 제작 확인Confirmation of 3D hypothalamic organoid production

제작된 시상하부의 오가노이드는 도 37에 보듯이 정상적인 형태를 띠고, 시상하부 마커로서 RAX와 함께 신경줄기세포의 마커인 Nestin, Sox2를 함께 발현하는 초기의 형태를 띠게 된다.The prepared hypothalamic organoid has a normal shape as shown in FIG. 37 , and has an initial shape expressing Nestin and Sox2, which are markers of neural stem cells, together with RAX as a hypothalamic marker.

제작된 시상하부 3D 오가노이드로부터 시상하부 신경줄기세포 및 성상전구세포 확보 확인Confirmation of securing hypothalamic neural stem cells and astrocytes from the produced hypothalamic 3D organoid

시상하부 오가노이드로부터 해체 추출된 신경줄기세포는 도 38의 결과와 같이 시상하부 마커가 96.8% 발현되는 제대로 패턴화된 신경줄기세포가 됨을 확인하였다. 양적으로는 4계대까지의 신경줄기세포를 신경세포분화 용도로 사용 가능한데, 처음의 10,000개로부터 1000배 정도의 신경줄기세포로의 확보가 가능하다(도 38). 신경줄기세포는 패턴화 마커로서 RAX, NKX2.2가 발현된다. It was confirmed that the neural stem cells dissected and extracted from the hypothalamic organoids became properly patterned neural stem cells in which 96.8% of the hypothalamic markers were expressed as shown in the result of FIG. 38 . Quantitatively, neural stem cells up to passage 4 can be used for neural cell differentiation, and it is possible to secure about 1,000 times the neural stem cells from the first 10,000 cells (FIG. 38). Neural stem cells express RAX and NKX2.2 as patterning markers.

시상하부 신경세포 및 성상교세포 분화 확인Confirmation of differentiation of hypothalamic neurons and astrocytes

만들어진 시상하부 줄기세포는 도 39의 결과에서 보듯이, 분화 시에 신경세포인 MAP2 발현하는 세포와 GFAP 발현하는 성상세포로의 분화가 가능하다. 신경세포의 경우는 시상하부 특이적인 마커인 NPY, a-MSH 를 발현하는 세포로 분화된다.As shown in the results of FIG. 39, the produced hypothalamic stem cells can be differentiated into MAP2-expressing neurons and GFAP-expressing astrocytes during differentiation. Neurons are differentiated into cells expressing hypothalamus-specific markers NPY and a-MSH.

분화 이후에 기능적으로 완전한 세포로의 형성을 확인하기 위해, 특이적으로 leptin 반응성을 봤을 때 (도 40) p-stat3 기전이 반응되는 민감성이 측정되었고, 유전자 반응을 봤을 때, anorexic 관련, POMC, CARTPT, PCSK1,2, LEPR, MC4R의 발현이 증대되어 있고, orexic 관련 유전자인 NPY, AGRP, NPY1R의 발현이 증대되어 있어서 완전히 기능할 수 있음을 시사한다. 특히, 2차원적인 배양에 비해, 3차원적 오가노이드 유래 세포가 보다 잘 패턴화되어 있음을 NKX2.1, RAX, ISL, SF1, NGN3 의 발현을 통해 알 수 있다 (도 41).In order to confirm the formation of functionally complete cells after differentiation, when specifically looking at the leptin reactivity (FIG. 40), the sensitivity to the p-stat3 mechanism was measured, and when looking at the gene response, anorexic-related, POMC, The expression of CARTPT, PCSK1,2, LEPR, and MC4R is increased, and the expression of orexic-related genes NPY, AGRP, and NPY1R is increased, suggesting that it can fully function. In particular, it can be seen through the expression of NKX2.1, RAX, ISL, SF1, and NGN3 that the three-dimensional organoid-derived cells are better patterned compared to the two-dimensional culture (FIG. 41).

Leptin에 반응성 있는 줄기세포로서의 시상하부 신경줄기세포의 확보는 실제적으로 생체내의 것들과 유사하게 그 기능을 수행할 수 있음을 보여줌과 아울러 향후 비만, 당뇨 등의 대사질환 연구 및 치료제 개발에 주요하게 사용될 가능성 있음을 시사한다(도 40).Securing hypothalamic neural stem cells as leptin-responsive stem cells shows that they can actually perform their functions similar to those in the living body, and it is likely to be mainly used for research and development of therapeutic agents for metabolic diseases such as obesity and diabetes in the future suggest that there is (FIG. 40).

3D 오가노이드 이용으로 개발된 시상하부 신경줄기세포의 생체 이식 가능성 확인Confirmation of biotransplantation potential of hypothalamic neural stem cells developed by using 3D organoids

3D 오가노이드 이용으로 개발된 시상하부 신경줄기세포의 생체 이식 가능성을 확인하였다. 1X105 개의 시상하부 신경줄기세포를 3rd ventricle에 이식 후, 7일 후에 그 생착 가능성을 확인하였다. hNCAM/Rax 가 발현되는 시상하부 신경줄기세포가 안정적으로 생착됨을 확인하고, 동시에 hGFAP/POMC 가 발현되는 시상하부 신경줄기세포 형태를 띠고 있음을 확인하였다(도 42). The potential for transplantation of hypothalamic neural stem cells developed by using 3D organoids was confirmed. 1X10 transplant five hypothalamic neural stem cells in the 3 rd ventricle, after 7 days it was confirmed that the possibility of engraftment. It was confirmed that the hNCAM/Rax-expressing hypothalamic neural stem cells were stably engrafted, and at the same time, it was confirmed that the hGFAP/POMC-expressing hypothalamic neural stem cells had a form ( FIG. 42 ).

Claims (16)

인간 만능 줄기세포를 배양하여 중뇌, 대뇌피질 또는 시상하부 유래 오가노이드를 제작하고, 제작된 오가노이드 내 신경줄기세포 또는 성상전구세포를 배양하고 분화 유도하여 신경세포 또는 성상교세포로 분화시키는 방법에 있어서,
상기 제작된 오가노이드를 패턴화하고 해체하여 다량의 신경줄기세포 또는 성상전구세포를 확보하고, 이를 배양하여 분화시키는 단계;
를 포함하는 신경세포 또는 성상교세포가 다량 확보된 분화 방법.
In the method of producing an organoid derived from the midbrain, cerebral cortex or hypothalamus by culturing human pluripotent stem cells, culturing neural stem cells or astrocytes in the produced organoid, and inducing differentiation into neurons or astrocytes,
patterning and disassembling the prepared organoid to secure a large amount of neural stem cells or astrocytes, and culturing and differentiating them;
A differentiation method in which a large amount of nerve cells or astrocytes is secured, comprising a.
제 1 항에 있어서,
상기 인간 만능 줄기세포 및 줄기세포는 비트로넥틴(Vitronectin)을 이용하여 배양시키는 것을 특징으로 하는 분화방법.
The method of claim 1,
The differentiation method, characterized in that the human pluripotent stem cells and stem cells are cultured using vitronectin (Vitronectin).
제 1 항에 있어서,
상기 신경세포는 성상교세포와 혼재되어 존재하는 것을 특징으로 하는 분화방법.
The method of claim 1,
The differentiation method, characterized in that the nerve cells are present mixed with astrocytes.
삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete
KR1020190128602A 2018-10-17 2019-10-16 Differentiation method of securing large amount of cells by chopping target cell enriched 3D organoids prepared from human pluripotent stem cells KR102296446B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020210111426A KR102468360B1 (en) 2018-10-17 2021-08-24 Neural stem cells derived from 3D brain organoid and use thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20180123902 2018-10-17
KR1020180123902 2018-10-17

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020210111426A Division KR102468360B1 (en) 2018-10-17 2021-08-24 Neural stem cells derived from 3D brain organoid and use thereof

Publications (2)

Publication Number Publication Date
KR20200043297A KR20200043297A (en) 2020-04-27
KR102296446B1 true KR102296446B1 (en) 2021-09-02

Family

ID=70467825

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020190128602A KR102296446B1 (en) 2018-10-17 2019-10-16 Differentiation method of securing large amount of cells by chopping target cell enriched 3D organoids prepared from human pluripotent stem cells
KR1020210111426A KR102468360B1 (en) 2018-10-17 2021-08-24 Neural stem cells derived from 3D brain organoid and use thereof

Family Applications After (1)

Application Number Title Priority Date Filing Date
KR1020210111426A KR102468360B1 (en) 2018-10-17 2021-08-24 Neural stem cells derived from 3D brain organoid and use thereof

Country Status (1)

Country Link
KR (2) KR102296446B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024091060A1 (en) * 2022-10-27 2024-05-02 가톨릭대학교 산학협력단 Method for producing brain cancer-brain organoid complex by co-culturing brain organoid derived from induced pluripotent stem cells of brain cancer patient with patient brain cancer organoid

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4092113A4 (en) * 2020-01-13 2023-01-18 Corestem Co., Ltd. Differentiation method for procuring large amount of cells by chopping 3d organoids prepared from human pluripotent stem cells
KR102459182B1 (en) * 2020-08-27 2022-10-26 경희대학교 산학협력단 Methods of multicomponent porous polymer particles and multicomponent porous polymer particles prepared thereby
KR102435894B1 (en) * 2020-08-27 2022-08-25 경희대학교 산학협력단 Methods of porous polymer particles and porous polymer particles prepared thereby
KR102486603B1 (en) * 2020-09-04 2023-01-10 경희대학교 산학협력단 Methods of perovskite-polymer composite particles and perovskite-polymer composite particles prepared thereby
KR20230002086A (en) * 2021-06-25 2023-01-05 서울대학교산학협력단 Platform for screening effective intestinal bacterial strains to alleviate Alzheimer’s disease pathology
KR20230162885A (en) * 2022-05-20 2023-11-29 코아스템켐온 주식회사 Pharmaceutical composition for preventing and treating age-related diseases comprising neural stem cells derived from 3d hypothalamic organoid and use thereof
CN115463158A (en) * 2022-08-04 2022-12-13 北京诺兰药谷科技有限公司 Use of induced pluripotent stem cell derived midbrain organoids
CN117392468B (en) * 2023-12-11 2024-02-13 山东大学 Cancer pathology image classification system, medium and equipment based on multi-example learning

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017060884A1 (en) 2015-10-08 2017-04-13 Université Du Luxembourg Means and methods for generating midbrain organoids
WO2019032680A1 (en) 2017-08-08 2019-02-14 Regents Of The University Of Minnesota Methods for generating and using organoids and cells thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101516352B1 (en) * 2013-04-19 2015-05-04 차의과학대학교 산학협력단 Pharmaceutical composition for the treatment of stroke comprising neural precursor cells derived from human induced pluripotent stem cells
KR102087294B1 (en) * 2016-11-15 2020-03-10 한국생명공학연구원 A method for preparing the Parkinson's disease model comprising 3D intestinal organoid and 3D neuro ectodermal sphere, and use thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017060884A1 (en) 2015-10-08 2017-04-13 Université Du Luxembourg Means and methods for generating midbrain organoids
JP2018531011A (en) 2015-10-08 2018-10-25 ウニベルジテ・デュ・ルクセンブルクUniversite Du Luxembourg Means and methods for making midbrain organoids
WO2019032680A1 (en) 2017-08-08 2019-02-14 Regents Of The University Of Minnesota Methods for generating and using organoids and cells thereof

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
Cell Stem Cell. 19(2):248-257 (2016.08.04.)*
NPJ Parkinsons Dis. 2019 Apr 5;5:5
Sci Rep. 7:40573 (2017.01.16.)*
Stem Cell Reports . 2019 Mar 5;12(3):518-531
Stem Cell Reports. 2017 May 9;8(5):1144-1154

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024091060A1 (en) * 2022-10-27 2024-05-02 가톨릭대학교 산학협력단 Method for producing brain cancer-brain organoid complex by co-culturing brain organoid derived from induced pluripotent stem cells of brain cancer patient with patient brain cancer organoid

Also Published As

Publication number Publication date
KR20200043297A (en) 2020-04-27
KR102468360B1 (en) 2022-11-17
KR20210106966A (en) 2021-08-31

Similar Documents

Publication Publication Date Title
KR102296446B1 (en) Differentiation method of securing large amount of cells by chopping target cell enriched 3D organoids prepared from human pluripotent stem cells
JP7225163B2 (en) Midbrain dopamine (DA) neurons for transplantation
Parish et al. Wnt5a-treated midbrain neural stem cells improve dopamine cell replacement therapy in parkinsonian mice
Marei et al. Human olfactory bulb neural stem cells expressing hNGF restore cognitive deficit in Alzheimer's disease rat model
US20050003531A1 (en) Lineage-restricted neuronal precursors
Denham et al. Neurons derived from human embryonic stem cells extend long-distance axonal projections through growth along host white matter tracts after intra-cerebral transplantation
Chen et al. Humanized neuronal chimeric mouse brain generated by neonatally engrafted human iPSC-derived primitive neural progenitor cells
KR102203034B1 (en) Improvement of transplantation effect of DA neuron engraftment by Co-transplantation of midbrain astrocytes and VM-NPCs
KR20160040286A (en) Method for producing dopaminergic neurons
Kim et al. Neural stem cells derived from human midbrain organoids as a stable source for treating Parkinson’s disease: Midbrain organoid-NSCs (Og-NSC) as a stable source for PD treatment
JP2016508520A (en) Use of neurons derived from human pluripotent stem cells for the treatment of neurodegenerative diseases
Lim et al. Generation of dopamine neurons from rodent fibroblasts through the expandable neural precursor cell stage
CN109312303A (en) Express stem cell, its composition and preparation method thereof of mesenchyma and neuronal marker
Marei et al. Human olfactory bulb neural stem cells mitigate movement disorders in a rat model of Parkinson's disease
Zheng et al. Human iPSC-derived midbrain organoids functionally integrate into striatum circuits and restore motor function in a mouse model of Parkinson's disease
Maria et al. Improved cell therapy protocol for Parkinson’s disease based on differentiation efficiency and safety of hESC-, hiPSC and non-human primate iPSC-derived DA neurons
KR20230165846A (en) Dopaminergic progenitor cells and methods of use
US20230049017A1 (en) Differentiation method for procuring large amount of cells by chopping 3d organoids prepared from human pluripotent stem cells
US20040115808A1 (en) Enteric nervous system derived stem and progenitor cells and uses thereof
Luo et al. Developmental deficits and early signs of neurodegeneration revealed by PD patient derived dopamine neurons
KR20230120635A (en) Methods for Generating Inner Ear Hair Cells
KR20230162885A (en) Pharmaceutical composition for preventing and treating age-related diseases comprising neural stem cells derived from 3d hypothalamic organoid and use thereof
WO2023194569A1 (en) Cells
Wyatt The Physiological Relevance of hMNP Transplantation into the SMNdelta7 Murine Model of Spinal Muscular Atrophy
Brederlau Directing stem cells and progenitors towards neuronal differentiation-implications for experimental therapies for Parkinson's disease

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
X701 Decision to grant (after re-examination)
A107 Divisional application of patent